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Abstract

Despite the vast number of mobile fitness applications (apps) and their potential advantages in 

promoting physical activity, many existing apps lack behavior-change features and are not able to 

maintain behavior change motivation. This paper describes a novel fitness app called CalFit, which 

implements important behavior-change features like dynamic goal setting and self-monitoring. 

CalFit uses a reinforcement learning algorithm to generate personalized daily step goals that are 

challenging but attainable. We conducted the Mobile Student Activity Reinforcement (mSTAR) 

study with 13 college students to evaluate the efficacy of the CalFit app. The control group 
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(receiving goals of 10,000 steps/day) had a decrease in daily step count of 1,520 (SD ± 740) 

between baseline and 10-weeks, compared to an increase of 700 (SD ± 830) in the intervention 

group (receiving personalized step goals). The difference in daily steps between the two groups 

was 2,220, with a statistically significant p = 0.039.

Author Keywords

Physical activity; interface design; mobile app; fitness app; goal setting; personalization

INTRODUCTION

Regular physical activity (e.g., walking or running) is an important factor in preventing the 

development of chronic diseases like type 2 diabetes, cardiovascular disease, depression, and 

certain types of cancer [33, 55, 56]. Because of its importance in maintaining good health, 

the 2008 Physical Activity Guidelines for Americans recommend that adults engage in at 

least 150 minutes a week of moderate-intensity physical activity or 75 minutes a week of 

vigorous-intensity aerobic physical activity [51, 55]. However, about 50% of adults in the 

U.S. [15] are physically inactive. In fact, over 3 million deaths worldwide are attributed to 

physical inactivity [54].

Given the high prevalence of physical inactivity, it is necessary to develop new cost-

effective, scalable approaches to increase physical activity. One promising direction is the 

use of smart-phones in the delivery and personalization of programs that motivate 

individuals to increase their physical activity. Over 40% of adults worldwide and 77% of 

adults in the U.S. own a smartphone [45]. Smartphones have powerful computation and 

communication capabilities that enable the use of machine learning and other data-driven 

analytics algorithms for personalizing the physical activity programs to each individual. 

Furthermore, the past several generations of smartphones integrate reliable activity tracking 

features [2, 14, 18, 25], which makes possible the real-time collection of fine-grained 

physical activity data from each individual.

Though many smartphone applications (apps) for fitness have been developed, systematic 

reviews [8, 10, 39, 53] of mobile fitness apps found an overall lack of persuasive attributes 

that are needed for the general public to maintain exercise motivation through continued use 

of the app. These reviews [10, 53] also identified a lack of experimental validation for the 

efficacy of specific features implemented in mobile fitness apps. For instance, recent studies 

[28, 36, 47] have shown that constant step goals provided by existing apps and devices are 

ineffective in increasing physical activity and such a one-size-fits-all approach could even be 

harmful for some people. Therefore, maintaining user participation and motivation is a core 

challenge in developing effective physical activity intervention platforms, and the 

personalization of goals within fitness apps through intelligent user interfaces [16, 21, 30, 

48, 52] has shown promise in promoting healthy behavior. Simple heuristics, such as setting 

the future goal to be the 60th percentile of the steps taken in the past 10 days, has shown to 

be effective in promoting physical activity [1]. But few studies have investigated the 
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potential of using more complicated Machine Learning-based approaches to set personalized 

step goals.

In this paper, we introduce a novel fitness app on the iOS platform, CalFit, which 

automatically sets personalized, adaptive daily step goals and adopts behavior-change 

features such as self-monitoring. The daily step goals are computed using a reinforcement 

learning algorithm [5, 40] adapted to the context of physical activity interventions: Our app 

uses inverse reinforcement learning to construct a predictive quantitative model for each 

user, and then uses this estimated model in conjunction with reinforcement learning to 

generate challenging but realistic step goals in an adaptive fashion. We conducted a pilot 

study with 13 college students to demonstrate the efficacy of our app and the personalized 

adaptive step goal algorithm in promoting physical activity.

We first discuss related work and the theory of goal setting in relation to behavior change. 

Next we describe the designed elements. Our contributions toward the app design include 

translating elements and features from the theory of goal setting into interface design 

choices for mobile fitness apps, as well as the design of a reinforcement learning algorithm 

that generates personalized step goals for users. Next we describe our contributions towards 

experimental validation of the efficacy of our app design, through conducting the Mobile 

Student Activity Reinforcement (mSTAR) study.

