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Abstract

Supersymmetry and the S-matrix

by

Timothy James Trott

The functional form of the S-matrix is heavily constrained by both causality and unitar-

ity to the extent to which it may be substantially reconstructed without computational

recourse to a field-theoretic action, thereby avoiding complications arising from gauge fix-

ing and field-variable redundancy. In this context, simplifications provided by supersym-

metric theories have been fruitful in guiding these methods and enabling perturbatively

deeper computations.

In this thesis, on-shell, unitarity-based S-matrix methods are generalised to supersym-

metric theories of massive particles. An on-shell superspace for massive supermutiplets

is developed and used to classify all three-particle interactions consistent with supersym-

metry in gauge theories in four dimensions. In N = 4 super-Yang-Mills theory, this is

used to compute scattering amplitudes for BPS particles using on-shell recursion.

The impact of causality on the contact couplings parameterising effective theories are

then considered. Dispersion relations are used to constrain the space of these couplings

for several simple interactions relevant to extensions of the Standard Model of particle

physics. It is shown how these bounds unify as components of the same constraint under

supersymmetry.

Finally, as the observable world lacks supersymmetry, a possible intermediary ex-

tension of the Standard Model called the Twin Higgs, bridging a minor hierarchy of

scales between the Higgs potential and a UV completion, is considered. In particular,

the impact of numerous new, light, invisible particles on the spectrum of temperature

v



anisotropies of the Cosmic Microwave Background is calculated as a function of the twin

electroweak scale. The observable impact of a possible dilution of the twin particles

relative to their Standard Model counterparts by the decay of a particle reheating the

universe is then projected.
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Chapter 1

Massive On-Shell Supersymmetric

Scattering Amplitudes

We introduce a manifestly little group covariant on-shell superspace for massive particles

in four dimensions using the massive spinor helicity formalism. This enables us to con-

struct massive on-shell superfields and fully utilize on-shell symmetry considerations to

derive all possible N = 1 three-particle amplitudes for particles of spin as high as one,

as well as some simple amplitudes for particles of any spin. Throughout, the conceptual

and computational simplicity of this approach is exhibited.

1.1 Introduction

The spinor helicity formalism has been a key ingredient in developing a purely on-shell

formulation of S-matrix computations in four dimensions. This is because helicity spinors

may be used as a complete description of the data of external scattering states (that is,

their momentum and spin polarisation) without recourse to the unnecessary non-linear

gauge redundancy of polarisations used in the Feynman rules. This can be coupled with
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Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

on-shell methods, such as recursion and generalised unitarity, to perturbatively build the

internal S-matrix structure out of on-shell units that bypass the need for the fictitious

degrees of freedom that frequently arise in standard field-theoretic methods. However,

the dream of a fully on-shell formulation of particle physics is far from realised.

Helicity spinors have been adapted to describe the kinematics of massive particles

previously in (1–5). This generally involved decomposing time-like momenta into two

null vectors and then proceeding with massless helicity spinors to describe each of these

in some way. However, the element of arbitrariness in this decomposition often convo-

luted the method, as sought-after patterns could easily be obscured by an inappropriate

choice. Furthermore, this choice of direction often involved a spurious breaking of Lorentz

invariance in the amplitudes.

An advance on this formalism was made in (6), where the spinors of the null vectors

were organised into representations of the little group for massive momenta, SU(2). This

symmetry represents the redundancy in the spinor description of momentum, analogous

to the U(1) redundancy in the massless case. However, it may also be utilised to describe

the polarisations of the external massive states, or better, to directly use symmetries to

build amplitudes that have the required transformation properties of the external states

under their individual little group rotations. While there was never a gauge ambiguity

in the polarisations of massive particles in the Feynman rules, non-existent time-like

components still source tension in a symmetric treatment of a 4-vector description of

these fundamentally 3-vector objects (recent use in effective field theories was given in

(7)). Massive and massless particles may thus be treated on equal footing within the

spinor helicity formalism.

Supersymmetry (SUSY) offers an idealisation that, in theories of massless particles,

has enabled the utility of on-shell methods to be drastically extended. It is thus natural to

look to supersymmetry as a testing grounds for on-shell methods for massive particles. We

2



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

therefore here amalgamate the little group-covariant helicity spinors for massive particles

with the formulation of an on-shell superspace in which external scattering states are

grouped into supermultiplets without reference to an external spin direction. This makes

the relations between the amplitudes imposed by the supersymmetric Ward identities

(SWIs) transparent while simultaneously preserving the polarisation structures. See (8)

for a review of on-shell superspace for massless particles. An on-shell superspace for

massive particles was first constructed in (9) and we will rediscover their results along the

way, albeit re-expressed in the covariant formalism. This helps to organise the amplitudes

into Lorentz-covariant terms that are simpler to interpret, identify and construct.

After laying the foundation by writing the superalgebra in a little group covariant

form and constructing covariant supermultiplets, we turn to N = 1 theories to exhibit

the usage and utility of this formalism. We construct from first principles all possible

three particle amplitudes, the most primitive on-shell scattering data, that are consistent

with these symmetries and involve particle spins no greater than one. We also make

some comments on how SUSY generally constrains interactions with higher-spin states.

The on-shell supersymmetry allows us to simply catalogue the most general possible

interactions given only the spectrum of a theory. It is also easy to further specialize by

incorporating additional on-shell data such as the presence of a parity symmetry relating

some component amplitudes to each other, or the absence of self-interactions for a vector

in an Abelian theory. By studying the high energy or massless limits of superamplitudes,

we may obtain the necessary dependence of the couplings on the masses of the external

legs if the states are to be identified as elementary superfields.

This paper is structured as follows. In Section 2 we present the little group covari-

ant on-shell SUSY algebra. This allows us in Section 3 to construct massive on-shell

supermultiplets as coherent states of the supercharges in any reference frame. In Section

4 we discuss general features of superamplitudes and strategies for their construction,

3



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

including the implementation of parity symmetry. We exhibit all of this technology in

Section 5 to construct elementary three particle amplitudes for flat space N = 1 theories.

We then conclude.

1.2 Little Group Covariant Superalgebra for Massive

Particles

The general super-Poincaré algebra extends the Poincaré algebra to a graded Lie

algebra in 4 dimensions through the introduction of N fermionic generators QαA, Q
†
β̇B

,

where α, β̇ are SL(2,C) indices and A,B = 1 . . .N count the number of left-handed

spinor supersymmetry generators. The Lie brackets of the generators of supersymmetry

- or supercharges - with the generators of translations (Pµ) and rotations/boosts (Mµν)

are (following (10))

[QαA, P
µ] = 0,

[QαA,M
µν ] =

i

4
ϵα̇β̇(σµαα̇σ

ν
ββ̇

− σναα̇σ
µ

ββ̇
)Qβ

A,

{QαA, Q
†B
β̇
} = −2δBA (σ

µ

αβ̇
)Pµ,

{QαA, QβB} = ZABϵαβ,

{Q†A
α̇ , Q

†B
β̇
} = −ZABϵα̇β̇.

(1.1)

The automorphism group of the supercharges preserving the anticommutation relations is

the R-symmetry group and will be discussed further in what follows. The ‘central charge’

ZAB = −ZBA = −(ZAB)∗ is allowed for N > 1 and typically breaks the R-symmetry to

a subgroup.

We will be interested in the construction of superamplitudes, which package together

scattering data for entire representations of the super-Poincaré algebra. Before discussing

4



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

this, we will first rewrite the superalgebra using the massive spinor helicity language.

This allows the spinor indices to be stripped out of the supercharges, leaving an elegant,

frame-independent formulation of the algebra from which massive representations can be

simply constructed. This provides an aesthetic improvement over previous treatments

(11) in addition to setting up our discussion of superamplitudes.

In Appendix 1.A.1, we present a lightning review of massive spinor helicity in which

we also develop our conventions and provide relevant and useful identities. The reader

can find there further introduction to the subject and the elementary mechanics which

will not be remarked upon in the main text.

The external particles in a scattering amplitude are acted upon by the super-Poincaré

generators as separate tensor factors of the scattering state. Each symmetry generator

may therefore be represented on a scattering amplitude as the sum of its action on

each external scattered particle. This will allow us to study symmetry generators and

transformations on each leg separately. We will use spinor helicity variables to represent

these generators, because these encapsulate the on-shell kinematic data for each leg. For

massive particles, this means exhibiting the SU(2) little group symmetry by expressing

the symmetry generators acting on each particle i in an appropriately covariant fashion.

By construction, the momentum eigenvalue of particle i is pα̇βi = pµi σ
α̇β
µ =

∣∣iI〉α̇ [iI |β. We

can likewise define on-shell, little group covariant supersymmetry generators for each leg

by projecting the supercharges onto the spinors of a given particle

qIi,A =
−1√
2mi

[
iIQi,A

]
, q†Ai,I =

1√
2mi

〈
iIQ

†A
i

〉
, (1.2)

where the factor of mass mi of the particle makes them dimensionless. Note that we

are defining these operators as being restricted to single-particle momentum eigenspaces.

5
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For convenience, the inverse relations are given by

Qi,αA = −
√
2 |iI ]α q

I
i,A Q†A

i,β̇
=

√
2q†Ai,I

〈
iI
∣∣
β̇
. (1.3)

The factor of 1/
√
2 is just a normalisation convention and has been chosen here so that

the little group covariant supercharges satisfy the anticommutation relations

{
qIi,A, q

†J,B
i

}
= −ϵIJδBA ,

{
qIi,A, q

J
i,B

}
= −ϵIJ Zi,AB

2mi

,
{
q†I,Ai , q†J,Bi

}
= ϵIJ

ZAB
i

2mi

.

(1.4)

These hold only on a particular single-particle momentum eigenspace, the labeling of

which we leave implicitly subsumed in the particle label i. Here Zi is the particle’s

central charge. Also of note is that, as a result of the way the massive spinors transform

under conjugation, (qI,A)
† = −q†I,A and (qIA)

† = q†AI . As usual, the SU(2) little group

indices may be raised and lowered using the Levi-Civita symbol. When the external legs

are massless, the supercharges (1.3) become

Qi,αA = −
√
2 |i]α qi,A Q†A

i,β̇
= −

√
2q†Ai ⟨i|β̇ . (1.5)

The little group covariant supercharges satisfy the algebra

{
qi,A, q

†B
i

}
= δBA (1.6)

and the other anticommutators are zero.

The stripping of the helicity spinor effectively exchanges manifest chirality for man-

ifest spin polarisation (of which helicity is often a natural and useful example). For

massless states, these are identical and each chiral spinor supercharge can only either

raise or lower a state’s helicity. However, for massive states, the supercharges in the form

6



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

of chiral spinors will do a superposition of both, for the usual reason that chirality and

helicity/polarisation are no longer identical. The little group here describes the freedom

in choosing a spin direction as a state label, which determines how the chiral spinor

supercharges are decomposed into supercharges characterised by polarisation.

In the simple case in which all legs carry a single, electric central charge, Zi,AB =

ZiΩAB, where Zi ∈ R while ΩAB = −ΩBA is a symplectic 2-form:

ΩAB =

0 −I

I 0

 , (1.7)

where 0 is the N
2
× N

2
zero matrix, while I is the identity of the same size. Specifically for

N = 2, ΩAB = ϵAB, Zi may be complex (corresponding to two central charges) and this

central extension is general. The supercharge labels A,B give a manifest representation

of a symmetry group that acts on qIA (and on q†IA in the conjugate representation) while

preserving the algebra (2.3). If ZAB = 0, this would be SU(N ) (or U(N )), while for

the central charge considered above, this would be broken to USp(N ). The symplectic

2-form ΩAB may then be used to convert USp(N ) tensor representations (such as the

supercharges) into conjugate representations (i.e. raise and lower the explicit R-indices)

in the way that the Levi-Civita tensor does for SU(2).

For |Zi| < 2mi, the relations (2.3) may be simplified. Unlike for massless particle

representations, the generators qI,A and their conjugates q†I,A may mix because their

index heights may be changed by ϵIJ and ZAB. This allows for a rotation into a basis

that canonicalises the anticommutators. This basis is given by

q̄Ii,A =
1√
D

qIi,A +

(
2mi

|Zi|

)2
1−

√
1−

(
|Zi|
2mi

)2
 Zi,AB

2mi

q†B,Ii

 . (1.8)

7
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where D = 2
((

2mi

|Zi|

)2
−1
)(

1−
√

1−
(

|Zi|
2mi

)2)
. The q̄I,A and their conjugates then satisfy

the anticommutation relations without a central charge:

{
q̄Ii,A, q̄

†J,B
i

}
= −ϵIJδBA ,

{
q̄Ii,A, q̄

J
i,B

}
= 0,

{
q̄†I,Ai , q̄†J,Bi

}
= 0. (1.9)

In such cases, representations of the supersymmetry algebra may be constructed with

a structure identical to that of the case with Zi = 0, although such multiplets still

carry central charge (and this would still appear in relating q̄Ii,A and q̄†I,Ai to QαA and

Q†
β̇B

for these states). Henceforth, this redefinition of the particles’ supercharges will be

implicit in subsequent discussions of SUSY representations with central charges satisfying

|Zi| < 2mi and the bars on the diagonalised supercharges will be omitted.

The relations (1.9) illustrate the symplectic R-symmetry of the massive representa-

tion. While (2.3) has a manifest USp(N ) R-symmetry, because the supercharges can

mix with their conjugates while preserving the SU(2) little group symmetry, the full

R-symmetry group is actually determined by all of the automorphisms that preserve the

anticommutation relations (1.9). Grouping the supercharges into a 2N length vector

qIi,a = (q̄Ii,A, q̄
†I,B
i ), where a = A for a ≤ N and a = B + N for a > N , (1.9) may be

combined into the relation {
qIi,a,q

J
i,b

}
= ϵIJΩab. (1.10)

Here Ωab is a 2N × 2N symplectic 2-form. Thus the anticommutator is effectively itself

a symplectic 2-form and the R-symmetry is enhanced to USp(2N ) (12). However, it

is often broken by interactions. The enlarged R-symmetry does not occur for massless

representations of the SUSY algebra because the non-zero supercharges have definite

opposite helicity and cannot mix.

The case |Zi| = 2mi is the special BPS limit. This typically occurs for elementary

8



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

particles which obtain mass through Higgsing of a vector multiplet (13). The redefinition

of supercharges that give the canonical anticommutation relations described above fails

in the BPS limit. This is because, for these representations, half of the number of

supercharges are eliminated through the reality constraint

qi,IA =
−1

2mi

Zi,ABq
†B
i,I . (1.11)

The phase of Zi may be absorbed into a redefinition of the supercharge. Calling this

time q̄i,IA = qi,IAe
−i(argZ)/2, the BPS condition reduces to

q̄IAi = −q̄†IAi q̄i,IA = −q̄†i,IA. (1.12)

This condition again preserves the supersymmetry algebra. Clearly, BPS states are

annihilated by the combination q̄IAi + q̄†IAi . For the central charge considered above with

ZAB ∝ ΩAB, the multiplet is 1/2-BPS as it is annihilated by half of the supercharges.

Configurations with multiple central charges are also possible in which some smaller

fraction of supercharges annihilate the state.

The explicit SU(N ) symmetry of the SUSY algebra, which is broken to USp(N )

by the central charge of these massive single particle states, is therefore the massive

R-symmetry group expected for a theory with half of the number of supersymmetries.

A 1/2-BPS state in N -SUSY may be represented as a massive non-BPS state of N /2-

SUSY. For example, for the simplest spontaneous symmetry breaking pattern in N = 4

SYM, the massless SU(4) R-symmetry is broken to USp(4) when the central charge is

generated. As the former is unbroken by dynamics and imposes stringent selection rules

on scattering amplitudes at the origin of the moduli space, the latter should also be

respected by the dynamics and organise the transition matrix structure away from the

9
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origin. See (14) for further discussion. Further elaboration upon the representation of

BPS states in scattering amplitudes has been recently made in (15).

More generally, with more complicated configurations of active central charges than

the simple case discussed above, for each 1/2-BPS leg there is nevertheless an SU(N )

R-basis in which the central charge can be rotated into the form Zi,AB ∝ ΩAB. In such a

basis, the representation of the leg’s supercharges is just as described. However, as this

basis is different for each leg, the linear combinations of supercharges that annihilate each

state may differ by a SU(N ) rotation matrix, which must be accounted for when adding

together the total supercharges. The R-symmetry group will also be broken further

beyond USp(N ), but this will still be a symmetry restricted to the algebra of a single

leg’s supercharges.

Finally, the BPS bound itself, |Zi| ≤ 2mi, may be derived for these scattering states

from the fact that the operator,

(
qi,IA +

1

2mi

Zi,ABq
†B
i,I

)(
qi,IA +

1

2mi

Zi,ACq
†C
i,I

)†

(1.13)

being a sum of squares, must have non-negative spectrum. Using the algebra (2.3), (1.13)

simplifies to qi,IA (qi,IA)
†
(
1− |Zi|2

(2mi)2

)
. The BPS bound follows by simply requiring that

this be non-negative.

1.3 On-Shell Supermultiplets

We seek here to construct scattering amplitudes for supersymmetric theories, so need

to understand the structure of supersymmetric scattering states. Scattering data is sim-

plified considerably by the grouping of component states into coherent states of the

supersymmetry algebra, known as ‘on-shell superfields’. For these scattering states we

10
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may describe their collective S-matrix entries using superamplitudes, which manifest

both the supersymmetric Ward identities in a simple manner.

For massless theories, on-shell superfields have been established as a convenient or-

ganisation of the representations (16). The on-shell superspace was first conceived of in

(17) for N = 4 super Yang-Mills (SYM) and was employed later in (18) to formulate

the supertwistor space representation of tree-level scattering amplitudes in these theories

(it is worth noting that an off-shell superspace formulation of N = 4 SYM does not

yet exist). In particular, for N = 4 SYM, it makes transparent the classification of the

amplitudes into sectors of a fixed order of helicity violation, which close under both super-

symmetry and R-symmetry (19–21). This enabled the formulation of the super-BCFW

shift (19; 21) and the subsequent construction of all tree amplitudes and loop-level in-

tegrands in the limit of large gauge group dimension (22–24), as well as the elucidation

of the dual superconformal symmetry and dual twistor representations of amplitudes on

complex projective space (20). See (8) for a review of these topics. Amplitudes in theories

with fewer supersymmetries have also been formulated in an on-shell superspace in (16),

where on-shell superfields for N < 4 massless theories were constructed. We refer the

reader to these papers and the review for details of the construction of superamplitudes

for massless theories, and now turn to the construction of massive supermultiplets.

General on-shell superspaces for massive states have been previously developed in (9).

However, the manifestation of the massive little group for the external legs will allow us

to improve upon the presentation of this exposition, as well as providing flexibility to

choose a spinor basis best suited for the study of particular phenomena, such as high

energy limits or complex momentum shifts. Much of the subsequent discussion here will

parallel that of (9), with the improved organisation offered by the little group. This has

been utilised more recently for N = 4 super-Yang-Mills in (25) and will be elaborated

upon in this context in (14).

11
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From (1.9), the massive supersymmetry algebra is that of N fermionic oscillators,

where N = 2N if the representation is not BPS, but can be reduced by up to a factor of

1/2 if shortened. Supermultiplets may be represented as coherent states which are eigen-

states of N ‘lowering operators’. To build these states we introduce Grassmann variables

which transform in the little group of each particle ηAi,I , as well as their conjugates η
†I
i,A.

The labels here match those of the supercharges qIi,A. In this section, we will restrict

our attention to multiplets which are not BPS, in which case the oscillator index may

be identified with a supercharge R-index (‘A’ in the symbols just introduced). Following

the conventions of (8), all particles will be represented as outgoing scattering states. We

will reverse the heights of R-indices relative to this reference.

To ensure little group and R-covariance, either all of the qi,IA or all of the q†Ai,I will

be chosen as the lowering operators. These will have some Clifford vacuum states, ⟨Ω|

and
〈
Ω
∣∣, which are annihilated by either set. Generally, any linear combination of qi,IA

and q†Ai,I for each such pair can be chosen as annihilation operators, the choice of which

corresponds to the selection of a particular state in the multiplet as the Clifford vacuum

in the superfield representation, but a choice that yields the most manifest symmetries

is arguably desirable.

