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Abstract

Rigid Cohomology for Algebraic Stacks

by

David Michael Brown

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth Ribet, Chair

We extend le Stum’s construction of the overconvergent site [lS09] to algebraic stacks.
We prove that étale morphisms are morphisms of cohomological descent for finitely presnted
crystals on the overconvergent site. Finally, using the notion of an open subtopos of [73] we
define a notion of overconvergent cohomology supported in a closed substack and show that
it agrees with the classical notion of rigid cohomology supported in a closed subscheme.
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Preface

In this thesis we use a recent and important foundational advance in the theory of rigid
cohomology – the overconvergent site of [lS09] – to generalize rigid cohomology to algebraic
stacks over fields of positive characteristic. The goal is to prove that this gives a Weil
cohomology (i.e., those of [Pet03]).

This thesis is a first step – we define, for a closed substack Z, rigid cohomology with
supports in Z. We prove that these groups enjoy the desired finiteness, functorality, and
excision exact sequence one expects. Moreover, we prove that they agree with the classical
construction for schemes. We also prove the useful technical result that cohomological de-
scent for finitely presented overconvergent crystals with respect to étale morphisms holds on
the overconvergent site, giving a different, shorter (and mildly stronger) proof of the main
result of [CT03], (which is 153 pages). Many applications are expected, and will appear in
future work.
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Chapter 1

Introduction

The pursuit of a Weil, or ‘topological’, cohomology theory in algebraic geometry drove the
development of Grothendieck’s notion of a scheme and the subsequent ideas which permeate
modern geometry and number theory. The initial success was the construction of étale
cohomology and the subsequent proof of the Weil conjectures – that for a prime power
q = pr and a variety X over the finite field Fq, the numbers {X(Fqn)}n≥1 of Fqn-points of X
(i.e., the number of solutions to the equations defining X with values in Fqn) are goverened
by surprising formulas – the surprise is that they depend on the dimensions of the singular
cohomology H i(X ′(C);C) spaces of a lift X ′ of X to characteristic zero (when, of course,
such a lift exists).

Other applications abound. For a prime p, the condition that two varieties X and X ′

with good reduction at p have the same reduction at p implies that their Betti numbers agree
[Ill94, 1.3.8]. One can use existence of ‘exotic torsion’ in p-adic cohomology to give examples
of surfaces over Fp with no lift to characteristic zero [Ill79, II.7.3]. There are practical
algorithms for point counting – i.e., computing the numbers X(Fpn) as p and n vary – via
cohomological methods which are much faster than brute force, an important problem in
cryptography (see [Ked04] for a survey and [Ked01, Section 5] for precise asymptotics for
hyperelliptic curves). One can give explicit examples of K3 surfaces defined over Q with
Picard rank 1 [vL05], [AKR07], a famous problem of Mumford. The theme underlying these
examples is that a Weil cohomology allows one to access characteristic 0 topological data
associated to a lift X ′ of X via purely algebraic characteristic p data attached to X; a great
insight was that when there exists no such lift, a Weil cohomology is a legitimate substitite.

Building on ideas of Dwork [Dwo60] and Monsky and Washnitzer [MW68], Berthelot
developed in [Ber86] a theory of rigid cohomology, a particular flavor of Weil cohomology.
Let K be a field with a non-trivial non-archimedean valuation and denote by V its valuation
ring and by k its residue field; then one can associate to a variety X over k a collection of
vector spaces H i

rig(X) over K. One merit is that rigid cohomology is extremely concrete;
in contast to étale and crystalline cohomology one can do direct, explicit computer compu-
tations (making use of the equations for X) of rigid cohomology. A drawback is that the
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definition of rigid cohomology involves many choices, and independence of those choices and
functorality are theorems in their own right.

A recent advance is Bernard le Stum’s construction of an ‘overconvergent site’ [lS09]
which gives an alternative, equivalent definition of rigid cohomology as the cohomology of
the structure sheaf of a ringed site (XAN† ,O

†
X). One makes no choices in his definition (per-

haps it is better to say that all possible choices are encoded in his definition) and one gets
functorality for free. Other theorems come nearly for free too. For instance in this thesis
we give a short proof of cohomological descent for finitely presented overconvergent crystals
with respect to étale morphisms, one of the main results of [CT03, (153 pages)].

1.1 Background

Here we give some background and history so that we can explain in more detail the
results of this thesis.

1.1.1 Algebraic de Rham cohomology and crystals

Let X be a smooth algebraic variety over C. Then the algebraic de Rham cohomol-
ogy groups H i

dR(X) = H i(X; Ω•X) are topological in the sense that there are isomorphisms
H i

dR(X) ∼= H i(X(C);C), where X(C) is the complex manifold associated to X (in particular
it has the analytic topology and not the Zariski topology) and H i(X(C);C) is the singular
cohomology of X(C).

Now suppose X is singular. An idea of Herrera and Lieberman [HL71] (also later devel-
oped in [Har75]) is to embed X into a smooth scheme Z (e.g., if X is quasi-projective one may

take X = Pn) and define the cohomlogy groups H i
dR(X) = H i(X; Ω̂•Z); of course, one must

check that this definition is independent of the choice of embedding into a smooth scheme
Z. Here Ω̂•Z is the formal completion of the de Rham complex of Z. The idea is that since Z
is smooth, formal limits of differential forms on Z should behave like differential forms on a
smooth variety, and indeed one obtains the analogous theorem that H i

dR(X) ∼= H i(X(C);C).
Even when there does not exist an embedding of X into a smooth scheme (which can

happen for varieties of dimension 3), there is still hope. Let the category Inf X consist of all
pairs (U, V ) where U ⊂ X is an open subset and U ↪→ V is a closed immersion with nilpotent
defining ideal. Morphisms (U ′, V ′)→ (U, V ) are just compatible pairs of morphisms U ′ ⊂ U
and V ′ → V . One declares a collection of morphisms {(Ui, Vi) → (U, V )} to be a covering
if the morphisms {Vi → V } are an open covering of V . One gets an abelian category of
sheaves and can study their cohomology. An example of a sheaf is O := OXinf

, which sends
a pair (U, V ) to OV (V ).

We define the infinitesimal cohomology of X to be H i(Xinf ,O). The theorem is then that
when X admits an embedding into a smooth variety, there is a natural isomorphism between
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the infinitesimal and de Rham cohomologies of X, and in general one recovers the theorem
that H i(Xinf ,O) ∼= H i(X(C);C), so that infinitesmal cohomology is a valid replacement
for de Rham cohomology. The charm of this theorem is that the site Inf X involves no
differentials (though of course one can tease them out of this construction). This is nice
because it avoids making a choice of embedding – for instance this makes it easy to see
functorality, i.e., that a map X → Y induces a map H i

dR(Y ) → H i
dR(X). Moreover, as we

will see below, these ideas generalize, for instance to varieties over finite fields.

1.1.2 Weil cohomologies

A Weil cohomology is a cohomology theory satisfying certain axioms inspired by theorems
about the cohomology of topological spaces (see for instance [Har77]Appendix C, Section 3).
Let p and ` be a pair of possibly equal primes. One then associates to a variety X over
the finite field Fp a Q`-vector space H i

`(X); this contrasts for example H i
dR(X) which is an

Fp-vector space. When X is the reduction mod p of a variety X ′ over Qp, one can pick an
inclusion Qp ⊂ C and study HdR(X ′C). One way in which our Weil cohomology is topological
is that there is an isomorphism H i

`(X) ⊗Qp C ∼= H i
dR(X ′C) ∼= H i

`(X
′(C),C). Thus, while

H i
`(X) is created from only characteristic p data, it ‘knows’ about the singular cohomology

of any lift of X.
A significant new idea, conjectured by Weil and explored by Grothendieck and Serre,

was that, when there exists no such lift X ′ of X, H i
`(X) still exhibits topological properties.

One important example is the Lefschetz fixed point theorem, which says that the number
of fixed points of a map φ (with some assumptions on φ of course) is equal to the alter-
nating sum of the traces of φ acting on the H i

`(X)’s. Applying this to the Frobenius map
F (noting that X(Fp)F = X(Fp)) gives a cohomological way to count the number of Fp
points of X. Other desired properties are finite dimensionality Poincaré duality, and a Kun-
neth formula; see [Kle68] and [Pet03] for a larger discussion of the aims of a Weil cohomology.

There are various flavors of Weil cohomologies, each with relative merits. Étale coho-
mology was the first, and the best understood. However it is difficult to compute, and only
works when ` 6= p (where‘works’ means ‘satisfies the axioms of a Weil cohomology’). Crys-
talline cohomology, conceived by Grothendieck [Gro68] and executed by Berthelot [Ber74],
fills this gap, giving Qp-vector spaces, but only works when X is smooth and complete.
There is a logarithmic version of crystalline cohomology which works for proper, log smooth
log schemes; these crystalline flavors are also difficult to compute.

1.1.3 Rigid cohomology

Berthelot defined in [Ber86] rigid cohomology as a variant of de Rham cohomology on
some rigid space associated to a variety X over a finite field. Its big selling points are
that it works (i.e., satisfies the axioms of a Weil cohomology) for arbitrary varieties X over
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finite fields (e.g., singular or non-proper X) and that it is very concrete and amenable to
calculation.

To cook up this rigid space one has to make many choices: given a variety X over a perfect
field k of characteristic p and an embedding X ↪→ P into a formal scheme P topologically
of finite type over Spf W (k), one sets K equal to the fraction field of W (k) and defines the
rigid cohomology of X as the hypercohomology of the overconvergent de Rham complex
of the tube ]X[PK

of X in the Raynaud generic fiber PK of P . Here the overconvergent
de Rham complex is just the restriction (in the sense of [73]) of the de Rham complex of
PK . The definition is a bit unwieldy but ultimately familiar, nothing more than a de Rham
construction on a geometric object.

Difficulties abound. One must prove that this definition is independent of the embedding
X ↪→ P . When there does not exist an embedding one must take cohomological descent as
a definition. Cohomological descent itself is a difficult theorem because rigid cohomology
is not the cohomology of a site. Defining a category of coefficients Isoc†X is subtle, and
Grothendieck’s six operations still need work. Functorality is hard. The relative situation
is very difficult too because relative quasi-projectivity of a map to a scheme is not satisfied
in general; here there is still much work to be done (e.g., coherence and base change; see
[Tsu03b]). Nonetheless one can prove that rigid cohomology is a Weil cohomology, and even
give a rigid proof of Deligne’s Weil II results [Ked06b].

A powerful new technical tool is le Stum’s recent work [lS09] which defines a ringed site
(AN†X,O†X) whose cohomology computes the rigid cohomology of X. More specifically
the category ModfpO†X is equivalent to Isoc†X and the cohomology of a finitely presented
module E is isomorphic to the rigid cohomlogy of the associated isocrystal. While this
approach sacrifices the concreteness of Berthelot’s, many foundational results become simple;
for example, functorality is now easy and independence of the choice of embedding is no
longer a concern – all possible choices are encoded in the definition.

1.2 Rigid cohomology for algebraic stacks

In light of le Stum’s results, Kiran Kedlaya suggested the problem of extending rigid
cohomology to algebraic stacks. The application he had in mind was to Lafforgue’s work
on geometric Langlands for GLn of function fields in characteristic p [Laf98], extending to
overconvergent isocrystals the correspondence between lisse `-adic sheaves and automorphic
representations; the point here is that central to Lafforgue’s work is a singular moduli stack
of ‘vector bundles with extra structure’ (which is not Deligne-Mumford, but still separated!)
whose cohomology captures both automorphic and p-adic data (including Galois and Frobe-
nius actions). As described in [Ked06b, Section 1.5], a generalization of rigid cohomology to
stacks would resolve a conjecture of Deligne. Below we describe other applications.
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Le Stum’s construction immediately generalizes to give a definition of rigid cohomology
for stacks; the work of this thesis is to construct variants with supports which agree with the
classical definitions for schemes and to prove duality and excision theorems and verify various
compatibilities. The aim is to prove that this satisfies the axioms of a Weil cohomology, and
this thesis is the beginning of such work. From this, various finiteness theorems will follow
formally. Cohomological descent is another necessary result, useful in particular for compu-
tations and comparison to other cohomologies; we give a very short proof of cohomological
descent for rigid cohomology with respect to smooth hypercovers.

1.2.1 Outline and statement of results:

Here we discuss the contents of individual chapters and state the results of this thesis.

Chapter 2, Definitions: We recall the definitions and important theorems about the
overconvergent site of [lS09]. Then we give their generalizations to stacks.

Chapter 3, Cohomological descent: Cohomological descent is a generalization of Čech
cohomology and a key computational tool, often allowing one to give deduce statements
about cohomology of general varieties from the case of smooth varieties.

We use le Stum’s overconvergent site to give a very short proof that cohomological de-
scent holds for crystals on the overconvergent site with respect to smooth hypercovers of
schemes, which is one of the main results of [CT03] (which totals 153 pages). An earlier
draft of this thesis included a proof of the proper case (which is one of the main results of
[Tsu03a]); we thank Bernard le Stum for pointing out an error in the original argument. We
have changed this to a conjecture and highlighted any results which use this.

Chapter 4, Cohomology with support in a closed subset: In [73, exposé iv, section
9] there is a very general notion of open and closed subtopos. Applying this to AN†(X), one
obtains a functorial construction H i

Z(X,E), and theorems like excision come for free. The
work is to check that when X is a scheme this agrees with the classical construction, which
we have done. While rigid cohomology with supports is well known (see [lS07, Definition
8.2.5]), cohomology with support in a closed subscheme on the overconvergent site is a new
result. We are still able to prove cohomological descent for finite flat hypercovers, which is
an ingredient in the proof of the étale case.

Appendix: We include a short review of topoi and categorical constructions 5.1 and a
review of Berkovich spaces 5.2.
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Chapter 2

Definitions

In [lS09], le Stum associates to a variety X over a field k of characteristic p a ringed
site (AN†g(X),O†Xg

) and proves an equivalence Modfp(O†Xg
) ∼= Isoc†(X) between the cate-

gory of finitely presented O†Xg
-modules and the category of overconvergent isocrystals on X.

Moreover, he proves that the cohomology of a finitely-presented O†Xg
-module agrees with the

usual rigid cohomology of its associated overconvergent isocrystal.
His work is in fact more general, and to any presheaf T on the category Schk of schemes

over k, he associates a ringed site (AN†g(T ),O†Tg). We will define the category of overcon-

vergent isocrystals on T to be Isoc†(T ) := Modfp(O†Tg) and study the resulting cohomology
theory when T is an algebraic space. With a little more work this will generalize to a stack
(or even a fibered category) X over k and allow us to define a ringed site (AN†g(X ),O†Xg

).

In this chapter we recall the basic definitions of [lS09] and explain their mild generaliza-
tions to stacks.

2.1 Notations and conventions

Throughout K will denote a field of characteristic 0 that is complete with respect to
a non-trivial non-archimedean valuation with valuation ring V , whose maximal ideal and
residue field we denote by m and k. We denote the category of schemes over k by Schk. We
define an algebraic variety over k to be a scheme such that there exists a locally finite
cover by schemes of finite type over k (recall that a collection S of subsets of a topological
space X is said to be locally finite if every point of X has a neighborhood which only inter-
sects finitely many subsets X ∈ S). Note that we do not require an algebraic variety to be
reduced, quasi-compact, or separated.

Formal Schemes: As in [lS09, 1.1] we define a formal V-scheme to be a locally topolog-
ically finitely presented formal scheme P over V , i.e., a formal scheme P with a locally finite
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covering by formal affine schemes Spf A, with A topologically of finite type (i.e., a quotient
of the ring V{T1, · · · , Tn} of convergent power series by an ideal I + aV{T1, · · · , Tn}, with
I an ideal of V{T1, · · · , Tn} of finite type and a an ideal of V). This finiteness property is
necessary to define the ‘generic fiber’ of a formal scheme; see 5.2.6 of the appendix.

We refer to [Gro60, 1.10] for basic properties of formal schemes. The first section of
[Ber99] is another good reference. Actually, [lS09, Section 1] contains everything we will
need.

K-analytic spaces: We refer to [Ber93] (as well as the brief discussion in [lS09, 4.2])
for definitions regarding K-analytic spaces. As in [lS09, 4.2], we define an analytic variety
over K to be a locally Hausdorff topological space V together with a maximal affinoid atlas
τ which is locally defined by strictly affinoid algebras. In Appendix 5.2 we collect and review
necessary facts from K-analytic geometry, and in particular we note that an analytic variety
V has a Grothendieck topology which is finer than its usual topology, which we denote by
VG and refer to as ‘the G-topology’ on V .

Topoi: We follow the conventions of [73] (exposited in [lS09, 4.1]) regarding sites, topolo-
gies, topoi, and localization; see appendix 5.1 for a review. When there is no confusion we
will identify an object of a category with its associated presheaf. For a topos T we denote
by D+(T ) the derived category of bounded below complexes of objects of AbT . Often a
morphism (f−1, f∗) : (T,OT ) → (T ′,OT ′) of ringed topoi will satisfy f−1OT ′ = OT , so that
there is no distinction between the functors f−1 and f ∗; in this case, we will write f ∗ for both.

Algebraic Spaces and Stacks: We refer to [Knu71] and [LMB00] for basic definitions
regarding algebraic spaces and stacks. Note in particular the standard convention that a
representable morphism of stacks is represented by algebraic spaces. Actually, most of the
theory works for arbitrary fibered categories, but particular examples and theorems will
require algebraicity and finiteness assumptions, which will be clearly stated when necessary.

2.2 The overconvergent site

Following [lS09], we make the following series of definitions; see [lS09] for a more detailed
discussion of the definitions with some examples.

Definition 2.2.1 ([lS09], 1.2). Define an overconvergent variety over V to be a pair

(X ⊂ P, V
λ−→ PK), where X ⊂ P is a locally closed immersion of an algebraic variety X

over k into the special fiber Pk of a formal scheme P (recall our convention that all formal

schemes are topologically finitely presented over Spf V), and V
λ−→ PK is a morphism of

analytic varieties, where PK denotes the generic fiber of P , which is an analytic space (in
contrast to the Raynaud generic fiber, which is a rigid analytic space; see 5.2.6). When there
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is no confusion we will write (X, V ) for (X ⊂ P, V
λ−→ PK) and (X,P ) for (X ⊂ P, PK

id−→
PK). Define a formal morphism (X ′, V ′) → (X, V ) of overconvergent varieties to be a
commutative diagram

X ′
� � //

f

��

P ′

v

��

P ′Koo

vK

��

V ′oo

u

��
X

� � // P PKoo Voo

where f is a morphism of algebraic varieties, v is a morphism of formal schemes, and u is a
morphism of analytic varieties.

Finally, define AN(V) to be the category whose objects are overconvergent varieties and
morphisms are formal morphisms. We endow AN(V) with the analytic topology, defined
to be the topology generated by families {(Xi, Vi)→ (X, V )} such that for each i, the maps
Xi → X and Pi → P are the identity maps, Vi is an open subset of V , and V =

⋃
Vi is an

open covering (recall that an open subset of an analytic space is admissible in the G-topology
and thus also an analytic space – this can be checked locally in the G-topology, and for an
affinoid this is clear because there is a basis for the topology of open affinoid subdomains).

Definition 2.2.2 ([lS09], Section 1.1). The specialization map PK → Pk induces by com-
position a map V → Pk and we define the tube ]X[V of X in V to be the preimage of X
under this map. The tube ]X[PK

admits the structure of an analytic space and the inclusion
iX : ]X[PK

↪→ PK is a locally closed immersion of analytic spaces (and generally not open, in
contrast to the rigid case). The tube ]X[V is then the fiber product ]X[PK

×PK
V (as analytic

spaces) and in particular is also an analytic space.

Remark 2.2.3. A formal morphism (f, u) : (X ′, V ′)→ (X, V ) induces a morphism ]f [u : ]X ′[V ′→
]X[V of tubes. Since ]f [u is induced by u, when there is no confusion we will sometimes denote
it by u.