RELATED WORK

In this section, we review work on the intersection of mobile technologies and behavior 

modification programs. First, we describe key studies showing the efficacy of combining 

mobile technologies with clinical coaching to increase physical activity. Next, we describe 

behavior change features and their use in the design of mobile fitness apps. Finally, we 

survey the theory of goal-setting. Identified weaknesses in existing apps and ideas on the 

theory of behavior change are used to inform our design of the CalFit app.

Smartphone-based Clinical Trials

Physical activity interventions that involve multiple in-person coaching sessions are costly 

and labor-intensive, and so researchers have evaluated the feasibility and efficacy of lower-

cost interventions where the number of coaching sessions are reduced (but not eliminated) in 

parallel with the introduction of mobile technologies (e.g., smartphone apps, digital 

pedometers, activity trackers) [7, 11, 12, 13, 17, 19, 20, 23, 26, 29, 32, 44, 46]. These studies 

ranged in size from about 10 to several hundred participants. Both smartphones and personal 

digital assistants (PDA’s) were used to deliver these interventions, and the interface outputs 

were predominately text with some interventions involving simple graphic comparisons to 

goals.

These interventions featured different levels of interactivity, ranging from general weekly 

text messages to customized text messages based on real-time monitoring of physical 

activity and other additional inputs. For instance, the mobile weight loss program in [11] 

used weekly input from overweight children to send computer-generated text messages. 

Most studies [7, 11, 12, 13, 17, 20, 23, 29, 32, 44] asked participants to self-report dietary, 
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weight, and exercise data. A smaller number of studies [19, 26] have explored the use of 

automated collection of exercise data either through accelerometer data that is wirelessly 

transmitted via Bluetooth to a smartphone [26] or the use of digital pedometers to collect 

step data [19].

Most of these studies had outcomes of a statistically significant decrease in weight or a 

statistically significant increase in physical activity [7, 11, 13, 17, 20, 23, 29, 32, 44], 

supporting the potential advantages of mobile-based physical activity interventions. 

However, none of these studies relied solely on mobile technology. All of these studies 

involved in-person coaching sessions during the intervention (though the number of 

coaching sessions was lower than in traditional behavior modification programs) and either 

used objectively measured outcomes using an additional device or self-reported outcomes. 

The weight or exercise goals in these interventions were manually set by the participants or 

the clinicians.

Mobile Fitness Apps and Behavior Change Features

Mobile fitness apps have the potential to be a scalable way of disseminating behavior change 

interventions in a cost-effective manner. In addition to being able to deliver interventions 

through wireless internet and messaging connectivity, smartphones can also leverage in-built 

tools like GPS, digital accelerometers, and cameras to objectively measure (as opposed to 

self-reported data) health parameters. However, systematic reviews [8, 10, 39, 53] of current 

mobile fitness apps found a lack of features that can effectively initiate and maintain the 

behavioral changes necessary to increase physical activity.

The low efficacy of current mobile fitness apps is due primarily to this lack of inclusion of 

important features based on behavioral theory [8, 10, 39, 53]. Examples of key behavior 

change features include: objective outcome measurements, self-monitoring, personalized 

feedback, behavioral goal-setting, individualized program, and social support. In particular, 

researchers recommend that self-monitoring should be conducted regularly and in real-time, 

so as to target activity with precise tracking information and emphasize performance 

successes. In addition, personalized feedback is most effective when it is specific, such as in 

comparing current performance to past accomplishments and previous goals.

Goal Setting

Goal setting is a critical factor for facilitating behavior change [9, 37]. Prior studies using 

persuasive technology usually assigned a fixed goal to all participants (e.g., 10,000 steps per 

day) [3, 28, 36], but a fixed goal fails to capture the differences between participants 

(different baseline physical activity level, reaction to goals, etc). Conversely, personalized 

goal setting have the potential to increase the effectiveness of physical activity interventions. 

Simple heuristics, such as setting the future goal to be the 60th percentile of the steps taken 

in the past 10 days, has shown to be effective in promoting physical activity [1]. But few 

studies have investigated the potential of using more complicated Machine Learning-based 

approaches to set personalized step goals.

In recent years, human-computer interaction (HCI) studies have investigated interface design 

for goal-setting. Munson et al. [41] developed a smartphone app that implements primary 
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(base) and secondary (stretch) weekly goals and found that such a personalized goal-setting 

approach can be beneficial. However, the app lacks an explicit algorithm to help participants 

set “sweet spot” goals based on their past behavior. DStress [34] algorithmically sets daily 

goals based on previous performance, where if the daily goal is achieved for the day, then a 

more difficult goal is assigned for the following day and vice versa. Though this can 

effectively set adaptive goals, the goals for high variance targets (like steps) can be highly 

variate, which leads to reduced intervention impact. For example, if a participant normally 

walks 8,000 steps but walks 1,000 steps on one day, then using the 1,000 value as the 

baseline to set the step goal for the following day will lead to a too-easy goal. A more 

comprehensive algorithm is needed to incorporate all previous performance information to 

decide the “sweet spot” of future goals in a personalized fashion. In this paper, we describe a 

novel algorithm based on Reinforcement Learning that set goals ’smartly’ by first learning 

the behaviors of each participant and then determines the most effective future goal in an 

adaptive fashion.