An entire supermultiplet may be encoded as a coherent state

⟨ηi| = ⟨Ω| eqIi,AηAi,I (1.14)

where ηAi,I are anticommuting Grassmann algebra generators. As is clear in this definition

and will be made manifest below, the entire superfield transforms coherently under little

group transformations with the same little group weight as the Clifford vacuum. The

action of the supercharges on the states generalizes the action for massless particles

described in (8), where little group and R-indices of the supercharge must be tensored
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together and then decomposed. These are eigenstates of the annihilation operators,

satisfying ⟨ηi| q†AI = ⟨ηi| (−ηAi,I). The Grassmann Fourier transform may be used to

define a basis of conjugate states. It is defined with its inverse respectively as:

〈
η†
∣∣ = ∫ d2Nη eη

A
I η

†I
A ⟨η| ⟨η| =

∫
d2Nη† eη

†I
A ηAI

〈
η†
∣∣ (1.15)

The fact that both the two different η and η† representations for the same supermultiplet

exist and are related by the Fourier transform will be useful in constraining the form of

superamplitudes.

In the η basis, the supercharges act as (assuming for simplicity the absence of central

charges)

⟨ηi|
〈
θAQ

†A〉 = −
√
2
〈
θAi

I
〉
ηAI ⟨η| ⟨ηi|

[
θAQA

]
=

√
2
[
θAiI

] ∂

∂ηAI
⟨η| (1.16)

where small |θA⟩ and
∣∣θA] parameterise a linearised supersymmetry transformation. The

supercharges may therefore be represented as linear operators on the superamplitudes

Q†A = −
√
2
∑
i

∣∣iI〉 ηAi,I QA =
√
2
∑
i

|iI ]
∂

∂ηAi,I
(1.17)

or on individual legs:

q†Ai,I = −ηAi,I qIi,A = − ∂

∂ηAi,I
. (1.18)

Supersymmetry transformations of both types act simply on these coherent states:

⟨η| eiξ
†I
A q†Ai,I = e−iξ

†I
A ηAI ⟨η| , ⟨η| e−iξAI qIi,A = ⟨η + iξ| . (1.19)

13
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Here, ξAI =
[
θAiI

]
and ξ†IA =

〈
θAi

I
〉
parameterise the supersymmetry transformation pro-

jected onto the spinors of leg i of the appropriate chirality. The action of the supercharges

encoded in (2.8) give the supersymmetric Ward identities relating the components.

As established in Appendix 1.A.1, massless limits are most naturally taken in the he-

licity basis for the massive little group (in which momentum is chosen as the quantisation

axis). We will adopt the convention that this frame is chosen unless specified otherwise,

so that little group indices always denote helicity by default.

By construction, the massive on-shell superfields do not depend upon a preferred

frame of reference. However, as a result, the difference between massless and massive

representations of the supersymmetry algebra is firmly ingrained in the formalism, as

the massive (non-BPS) states non-trivially represent a larger algebra. In the massless

limit, following the rules established in (1.A.1), the form of the spacetime supercharges

(1.17) requires that the massive Grassmann variables are mapped onto the massless ones

as ηi,− → ηi. Here ηi is the massless Grassmann variable used to construct the massless

on shell superfields (as in e.g. (16)). For reference, massless coherent states are defined

here as

⟨ηi| = ⟨Ω| eqi,AηAi (1.20)〈
η†i

∣∣∣ = ∫ dNηeη
Aη†A ⟨η| . (1.21)

Massless analogues of the previous formulae may be obtained similarly.

However, for non-BPS states, the massless limit of the spacetime supercharges (1.17)

reduces the number of supercharges represented on the multiplet in half, leaving the

definitions of the spinor-stripped supercharges q†Ai,+ and q+i,A ambiguous. As a consequence,

expressions obtained upon taking the massless limit directly on coherent states or their

matrix entries will involve a residual Grassmann variables denoted here as ηi,+ → η̂i.

14
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This does not represent the action of a supercharge, but does delineate a division of the

massive superfield into separate massless representations.

1.3.1 Superfields

The coherent state construction generically gives component fields in reducible rep-

resentations of the little group and R-symmetries, which need to be disentangled to

locate the field content. The structure of these vary significantly with the number of

supersymmetries.

We consider first the simple case of N = 1. The states in the multiplet are gen-

erated by acting qI on the Clifford vacuum and then decomposing the resulting little

group tensors into irreducible representations, which will be further constrained by the

needed fermionic antisymmetry of the supercharges. Choosing the Clifford vacuum to

be a scalar ϕ = ⟨Ω|, the resulting states are then χI = −⟨Ω| qI and ϕ̃IJ = −⟨Ω| qIqJ =

ϵIJ ⟨Ω| −1
2
qKq

K . Because the tensors are antisymmetric, the state ϕ̃IJ = −ϵIJ ϕ̃ is decom-

posed into a single scalar degree of freedom. The states of the chiral supermultiplet may

therefore be arranged into coherent state

Φ = ϕ+ ηIχ
I − 1

2
ηIη

I ϕ̃ (1.22)

All states in the multiplet must have identical internal quantum numbers (except for

possible U(1)R charges). If the multiplet is self-conjugate, then the fermion is Majorana

and the scalars are permitted to have opposite R-charges. Otherwise (as is necessary if

the field is in a complex representation, like a quark in superQCD), an anti-superfield is

required with conjugate internal quantum numbers which may be constructed similarly.

Component fields can be extracted from the full superfield via Grassmann derivations.
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In this simple case we have the mapping

ϕ = Φ
∣∣
ηI=0

, χI =
∂

∂ηI
Φ
∣∣
ηI=0

, ϕ̃ =
1

2

∂

∂ηI

∂

∂ηI
Φ
∣∣
ηI=0

(1.23)

which generalizes straightforwardly to other theories. By the equivalence of Grassmann

differentiation and integration, the derivatives may be replaced by integration. The

Grassmann differential operators above can be used to extract component amplitudes in

the usual way as for massless superamplitudes.

In the massless limit, the superfield decomposes into components that may be de-

scribed by opposite helicities:

Φ → Φ+η̂ + Φ− (1.24)

with

Φ+ = χ++ηϕ̃, Φ− = ϕ+ ηχ−. (1.25)

The limit is taken by simply replacing η− → η and η+ → η̂ in (1.22). Here η is the

Grassmann number that would represent the supercharge that acts non-trivially on the

massless multiplet, while η̂ is the variable corresponding to the trivially-acting compo-

nent.

Similarly to the extraction of component states above, each resulting massless super-

field may be extracted by either setting η̂ = 0 (Φ− in this example) or differentiating

with ∂
∂η̂

(−Φ+ here). This likewise allows for the extraction of massless superamplitudes

from limits of massive ones.

We can next construct a vector superfield by starting with a fermionic Clifford vac-

uum. Because the two spin components of the fermion belong to different supermultiplets
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(that is, the vector multiplet does not contain its CPT -conjugate states), a little group co-

variant representation necessitates that two multiplets be combined to create an on-shell

superfield that itself transforms in a non-trivial representation of the SU(2) little group,

where each multiplet contains states of opposite spin projections. Here, this amounts to

combining two Clifford vacua into an SU(2) fundamental representation to describe the

two polarisation states of a fermion’s degrees of freedom. The superfield is

WI = λI + ηIH + ηJW
(IJ) − 1

2
ηJη

J λ̃I , (1.26)

where the components have already been decomposed to give the spin-1/2 fermion

highest-level state λ̃, while we have both a real scalar H and a massive vector W (IJ)

at the first level. We can extract the different irreducible representations of the little

group via 1
2
∂
∂ηI

WI = H, and 1
2

(
∂
∂ηJ

WI + ∂
∂ηI

WJ
)
= W (IJ).

Taking the massless limit again, the massive vector supermultiplet decomposes into

the two helicity components of a massless vector superfield and those of a massless chiral

superfield as

W+ → G+η̂ + Φ+ W− → G− + Φ−η̂,

G+ = g+ + ηλ̃+ G− = λ− + ηg−, (1.27)

Φ+ = λ+ + η
( 1√

2
WL +H

)
Φ− =

( 1√
2
WL −H

)
+ ηλ̃−

The longitudinally polarised vector, WL =
√
2W (+−), combines with the scalar H to give

the two real scalar degrees of freedom in the massless chiral superfields.

For N = 2 without a central extension, we essentially just have two copies of the

N = 1 superalgebra. There is only one supermultiplet to construct here, namely that

which starts with a scalar Clifford vacuum, as any other choice takes us into supergravity.
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The other familiar N = 2 supermultiplets are short multiplets. Expanding the coherent

state and keeping the R-indices gives the superfield

Ω = ϕ+ ηAI ψ
I
A − 1

2
ηAI η

B
J (ϵ

IJϕ(AB) + ϵABW
(IJ)) +

1

3
ηBI ηJBη

JAψ̃IA + η11η
2
1η

1
2η

2
2ϕ̃. (1.28)

Each term has been decomposed into irreducible little group and R components (remem-

bering that ϵAB may be used to raise and lower the SU(2) R-indices). The Grassmann

order 3 and 4 terms respectively represent a pair of chiral fermions related by R-symmetry

and a scalar. The fermion ψ̃IA may be extracted by the action of the Grassmann deriva-

tives for each of the Grassmann variables except ηAI . Fermion statistics of the Grassmann

generators implies that the Grassmann order 2 terms must be symmetric in either little

group or R indices, hence the little group triplet vector and R-triplet scalars. The scalars

ϕ(AB) may be extracted by the action of 1
2

∂
∂ηAI

∂
∂ηIB

, while the vectors W (IJ) are extracted

by 1
2

∂
∂ηAI

∂
∂ηJA

. This superfield will be discussed further in (14) as a short multiplet in

N = 4 super-Yang-Mills.

Of course, higher-spin representations - either fundamental supergravity multiplets

or composite superfields - may be constructed using the same methods. For example, a

general massive N = 1 superfield S of spin s has the form

S(I1...I2s) = ϕ(I1...I2s) + η(I1ψI2...I2s) + ηJΨ
(JI1...I2s) − 1

2
ηJη

J ϕ̃(I1...I2s), (1.29)

where ψ, ϕ, ϕ̃ and Ψ are its component states in order of increasing spin. In the massless

limit, this decomposes into pairs of separate superfields each containing either one ϕ state

(with helicity between −s and s) or one ϕ̃ state (the superfield having helicity between

−s+ 1
2
and s+ 1

2
). For reference, a massless higher spin superfield with Clifford vacuum
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of helicity h is

Σh = φh + ηξh−
1
2 , (1.30)

where φ and ξ are the component states.

1.4 Constructing and Constraining On-Shell Super-

amplitudes

We wish to write down superamplitudes which package together the scattering data

for full representations of the super-Poincaré algebra and allow for amplitudes of compo-

nent states to be projected out in a simple manner. In this form the SUSYWard identities

will be simply represented. We first discuss general features of superamplitudes in 1.4.1

with a focus on three legs, and then lay out useful strategies for building them in 1.4.2,

with a focus on N = 1. In 1.4.3 we discuss the imposition of parity symmetry at the

level of the superamplitude. We assume in this section the absence of central charges.

1.4.1 SUSY Invariants and the η, η† Bases

Invariance under supersymmetry implies that each n-leg superamplitude, An, must be

annihilated by the supercharges. In the η basis defined in Section 1.3, the multiplicative

action of Q† implies that Q†An = 0 is solved if and only if An is proportional to the delta

function

δ(2N )(Q†) =
N∏
A=1

(
n∑
i<j

〈
iIjJ

〉
ηAiIη

A
jJ +

1

2

n∑
i

miη
A
iIη

IA
i

)
. (1.31)

A straightforward calculation using momentum conservation shows that this delta func-

tion is also invariant under supersymmetry transformations by QAα. However, as these
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transformations are not multiplicative, this does not exhaust the constraints from Q

transformations.

If we had instead put all of our external states in the η† representation, the Q super-

charges would act multiplicatively and the Ward identity QAn = 0 would instead imply

that the amplitude is proportional to the delta function

δ(2N )(Q) =
N∏
A=1

(
n∑
i<j

[iIjJ ] η
†I
iAη

†J
jA +

1

2

n∑
i

miη
†I
iAη

†
iIA

)
. (1.32)

The Fourier transform of this delta function, ˜δ(2N )(Q) =
∫ n∏
i=1

d2Nη†i e
−ηAiIη

†I
iAδ(2N )(Q), is

also a supersymmetric invariant in the η basis, as can be seen by commuting Q,Q†

through the exponential. For amplitudes with massive particles, including three-leg am-

plitudes, this Fourier transformed delta function is always of degree at least as large as

δ(2N )(Q†).

Exceptions do exist in situations involving three-particle superamplitudes between

BPS states in theories with extended supersymmetry. This will be elaborated upon

further in (14), but we will merely comment here that, in these cases, some subset

of the supercharges degenerate. The supersymmetric invariant in will instead be the

product of all of the distinct supercharges. This is similar to the case of three massless

particles, where, for example, special kinematics can imply that if the square brackets

are nonvanishing, then
〈
Q†AQ†A〉 = 0. The supersymmetric invariant must instead be

taken as
N∏
A=1

[23]
⟨q1⟩

〈
qQ†A〉 =

N∏
A=1

(
[23] ηA1 + [31] ηA2 + [12] ηA3

)
, with |q⟩ a reference spinor

satisfying ⟨qi⟩ ≠ 0 for all |i⟩, which matches ˜δ(2N )(Q).

The existence of the different η or η† bases for the same superamplitude yields a

restriction on its maximum Grassmann degree from knowledge that the delta functions

are the lowest Grassmann degree invariants. This restriction is especially important
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for the construction and classification of three-leg superamplitudes. For any number of

massive external particles, we can always write a three-leg superamplitude in either basis

as

A3|η = δ(2N )(Q†)F (ηI)

A3|η† = δ(2N )(Q)F̄ (η†I)

(1.33)

where F, F̄ are so far undetermined and are also functions of momentum spinors. Näıvely,

these functions could have maximum Grassmann degree N (M + 3), where M is the

number of massive legs, since this is the number of independent Grassmann variables we

have.

However, from above we know that the Grassmann Fourier transform relates fields

in the η basis to those in the η† basis and thus such a transform of all legs relates

the superamplitude in the two bases. That is, Ã3|η = A3|η† . The Grassmann Fourier

transform roughly returns the set complement of the η†s in the original expression from

the total number of ηs (a full discussion of the Grassmann Fourier transform may be

found in Appendix 1.A.2). So we end up with
[
Ã3|η

]
η†

= N (M + 3) − 2N − [F ]η =

N (M + 1) − [F ]η, denoting by [X]η the Grassmann degree in η of some polynomial X.

However, the Grassmann degree of A3|η† is at least 2N , because this is the minimal

Grassmann degree for the SUSY invariant to which it must be proportional. Hence we

have the inequality

[F ]η ≤ N (M − 1) (1.34)

Of course, the same reasoning holds with F replaced with F̄ . 1

1As remarked previously, the situation is modified in the case of three massless particles because
there is a SUSY invariant with Grassmann degree N . In this case, SUSY directly implies that the only

possible Grassmann structures are δ(2N )(Q†) and ˜δ(2N )(Q). The case in which the particles are BPS is
also exceptional and will be explained in (14).
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This simplifies our task of constructing general three-leg superamplitudes as we need

only understand the structure of appropriately invariant functions of Grassmann degree

2N at most.

1.4.2 Strategies for Enumerating Amplitudes without Central

Charges

The main goal will be to construct three-leg superamplitudes in all simple supersym-

metric theories with spins ≤ 1. We presently discuss the procedure in brief and outline

a number of simplifications.

Now that we only have a small number of Grassmann orders to worry about at most,

our task will be to construct the function F which multiplies the SUSY invariant delta

function for various theories. This function is constrained by the little group covariance of

the amplitude, which is set by the external legs as in theN = 0 case. Supersymmetrically,

it is constrained by the Ward identities, since half of the supercharges act derivatively.

An important benefit of our representation of the supercharges (1.17) is that they are of

uniform degree in η and consequently these constraints do not mix up different Grassmann

orders. This simplifies the procedure so that we may construct the amplitude order by

order in η.

At each order, the F factor consists of a sum of monomials in Grassmann variables. As

the delta function is little group invariant, each of these terms must carry the little group

representations of the superfield legs. The Grassmann variables themselves transform in

non-trivial little group representations, so must be combined with coefficients built out

of spinors in such a way as to give the necessary representation of the superamplitude.

The possible combinations of spinors that satisfy this then correspond to the possible

terms that are permitted by supersymmetry and Lorentz invariance. For example, a
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superamplitude with three massive spin-1/2 legs will have an F factor with a single spin

index for each leg (F I1J2K3). An example of a candidate term with Grassmann degree 1

is then cI1J2K3M1η1M1 , where the Grassmann variable from leg 1 contains a little group

index for that leg, while the coefficient’s tensor structure is then determined by that of

F IJK and η1M .

Each Grassmann variable carries either a fundamental SU(2) index for a massive leg or

a helicity weight of magnitude 1/2 for a massless leg. The rank and helicity weight of the

representations of the possible coefficients are determined by the possible combinations

of Grassmann monomials with the required little group structure. We define the ‘total

little group weight’ h of a superamplitude to be

h =
∑

massive legs

2si +
∑

massless legs

2|hi|, (1.35)

for spin si (helicity hi) of the massive (massless) leg i.

Each coefficient of the Grassmann monomials must involve an even number of con-

tracted spinors (as the superamplitude is a Lorentz scalar). This implies that terms with

an even number of Grassmann variables cannot arise if h is odd for the amplitude. Like-

wise, if the amplitude as a little group tensor has even h, only even Grassmann degree

terms are consistent.

The possible tensor coefficients of the Grassmann monomials may be constructed

similarly to the way in which S-matrix amplitudes are constructed in (6). The coefficients

like cI1J2K3M1 above may be expanded in a tensor basis spanned by a massive spinor of

our choice for each of the required little group indices. We are then left to construct,

for each monomial, an SL(2,C) Lorentz tensor with the correct little group weight for

the massless legs and massless Grassmann variables, which we may do by identifying a

tensor basis and enumerating the possibilities as done in (6).
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A similar procedure to that used in (26) may be used to determine F . As F is ambigu-

ous up to the addition of terms ∝ Q† (as these are annihilated by δ(Q†)), arbitrary linear

combinations of this supercharge may be added to simplify the superamplitude. The

two components of each supercharge can be used to eliminate two Grassmann variables

entirely from F (for example, the two little group components of a particular massive

leg). We may then apply the supersymmetry constraint QF = 0 to relate the spinor

coefficients of different Grassmann monomials to each other.

An exceptional feature appears in the special case of a three-leg amplitude for two

massive, equal-mass particles and one massless particle. In this special kinematic config-

uration, one finds that there is an additional object that can carry the little group weight

of the massless particle. Following (6), this is

x ≡ 1

m

[q| p2 |3⟩
[q3]

, (1.36)

where 3 is the massless leg, m is the mass of legs 1 and 2, and |q] is an arbitrary reference

spinor defined so that [q3] ̸= 0. In this unique case, the special kinematics of the legs

implies that p1 ·p3 = −⟨3| p1 |3] = 0 and so p1 |3] ∝ |3⟩. The constant of proportionality is

x, which, as a SL(2,C) scalar, nevertheless carries helicity weight 1 of leg 3. In no other

kinematic configuration of massive legs in a 3-particle amplitude does such an alignment

of massless spinors occur in which the relative orientation is described by a single scalar.

This is the reason that (2.23) is independent of the reference spinor, despite its necessary

appearance in inverting 1
m
p1 |3] = x |3⟩, and also the reason that such a helicity-weight

carrying scalar object doesn’t exist in other kinematic configurations.