The fundamental topological object in rigid cohomology is the tube ]X[V , and the im-
portant notions are defined only up to neighborhoods of ]X[V . We immediately make this
precise by modifying AN(V).

Definition 2.2.4 ([lS09], Definition 1.3.3). Define a formal morphism

(f, u) : (X ′, V ′)→ (X, V )

to be a strict neighborhood if f and ]f [u are isomorphisms and u induces an isomorphism
from V ′ to a neighborhood W of ]X[V in V .

Definition 2.2.5. We define the category AN†(V) of overconvergent varieties to be the
localization of AN(V) by strict neighborhoods (which is possible by [lS09, Proposition 1.3.6]):
the objects of AN†(V) are the same as those of AN(V) and a morphism (X ′, V ′) → (X, V )
in AN†(V) is a pair of formal morphisms

(X ′, V ′)← (X ′,W )→ (X, V ),
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where (X ′,W )→ (X ′, V ′) is a strict neighborhood.
The functor AN(V)→ AN†(V) induces the image topology on AN†(V) (defined in 5.1.19

to be the largest topology on AN†(V) such that the map from AN†(V) is continuous. By
[lS09, Proposition 1.4.1], the image topology on AN†(V) is generated by the pretopology of
collections {(X, Vi) → (X, V )} with

⋃
Vi an open covering of a neighborhood of ]X[V in V

and ]X[V =
⋃

]X[Vi .

Remark 2.2.6. From now on any morphism (X ′, V ′)→ (X, V ) of overconvergent varieties will
denote a morphism in AN†(V). One can give a down to earth description of morphisms in
AN†(V) [lS09, 1.3.9]: to give a morphism (X ′, V ′)→ (X, V ), it suffices to give a neighborhood
W ′ of ]X ′[V ′ in V ′ and a pair f : X ′ → X, u : W ′ → V of morphisms which are geometrically
pointwise compatible, i.e., such that u induces a map on tubes and the outer square of the
diagram

W ′ u // V

]X ′[W ′
]f [u //

⋃
|

��

]X[V

⋃
|

��
X ′

f // X

commutes (and continues to do so after any base change by any isometric extension K ′ of
K).

Definition 2.2.7. For any presheaf T ∈ ÂN†(V), we define AN†(T ) to be the localized
category AN†(V)/T whose objects are morphisms h(X,V ) → T (where h(X,V ) is the presheaf
associated to (X, V )) and morphisms are morphisms (X ′, V ′) → (X, V ) which induce a
commutative diagram

h(X′,V ′) //

##F
FF

FF
FF

FF
h(X,V )

||yyyyyyyy

T

.

We may endow AN†(T ) with the induced topology (see 5.1.19), i.e., the smallest topology
making continuous the projection functor AN†(T ) → AN†(V) [lS09, Definition 1.4.7]; con-
cretely, the covering condition is the same as in 2.2.5. When T = h(X,V ) we denote AN†(T )
by AN†(X, V ). Since the projection AN† T → AN† V is a fibered category, the projection is
also cocontinious with respect to the induced topology. Finally, an algebraic space X over k
defines a presheaf (X ′, V ′) 7→ Hom(X ′, X), and we denote the resulting site by AN†(X).

There will be no confusion in writing (X, V ) for an object of AN†(T ).

We use subscripts to denote topoi and continue the above naming conventions – i.e.,
we denote the category of sheaves of sets on AN†(T ) (resp. AN†(X, V ),AN†(X)) by TAN†
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(resp. (X, V )AN† , XAN†). Any morphism f : T ′ → T of presheaves on AN†(V) induces a
morphism fAN† : T

′
AN†
→ TAN† of topoi. In the case of the important example of a morphism

(f, u) : (X ′, V ′) → (X, V ) of overconvergent varieties, we denote the induced morphism of
topoi by (u∗

AN†
, uAN† ∗).

For an analytic space V we denote by OpenV the category of open subsets of V and by
Van the associated topos of sheaves of sets on OpenV . Recall that for an analytic variety
(X, V ), the topology on the tube ]X[V is induced by the inclusion iX : ]X[V ↪→ V .

Definition 2.2.8 ([lS09, Corollary 2.1.3]). Let (X, V ) be an overconvergent variety. Then
there is a morphism of sites

ϕX,V : AN†(X, V )→ Open ]X[V .

The notation as usual is in the ‘direction’ of the induced morphism of topoi and in particular
backward; it is associated to the functor Open ]X[V→ AN†(X, V ) given by U = W∩ ]X[V 7→
(X,W ) (and is independent of the choice of W up to strict neighborhoods). This induces a
morphism of topoi

(ϕ−1X,V , ϕX,V ∗) : (X, V )AN† → (]X[V )an.

Definition 2.2.9 ([lS09, 2.1.7]). Let (X, V ) ∈ AN†(T ) be an overconvergent variety over T
and let F ∈ TAN† be a sheaf on AN†(T ). We define the realization FX,V of F on ]X[V to
be ϕ(X,V )∗(F |(X,V )

AN†
), where F |(X,V )

AN†
is the restriction of F to AN†(X, V ).

We can describe the category TAN† in terms of realizations in a manner similar to sheaves
on the crystalline or lisse-étale sites.

Proposition 2.2.10 ([lS09], Proposition 2.1.8). Let T be a presheaf on AN†(V). Then the
category TAN† is equivalent to the following category :

1. An object is a collection of sheaves FX,V on ]X[V indexed by (X, V ) ∈ AN†(T ) and,
for each (f, u) : (X ′, V ′)→ (X, V ), a morphism φf,u :]f [−1u FX,V → FX′,V ′, such that as
(f, u) varies, the maps φf,u satisfy the usual compatibility condition.

2. A morphism is a collection of morphisms FX,V → GX,V compatible with the morphisms
φf,u.

To obtain a richer theory we endow our topoi with sheaves of rings and study the resulting
theory of modules.

Definition 2.2.11 ([lS09], Definition 2.3.4). Define the sheaf of overconvergent func-
tions on AN†(V) to be the presheaf of rings

O†V : (X, V ) 7→ Γ(]X[V , i
−1
X OV )

where iX is the inclusion of ]X[V into V ; this is a sheaf by [lS09, Corollary 2.3.3]. For

T ∈ ÂN†(V) a presheaf on AN†(V), define O†T to be the restriction of O†V to AN†(T ).
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We follow our naming conventions above, for instance denoting by O†(X,V ) the restriction

of O†V to AN(X, V ).

Remark 2.2.12. By [lS09, Proposition 2.3.5, (i)], the morphism of topoi of Definition 2.2.8
can be promoted to a morphism of ringed sites

(ϕ∗X,V , ϕX,V ∗) : (AN†(X, V ),O†(X,V ))→ (]X[V , i
−1
X OV ).

In particular, for (X, V ) ∈ AN† T and M ∈ O†T , the realization MX,V is an i−1X OV -module.
For any morphism (f, u) : (X ′, V ′)→ (X, V ) in AN†(T ), one has a map

(]f [†u, ]f [u∗) : (]X ′[V ′ , i
−1
X′,V ′OV ′)→ (]X[V , i

−1
X,VOV ).

of ringed sites, and functoriality gives transition maps

φ†f,u : ]f [†uMX,V →MX′,V ′

which satisfy the usual cocycle compatibilities.

We can promote the description of TAN† in Proposition 2.2.10 to descriptions of the
categories ModO†T of O†T -modules, QCohO†T of quasi-coherent O†T -modules (i.e., modules
which locally have a presentation), and ModfpO†T of locally finitely presented O†T -modules.

Proposition 2.2.13 ([lS09], Proposition 2.3.6). Let T be a presheaf on AN†(V). Then the
category ModO†T (resp. QCohO†T , ModfpO†T ) is equivalent to the following category :

1. An object is a collection of sheaves MX,V ∈ Mod i−1X OV (resp. QCoh i−1X OV , Coh i−1X OV )
on ]X[V indexed by (X, V ) ∈ AN†(T ) and, for each (f, u) : (X ′, V ′)→ (X, V ), a mor-
phism (resp. isomorphism) φ†f,u : ]f [†uMX,V → MX′,V ′, such that as (f, u) varies, the

maps φ†f,u satisfy the usual compatibility condition.

2. A morphism is a collection of morphisms MX,V →M ′
X,V compatible with the morphisms

φ†f,u.

Definition 2.2.14 ([lS09], Definition 2.3.7). Define the category of overconvergent crys-
tals on T , denoted Cris† T , to be the full subcategory of ModO†T such that the transition
maps φ†f,u are isomorphisms.

Example 2.2.15. The sheaf O†T is a crystal, and in fact QCohO†T ⊂ Cris† T .

Remark 2.2.16. It follows immediately from the definition of the pair (ϕ∗X,V , ϕX,V ∗) of functors

that ϕX,V ∗ of a O†(X,V )-module is a crystal, and that the adjunction ϕ∗X,V ϕX,V ∗E → E is an
isomorphism if E is a crystal. If follows that the pair ϕ∗X,V and ϕX,V ∗ induce an equivalence
of categories

Cris†(X, V )→ Mod i−1X OV ;

see [lS09, Proposition 2.3.8] for more detail.
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Remark 2.2.17. An advantage of the use of sites and topoi is that the relative theory is
simple. For instance, for a morphism T ′ → T of presheaves on AN†(V) the associated
morphism of sites AN†(T ′) → AN†(T ) is isomorphic to the projection morphism associated
to the localization AN†(T )/T ′ → AN†(T ) (and in particular one gets for free an exact left
adjoint u! to the pullback functor u∗ : Ab(TAN†)→ Ab(T ′

AN†
); see 5.1.24).

One minor subtlety is the choice of an overconvergent variety as a base.

Definition 2.2.18. Let (C,O) ∈ AN†(V) be an overconvergent variety and let T → C be
a morphism from a presheaf on Schk to C. Then T defines a presheaf on AN†(C,O) which
sends (X, V )→ (C,O) to HomC(X,T ), which we denote by T/O. We denote the associated
site by AN†(T/O), and when (C,O) = (Sk, S) for some formal V-scheme S we write instead
AN†(T/S).

The minor subtlety is that there is no morphism T → h(C,O) of presheaves on AN†(V).
A key construction is the following.

Definition 2.2.19 ([lS09, Paragraph after Corollary 1.4.15]). Let (X, V ) → (C,O) ∈
AN†(V) be a morphism of overconvergent varieties. We denote by XV /O the image presheaf
of the morphism (X, V ) → X/O, considered as a morphism of presheaves. Explicitly, a
morphism (X ′, V ′)→ X/O lifts to a morphism (X ′, V ′)→ XV /O if and only if there exists
a morphism (X ′, V ′)→ (X, V ) over X/O, and in particular different lifts (X ′, V ′)→ (X, V )
give rise to the same morphism (X ′, V ′)→ XV /O. When (C,O) = (Spec k,M(K)), we may
write XV instead XV /M(K).

Many theorems will require the following extra assumption of [lS09, Definition 1.5.10].
Recall that a morphism of formal schemes P ′ → P is said to be proper at a subscheme
X ⊂ P ′k if, for every component Y of X, the map Y → Pk is proper (see [lS09, Definition
1.1.5]).

Definition 2.2.20. Let (C,O) ∈ AN†(V) be an overconvergent variety and let f : X → C be
a morphism of k-schemes. We say that a formal morphism (f, u) : (X, V )→ (C,O), written
as

X
� � //

f

��

P

v
��

V

u

��

oo

C
� � // Q Ooo

,

is a geometric realization of f if v is proper at X, v is smooth in a neighborhood of X,
and V is a neighborhood of ]X[PK×QK

O in PK ×QK
O. We say that f is realizable if there

exists a geometric realization of f .

Example 2.2.21. Let Q be a formal scheme and let C be a closed subscheme of Q. Then
any projective morphism X → C is realizable.
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We need a final refinement to AN†(V).

Definition 2.2.22. We say that an overconvergent variety (X, V ) is good if there is a good
neighborhood V ′ of ]X[V in V (i.e., every point of ]X[V has an affinoid neighborhood in V ;
see 5.2.5). We say that a formal scheme S is good if the overconvergent variety (Sk, SK)
is good. We define the good overconvergent site AN†g(T ) to be the full subcategory

of AN†(T ) consisting of good overconvergent varieties. Given a presheaf T ∈ AN†(V), we
denote by Tg the restriction of T to AN†g(V).

Note that localization commutes with passage to good variants of our sites (e.g., there is
an isomorphism AN†g(V)/Tg

∼= AN†g(T )). When making further definitions we will often omit

the generalization to AN†g when it is clear.

The following proposition will allow us to deduce facts about ModfpO†Xg
from results

about (X, V ) and XV .

Proposition 2.2.23. Let (C,O) ∈ AN†g(V) be a good overconvergent variety and let (X, V )→
(C,O) be a geometric realization of a morphism X → C of schemes. Then the following are
true:

(i) The map (X, V )g → (X/O)g is a covering in AN†g(V).

(ii) There is an equivalence of topoi (XV /O)AN†g
∼= (X/O)AN†g

.

(iii) The natural pullback map Cris†gX/O → Cris†gXV /O is an equivalence of categories.

(iv) Suppose that (X, V ) is good. Then the natural map Cris†XV /O → Cris†gXV /O is an
equivalence of categories.

Proof. The first two claims are [lS09, 1.5.14, 1.5.15], the third follows from the second, and
the last is clear.

In particular, the natural map ModfpO†Xg
→ ModfpO†(XV )g

∼= ModfpO†XV
is an equiva-

lence of categories.

2.3 Calculus on the overconvergent site and compari-

son with the classical theory

Here we compare constructions on the overconvergent site and on the ringed spaces
(]X[V , i

−1
X OV ) to the classical constructions of rigid cohomlogy (exposited for example in
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[lS07]), introducing along the way the variants of ‘infinitesimal calculus’ useful in this thesis.

Let V be an analytic variety. Recall (see 5.2) that V has a Grothendieck topology
(generated by affinoid subdomains) which is finer than its usual topology; we refer to this as
‘the G-topology’ on V and write VG when we consider V with its G-topology. The natural
morphism π : VG → V (induced by the morphism id: V → VG on underlying sets) is a
morphism of ringed sites. When V is good, the functor F 7→ FG := π∗F is fully faithful and
induces an equivalence of categories

CohOV ∼= CohOVG .

Indeed, for an admissible W ∈ τV , π∗F (W ) = lim−→W⊂W ′ F (W ′), where the limit is taken over

all open neighborhoods W ′ of W . The unit id → π∗π
∗F of adjunction is then visibly an

isomorphism, so by lemma 5.1.4, we conclude that π∗ is an isomorphism.
Recall also that the set V0 of rigid points of V has the structure of a rigid analytic variety

such that the inclusion V0 ↪→ V induces an equivalence (V0,OV0) ∼= (VG,OVG) of ringed topoi,
in particular inducing equivalences

ModOV0 ∼= ModOVG

and
CohOV0 ∼= CohOVG ∼= CohOV .

We denote by π0 the composition Ṽ0 ∼= ṼG → Ṽ , and for a bounded below complex of abelian
sheaves E0 ∈ D+(Ṽ0) define Ean

0 to be Rπ0E. When V is good and E0 is coherent there is
an isomorphism Ean

0
∼= π0E0 (this follows from [Ber93, 1.3.6 (ii)]). Moreover, suppose that

(X, V ) is a good overconvergent variety, ]X[V = V , and E0 is a coherent j†X0
OV0-module (see

Definition 2.3.1 below). Then by [lS09, Proposition 3.4.3 (3)], Ean
0
∼= π0E.

Now let (X, V ) be a good overconvergent variety. We studied above (Proposition 2.2.13)
the ringed site (]X[V , i

−1
X OV ). To study the analogue in the classical rigid theory and to

compare the two we first make the following definitions.

Definition 2.3.1. Let (X, V ) be a good overconvergent variety and assume that the inclusion
iX : ]X[V ↪→ V is closed (which we can do since (X, V ) ∼= (X, ]X[V ) in AN†(V), where X is
the closure of X in P ). Let ]X[V0 be the underlying rigid space (]X[V )0 of ]X[V (see 5.2.5);
alternatively, ]X[V0 is isomorphic to the rigid analytic tube, i.e., the preimage of X with
respect to the composition V0 → (PK)0 → Pk, where (PK)0 is the Raynaud generic fiber of
P (see the second paragraph of 5.2.6).

Denote by iX0 : ]X[V0 ↪→ V0 the corresponding inclusion of rigid analytic spaces and let F ∈
Ṽ (resp. F0 ∈ Ṽ0). We define functors j†X [lS09, Proposition 2.2.12] and j†X0

[lS07, Proposition
5.1.2] by

j†XF = iX∗i
−1
X F
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and
j†X0

F0 = lim−→ j′0∗j
′−1
0 F0

where the limit runs over all strict neighborhoods V ′0 of ]X[V0 in V0 (recall from [lS07, Defini-
tion 3.1.1] that a strict neighborhood of ]X[V0 in V0 is an admissible open subset V ′0 containing
]X[V0 such that the covering {V ′0 , V0−]X[V0} is an admissible covering of V0).

Proposition 2.3.2. With the notation of Definition 2.3.1, the following are true.

(i) There is a natural isomorphism

j†XF = lim−→ j′∗j
′−1F

where the limit runs over all immersions of neighborhoods V ′ of ]X[V in V .

(ii) The functors i−1X and iX∗ induce an equivalence of categories

QCoh j†XOV → QCoh i−1X OV

which restricts to give an equivalence on coherent sheaves.

(iii) The functors
CohOV ′ → Coh i−1X OV → Coh j†XOV ,

E 7→ i−1X,V ′E 7→ iX∗i
−1
X,V ′E,

where V ′ ranges over neighborhoods of ]X[V in V and iX,V ′ denotes the inclusion
]X[V ↪→ V ′, induce equivalences of categories

lim−→CohOV ′ ∼= Coh i−1X OV ∼= Coh j†XOV .

(iii’) The functors
CohOV ′ → Coh j†X0

OV0 , E 7→ iX0∗i
−1
X0,V ′

E,

where V ′ ranges over strict neighborhoods of ]X[V0 in V0 and iX0,V ′ denotes the inclusion
]X[V0 ↪→ V ′, induce an equivalence of categories

lim−→CohOV ′ ∼= Coh j†X0
OV0 .

(iv) The map E 7→ Ean induces an equivalence of categories

Coh j†X0
OV0 ∼= Coh j†XOV .

In particular, ModfpO†X,V is equivalent to Coh j†X0
OV0 .
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Proof. Claim (i) is [lS09, 2.2.12].
For (ii), it suffices to check that the unit id→ iX∗i

∗
X and counit i∗XiX∗ → id of adjunction

are isomorphisms (where i∗X is the composition of i−1X and tensoring). By Remark 4.1.1 the
inclusion iX induces an immersion of topoi, and in particular the map iX∗ is fully faithful,
so by Lemma 5.1.4 we conclude that the adjunction i∗XiX∗ → id is an isomorphism. For
the other direction, let E ∈ QCoh j†XOV . We can check locally that the adjunction is an
isomorphism, so we may assume that E has a global presentation. Since ]X[V is closed in V ,
iX∗ is exact [Ber93, 4.3.2] (and i−1X is always exact) so that the adjunction induces a diagram⊕

I j
†
XOV //

��

⊕
J j
†
XOV //

��

E //

��

0

⊕
I iX∗i

−1
X j†XOV //⊕

J iX∗i
−1
X j†XOV // iX∗i

−1
X E // 0

.