THE CALFIT APP

CalFit is a mobile fitness app that uses key behavior change features to improve 

effectiveness. It combines a personalized goal setting algorithm and a structured interface 

with regular self-monitoring and feedback to provide an adaptive and individualized physical 

activity intervention. This section discusses the design of the interface, communication, and 

computation elements of our app, which are shown in Figure 2.

Interface

The CalFit app interface is built for the iOS platform. Upon opening the app interface, the 

user first sees the splash screen (Figure 1a) and then lands on the home tab (Figure 1b). On 

the home tab, the user can find his/her step goal for the day and the steps done so far today. 

The steps are tracked in real-time using the built-in health chip on the iPhone and are 

updated every 10-minutes. (Accuracy of step data collected by the built-in health chip on the 

iPhone and other smartphones has been validated by several studies [2, 14, 18, 25].) This 

design facilitates direct comparison between daily step goals and objectively measured daily 

steps in order to enhance self-monitoring.

There are two icons at the bottom of the home tab. If the left icon on the home tab is clicked, 

the user is shown the history tab (Figure 1c) that displays a barplot outlining the user’s 

performance in the past 7 days. The black lines on each bar represent the step goal, and the 

height of each bar represents the actual measured steps. If the user achieved the goal, then 

the bar is green. If the user did not achieve the goal, then the bar is red. This tab is designed 

to provide a quick, yet comprehensive, visualization of the user’s past performance, allowing 

the user to quickly identify days of successes and failures. If the right icon on the home tab 

is clicked, the user is directed to the contact tab (Figure 1d), where they can type in a 

message and send it to the research team regarding their concerns, app bugs, etc.
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Behavioral Analytics Algorithm (BAA)

Automated goal setting is a crucial component of the CalFit app. To set personalized goals 

that are challenging yet attainable for each user, we use a reinforcement learning algorithm 

[5, 40] that we have adapted to the context of physical activity interventions. The Behavioral 

Analytics Algorithm (BAA) uses inverse reinforcement learning to construct a predictive 

quantitative model for each participant, based on the historical step and goal data for that 

user; then, it uses the estimated model with reinforcement learning to generate challenging 

but realistic step goals in an adaptive fashion.

Below, we elaborate upon the mathematical formulations underlying these steps of BAA. 

Since the BAA algorithm does calculations for each user independently of the calculations 

for other users, our description of the algorithm (and accompanying models) is focused on 

calculations for a single user.

Stage 0 – Predictive Model of User’s Step Activity—Our predictive model is based 

on a model from [5, 40] for predicting weight loss based on steps and diet, and we have 

adapted that model to the specific case of only predicting step activity. Let the subscript t 
denote the value of a variable on the t-th day of using the app, and define the function (x)− as

(x)− = {x, if x ≤ 0
0, if x > 0 (1)

Our predictive model for the number of steps that the user takes on the t-th day is

ut = arg max
u ≥ 0

− (u − ub)2 + pt · (u − gt)−, (2)

where ut is the number of steps the user (subconsciously) decides to take, ub ∈ ℝ+ is a 

parameter describing the user’s natural (or baseline) level of steps in a day, and pt ∈ ℝ+ is a 

parameter that quantitatively characterizes the user’s responsiveness to the goal gt ∈ ℝ+.

The general idea of (2) is that users make decisions to maximize their utility or happiness 

related to several objectives. The −(u − ub)2 term means a user has an ideal level of steps 

they prefer to take in a day, wherein the user is implicitly trading off a small number of steps 

in a day (and the dissatisfaction accompanied by physical inactivity) with a large number of 

steps in a day (and the effort and time required to achieve many steps). The parameter ub 

quantifies this baseline number of steps that achieves this tradeoff for the user. The pt · (u − 

gt)− term means a user gets increasing happiness the closer their steps are to the goal gt, and 

pt describes the rate of increase in happiness as the steps get closer to the goal; however, this 

model says that exceeding the goal results in no additional happiness. A more complex 

model would include a term to describe an increase in happiness as the goal is exceeded, but 

a detailed study [5] found that not including this additional term still produced a model with 

high prediction accuracy.