With this general method established, we turn to the construction of elementary

amplitudes in simple SUSY theories, after first digressing to discuss parity.
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1.4.3 Parity

While not obligatory, many theories exhibit parity (P ) symmetry. We here explain

how this acts upon on-shell superfields, from which relations between superamplitudes

in a parity-invariant theory may be deduced. Details about the construction and spin

quantisation of spinors can be found in Appendix C of (27).

As for general chiral spinors, parity acts on the super-Poincare group as (28)

PPµP
† = Pν

µPν PQαP
† = iQ†α̇ PQ†

α̇P
† = −iQα. (1.37)

where Pν
µ = diag(1,−1,−1,−1).

The action of parity on the coherent states may be determined by its action on

the Clifford vacuum and on the spinor-stripped supercharges q, defined in (2.2). It is

important to remember here that these have been implicitly defined with restriction to a

particular momentum eigenspace. The operators qi and q
†
i , through their particle labels,

implicitly also carry momentum labels. Under the action of parity, they are mapped to

their representations on different momentum eigenspaces.

For massless legs, noting that

|Pp⟩ = −eiφ |p] |Pp] = e−iφ |p⟩

⟨Pp| = eiφ [p| [Pp| = −e−iφ ⟨p| (1.38)

for a phase φ, the action of P on the supercharges qi and q
†
i is derived from (1.37) to be

PqiP
† = −ieiφq†Pi Pq†iP

† = ie−iφqPi. (1.39)

Here, Pi denotes leg i with inverted 3-momentum. Note that helicity spinors are defined
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up to a convention-dependent, arbitrary overall phase, which must be implicitly made in

the definition of the spinor-stripped supercharge. This effectively determines an arbitrary

phase multiplying the (complex) Grassmann variables ηA in the coherent states, which,

as will be shown below, can be defined to absorb these factors in the parity-conjugate

superfield.

The existence and action of P is a model-dependent property. Depending upon the

theory, supermultiplets may be self-conjugate or mapped to distinct supermultiplets.

Massless spinning particles must be mapped to states with opposite helicity, which are

usually part of a distinct supermultiplet. However, because of (1.37), massless scalars

and massive spinning particles, at least when selected as Clifford vacua, must also be

mapped to states of distinct weight (in the same or possibly different multiplets) for

consistency with SUSY. For theories with this property, the action of P on a massless

coherent state may be determined as follows. Taking for example the left-handed chiral

multiplet Φ− in (1.25) and explicitly labeling its 3-momentum p⃗,

Φ−
p⃗ P

† = ⟨ϕp⃗|P †Peqp⃗ηp⃗P †

= ζϕ

〈
ϕ̃−p⃗

∣∣∣ eη†−p⃗
q†−p⃗ = ζϕΦ̃

+
−p⃗, (1.40)

calling the Grassmann variable of the parity conjugate coherent state η†−p⃗ = ieiφηp⃗,

absorbing the phase from the transformation of the supercharge. Here, the Φ̃+ denotes

Grassmann Fourier transform of the chiral superfield Φ+ in (1.25) (which, in general,

need not have any other necessary relationship with Φ−). Finally, ζϕ is an intrinsic

parity assigned to the scalars (note that the Clifford vacuum is not a parity eigenstate).
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Similarly,

Φ+
p⃗ P

† = ζλ+Φ̃
−
−p⃗ (1.41)

G+
p⃗ P

† = ζg+G̃
−
−p⃗ (1.42)

G−
p⃗ P

† = ζχ−G̃+
−p⃗ (1.43)

where the Clifford vacuum for Φ+ maps under parity as
〈
λ+p⃗

∣∣∣P † = ζλ+
〈
λ−−p⃗

∣∣∣ (and anal-

ogously for the other coherent states). The factors of ζX are possible phases associated

with intrinsic parity of the Clifford vacuum. For example, in SUSY QED, the action of

parity on the photon’s multiplet would introduce a factor of ζg+ = −1 in (1.42) because

of the intrinsic parity of the photon.

For massive legs, the null vectors that constitute the little group decomposition of

the massive momenta transform in the same way as (1.38) under 3-momentum inversion:

∣∣PpI] = ∣∣pI〉 ∣∣PpI〉 = ∣∣pI][
PpI

∣∣ = −
〈
pI
∣∣ 〈

PpI
∣∣ = −

[
pI
∣∣ . (1.44)

Helicity reverses under parity because, while spin is invariant, the quantisation axis (de-

fined as the 3-momentum) reverses. The massive little group components are expressed

with respect to some external quantisation axis, rather than the 3-momentum, so should

not change under parity. This is the reason that the phases that accompanied the trans-

formation of the massless helicity spinors (and subsequently the supercharges) do not

arise here. The massive supercharges therefore transform as

PqIi P
† = iq†IPi Pq†i,IP

† = iqPi,I . (1.45)
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Calling η†−p⃗,I = iηp⃗,I , the action of P on a massive chiral superfield is

Φp⃗P
† = ζϕ

〈
ϕ̃′
−p⃗

∣∣∣ eq†I−p⃗
η†−p⃗I = ζϕΦ̃′

−p⃗, (1.46)

where, depending upon other quantum numbers, Φ′ may or may not be equal to Φ.

The scalar Clifford vacuum is importantly mapped to the scalar of opposite weight in

the other superfield: ϕ → ϕ̃′. For a massive vector, the transformation is similar but

with fermionic Clifford vacuum mapped to the other fermionic degree of freedom in the

multiplet with the same polarisation

WI
p⃗P

† = ζχIW̃ ′
−p⃗

I
, (1.47)

where again W ′ may or may not be distinct from W .

Parity invariance of a theory implies equality of the superamplitudes of a set of

particles with that of their parity conjugates. Given the results above, this may be

stated as

An(Xp1 , Xp2 , . . . Xpn) =

(
n∏
i=1

ζXi

∫
d2ηPi e

ηPi,Iη
†I
Pi

)
An(X

P
Pp1 , X

P
Pp2 , . . . X

P
Ppn), (1.48)

where XP is the parity conjugate superfield of X (while we have written the Fourier

transforms in (1.48) in the form specific for massive coherent states, they should be

reinterpreted as their massless analogues for each massless leg). In other words, to relate

couplings between superamplitudes in a parity symmetric theory, any superamplitude

An(Xp1 , Xp2 , . . . Xpn) must be equal to that obtained by taking the superamplitude of the

parity conjugate multiplets, Fourier transforming and then reversing the 3-momenta using

(1.38), (1.39), (1.44), (1.45) and the relations between Grassmann variables η†−p⃗,I = iηp⃗,I

and η†−p⃗ = ieiφηp⃗. Kinematic-dependent phases appearing in (1.48) from the use of (1.38)
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and (1.44) may be dropped, representing arbitrary phases in the polarisations of the

external legs.

1.5 N = 1 Three-Particle Superamplitudes

In this section we systematically construct the possible three-particle superamplitudes

for scattering of N = 1 chiral and vector superfields and identify the types of theories

to which they would belong. We furthermore discuss the dependence of the couplings on

the masses of the different legs, how they behave in different limits and how they may

appear in “tree-unitary” theories (29). We also present some simple results for higher

spin multiplets. In Appendix 1.B, we additionally present some well-known results for

higher leg amplitudes recast in the little group invariant helicity spinor language.

1.5.1 Three Chiral Supermultiplets

We begin with the case of three massive chiral supermultiplets, and will then find the

cases with massless chiral supermultiplets via appropriate limits. Our representation of

the massive chiral superfield is given in (1.22). This three-point superamplitude has the

general form

A(Φ1,Φ2,Φ3) = δ(2)(Q†)F (ηIi ), (1.49)

where, from Section 1.4.1, F (ηIi ) is at most a second degree polynomial and, since it has

total little group weight h = 0, contains only even orders in η. Since the Ward identities

do not mix different Grassmann orders, we may construct each i-th order Grassmann

term F (i) separately.

We will illustrate the general procedure by explicitly deriving the superamplitude from

first principles using the method described in Section 1.4.2. From little group scaling,
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F (0) is fixed to be a constant which we call λ. The second-order function can be simplified

by using the supercharge conservation constraint imposed by the delta function, Q† = 0.

We can use this to eliminate any dependence on η3I , which then leaves us with

F (2) = b
[
1I2J

]
η1Iη2J + c

〈
1I2J

〉
η1Iη2J + d1η1Iη

I
1 + d2η2Iη

I
2 . (1.50)

The Ward identity QF (2) = 0 is a first-order Grassmann equation and results in two

independent spinor equations (bm2 − 2d1)
∣∣1I] + cp2

∣∣1I〉 = 0 and similarly with 1 ↔ 2.

The independent constraints may be found by contracting with [1I | and ⟨1I | p2, which

allows one to solve for d1 in terms of b and find c = 0. Along with the same procedure

for the other equation, this yields

F (2) = b

([
1I2J

]
η1Iη2J +

1

2

(
m2η1Iη

I
1 +m1η2Iη

I
2

))
. (1.51)

The full superamplitude is then

A(Φ1,Φ2,Φ3) = δ(2)(Q†)

[
λ+ b

([
1I2J

]
η1Iη2J +

1

2

(
m2η1Iη

I
1 +m1η2Iη

I
2

))]
. (1.52)

When all of the legs are identical the superamplitude can be written in the manifestly

exchange symmetric form

A(Φ1,Φ2,Φ3) = δ(2)(Q†)

[
λ+

b′

3m

(∑
i<j

[
iIjJ

]
ηiIηjJ +m

∑
i

ηiIη
I
i

)]
. (1.53)

We have here redefined the coupling b to make it dimensionless.

There are three special cases to consider corresponding to the number of different

massless legs. Firstly, the massless limit m1 → 0 may be taken directly on (1.52) to

30



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

produce the most general expected superamplitudes

A(Φ−
1 ,Φ2,Φ3) = λδ(2)(Q†) (1.54)

A(Φ+
1 ,Φ2,Φ3) = −bδ(2)(Q†)

([
12J
]
η2J +m2η1

)
. (1.55)

These expressions are independent of whether m2 = m3. We have assumed that the

coupling b is unaffected by the limit, which is self-consistent.

Similarly, taking the subsequent limit that m2 → 0 results in the superamplitudes for

two massless legs:

A(Φ−
1 ,Φ

−
2 ,Φ3) = λδ(2)(Q†) A(Φ+

1 ,Φ
+
2 ,Φ3) = bδ(2)(Q†) [12] , (1.56)

while A(Φ±
1 ,Φ

∓
2 ,Φ3) = 0. It is again being assumed that the couplings present no

obstruction to this, which is clearly self-consistent.

In the high energy limit, the superamplitude (1.53) does not diverge with inverse

powers of a mass scale because of the special 3-particle kinematics. Note that [i+j+] ∼

O(m2/E) or ⟨i−j−⟩ ∼ O(m2/E) as m → 0 for some (complex) energy, depending upon

the kinematic configuration that is converged to (individual spinor mass limits can be

found in (1.115)). The superamplitude converges to (at leading order in energy)

A(Φ1,Φ2,Φ3) → A(Φ−
1 ,Φ

−
2 ,Φ

−
3 )−A(Φ+

1 ,Φ
+
2 ,Φ

+
3 )η̂1η̂2η̂3 (1.57)

A(Φ−
1 ,Φ

−
2 ,Φ

−
3 ) = λδ(2)(Q†) (1.58)

A(Φ+
1 ,Φ

+
2 ,Φ

+
3 ) = −b′δ̃(1)(Q), (1.59)

where Φ± are the massless superfields in the notation of (1.25). For the latter kinematic
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configuration, the delta function is

δ̃(1)(Q) = [23] η1 + [31] η2 + [12] η3, (1.60)

which is a Grassmann order 1 supersymmetry invariant that is the Fourier transform of

δ(2)(Q) in the η† basis. In the first term of (1.57), [ij] → 0, while in the second, ⟨ij⟩ → 0.

The (−) sign accompanying the second term arises because the Grassmann variables η̂i

must anticommute past the fermionic Φ+
i states.

Note that if the limit that all particles are sent massless at the same rate is instead

taken, then (1.57) is exact, rather than merely leading. The fully massive superamplitude

(1.53) contains helicity violating couplings that, in the high energy limit, scale as mass-

dependent constants and cannot be expressed as a massless superamplitude.

This massless limit is to be expected from field theory, where the three scalar compo-

nent amplitudes contained in the two surviving superamplitudes are expected to vanish

in the massless limit according to the superpotential. Also of note is that the massive

superamplitudes (1.52) are totally determined by two parity conjugate sets of couplings.

That there are no others is not completely obvious from a Lagrangian derivation, where

the possibility of spontaneous supersymmetry breaking has to be explicitly checked for

a given holomorphic superpotential. Here, constraints from unbroken supersymmetry

are more directly applied. It automatically follows that candidate holomorphic super-

potential terms, such as tadpoles and quartics that would naively give interactions that

do not conform to the structures derived here, must induce spontaneous supersymmetry

breaking.

The only remaining massless superamplitudes are those of superfields with mixed
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helicity. These are determined by symmetries to be (up to a coupling constant)

A(Φ+
1 ,Φ

+
2 ,Φ

−
3 ) = δ(2)(Q†)

1

⟨12⟩
A(Φ+

1 ,Φ
−
2 ,Φ

−
3 ) = δ̃(1)(Q)

1

[23]
. (1.61)

However, these superamplitudes have peculiar locality properties. While non-divergent

in the real momentum limit, they are also non-zero, being unsuppressed by helicity

conservation (30). These are the supersymmetrisations of the helicity conserving scalar-

fermion-fermion 3-leg amplitude found in (31). Consistent factorisation properties of

4-leg amplitudes were used to rule this out. Notably, while consistent with symmetries,

they do not appear in the massless or high energy limit of the massive superamplitudes.

The theory of a single chiral supermultiplet has an accidental parity symmetry. This

is a model-dependent and needn’t be a general property of this three particle superam-

plitude. However, we take the opportunity to comment that parity may be imposed as

described in Section 1.4.3 to relate the two otherwise independent couplings. Ignoring

the possible non-trivial intrinsic parity phases, this gives b′ = λ, in agreement with the

massless and massive cases. The Wess-Zumino three-leg superamplitude is then

A(Φ1,Φ2,Φ3) = λδ(2)(Q†)

[
1− 1

3m

(∑
i<j

[
iIjJ

]
ηiIηjJ +m

∑
i

ηiIη
I
i

)]
. (1.62)

It would be interesting to find an on-shell condition from which the accidental par-

ity is derived as an outcome. One would have to study higher leg amplitudes in this

theory with only a single chiral supermultiplet in order to derive this feature. In this

regard, it would also be interesting to find how holomorphy of the superpotential is rep-

resented in the S-matrix. In the case where all particles are massless, each holomorphic

composite operator in the superpotential contributes a contact interaction inducing a

(super)amplitude that is holomorphic in helicity. The rest of the S-matrix is presumably
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then generated by consistent factorisation involving these. Mass mixes states of different

helicities, so produces a violation of this pattern of helicities induced by the holomorphic

contact interactions. The on-shell superspace significantly clarifies the pattern, the foun-

dations of which were described in (1) at the level of “seed”MHV component amplitudes

with the fewest legs.

1.5.2 One Massless Vector

We next turn to the case of two chiral supermultiplets interacting with a massless

vector multiplet. This includes matter interactions in supersymmetric gauge theories

(like superQCD). Because of this, in this section we refer to the chiral supermultiplets as

quarks and the vector fields as gluons. Specifically in superQCD, the states of the quark

supermultiplets arrange into the following on-shell superfields:

Q = Q̃L + ηIQ
I − 1

2
ηIη

IQ̃R

Q = Q̃L + ηIQ
I − 1

2
ηIη

IQ̃R, (1.63)

where Q are the quark and Q are the antiquark states. The L and R subscripts identify

each of the squarks. The arrangement of the states is to be contrasted with the field-

theoretic off-shell superfields. However, while we will use the symbols Q and Q to denote

the chiral superfields in what follows, we will not be committing to identifying them with

any particular theory beyond what we will find to be possible to construct.

It is easily shown using the methods of Section 1.4.2 that a three-leg superamplitude

between two massive chiral multiplets and a massless vector multiplet is impossible unless

the chiral multiplets have equal mass. This case is distinguished by the existence of x,

which will allow for expressions with the required little group scaling to be constructed.

The G+ and G− superamplitudes have total little group weights h = 2 and h = 1
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respectively. The superamplitude for the positive helicity gluon superfield is simplest to

construct as little group scaling immediately gives the unique form

A(Q1, G
+
2 ,Q3) = δ(2)(Q†)

g

x
, (1.64)

where x is defined in (2.23) and g is the coupling constant (which may have suppressed

dependence upon possible internal quantum numbers of the states). For the negative

helicity superamplitude, little group scaling, supersymmetry invariance and the Grass-

mann counting rule of Section 1.4 determine the superamplitude up to a single coupling

constant b:

A(Q1, G
−
2 ,Q3) = δ(2)(Q†)bx

(
η2 +

1

2m

([
21I
]
η1I +

[
23I
]
η3I
))

. (1.65)

That the superamplitudes are determined here by a single coupling constant is a

reflection of the fact that the anomalous magnetic dipole moment of matter fermions

in N = 1 gauge theories is exactly zero (32). Supersymmetry determines the fermionic

coupling to the gauge bosons from the scalar coupling, which has only one possible

Lorentz structure. As a consequence, the supersymmetry implies that the matter-photon

interaction is entirely characterised by the electric charge monopole.

Thus far we have not actually assumed anything beyond particles 1 and 3 having

equal mass. However, these superamplitudes are antisymmetric under exchange of the

two matter fields 1 ↔ 3 (through x). As the superfields Q and Q are bosonic, this implies

that they must be distinct (the same argument applies to couplings of matter to massless

vectors without supersymmetry as well).

Parity may additionally be imposed. Assuming that the Q and Q multiplets are

both self-conjugate under P (the minimal assumption), this implies that b = g. Parity
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invariance was an assumption used in the derivation of the Lie algebra structure of the

matter couplings from consistent factorisation (6; 33), which is unaffected by the quark

masses (with massless matter, CP also suffices, which justifies it for chiral gauge theories).

It would be interesting to clarify the role of the discrete symmetry needed to relate the

amplitudes on each side of the factorisation channel. In Yang-Mills field theory, this

symmetry is accidental. In the examples below, we always find parity emerge in the high

energy limit of massive amplitudes, as well as the massless limits of individual legs, in

the terms that match onto sensible amplitudes of massless vectors.

It is interesting to note that the USp(2) massive R-symmetry of the SUSY algebra is

broken in this theory because the gaugino couplings distinguish between the two squark

states. The identification of the squarks as L and R is determined by the helicity of

the gaugino that couples to them (the squarks are then oppositely charged under the

residual unbroken massless U(1)R). This is ultimately a reflection of the breaking of the

USp(2)R by parity symmetry, which distinguishes between the two squarks. This would

be restored in an N = 2 gauge theory, where the gauginos are Dirac fermions.

The coupling of higher spin multiplets to photons follows a similar pattern. The

superamplitude for the case of the positive helicity massless vector is

A(S
(I1...I2s)

1 , G+
2 , S

(J1...J2s)
3 ) = δ(2)(Q†)T (I1...I2s)(J1...J2s). (1.66)

SUSY places no further constraints upon T (I1...I2s)(J1...J2s), which can be constructed as

in (6) just as a general amplitude for a photon coupled to a massive spin s state. This

implies that the coupling to photons of the spin s+ 1
2
states in the multiplet is determined

by that of the spin s state. For a massive particle of spin s, there are 2s+1 such multipoles

representing each possible independent Lorentz structure in the coupling. Following (6),
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these are

T (I1...I2s)(J1...J2s) =
1

x

(
c0

2s∏
i,j=1

[
1(Ii)3(Jj)

]
+
c1
m
x

2s−1∏
i,j=1

[
1(Ii3(Jj

] [
1I2s)2

] [
3J2s)2

]
+

c2
m2

x2
2s−2∏
i,j=1

[
1(Ii3(Jj

] 2s∏
i,j=2s−1

[
1Ii)2

] [
3Jj)2

]
+ . . .