Thus to prove the claim it is thus enough to check that the adjunction j†XOV → iX∗i
−1
X j†XOV

is an isomorphism, which is true since we can write this as iX∗i
−1
X OV → iX∗i

−1
X iX∗i

−1
X OV ,

which is iX∗ applied to the adjunction i−1X OV → i−1X iX∗i
−1
X OV and thus an isomorphism (by

the beginning of this paragraph).
Claim (iii) is [lS09, Proposition 2.2.12] (and (ii)) and claim (iii’) is [lS07, Theorem 5.4.4].
Finally, note that, from the explicit description of the functor E 7→ Ean, following diagram

commutes
lim−→CohOV ′0 //

��

Coh j†X0
OV0

��
lim−→CohOV ′ // Coh j†XOV

.

Claim (iv) then follows from (iii) and (iii’) together with [lS09, Corollary 1.3.2] (which says
that there is a cofinal system of neighborhoods {V ′} such that the system {V ′0} is a cofinal
system of strict neighborhoods) and the isomorphism

CohOV ′0 ∼= CohOV ′ .

Remark 2.3.3. A benefit of using Berkovich spaces instead of rigid analytic spaces is that
the analogous construction i−1X0

OV0 in rigid geometry does not serve the same purpose, since
the closed inclusion iX0 : ]X[V0 ↪→ V0 is also open and so iX0∗i

−1
X0
OV0 is not isomorphic to

j†X0
OV0 . If instead one lets U denote the open complement of ]X[V0⊂ V0 and then denotes by

i : Z ↪→ Ṽ0 the closed complement of U ⊂ V0 in the sense of Section 4.1, then by [lS07, 5.1.12
(i)] the functor j†X0

is isomorphic to i∗i
∗. This is a nice instance of the utility of the abstract

notion of an immersion of topoi.
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Infinitesimal Calculus: We recall here several definitions from [lS09, Section 2.4].

Let V, V ′ → O be two morphisms of analytic spaces. Then by [Ber93, Proposition 1.4.1],
the fiber product V ×O V ′ exists – when V, V ′ and O are affinoid spaces the fiber product is
given by the Gelfand spectrum of the completed tensor product of their underlying algebras,
and the global construction is given by glueing this construction. As usual the underlying
topological space of V ×O V ′ is not the fiber product of their underlying topological spaces.

Let V → O be a morphism of analytic varieties. Then the diagonal morphism ∆: V →
V ×O V is a G-locally closed immersion (see the comments after the proof of [Ber93, Propo-
sition 1.4.1]). We define the relative sheaf of differentials ΩV/O to be the conormal sheaf of
∆. When ∆ is a closed immersion defined by an ideal I, ΩV/O is the restriction of I/I2 to
V ; in general one can either define the conormal sheaf locally (and check that it glues) or
argue that when V is good, ∆ factors as composition of a closed immersion i : V ↪→ U into
an admissible open U , with i defined by an ideal J , and define the conormal sheaf as the
restriction of J/J2.

Due to the use of completed tensor products, the sheaf of differentials is generally not iso-
morphic to the sheaf of Kahler differentials. It does however enjoy all of the usual properties;
see [Ber93, 3.3].

Definition 2.3.4. Let (X, V ) → (C,O) be a morphism of overconvergent varieties. Sup-
pose that V is good and that i−1X : ]X[V ↪→ V is closed. We define the category MIC(X, V/O)
of overconvergent modules with integrable connection to be the category of pairs
(M,∇), where M ∈ Mod i−1X OV and ∇ : M →M⊗i−1

X OV
i−1X Ω1

V/O is an i−1C OO-linear map sat-

isfying the Leibniz rule and such that the induced map∇◦∇ : M →M⊗i−1
X OV

i−1X Ω2
V/O is zero.

Morphisms (M,∇) → (M ′,∇′) are morphisms M → M ′ as i−1X OV -modules which respect
the connections (see [lS09, Definition 2.4.5]). Similarly, we define a category MIC(X0, V0/O0)
of such pairs (M0,∇0) with M0 ∈ Coh j†X0

OV0 (see [lS07, Definition 6.1.8]).
Let (M,∇) ∈ MIC(X, V/O). Then ∇ extends to a complex

M →M ⊗i−1
X OV

i−1X Ω1
V/O →M ⊗i−1

X OV
i−1X Ω2

V/O →M ⊗i−1
X OV

i−1X Ω3
V/O → ...

of abelian sheaves, which we call the de Rham complex of (E,∇) and write as M ⊗i−1
X OV

i−1X Ω•V/O. We define the de Rham complex of (M0,∇0) ∈ MIC(X0, V0/O0) similarly.

The bridge between crystals and modules with integrable connection is the notion of a
stratification, which we now define.

Definition 2.3.5. Let (X, V ) → (C,O) be a morphism of overconvergent varieties. Set
V 2 = V ×O V and denote by

p1, p2 : (X, V 2)→ (X, V )

the two projections. We define an overconvergent stratification on an i−1X OV -module M
to be an isomorphism

ε : p†2M
∼= p†1M
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of i−1X OV 2-modules satisfying the evident cocycle condition on triple products (see for exam-
ple [BO78, Definition 2.10]). We denote the category of such pairs (M, ε) by Strat†(X, V/O),
where morphisms are morphisms of i−1X OV -modules which respect the stratification. We
define the rigid variant Strat†(X0, V0/O0) analogously.

We omit a discussion of the notion of more general (than overconvergent) stratifications.

Remark 2.3.6. One can relate crystals and overconvergent stratifications as follows. Let
(X, V ) → (C,O) be a morphism of overconvergent varieties and suppose that (X, V ) is a
good overconvergent variety. Let E ∈ Cris†XV /O and consider the diagram

(X, V 2) ∼= (X, V )×XV /O (X, V )
p1 //
p2
// (X, V )

p // XV /O .

Then the composition ε of the two isomorphisms

ε : p†2EX,V
∼= EX,V 2

∼= p†1EX,V

(which exist by applying the condition that E is a crystal to the maps pi) defines a stratifi-
cation on EX,V and thus a functor

Cris†XV /O → Strat†(X, V/O), (2.3.6.1)

given by E 7→ (EX,V , ε). On the other hand, a stratification on E ∈ Mod i−1X OV defines de-
scent data on the crystal ϕ∗X,VE with respect to the map p : (X, V )→ XV /O; by definition
the map p is a surjection of presheaves and thus a covering (in the canonical topology). By
descent theory, the map 2.3.6.1 is an equivalence of categories (see [lS09, 2.5.3]).

Remark 2.3.7. Here we relate the notion of a stratification and a module with connection.
There is a map

Strat†(X, V/O)→ MIC(X, V/O)

defined via the usual yoga of ‘infinitesimal calculus’, which we now recall. Let V ↪→ V 2 :=
V ×O V be the diagonal morphism and denote by V (n) the nth infinitesimal neighborhood of
the diagonal (when V (0) = V ↪→ V 2 is defined by an ideal I, and V (n) ↪→ V 2 is defined by
the ideal In+1; in general one defines V (n) locally and glues). By definition the sequence

0→ Ω1
V/O → O

(1)
V → OV → 0

is exact. We denote by p
(n)
1 and p

(n)
2 the two compositions

V (n) // V 2
p1 //
p2
// V .
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Let (M, ε) ∈ Strat†(X, V/O) be a module with an overconvergent stratification. Then ε

restricts to give a compatible system {ε(n) : p
(n)†
2 M ∼= p

(n)†
1 M} of isomorphisms on ]X[V (n) .

Denote by θi the natural map

θi : M → p
(1)†
i M = M ⊗i−1

X OV
i−1X OV (1)

given by tensoring (noting that the underlying topological spaces of V (i) are the same). We
define a connection ∇ on M by the formula

∇ = (ε ◦ θ2)− (θ1) : M → p
(1)†
1 M = M ⊗i−1

X OV
i−1X OV (1)

The map ∇ lands in M ⊗i−1
X OV

i−1X Ω1
V/O by the description above of Ω1

V/O together with the
observation that since the two compositions

V // V (n)
p1 //
p2
// V

are equal, the composition

M →M ⊗i−1
X OV

i−1X OV (1) →M ⊗i−1
X OV

i−1X OV

is zero. Integrability of ∇ follows from the cocycle condition.

Next we mildly refine the notion of a connection.

Definition 2.3.8. Let (M,∇) ∈ MIC(X, V/O). As in [lS09, Definition 2.4.6], we say that
∇ is overconvergent if M is coherent and (M,∇) is in the image of the map

Strat†(X, V/O)→ MIC(X, V/O)

and we denote the category of overconvergent modules with integrable connection by MIC†(X, V/O).
We define MIC†(X0, V0/O0) similarly, where E0 is a j†X0

OV0-module and the connection is a
map ∇ : E0 → E0 ⊗OV0

Ω1
V0/O0

.

When (C,O) = (Sk, SK) for a formal scheme S and V = PK for a formal embedding
X ↪→ P of X into some formal scheme over S, we denote MIC†(X0, V0/O0) by Isoc†(X ⊂
X/S); by [lS07, Corollary 8.1.9] this category only depends on the closure X of X in P and
is independent of the choice of P , which we therefore omitted from the notation.

Corollary 2.3.9. The natural map MIC†(X0, V0/O0)→ MIC†(X, V/O) is an equivalence of
categories.

Proof. It suffices to prove this for coherent modules with overconvergent stratification, which
follows from Proposition 2.3.2 (iii) and (iv).
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Remark 2.3.10. The composition

Cris†XV /O ∼= Strat†(X, V/O)→ MIC(X, V/O)

induces an equivalence of categories

Mod†fp(XV /O) ∼= MIC†(X, V/O);

see [lS09, remark after 2.4.5].

The following theorem of le Stum ties this discussion together with Proposition 2.2.23
to give an intrinsic characterization of isocrystals via the good overconvergent site and in
particular gives a new proof of the independence of Isoc†(X ⊂ X) from the choice of com-
pactification X.

Theorem 2.3.11 ([lS09], Corollary 2.5.11). Let S be a formal V-scheme and let X/Sk be
a realizable algebraic variety. Then there is an equivalence of categories Modfp(O†Xg/S

) ∼=
Isoc†(X ⊂ X/S).

Le Stum proves a similar result for cohomology, which we recall below.

Definition 2.3.12 ([lS09, Definition 3.5.1]). Let (C,O) be an overconvergent variety, let
f : X ′ → X be a morphism of schemes over C. Then f induces a morphism of topoi
fAN†g

: X ′/OAN†g
→ X/OAN†g

. For F ∈ (X ′/O)AN†g
be a sheaf of abelian groups (or more

generally any bounded below complex of abelian sheaves) we define the relative rigid
cohomology of F to be RfAN†g ∗F .

When (C,O) = (Spec k,M(K)) and X = Spec k, for an integer i ≥ 0 we define the abso-
lute rigid cohomology of F to be theK-vector spaceH i(AN†gX

′, F ) := (RifAN†g ∗F )(Spec k,M(K));

since the realization functor is exact this is isomorphic to the ith derived functor of the global
sections functor. When F = O†X′g , we write H i(AN†gX

′) := H i(AN†gX
′,O†X′g).

Remark 2.3.13. The functor F 7→ Fg is exact on abelian sheaves (since goodness of (X, V )
is local on V ), so when computing cohomology we can derive either of the functors fAN† ∗ or
fAN†g ∗.

Now we explain how to compare the cohomology on the overconvergent site to classical
rigid cohomology. Let jX,V : (X, V )→ X/O be an overconvergent variety over X/O and let
E ∈ Cris†gX/O be a crystal. Then the adjunction

E → jX,V ∗j
∗
X,VE

∼= jX,V ∗ϕ
∗
X,VEX,V

(where the second map is an isomorphism by Remark 2.2.16) induces by [lS09, Proposition
3.3.10 (ii)] a map

E → RjX,V ∗
(
ϕ∗X,V

(
EX,V ⊗i−1

X OV
i−1X Ω•V/O

))
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of complexes of O†(X/O)g
-modules. In the following nice situation this map is a quasi-

isomorphism and we can thus compute the cohomology of E via the cohomology of the
de Rham complex EX,V ⊗i−1

X OV
i−1X Ω•V/O.

Theorem 2.3.14. Let (C,O) be an overconvergent variety and suppose that (X, V ) is a
geometric realization of the morphism X → C, and denote by pAN†g

the morphism of topoi

pAN†g
: (X/O)AN†g

→ (C,O)AN†g
. Then the following are true.

(i) The augmentation

E → RjX,V ∗
(
ϕ∗X,V

(
EX,V ⊗i−1

X OV
i−1X Ω•V/O

))
is an isomorphism.

(ii) The natural map (
RpAN†g ∗E

)
C,O
→ Rp]X[V ∗

(
EX,V ⊗i−1

X OV
i−1X Ω•V/O

)
(induced by part (i)) is a quasi-isomorphism.

Of course, one can compute any other realization
(
RpAN†g ∗E

)
C′,O′

of relative rigid coho-

mology from (ii) by base change [lS09, Corollary 3.5.7].

Proof. Claim (i) is [lS09, Proposition 3.5.4] and claim (ii) is [lS09, Theorem 3.5.3] (which
follows from (i) by [lS09, Proposition 3.3.9]).

One can compare this with the classical notions of rigid cohomology, which we now recall.

Definition 2.3.15 ([lS07, Definition 8.2.5]). Let S be a formal V-scheme, let f : X → Sk
be a morphism of algebraic varieties, let X ↪→ P be a formal embedding over S and denote
by g the map ]X[(PK)0→ (SK)0. Let E0 ∈ Isoc†(X ⊂ X/S) := MIC†(X0, (PK)0/(SK)0). We
define the classical rigid cohomology RfrigE0 of E0 to be the higher direct image Rg∗(E0 ⊗
Ω•

]X[(PK )0
/(SK)0

) of the de Rham complex associated to (E0,∇) (considered as a complex of

abelian sheaves). When S = Spf V , we call this the absolute rigid cohomology and denote
its ith homology by H i

rig(X,E0).

Actually, rigid cohomology is independent of the choice of P and X [lS07, Proposition
8.2.1], which we thus do not mention in the following theorem. When no choice of P exists
one can define Isoc†(X) and rigid cohomology by cohomological descent [CT03].
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Theorem 2.3.16 ([lS09], Proposition 3.5.8). Let S be a formal V-scheme such that (Sk, SK)
is a good overconvergent variety and let f : X → Sk be a morphism of algebraic varieties.
Let (X,P ) be a geometric realization of X → Sk and denote by X the closure of X in P .
Then for any E ∈ Mod†fp,g(X/S) and E0 ∈ Isoc†(X ⊂ X/S) such that EX,P ∼= i−1X Ean

0 , there
is a natural map (in the derived category)

i−1Sk
(RfrigE0)

an → (RfAN†g ∗E)(Sk,SK)

which is a quasi-isomorphism.

The natural map is constructed as follows. Denote by V the tube ]X[PK
, by O the

analytic space SK , and by u the map V → O. There is a natural map

(RfrigE0)
an =

(
Ru0∗

(
E0 ⊗OO0

Ω•V0/O0

))an → Ru∗
(
E0 ⊗OO0

Ω•V0/O0

)an
.

Since V is smooth in a neighborhood of the tube ]X[PK
, Ω•V0/O0

is locally free in such a
neighborhood. Thus the tensor product E0 ⊗OO0

Ω•V0/O0
has coherent terms and analytifies

to E ′⊗OO
Ω•V/O, where i−1X E ′ ∼= E(Sk,SK). Furthermore, since i−1X and i−1Sk

are exact, there are
isomorphisms

i−1Sk
Ru∗

(
E ′ ⊗OO

Ω•V/O
) ∼= R]f [∗i

−1
X

(
E ′ ⊗OO

Ω•V/O
) ∼= R]f [∗

(
E(Sk,SK) ⊗i−1

X OO
i−1X Ω•V/O

)
By Theorem 2.3.14 (ii), the last term is isomorphic to

(
RfAN†g ∗E

)
(Sk,SK)

. Applying i−1Sk
and

composing these isomorphisms gives the natural map.

We end by stating a corollary of the comparison theorem.

Theorem 2.3.17. Let X be an algebraic variety over k. Let (X,P ) be a geometric realization
of X → Sk and denote by X the closure of X in P . Then for any E ∈ Mod†fp(Xg) and

E0 ∈ Isoc†(X ⊂ X/k) such that EX,P ∼= i−1X Ean
0 , there is a natural map

H i
rig(X,E0)→ H i(AN†gX,E)

which is an isomorphism.

2.4 The overconvergent site for stacks

Let C be a site and let u : D → C be a fibered category. Suppose moreover that every
arrow of C is cartesian; it then follows that that u commutes with fiber products. Recall
from 5.1.20 of the appendix that if we endow D with the induced topology, then the functor
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u is then both continuous and cocontinuous. In particular, by Appendix 5.1.20 we get a
triple of morphisms

D̃

u! //

u∗
// C̃u∗oo .

such that each arrow is left adjoint to the arrow below. Since u∗ has both a left and right
adjoint it is exact and thus the pair (u∗, u∗) : D̃ → C̃ defines a morphism of topoi. On
the other hand, u! is generally not exact (almost any non-trivial example will exhibit this).
Finally, we remark that u! does not take abelian sheaves to a abelian sheaves; nonetheless
u∗ : Ab C̃ → Ab D̃ has a different left adjoint, uab! , which we also denote by u! when there
is no confusion (see appendix 5.1.24). In particular, u∗ takes injective abelian sheaves to
injective abelian sheaves.

Definition 2.4.1. Let X → Schk be a fibered cateory. We define the overconvergent site
AN†(X ) of X to be the category AN†(V)×Schk

X with the topology induced by the projection
AN†(X )→ AN†(V). We define the good overconvergent site AN†g(X ) similarly.

Remark 2.4.2. Concretely, an object of AN†(X ) is an overconvergent variety (X, V ) together
with an object of the fiber category X (X); by the 2-Yoneda lemma this data is equivalent to
an overconvergent variety (X, V ) and a map of categories SchX → X fibered over Schk. In
particular, for a presheaf T on Schk with associated fibered category SchT → Schk, AN†(T )
defined as before is equivalent to AN†(SchT ).

Definition 2.4.3. Let X be a fibered category over k. We define the sheaf of over-
convergent functions O†Xg

to be the pullback u−1O†Vg with respect to the projection

u : AN†g(X )→ AN†g(V).

Of course, the main case we consider will be when X is an algebraic stack over k. As
before we will consider the categories ModO†Xg

, ModfpO†Xg
and Cris†Xg. A map f : X → Y

of fibered categories induces a morphism fAN†g
: XAN†g

→ YAN†g
of topoi, and to any abelian

sheaf F ∈ XAN†g
and for any good overconvergent variety (X, V ) ∈ AN†g X one can study the

cohomology RfAN†g ∗F and the realization FX,V .

Remark 2.4.4. It is worth noting here that the usual issues of functorality surrounding the
lisse-étale site (e.g. functorality of crystalline cohomology for stacks [Ols07]) are not issues
here.
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Chapter 3

Cohomological descent

Cohomological descent is a robust computational and theoretical tool, central to rigid
cohomology. On one hand, it facilitates explicit calculations (analogous to the computation
of coherent cohomology in scheme theory via Čech cohomology); on another, it allows one
to deduce results about singular schemes (e.g., finiteness of rigid cohomology) from results
about smooth schemes. Moreover, for a scheme X which fails to embed into a formal
scheme smooth near X, one actually defines rigid cohomology via cohomological descent.
For algebraic stacks it is doubly important, allowing one to reduce results and constructions
to the case of schemes; in fact, cohomological descent is needed even for basic calculations
(e.g., rigid cohomology of BG for a finite group G).

The main result of the series of papers [CT03],[Tsu03a], and [Tsu04] is that cohomo-
logical descent for overconvergent isocrystals holds with respect to both étale and proper
hypercovers. The burden of choices in the definition of rigid cohomology makes their proofs
of cohomological descent very difficult, totaling to over 200 pages. Even after the main co-
homological descent theorems [CT03, Theorems 7.3.1 and 7.4.1] are proved one still has to
work a bit to get a spectral sequence [CT03, Theorem 11.7.1]. Actually, even to state what
one means by cohomological descent (without a site) is subtle.