There is one additional component to our predictive model. Equation (2) describes how a 

user decides the number of steps to take on the t-th day. The theory of goal setting [9, 37] 

recognizes that the effectiveness of goals can increase or decrease over time, depending on 
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the level of the goals and whether or not an individual was able to meet the goals. To 

quantify these effects, our predictive model includes

pt + 1 = γ · pt + μ · 1(ut ≥ gt), (3)

where γ ∈ (0, 1) characterizes the user’s learned helplessness, μ ∈ ℝ+ quantifies the user’s 

self-efficacy, and 1 (·) is the indicator function. Self-efficacy is defined as a user’s beliefs in 

their capabilities to successfully execute courses of action, and it plays an essential role in 

the theory of goal setting [9, 37]. Self-efficacy influences a variety of health behaviors, 

including physical activity [31, 38]. Though γ will be different for each individual, the past 

study [5] found that setting γ = 0.85 generated models with high prediction accuracy.

There are several points of intuition about (3). The term μ · 1 (ut ≥ gt) describes the 

relationship between self-efficacy and meeting goals. When a user achieves a goal, 1 (ut ≥ 

gt) is one and pt+1 increases by μ. Achieving a goal increases the user’s self-efficacy, leading 

to increased steps on future days. But if the user misses a goal, then 1 (ut ≥ gt) is zero and 

pt+1 does not increase. Not achieving a goal decreases the user’s self-efficacy, leading to 

lower steps in the future. The term γ · pt describes the phenomenon whereby learned 

helplessness reduces the utility or happiness an individual achieves for achieving goals. 

Consequently, (3) captures the interplay between increasing self-efficacy from meeting 

specific goals with the decrease in self-efficacy from learned helplessness.

Stage 1 – Inverse Reinforcement Learning—The BAA algorithm first uses inverse 

reinforcement learning to estimate the parameters ub, pt, μ in the predictive model (2), (3) for 

a user. Denoting n measurements of the user’s step counts at times ti as ũti, for i = 1, …, n, 

our measurement model ũti = uti + εi is that the observed step counts ũti deviate from the 

step counts chosen in the predictive model uti by an additive zero mean random variable εi. 

The study [5] found that assuming εi has a Laplacian distribution led to an easily 

computable formulation and generated accurate predictions.

Under the above setup, the inverse reinforcement learning problem [6, 24, 35, 42] is 

equivalent to estimating the model parameters ub, pt, μ. This problem can be formulated as a 

log-likelihood maximization [5, 40]. If we define H to be the duration of the intervention, 

then we can write this estimation problem as a bilevel optimization problem

min  ∑
i = 1

n
| uti − u∼ti|

s . t . ut = arg max
u ≥ 0

− (u − ub)2 + pt · (u − gt)−

pt + 1 = γ · pt + μ · 1(ut ≥ gt)
0 ≤ pt, μ ≤ UBp
0 ≤ ut, ub ≤ UBu

(4)

where the constraints hold for t = 1, …, H, and UBp, UBu are constants that are upper 

bounds on the possible values. Existing numerical optimization software is not able to solve 

the above problem, but we can rewrite it as a mixed-integer linear program (MILP) [5, 40]. 
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Let δ be a small positive constant, and M be a large positive constant. The above 

optimization problem can be rewritten as the following MILP:

min  ∑
i = 1

nu
ati

s . t . −ati ≤ uti − u∼ti ≤ ati

ut = 1
2(λ1, t + λ3, t) + ub

0 ≤ λ3, t ≤ pt
(gt − δ) − Mx1, t ≤ ut ≤ gt − δ + M(1 − x1, t)
(gt − δ) − M(1 − x2, t) ≤ ut ≤ gt − δ + M(1 − x2, t)
(gt + δ) − M(1 − x3, t) ≤ ut ≤ gt + δ + Mx3, t
pt − M · (1 − xt, 1) ≤ λ3, t ≤ M · (1 − x3, t)
ut ≤ Myu, 1
λ1, t ≤ M · (1 − yu, t)
pt + 1 ≥ γ · pt
pt + 1 ≤ γ · pt + M · (1 − xt, 1)
pt + 1 ≥ γ · pt + μ − M · xt, 1
pt + 1 ≤ γ · pt + μ
xt + 1, 1 ≥ xt, 1 − 1(gt + 1 − gt < 0)
xt + 1, 2 ≤ xt, 2 + 1(gt + 1 − gt < 0)
xt + 1, 3 ≤ xt, 3 + 1(gt + 1 − gt < 0)
xt, 1 + xt, 2 + xt, 3 = 1
yu, t, xt, 1, xt, 2, xt, 3 ∈ {0, 1}
λ1, t ≥ 0
0 ≤ pt, μ ≤ UBp
0 ≤ ut, ub ≤ UBu

(5)

where the constraints hold for t = 1, …, H and i = 1, …, n. The above MILP can be easily 

solved using standard optimization software [4, 22, 27].