)
, (1.67)

for coupling constants ci. The additional multipole moment for the coupling of the s+ 1
2

state is therefore determined here entirely from the lower multipoles by SUSY. This is

the generalisation of the protection of the magnetic dipole moment for supersymmetric

matter fermions to higher spin states. We will see another explicit example of this in

Section 1.5.5, where the electric quadrupole moment of the massive vector within the

spin-half vector superfield is determined by the lower multipoles.

1.5.3 One Massive Vector

We next consider the three-leg superamplitude of two massive chiral multiplets and

a massive vector multiplet, as may occur in a Higgsed gauge theory. Repeating the

procedure as in previous sections, we can reduce the amplitude to

A(Q1,WI
2 ,Q3) = δ(2)(Q†)

( d1
m2

〈
2I1J

〉
η1J −

m3d2 +m2d1
m1m2

[
2I1J

]
η1J

+
d1
m2

〈
2I3K

〉
η3K +

d2
m2

[
2I3K

]
η3K

)
= δ(2)(Q†)

(
− d2
m3

〈
2I1J

〉
η1J +

(
(m2

1 −m2
3)d2

m1m3m2

− d1
m1

)[
2I1J

]
η1J

− d1η
I
2 +

d2
m2m3

[
2I
∣∣ p3 ∣∣2J〉 η2J). (1.68)

This leaves two undetermined couplings d1 and d2 after imposing supersymmetry invari-

ance. The two forms stated are useful for taking massless limits m3 → 0 and m2 → 0
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respectively.

Taking the vector massless differs depending on whether the chiral multiplets have

equal mass. In the case m1 ̸= m3, one recovers solely the three-chiral superamplitudes

(1.54) with b = d′2(m
2
3 −m2

1)/(m1m3) − d1/m1 and λ = d1 (this mass scaling has been

anticipated in the definition of d1, as well as the assumption that it is non-zero and finite

in this limit), where d′2 = d2/m2 must be finite (and hence must be suppressed by some

other mass scale). This is consistent with our finding above that there was no consistent

three-leg superamplitude for a massless gluon and two unequal mass chiral multiplets.

More interestingly, if m1 → m3 at a rate |m1 − m3| ∼ O(m2) as m2 → 0, then

non-zero superamplitudes involving massless vector multiplets may be recovered if d2

remains a dimensionless constant. The reference spinors that appear in the factors of

x do so through the spinor limits in (1.116). This leaves the parity-symmetric terms in

the superQCD amplitudes with b = g = d2, as well as the three-chiral superamplitudes

mentioned above. As alluded to above, parity in the vector coupling emerges in this

special limit.

If we instead take the third leg massless, we find smoothly

A(Q1,WI
2 ,Q3) → A(Q1,WI

2 ,Φ
−
3 ) +A(Q1,WI

2 ,Φ
+
3 )η̂3 (1.69)

A(Q1,WI
2 ,Φ

−
3 ) =

d1
m1m2

δ(2)(Q†)
〈
32I
〉 ([

31J
]
η1J +m1η3

)
(1.70)

A(Q1,WI
2 ,Φ

+
3 ) =

d2
m2

δ(2)(Q†)
[
2I3
]
, (1.71)

which are alternatively determined purely from symmetries. These expressions hold

regardless of whether m1 = m2 or not. It is being assumed here that d1 and d2 do not

vanish or diverge in this limit, which is self-consistent (they may still differ from their

counterparts in (1.68) by terms of O(m2)).

Taking the further m1 → 0 limit of these superamplitudes requires d1 ∼ m1 in (1.70)
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and yields

A(Φ+
1 ,WI

2 ,Φ
−
3 ) = δ(2)(Q†)

1

m2

[
2I1
]
, (1.72)

where we have omitted the coupling and provided the dependence on mass necessary to

realize the final massless limit smoothly (so d1 ∼ 1/m2 and d2 constant). The case in

which the chiral multiplets have the same helicity is forbidden by symmetries, so does

not appear in the limit. Taking finally m2 → 0, only the transverse polarisations interact

non-trivially (see comments about the superamplitudes of mixed helicity chiral supermul-

tiplets in Section 1.5.1). It is easily verified that A(Φ+
1 ,W+

2 ,Φ
−
3 ) → −A(Φ+

1 , G
+
2 ,Φ

−
3 )η̂1

and A(Φ+
1 ,W−

2 ,Φ
−
3 ) → A(Φ+

1 , G
−
2 ,Φ

−
3 ). This is expected from the Higgs mechanism if

the massive vector is coupled to massless matter.

In the high energy limit (taking all masses small simultaneously at the same rate),

then it can be verified that

A(Q1,W+,Q3) → A(Φ+, G+,Φ−)η̂1η̂2 +A(Φ+,Φ+,Φ+)η̂1η̂3 −A(Φ−, G+,Φ+)η̂2η̂3

A(Q1,W−,Q3) → −A(Φ+, G−,Φ−)η̂1 +A(Φ−,Φ−,Φ−)η̂2 +A(Φ−, G−,Φ+)η̂3. (1.73)

In the W+ limit, the coupling d2 is the cubic coupling among chiral multiplets, while d1

is the parity conjugate coupling. The couplings of the chiral multiplets to the massless

vectors are dermined by linear combinations of these weighted by combinations of the

masses.

The possibility of distinct couplings d1 and d2 allows for parity violation in the massive

superamplitudes and accounts for the way in which the massive amplitudes can combine

together states of different helicities that would otherwise be described as having different

interactions. Despite the observation that chiral multiplets coupling to massless vectors

must have the same mass, there is not inconsistency with the massive multiplets having
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different masses in the high energy limit.

1.5.4 Two Vector Superfields

We next turn to three-leg superamplitudes with two vector superfields and one chiral

superfield. Starting with the case of one massive leg, we first look at a massive chiral

superfield decaying into two massless vectors. The case where the massless decay prod-

ucts are instead both matter fields was addressed in Section 1.5.1, while no consistent

superamplitude may be constructed if the massless multiplets are chiral and vector. Only

the superamplitudes with massless vector multiplets of the same helicity are non-zero,

following from the rules of Section 1.4.2. These are (calling m the nonzero mass)

A(G−
1 ,Φ2, G

−
3 ) = δ(2)(Q†)a ⟨13⟩ A(G+

1 ,Φ2, G
+
3 ) = δ(2)(Q†)

b

m
[31]2 . (1.74)

These superamplitudes would arise, for example, in a theory involving the quantum field

couplings [ΦWAWB]F , for (off-shell) chiral superfield Φ and super-Yang-Mills curvatures

WA,B for some Abelian gauge groups (in other words, a massive supersymmetric axion or

dilaton-like coupling). Demanding P invariance would imply that a = b (if the massive

chiral multiplets in each superamplitude are antiparticles, then the couplings may be

related by CP instead). The couplings a and b have the expected inverse mass dimension

of an irrelevant interaction. Assuming that, as defined in (1.74), they have no further

dependence on the mass of the heavy chiral multiplet, then the massless limit may be

taken while holding them fixed (if they instead scale as e.g. ∝ 1/m, then this would

obstruct the limit). This gives

A(G−
1 ,Φ

−
2 , G

−
3 ) = δ(2)(Q†)a ⟨13⟩ A(G+

1 ,Φ
+
2 , G

+
3 ) = δ̃(1)(Q)b [13] . (1.75)
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and the other components are zero.

The superamplitudes for a massive vector multiplet decaying into massless vector and

chiral fields may be found similarly. Those that are permitted by the symmetries are (up

to coupling constants)

A(WI
1 , G

+
2 ,Φ

+
3 ) = δ(2)(Q†)

1

m

[
1I2
]
[23] (1.76)

A(WI
1 , G

−
2 ,Φ

−
3 ) = δ(2)(Q†)

〈
1I2
〉

(1.77)

All other helicity combinations are zero. The other allowed decay channel for a massive

vector multiplet was found above in (1.72).

The massless limits of the superamplitudes (1.76) and (1.77) converge to the super-

amplitudes (1.75). Both of these massive and massless superamplitudes may have a

common origin, for example in the axionic coupling suggested above, where one of the

vectors may become massive through the Higgs mechanism. As in previous cases, the

coupling constants for (1.76) and (1.77) may be related by parity.

Finally, we note that it is not possible to find a superamplitude describing the decay

of a massive vector multiplet into two massless vector multiplets, which is an expression

of the Landau-Yang theorem.

Continuing to the two-massive-leg case, one may construct superamplitudes for mas-

sive chiral and vector supermultiplets with a massless vector, which are independent of

whether the massive multiplets have the same mass or not:

A(Φ1,WI
2 , G

−
3 ) = aδ(2)(Q†)

〈
2I3
〉

(1.78)

A(Φ1,WI
2 , G

+
3 ) = bδ(2)(Q†)

[
2I3
]([

31J
]
η1J −

m1

m2

[
32K

]
η2K

)
(1.79)

Taking individual legs massless, one recovers solely those amplitudes already remarked

41



Massive On-Shell Supersymmetric Scattering Amplitudes Chapter 1

on above. The high energy behaviour of these superamplitudes is poor, scaling inversely

with some mass scale contained within the couplings a and b.

Next, the superamplitudes for two massive vector multiplets and one massless chiral

multiplet may be similarly determined. Using the definitions of the massless chiral super-

multiplets in (1.25), the usual arguments determine the three-particle superamplitudes

to be

A(WI
1 ,Φ

+
2 ,W ′J

3 ) = δ(2)(Q†)F IJ
1+

[
1

m1

[
21K

]
η1K + η2

]
(1.80)

A(WI
1 ,Φ

−
2 ,W ′J

3 ) = δ(2)(Q†)F IJ
1−, (1.81)

where

F IJ
1± = d

(±)
1

〈
1I3J

〉
+ d

(±)
2

[
1I3J

]
. (1.82)

These are again independent of whether the massive legs have equal mass or not. Taking

the massless limit of the first leg, the coefficients in the Φ− superamplitude, d−i , should

have no mass dependence in order to smoothly match onto amplitudes (1.77) and (1.72).

For the Φ+ superamplitude, both coefficients must scale as d
(+)
i ∼ m1 to return to

(1.76) and (1.72). The couplings in both cases must be suppressed by a higher mass

scale. Taking the third leg massless instead, the expected limits are obtained only if

d
(+)
i ∼ 1/m3, so altogether d

(+)
i ∼ m1/m3 to leading order in m1 and m3 if the limits

are to be both non-trivial and unobstructed. However, in either of these cases, the

resulting superamplitudes must be suppressed by other mass scales and, in this sense,

are “effective”. In contrast, taking both legs massless simultaneously is possible without

introducing new mass scales. In this respect, these superamplitudes are merely a special

example of the case in which the chiral multiplet is also massive, which will be explained
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next.

Finally, the all-massive superamplitude for two vectors and a chiral multiplet is de-

termined to be

A(WI
1 ,Φ2,W ′K

3 ) = δ(2)(Q†)
(
F IK
(0) + F IK

(2)

)
, (1.83)

where

F IK
(0) = a

〈
1I3K

〉
+ a′

[
1I3K

]
(1.84)

F IK
(2) =

(
b′
〈
1I3K

〉
+ b
[
1I3K

]) [[
1M2J

]
η1Mη2J +

1

2

(
m2η1Lη

L
1 +m1η2Nη

N
2

)]
. (1.85)

In the limit that the chiral multiplet becomes massless, the coefficients match on

to those of (1.80) and (1.81) as b′ → d
(+)
1 /m1, b → d

(+)
2 /m1, a → d

(−)
1 and a′ → d

(−)
2 .

Making the matter massive does not really affect the structure of the interactions beyond

their collection into the single superamplitude. The results from taking a single vector

massless instead are similar as for (1.80) and (1.81) and will not be elaborated upon

further.

More interesting instead are the high energy limits. The superamplitude (1.83) con-

sists of two parity conjugate pairs of couplings. The couplings a and b represent “effective”

couplings (like those of the axion/dilaton mentioned above or loop induced interactions

in a perturbative field theory) that must be suppressed by some additional mass scale

(and similarly d−1 and d+2 in the case with a massless chiral multiplet). On the other hand,

a′ and b′ (or d+1 and d−2 ) correspond to couplings of a Higgs boson to massive vectors,

where the Higgs belongs to a chiral multiplet (and is not part of the multiplet eaten by

the vectors with the Goldstone boson). This happens when the quartic coupling of the

scalar potential originates from the superpotential (“F -term”).
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To illustrate how the superamplitude (1.83) scales in the UV limit, assume that

a′ = ā/v and b′ = b̄/v2 for some mass scale v of order the leg masses and call constants

ci = mi/v for leg masses mi. The leading terms in the limit are then

A(W+
1 ,Φ2,W ′+

3 ) → A(Φ+
1 ,Φ

−
2 , G

+
3 )η̂3 −A(G+

1 ,Φ
−
2 ,Φ

+
1 )η̂1 −A(Φ+

1 ,Φ
+
2 ,Φ

+
1 )η̂2

A(W+
1 ,Φ2,W ′−

3 ) → −A(G+
1 ,Φ

+
1 ,Φ

−
3 )η̂1η̂2η̂3 +A(Φ+

1 ,Φ
−
2 , G

+
3 )η̂3 (1.86)

and similarly for parity conjugate states. All terms in the first line depend upon the

coupling ā and each term proportional to η̂i is accompanied by a factor of ci. In the

second line, the first term depends upon b̄c1c3, while the second has coupling constant

āc3. Again, this pattern of couplings reverses for the parity conjugate limits.

However, there are also subleading terms that vanish in the massless limit that cannot

be placed into massless superamplitudes. These represent the effective Goldstone boson

couplings to the Higgs.

A supersymmetrised version of the argument used in (6) to demonstrate the Higgs

mechanism may presumably be made from constructing a four-leg vector superampli-

tude from demanding consistent factorisation into 3-leg superamplitudes (1.83) on each

factorisation channel. Notably, an exceptional case occurs when the Higgs couples to a

massive and massless vector boson in a three-particle superamplitude, as in (1.78) and

(1.79), which will induce unitarity-violating superamplitudes in the high energy limit in

tree-level processes.

1.5.5 Massive and Massless Vector Multiplet Interactions

Let us begin with amplitudes with two massive vector superfields and one massless

vector superfield, which has two distinct cases of interest. The first is A(WI , G,WJ
),

where the two massive vector superfields W and W have the same mass. This arises
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in many examples, such as the adjoint Higgsing of a simple gauge theory by a single

vacuum expectation value (vev), which does not feature any 3-leg amplitudes entirely

of massive vectors. In this case, the vectors are conjugates, which is the reason for our

choice of notation, although we do not need to assume this at this point. The second is

A(WI , G,W ′J), where the two massive states are distinct and of different mass. These

can occur, for example, in field theories with generalised Chern-Simons terms (34–36),

where at least one of the vectors is Abelian and has a Stuckelberg mass, whereas another

of the vectors may be separately Higgsed.

As in the superQCD case above, the positive helicity gluon superfield amplitudes are

determined very simply. In these cases one finds

A(WI
1 , G

+
2 ,W

J

3 ) = δ(2)(Q†)
[
1I
∣∣α [3J ∣∣β ( g

mx
ϵαβ +

g − h

m2
|2]α |2]β

)
(1.87)

A(WI
1 , G

+
2 ,W ′J

3 ) = δ(2)(Q†) a
[
1I2
] [
3J2
]
, (1.88)

where, in both cases, the number of free parameters matches that in the non-supersymmetric

amplitude for two massive fermions and one massless vector (6). As in all previous ex-

amples, we have here neglected to show that the coupling constants g and h may have

internal quantum number structure. In the first case (1.87), the combination of terms

with coupling g corresponds to a massive vector ‘minimally coupled’ to the massless vec-

tor. As has been foreseen in the definition of dimensionless couplings in (1.87), in the

limit that m → 0 or, equivalently here, at energies ≫ m, these terms converge to their

expected massless counterparts.

The term proportional to h would have the perturbative interpretation of an anoma-

lous magnetic dipole moment for the massive vector (or electric dipole moment if it has

a complex phase). This term has poor behavior in the UV limit for certain helicity

configurations, which is the reason for the tree-level universality of the magnetic dipole
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moment h = 0 for elementary particles (37). Note that supersymmetry has set fixed the

possible quadrupole structure of the massive vector boson amplitudes that may otherwise

exist as a further independent Lorentz structure in the vector boson component ampli-

tude (6; 38). This derivation makes obvious the way that supersymmetry determines the

vector amplitudes from their fermionic counterparts.

Finally, (1.87) appears to be symmetric under exchange of particles 1 and 3 (x 7→ −x

under this exchange - see (2.23)). However, because the superfields are fermionic, the

vector multiplets must be distinct.

In the second example (1.88), the coupling a has mass dimension −2. However, unlike

for the minimal coupling terms in the case above, the kinematic factors of the component

superamplitudes corresponding to the + helicity states (such as A(W+G+W ′+)) contain

terms that merely scale as ∼ O(mi) in the massless limit (see equations (1.115) in Ap-

pendix 1.A.1 for massless limits of spinors). The amplitude must therefore diverge in

the high energy E limit as E/M for some mass scale M . Correspondingly, the examples

of field theories cited above that feature these amplitudes are only effective up to a UV

cut-off.

We can likewise find the negative helicity superamplitude purely from little group

covariance and supersymmetry. From the same arguments as in the SQCD case, the

Grassmann polynomial must only contain an order-one term.

A(WI
1 , G

−
2 ,WJ

3 ) = δ(2)(Q†)
[
1I
∣∣α [3J ∣∣β F2αβ

(
− 1

m1

η1K
[
1K2

]
+ η2

)
. (1.89)

The tensor F2αβ is then determined from the little group representations of the legs. In
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the equal mass case, this gives a superamplitude with two free parameters:

A(WI
1 , G

−
2 ,W

J

3 ) = δ(2)(Q†)
[
1I
∣∣α [3J ∣∣β ( g′

m
xϵαβ +

h′

m2
x2 |2]α |2]β

)(
− 1

m
η1K

[
1K2

]
+ η2

)
.

(1.90)

Exchange (anti-)symmetry between W and W may be manifested by adding terms pro-

portional to Q† to give

A(WI
1 , G

−
2 ,W

J

3 ) = δ(2)(Q†)
[
1I
∣∣α [3J ∣∣β ( g′

m
xϵαβ +

h′

m2
x2 |2]α |2]β

)
×
(
− 1

2m
η1K

[
1K2

]
+ η2 −

1

2m
η3K

[
3K2

])
. (1.91)

If parity is a symmetry of the theory under consideration, then this relates the super-

amplitudes of A(WI , G−,WJ
) as discussed in Section 1.4.3. Assuming that the vector

multiplets are self-conjugate, this requires that g′ = g and h′ = h.

For the case where m1 ̸= m3, the only option which has the correct scaling is F2αβ =

b(p3 |2⟩)α(p3 |2⟩)β. Our amplitude in this case is

A(WI
1 , G

−
2 ,W ′J

3 ) = δ(2)(Q†)b′
[
1I
∣∣ p3 |2⟩ [3J ∣∣ p3 |2⟩(− 1

m1

η1K
[
1K2

]
+ η2

)
= δ(2)(Q†)b

〈
1I2
〉 〈

3J2
〉(

− 1

m1

η1K
[
1K2

]
+ η2

)
(1.92)

where the coupling b has been redefined in the second line to absorb some factors of mass.

If parity is a symmetry of this theory, then one finds b = am1/m3.

In the massless limit, the superfields are expected to decompose as shown in (1.27).

In anticipation of the superamplitudes of the massless components being matched onto

by the massless limit of the massive superamplitude, we first determine these directly

from symmetries. The constraints of complex three-particle special kinematics, little

group scaling and ‘locality’, in the sense that the three-particle amplitudes do not scale
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as negative powers of momentum, determine that the superamplitudes of the massless

supermultiplets are (neglecting coupling constants):

A(G+
1 , G

+
2 , G

−
3 ) = δ̃(1)(Q)

[12]2

[13] [23]
(1.93)

A(G−
1 , G

+
2 , G

−
3 ) = δ(2)(Q†)

⟨13⟩2

⟨12⟩ ⟨23⟩
(1.94)

A(Φ−
1 , G

+
2 ,Φ

+
3 ) = δ̃(1)(Q)

[23]

[13]
(1.95)

A(Φ+
1 , G

+
2 ,Φ

−
3 ) = δ̃(1)(Q)

[21]

[31]
. (1.96)

Other superamplitudes between other possible combinations of massless superfields are

also possible, but do not arise in taking the massless limit of (1.87).