The situation is more favorable for the overconvergent site, since one may apply the
abstract machinery of [72, Exposé Vbis and VI]. Indeed, the main result of this chapter (see
Theorem 3.2.9) is a short proof of the following.

Theorem 3.0.5. Cohomological descent for locally finitely presented modules on the over-
convergent site holds with respect to smooth hypercovers.

By le Stum’s comparison theorems between rigid and overconvergent cohomology (see
Theorems 2.3.11) and 2.3.16), we obtain a spectral sequence (see Remark 3.1.9) computing
rigid cohomology, which gives a shorter proof of Theorem 11.7.1 of [CT03].

The following variant of Theorem 3.0.5 is also expected.

Conjecture 3.0.6. Cohomological descent for locally finitely presented modules on the
overconvergent site holds with respect to proper hypercovers.
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Finally, we note that the proof of Theorem 3.0.5 is not merely a formal consequence
of the techniques of [72, Exposé Vbis and VI], in contrast to, for example, cohomological
descent for abelian sheaves on the étale site with respect to smooth hypercovers (which is
simply Čech theory; see Theorem 3.1.16 (i)).

3.1 Background on cohomological descent

Here we recall the definitions and facts about cohomological descent that we will need.
The standard reference is [72, Exposé Vbis and VI]; some alternatives are Deligne’s paper
[Del74] and Brian Conrad’s notes [Con]; the latter has a lengthy introduction with a lot of
motivation and gives more detailed proofs of some theorems of [72] and [Del74].

We refer to Appendix 5.1 for a review of categorical constructions (e.g., comma cate-
gories, fibered categories, the canonical topology, etc.).

3.1.1. We denote by ∆ the simplicial category whose objects the are the sets [n] :=
{0, 1, . . . , n}, n ≥ 0, and whose morphisms are monotonic maps of sets φ : [n]→ [m] (i.e., for
i ≤ j, φ(i) ≤ φ(j)). We define the augmented simplicial category to be ∆+ := ∆ ∪ {∅}. A
simplicial (resp. augmented simplicial) object X• of a category C is a functor X• : ∆op →
C (resp. X• : (∆+)op → C); one denotes by Xn the image of n under X•. We will typically
write an augmented simplicial object as X• → X−1, where X• is the associated simplicial
object. A morphism between two simplicial or augmented simplicial objects is simply a
natural transformation of functors. We denote these two categories by SimpC and Simp+C.

Similarly, we define the truncated simplicial categories ∆≤n ⊂ ∆ and ∆+
≤n ⊂ ∆+ to

be the full subcategories consisting of objects [m] with m ≤ n (with the convention that
[−1] = ∅). We define the category SimpnC of n-truncated simplicial objects of C to be
the category of functors X• : ∆op

≤n → C (and define Simp+
n C analogously).

3.1.2. Any morphism p0 : X → Y in a category C gives rise to an augmented simplicial
object p : X• → Y with Xn the fiber product of n+1 many copies of the morphism p0; in this
case we denote by pn the morphism Xn → Y and by pji the jth projection map Xi → Xi−1
which forgets the jth component.

3.1.3. This last construction is right adjoint to the forgetful functor X• 7→ (X0 → X−1)
from Simp+C → Simp+

≤0C. We can generalize this point of view to construct an augmented
simplicial object out of an n-truncated simplicial object as follows. We first define the
n-skeleton functor

skn : SimpC → Simp≤nC

by sending X• : ∆op → C to the composition skn(X•) : ∆op
≤n ⊂ ∆op → C. We define an
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augmented variant
skn : Simp+C → Simp+

≤nC

similarly, which we also also denote by skn. When C admits finite limits the functor skn has
a right adjoint coskn [Con, Theorem 3.9], which we call the n-coskeleton. When we denote
a truncated augmented simplicial object as X• → Y , we may also write coskn(X•/Y ) → Y
to denote coskn(X• → Y ) (so that coskn(X•/Y ) is a simplicial object).

3.1.4. When C is a site we promote these notions a bit. The codomain fibration, i.e.,
the fibered category π : MorC → C which sends a morphism X → Y ∈ Ob (MorC) to its
target Y (see Example 5.1.11), is a prestack if and only if C is subcanonical and a stack

if every F ∈ C̃ is representable (equivalently, if the Yoneda embedding C → Ĉ induces an

isomorphism C → C̃). The fibers are the comma categories C/X , and the site structure
induced by the projection C/X → C makes π into a fibered site (i.e., a fibered category
with sites as fibers such that for any arrow f : X → Y in the base, any cartesian arrow over
f induces a functor C/X → C/Y which is a continuous morhpism of sites; see [72, Exposé
VI]). For a simplicial object X• of C, the 2-categorical fiber product ∆op ×C MorC → ∆op

also is a fibered site; to abusively notate this fiber product as X• will cause no confusion.
We will call a site fibered over ∆op a simplicial site. We define a morphism of fibered sites
below 3.1.5.

3.1.5. Associated to any fibered site is a fibered topos; we explicate this for the fibered
site X• → ∆op associated to a simplicial object X• of a site C. We define first the total site
TotX• to be the category X• together with the smallest topology such that for every n, the
inclusion of the fiber Xn into X• is continuous. The total topos of X• is then defined to
be the category X̃• of sheaves on TotX•. We can define a morphism of fibered sites to be a
morphism of fibered categories which induces a continuous morphism of total sites.

For F• ∈ X̃• denote by Fn the restriction of F• to Xn; as usual for any cartesian arrow
f over a map d′ → d in ∆op one has an induced map f ∗Fd → Fd′ and as one varies d′ → d,
these maps enjoy a cocycle compatibility. The total topos X̃• is equivalent to the category
of such data. One can package this data as sections of a fibered topos T• → ∆op (with fibers

Tn = C̃n), i.e., a fibered category whose fibers are topoi such that cartesian arrows induce
morphisms of topoi (or rather, the pullback functor of a morphism of topoi) on fibers. The

total topos X̃• is then equivalent to the category of sections of T• → ∆op. When the topology
on each fiber Xn is subcanonical (i.e., representable objects are sheaves), the topology on
TotX• also is subcanonical and the inclusion X• ⊂ T• of fibered sites (where one endows
each fiber Tn of the the fibered topos T• with its canonical topology) induces an equivalence
of categories of total topoi.

3.1.6. Let p0 : X → Y be a morphism of presheaves on a site C. As before, this gives rise
to an augmented simplicial presheaf p : X• → Y . Denoting by Ĉ the category of presheaves
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on C, we may again promote X• to a fibered site and study its fibered topos as in 3.1.4
above. Indeed, Yoneda’s lemma permits one to consider the fibered site Mor′ Ĉ → Ĉ (where

Mor′ Ĉ is the subcategory of Mor Ĉ whose objects are arrows with source in C and target
in Ĉ), and again the 2-categorical fiber product ∆op ×Ĉ Mor′ Ĉ is a fibered site. We also
remark that passing to the presheaf category allows one to augment any simplicial object in
C by sending ∅ to the final object of Ĉ (which is represented by the punctual sheaf).

3.1.7. A morphism f : X• → Y• of simplicial sites induces a morphism (f ∗, f∗) : X̃• → Ỹ•
of their total topoi; concretely, the morphisms of topoi (f ∗n, fn∗) : X̃n → Ỹn induce for instance
a map {Fn} 7→ {fn∗Fn} which respects the cocycle compatibilities.

To an augmented simplicial site p : X• → S one associates a morphism (p∗, p∗) : X̃• → S̃ of
topoi as follows. The pullback functor p∗ sends a sheaf of sets F on S to the collection {p∗nF}
together with the canonical isomorphisms pj∗n+1p

∗
nFn ∼= p∗n+1F induced by the canonical

isomorphism of functors pj∗n+1 ◦ p∗n ∼= p∗n+1 associated to the equality pn+1 = pn ◦ pjn+1. Its
right adjoint p∗ sends the collection {Fn} to the equalizer of the cosimplicial sheaf

· · · p(n−1)∗Fn−1 +3 pn∗Fn _*4 p(n+1)∗Fn+1 · · · (3.1.7.1)

where the n+2 maps between pn∗Fn and pn+1∗Fn+1 are the pushforwards pn∗ of the adjoints
Fn → pjn+1∗Fn+1 to pj∗n+1Fn → Fn+1 (using the equality p(n+1)∗ = pn∗ ◦ pjn+1∗). It follows
from an elementary manipulation of the simplicial relations that the equalizer of 3.1.7.1 only
depends on the first two terms; i.e., it is equal to the equalizer of

p0∗F0
//
// p1∗F1 .

One can of course derive these functors, and we remark that while, for an augmented
simplicial site p : X• → S and an abelian sheaf F ∈ AbX•, the sheaf p∗F only depends on
the first two terms of the cosimplicial sheaf of 3.1.7.1, the cohomology Rp∗F depends on
the entire cosimplicial sheaf. Finally, we note the standard indexing convention that for a
complex F•,• of sheaves on X•, for any i we have that F•,i ∈ AbX•.

Example 3.1.8 ([Con, Examples 2.9 and 6.7]). Let S ∈ C be an object of a site and let
q : S• → S be the constant augmented simplicial site associated to the identity morphism
id: S → S. The total topos S̃• is then equivalent to the category Cosimp S̃ = Hom(∆, S̃) of
co-simplicial sheaves on S and Ab(S•) is equivalent to Cosimp Ab(S).

(i) It is useful to consider the functor

ch: Cosimp Ab(S)→ Ch≥0(Ab(S))

to the category of chain complexes concentrated in non-negative degree which sends a cosim-
plicial sheaf to the chain complex whose morphisms are given by alternating sums of the
simplicial maps. The direct image functor q∗ is then given by

F• 7→ H0(chF•) = ker(F0 → F1).
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Let I• ∈ AbS•. Then I• is injective if and only if ch I• is a split exact complex of
injectives (this is a mild correction of [Con, Corollary 2.13]). Furthermore, for I• ∈ AbS•
injective, the natural map

Rq∗I• := q∗I• → ch I•

is a quasi-isomorphism and thus Riq∗I• = H i(ch I•). One concludes by [Har77, Theorem
1.3A] that the collection of functors F• 7→ H i(chF•) (the ith homology of the complex
chF•) forms a universal δ functor and thus that Riq∗F• ∼= H i(ch(F•)).

(ii) Actually, a mildly stronger statement is true: for an injective resolution F• → I•,•
(where I•,i ∈ Cosimp Ab(S)), one can show that the map chF• → ch I•,• induces a quasi-
isomorphism chF → Tot ch I•,•, where Tot is the total complex constructed by collapsing
the double complex ch I•,• along the diagonals. On the other hand the natural map Rq∗F• :=
q∗I•,• → Tot ch I•,• is an isomorphism. Putting this together we see that the map chF• →
Tot ch I•,• is a quasi-isomorphism.

(iii) We note a final useful computation. Let I•,• ∈ D+(S•) a complex of injective sheaves.
Define I−1,n = ker (ch I•,n); by [Aut, 015Z] (noting that since q is a morphism of topoi, Q∗

is an exact left adjoint to q∗) this is an injective sheaf. Then the hypercohomology of I•,• is
simply (by definition) Rq∗ (I•,•) := q∗ (I•,•) = I−1,•.

Remark 3.1.9. Let p : X• → S be an augmented simplicial site, and let F• ∈ X̃• be a sheaf
of abelian groups. Using Example 3.1.8, we can clarify the computation of the cohomology
Rp∗F• via the observation that the associated map of topoi factors as

X̃•
r−→ S̃•

q−→ S̃,

where r∗F• is the cosimplicial sheaf given by Equation 3.1.7.1. Therefore, to compute Rp∗F•
we first study Rr∗F•.

Set F−1 = p∗F• = ker ch r∗F•. Viewing F−1 as a complex concentrated in degree 0,
we can consider the morphism of complexes F−1 → ch r∗F•. When F• is injective, r∗F•
also is injective by [Aut, 015Z]; applying the description of injective objects of Ab(S•) of
Example 3.1.8 (i) to ch r∗F• we conclude that the map of complexes F−1 → ch r∗F• is a
quasi-isomorphism when F• is injective.

Let F• → I•,• be an injective resolution of F•. Then one gets a commutative diagram of
chain complexes

I−1,• // ch r∗I•,•

F−1 //

OO

ch r∗F•

OO
; (3.1.9.1)

we can alternatively view Diagram 3.1.9.1 as a double complex, indexed so that the sheaf F−1
lives in bi-degree (−1,−1). By the remark at the end of the preceding paragraph, all rows
of Diagram 3.1.9.1 except the bottom are quasi-isomorphisms; the columns are generally not

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=015Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=015Z
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quasi-isomorphisms (since ch r∗F• is not exact in positive degree). Now we compute that

Rp∗F• := p∗I•,• = I−1,•. (3.1.9.2)

The output I−1,• is quasi-isomorphic to the total complex Tot ch r∗I•,• (given by collapsing
the diagonals); since the i th column of the double complex ch r∗I•,• computes Rpi∗Fi, there
is an E1-spectral sequence

Rjpi∗Fi = Hj(pi∗I•,•)⇒ H i+j(Tot ch r∗I•,•) ∼= H i+j(I−1,•) ∼= Ri+jp∗F•, (3.1.9.3)

where the last isomorphism is the (i+ j)th homology of Equation 3.1.9.2.

Our later computations will rely on the following degenerate case of the preceding remark.

Corollary 3.1.10. Let p : X• → S be an augmented simplicial site. Then the following are
true.

(i) Let F• ∈ AbX• be a sheaf of abelian groups. Suppose that for i ≥ 0 and j > 0, one
has Rjpi∗Fi = 0. There is a quasi-isomorphism Rp∗F• ∼= ch r∗F•.

(ii) Let F ∈ S̃ be an abelian sheaf such that for i ≥ 0 and j > 0, Rjpi∗p
∗
iF = 0, such that

ch r∗p
∗F is exact in positive degrees, and such that the adjunction F → ker(F0 → F1)

is an isomorphism, then F → Rp∗p∗F is a quasi-isomorphism.

Proof. The second claim is a special case of the first claim. By [Con, Lemma 6.4], for any
i, j, the sheaf Ii,j is injective, and thus the i th column of I•,• is an injective resolution of Fi.
For i ≥ 0, the i th column of r∗I•,• is the complex Rpi∗Fi. Thus by hypothesis the complex
ri∗Fi → ri∗Ii,• is exact and it follows that the map

ch r∗F• → Tot ch r∗I•,• =: Rp∗F•

of Diagram 3.1.9.1 is a quasi-isomorphism.

Remark 3.1.11. Let f : X• → Y• be a map of simplicial sites, F• ∈ X̃• be a sheaf of abelian
groups, and suppose that for every i ≥ 0, the natural map fi∗Fi → Rfi∗Fi is a quasi-
isomorphism. Then the strategy used in the proof of Corollary 3.1.10 generalizes to prove
that the natural map f∗F• → Rf∗F• is a quasi-isomorphism.

Finally, we arrive at the main definition.

Definition 3.1.12. Let C be a site. We say that an augmented simplicial object p : X• → S
of C is of cohomological descent if the adjunction id → Rp∗p∗ on D+(S) is an isomor-
phism; equivalently, p is of cohomological descent if and only if the map p∗ : D+(S)→ D+(X•)
is fully faithful [Con, Lemma 6.8] (this explains the analogue with classical descent theory).
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A morphism X → S of C is of cohomological descent if the associated augmented simpli-
cial site X• → S is of cohomological descent (this makes sense even when C does not have

fiber products, since we can work in C̃ instead). We say that an augmented simplicial ob-
ject X• → S of C is universally of cohomological descent if for every S ′ → S, the base
change X• ×S S ′ → S ′ (viewed in the topos C̃ in case C fails to admit fiber products) is of
cohomological descent.

Similarly, for a sheaf of abelian groups F ∈ S̃ we say that p is of cohomological descent
with respect to F if F ∼= Rp∗p∗F , that a morphism X → S is of cohomological descent
with respect to F if the same is true of the associated augmented simplicial space, and
universally of cohomological descent with respect to F if for every f : S ′ → S, the map
X ×S S ′ → S ′ is of cohomological descent with respect to f ∗F .

3.1.13. Once one knows cohomological descent for all F ∈ Ab S̃, one can deduce it for
all F• ∈ D+(S) via application of the hypercohomology spectral sequence.

3.1.14. The charm of cohomological descent is that there are interesting and useful
augmented simplicial sites other than 0-coskeletons which are of cohomological descent. Let
C be a category with finite limits and let P be a class of morphisms in C which is stable
under base change and composition and contains all isomorphisms. We say that a simplicial
object X• of C is a P-hypercovering if for all n ≥ 0, the natural map

Xn+1 → (coskn(sknX•))n+1

is in P. For an augmented simplicial object X• → Y we say that X• is a P-hypercover of Y
if the same condition holds for n ≥ −1.

Example 3.1.15. The 0-coskeleton cosk0(X/Y )→ Y of a cover X → Y is a P-hypercover
of Y , where P is the class of covering morphisms.

We record here many examples of morphisms of cohomological descent.

Theorem 3.1.16. Let C be a site. Then the following are true.

(i) A covering p : X → Y in C̃ is universally of cohomological descent.

(ii) Any morphism in C which has a section locally (in C) is universally of cohomological
descent.

(iii) The class of morphisms in C universally of cohomological descent form a topology (in
the strong sense of [73, Exposé II]). In particular, the following are true.

(a) For a cartesian diagram of objects

X ′
π′0 //

f ′0
��

X

f0
��

S ′ π0
// S
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in C with π0 universally of cohomological descent, f0 is universally of cohomolog-
ical descent if and only if f ′0 is universally of cohomological descent.

(b) If X → Y and Y → Z are maps in C such that the composition X → Z is
universally of cohomological descent, then so is Y → Z.

(c) If X → Y and Y → Z are maps in C and are universally of cohomological descent,
then so is the composition X → Z.

(iv) More generally, let P be the class of morphisms in C which are universally of cohomo-
logical descent. Then a P-hypercover is universally of cohomological descent.

Proof. Statement (i) is [Ols07, Lemma 1.4.24], (ii) follows from (i) since any morphism with
a section is a covering in the canonical topology, (iii) is [Con, Theorem 7.5], and (iv) is
[Con, Theorem 7.10].

Useful later will be a mild variant applicable to a particular sheaf (as opposed to the
entire category of abelian sheaves).

Theorem 3.1.17. Let C be a site. Then the following are true.

(a) Consider a cartesian diagram

X ′
π′0 //

f ′0
��

X

f0
��

S ′ π0
// S

in C and let F ∈ S̃ be a sheaf of abelian groups. Suppose π0 is universally of coho-
mological descent with respect to F . Then f0 is universally of cohomological descent
with respect to F if and only if f ′0 is universally of cohomological descent with respect
to π∗0F .

(b) Let f : X → Y and g : Y → Z be maps in C and let F ∈ Z̃ be a sheaf of abelian
groups. Suppose that the composition X → Z is universally of cohomological descent
with respect to F . Then is Y → Z as well.

(c) Let f : X → Y and g : Y → Z be maps in C and let F ∈ Z̃ be a sheaf of abelian groups.
If g is universally of cohomological descent with respect to F and f is universally of
cohomological descent with respect to g∗F , then the composition g ◦ f is universally of
cohomological descent with respect to F .

(d) Let fi : Xi → Yi be maps in C indexed by some arbitrary set I. For each i ∈ I let

Fi ∈ Ỹi be a sheaf of abelian groups. Suppose that for each i, fi is of cohomological
descent relative to Fi. Then

∐
fi :

∐
Xi →

∐
Yi is of cohomological descent relative

to
∐
Fi (where disjoint unions are taken in Ĉ as discussed in Appendix 5.1.7).
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Proof. The proofs of (a) - (c) are identical to the proof of Theorem 3.1.16 (iii) found in
[Con, Theorem 7.5], and (d) follows from the fact that, setting p0 =

∐
fi, the induced

morphism of simplicial topoi

p :
˜(∐

Xi

)
•
→
∐̃

Yi

is also a morphism of topoi fibered over I, so that in particular the natural map∐
Fi → Rp∗p∗

∐
Fi

is an isomorphism if and only if, for all i ∈ I, the map Fi → Rfi•∗f ∗i•Fi is an isomorphism.