Stage 2 – Reinforcement Learning—Under our setup, the reinforcement learning 

problem [40, 49, 50] for computing an optimal set of personalized goals for the user is 

equivalent to performing a direct policy search using the estimated model parameters ûb, p̂0, 

μ̂ computed by solving (5). Adapting the solution in [40] to the current context of choosing 

an optimal sequence of step goals leads to a MILP:
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max   umin
s . t . umin ≤ ut,  for t > T

−δ ≤ ut − ut ≤ δ,  for t ≤ T
−δ ≤ pt − pt ≤ δ,  for t ≤ T

ut = 1
2(λ1, t + λ3, t) + ub

0 ≤ λ3, t ≤ pt
(gt − δ) − Mx1, t ≤ ut ≤ gt − δ + M(1 − x1, t)
(gt − δ) − M(1 − x2, t) ≤ ut ≤ gt + δ + M(1 − x2, t)
(gt + δ) − M(1 − x3, t) ≤ ut ≤ gt + δ + Mx3, t
pt − M(1 − xt, 1) ≤ λ3, t ≤ M(1 − x3, t)
ut ≤ Myu, 1
λ1, t ≤ M(1 − yu, t)
pt + 1 = γpt + μ(1 − x1, t),  for t > T
xt + 1, 1 ≥ xt, 1 − gind, t,  for t > T
xt + 1, 2 ≤ xt, 2 + gind, t,  for t > T
xt + 1, 3 ≤ xt, 3 + gind, t,  for t > T
xt, 1 + xt, 2 + xt, 3 = 1
gt + 1 − gt ≤ M(1 − gind, t),  for t > T
gt + 1 − gt ≥ − Mgind, t,  for t > T
yu, t, xt, 1, xt, 2, xt, 3, gind, t ∈ {0, 1},  for t > T
λ1, t ≥ 0
0 ≤ pt ≤ UBp
0 ≤ ut ≤ UBu

(6)

where T is the current time, and the remaining constraints hold for t = 1, …, H and i = 1, …, 

n. The intuition is that the above MILP picks future goals in order to maximize the smallest 

number of steps on any given day in the future, and the reason for this choice is that in our 

simulations we found that this objective function choice led to the largest increases (as 

compared to other possible objective function choices) in physical activity. Moreover, the 

above MILP can be easily solved using standard optimization software [4, 22, 27].

Feedback via Push Notification

Using the BAA algorithm, the CalFit app is able to adaptively set personalized step goals for 

users. To optimize the impact of this goal-setting algorithm, we implemented feedback 

features via iOS push notifications. Each user receives at most two push notifications each 

day. The first push notification is received by every user at 8:00am, and it notifies the users 

about their goal for the day. The second push notification at 8:00pm is only received by 

users who successfully achieved their step goal for the day. Note the standard iOS push 

notification is used (i.e., appears in both the landing page and the recent notifications tab), 

and a user receives push notifications regardless of whether or not the CalFit app interface is 
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on; and if the push notification is clicked, it will lead to the homepage of the app interface. 

The benefit of sending push notifications is two-fold: First of all, we want to constantly 

engage the users to implicitly remind them to continue using the app interface. This is 

particularly important for fully automated physical activity interventions since users have a 

lower intention to adhere due to the lack of in-person coaching sessions. Secondly, the 

congratulating push notifications can be seen as customized assessment/feedback to users on 

their daily performance.

Implementation Details

The CalFit app consists of two parts: The interface of the iOS app (including push 

notifications) and the BAA dynamic goal setting algorithm. The backend of the CalFit app 

was implemented via the Parse API [43] running on an Intel Xeon E5-2650 v3 2.3GHz 

Turbo server with 16GB RAM. The server was running CentOS 6.6, and the data was stored 

in an SQLite database on the same server. The BAA algorithm was written in Python, and 

the MILP’s were solved using Gurobi [22]. The running time for BAA to recommend goals 

for a single user was less than one second on average, which is in line with the benchmarks 

from [5] for personalizing a weight intervention.