Choosing a particular helicity configuration in (1.87), the massless limit may be taken

using the limits presented in Appendix 1.A.1 and identified with the superamplitudes

above. The limits may be calculated explicitly to be

A(W+
1 , G

+
2 ,W

+

3 ) → 0, A(W−
1 , G

+
2 ,W

−
3 ) → A(G−

1 , G
+
2 , G

−
3 ) (1.97)

A(W+
1 , G

+
2 ,W

−
3 ) → −A(G+

1 , G
+
2 , G

−
3 )η̂1 +A(Φ−

1 , G
+
2 ,Φ

+
3 )η̂3, (1.98)

and similarly for A(W−
1 , G

+
2 ,W

+

3 ). Similar results may be shown for the limits of (1.90).

This demonstrates how the supersymmetrisation of the Higgs mechanism operates

by combining well-defined UV amplitudes of massless chiral and vector multiplets into

single superamplitudes of massive vector multiplets in the IR.

1.5.6 Self-interacting Massive Vector Supermultiplets

A similar analysis may be performed to determine the possible structure of three-leg

superamplitudes of massive vector superfields. A general expression will include several
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special cases, such as when the vectors have equal mass and belong to the same species, as

well as the case in which there is only one type of superfield, which must be constrained

so that there are no vector self-interactions.

Just as for the cases considered previously, supersymmetry implies that the amplitude

has the form

A(WI
1 ,WJ

2 ,WK
3 ) = δ(2)(Q†)F IJKM

1

(
η1,M +

1

m2

[
1M2N

]
η2,N

)
. (1.99)

This is the extent to which supersymmetry determines the amplitude. The next step is

to determine the number of independent Lorentz structures that can appear in F IJKM
1 .

Altogether, there are 6 such independent terms (up to others related by the Schouten

identity and kinematic relations):

F IJKM
1 = c1

〈
1I3K

〉 [
2J1M

]
+ c2

[
1I3K

] 〈
2J1M

〉
+ c3

[
1I3K

] [
2J1M

]
+c4

〈
1I3K

〉 〈
2J1M

〉
+ c5

〈
2J3K

〉
ϵIM + c6

[
2J3K

]
ϵIM . (1.100)

One of the independent terms in this superamplitude represents a Higgs coupling,

where the Higgs has a “D-term” quartic and is part of the chiral multiplet eaten with

the Goldstone boson. In the Abelian Higgs theory, this is the only structure in the

superamplitude. This may be identified by extracting the component amplitude of three

vectors and setting it to zero. The component amplitude is

A(W I1I2
1 ,W J1J2

2 ,WK1K2
3 ) = F I1J1K1M

1

(
δI2M
〈
3K22J2

〉
− 1

m2

[
1M2J2

] 〈
3K21I2

〉)
, (1.101)

where external spin indices are implicitly symmetrised over. After simplification this

reduces to five independent spin structures. Demanding that these vanish implies that

c2 = c3 = c4 = 0, c6 = 0 and c5 = −m2c1, thereby reducing the number of independent
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couplings to one. The corresponding term in the superamplitude is then

A(WI
1 ,WJ

2 ,WK
3 ) = c1δ(Q

†)
( (

−m2

〈
2J3K

〉
ϵIM +

〈
1I3K

〉 [
2J1M

])
η1M

+
(
m1

〈
1I3K

〉
ϵJM −

〈
2J3K

〉 [
1I2M

])
η2M

)
, (1.102)

which is manifestly antisymmetric under the exchange 1 ↔ 2. This constitutes one of the

six independent contributions to the superamplitude (1.99) and is itself the three-particle

superamplitude for the Abelian Higgs theory.

This contains component amplitudes of the form that would be expected in Abelian

Higgs theories. For example, calling Hi the scalar components of the supermultiplets,

then

A3(W
I1I2
1 , H2,W

K1K2
3 ) =

∂

∂η1I2

(1
2
ϵJ1J2

∂

∂η2J2

) ∂

∂η3K2

A(WI1
1 ,WJ1

2 ,WK1
3 )

= −c1m3

[
1I3K

] 〈
1I3K

〉
. (1.103)

Completion of the identification of this with a Higgs amplitude would require that c1 be

inversely proportional to some mass scale and that c1 ∼ 1/m2
3 as m3 → 0 (and likewise

for the other masses, repeating this argument with the identities of particles 1, 2 and 3

permuted). These are the component amplitudes expected in the Abelian Higgs theory

and, given the assumption that there are no vector self-interactions, N = 1 supersym-

metry implies that there is only a single Lorentz structure and coupling consistent with

this.

The remaining five couplings each describe superamplitudes with vector boson self-

interactions. The triple gauge coupling vertex of three massive vectors has been studied

extensively in the past in the context of the electroweak bosons of the Standard Model.

An effective Lagrangian describing the independent Lorentz structures has been given
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in (39). The superamplitude (1.99) represents the supersymmetrisation of this. Super-

symmetry restricts the seven independent couplings of (39) to five. The two prohibited

terms are those originating from F 3 terms (for Yang-Mills curvatures F of the vectors),

just as for massless amplitudes.

Of the five remaining structures, one can be attributed to the Yang-Mills (tree) cou-

pling. Just as for the Higgs couplings, the expected Yang-Mills vector self-interaction

term may be identified by matching the component amplitude (1.101) to the expected

expression. Doing so imposes c3 = c4 = 0, c6 = m2c2 and identifies the gauge coupling

as c2 = −2g/(m1m3). The Higgs coupling c5 = −m2c1 remains free. This structure, in

addition to the Higgs coupling above, are distinguished as having UV limits that converge

to massless three particle superamplitudes at leading order.

The remaining four couplings have poor UV scaling and correspond to field theoretic

operators upon which gauge invariance is not linearly realised. Two of these (that are

CP -odd) may be identified with the generalised Chern-Simons terms mentioned earlier

(or are generated at loop-level by anomalies), while the other two correspond to the

remaining two types of operators that may be constructed from vector multiplets with a

single derivative. Of these, one corresponds to the anomalous magnetic dipole moment

in the massless limit of one leg in (1.87) and (1.90). Its CP -odd counterpart, in the

massless limit, provides the same Lorentz structure, but with a different phase in the

coupling. The other two couplings vanish in the limit of a massless leg on-shell.

Further conditions may be used to constrain or interpret the couplings, such as re-

quiring good UV limits and properties of higher leg amplitudes. Two simple examples

are provided by demanding that this amplitude matches onto either of the two cases

discussed in Section 1.5.5 in the limit that m1 → 0.

For the case where we leave m2 ̸= m3, we demand that (1.99) converge to (1.92) and

(1.88) for each helicity configuration of the massless vector multiplet. As long as the
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couplings do not scale as ∼ 1/m1, this requires that c3 = −a and c4 = −b, up to terms

∝ m1. One of the terms with couplings c1 and c2 vanishes (which depends upon the

helicity choice for index I) while the other degenerates with the c5 and c6 terms and so

cannot be independently determined. Finally, the couplings c5 and c6 (up to inclusion of

possible contributions from c1 and c2 as just described) match onto the terms in (1.80)

and (1.81) and may be identified with the couplings d1 and d2.

In the case where the two remaining masses approach equality, m2,m3 → m as

m1 → 0, we can demand that the coefficients of (1.99) approach (1.87) and (1.90). This

determines the coefficients to be c1 = c2 = −g′/(m1m), c3 = h/m2 and c4 = h′/m2,

while it is required that g′ = g in the massless amplitudes (so parity must be an acci-

dental symmetry if h = h′ = 0). These may be easily checked using the spinor limits

provided in Appendix 1.A.1. Again, matching onto the superamplitudes with massless

vectors, the remaining couplings must be c5 = −c6 = g′/m1, but may additionally have

extra terms that would be determined by matching onto the amplitudes with massless

matter (1.80) and (1.81). Unlike the previous case, these limits ensure that the mass

scale of the couplings is given by m and m1, so that, if h = h′ = 0 (as is true at tree-

level in perturbative gauge theories), the amplitudes would have the good UV limits

arranged by the Higgs mechanism (6). Note that, as expected from (1.27), the super-

amplitudes have limits A(W+
1 ,WJ

2 ,WK
3 ) → A(G+

1 ,WJ
2 ,WK

3 )η̂1 + A(Φ+
1 ,WJ

2 ,WK
3 ) and

A(W−
1 ,WJ

2 ,WK
3 ) → A(G−

1 ,WJ
2 ,WK

3 ) + A(Φ−
1 ,WJ

2 ,WK
3 )η̂1 and involve terms that pick

up the extra Grassmann variable η̂1 for the massless superfield. A similar analysis can be

performed by instead m2 → 0 or m2 → 0 in order to find further consistency conditions

on the couplings to match onto the superamplitudes in the previous sections, but we

refrain from providing the results here. These are consistent with the identifications of

the couplings made above - that is, c3 and c4 are associated with the couplings that de-

termined the anomalous magnetic and electric dipole moments in the limits of a massless
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leg, while linear combinations of c1, c2, c5, c6 correspond to the tree-level (“D-term”)

Higgs and Yang-Mills couplings, while c5 and c6 also contain the other non-Yang-Mills

contact interactions, such as those induced from Stuckelberg axions and anomalies.

1.5.7 Higher Spin Amplitudes

While the number of possible Lorentz structures in three-particle amplitudes typi-

cally grows significantly with the spin of the interacting particles, the case of a heavy

particle decaying into two massless products is especially simple. As described in (6),

the amplitude for a spin s massive particle ϕ̄ to decay into two massless particles φ1 and

φ2 with respective helicities h1 and h2 is uniquely

A(φh11 , φ
h2
2 , ϕ̄

(I1...I2s)
3 ) = G [12]s+h1+h2

s+h2−h1∏
i=1

[
3(Ii1

] 2s∏
j=s+h2−h1+1

[
3Ij)2

]
, (1.104)

where G is some coupling constant of mass dimension [G] = −(2s + h1 + h2 − 1). The

notation is intended to indicate that all of the spin indices for the massive field are

symmetrised over. It is being assumed that angular momentum selection rules permit

this process to exist.

The supersymmetrisation of this is just as simple. Promoting φhi to massless super-

multiplets (1.30) with Clifford vacua of helicities hi and likewise ϕ to the corresponding

massive multiplet (1.29), then the three-particle superamplitude is also fixed as

A(Σh1
1 ,Σ

h2
2 , S

(I1...I2s)
3 ) =

1

mS

δ(2)(Q†)A(φh11 , φ
h2
2 , ϕ̄

(I1...I2s)
3 )

=
1

⟨12⟩
δ(2)(Q†)A(ξ

h1− 1
2

1 , ξ
h2− 1

2
2 , ϕ

(I1...I2s)
3 ), (1.105)

where mS is the mass of the heavy multiplet.

The superamplitude for scattering of four massless particles by exchange of a massive
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spinning particle may be constructed analogously to the non-supersymmetric case (6).

Supersymmetry fixes the superamplitude to have the form

A(Σh1
1 ,Σ

h2
2 ,Σ

h3
3 ,Σ

h4
4 ) =

1

⟨34⟩
δ(2)(Q†)A(φh11 , φ

h2
2 , ξ

h3− 1
2

3 , ξ
h4− 1

2
4 ), (1.106)

where the component amplitude A(φh11 , φ
h2
2 , ξ

h3− 1
2

3 , ξ
h4− 1

2
4 ) may be constructed out of the

spinning Gegenbauer polynomials corresponding to the exchange of higher spin reso-

nances, just as for the non-supersymmetric case (6).

On a massive resonance, the superamplitude respects a supersymmetric factorisation

into three-particle superamplitudes. For example, in the s-channel,

A(Σh1
1 ,Σ

h2
2 ,Σ

h3
3 ,Σ

h4
4 ) →

∫
d2ηPAL(Σ

h1
1 ,Σ

h2
2 , S

(I1...I2s)
P )

1

(p1 + p2)2
AR(S−P (I1...I2s),Σ

h3
3 ,Σ

h4
4 ),

(1.107)

where the intermediate superfield has Grassmann variables ηIP and the Grassmann inte-

gral accounts for the sum over all states in the multiplet of the intermediate resonance.

It has been chosen to represent the massive multiplet as outgoing in AL and incoming in

the other factor. The incoming superfield is then represented as the analytic continuation

of an outgoing multiplet. Crossing relations imply that this must be the antimultiplet,

hence the bar and the opposite height spin indices. The component antiparticles occupy

opposite levels in the superfield.

The factorisation of the superamplitude (1.107) is easily demonstrated as consistent

with expectations from (1.106). Because of the simplicity of the three-particle superam-

plitudes, the Grassmann integral may be trivially evaluated using
∫
d2ηP δ

(2)(Q†
L)δ

(2)(Q†
R) =

mSδ
(2)(Q†), where Q†

L and Q†
R are the supercharges associated with each respective sub-

superamplitude above in (1.107). This requires use of the analytic continuation rules for
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spinors and Grassmann variables given in (14), which here imply that Q†
i,−P = −Q†

i,P for

state i of momentum P . The two representations of the three-particle superamplitude

(1.105) can then be substituted to confirm that (1.107) is given simply by (1.106) with the

exhibited component amplitude factorised into the component three-particle amplitudes

shown in (1.105).

1.6 Conclusion

We have here initiated the study of the on-shell properties of supersymmetric theo-

ries by developing the on-shell superspace formalism in which states are described in a

supermultiplet by their asymptotic quantum numbers - momentum, total spin and polar-

isation - without the need to commit to a frame of reference. This was used to construct

massive supermultiplets and represent these in scattering amplitudes of supersymmetric

theories, concentrating here on N = 1 theories. Purely from the foundational principles

of quantum mechanics, special relativity and supersymmetry, we constructed all of the

possible elementary on-shell three-point amplitudes for multiplets of spin no greater than

1.

A more exhaustive study into the extent to which S-matrix postulates constrain

supermultiplets and their interactions at weak coupling is warranted. Further constraints

upon theories from assumptions about IR properties, such as factorisation or behaviour

in the high energy limit, remain to be investigated.

It would be interesting to more broadly catalogue theories characterised by their

spectra and interactions from conditions on IR properties and see whether they conspire

to imply emergent symmetries or uniqueness properties (6; 31; 40). For example, con-

sequences of supersymmetry on emergent properties of theories constructible from soft

limits were recently investigated in (41). We do not foresee difficulties in extending our
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analysis to scattering states of higher-spin composite superfields or including multiplets

of supergravity or Kaluza-Klein modes (see recently (15; 42; 43) for a possible application

to black holes).

To progress beyond single particle representations and 3-leg amplitudes, some guid-

ance for systematically constructing higher order (loop and leg) amplitudes from infrared

(on-shell) properties would be desirable, such as on-shell recursion. However, because

the validity of massless recursion is often sensitive to the helicity of the shifted states,

the effective combining of massless states of definite helicity into massive particle rep-

resentations of the (super-)Poincare group poses a potential obstruction. Prospects for

overcoming this are most promising in N = 4 SYM where, for massless amplitudes, a

myraid of constructibility properties have been discovered. Vestiges of these may remain

present on the Coulomb branch, in particular the dual (super)conformal symmetry. In

(14) we formulate a massive super-BCFW shift and prove its validity for the construction

of all Coulomb branch tree superamplitudes. The constructibility of Coulomb branch su-

peramplitudes seems to arise from a surprising ‘nonlocality’ present in the three-particle

superamplitudes. This remains an interesting avenue for future work.
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1.A Conventions and Useful Identities

1.A.1 Spinor Helicity for Massive Particles

We here summarise helicity spinors for massive particles and its consequences, taking

the opportunity to establish the conventions and notation that we adopt throughout this

article and also to present useful identities. The reader is referred to (8) for review of

the spinor helicity method for scattering processes of massless particles, the conventions

of which, in addition to (10), we (mostly) adhere to and will not restate.

Introducing helicity spinors with SU(2) little group structure has consequences for

the description of the internal and external structure of scattering amplitudes. Internally,

as mentioned above, the starting point is that massive momenta (as representations of

the spin group SL(2,C): p = pµσµ) may be decomposed into two null momenta as

pα̇β = −
∑
I

|pI⟩α̇
[
pI
∣∣β . (1.108)

The two pairs of left- and right-handed spinors indexed by I, |pI ] and
〈
pI
∣∣, trans-

parently respect an SU(2) symmetry that may be identified with the momentum’s little

group. These SU(2) indices may be raised and lowered in the usual way to convert

between representations and their conjugates:

〈
pI
∣∣
α̇
= εIJ ⟨pJ |α̇ |pI ]α = εIJ

∣∣pJ]
α
. (1.109)

Under conjugation, the spinors transform as

(
[
pI
∣∣)† = |pI⟩ (

〈
pI
∣∣)† = − |pI ] . (1.110)
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Fundamental tensor representations have lowered indices. We take all scattering states

here to be outgoing, so naturally have raised internal indices (including little group)

corresponding to the polarisations of the conjugated states.

As usual, det(p) = −p2 = m2 for mass m. As the spinors in (1.108) are conjugates,

det(p) = det(|p]) det(⟨p|) = | det(|p])|2. The choice of the phase of det(|p]) is free, so

det(|p]) = mmay be chosen without loss of generality (although see (44) for interpretation

of the mass and its complex phase as the extra components of a 6d momentum and its

consequences for dual conformal symmetry). The spinors then have bilinear products

with themselves

〈
pIpJ

〉
= mεIJ

[
pIpJ

]
= −mεIJ , (1.111)

obey the Weyl equations:

p
∣∣pI] = −m

∣∣pI〉 p
∣∣pI〉 = −m

∣∣pI][
pI
∣∣ p = m

〈
pI
∣∣ 〈

pI
∣∣ p = m

[
pI
∣∣ (1.112)

and the spin sums:

|pI ]α
[
pI
∣∣β = mδβα |pI ]α

〈
pI
∣∣
β̇

= pαβ̇

|pI⟩α̇
〈
pI
∣∣
β̇
= −mδα̇

β̇
|pI⟩α̇

[
pI
∣∣β = −pα̇β. (1.113)

The little group index effectively labels the two possible solutions to each of the Weyl

equations, which may be rotated into each other by a Wigner rotation.

Externally, the S-matrix transforms as a tensor under the little group of each of

its external particle legs, being an array of transition matrix entries between states of
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different spin configurations. An external state of spin s has polarisation wavefunction

that can be described by a rank 2s symmetric tensor of the little group SU(2). States

of a particular polarisation ms may be extracted from this by choosing the symmetrised

component of the tensor with ms + s indices aligned with the spin direction and s−ms

indices opposite and then normalising. For example, a massive vector particle is described

by symmetric polarisation tensor T (I1I2), with ms = −1, 0, 1 states respectively given by

T−−, 1√
2

(
T+− + T−+

)
and T++. See (45) for tensor methods to describe spin. We

(mostly) restrict to particles of spin ≤ 1 in this work, although a significant part of

the versatility of this formalism is its ability to elegantly describe amplitudes of massive

states of any spin.

The possible structures that may appear in the S-matrix and are consistent with

Lorentz invariance are determined by the number of independent combinations of external

state polarisations that can be made. The systematic construction of these was described

in (6). Rather than build external polarisations directly from the tensor products of

massive spinors (e.g. T (I1I2) =
∣∣p(I1] ∣∣pI2)]), a direct on-shell construction of elementary

amplitudes can be performed instead by using the massive spinors to construct a tensor

basis with respect to which the S-matrix may be decomposed. Spinors of either chirality

(or both) may be used to do this. The coefficients of these basis tensors then represent

polarisation-stripped Lorentz tensor amplitudes, in which the possible independent terms

may be built out of external momenta and massless spinors. The helicities of massless

legs then determine the amplitude’s U(1) little group scaling for each massless particle.