3.2 Cohomological descent for overconvergent crystals

In this section we prove Theorem 3.0.5. We begin with the case of a Zariski hypercover.
Unless otherwise noted, all proofs do not change if we replace objects by their good variants.

Definition 3.2.1. Let T be an overconvergent presheaf. A sheaf F ∈ TAN†g
is said to be

of Zariski type if, for every overconvergent variety (X, V ) ∈ AN†g T and for every Zariski

open immersion α : U ↪→ X, the induced map ]α[−1V FX,V → FU,V is an isomorphism. We
make the analogous definition for F ∈ TAN† .

Remark 3.2.2. In the context of Definition 3.2.1, when F ∈ ModO†T , the natural map
]α[−1V FX,V →]α[†VFX,V is, by [lS09, Corollary 2.3.2], an isomorphism. It follows that an
overconvergent crystal is of Zariski type.

One can restate the main result of [lS09, Section 3.6] as the statement that a Zariski
covering is universally of cohomological descent (see Definition 3.1.12) for overconvergent
abelian sheaves of Zariski type. More precisely:

Theorem 3.2.3 ([lS09, Section 3.6]). Let (C,O) be an overconvergent variety and let X → C
be a morphism of algebraic varieties. Let {Ui}i∈I be a locally finite covering of X by open
subschemes and denote by α0 : U =

∐
i∈I Ui → X the induced morphism of schemes. Denote

by α : U• → X the 0-coskeleton of α0. Let F ∈ X/OAN† be a sheaf of abelian groups of
Zariski type. Then the morphism of topoi U•/OAN† → X/OAN† is universally of cohomological
descent with respect to F . The same statement holds for F ∈ X/OAN†g

and αAN†g
.

Proof. The proof for αAN†g
is identical to the proof for αAN† . By [lS09, Corollary 2.1.11] the

maps (αi)AN† ∗ (induced from the i-fold fiber products) are exact, and by [lS09, Proposition
3.6.3] the ‘ordered Čech complex’ is exact. It is a standard fact (whose truth is often noted
without proof in the literature) that it follows that the unordered Čech complex is exact (i.e.,
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F ∼= αAN† ∗α
∗
AN†
F), and so by Corollary 3.1.10 (ii), we conclude that F ∼= RαAN† ∗α

∗
AN†
F .

Universality follows since our hypotheses are preserved under base change.

Remark 3.2.4. Let {Xi} be a collection of schemes. Then the presheaf on AN† V represented
by the disjoint union

∐
Xi (as schemes) is not equal to the disjoint union (as presheaves) of

the presheaves represented by each Xi. Nonetheless, Theorem 3.1.17 (d) also holds for the
map in AN† V represented by a disjoint union

∐
Yi →

∐
Xi of morphisms of schemes (taken

as a disjoint union of schemes instead of as presheaves on AN† V); indeed, the sheafification

of
∐
Xi is the same in each case, and in general for a site C and a presheaf F ∈ Ĉ with

sheafification F a, there is a natural equivalence

C̃/F ∼= C̃/Fa

of topoi.

Definition 3.2.5. A map (f, u) : (X ′, V ′)→ (X, V ) of overconvergent varieties is said to be
finite (see [lS09, Definition 3.2.3]) if, up to strict neighborhoods, u is finite (see [Ber93, para-
graph after Lemma 1.3.7]) and u−1(]X[V ) = ]X ′[V ′ . Moreover, u is said to be universally
flat if, locally for Grothendieck topology on V ′ and V , u is of the form M(A′) → M(A)
with A→ A′ flat (see [Ber93, Definition 3.2.5]).

Proposition 3.2.6. Let (f, u) : (X ′, V ′)→ (X, V ) be a finite map of overconvergent varieties
and suppose that, after possibly shrinking V ′ and V , u is universally flat. Then (f, u) is
universally of cohomological descent with respect to finitely presented overconvergent crystals.

Proof. To ease notation we set p := (f, u). Let F ∈ Modfp(X, V ), and shrink V and V ′

such that u is finite and such that FX,V is isomorphic to i−1X G for some G ∈ CohOV (which
is possible by [lS09, Proposition 2.2.10]). By Corollary 3.1.10, it suffices to prove that (i)
Rqp∗p

∗F = 0 q > 0, and (ii) that the Čech complex F → p•,∗p
∗
•F is exact. To prove (i), as in

[lS09, Proof of Proposition 3.2.4] it suffices to prove that Rq]u[∗]u[∗FX,V = 0 for q > 0. Then
Rq]u[∗]u[∗FX,V = i−1X Rqu∗u

∗G; by [Ber93, Corollary 4.3.2] Rqu∗u
∗G = 0 and (i) follows.

For (ii), since one can check exactness of a complex of abelian sheaves on the collection
of all realizations and since our hypotheses are stable under base change, it suffices to prove
that the Čech complex of FX,V with respect to ]u[ is exact. Since i−1X is exact, it suffices to
prove that the Čech complex of G with respect to u is exact. By [Ber93, Proposition 4.1.2],
G is a sheaf in the flat quasi-finite topology, so by part (i) of this proof and Theorem 3.1.16
(i), G→ u•,∗u

∗
•G is exact.

A monogenic map of rings is a map of the form A→ A[t]/f(t), where f ∈ A[t] is a monic
polynomial, and a map of affine schemes is said to be monogenic if the associated map on
rings is monogenic.
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Corollary 3.2.7. Let p : X → Y be a finite flat surjection of schemes. Then p is universally
of cohomological descent with respect to finitely presented crystals.

Proof. By the argument of [BLR90, 2.3, Proposition 3], there exists a there exists a (generally
non-cartesian) commutative diagram ∐

Xi
//

∐
fi

��

X

��∐
Yi // Y

such that {Yi} a cover of Y by affine open subschemes of finite type over k, Xi is an affine
open subscheme of X, and each map fi : Xi → Yi is monogenic. Since Y is locally of finite
type, we may choose {Yi} to be a locally finite covering.

By Theorem 3.1.17 (b), it suffices to prove that the composition
∐
Xi → Y is universally

of cohomological descent with respect to crystals. By Theorem 3.1.17 (c) and Theorem 3.2.3,
it suffices to prove that the map

∐
Xi →

∐
Yi is universally of cohomological descent with

respect to crystals, and by Theorem 3.1.17 (d) and Remark 3.2.4 it suffices to prove that for
each i, the map Xi → Yi is universally of cohomological descent with respect to crystals.

Thus, we may assume that p : X → Y is monogenic. Choose a formal scheme P which
is flat and projective over V and an embedding Y ↪→ P (which exists since Y is affine and
of finite type). Lifting the polynomial defining the map X → Y gives a map finite and flat
map P ′ → P of formal schemes and an embedding X ↪→ P ′ which is compatible with the
embedding Y ↪→ P . Consider the diagram

(X,P ′K) //

��

X

��
(Y, PK) // Y

.

By Theorem 2.2.23, (Y, PK) → Y is a covering, so by Theorems 3.1.17 (b) and (c) and
Theorem 3.1.16 (i) it suffices to prove that (X,P ′K)→ (Y, PK) is universally of cohomological
descent with respect to finitely presented crystals, which follows from Proposition 3.2.6.

Corollary 3.2.8. Let Y be an algebraic variety. Let {Y ′i } be the set of irreducible components
of Y and let Yi := (Y ′i )red be the reduction of Y ′i . Then the morphism

∐
Yi → Y is universally

of cohomological descent with respect to finitely presented modules on the overconvergent site.

Proof. Let {Xi} be a locally finite cover of Y by affine opens and set X ′i := (
∐
Yi) ×Y X.

Applying Theorems 3.2.3 and 3.1.17 (a) and (d) to the diagram of sheaves on AN† Y induced
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by the cartesian diagram of schemes ∐
X ′i //

��

∐
Yi

��∐
Xi

// Y

it suffices to prove our theorem for each of the maps X ′i → Xi.
We may thus assume that Y is affine. Choose an embedding Y ↪→ P into a formal

scheme P which is smooth and projective over V (which exists since Y is affine and of finite
type). Denote by Y (resp. Yi) the closure of Y (resp. Yi) in P ; since the preimage under
specialization of a closed immersion is an open immersion, ∪]Yi[P is an open covering of ]Y [P .
Consider the diagram ∐

(Yi, ]Yi[PK
) //

��

X

��
(Y, PK) // Y

.

By Theorem 2.2.23, (Y, PK) → Y is a covering, so by Theorems 3.1.17 (b) and (c) and
Theorem 3.1.16 (i) it suffices to prove that

∐
(Yi, ]Yi[PK

)→ (Y, PK) is universally of cohomo-
logical descent with respect to finitely presented crystals. The map

∐
(Yi, ]Yi[PK

)→ (Y, PK)
factors as

∐
(Yi, ]Yi[PK

)→
∐

(Y, ]Yi[PK
)→ (Y, PK); by Theorem 3.1.17 (c) it suffices to prove

that each of these two maps is universally of cohomological descent with respect to finitely
presented crystals. The second map is a covering in AN† Y and thus by Theorem 3.1.16 (i)
is universally of cohomological descent with respect to all abelian sheaves; the first map is a
disjoint union of finite universally flat morphisms of overconvergent varieties, so by Proposi-
tion 3.2.6 and Theorem 3.1.17 (d) it is universally of cohomological descent with respect to
finitely presented crystals.

Our main theorem is the following.

Theorem 3.2.9. Let p0 : X → Y be an étale surjection of quasi-compact algebraic varieties
over k. Let F ∈ Cris†g Y be an overconvergent crystal. Then the associated morphism

XAN†g
→ YAN†g

of topoi is universally of cohomological descent with respect to F .

In contrast to most other results, this proof does not generalize to pAN† (i.e. the case
without goodness hypothesis). Also, to ease notation we will often omit the subscript AN†g
from functors.
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Proof. Any smooth morphism étale locally has a section, the smooth case follows from the
étale case and Theorems 3.1.17 (a) and 3.1.16 (ii). Let p0 : X → Y be an étale morphism of
schemes. By [BLR90, 2.3, Proposition 3] there exists a (generally non-cartesian) commuta-
tive diagram ∐

Xi
//

∐
fi

��

X

��∐
Yi // Y

such that {Yi} a cover of Y by affine open subschemes of finite type over k, Xi is an affine
open subscheme of X, and each map fi : Xi → Yi factors as

Xi ⊂ X̃i → Yi,

where the first map is a Zariski open immersion, the second map is finite and locally free,
and the composition fi is surjective. Since Y is locally of finite type, we may choose {Yi} to
be a locally finite covering.

By Theorem 3.1.17 (b), it suffices to prove that the composition
∐
Xi → Y is universally

of cohomological descent with respect to crystals. By Theorem 3.1.17 (c) and Theorem 3.2.3,
it suffices to prove that the map

∐
Xi →

∐
Yi is universally of cohomological descent with

respect to crystals, and by Theorem 3.1.17 (d) it suffices to prove that for each i, the map
Xi → Yi is universally of cohomological descent with respect to crystals.

Thus we have reduced to the case of a surjective étale morphism p0 : X → Y which
admits a factorization X ⊂ X̃ → Y such that the first map is aZ ariski open immersion and
the second map is finite and locally free. Thus, by Theorem 3.1.17 (a) and Corollary 3.2.7, it
suffices to check that X → Y is universally of cohomological descent with respect to crystals
after pulling back by the map X̃ → Y , and so we may assume that X̃ → Y has a section s.

Let {Y ′i } be the finite set of irreducible components of Y , let Yi := (Y ′i )red be the reduction
of Y ′i , and set Xi = Yi ×Y X. Applying Corollary 3.2.8 and Theorems 3.1.17 (a), (d) to the
diagram ∐

Xi
//

∐
fi

��

X

��∐
Yi // Y

we may assume that Y is integral. We now proceed by induction on the degree of the second
map. If it has degree 1 then, since the map X → Y is surjective, it is actually an isomorphism
and thus trivially universally of cohomological descent. Suppose it has degree d > 1.

Let {X̃i

′
} be the finite set of irreducible components of X̃; by the valuative [Gro66,

Théorème 11.8.1] and local [Gro61, 0, Corollaire 10.2.7] criterions for flatness, X̃i

′
→ Y is

flat. Let Yi be the image of X̃i

′
∩X in Y (which is open since X̃i

′
→ Y is finite and flat), let
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X̃i be Yi ×Y X̃i, and let Xi = X̃i ∩X. Then we get a diagram∐
Xi

//

��

X

��∐
X̃i

//

��

X̃

��∐
Yi // Y

such that each map X̃i → Yi is finite and locally free and {Yi} is a Zariski cover of Y .

Since X̃ → Y is separated, the section s is a closed immersion and s(Y ) is an irreducible

component of X̃; in particular X̃ has more than one irreducible component and thus for
each i, the degree of X̃i → Yi is strictly less than by d. By induction, for each i the map
Xi → Yi is universally of cohomological descent. The étale case of this theorem now follows
from Theorems 3.2.3 and 3.1.17 (b), (c), and (d).

Corollary 3.2.10. Assume Conjecture 3.0.6 is true. Let P be the class of morphisms of
algebraic varieties that are compositions of finitely many smooth morphisms and proper mor-
phisms. Let p : X• → Y be a P-hypercover of quasi-compact algebraic varieties over k, and
let F ∈ Cris†g Y . Then the associated morphism of topoi

(X•)AN†g
→ YAN†g

is universally of cohomological descent with respect to F .

Proof. This follows directly from Theorem 3.2.9, Conjecture 3.0.6, and Theorem 3.1.16 (iv)
(or rather, the ‘single sheaf’ variant analogous to Theorem 3.1.17, which is proved in the
same way).

Remark 3.2.11. The following is a typical application of cohomological descent. By [Con,
Theorem 4.16], it follows from de Jong’s alterations theorem [dJ96] that for any separated
scheme Y of finite type over k there exists a proper hypercover (e.g. a P-hypercover) X• → Y
such that each Xi is a regular scheme. This allows one to deduce statements about rigid
cohomology for general schemes from the the case of regular schemes; see Proposition 4.2.14
for one example, where we prove that Conjecture 3.0.6 implies finiteness of the absolute rigid
cohomology of an algebraic stack.

Next we write out the standard argument which generalizes this result to stacks.

Corollary 3.2.12. Assume Conjecture 3.0.6. Then the following are true.
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(a) Let (C,O) be an overconvergent variety. Let p0 : X ′ → X be a representable surjection
of algebraic stacks over C such that p0 is either a smooth morphism or a proper mor-
phism. Suppose that X is locally of finite type over k and denote by p : X ′• → X its
0-coskeleton. Let E ∈ Cris†g X/O. Then pAN†g

: (X ′
AN†

/O)g,• → (XAN†/O)g is univer-

sally of cohomological descent with respect to E.

(b) More generally, let P be the class of representable morphisms of stacks over C that are
compositions of finitely many smooth morphisms and proper morphisms which are of
finite type over k, and let X be a stack locally of finite type over k. Then AN†g of a
P-hypercovering of X is universally of cohomological descent with respect to objects of
Cris†g X/O.

Proof. For part (a), first note that universality is clear, since smoothness and properness
are stable under base change. Let T → AN†g(C,O) be a fibered category. Then any map

(Y, V ) → T of categories fibered over AN†g(C,O) factors through (Y/O)g, and so to check

that a morphism of sheaves on AN†g T is an isomorphism it suffices to check it after pulling
back to Y/O, as Y varies over all maps from presheaves represented by schemes to T .

Now let E ∈ Cris†g X/O. By the previous paragraph applied to T = AN†g X/O, to check
that the map E → RpAN†g ∗p

∗
AN†g

E is an isomorphism, it suffices to check that, for every

morphism f : Y → X from a variety Y over C, the map f ∗
AN†g

E → f ∗
AN†g

RpAN†g ∗p
∗
AN†g

E is an

isomorphism. The cohomology and base change argument of [lS09, Proposition 3.2.4] works
verbatim for fibered categories over AN†g(C,O), and so the previous adjunction is isomorphic

to the adjunction f ∗
AN†g

E → Rp′
AN†g ∗

p∗
′

AN†g
f ∗
AN†g

E where, setting p′0 : Y ′ := Y ×X X ′ → Y , p′ is

cosk0(p
′
0).

Thus to prove the corollary it suffices to do the case when X ′ is an algebraic space X ′

and X is an algebraic variety X. By Chow’s lemma [Knu71, Theorem IV.3.1], there exists
a separated birational morphism X ′′ → X ′ such that X ′′ is a scheme and the composition
q0 : X ′′ → X is proper and surjective. By applying Theorem 3.1.17 (b) to the composition
X ′′/O → X ′/O → X/O, it suffices to prove that (q0)AN†g

is of cohomological descent with

respect to crystals on XAN†g
, which is Theorem 3.2.9 and Conjecture 3.0.6. The first claim

follows.
Using the strategy of proof of part (a), part (b) reduces to the case of a P-hypercovering

where everything in sight is an algebraic space (noting that, by their defining universal
property, the functors coskn commute with base change on S). By part (a) and Theorem
3.1.17 (c) to conclude that a composition of smooth morphisms and proper morphisms of
algebraic spaces is of cohomological descent with respect to good crystals, the claim now
follows from Theorem 3.1.16 (iv).

Remark 3.2.13. Theorem 3.2.12 should still be true when p0 is not representable, but one
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would need to check that the proof of Theorem 3.1.17 still holds in the 2-category of stacks
on a site.
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Chapter 4

Cohomology supported in a closed
subspace

While cohomology with compact supports is the star of the story, cohomology supported
in a closed subspace also plays a key role (e.g., in Kedlaya’s proof of finite dimensionality of
rigid cohomlogy with coefficients [Ked06a]).

In this chapter we use the very general notion of excision on topoi to define cohomology
supported in a closed subspace: for a stack X , a closed substack Z, and an overconvergent
sheaf F on AN†X , we define H i

Z(X , F ) (and a relative counterpart) and deduce that it
satisfies the Bloch-Ogus formalism (i.e., functorality and excision).

4.1 A quick guide to excision on topoi

Here we recall very general facts about immersions of topoi, open and closed sub-topoi,
excision, and cohomology supported in a closed sub-topos.

Let f : T ′ → T be a morphism of topoi. We say that f is an immersion if f∗ is
fully faithful [73, Definition 9.1.2]; by Yoneda’s lemma this is equivalent to the adjunction
id→ f−1f∗ being an isomorphism.

Let T be a topos. Then T has a final object (see Appendix 5.1.15), a choice of which we
denote by eT . Following [73, Definition 8.3], we say that an object U ∈ T is open if it is
a subobject of eT (i.e., if the map U → eT is a monomorphism). Similarly, for X ∈ T we
define an open of U ⊂ X to be an open object U ⊂ T/X of the topos T/X .

Let U ∈ T be open. The restriction map j : T/U → T induces a morphism (j∗, j∗) of
topoi, which is an immersion – indeed, using the explicit description of the pair (j∗, j∗) and
that U → eT is a monomorphism one can easily check that the adjunction is an isomorphism.
We define T ′ → T to be an open immersion of topoi if it is isomorphic to T/U → T with
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U ∈ T open, and we say that T ′ → T is an open subtopos, and we say that a morphism of
sites is an open immersion if the induced morphism of topoi is an open immersion.