THE mSTAR STUDY

To experimentally evaluate the efficacy of the CalFit app and personalized goal setting using 

the BAA algorithm, we conducted the Mobile Student Activity Reinforcement (mSTAR) 

study with college students in University of California, Berkeley (UCB). The main research 

question was: Does setting personalized step goals increase user’s steps compared to fixed 

step goals? The secondary research question was: Does setting personalized step goals 

improve adherence? The study was approved by the Committee for Protection of Human 

Subjects of the University of California, Berkeley (IRB Number 2016-03-8609) in July 

2016. All participants provided written informed consent prior to study enrollment.

Methodology

To evaluate the above hypotheses, we designed the app so that each user is randomly 

assigned to either the control group or the intervention group upon joining the study. Users 

in the control group received constant step goals of 10,000 steps everyday during the trial, 

whereas users in the intervention group received personalized step goals computed by the 

BAA algorithm. Both groups received the morning and evening push notifications.

Participants

We recruited UCB students by sending email announcements to departments. Recruitment 

started in January 2017 and ended in February 2017. Interested students were directed to 

complete an online survey to assess eligibility, and eligible students were encouraged to 

sign-up for an in-person session to complete enrollment in the study and install the app. The 

students were randomly assigned to either the control group or the intervention group upon 

installation of the app.
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The inclusion criteria was: being a full-time UCB student, intent to become physically 

active, own an iPhone 5s or newer model, and willing to carry the iPhone during the study 

period. The exclusion criteria was: preexisting health conditions that may make participation 

unsafe, having participated recently in a physical activity or weight loss intervention, and 

regularly taking 20,000 steps in a day. We excluded students who took 20,000 steps per day 

because it is not possible to increase activity by using our app if they were at that activity 

level (since the BAA algorithm uses 20,000 steps as the upper bound for the goal), and the 

procedure was that students satisfying the other criteria were enrolled and then excluded if 

20,000 steps was observed in the step data collected.

Study Procedure

Eligible users were required to attend two 15-minute in-person sessions (one at baseline and 

one at study conclusion). The first in-person session occurred in January 2017 and the 

second occurred in May 2017. During the first in-person session, a trained research staff 

member installed the CalFit app on users’ phones and advised them to carry the phone on 

their person everyday during their participation in the study. The users were randomly 

assigned to either the control group or the intervention group upon app installation. No other 

in-person sessions were conducted during the study period to simulate a fully smartphone 

application-based study environment, which is similar to the environment of most fitness 

apps.

The users started a 1-week run-in period after the first in-person session. All users received 

identical daily step goals of: 3000, 3500, 4000, 4500, 5000, 5500, and 6000 steps. This set of 

adaptive run-in steps goals was designed to engage the users in using the application 

regularly. Also, the morning and the evening push notifications were sent to all eligible 

users. Because the same step goals were provided to both the control and intervention 

groups, we were able to collect run-in daily steps data when both groups received identical 

treatment.

After the 1-week run-in period, the daily step goals for users in the control group (N=7) 

were set to 10,000 steps/day through the CalFit app, whereas the daily step goals for users in 

the intervention group (N=6) were set by the BAA algorithm. The BAA algorithm was 

applied every week (to mitigate the impact of large step variance), and it computes the step 

goals for the following 7 days. Both groups received morning and evening push 

notifications. The study lasted for 10-weeks, and participants could earn up to a $25 Amazon 

gift card for completing all parts of the study, including attending a final in-person session.

RESULTS

Table 1 shows the baseline characteristics of the participants. The overall mean age was 22.2 

(SD ± 2.9) years and 77% of the participants were female. The baseline mean daily step in 

the control group was slightly higher than that in the intervention group, but the difference is 

not statistically significant (6,829 steps versus 5,387 steps, respectively; p = 0:16). The p-

values in Table 1 were computed using t-tests for continuous variables and χ2-tests for 

categorical variables.
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Physical Activity Outcomes

The primary outcome of the study is the objectively measured daily steps from baseline to 

10-weeks. We conducted our statistical analysis of the primary outcome of daily steps using 

a linear mixed-effects model (LMM) [31, 33, 38] with random effects for each individual of 

random slope and random intercept, and fixed effects of time, intervention group, and 

interaction term of time and intervention group. This analysis found that the control group 

had a decrease in daily step count of 1520 (SD ± 740) steps between baseline and 10-weeks, 

compared to an increase of 700 (SD ± 830) steps in the intervention group. The difference in 

daily steps between the two groups was 2220 (p = 0:039) with a 95% confidence interval of 

(100, 4480), which is a statistically significant difference. The step goals computed by the 

BAA algorithm were on average between 6,000 steps and 8,000 steps. They varied between 

different users and days resulting from its adaptive and personalized nature.