As a simple example, the S-matrix entry for the decay of a massive vector V1 into two

massless right-handed fermions ψ2 and ψ3 is determined uniquely by symmetry to be

A(V, ψ2, ψ3) = g
( [

1(I1
∣∣α1
[
1I2)
∣∣α2
)
× |2]α1

|3]α2
= g

[
1(I12

] [
1I2)3

]
, (1.114)
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for some coupling constant g. This method of deducing little group structures built out

of spinors is used repeatedly throughout this work in constructing superamplitudes.

Part of the utility of this formalism is that the little group indices are an internal

degree of freedom and allow for the polarisation to be projected onto any external spin

frame or axis. The procedure for doing this is discussed in (6). In practice, we find

that it is clearest to abuse notation and, once such an external frame is specified, simply

reinterpret the little group indices as referring to components along this direction. In

particular, as it is often most useful, especially in taking massless or high energy limits,

to choose spin frames for each particle aligned with their momenta (so that the little

group indices simply become helicity indices), we will leave this choice implicit unless

stated otherwise.

In this case, the spinors have massless limits

∣∣p+]→ |p]
∣∣p−]→ 0∣∣p+〉→ 0

∣∣p−〉→ −|p⟩ (1.115)

where the spinors without little group indices are the usual spinors for massless momen-

tum p. More precisely, the spinors that vanish do so O(m). The limits may be expressed

as

lim
m→0

1

m

∣∣p−] = |q]
[qp]

lim
m→0

−1

m

〈
p+
∣∣ = ⟨q|

⟨qp⟩
, (1.116)

where the remaining spinors |q] and |q⟩ become the reference spinors and are ambiguous

in the massless amplitude, as their direction arrived in taking the limit is arbitrary (up to

requiring [qp] , ⟨qp⟩ ≠ 0). In practice, it is often possible to take the limit while avoiding

the introduction of the reference by using momentum conservation and other identities.
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For 3-leg amplitudes involving the factor x, the following identities are useful:

x =
1

m

[q| p2 |3⟩
[q3]

=
m ⟨q3⟩
⟨q| p2 |3]

(1.117)

and

x
[
32I
]
=
〈
32I
〉
, x

[
31I
]
= −

〈
31I
〉
, (1.118)

[
1I2J

]
x

=

〈
1I2J

〉
x

+

[
1I3
] [
2J3
]

m
, (1.119)

where p3 is the massless leg and p1 and p2 are the massive legs, while |q] and |q⟩ are

arbitrary reference spinors, not necessarily related, that satisfy [q3] ̸= 0 and ⟨q3⟩ ≠ 0.

1.A.2 Grassmann Calculus

The Grassmann variables may be imbued with SU(2) little group indices ηI . In this

case, Grassmann differentiation may be defined in the usual way: ∂
∂ηI
ηJ = ∂

∂ηJ
ηI = δIJ .

However, this requires that the index height on the derivative be raised or lowered with

an extra (−) sign: ∂
∂ηJ

= −ϵJI ∂
∂ηI

. We note for convenience the identities

1

2

∂

∂ηI

∂

∂ηI

(
1

2
ηJη

J

)
= −1, (1.120)

ηIηJ = −1

2
ϵIJηKη

K . (1.121)

The little group invariant Grassmann integration measures are defined here as

d2η =
1

2
ϵIJdηIdηJ d2η† = −1

2
ϵIJdη†Idη

†
J (1.122)

where
∫
dηIη

J = δJI and
∫
dη†Iη

†J = δJI . The index placement on the differential is a
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property of the differential and not of the variable being integrated - that is, dηI = d(ηI).

The strange positioning of the index is needed for this operation to be the same as

differentiation and is an occurrence of the general topsy-turvyness of Grassmann numbers.

Also, as for the derivative, dηI = −ϵIJdηJ (and likewise for the conjugate).

The Grassmann Fourier transform of some function f(η) of a Grassmann variable η

is defined as f̃ and these are related by

f̃(η†) =

∫
dηeηη

†
f(η) f(η) =

∫
dη†e−ηη

†
f̃(η†). (1.123)

The Fourier transform from the η† basis to the η basis in N = 1 is effected by the

replacements

1 → −1

2
ηIη

I , η†I → ηI , −1

2
η†Iη†I → 1. (1.124)

For multiplets without a central charge, the Grassmann variables have massless limits in

the helicity basis

η− → η, η+ → η̂. (1.125)

Here, η̂ represents the redundant variable left-over from the division of the massive mul-

tiplets into smaller massless multiplets that each represent the smaller massless SUSY

algebra. For the exceptional case of BPS multiplets, η̂ = η†, while for anti-BPS multiplets

the limit picks up an extra negative sign.

1.B Comments on Higher-leg Amplitudes in SQCD

We here make some comments on various massive quark and multigluon amplitudes

and rederive them in the little group covariant notation. Again, the arguments presented

here are parallel to (9) and (19). Amplitudes stated here will be colour-stripped par-
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tial amplitudes, following the usual rules for Yang-Mills theories, as prescribed in e.g.

(46). This discussion is supplementary to further comments made in (14) concerning the

relation between (S)QCD amplitudes and Coulomb branch amplitudes of N = 4 SYM.

Firstly, the supersymmetric Ward identities provide relations and constraints between

component amplitudes that can be exploited. Supersymmetry transformations can be

found that set a Grassmann generator for a particular leg to 0. In particular, under the

action of − [θQ], ηj,I is translated to ηj,I − i [θjI ] for each leg j (if the leg is massless,

just omit the little group index). This can be used to set ηi,I = 0, for some single leg

i with polarisation in some direction given by I in some little group frame, by choosing

[θ| = −i
m
ηi,I
[
iI
∣∣ + C [iI | (no sum over I is implied). Here, C represents the remaining

unused degree of freedom in the supersymmetry parameter. Component amplitudes

that are obtained by integrating the superamplitude in the Grassmann parameters that

are translated are unaffected by this transformation, because the integration variable

can be likewise translated. After changing variables to absorb the supertranslation, the

resulting integrand is completely independent of ηi,I , so integrating over it will give

0. The component amplitudes obtained by such projections must therefore be 0 by

supersymmetry.

Simple illustrative examples of this are the squark-antisquark and n-gaugino ampli-

tude and the squark-antisquark n-gluon amplitude.

A[Q̃Rλ
+ · · ·λ+Q̃L] =

∫
d2η1

∏
i

∫
dηi

∫
d2ηn+2A[Q, G+ . . . G+,Q] = 0 (1.126)

A[Q̃Rg
− · · · g−Q̃L] =

∫
d2η1

∏
i

∫
dηi

∫
d2ηn+2A[Q, G− . . . G−,Q] = 0 (1.127)

Identical arguments in the η† basis may be used to show that the CP -conjugate ampli-

tudes are also 0. Identical arguments also demonstrate that amplitudes with additional
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squark and antisquark pairs (Q̃R, Q̃L) are 0.

Vanishing amplitudes of massive quarks, states of non-trivial polarisation, may also

be obtained similarly. If all of the little group axes of the quarks are aligned, then

the transformation ηj,J − i [θjJ ] does not affect the Grassmann numbers with opposite

spin components to J - which is now the same direction for each massive field. Thus

the superamplitude integrated over only these components will be independent of the

Grassmann variable that is being eliminated, so must vanish. This derives the fact that

amplitudes with quarks and antiquarks all of identical polarisation are 0, as well as

those that include some number of gluons or gauginos of identical helicity. These include

amplitudes that are inherited by pure QCD at tree-level. The argument can be easily

combined with that used in the previous paragraph to extend these vanishing amplitudes

to those involving squarks.

The extra degree of freedom in the supersymmetry parameter can be further utilised

to derive the vanishing of a further class of amplitudes. Choosing C = −i
m

[iIjK]
[iIjK ]

ηi,I (if j

is massless, omit its little group index in this expression), the Grassmann variable for

leg j does not shift under the supersymmetry transformation performed in the examples

above. This means that the variables ηj,K need not be integrated in order to obtain a

vanishing amplitude. Thus one extra particle in any spin state may be added to any of

the amplitudes above and the result will still be 0.

Tree-level amplitudes involving a quark-antiquark pair and any number of gluons of

the same helicity have been previously determined in (3; 47) and little group covariantised

in (48). A compact expression exists that may be derived inductively using BCFW recur-

sion by shifting the massless legs in the usual way (49). The superamplitudes to which

these amplitudes belong have the interesting property that they are fully determined by

a single component amplitude, which we show in Appendix B of (14) by projecting these

superamplitudes out from the massive N = 4 theory.
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Chapter 2

Constructing N = 4 Coulomb Branch

Superamplitudes

We study scattering amplitudes of massive BPS states on the Coulomb branch of 4d

N = 4 super-Yang-Mills, utilising a little group covariant on-shell superspace for massive

particles. Super-BCFW recursion for massive amplitudes is constructed and its validity

is proven for all Coulomb branch superamplitudes. We then determine the exact three-

particle superamplitudes for massive states. These ingredients allow us to explicitly

compute the four- and five-particle superamplitudes, which is the first non-trivial usage

of BCFW recursion for amplitudes with entirely massive external states. The manifest

little group covariance helps clarify both the role of special kinematic properties of BPS

states and the organizational structures of the superamplitudes.

2.1 Introduction

The most powerful on-shell properties are to be found with maximal N = 4 super-

symmetry (at least for non-gravitational theories). Although a highly idealised model
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of QCD, numerous hidden structures beyond the maximal, rigid supersymmetry have

been uncovered and their role in nature remains to be ascertained. Some particular high-

lights include the computation of tree amplitudes at strong coupling by holography (1),

the duality of planar (large number of colours) amplitudes with Wilson loops (2–6), the

discovery of dual (super)conformal symmetry (in addition to regular spacetime supercon-

formal symmetry) (7; 8), Yangian symmetry and integrable structure (9), constructibility

of tree (10) amplitudes by BCFW recursion (11; 12), loop integrands by on-shell diagrams

and full constructibility from leading singularities (13; 14) and the interpretation of am-

plitudes as volumes of polytopes (15; 16). Most of this work has focused on the origin of

the moduli space, where the states are all massless and the theory is conformal.

The structure of amplitudes of massive particles with N = 4 supersymmetry has re-

ceived comparatively little attention. These nevertheless provide a further testing ground

of the special symmetries and properties listed above and the extent to which they are

deformed but not destroyed by Higgsing. Previous studies of massive amplitudes on the

Coulomb branch have been made in (17–20), where a gamut of methods including soft

limits, supersymmetric on-shell recursion and solutions to the supersymmetric Ward iden-

tities (SWIs) were proposed and used to compute some simple examples. Subsequently,

some 4d tree-level amplitudes and loop integrands have been obtained by dimensional re-

duction from superamplitudes of the 6d N = (1, 1) SYM theory, for which dual conformal

invariance has been established, despite the absence of conformality (21–25). However, a

general procedure for explicitly constructing amplitudes beyond the fewest leg examples

was not developed. More recently, a CHY (26) formula for all 6d N = (1, 1) massless

amplitudes was found and reduced to give a general formula for all 4d massive N = 4

tree amplitudes (27), from which a few examples were extracted (a new proposal was

recently made in (28)). Partial use of the massive spinor helicity formalism discussed

here was made to extract some simple examples of amplitudes contained within the gen-
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eral formula. Nevertheless, much of the structure of these amplitudes thus far remains

unexplored. We will review this subject more thoroughly in Section 2.5.

To proceed onto the Coulomb branch, we first discuss an on-shell superspace for mas-

sive BPS vector multiplets. Purely through the use of on-shell properties and maximal

rigid supersymmetry, we construct the unique elementary three particle superamplitudes

of the theory. These superamplitudes of massive legs have ‘nonlocal’ kinematic denomi-

nators analogous to that present in massless (S)YM, despite this feature not being present

in any of the component amplitudes. This arises as a result of the special complex kine-

matics of the BPS states and suggests that the massive amplitudes share in the special

constructibility properties of massless gauge theory. We confirm this by formulating a

massive super-BCFW shift and proving the constructibility of all Coulomb branch tree

amplitudes under it. Using this to fuse the four particle superamplitude from a single

factorization channel between on-shell three-leg superamplitudes, we are able to explic-

itly locate the second pole of the four-point superamplitude as coming from the singular

overlap of the two special kinematic configurations on either side of the factorization

channel.

The establishment of super-BCFW for massive legs allows for the systematic compu-

tation of relatively compact expressions for massive superamplitudes. To illustrate this,

we explicitly write down the five particle superamplitude for all-massive legs, which is

the first non-trivial usage of on-shell recursion to construct an amplitude of fully mas-

sive external states. The way in which the massless sectors of helicity violation combine

together when the states are massive is also shown.

This work is partnered with a companion paper (29) that discusses the on-shell prop-

erties of supersymmetric theories with massive particles (mostly with N = 1 supersym-

metry). This makes use of the adaptation of helicity spinors to describe the kinematics

of massive particles made in (30) with manifest little group covariance.
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This paper takes the following steps toward elucidating the structure of massive am-

plitudes in N = 4 SYM. We firstly review, in Section 2.2, the representation theory of

massive particles pertinent to the Coulomb branch of N = 4. In Section 2.3, we introduce

the ‘non-chiral’ superspace in which the superamplitudes are naturally formulated and

explain the representation of BPS states (here massive elementary vector multiplets) in

on-shell superspace. In order to construct higher-leg amplitudes, we implement BCFW

recursion for massive superamplitudes in Section 2.4 and establish that all Coulomb

branch amplitudes are constructible in this manner. In Section 2.5, we commence the

calculation of massive scattering amplitudes. We find the three-particle superamplitudes

in subsection 2.5.1, which features a ‘special kinematics’ of BPS states resembling that

of massless particles with complex momenta, as well as a surprising ‘nonlocality’ in their

superamplitudes. This enables us to recursively construct the four-leg superamplitude in

subsection 2.5.2 (with some computational details shunted to Appendix 2.A). In subsec-

tion 2.5.3, after a discussion of the supersymmetric ‘band structure’, we are able to use

the same technique to find the five particle superamplitude for all-massive states. We

then conclude. In Appendix 2.B we make some comments about projecting Coulomb

branch superamplitudes down to Yang-Mills theories with massive particles with fewer

supersymmetries.

2.2 On-shell superfields for massive particles

In (29) we construct on-shell superspaces for massive supermultiplets that are covari-

ant in the SU(2) little group, recently introduced into helicity spinors in (30). We here

briefly summarize the important results and refer the reader to (29) for further details,

especially its appendix of conventions and identities.

For N -extended SUSY, the supercharges carried by leg i, Qi,αA and Q†A
i,α̇, satisfy the
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commutation relations

{Qi,αA, Qi,βB} = Zi,ABϵαβ {Q†A
i,α̇, Q

†B
i,β̇
} = −ZAB

i ϵα̇β̇

{Qi,αA, Q
†B
i,β̇
} = −2δBA (σ

µ

αβ̇
)Pi,µ (2.1)

where Pi,µ is the momentum and Zi,AB is the central charge, satisfying Zi,AB = −Zi,BA =

−(ZAB
i )∗. The labels A and B are R-indices. On-shell, little group covariant supersym-

metry generators are defined for each leg by projecting the supercharges onto the spinors

of a given particle

qIi,A =
−1√
2mi

[
iIQi,A

]
, q†Ai,I =

1√
2mi

〈
iIQ

†A
i

〉
, (2.2)

which satisfy the anticommutation relations

{
qIi,A, q

†J,B
i

}
= −ϵIJδBA ,

{
qIi,A, q

J
i,B

}
= −ϵIJ Zi,AB

2mi

,
{
q†I,Ai , q†J,Bi

}
= ϵIJ

ZAB
i

2mi

.

(2.3)

The index I denotes massive SU(2) little group component while mi is the mass of the

leg. For the simplest case, which will be considered here, Zi,AB = ZiΩAB for all i, where

Zi ∈ R while ΩAB = −ΩBA is a symplectic 2-form

ΩAB =

0 −I

I 0

 . (2.4)

The case |Zi| = 2mi is the special BPS limit and will be relevant for states on the Coulomb

branch. For these representations, half of the supercharges are eliminated through the

reality constraint

qi,IA =
−1

2mi

Zi,ABq
†B
i,I . (2.5)
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The phase of Z may be absorbed into a redefinition of the supercharges qi and q
†
i . This

condition again preserves the supersymmetry algebra. BPS states are annihilated by

the combination qIAi ± q†IAi (the sign is determined by the sign of Zi). For non-BPS

representations with a central charge, linear combinations of supercharges may be found

that will satisfy the algebra (2.3) with Zi,AB = 0. The representation theory of these

states is therefore unaffected by the existence of a central charge.

The explicit SU(N ) automorphism symmetry of the SUSY algebra is broken to

USp(N ) by the central charge of these massive single particle states, which is exactly

the massive R-symmetry group expected for a theory with half of the number of super-

symmetries. A BPS state in N -SUSY may be represented as a massive non-BPS state of

N /2-SUSY. For the simplest symmetry breaking pattern of the N = 4 SYM Coloumb

branch, the massless SU(4) R-symmetry is broken to USp(4) when the central charge is

generated.

From (2.3), the massive supersymmetry algebra is that of N fermionic oscillators,

where N = 2N if the representation is not BPS, but can be reduced by up to a factor

of 1/2 if shortened. Supermultiplets may be represented as coherent states which are

eigenstates of N ‘lowering operators’. To build these states we introduce Grassmann

variables which transform as fundamental spinors of the little group of each particle ηAi,I ,

as well as their conjugates η†Ii,A. The R-index on the Grassmann variables is truncated

for 1/2-BPS states to denote some subset of the N /2 supersymmetries that do not leave

the state invariant. We will use the fact that BPS states of N = 4 obey the same algebra

as the non-BPS state of N = 2, which simplifies its construction.

To ensure little group covariance, we choose all of the q†Ai,I as the lowering operators.

An entire supermultiplet may be encoded as a coherent state

⟨ηi| = ⟨Ω| eqIi,AηAi,I (2.6)

75



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

where ηAi,I are anticommuting Grassmann algebra generators and ⟨Ω| is the Clifford vac-

cum annihilated by q†Ai,I . These are eigenstates of the annihilation operators, satisfying

⟨ηi| q†i,I = ⟨ηi| (−ηi,I). The action of the supercharges on the coherent states may be

represented as

q†Ai,I = −ηAi,I qIi,A = − ∂

∂ηAi,I
. (2.7)

Supersymmetry transformations generated by q and q† act simply on these coherent

states:

⟨η| eiξ
†I
A q†Ai,I = e−iξ

†I
A ηAI ⟨η| , ⟨η| e−iξAI qIi,A = ⟨η + iξ| . (2.8)

Here, ξAI =
[
θAiI

]
and ξ†IA =

〈
θAi

I
〉
parameterise the supersymmetry transformation

projected onto the spinors of leg i of the appropriate chirality, for some Grassmann spinors[
θA
∣∣ and 〈θA∣∣. The action of the supercharges encoded in (2.8) give the supersymmetric

Ward identities (SWIs) relating the components.

Only elementary massive vector multiplets will be of interest to us in our investigation

of scattering amplitudes on the Coulomb branch of N = 4. These are half-BPS, which

are equivalent to long N = 2 vector multiplets. Expanding the N = 2 coherent state

gives the superfield

W = ϕ+ ηaIψ
I
a −

1

2
ηaI η

b
J(ϵ

IJϕ(ab) + ϵabW
(IJ)) +

1

3
ϵbcη

b
Iη
c
Jη

Jaψ̃Ia + η11η
2
1η

1
2η

2
2ϕ̃, (2.9)

See (29) for details. The R-indices a, b, c are those of the SU(2)R of the N = 2 SUSY

algebra. The states ϕ, ϕ̃ and ϕ(ab) represent 5 scalar quanta, ψIa and ψ̃Ia represent the

degrees of freedom of two Dirac fermions, while W (IJ) represents the spin triplet of

massive vector states. This superfield and its massless limit will be discussed further in

Section 2.3.2.
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2.3 On-Shell Superspace for N = 4 Coulomb Branch

2.3.1 Non-Chiral Superspace

The massless supermultiplet of N = 4 at the origin of moduli space is commonly

constructed in the ‘chiral superspace’ in which it is represented as a coherent state of ηA

for SU(4) index A (e.g. see for review (31)). These carry massless U(1) helicity weights.