Now let T ′ → T be an open immersion, and let U ∈ T be an open such that T ′ → T is
isomorphic to T/U → T . As in [73, 9.3.5], we define the closed complement Z of T ′ in T
to be the complement of T/U in T , i.e., the largest sub-topos Z of T such that T/U ∩ Z is
equivalent to {eT/U}. Concretely, Z is the full subcategory of objects F ∈ T such that the
projection map U × F → U is an isomorphism (i.e., such that j∗F is isomorphic to eT/U ).
The category Z is independent of the choice of U . When T ′ = T/U , we will also call Z the
closed complement of U .

We denote the inclusion Z ↪→ T by i∗ and remark that by [73, Proposition 9.3.4], the map
i∗ : T → Z given by F 7→ U

∐
U×F F is adjoint to i∗, with adjunction given by the projection

morphism F → U
∐

U×F F , and that together these form a morphism (i∗, i∗) : Z → T of
topoi. Since Z is a full subcategory, the inclusion i is an immersion of topoi, and we say that
any immersion of topoi isomorphic to an immersion Z → T arising as the closed complement
of an open immersion is a closed immersion of topoi and say that Z is a closed sub-topos
of T .

Remark 4.1.1. Let C be a site. Let X → X ′ be a monomorphism in C. Then the induced
map C̃/X → C̃/X′ is an open immersion. In particular, when C = Sch, two odd examples
of ‘open immersions’ arise from X → X ′ a closed immersion or SpecOX′, x → X ′, with
x ∈ X ′! Remarkably, as above one can still define a notion of ‘closed complement’ of a
closed immersion and deduce an excision theorem (see Proposition 4.1.6).

Of course, the more interesting open immersions are those whose closed complements
admit a ‘geometric’ description. For example, if U ⊂ X is an open inclusion of topological
spaces, then U is an object of the site OpenX and the restriction morphism j : OpenU ∼=
(OpenX)/U → OpenX induces the usual morphism of topoi induced by the continuous
morphism of sites OpenX → OpenU, U ′ 7→ U ∩ U ′. If we denote by Z the (topological)
complement of U in T , then the closed complement of U in XOpen is isomorphic to the usual
inclusion induced by the continuous morphism of sites OpenX → OpenZ given again by
intersection.

Another ‘geometric’ example is le Stum’s explication of Berthelot’s j† functor [lS07,
Proposition 5.1.12 (a)]; see Remark 2.3.3.

A closed immersion Z → T of topoi enjoys many of the same properties as the classical
case OpenZ → OpenX; see [73, 9.4] for a nice discussion. Here we recall everything relevant
to excision.

Let (T,OT ) now be a ringed topos. Let U ∈ T be open with closed complement Z and
set OU := j∗OT and OZ := i∗OZ . We have the following diagrams of topoi, where each
arrow is left adjoint to the arrow directly below it. The functors j∗, and j∗ (resp. i∗ and i∗)
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restrict to a pair of adjoint functors (note that tensoring is not necessary!), giving a diagram

ModOU
jab! //

j∗
// ModOTj∗oo

i∗ //

i!
// ModOZi∗oo

where the left arrows were defined in Appendix 5.1.27 and the extra adjoint i! is defined by

i!P = ker (i∗P → i∗j∗j
∗P )

(see [73, exposé 4, 9.5 and 14.4] for a more intrinsic description of i!). Note that i∗ is thus
exact as in the case of a closed immersion of schemes.

The functor jab! differs from the usual j! (see the end of Appendix 5.1.24), but when the
context is clear we will write j!; in particular j! of a sheaf of abelian groups will always refer
to jab! .

Proposition 4.1.2. Let P ∈ ModOT . Then the following are true.

(i) 0→ j!j
∗P → P → i∗i

∗P → 0 is exact;

(ii) 0→ i∗i
!P → P → j∗j

∗P is exact;

(iii) i∗i
!P is the ‘largest subsheaf of P supported on Z’ (see [73, exposé 4, 9.3.5]);

(iv) i∗i
∗P ∼= i∗OZ ⊗OT

P ;

(v) i∗i
!P ∼= H omOT

(i∗OZ , P ).

(vi) j∗j
∗P ∼= H omOT

(j!OU , P ).

The proofs of these (and basically any identity involving these 6 functors) follows from
a combination of the very simple description of these functors and maps between them via
the covering theorem [73, 14.3] and, for M,N ∈ ModO, the two adjunctions (or if one
prefers, definitions) HomT (−,H omO(M,N)) ∼= HomO(M,H omT (−, N)) (as functors on
T ) [73, Proposition 12.1] and HomAbT (P,M ⊗ON) ∼= HomO(M,H omZ(N,−)) (as functors
on AbT ) [73, Proposition 12.7].

Proof. These are in [73, exposé 4]: (i & ii) are 14.6 (account for the typo in (ii)), (iii) is
14.8, (iv) is 14.10, 1, (v) is 14.10, 2, and (vi) follows from the proof of 14.10 (see also 12.6).

Definition 4.1.3. Given E ∈ ModOT , we define H 0
ZE := i∗i

!E to be the sheaf of sections
of E supported on Z and denote the derived functors of E 7→H 0

ZE by H i
ZE.

We can derive the functor H 0
Z either as a functor on AbT or on ModOT , because the

functors i∗ and i! commute with the (exact) forgetful functor ModOT → AbT .
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Remark 4.1.4. This is an appropriate name, because Γ(T,H 0
ZE) is the Γ(T,OT )-module of

all sections s of E supported on Z (i.e., such that s|U = 0); see [73, Proposition 14.8].

Definition 4.1.5. Let f : (T,OT ) → (T ′,OT ′) be a morphism of ringed topoi. We define
the cohomology (resp. relative cohomology) of E supported on Z to be the right
derived functors of E 7→ Γ(T,H 0

ZE) by H i
Z(T,E) and the derived functors of E 7→ f∗H 0

ZE
by Rf∗,ZE.

Proposition 4.1.6. Let E ∈ ModOT and let the notation be as above. Then the following
are true.

(i) 0→H 0
ZE → E → j∗j

∗E →H 1
ZE → 0 is exact.

(ii) There is a long exact sequence

. . .→ H i
Z(T,E)→ H i(T,E)→ H i(U, j∗E)→ H i+1

Z (T,E)→ . . .

(iii) Let U ′ ⊂ U ⊂ T be a sequence of open immersions with closed complements Z ↪→
Z ′ ↪→ T and denote by Z ′ ∩U the closed complement of U ′ in U . Then there is a long
exact sequence

. . .→ H i
Z(T,E)→ H i

Z′(T,E)→ H i
Z′∩U(U, j∗E)→ H i+1

Z (T,E)→ . . .

(iv) There is a spectral sequence

Rjf∗H
j
ZE ⇒ Ri+jf∗,ZE.

Proof. Claims (i) - (iii) follow directly from Proposition 4.1.2 above; see [72, exposé 5,
Proposition 6.5] for (i) and (ii), and for (iii) apply the proof of (ii) but with P = i∗i

!OT
(instead of P = OT ) in Proposition 4.1.2 (ii). Claim (iv) is just the spectral sequence
associated to a composition of derived functors.

Lastly, we discuss functorality. For a ringed topos (T,OT ) and a morphism of topoi
g : T ′ → T , we set OT ′ := g∗OT , and if T ′ = T/X for some X ∈ T we write OX for OT/X .

Proposition 4.1.7. Let (T,OT ) be a ringed topos, let f : X ′ → X be a morphism in T̂ , let
j : U ⊂ X be an open immersion with closed complement i : Z ↪→ T/X , let j′ : U ′ = U×XX ′ ⊂
X ′ and denote its closed complement by i′ : Z ′ ↪→ T/X′. Let E ∈ ModOX . Then there is a
natural map

H i
Z(T/X , E)→ H i

Z′(T/X′ , f
∗E).
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Proof. It follows from the commutativity of the diagram

T/U ′

��

// T/X′

��
T/U // T/X

of topoi that
f ∗j∗j

∗E ∼= j′∗j
′∗f ∗E

and that the composition
f ∗E → f ∗j∗j

∗E ∼= j′∗j
′∗f ∗E

is the adjunction. Then there is an isomorphism

f ∗i∗i
!E = f ∗ ker (E → j∗j

∗E) = ker (f ∗E → f ∗j∗j
∗E) = i′∗i

′!f ∗E,

where the second equality follows from exactness of f ∗ on ModOX (recall that OX′ = f ∗OX)
and the other two follow from Proposition 4.1.2 (ii); the natural map

H0(T/X , i∗i
!E)→ H0(T/X′ , f

∗i∗i
!E) ∼= H0(T/X′ , i

′
∗i
′!f ∗E)

thus induces a map
H i
Z(T/X , E)→ H i

Z′(T/X′ , f
∗E).

4.2 Excision on the overconvergent site

Here we apply the very general notions of Section 4.1 to the overconvergent site (with
our definitions and notation as in Chapter 2). We state everything for AN† and for the sake
of brevity omit restating definitions for the good variants on AN†g, but note that everything
carries over without incident.

Let X → AN†(V) be a fibered category over the overconvergent site and let F ∈ ModO†X
be an overconvergent module on X. Let U ∈ XAN† be open in the sense of Section 4.1 (i.e.
U is a subsheaf of the final object of XAN†). Denote by j : UAN† := (XAN†)/U ↪→ XAN† the
open immersion of topoi induced by restriction, denote by ZAN† the closed complement of U
in XAN† , and denote by O†U and O†Z the restrictions of O†X to UAN† and ZAN† . As in Section
4.1 this induces a collage of adjoint functors

ModO†U
j! //

j∗
// ModO†Xj∗oo

i∗ //

i!
// ModO†Z .i∗oo
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Definition 4.2.1. Let E ∈ ModO†X be an overconvergent module. We define Γ†ZE := i∗i
!E

to be the subsheaf of E of sections supported on Z, and we define H0
Z(AN†X,E) :=

H0(AN†X,Γ†ZE) to be the H0(AN†X,O†X) submodule of sections of E supported on Z.
For a morphism f : X → Y of categories fibered over AN† V , we define the relative coho-
mology of E supported on Z to be RfAN† ∗Γ

†
ZE, which we denote by RfAN† ∗,ZE. Since the

realization functors are exact, when Y = Spec k the realization of the ith cohomology sheaf of
RfAN† ∗,ZE is isomorphic to the ith derived functor of H0

Z(AN†X,E); consequently we denote

both of these K-vector spaces by H i
Z(AN†X,E) and H i

Z(AN†X,O†X) by H i
rig,Z(AN†X).

This differs slightly from the definition of 4.1, and in addition we have switched from the
notation H 0

Z of [73] to the notation Γ†Z of [lS07, Definition 5.2.10].

Example 4.2.2. We will mainly consider the following examples of open immersions of sites.

(i) AN† U ⊂ AN†X with X an algebraic stack over k and U ⊂ X an open substack.

(ii) AN†(U, V ) ⊂ AN†(X, V ) with (X, V ) ∈ AN† V an overconvergent variety and U ⊂ X
an open subscheme.

(iii) AN†(UV ) ⊂ AN†(XV ) with (X, V ) ∈ AN† V an overconvergent variety and U ⊂ X
an open subscheme, where XV is the image subpresheaf of the morphism of sheaves
(X, V )→ X (see Definition 2.2.19).

(iv) More generally, for an overconvergent variety (C,O) and an algebraic stack X over
k with a morphism X → C, we can consider the relative variants AN†X/O and
AN†XV /O (see Definition 2.2.18).

These examples are all ‘representable’ in the following sense.

Definition 4.2.3. Let j : U ⊂ X be a morphism of categories fibered over AN†(V) which
induces an open immersion of topoi. We say that j is representable if for any overconver-
gent variety (X ′, V ′) and morphism of fibered categories (X ′, V ′)→ X, there exists an open
subscheme U ′ ⊂ X ′ such that (U ′, V ′) represents the 2-fiber product U ×X AN†(X ′, V ′).

Here we rewrite the excision sequences from Subsection 4.1.

Proposition 4.2.4 (Translation of Proposition 4.1.6). Let j : U ⊂ X be a representable
open immersion and let E ∈ ModO†X be an overconvergent module. Then with the notation
above, the following are true.

(i) 0→ Γ†ZE → E → j∗j
∗E → 0 is exact.

(ii) There is a long exact sequence

. . .→ H i
Z(AN†X,E)→ H i(AN†X,E)→ H i(AN† U, j∗E)→ H i+1

Z (AN†X,E)→ . . .
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(iii) There is a spectral sequence

RjfAN† ∗RjΓ†ZE ⇒ Ri+jfAN†,ZE.

Proof. Most of this is Proposition 4.1.6; the only thing to check is that the map E → j∗j
∗E

is surjective. Since the morphism of sites of Definition 2.2.8 defines a bijection of coverings,
surjectivity can be checked on realizations. Let (Y, V ) be an overconvergent variety over
X. Let j′ : U ′ ⊂ Y be an open immersion such that (U ′, V ) represents the fiber product
U ×X (Y, V ). Then ]j′[ : ]U ′[V ↪→ ]Y [V is now a closed immersion of analytic spaces. Then,
by the proof of part (i) of Proposition 4.2.5 below, there is an isomorphism

(j∗j
∗E)Y,V ∼= ]j′[∗]j

′[∗EY,V

such that the composition

EY,V → (j∗j
∗E)Y,V ∼= ]j′[∗]j

′[∗EY,V

is the adjunction
EY,V →]j′[∗]j

′[∗EY,V .

By Proposition 4.1.2 (ii) (noting by Remark 4.1.1 that ]j′[∗ is a closed immersion of topoi)
this map is surjective.

The first task is to check that this agrees with the classical construction due to Berthelot
of rigid cohomology supported in a closed subscheme. Most of the work is packaged into the
following proposition.

Proposition 4.2.5. Let (C,O) be an overconvergent variety. Let X → AN†(C,O) be a
fibered category and let U ⊂ X be a sub-fibered category of X which is an open subtopos of
XAN† such that for all (X ′, V ′), the fiber product U×X (X ′, V ′) is isomorphic to (U ′, V ′) with
U ′ ⊂ X ′ an open subscheme of X ′. Denote the closed complement (defined in Section 4.1)
of UAN† ⊂ XAN† by Z. Let E ∈ Cris†X be an overconvergent module, let (f, u) : (X ′′, V ′′)→
(X ′, V ′) ∈ AN†X be a morphism of overconvergent varieties over X, and denote by j′ the
inclusion U ′ ↪→ X ′, where (U ′, V ′) is U ×X (X ′, V ′) (and similarly j′′ : U ′′ ↪→ X ′′). Then the
following are true.

(i) The realization (Γ†ZE)X′,V ′ is canonically isomorphic to the kernel of the adjunction
morphism

ker
(
EX′,V ′ →]j′[∗]j

′[†EX′,V ′
)
.

(ii) Denote by i′ : W ′ ⊂ ]X ′[V ′ the (open) complement of the closed inclusion ]U ′[V ′ ↪→]X ′[V ′.
Then there is an isomorphism(

Γ†ZE
)
X′,V ′

∼= i′!i
′−1EX′,V ′ .
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(iii) The sheaf Γ†ZE is a crystal.

Proof. It suffices to consider the case X = (X ′, V ′), and U = (U ′, V ′). For simplicity
we drop a prime everywhere in the notation (i.e., we consider a morphism (X ′, V ′) →
(X, V ) ∈ AN†X). To avoid the potentially awkward notation idAN† we denote the mor-
phisms (U, V )AN† → (X, V )AN† and (U ′, V ′)AN† → (X ′, V ′)AN† by jAN† and j′

AN†
.

For (i), consider the diagram

Cris†(X, V )
ϕX,V ∗ //

j∗
AN†
��

Mod(i−1X OV )

]j[∗V
��

Cris†(U, V )
ϕU,V ∗ //

j
AN† ∗
��

Mod(i−1U OV )

]j[V,∗
��

Cris†(X, V )
ϕX,V ∗ // Mod(i−1X OV )

.

Since E is a crystal the top square commutes, and the bottom square always commutes.
Thus

(jAN† ∗j
∗
AN†

E)X,V ∼=]j[∗]j[
†EX,V

and one can check, using the explicit descriptions of all relevant morphisms of topoi given
in [lS09, Section 2.3], that under this isomorphism the realization of the adjunction is the
adjunction; i.e., the composition

EX,V → (jAN† ∗j
∗
AN†

E)X,V ∼= ]j[∗]j[
†EX,V .

is the adjunction morphism (alternatively this follows from the commutative diagram of the
proof of [lS09, 3.2.1]). Finally, since the realization functor φX,V ∗ is exact we conclude that(

Γ†ZE
)
X,V

=
(
ker
(
E → jAN† ∗j

∗
AN†

E
))
X,V
∼= ker

(
E → jAN† ∗j

∗
AN†

E
)
X,V

and by the above isomorphism this is ker
(
EX,V →]j[∗]j[

†EX,V
)
, proving the first claim.

Claim (ii) follows from (i) since exactness of

0→ i!i
−1EX,V → EX,V →]j[∗]j[

−1EX,V

can be checked on stalks, where it is clear. (Alternatively, this is a special case of the example
of Remark 4.1.1 and Proposition 4.1.2).

Finally, by applying part (ii) twice, part (iii) amounts to showing that the natural map

u∗
(

Γ†ZE
)
X,V

∼= u∗i!i
∗EX,V → i′!i

′∗u∗EX,V ∼=
(

Γ†ZE
)
X′,V ′
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induced by the isomorphism u∗EX,V ∼= EX′,V ′ (where i is the inclusion of the complement
i : W ⊂ ]X[V of ]U [ and i′ is the inclusion of the complement i′ : W ′ ⊂]X ′[V ′ of ]U ′[) is an
isomorphism, which can be checked on stalks, where again it is clear.

Remark 4.2.6. It is easy to see from the isomorphism (Γ†ZE)X,V ∼= i′!i
′−1EX,V of Proposition

4.2.5 (ii) that (Γ†ZE)X,V is generally locally finitely presented and thus Γ†ZE is not locally
finitely presented. This will make the comparison Theorem 4.2.10 more subtle, since we
won’t be able to apply Theorem 2.3.16.

Remark 4.2.7. Let X/k be a stack, let U ⊂ X be an open substack, and let i : W ↪→ X be the
closed complement (as stacks) of U in X. It is important to note that the closed complement
Z of UAN† ⊂ XAN† (as topoi) is not WAN† . In particular, for a module E ∈ ModO†X , the
module Γ†ZE is not isomorphic to iAN†!i

∗
AN†

E or iAN† ∗i
∗
AN†

E and cannot be described in terms
of WAN† .

Let (X, V ) be a good overconvergent variety. Recall (see Appendix 5.2 or the discussion
preceeding Definition 2.3.1) that the set V0 of rigid points of V naturally has the structure of
a rigid analytic variety and that the inclusion V0 ↪→ V induces an equivalence of categories

CohOV0 ∼= CohOV .

We also defined (see Definition 2.3.1) functors j†X (resp. j†X0
) from ModOV (resp. ModOV0)

to itself, which are isomorphic to the functors given by the formula

E 7→ lim−→ j′∗j
′−1E

where the limit is taken over all neighborhoods j′ : V ′ ⊂ V of ]X[V in V (resp. strict neigh-
borhoods j′ : V ′ ⊂ V0 of ]X[V0 in V0).

We define now the rigid analogue of the functor Γ†Z .

Definition 4.2.8 ([lS07, Definition 5.2.10]). Let (X, V ) be a good overconvergent variety
and let Z ↪→ X be a closed subscheme with open scheme-theoretic complement j : U ⊂ X.
Let E0 ∈ Mod j†X0

OV0 . We define the subsheaf Γ†,Ber
Z E0 of E0 of sections supported on Z as

the kernel
ker
(
E0 → j†U0

E0

)
.

Proposition 4.2.9. Let S be a formal scheme over V and suppose that (Sk, SK) is a good
overconvergent variety. Let p : X → Sk be an algebraic variety over Sk and let X ⊂ P be an
immersion of X into a formal scheme P/S such that u : P → S is smooth in a neighborhood
of X and proper at X (see the paragraph before Definition 2.2.20). Let i : Z ↪→ X be a
closed subscheme with open scheme-theoretic complement j : U ⊂ X. Denote by P0 ↪→ PK
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the underlying rigid analytic variety of PK. Let E ∈ ModfpO†(X,P ) and E0 ∈ Coh j†X0
OP0

such that there is an isomorphism

φ : EX,P ∼= i−1X Ean
0 .