Figure 3 shows the change in daily steps over the 10-week study period, and for fair 

comparison we baseline-adjusted the plotted steps by adding the coefficient corresponding to 

each group (i.e., control or intervention) computed by the LMM model. Despite the slightly 

higher steps in the intervention group, the daily steps of the two groups did not differ 

substantially in the first 5 weeks. However, in the last 3 weeks, the intervention group had an 

average increase of 1,000 steps and the control group had an average decrease of 2,000 

steps. We suspect that we fail to see differences in the early weeks due to the initial 

stimulation of participating in a fitness program. As time went by, the excitement from 

participation cooled down and the impact of the BAA algorithm started to dominate. We 

further defined adherent users to be those who used the CalFit app for 80% of the days 

during the study period. Under this criterion, 2 of the 7 users in the control group and 1 of 

the 6 users in the intervention group were identified as non-adherent. However, the 

difference in adherence percentage was not statistically significant (p = 0:61) between the 

two groups, primarily due to the small sample size.

Results of Qualitative Interview

During the second in-person session at 10-weeks, a trained research staff member 

interviewed the users on their experience. All users agreed that the CalFit app was easy to 

navigate, required minimal effort on the user side, and the number of push notifications was 

about right. One user in the intervention group told us, “I am excited to know my step goal 

every morning! I know I am doing well if my goal increases, and I know I need to keep up 

when my goal decreases.” Another user in the control group, however, stated, “The goals are 

always the same. It’s impossible for me to get that many steps so I stopped tracking.”

DISCUSSION

The mSTAR study reveals the potential of using personalized step goals to facilitate physical 

activity. Interestingly, users’ daily steps did not increase at a constant rate over the 10-week 

period. Rather, we observe that the daily steps of the two groups did not differ significantly 

in the first 5 weeks. But in the last 3 weeks, the intervention group was taking many more 

steps than the control group. We believe that in the first several weeks, physical activity was 

driven by users’ initial enthusiasm with the start of their participation in the study. However, 
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when this enthusiasm wore out after 5 weeks, we observed significant difference in physical 

activity behavior between the two groups, suggesting the potential of using the CalFit app 

(and its underlying features such as the automated generation of personalized step goals 

using reinforcement learning) to deliver physical activity interventions.

DESIGN IMPLICATIONS

There are two major challenges associated with providing fully automated smartphone-based 

physical activity interventions. The first challenge is supporting users through key behavior 

change features and effective goal-setting in order to increase their level of physical activity. 

The second challenge is ensuring sustained maintenance of any increases in physical activity 

initiated by an intervention. Typical physical activity interventions address these challenges 

through frequent in-person coaching sessions, which are effective in initiating and 

maintaining behavior change. Since in-person coaching is expensive, mobile physical 

activity interventions seek to lower costs by reducing the amount of coaching. As a result, 

meeting these two challenges is substantially more difficult for fully automated smartphone-

based physical activity interventions.

The mSTAR study demonstrates the potential of adopting behavior-change features and 

using personalization in mobile physical activity interventions to address these challenges. 

In particular, we found that sending one or two push notifications serves as a useful 

reminder. Furthermore, users prefer apps that do not require too much time and effort. 

Features that require regular user input, such as setting personal goals or keeping a diary to 

record steps/food intake, can create a burden on app adherence. Another main design choice 

is personalization. The BAA algorithm that sets personalized step goals for users is shown to 

be effective in increasing daily steps. Providing challenging but yet attainable goals can 

induce goal-achieving incentives, and giving daily feedback on performance (i.e., reminder 

push notification on daily goal and congratulating push notification) further reinforces 

exercise motivation. Conversely, fixed steps goals (10,000 steps/day) with no personalization 

can be unrealistically high or too easy to achieve and hinders users from progressing to be 

active.

Future designs of mobile fitness apps should consider personalized interventions, including 

but not limited to goals, push notifications, and displays. In addition, algorithms for goal-

setting should take the complete history of the user as the basis to generate future 

interventions, particularly when the input and target metrics have high day-to-day variations. 

Implementing behavior change features, such as self-monitoring and summary feedback on 

performance, can further motivate physical activity. Overall, the app should be easy to 

navigate and require minimum manual inputs from users, particularly by using algorithms to 

automate personalization.

LIMITATIONS AND FUTURE WORK

One limitation of our study is the relatively small sample size. A larger scale study should be 

performed to further confirm the findings. In addition, the population of the study is 

university students, who may not be as concerned about their physical wellness as other 
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populations (i.e., middle aged and elderly adults managing their chronic diseases). Another 

limitation is that the study lasted for only 10-weeks, so the long-term impact of the CalFit 

app is unclear.