This leads to a superfield1

G+ = g+ + ηAλ+A − 1

2
ηAηBSAB − 1

6
ηAηBηCλ−ABC + η1η2η3η4g−, (2.10)

where the superscript on the superfield labels the helicity of the supermultiplet. This

contains the gluon g±, four chiral gauginos with positive and negative helicities λ+A and

λ−ABC respectively (the latter is totally antisymmetric in its R-indices and has only four

independent components) and three complex scalars SAB satisfying self-duality SAB =

1
2
ϵABCDS

∗CD.

However, we will find in what follows that for the supercharges to be represented as

homogeneously multiplicative or derivative on the superfields in the presence of massive

BPS states, we are led to construct the massless multiplets in the ‘non-chiral superspace’,

introduced in (24). To find the non-chiral superspace representation of the massless mul-

tiplet, we may perform a ‘half-Fourier transform’ from η3, η4 to η†3, η
†
4. This construction

is natural from the perspective of the dimensional reduction of 6d N = (1, 1) SYM to

4d N = 4 SYM, as used in (24; 25; 27) (also see (32) for developments of on-shell super-

spaces for similar 4d and 6d theories on brane world-volumes). The massless superfield

will now be a coherent state expanded in ηa, for a = 1, 2, and η†m, for m = 3, 4. The

manifest massless R-symmetry is thus reduced to SU(2)×SU(2), although the multiplet

1We express this in the form of (31), defining the phases of the states to be those necessary to produce
this from the action of qi,A on the Clifford vaccuum.
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remains SU(2, 2) invariant. This form was used for the non-chiral superspace of (25).

However, this SU(2)× SU(2) is not a subgroup of the unbroken R-symmetry group

USp(4) (or USp(2, 2) after the half-Fourier transform), so will be broken in the super-

amplitudes on the Coulomb branch. Instead, as will become clearer in our discussion

of BPS multiplets below, we will find it more useful to manifest a representation of a

U(2) ≤ USp(4), under which the fundamental USp(4) vector decomposes as 4 → 2⊕ 2̄.

Then ηa and η̃†a = η†a+2 both transform in the 2 representation of this U(2) subgroup.

In this notation, heights of the R-indices on the states in (2.10) are reversed for A = 3, 4

to show explicit U(2) invariance of the superfield. The supermultiplet in the non-chiral

superspace, first in the form of (25) with the manifest broken SU(2)×SU(2) and second

in the form with the (partially) manifest U(2), is

G = −1

2
Smm + η†mλ

+m +
1

2
ηaλ− m

am − 1

2
ηaη

ag− +
1

2
η†mη

†mg+

+ ηaη†mS
m
a +

1

2
η†mη

†mηaλ+a +
1

4
ηaη

aη†mλ
−mb

b −
1

4
η†mη

†mηaη
aS b

b

= S34 + (η̃†1λ+4 − η̃†2λ+3 ) + ηaλ−a34 − η1η2g− + η̃†1η̃†2g+

+ ηa(η̃†1S4 a − η̃†2S3 a) + η̃†1η̃†2ηaλ+a +
1

2
ηaηb(η̃†2λ−ab3 − η̃†1λ−ab4) + η̃†2η̃†1η1η2S12.

(2.11)

The latter form will be henceforth assumed, although this will not actually be very

important in what follows. In the former expression, index heights in each SU(2) sector

may be raised and lowered with the Levi-Civita symbol as usual. However, in the latter

form, G is charged under a U(1) ≤ U(2) subgroup. Each Grassmann variable carries

a unit charge under a U(1) subgroup, while the states are also charged such that each

term above has an overall charge of +2 units. While possible to adjust the notation to

make the SU(2) ≤ U(2) invariance manifest, we find that, in practice, the above form is

clearest (these expressions are mostly useful for identifying extraction functions to find
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component amplitudes).

The superfield (2.11) is the massless counterpart to the massive superfield in (2.9).

The correspondance between the massless and massive on-shell superspace variables will

be elaborated upon below.

The (complexified) R-symmetry generators for the USp(2, 2) on the non-chiral super-

space are

ma
b =

∑
i

(
η̃†ai

∂

∂η̃†bi
+ ηai

∂

∂ηbi
− 2δab

)
kab =

∑
i

∂

∂η̃
†(a
i

∂

∂η
b)
i

pab =
∑
i

η̃
†(a
i η

b)
i .

(2.12)

The symbols have been chosen to reflect the resemblance to the conformal group. All

massless legs i are summed over. The reader is referred to (25) for a larger catalogue of

symmetry generator representations for the massless superfields in the non-chiral super-

space.

Pure N = 4 super-Yang-Mills theory has a supersymmetry-preserving moduli space

of vacua upon which the scalar components of the vector supermultiplets acquire a vev

and spontaneously break the gauge theory to some smaller rank unbroken subgroup.

We will generally consider the possibility of multiple breakings of the gauge group to

factors of
∏

k U(Nk). For simplicity, we will assume that the scalars’ vevs are of the

form ⟨SAB⟩ = ⊕kvkδ
jk
ik
ΩAB for some vk ∈ R. Here, ik and jk are gauge indices of an

unbroken U(Nk) subgroup. This breaking pattern induces a central charge ZAB ∝ ΩAB

and modifies the SUSY algebra to the form discussed above. The R-symmetry in this case

is broken to USp(4), which corresponds to the simplest case in which there is only a single

central charge. The vector superfields that become massive through this Higgsing are
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BPS states and are bifundamentals of two of the unbroken gauge group factors. Calling

these U(Nka)×U(Nkb), then their masses are g|vka − vkb|, where vka and vkb are the vevs

that break the generators corresponding the the vector superfields. Conservation of the

central charge then implies that, in any scattering process, the sum of the masses of the

particles (states of positive central charge) must be equal to the sum of the masses of

the antiparticles (states of negative central charge). This selection rule places an extra

kinematic constraint upon the amplitudes.

2.3.2 BPS States

In the BPS case, the supersymmetry generators satisfy the reality condition

P α̇α
i Qi,α,A =

1

2
Zi,ABQ

†,Bα̇
i , (2.13)

which implies (2.5) when the little group symmetry is made manifest. This reduces

the effective number of left-handed fermionic generators from N to N /2. We use these

remainingN /2 generators to construct ‘short’ BPS supermultiplets that are equivalent to

the ‘long’ massive supermultiplets of unextended N /2 supersymmetry. For the Coulomb

branch of N = 4 SYM, the massive multiplets will all be short multiplets, which are

equivalent to the N = 2 multiplet given in (2.9).

There is a choice in how to represent the BPS SUSY algebra, which corresponds

to a choice of raising and lowering operators for our supermultiplets. This affects the

organization both of states and of superamplitudes in theories with BPS multiplets, such

as N = 4 on the Coulomb branch. Given our intent, it seems natural that we should

make the choice which preserves manifest little group covariance of our BPS states. The

formulation of an N = 2 theory with BPS multiplets may be understood analogously, so

we focus predominantly here on what happens for N = 4. A similar on-shell superspace
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for N = 8 supergravity incorporating half-BPS black holes was recently constructed in

(33).

Firstly, on the BPS states, the supercharges satisfy q†I,Ai = −qI,Ai . It is at this point

that the breaking of the R-structure of the supercharges into the non-chiral form dis-

cussed above for massless representations becomes natural for describing the BPS states.

For N = 4, after decomposing the supercharges into two separate pairs independently

transforming under the U(2) R-subgroup, the BPS condition equates supercharges of

one doublet with the conjugates of the other, which are in the same U(2) representation.

The massive BPS on-shell superfield may then be expanded in two little group pairs of

Grassmann variables ηaI (for a ∈ {1, 2}), just as for the massive N = 2 superfield derived

above. The supercharges are then represented on these as q†ai,I = −qi,I,a+2 = −ηai,I and

qIi,a = q†I,a+2
i = − ∂

∂ηai,I
, for a ∈ {1, 2}.

The anti-BPS superfields consist of the CP conjugate states of the BPS superfields.

For the anti-BPS states, the same coherent state basis may be selected, although, as the

central charge has the opposite sign, the anti-BPS condition involves a relative negative

sign q†Iai = qIai . This leaves a relative negative sign in the representations of the super-

charges on the superspace compared to the BPS states. States at level n in the BPS

superfield are conjugate to states at level N − n in the anti-BPS superfield.

While only a U(2) subgroup of the R-symmetry is manifest on the BPS multiplets,

the full USp(4) is still respected by the superamplitudes. The (complexified) USp(4) R-

symmetry generators (or, more precisely, USp(2, 2)) represented on massive superfields

are

ma
b =

∑
i

(
ηai,I

∂

∂ηbi,I
− 2δab

)
kab =

1

2

∑
i

± ∂

∂η
(a
i,I

∂

∂η
b),I
i

pab =
1

2

∑
i

±η(ai,Iη
b),I
i .

(2.14)
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See discussion of the representation theory of the symplectic groups in (34). The (+)

in the k and p generators is for BPS legs and the (−) is for anti-BPS. Note that the

little group index on the Grassmann derivative is raised and lowered by −ϵ rather than

ϵ, so e.g.
∣∣iI] ∂

∂ηai,I
= |iI ] ∂

∂ηI,ai

. The expressions for the generators on the massless legs in

(2.14) should be combined with those stated above to obtain the representation of the

full superamplitude.

The massless limit of the BPS superfield in the form (2.9) produces the non-chiral

representation of the massless superfield (2.11), which makes clearer why this represen-

tation is natural when formulating Coulomb branch superamplitudes. In this limit, the

two supermultiplets are related as

Massive ϕ ψIa W IJ ϕab ψ̃Ia ϕ̃

Massless S34 λ−a , λ
+
a+2 g±, S13 + S24 S14, S13 − S24, S23 λ+a , λ

−
a+2 S12

The massless limit of the N = 4 BPS superfield therefore amounts to breaking up the

little group indices, as we are familiar with in the non-supersymmetric case. We here send

ηA− → ηa, ηA+ → η̃†a (where A here is the N = 2 R-index used in (2.9)). For the anti-BPS

states, as a consequence of our definition of the massive superspace variables given above,

the massless limit is modified to ηA+ → −η̃†a, as is required from the inverse relations

implied by (2.2). The R-symmetry generators (2.14) clearly match onto (2.12). The fact

that our covariant representation of the BPS state reduces to a mixed representation of

the massless coherent state with a scalar Clifford vacuum suggests that this mixed (or

non-chiral) representation may be useful for representing amplitudes on the Coulomb

branch of N = 4. Previous works have instead (18; 19) implicitly worked with a massive

representation that manifested an SU(2)×SU(2) subgroup2 of the USp(4) R-symmetry

in which the massive little group was obscured. This representation led to massive

2This is a distinct subgroup from the broken SU(2) × SU(2) mentioned in the discussion preceding
(2.11).

82



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

coherent states that appear similar to the first expression in (2.11), but with R-indices

broken into pairs (η1, η3) and (η2, η4) and the vector’s longitudinal mode replacing a

single scalar. Similar tension in manifesting R-symmetries and little group symmetries

in on-shell superspaces arises in 6d (22). Here we note that the BPS states W on the

Coulomb branch are not self-conjugate (being eigenstates of the central charge) and so

their massless limits are likewise complex.

The choice of non-chiral coherent state for the massless fields combines with the

coherent state bases for the BPS states to ensure that the total supercharges Q†a and

Qa+2 act multiplicatively on the superamplitudes (while their conjugates act on each leg

homogeneously as derivatives). The full supercharges are therefore represented as

1√
2
Qa = |iI ]

∂

∂ηai,I
+ |jI ]

∂

∂ηaj,I
+ |k] ∂

∂ηak
,

1√
2
Q†a = −

∣∣iI〉 ηai,I − ∣∣jI〉 ηaj,I + |k⟩ ηak ,

1√
2
Qa+2 =

∣∣iI] ηai,I − ∣∣jI] ηaj,I + |k] η̃†ak ,
1√
2
Q†a+2 = |iI⟩

∂

∂ηai,I
− |jI⟩

∂

∂ηaj,I
+ |k⟩ ∂

∂η̃†ak
,

(2.15)

where legs labeled i, j and k respectively enumerate W , W and G legs and are implicitly

summed over here. With the supercharges in this homogeneous form, the SWIs should

be simplified.

While not considered here for simplicity, it is also possible to consider further break-

ings of the R-symmetry on the N = 4 Coulomb branch, by moving the vevs of the other

scalar components away from the origin of the moduli space. As operators acting on

external legs of elementary vector supermultiplets, the central charge eigenvalues Zi,AB

may always be SU(4) R-rotated into a form Zi,AB = ziΩAB and the BPS condition is

unchanged. See (35–37) for discussion. However, if the R-symmetry is broken beyond

USp(4), this rotation is leg-dependent and the form of the supercharges represented on
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the full superamplitude (and hence the SWIs) will be more complicated. On-shell rep-

resentations of BPS states with more complicated configurations of central charges were

recently discussed in (33) in the context of N = 8 SUGRA for BPS black holes.

2.3.3 Superamplitude preliminaries

Our ultimate ambition is to construct an arbitrary n-point amplitude with both mass-

less and massive external states, An(W1,W2 . . . ,Wj,Wj+1 . . . , Gk, Gk+1, . . .). As is con-

ventional in discussions of scattering amplitudes in gauge theories, we will be henceforth

implicitly describing colour-stripped partial amplitudes An[W1, G2, G3 . . .Wj, Gj+1 . . .],

in which the ordering of the external legs is fixed. The full tree-level superamplitude is

then obtained in the usual way by summing over all non-cyclic permutations of external

legs and multiplying each partial amplitude with a single colour trace over the gauge

group generators corresponding to each external leg in the order that they appear. See

e.g. (38). In the case of interest here, some simple structure to the non-zero colour-traces

can be used to identify possible orderings of the massive and massless vector multiplets.

As discussed in (18), because of the bifundamental nature of the massive vector

multiplets with respect to the unbroken gauge group factors, partial amplitudes must be

of the form An[Wmi, Gi, Gi, . . .W ij, Gj, Gj, . . .Wjn, . . .]. Here, Gi and Gj are massless

vectors of different unbroken gauge subgroups SU(Ni) and SU(Nj) respectively, while

e.g. W ij has one fundamental SU(Ni) index and one antifundamental SU(Nj) index,

so must be ordered to the left of a string of Gj fields and to the right of a string of Gi

fields. The strings of massless vectors (of possibly zero length) can only terminate at a

massive vector field with opposite index structure. Note that the overbar on the massive

vectors merely distinguishes those with negative central charge (“anti-BPS”) from those

with positive central charge. BPS and anti-BPS vectors need not alternately appear in
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the colour-ordered partial amplitudes for a general breaking pattern of the gauge group,

but both must be present. In the subsequent discussion, we will not bother to distinguish

between the vector multiplets belonging to different gauge subgroups, but will leave this

implicit and fully encapsulated in the stripped colour trace.

Having established the colour-structure of the superamplitudes, we are now able to

focus our attention on the more interesting kinematic structure of the superamplitudes

with massive multiplets. The first feature to note is that all Coulomb branch superampli-

tudes An will be of homogeneous Grassmann degree 2n in our representation. This is a

consequence of the U(1) factor of the explicit U(2) ≤ USp(4) represented on the massive

on-shell superspace. This subgroup is generated by the trace of the ma
b generators in

(2.12) and (2.14). As the vector bosons are R-invariant and the Grassmann variables

carry a unit of charge under this generator, the massive superfield (2.9) must carry 2

units of this R-charge. As the component amplitudes must conserve this charge, the 2

units per leg in the superamplitude must be instead carried by accompanying Grassmann

variables.

In this non-chiral superspace, the helicity-violating sectors of the massless superam-

plitudes appear as terms with Grassmann variables divided differently between ηa and

η̃†a factors. This is clear from the contributions to the supercharges from the massless

legs in (2.15), where Q†a+2 and Qa will not mix the sectors of definite helicity violation.

However, both types of supercharges act on the massive Grassmann variables, so this

structure is not respected by the massive legs. This is to be expected, because helicity is

no longer a frame-independent property for massive particles. We will discuss how mass

affects the sectors further below once we begin to compute higher leg amplitudes.

Finally, we adopt the convention that all particles are outgoing and that incoming

states may be obtained by crossing outgoing legs. Under crossing, an outgoing leg of

momentum p is analytically continued to an incoming leg of momentum −p and opposite
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central charge. The mass of the leg is unchanged, but a negative sign now accompanies

its appearance in the Weyl equation and the spin sums (see (29) for relevant identities

in the conventions employed here). This is commented upon further below.

2.4 Massive Super-BCFW Recursion

2.4.1 Massless Super-BCFW

We will demonstrate below that supersymmetry fully determines the superamplitude

with three external states. With more legs, supersymmetry is not enough and further

properties of the S-matrix are required. To make progress in constructing higher-leg

superamplitudes we will make use of BCFW recursion at tree level (11; 12). A BCFW

shift on legs i and j consists, at the level of momenta, of finding a (complex) vector rµ

such that pi · r = pj · r = r · r = 0, and shifting the two momenta to pµi → p̂µi = pµi + zrµ,

pµj → p̂µj = pµj − zrµ, with z a complex parameter. Note that this also necessitates

shifting the polarisations of i and j as well, to maintain transversity. For massless legs,

both of these deformations may be formulated simply at the level of spinors. An [i, j⟩-

shift is realised on the spinors as |̂i] = |i] + z |j] and ˆ|j⟩ = |j⟩ − z |i⟩ (so the shift vector

r = − |j] ⟨i|). A shift is called valid if the amplitude vanishes as z → ∞. Cauchy’s

theorem then relates the value of the unshifted amplitude to a sum over complex poles

of the shifted amplitude, which by tree-level unitarity occurs on on-shell factorization

channels.

The supersymmetric extension of on-shell recursion, known as super-BCFW (10; 39;

40), allows us to construct full superamplitudes recursively. It has been shown that any

amplitude of pure Yang-Mills and matter containing a negative helicity gluon is on-shell

constructible under a BCFW shift (41). For N = 4 at the origin of moduli space, the fact
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that the other states are related supersymmetrically to the negative helicity gluon suffices

to show that all superamplitudes are constructible using a supersymmetric extension of

BCFW (40). These arguments do not rely on the masslessness of the other legs of the

superamplitude and consequently this shows that any Coulomb branch superamplitude

which has two massless legs is on-shell constructible under a super-BCFW shift.

The supersymmetrised BCFW-shift involves the standard BCFW shift described

above supplemented with a shift in Grassmann variables to preserve the supercharge.

For an [i, j⟩-shift, the Grassmann variables are also shifted to η̂Ai = ηAi + zηAj in the

chiral superspace. This may be derived by deducing the necessary shift in the super-

charge Q†A
i =

√
2 |i⟩ ηAi carried by leg i resulting from demanding both that the total

supercharge be conserved and that the SUSY algebra (2.1) be preserved (note that the

derivatively represented Qi,A must also shift).

The standard super-BCFW shift may be converted into a form where it may be used

in the non-chiral superspace. This can be obtained by half-Fourier transforming the

shifted superamplitude in the chiral superspace. To implement a [i, j⟩-supershift, the

momentum shift is unchanged from that described above, while the Grassmann variables

shift as η̂ai → ηai + zηaj and ˆ̃η†aj → η̃†aj − zη̃†ai . Constructibility continues to hold in this

superspace, as the half-Fourier transform from the chiral superspace does not affect the

large z scaling of the superamplitude with shifted momentum.