Then φ induces an isomorphism

(Γ†ZE)X,P ∼= i−1X (Γ†,Ber
Z E0)

an.

Proof. We have a sequence of isomorphisms

i−1X

(
Γ†,Ber
Z E0

)an
:= i−1X

(
ker
(
E0 → j†U0

E0

))an
∼= i−1X ker

(
Ean

0 →
(
j†U0

E0

)an)
∼= i−1X ker

(
Ean

0 → j†UE
an
0

)
∼= ker

(
i−1X Ean

0 → i−1X j†UE
an
0

)
∼= ker

(
i−1X Ean

0 → ]j[∗]j[
†i−1X Ean

0

)
∼= ker

(
EX,P → ]j[∗]j[

†EX,P
)

∼=
(

Γ†ZE
)
X,P

where the functors i−1X and (−)an commute with ker because they are left exact, and all other

justifications (e.g., that the composition Ean
0 →

(
j†U0

E0

)an ∼= j†UE
an
0 is the adjunction) follow

from the explicit descriptions of each functor and isomorphism.

Let (C,O) be an overconvergent variety and let X be an algebraic variety over C. Recall
(see Definition 2.3.4) that we defined categories Strat†, MIC, MIC†, and Isoc† and constructed
natural maps

Cris†XV /O ∼= Strat† i−1X OV → MIC(X, V/O)

which induce an equivalence of categories

Mod†fp(XV /O) ∼= MIC†(X, V/O).

Let (X, V ) be an overconvergent variety and let Z ↪→ X be a closed subscheme with open
scheme-theoretic complement U . Let E ∈ Cris†XV /O. Then by Proposition 4.2.5 (iii), Γ†ZE
is also a crystal, and so the realization (Γ†ZE)X,V admits a stratification. In fact, Γ†ZE is a

subsheaf of E and the stratification of (Γ†ZE)X,V is the restriction of the stratification on
EX,V . On the other hand, let E0 ∈ Strat† i−1X0

OV0 . Then le Stum proves in [lS07, Corollary

6.1.4] that Γ†,Ber
Z E0 is stable under the stratificaiton of E0. This gives the following.
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Corollary 4.2.10. Under the assumptions of Proposition 4.2.9 above, let E ∈ ModfpO† and
E0 ∈ Isoc†(X ⊂ X/S) be such that there is an isomorphism

φ : EX,P ∼= i−1X Ean
0 .

Then the induced isomorphism

(Γ†ZE)X,P ∼= i−1X (Γ†,Ber
Z E0)

an

of Proposition 4.2.9 respects the stratifications (and thus the connections).

Proof. This is clear from the preceding construction since everything is functorial and the
stratifications on Γ†ZE and Γ†,Ber

Z E0 are the restrictions of the stratifications on E and E0,
which agree by [lS09, Theorem 2.5.9].

Theorem 4.2.11. Let the assumptions be as in Corollary 4.2.10. Let pAN† : AN†XPK
/SK →

AN†(Sk, SK) be the induced morphism of sites. Then there is a natural isomorphism(
RprigΓ†,Ber

Z E0

)an ∼= (RpAN†∗
Γ†ZE

)
Sk,SK

which is compatible with the excision exact sequence of Proposition 4.2.4 (ii) (and its rigid
analogue [lS07, Proposition 6.3.9]).

Actually, we will use excision to deduce the isomorphism.

Proof. The exact sequences

0→ Γ†,Ber
Z E0 → E → j†U0

E → 0

([lS07, Lemma 5.2.9]) and
0→ Γ†ZE → E → j∗j

∗E → 0

(Proposition 4.1.2 (ii)) induce a pair of morphisms of exact triangles(
RprigΓ†,Ber

Z E0

)an
//

��

(RprigE0)
an //

��

(
Rprigj†U0

E0

)an
��

RuK∗Γ†ZEX,P ⊗ i
−1
X Ω•PK/SK

// RuK∗EX,P ⊗ i−1X Ω•PK/SK
// RuK∗]j[∗]j[†EX,P ⊗ i−1X Ω•PK/SK

(
RpAN†∗

Γ†ZE
)
Sk,SK

//

OO

(
RpAN†∗

E
)
Sk,SK

//

OO

(
RpAN†∗

j∗j
∗E
)
Sk,SK

OO
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where the top vertical arrows are defined as in Theorem 2.3.16 and the bottom vertical
arrows are defined as in 2.3.14. The vertical arrows of the middle column are isomorphisms
by Theorems 2.3.16 and 2.3.14, and since the functors j∗, ]j[∗, and j†U0

are exact, the right
vertical arrows are also isomorphisms (again by Theorems 2.3.16 and 2.3.14). By the five
lemma, the left column consists of quasi-isomorphisms too. The excision statement is clear
since the excision long exact sequences are the long exact sequences associated to these exact
triangles.

Proposition 4.2.12 (Functorality). Let (C,O) be an overconvergent variety. Let f : X ′ →
X be a morphism of algebraic stacks over C, let i : Z ↪→ X be a closed substack with open
stack-theoretic complement j : U ⊂ X, and let Z ′ = Z ×X X ′ and U ′ = U ×X X ′, where we
denote the inclusions into X ′ by i′ and j′. Let E ∈ ModO†X/O be an overconvergent module.
Then there is a natural map

H i
Z(XAN† , E)→ H i

Z′(X
′
AN†

, f ∗
AN†

E);

in particular (setting E = O†), the assignment

(Z ↪→ X) 7→ H i
rig,Z(XAN†)

is a contravariant functor from the category of closed immersions of stacks (with morphisms
cartesian diagrams) to the category of K-vector spaces.

Of course, for a map X/O → T , with T a fibered category over AN†(C,O), there is a
similar map of relative cohomology with supports in Z. Also, the same statement holds if
we replace everything by its good variant.

Proof. This is just a translation of Proposition 4.1.7 to the overconvergent site.

Remark 4.2.13. Using the notation of Proposition 4.2.9, let E ∈ ModfpO†(X,P ) and let E0 ∈

Isoc†(X ⊂ X/S). Then the techniques used in Proposition 4.2.9 to show that
(

Γ†ZE
)
X,P

∼=

i−1X

(
Γ†,Ber
Z E0

)an
also show that this functorality map agrees with the classical functorality

map of Berthelot [lS07, 6.3.5] – both arise from the very general constructions of [73] and
again the work is to show that the adjunctions used in Proposition 4.1.7 match up in both
contexts.

We end by applying cohomological descent (Theorem 3.2.12) to prove the finiteness of
rigid cohomology with support in a closed subscheme.

Proposition 4.2.14. Assume Conjecture 3.0.6 is true. Let f : X → Spec k be a separated
algebraic stack of finite type over k and let Z ⊂ X be a closed substack. Then for every
i ≥ 0, H i

Z(AN†gX) is a finite dimensional K-vector space.
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Proof. First we do the case without supports (i.e., Z = X). Let p0 : X ′ → X be a projective
surjection from a schemeX ′ which is quasi-projective over k (which exists by [Ols05, Theorem
1.1]), and as usual denote by pi : X

′
i → X the (i + 1)-fold fiber product of p0. Then by

Corollary 3.2.12 and Remark 3.1.9.3 (noting that by definition p∗iO
†
Xg

= O†Xi,g
) there is a

spectral sequence
Hj(AN†gX

′
i)⇒ H i+j(AN†gX).

When X is an algebraic space, X ′i is a scheme, so by Theorem 2.3.17 (noting that X ′i is
quasi-projective and thus the structure morphism is realizable), there is an isomorphism

Hj(AN†gX
′
i)
∼= Hj

rig(X
′
i)

which is finite dimensional by [Ked06a, Theorem 1.2.1], so by the spectral sequence H i(X)
is finite dimensional as well. Now that we know the result for an algebraic space, the case
of X a stack follows directly from the spectral sequence. Finally, the case with support in
Z follows from the excision exact sequence of Proposition 4.2.4.

Remark 4.2.15. Classically, many results only hold for the category F -Isoc†(X ⊂ X) of
isocrystals with Frobenius action (see [lS07, Definition 8.3.2]). One can define an analogue
on the overconvergent site, and the same argument will show that the cohomology of an
F -isocrystal will be finite dimensional.
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Chapter 5

Background

In this chapter we recall basic facts about categories, topoi, analytic spaces and stacks.

5.1 Categorical constructions and topoi

Here we recall definitions and basic facts about categories, presheaves, sheaves, sites,
topoi, localization, fibered categories, and 2-categories. We refer to [Aut] (and its prodigious
index and table of contents) for any omitted details and a more leisurely and complete dis-
cussion of these concepts, and in particular follow their convention that a left exact functor
is defined to be a functor that commutes with finite limits and a right exact functor is a
functor that commutes with colimits (see [Aut, 0034]).

5.1.1. Let C be a category. We denote by Ĉ the category Fun(Cop,Sets) of presheaves

on C. We denote by h : C → Ĉ the Yoneda embedding which sends an object X of C to the
presheaf hX := Hom(−, X). We say that a presheaf F ∈ Ĉ is representable if there exists
an X ∈ C and an isomorphism hX → F , and we say that F is representable by X if F
is isomorphic to hX . The functor h is fully faithful, and so when there is no confusion we
will consider C as a full subcategory of Ĉ; i.e., we will identify hX with the object X that it
represents.

Similarly, we say an object X ∈ C corepresents a covariant functor F : C → Sets if F
is isomorphic to the functor Y 7→ Hom(X, Y ).

5.1.2. Let X ∈ C be an object. We define the localized (or ‘comma’) category C/X to
be the category of maps Y → X whose morphisms are commuting diagrams

Y //

  @
@@

@@
@@

@ Y ′

~~}}
}}

}}
}}

X

.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0034
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There is a projection functor jX : C/X → C which we denote by j when the context is clear.

5.1.3. Let C
L //

D
R
oo be a pair of functors between categories C and D. We say that

L is left adjoint to R (or equivalently that R is right adjoint to L) if there is a natural
isomorphism

Hom(L(−),−) ∼= Hom(−, R(−))

of bifunctors. The natural transformation id : L → L (resp. id : R → R) induces (via the
adjunction) a functor idC → R ◦ L (resp. L ◦ R → idD) called the unit (resp. counit) of
adjunction.

Lemma 5.1.4. The functor L (resp. R) is fully faithful if and only if the unit (resp. counit)
of adjunction is an isomorhpism.

Proof. Let Y ∈ C. By adjunction, for any X ∈ C, the second morphism of the composition

Hom(X, Y )→ Hom(X,R(L(Y )))→ Hom(L(X), L(Y )).

is an isomorphism. By definition the composition is an isomorphism for all Y if and only if
L is fully faithful, and by Yoneda’s lemma, the first map is an isomorphism for all Y if and
only if the unit of adjunction is an isomorphism. The second claim is proved in the same
way using the co-Yoneda lemma.

5.1.5. Let C and D be categories, and let u : C → D be a functor. Then from u we can
constuct a triple û!, û

∗, û∗ of functors

Ĉ

û! //

û∗
// D̂û∗oo

with each left adjoint to the functor directly below. The functor û∗ is the easiest to define, and
sends a presheaf G ∈ D̂ to the presheaf û∗G := G◦u on C (i.e., the presheaf X 7→ F (u(X)).
To construct a left adjoint û! one first observes that for X ∈ C one is forced by the adjunction

Hom(û! hX , F ) = Hom(hX , û
∗F ) = (û∗F )(X) = F (u(X))

to define û!(hX) = hu(X). Every sheaf F ∈ C is isomorphic to a colimit of representable
sheaves via the natural map colimhX→F hX → F , where the colimit is taken over the comma
category C/F whose objects are maps hX → F and whose morphisms are commuting dia-
grams of maps. One’s hand is again forced – since a functor with a right adjoint is right
exact, û! should commute with colimits and we are forced to define û!F as colimhX→F hu(X).
Alternatively, a rearrangement gives the usual formula (see for instance [Aut, 00VD])

Y 7→ colimhX→F (hu(X)(Y )) ∼= colimhX→F colim|hu(X)(Y )| ∗ ∼=

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00VD
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colimX∈(IYu )op colim|hX→F | ∗ ∼= colimX∈(IYu )op F (X),

where ∗ = {∅}, |C| denotes the underlying set of a category C, IYu is the category whose
objects are pairs (X, Y → u(X)) and whose morphisms are morphisms X → X ′ which make
the diagram

Y

""E
EEEEEEE

||zz
zz

zz
zz

u(X) // u(X ′)

commute, and the colimit is taken in the category of sets. Later it will be important to
observe that when F (X) has extra algebraic structure (e.g., F is a sheaf of abelian groups),
we can take this colimit in a different category and construct a different left adjoint û!.
If the category (IYu )op is directed then û! is exact, but this does not hold in general. By
construction it is left adjoint to û∗.

The functor û∗ is easier to construct – by adjunction we can define for Y ∈ D and F ∈ Ĉ
value of the presheaf û∗F on X as

(û∗F )(Y ) = Hom(hY , û∗F ) = Hom(û∗ hY , F );

and writing û∗ hY as a colimit of representable presheaves we deduce a description of û∗F as
the presheaf Y 7→ limu(X)7→Y F (X). Any functor with a left (resp. right) adjoint commutes
with arbitrary limits (resp. colimits) when the limits exist [Aut, 0038]. Thus, û∗ commutes
with limits, and û∗ commutes with both limits and colimits .

Example 5.1.6. Let X be a topological space, let OpenX be the category of open subsets
of X, and consider the inclusion i : OpenU ↪→ OpenX induced by the open inclusion of
topological spaces U ⊂ X. Then the morphisms î∗ and î∗ are the usual morphisms (induced
by the alternative functor OpenX → OpenU given by intersection), and î! is the ‘extension
by the empty set’ functor, so that î!F is given by

U ′ 7→

{
F (U ′) if U ′ ⊂ U ,

∅ if U ′ 6⊂ U .

Finally, we note that for any category C, the category Ĉ has a final object eĈ given by the

presheaf X 7→ {∅}; this is also a limit of the empty diagram. Since left exact functor Ĉ → E
with E a category must send eĈ to a final object of E, we conclude that the functor î! is not
left exact.

5.1.7. Let I and D be categories. For Y ∈ D, define FY : I → D to be the constant
functor i 7→ Y . Let F : I → D be a functor. We say that X is a limit of F if X represents
the functor Y 7→ Hom(FY , F ), and we say that X is a colimit of F if it corepresents the
functor Y 7→ Hom(F, FY ). We will often refer to F as a diagram.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0038
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When D is the category of sets, limits and colimits exist. It follows that when D is the
category Ĉ of presheaves on a category C, limits and colimits exist – indeed, the limit (resp.

colimit) of a diagram F : I → Ĉ of presheaves is the presheaf sending X in C to the limit
(resp. colimit) of the diagram evX ◦ F (i.e., the functor given by i 7→ I(i)(X)).

5.1.8. In particular, let I be a category whose only morphisms are the identity morphisms,
and let {Xi}i∈I be a collection of objects of Ĉ. Then the colimit of the diagram i 7→ Xi,

which we call the disjoint union of {Xi} and denote by
∐

i∈I Xi, exists in Ĉ. Moreover,
coproducts commute with localization; i.e., if we define

∐
C/Xi

to be the 2-categorical (see
5.1.13) fiber product I ×C MorC via the map F : I → C, then the natural map∐

C/Xi
→ C/∐Xi

,

is an equivalence of categories.

5.1.9. Let X ∈ C be an object of a category C and consider the projection morphism
jX : C/X → C (see 5.1.2). One can make the triple of adjoint functors of 5.1.5 more explicit

as follows. The collection of maps Y → X is cofinal in (IYj )op, and so the functor ĵ! may be

concisely described as sending a presheaf F ∈ Ĉ/X to the presheaf

ĵ!F : Y 7→
∐
Y→X

F (Y → X). (5.1.9.1)

Alternatively, the presheaf category Ĉ/X is canonically isomorphic to the localization Ĉ/hX
via the map Ĉ/hX → Ĉ/X which sends F → hX to the presheaf (Y → X) 7→ HomhX (hY , F );

the inverse map is F 7→ (ĵ!F → hX) (Ĉ/X has a final object represented by id: X → X,

and the map to hX is ĵ! of the map from F to the final object). Via this identification the

functor ĵ! simply sends a presheaf F → hX to F , and the map u∗F sends a presheaf F ∈ Ĉ
to the product hX × F → hX (where the map is the first projection).

For F ∈ Ĉ, we define the localization C/F similarly, by the formula C/F := C ×Ĉ
(
Ĉ/F

)
.

5.1.10. Let u : C → D be a functor. We say that an arrow Y → X of C is cartesian if
for any ψ : Z → X and for any h : u(Z) → u(Y ) such that u(ψ) = u(φ) ◦ h, there exists a
unique θ : Z → Y so that ψ = φ ◦ θ.

Z_

��

∃!θ ))SSSSS ∀ψ

))
Y_

��

φ
// X_

��
u(Z)

∀h ((QQQQQQ u(ψ)

))
u(Y ) // u(X)
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and we say that u (or when the base D is clear, ‘C’) is a fibered category or a category
fibered over D if for every X ∈ C and every arrow Y → u(X) in D, there exists a cartesian
arrow over Y → u(X).

For X ∈ D we define the fiber over X to be the category C(X) := u−1(id : X → X)
of all objects of C which map to X with morphisms which map to the identity id : X → X
under u. If for every X, the category C(X) is a groupoid (i.e., a category such that every
arrow is an isomorphism), then we call C a category fibered in groupoids over D. In
this case every arrow of C is cartesian.

Example 5.1.11. Let C be a category and let F ∈ Ĉ be a presheaf. Then the comma
category j : C/F → C is a category fibered in groupoids; in fact it is fibered in sets (i.e.,
categories such that every arrow is the identity), and any category fibered in sets over a
category C is equivalent (but not necessarily isomorphic) to a fibered category C/F for some

F ∈ Ĉ.
Let C be a category with fiber products. Another example of a fibered category is the

codomain fibration MorC → C: objects of MorC are morphisms of C and arrows are
commutative diagrams, and the map t : MorC → C sends an arrow Y → X to its target X.
Then for X ∈ C, the comma category is equal to (MorC)(X).

5.1.12. Categories fibered over C form a 2-category, i.e., a category enriched over cate-
gories (so that Hom(X, Y ) is not just a set, but a category). An element of Mor(Hom(X, Y ))
is called a 2-morphism. Let X, Y be two categories fibered over C. A morphism of cate-
gories fibered over C is a functor F : X → Y such that the diagram

X //

  @
@@

@@
@@

Y

��~~
~~

~~
~

C

commutes and F takes cartesian arrows to cartesian arrows (if X and Y are fibered in
groupoids, then every arrow is cartesian, so this last condition is automatic). A 2-morphism
between morphisms F,R : X → Y is a natural transformation t : F → R such that for every
x ∈ X, the induced map tx : F (x) → R(x) in Y projects to the identity morphism in C.
One can check that when X and Y are fibered in groupoids, any 2-morphism is actually an
isomorphism.

Remark 5.1.13. A main point of the use of the formalism of 2-categories is that equivalence of
categories is not respected by fiber products of categories. Instead one considers 2-categorical
fiber products, defined as in [Aut, 02X9]).

5.1.14. Let C be a category. We define a pretopology (often called a Grothendieck
Topology) on C to be a set CovC of families of morphisms (which we call the coverings of
C) such that each element of CovC is a collection {Xi → X}i∈I of morphisms of C with a
fixed target satisfying the usual axioms (see [Aut, 00VH]):

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00VH
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(i) For every isomorphism X ∼= X ′, {X ∼= X ′} ∈ CovC;

(ii) Refinements of a covering by coverings form a covering;

(iii) For every {Xi → X}i∈I ∈ CovC and every Y → X, each of the fiber products Xi×X Y
exists and {Xi ×X Y → Y }i∈I ∈ CovC.