In the future, we would like to extend our observations further by studying hypotheses in 

three directions. Firstly, how do different goal setting sources (i.e, self-set, trainer-set, and 

machine set) impact the intervention outcome? Secondly, how do different dynamic goal 

setting algorithms impact the intervention outcome? In particular, it would be beneficial to 

unveil if the success of this study is due to the BAA algorithm or due to the fact that step 

goals are not steady. We would like to compare the BAA algorithm to simpler analytical 

algorithms, such as, for example, setting the goal to be the 60th percentile of the steps in the 

past week. Thirdly, we would like to isolate the impact of the various design features (i.e., 

push notification, history tab, etc.) to provide recommendations on the most effective 

features to future fitness app designers.

CONCLUSION

We developed a novel fitness app called CalFit to track and deliver physical activity 

interventions. The app implements a reinforcement learning algorithm adapted to the context 

of generating personalized and adaptive daily step goals for each user so that the goals are 

challenging but attainable. Furthermore, the app adopts many behavior change features such 

as self-monitoring and customized feedback. A pilot study with 13 university students 

demonstrated that setting personalized step goals resulted in 2,200 more daily steps than 

setting steady step goals (of 10,000 steps/day) after 10 weeks. We believe the CalFit app 

(and its underlying features like the automated generation of personalized step goals using 

reinforcement learning) has the potential to deliver physical activity interventions in a fully 

automated fashion. A large scale, randomized controlled trial of a fully automated physical 

activity intervention is warranted.
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Figure 1. 
Screenshots of the main tabs of the CalFit app are shown, including the (a) splash screen, (b) 

home tab, (c) history tab, and (d) contact tab.

Zhou et al. Page 18

CEUR Workshop Proc. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The CalFit app interface uploads step data to a SQL database on a server, and the stored step 

and goals data is accessed by the Behavioral Analytics Algorithm (BAA) comprised of 

inverse reinforcement learning to estimate model parameters describing the user and 

followed by reinforcement learning to compute personalized step goals that will maximize 

the user’s future physical activity. The personalized step goals are stored in the SQL 

database and communicated to the user via the CalFit app interface.
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Figure 3. 
The objectively measured daily steps of the control group and the intervention group over 

the 10-week study period show the statistically significant difference in the number of daily 

steps at the end of the study. The plotted values are computed by averaging the raw data over 

each user in the corresponding group, adjusting the baseline value based on the value 

computed from the LMM model, and then smoothing the data using a standard 

(nonparametric) Nadaraya-Watson estimator.
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Table 1

Comparison of Baseline Characteristics shows that the differences between participants in the control and 

intervention groups were not statistically significant, which is expected since participants were randomly 

assigned to groups.

All Users (N=13) Control (N=7) Intervention (N=6) p-value

Mean (± SD) Mean (± SD) Mean (± SD)

Baseline daily average steps 6,163 ± 1,822 6,829 ± 2,023 5,387 ± 1,309 0.16

Age (years) 22.2 ± 2.9 21.6 ± 2.3 23.0 ± 3.5 0.40

Weight (kg) 70.4 ± 23.9 73.7 ± 31.9 66.5 ± 20.8 0.61

% (N) % (N) % (N)

Gender 0.88

  Male 23.1 (3) 14.3 (1) 33.3 (2)

  Female 76.9 (10) 85.7 (6) 66.6 (4)

Ethnicity 0.85

  Asian 23.1 (3) 28.6 (2) 16.7 (1)

  Hispanic/Latino 15.4 (2) 14.3 (1) 16.7 (1)

  White (non-Hispanic) 23.3 (3) 28.6 (2) 16.7 (1)

  Other 38.5 (5) 28.6 (2) 50.0 (3)

Marital Status 1.00

  Currently Married/Cohabitating 7.7 (1) 14.3 (1) 0.0 (0)

  Never Married 92.3 (12) 85.7 (6) 100.0 (6)

  Divorced/Widowed 0.0 (0) 0.0 (0) 0.0 (0)

Year in School 0.52

  Freshman 0.0 (0) 0.0 (0) 0.0 (0)

  Sophomore 15.4 (2) 28.6 (2) 0.0 (0)

  Junior 30.8 (4) 28.6 (2) 33.3 (2)

  Senior 23.1 (3) 14.3 (1) 33.3 (2)

  Graduate 30.8 (4) 28.6 (2) 33.3 (2)

Own a Dog 1.00

  Yes 7.7 (1) 14.3 (1) 0.0 (0)

  No 92.3 (12) 85.7 (6) 100.0 (6)

Transportation to Work 0.43

  Car 23.1 (3) 28.6 (2) 16.7 (1)

  Public Transportation 7.7 (1) 14.3 (1) 0.0 (0)

  Walk 61.5 (8) 42.9 (3) 83.3 (5)

  Bicycle 7.7 (1) 14.3 (1) 0.0 (0)
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