We call a category C with a pretopology CovC a site. This generates a topology on C in
the sense of [Aut, Definition 00Z4].

5.1.15. Let C be a site whose topology is defined by a pretopology and let F ∈ Ĉ be a
presheaf. We say F is a sheaf if for every covering {Xi → X}i∈I ∈ CovC the diagram

F (X) //
∏

i∈I F (Xi)
pr∗0 //

pr∗1

//
∏

(i0,i1)∈I×I F (Xi0 ×X Xi1)

is exact (i.e., the first arrow equalizes the rest of the diagram). We denote by C̃ the category
of sheaves on C.

The inclusion functor i : C̃ ↪→ Ĉ has a left adjoint, ‘sheafification’, which we denote by
−a. In particular, the inclusion i commutes with limits (but not colimits!), so that the limit
of a diagram of sheaves in the category of sheaves agrees with the limit considered in the
category of presheaves (i.e., limits do not require sheafification in C̃). We conclude that C̃
has a final object eC̃ , which is the limit of the empty diagram and given (as in the case of
presheaves) by the sheaf X 7→ {∅}.

5.1.16. Limits exist in C̃ – indeed, given a diagram F : I → C̃, the limit of the diagram
i ◦ F : I → Ĉ is a sheaf and thus the limit of the diagram F . Colimits in C̃ also exist
– the colimit of a diagram F is the sheafication of the diagram i ◦ F (an example where
sheafification is required is a disjoint union of topological spaces).

5.1.17. A topos is a category equivalent to the category C̃ of sheaves on a site C. A
morphism f : T ′ → T of topoi is a pair (f ∗ : T → T ′, f∗ : T

′ → T ) of functors such that f ∗ is
exact and left adjoint to f∗.

5.1.18. Let C and D be sites and let u : C → D be a functor. Then the functors û!, û
∗,

and û∗ do not necessarily restrict to maps between C̃ and D̃ (i.e., they do not necessarily
send sheaves to presheaves), and if we sheafify then they may no longer be adjoint. This
motivates the following definitions.

We say that u is continuous if û∗ of a sheaf is a sheaf, and in this case we denote the
induced map D̃ → C̃ by u∗. If the topology on C is defined by a pretopology and u commutes
with fiber products, then by [Aut, 00WW], u is continuous if and only if it sends coverings of

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00Z4
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00WW
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C to coverings of D. Note that we generally do not expect that u commutes with arbitrary
finite limits – consider for example an object X ∈ C and the projection morphism C/X → C.
If in addition û! is exact, we then say that u is a morphism of sites; setting u! = (û!)

a it

follows that the pair (u!, u
∗) : C̃ → D̃ is a morphism of topoi.

Alternatively, we say that a functor u : C → D is cocontinuous if û∗ sends sheaves to
sheaves, and in this case we denote the induced map C̃ → D̃ by u∗. The pair (u∗, u∗) : C̃ → D̃
is then a morphism of topoi, where u∗ is the sheafification (û∗)a. If the topology on D is
defined by a pretopology, then by [Aut, 00XK] u is cocontinuous if and only if for everyX ∈ C
and every covering {Yj → u(X)}j∈J of u(X) in D there exists a covering {Xi → X}i∈I in
C such that the family of maps {u(Xi) → u(X)}i∈I refines the covering {Yj → u(X)}j∈J ,
in that the collection {u(Xi) → u(X)}i∈I is a covering of u(X) and that there is a map
φ : I → J such that for each i there exists a factorization u(Xi)→ Yφ(i) → u(X) (note that
we do not require the collections {u(Xi)→ Yj}φ(i)=j to be coverings).

The nicest situation is when u : C → D is both continuous and cocontinuous – the in-
duced morphism (u∗, u∗) : C̃ → D̃ requires no sheafication and u∗ has a left adjoint.

5.1.19. Let u : C → D be a functor, and suppose that D is a site. We define the induced
topology on C to be the largest topology making the map u continuous. When u commutes
with fiber products and the topology on D is defined by a pretopology, then the induced
topology on C is generated by the following pretopology: a collection {Vi → V } in C is a
covering if {u(Vi)→ u(V )} is a covering in D.

Now suppose instead that C is a site. We define the image topology on D to be the
smallest topology making the map u continuous. When u commutes with fiber products, the
topology on C is defined by a pretopology, then the image topology on D is generated by
the following pretopology: for every covering {Vi → V } in C, the collectin {u(Vi)→ u(V )}
is a covering in D .

Example 5.1.20. Our main example of a cocontinuous functor is the following. Let D be
a site and let u : C → D be a fibered category such that every arrow of C is cartesian, and
endow C with the induced topology 5.1.19. Assume further that finite limits exist in C and D
and that the topology on D is defined by a pretopology. Since u is fibered in groupoids, it is
an easy exercise to check that u commutes with fiber products. Then it follows immediately
from the definitions (using that u is a fibered category) that u is cocontinuous, and we get
a triple of adjoints

C̃

u! //

u∗
// D̃u∗oo .

We will mainly apply this when C ∼= D/X for some X ∈ D.

5.1.21. Let C be a category. We define the canonical topology on C to be the largest
topology such that representable objects are sheaves (i.e., the largest topology such that for
all x ∈ C, the presheaf hX is a sheaf). We say that a topology is subcanonical if it is

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00XK
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smaller than the canonical topology (in other words, for all x ∈ C, the presheaf hX is a
sheaf).

Example 5.1.22. (i) The topology on the category of affine schemes given by jointly
surjective families of flat (but not necessairly finitely presented) morphisms is subcanon-
ical [Knu71, 3.1, 7’], and the fpqc topology is subcanonical on the category of schemes
[Vis05, Theorem 2.55] (note that the flat topology is not subcanonical for the category of
schemes).

(ii) For a site C the canonical topology on C̃ is given by collections {Fi → F} such that

the map
∐
Fi → F is a surjection of sheaves [Aut, 03A1]. The natural map C̃ → ˜̃

C is then
an equivalence of categories. Thus, any topos T is canonically a site.

5.1.23. For a topos T we denote by AbT the category of abelian group objects of T . If
we view T as a site with its subcanonical topology, then AbT is equivalent to the category
of sheaves of abelian groups on T , and when we choose a site C such that T is equivalent to
C̃, we may write AbC instead of AbT . By [Aut, 00YT], a morphism of f : T ′ → T topoi
restricts to a pair

AbT ′
f∗
// AbT

f∗oo

of adjoint functors; here the exactness of f ∗ in the definition of a morphism of topoi is crucial
(consider for example that the functor u! : C̃/X → C̃ described above in 5.1.6 is not generally
exact and indeed fails to send abelian sheaves to abelian sheaves).

5.1.24. Let u : C → D be a morphism of sites. Then u! does not necessarily take abelian
sheaves to abelian sheaves. Indeed, consider the case of a localization morphism j : C/X → C
(with X ∈ C). Then for any X ′ ∈ C such that Hom(X ′, X) is empty, (j!F )(X ′) is also empty

for any abelian sheaf F ∈ Ab C̃/X . It is nonetheless true that u∗ : Ab D̃ → Ab C̃ has a left
adjoint uab! . We will construct uab! in the next few paragraphs by adapting the construction
of u!.

As a first step we consider a category C and construct a left adjoint Zps
− : C → AbC

to the forgetful functor AbC → C. Let F ∈ Ĉ be a presheaf of sets. We define the free
abelian presheaf on F to be the presheaf X 7→

⊕
s∈F (X) Z. It follows directly from this

explicit formula that this is the desired left adjoint and, moreover, that the functor F 7→ Zps
F

commutes with limits; since it has a right adjoint it also commutes with colimits and is thus
exact. When F = hX for some X ∈ C, we will instead write Zps

X .

Now, suppose that C is a site. Since sheafification is left adjoint to the inclusion C̃ ↪→ Ĉ,
the functor Z− : C̃ → Ab C̃ given by F 7→ (ZF )a is left adjoint to Ab C̃ → C̃. Furthermore,
since sheafification is exact, the functor Z− also commutes with limits and colimits. When
F = (hX)a for some X ∈ C, we will instead write ZX .

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03A1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00YT
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Now we can construct uab! as following the template of 5.1.5. Let A ∈ AbC be a sheaf of
abelian groups and let U ∈ C. Then since

A(U) = HomC̃(hU , A) = HomAb C̃(ZU , A),

and since uab! commutes with colimits, it follows that

uab! A = uab! colim(hU→A)∈C̃/A
hhU→A = colim(hU→A)∈C̃/A

ZhU→A.

As in the case of u! for sheaves of sets, by adjunction we must have uab! ZhU→A = ZU , and
since uab! must commute with colimits we get the formula

uab! A = colim(hu→A)∈C̃/A
ZU .

As before (see Equation 5.1.9.1) we get a nice formula when u = jX : C/X → C is the projec-
tion morphism associated to some object X of a site C (see 5.1.2); uab! A is the sheafication
of the presheaf

ĵ!A : Y 7→
⊕
Y→X

A(Y → X). (5.1.24.1)

In this special case it follows from this explicit formula that uab! left exact; moreover it
commutes with colimits since it has a right adjoint u∗. Consequently, by an easy exercise we
get the useful bonus that u∗ takes injective abelian sheaves to injective abelian sheaves.

Note that this disagrees with the functor ‘extension by the empty set’ u!; nonetheless
when there is no confusion we will write uab! as u! (and if there is confusion we will refer to
them by uab! and uset! ).

5.1.25. A ringed topos is a pair (T,OT ) with T a topos and OT a ring object of T .
Equivalently, OT is a sheaf of rings on T , where we consider T as a site with its canonical
topology (see Definition 5.1.21). A morphism f : (T ′,OT ′) → (T,OT ) of ringed topoi is a
morphism f : T ′ → T of topoi and a map OT → f∗OT ′ . Sometimes we will write (f ∗, f∗)
instead of f . Similarly, a ringed site is a site C together with a ring object OC of its topos
C̃, and a morphism (C ′,OC′)→ (C,OC) of ringed sites is a continuous morphism f : C ′ → C
of sites and a map OC → f∗OC′ .

5.1.26. Let (T,OT ) be a ringed topos. Then we can consider the category ModOT of
OT -modules (i.e., the category of abelian group objects of T which admit the structure of a
module object over the ring object OT of T ). Considering T with its canonical topology, an
OT -module is the same as a sheaf of OT -modules.

We say that M ∈ ModOT is quasi-coherent (resp. locally finitely presented) if
there exists a covering F → eT of the final object eT of T (i.e., a covering in the canonical
topology on T ) such that, denoting by j : T/F → T the localization with respect to F and
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setting OT/F = j∗OT , the pullback j∗M admits a presentation (resp. finite presentation) –
i.e., j∗M is the cokernel of a map

⊕
I OT/F →

⊕
J OT/F of OT/F -modules (resp. a map with

I and J finite sets). If C is a site such that T is equivalent to C̃ (which may have no final
object) and the topology on C is defined by a pretopology, then it is equivalent to ask that for
all X ∈ C, there exists a covering {Xi → X} such that for each i there exists a presentation
(resp. finite presentation) of the restriction of M to T(hXi

)a . We denote by QCohOT (resp.
ModfpOT ) the subcategories of quasi-coherent (resp. locally finitely presented) OT -modules.

5.1.27. Let (T,O) be a ringed topos, with T = C̃ for some site C. As in the abelian case,
the forgetful functor ModO → T has a left adjoint O− : T → ModO. When T is equivalent
to C̃ for some site C and O is a sheaf on C, then for F ∈ T , OF is defined in the same
manner as ZF : OF is the sheafification of the presheaf X 7→

⊕
s∈F (X)O(X). As usual, when

F = (hU)a for U ∈ C we denote OF by OU .
Let u : (C,OC) → (D,OD) be a morphism of ringed sites. Then the above template for

the construction of jab! admits a verbatim translation (replacing the free functor Z− by the
free functor O−) and allows one to construct a left adjoint uMod

! : ModOC → ModOD to the
functor u∗(−) ⊗u∗OD

OC : ModOD → ModOC . When u = jX : C/X → C is the projection
morphism associated to some object X of a site C and C/X has the induced topology, uMod

!

is even defined by the same formula 5.1.24.1 as uab! . Again we will denote uMod
! by u!.

5.2 Analytic spaces

Here we recall Berkovich’s notion of an analytic space. We only make use of strictly
analytic spaces (i.e., analytic spaces locally defined by strict affinoid algebras as in 5.2.1
below). The original article is [Ber90], but the main refence is [Ber93] which deals with more
general spaces than the former. Brian Conrad’s notes [Con08] also give a nice introduction
to the subject (see also Berkovich’s introduction [Ber08] to that volume for a pleasant and
personal historical overview), and le Stum’s appendix [lS09, 4.2] gives a quick review of
everything used in this thesis.

Throughout, K will denote a field of characteristic 0 that is complete with respect to
a non-trivial non-archimedean valuation (which takes values in R) with valuation ring V ,
whose maximal ideal and residue field we denote by m and k. (Of course one charm of the
theory is that these constructions make sense for charK > 0 and for trivial valuations.)

5.2.1. An affinoid algebra (or in Berkovich’s notation a strict affinoid algebra) A over
K is a quotient of a Tate algebra K{T1, · · · , Tn} (the algebra of convergent formal power
series). Denote by M(A) the set Max SpecA of maximal ideals of A, endowed with the Tate
topology and ringed by a sheaf OM(A) which sends an admissible open M(B) to the ring B
(see [BGR84]). We call the pair (M(A),OM(A)) a rigid affinoid variety. Next we define a
rigid analytic space to be a pair (X,OX) where X is a set with a Grothendieck topology
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(i.e., on its power set) and OX is a sheaf of local rings such that locally X is isomorphic to
a rigid affinoid variety.

Alternatively, we denote by M(A) the Gelfand spectrum of bounded multiplicative
semi-norms |·| : R on A/K and define an affinoid variety overK to be a triple (V,A;M(A)),
where V is a topological space, A is an affinoid algebra, and V ∼=M(A) is a homeomorphism.
We define an affinoid subdomain W ⊂ V of an affinoid variety V ∼=M(A) to be a subset
such that the functor

C 7→ {u : M(C)→ V, u is induced by a map A→ C such that im(u) ⊂ W}

is represented by an affinoid algebra A→ B; one can then prove that M(B) ∼= W .

5.2.2. Glueing affinoid varieties along affinoid subdomains is more subtle than in the
rigid case because an affinoid subdomain is generally not open. It is nonetheless necessary
to allow such glueing in order to associate to a quasi-compact quasi-separated rigid space an
analytic space. This inspires the following definitions.

A quasi-net τ on a topological space V is a set τ of subsets of V such that each point
x ∈ V has a neighborhood which is a finite union of elements of τ containing x. We say
that a subset W ⊂ V is τ -admissible if τW := {W ′ ∈ τ s.t. W ′ ⊂ W} is a quasi-net on
W and we say that τ is a net if any finite intersection of elements of τ is τ -admissible.
A set-theoretic covering of a τ -admissible subset W by τ -admissible subsets is said to be
τ -admissible if it defines a quasi-net on W . When τ is a net, the τ -admissible coverings
form a pre-topology [lS09, Section A.2] which is generally not a sub-topology of the given
topology on V (since a typical W ∈ τ may be closed).

An affinoid atlas on a locally Hausdorff topological space V is a net τ consisting of
affinoid varieties; i.e., each W ∈ τ is isomorphic as a topological space to an affinoid variety
and any inclusion W ⊂ W ′ of τ is induced by an inclusion of an affinoid subdomain. We de-
fine an analytic variety over K to be a locally Hausdorff topological space with a maximal
atlas τ and refer to any W ∈ τ as an analytic domain (or sometimes analytic subdomain).
When we consider V as a topological space we will still write V and when we consider it as
a site we write VG and refer to the topology on VG as the G-topology. An affinoid variety,
together with τ equal to the collection of affinoid subdomains, is an example of an analytic
variety and highlights the fact that an analytic domain is not necessairly open topologically.

5.2.3. The identity map π : VG → V is a morphism of sites. The map sending W ∈ τ to
O(W ) := A, where W ∼=M(A), defines a sheaf of rings OVG on VG. We endow V with the
sheaf of rings OV := π∗OVG , making π into a morphism of ringed sites. For F ∈ ModOV we
write FG for π∗F .

5.2.4. For a point x ∈ V , the local ring OV,x has a semi-absolute value and we define a
morphism u : V → V ′ of analytic varieties to be a morphism VG → V ′G of valued locally
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ringed spaces. A posteriori the underlying morphism V → V ′ is continuous and induces a
morphism (V,OV )→ (V ′,OV ′) of ringed spaces.

5.2.5. The functor Ṽ → ṼG, F 7→ π−1F is fully faithful. We say that V is good if
it has a basis of affinoid neighborhoods; note that the analytification of a rigid space may
fail to be good. When V is good, the functor F 7→ FG is fully faithful and induces an
equivalence of categories CohOV ∼= CohOVG [Ber93, 1.3.4]; the functor F 7→ π∗F is in

general not fully faithful [Ber93, Example 1.4.8]. For F ∈ Ab Ṽ and for p ≥ 0 the natural
map Hp(V, F ) → Hp(VG, π

−1F ) is an isomorphism, and if V is good than the same is true
for F ∈ ModOV and Hp(V, F )→ Hp(VG, FG).

A point x ∈ V of an analytic variety V is called a rigid point if the residue field K(x) is
a finite extension of K. We denote the set of rigid points by V0. When V is Hausdorff, V0 is
dense in V and admits the structure of a rigid analytic variety. The inclusion V0 ↪→ V then
induces a bijection between affinoid open subsets (resp. coverings) and affinoid subdomains

(resp. coverings) and thus induces an isomorphism ṼG ∼= Ṽ0 which takes OVG to OV0 , thus
inducing equivalences of categories ModOVG ∼= ModOV0 and CohOVG ∼= CohOV0 .

5.2.6. We will make extensive use of the following generic fiber construction. Let P
be a locally topologically finitely presented formal scheme (as in Section 2.1). Then one can
construct (see [Ber94, Section 1]) a K-analytic space PK together with an anti-continuous
map sp: PK → Pk (i.e., the pre-image of a closed subset is open). When P = Spf A is an
affine formal scheme, the analytic space PK is given by M(A ⊗V K). The specialization
map sp is defined as follows: the residue field K(x) of a multiplicative semi-norm x has a
valuation, and the point sp(x) is the prime ideal which is the kernel of the induced map
A/m→ k(x), where k(x) is the kernel of the valuation ring of K(x) by its residue field. One
of course must check that this is well defined and has expected properties, and for general
P one must glue this construction.

There is an analogous functor taking P to a rigid space (PK)0, which is defined similarly
(locally it looks like M(A)). When PK is good then (PK)0 is isomorphic to the underlying
rigid variety of PK . See [BL93] for more details.



66

Bibliography

[AKR07] Timothy G. Abbott, Kiran S. Kedlaya, and David Roe, Bounding picard numbers of surfaces using
p-adic cohomology (2007Jan), available at math/0601508. ↑2

[Aut] The Stacks Project Authors, Stacks Project. ↑29, 54, 55, 56, 58, 59, 60, 61

[Ber08] Vladimir Berkovich, Non-Archimedean analytic geometry: first steps, p-adic geometry, 2008,
pp. 1–7. MR2482344 ↑63

[Ber74] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique p > 0, Lecture Notes in
Mathematics, Vol. 407, Springer-Verlag, Berlin, 1974. MR0384804 (52 #5676) ↑4
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(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N.
Bourbaki, P. Deligne et B. Saint-Donat. MR0354653 (50 #7131) ↑25, 26, 27, 44
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