2.4.2 Massive BCFW

While this standard super-BCFW shift is a powerful tool for constructing higher-

leg Coulomb branch superamplitudes, it leaves open the question of constructing fully

massive Coulomb branch superamplitudes. One path toward the on-shell construction of

such superamplitudes is to formulate a supershift on massive legs. BCFW recursion for
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massive legs has been introduced in (42) and (43). As in the massless case, the momenta

shift as

p̂µi = pµi + zrµ, p̂µj = pµj − zrµ, (2.16)

where r has the same orthogonality properties as in the massless case. To construct the

shift vector r, we find a little group frame for each particle where we can write pi and

pj as linear combinations of the same two null vectors. Geometrically, these correspond

to the two null vectors being coplanar with both massive momenta. Finding this little

group frame requires solving

−
∣∣i2] 〈i1∣∣ = αi

m2
j

∣∣j1] 〈j2∣∣ , −
∣∣j2] 〈j1∣∣ = αj

m2
i

∣∣i1] 〈i2∣∣ (2.17)

to find αi = αj ≡ α, where

α = −pi · pj +
√
(pi · pj)2 −m2

im
2
j (2.18)

pi =
∣∣i1] 〈i2∣∣+ α

m2
j

∣∣j1] 〈j2∣∣ , pj =
∣∣j1] 〈j2∣∣+ α

m2
i

∣∣i1] 〈i2∣∣ . (2.19)

Up to a single ambiguous phase, the spinors of each leg may be related in this special

frame by

∣∣i1] = mi√
α

∣∣j2] ∣∣i2] = −
√
α

mj

∣∣j1]
∣∣i2〉 = − mi√

α

∣∣j1〉 ∣∣i1〉 = √
α

mj

∣∣j2〉 . (2.20)

In this special little group frame, it is clear that we may take

r =
∣∣i1] 〈j2∣∣ or r =

∣∣j1] 〈i2∣∣ (2.21)
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and satisfy the orthogonality requirements pi · r = pj · r = r · r = 0 (17). It is clear

that r cannot be regarded merely as a function of the massive momenta p1 and p2, as it

is determined by only a single helicity spinor associated to each. Its selection explicitly

breaks little group invariance of the legs, as its existence relies on this preferred null

vector decomposition.

The massive BCFW recursion may be illustrated on a simple example. Bhabha scat-

tering in scalar QED is a constructible example, provided that, in the Lagrangian picture,

there is a quartic scalar interaction with −1
2
e2(ϕ∗ϕ)2 for electric charge e (calling ϕ the

scalar field) (31). The validity of the shift may be verified by derivation from the Feyn-

man rules, from which it can be shown that the shifted amplitude A(ϕ, ϕ∗, ϕ, ϕ∗) → 0 as

z → ∞. This is not unexpected, as this amplitude is well-known to be constructible by

BCFW recursion when the scalars are massless, provided that the shifted particles have

the same charge. Unlike for spinning particles, massive scalars do not carry more degrees

of freedom than massless scalars. When the massive legs are spinning, the validity of

recursion is expected to be less general. The validity of massive BCFW for QCD ampli-

tudes with massive quarks was discussed in (43), which was spin-dependent. However,

the case of massive scalars here does not introduce any substantial change.

Shifting the scalar ϕ legs 1 and 3, the amplitude is determined as a sum over two

factorisation channels:

A(ϕ1, ϕ
∗
2, ϕ3, ϕ

∗
4) =

∑
h=+,−

Â(ϕ̂1, ϕ
∗
2, γ

h
P̂12

)
−1

s
Â(ϕ̂3, ϕ

∗
4, γ

−h
−P̂12

)
∣∣∣
z
(1)
∗

+
∑
h=+,−

Â(ϕ̂1, ϕ
∗
4, γ

h
P̂14

)
−1

u
Â(ϕ̂3, ϕ

∗
2, γ

−h
−P̂14

)
∣∣∣
z
(2)
∗
, (2.22)

where γ is a photon and P̂12 = −p̂1 − p2 and P̂14 = −p̂1 − p4 are its (complex) momenta

in each factorisation channel. The intermediate photon’s helicity h is summed over. The
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unshifted Mandelstam variables are s = −(p1+p2)
2, u = −(p1+p4)

2 and t = 4m2−s−u,

for scalar mass m. The poles z
(i)
∗ are determined by finding the values of the shift

parameter z on which the shifted momenta are aligned on a factorisation channel, but

their identity will not be necessary here.

At this point, we review an exceptional feature which appears in the special case of

three-leg amplitudes with two massive, equal-mass particles and one massless particle,

such as Â(ϕ1, ϕ
∗
2, γ

±
3 ). Introduced in (30), an additional object that carries helicity weight

of the massless particle exists that may be used as an amplitude building block:

x ≡ 1

m

[q| p2 |3⟩
[q3]

, (2.23)

where 3 is the massless leg, m is the mass of legs 1 and 2, and |q] is an arbitrary reference

spinor defined so that [q3] ̸= 0. This special case arises because p2 · p3 = −⟨3| p2 |3] = 0,

implying that p2 |3] ∝ |3⟩. The constant of proportionality is x and carries helicity weight

1 of leg 3. It is independent of the reference spinor present in (2.23). See (29) for further

details, conventions and identities.

The on-shell three-particle amplitudes in (2.22) are

A(ϕ1, ϕ
∗
2, γ

+
3 ) =

em

x
(2.24)

A(ϕ1, ϕ
∗
2, γ

−
3 ) = emx. (2.25)

Parity has been imposed. Denoting by x̂ij the value of the x-factor at the shifted mo-

mentum in the three-leg amplitude with massive scalars i and j, then for the purposes

90



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

here

x̂12 =
[q| p2

∣∣∣P̂12

〉
m
[
qP̂12

] =
m
〈
ρP̂12

〉
⟨ρ| p2

∣∣∣P̂12

] x̂34 =
m
〈
ρ(−P̂12)

〉
⟨ρ| p4

∣∣∣(−P̂12)
] =

[q| p4
∣∣∣(−P̂12)

〉
m
[
q(−P̂12)

] (2.26)

and similarly for x̂14 and x̂32. We leave implicit that these factors in (2.26) are to be

evaluated on the pole z = z
(1)
∗ while the others are on the z = z

(2)
∗ pole. Here |q] and |ρ⟩

are reference spinors not aligned with the spinors of the internal momentum P̂12. The

x-factors are independent of the reference spinors. With these expressions, the Bhabha

scattering amplitude is then

A(ϕ1, ϕ
∗
2, ϕ3, ϕ

∗
4) =

−e2m2

s

(
x̂12
x̂34

+
x̂34
x̂12

)
+

−e2m2

u

(
x̂14
x̂32

+
x̂32
x̂14

)

=
−e2

s

 [q| p2
∣∣∣P̂12

〉 [
(−P̂12)

∣∣∣ p4 |ρ⟩[
qP̂12

] 〈
ρ(−P̂12)

〉 +
[q| p4

∣∣∣(−P̂12)
〉 [
P̂12

∣∣∣ p2 |ρ⟩[
q(−P̂12)

] 〈
ρP̂12

〉


+ (2 ↔ 4)

= e2(2p2 · p4)
(
1

s
+

1

u

)
= e2(2m2 − t)

(
1

s
+

1

u

)
. (2.27)

See below in (2.68) for spinor analytic continuation rules for negative momentum. Here,

P̂ij · p2 = P̂ij · p4 = 0 on either complex pole ({(i, j) = (1, 2), (1, 4)}) imply that these

momenta anticommute as bispinors, while the Clifford algebra has been used in the step

in which the reference spinors cancel out when the two terms for each channel are added

together. This calculation is almost identical to the gluing argument of (30).

Unlike in (super)-Yang-Mills, BCFW here merely automates the construction of the

amplitude from its two possible factorisation channels. However, unlike massless gauge

theories, the second factorisation channel of the amplitude does not automatically emerge

from the first. While the on-shell three-particle amplitudes contain “non-local” kinematic
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factors, these cancel in the sum over internal photon helicities, as explained in (30), along

with the poles z
(i)
∗ . This happens regardless of the mass of the scalar legs. Foretelling

further results below, at no point was the identity of the shift vector necessary in this

computation. As the only source of little group violation, it cancelled-out in the end,

being eliminated within each term in the BCFW expansion as part of the cancellation of

the kinematic denominators upon each residue.

2.4.3 Massive Super-BCFW

Massless super-BCFW recursion has been established in 6 dimensional (44), (21) (and

higher (45)) super-Yang-Mills. In 6d, the extra dimensions allow for extra directions in

which the shift vector can point. As a result, the possible shift vectors are parameterised

by an arbitrary variable in the massless 6d little group SU(2)×SU(2) (as it is effectively

like a polarisation vector of one of the states).

The Coulomb branch of 4d SYM is equivalent to the low energy limit of the 6d

theory after dimensional reduction on a torus (with fluxes providing the masses (46)).

The masses of the BPS states can be identified with the momenta in the compactified

directions. The form of the supershift constructed here corresponds to the dimensional

reduction of the 6d supershift defined in (21), having made the choice to align the six-

dimensional shift vector along the four non-compact dimensions so that the 4d shift

vector remains null. This reduces the possible 6d shifts to the two possibilities in 4d

discussed above. It is presumably also possible to construct a super-shift for the Coulomb

branch in which includes shifts to the masses. In the following, we will construct massive

super-BCFW in 4d purely from consistency with the symmetry algebra and the non-

supersymmetric shift constructed above.

In order to make the momentum shift supersymmetric, the supercharges of each leg
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must be deformed in order to preserve both the SUSY algebra (2.1) and the BPS con-

straint (2.3.2). Demanding that the total supercharge still be conserved, the supercharges

of the shifted legs become

1√
2
Q̂i,a+2 =

1√
2
Qi,a+2 +

z

2
∆Qa+2

1√
2
Q̂j,a+2 =

1√
2
Qj,a+2 −

z

2
∆Qa+2

1√
2
Q̂†a
i =

1√
2
Q†a
i +

z

2
∆Q†a 1√

2
Q̂†a
j =

1√
2
Q†a
j − z

2
∆Q†a. (2.28)

The derivatively represented supercharges in (2.15) also shift.

The shift spinors above may be expanded in a basis of Grassmann variables (or their

derivatives) and spinors. The commutation relations and the BPS constraints may then

be imposed in order to determine the coefficients. We will give the supercharge shift

assuming that leg i is BPS and leg j is anti-BPS. All other particle/anti-particle configu-

rations are also possible, but conservation of central charge implies that this configuration

will at least always be available in any superamplitude. Explicitly choosing the special

little group frame selected by the momentum shift and considering only r = |i1] ⟨j2| for

simplicity, the supercharges can be determined to shift as

∆Qa+2 = − 2mimj

α +mimj

∣∣i1](ηaj1 + √
α

mi

ηai2

)
(2.29)

∆Q†a = − 2mimj

α +mimj

∣∣j2〉(ηai2 − √
α

mj

ηaj1

)
. (2.30)

The supercharges shift in the spinor directions singled-out by the momentum shift vector.

Note that these expressions may be converted into a form consisting of r multiplying a

little group invariant spinor expression. All little group violation may be contained to

the shift vector r.

In contrast to the massless case, the BCFW shift implemented at the level of spinors

and Grassmann variables has an ambiguity. This is because, while the shifted spinors of
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each leg are related through (2.20), there is no analogue for the Grassmann variables. It

is therefore possible to shift these by the Grassmann variables of the same leg, in addition

to those of the other. This affects the numerical prefactor multiplying the spinor shift.

Choosing the Grassmann variables to shift only by terms proportional to those of the

opposite shifted leg, the supershift may be represented as:

∣∣∣̂i2] = ∣∣i2]− z
mj

√
α

α +mimj

∣∣i1] 〈
î2
∣∣∣ = 〈i2∣∣+ z

〈
j2
∣∣ mimj

α +mimj

(2.31)∣∣∣ĵ1] = ∣∣j1]− z
mimj

α +mimj

∣∣i1] 〈
ĵ1
∣∣∣ = 〈j1∣∣+ z

〈
j2
∣∣ mi

√
α

α +mimj

(2.32)

η̂ai,1 = ηai,1 − z
mimj

α +mimj

ηaj,1 η̂aj,2 = ηaj,2 − z
mimj

α +mimj

ηai,2 (2.33)

and the other components are unaffected. We are again only showing here the case for

the momentum shift r = |i1] ⟨j2|.

The spinor-level shift of the massive legs may be re-expressed in a way that relates

the little group violation directly to the momentum shift vector:

|̂iI ] = |iI ] +
z

2mi

ρ|iI⟩ −
z

2mimj

pjρ|iI ]

⟨̂iI | = ⟨iI |+ z

2mi

[iI |ρ+ z

2mimj

⟨iI |ρpj

|ĵI ] = |jI ] +
z

2mj

ρ|jI⟩ −
z

2mimj

piρ|jI ]

⟨ĵI | = ⟨jI |+ z

2mj

[jI |ρ+ z

2mimj

⟨jI |ρpi.

(2.34)

Here, ρ ≡ ±
(
mimj/

√
(pi · pj)2 −m2

im
2
j

)
r ((+) for r = |i1] ⟨j2|, (−) for r = |j1] ⟨i2|), or

equivalently rαβ̇ = −1
2mimj

ραα̇(pipj − pjpi)
α̇
β̇
. The corresponding shifts of the Grassmann
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variables are

η̂ai,I = ηai,I −
z

2mimj

(
[iI |ρ|jJ⟩ − ⟨iI |ρ|jJ ]

)
ηaj,J

η̂aj,J = ηaj,J −
z

2mimj

(
[jJ |ρ|iI⟩ − ⟨jJ |ρ|iI ]

)
ηai,I ,

(2.35)

where we have here again assumed that leg i is BPS and leg j is anti-BPS, although shifts

with both legs of the same type are also possible and differ only in changes of signs both

in (2.34) and (2.35). In the ensuing calculations, we will not actually need any of these

results beyond the existence of the momentum and supercharge shifts and their abstract

properties. Rather, we merely state them here for completeness.

All Grassmann dependence of the superamplitudes arise in the form of the super-

charges of each leg. Since the superfield legs are scalars, the supershift may be regarded

entirely as a shift in momentum and supercharge by the null vector r and chiral spinors

presented above in (2.29) and (2.30). From this point of view, it is clear that the supershift

vector and spinors do not obstruct the freedom in choosing little group decompositions of

the momenta and supercharges of each unshifted leg. However, they provide a prefered

null direction which singles out the little group frames in which both the shift vector

and spinors have the especially simple forms (2.21), (2.29) and (2.30), leading to the

apparent breaking of covariance in the spinor (2.34) and Grassmann level shifts (2.35).

The shift spuriously breaks the little groups of the shifted legs by providing a special

direction in which the massive momenta may be decomposed. Use of super-BCFW will

therefore preserve little group invariance of the recursed superamplitudes up to explicit

appearances of the shift vector r. However, as this is the only source of the breaking

and the superamplitude itself must be invariant, all appearances of the shift vector must

ultimately cancel to leave a manifestly invariant expression. This is similar to the 6d

perspective, where the cancellation of the shift also inevitably follows from the arbitrary
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and spurious choice of direction that must be made in choosing it.

This issue does not appear for 4d massless superamplitudes, where the bispinor form

of the shift vector appears to manifestly break the U(1) little group invariance. Because

the residue on the complex pole scales as z
(i)
⋆ ∝ 1/r on each factorization channel i, the

combination z
(i)
⋆ r is a little group invariant function when r is constructed out of massless

helicity spinors.

As mentioned in (30), for general massive amplitudes, the combination of different

helicity states in the little group covariant formalism can obstruct on-shell constructibil-

ity, as not all helicity components have the correct large-z behavior. However, as will

be discussed in Section 2.5.1, supersymmetry forces the Coulomb branch three-leg su-

peramplitudes to contain the precise “nonlocality” needed for them to combine to give

the pole structure of the four-leg superamplitude. This first hint of simple factorization

properties remarkably extends to all Coulomb branch superamplitudes, as it turns out

that all such superamplitudes are on-shell constructible via massive super-BCFW.

2.4.4 Validity

While the underlying origin is likely a vestige of dual (super)conformal invariance

remaining on the Coulomb branch, we here leave an exploration of this to future work

and instead prove the shift validity by using soft limits to extend the known behavior at

the origin of moduli space. The idea that Coulomb branch component amplitudes may be

found from soft limits of massless amplitudes with scalar insertions was proposed in (18),

expanded upon in (19) and proven in (20). The precise map is explained clearly around

(4.3) of (19), but the details will not be necessary for us. All we rely on is the fact that

the Coulomb branch component amplitudes may be written as a sum over amplitudes at

the origin of moduli space.
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We may utilize this relation to show that a massive super-BCFW shifted Coulomb

branch superamplitude A
[
{λ̂1I , η̂a1I}, {λ̂2I , η̂a2I}, . . .

]
has the correct large z scaling for a

valid shift (where we are borrowing the notation of (40) to highlight both the momentum

spinors and Grassmann variables of each leg). The first step is to perform a z-independent

supertranslation which sets η̂a1I , η̂
a
2I → 0:

A
[
{λ̂1I , η̂a1I}, {λ̂2I , η̂a2I}, {λ3I , ηa3I}, . . .

]
= A

[
{λ̂1I , 0}, {λ̂2I , 0}, {λ3I , ηa3I ∓ ⟨3Iζ⟩ − [3Iζ]} . . .

]
(2.36)

|ζ⟩ = 1

s12

(
p2
∣∣1I] ηa1I − p1

∣∣2I] ηa2I −m2

∣∣1I〉 ηa1I +m1

∣∣2I〉 ηa2I) (2.37)

|ζ] = 1

s12

(
−p2

∣∣1I〉 ηa1I − p1
∣∣2I〉 ηa2I +m2

∣∣1I] ηa1I +m1

∣∣2I] ηa2I) , (2.38)

where we have assumed that leg 1 is BPS and leg 2 is anti-BPS in our explicit solutions

for |ζ⟩ , |ζ], but an analogous procedure may be done for any two shifted legs with either

sign central charge. This is a supersymmetry transformation which relates all component

amplitudes to those with two of the lowest-weight states, which are here the scalars ϕ.

The existence of such a transformation that sets the shifted Grassmann variables to zero

while not reintroducing z into the other Grassmann variables was first pointed out in the

massless case in (40).

Each massive component of (2.36) is given by (19) as a soft limit of a sum of massless

component amplitudes with scalar insertions. Importantly, all the components of the

translated superamplitude (2.36) have two shifted lowest-weight scalars ϕ, so for any

massive component amplitude the sum will be over massless amplitudes with two shifted

lowest-weight scalars S34. Schematically, for any component of (2.36) we have

A
[
ϕ̂1, ϕ̂2, . . .

]
∼ lim

∑
A
[
Ŝ34, φvev, . . . , φvev, Ŝ34, φvev, . . .

]
, (2.39)
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where the left side is a Coulomb branch amplitude and the right side is a sum over

amplitudes at the origin of moduli space with insertions of scalars φvev = −1
2
(S13−S24) =

−ℜ(S13), which are the massless scalar degrees of freedom which gain a vev on the

Coulomb branch. These fields are taken soft by the limit. Each massless amplitude on

the right side of (2.39) is obviously a component of some massless superamplitude

A
[
{λ̂1, 0}, {λvev, ηvev, η̃†vev}, . . . , {λvev, ηvev, η̃†vev}, {λ̂2, 0}, {λvev, ηvev, η̃†vev} . . .

]
(2.40)

in non-chiral superspace, where the Grassmann variables of the two shifted lines have

been set to zero.

It was shown in (40) that all massless N = 4 superamplitudes scale as 1/z in chiral

superspace and, as mentioned above, the half-Fourier transform to non-chiral superspace

does not modify the scaling. For any such superamplitude we may then perform the

massless version of the supertranslation above to rid the superamplitude of the shifted

Grassmann variables and bring it to the form of (2.40), where the shifted legs are lowest-

weight scalars. This removes any factors of z from the Grassmann monomials, so the

superamplitude scaling immediately implies that the individual components of (2.40)

must vanish as 1/z. Then, from (2.39), the massive components, as sums of amplitudes

scaling as 1/z, must also scale as 1/z. The translated massive superamplitude in (2.36)

also has no z dependence in its Grassmann variables, and so we may argue in reverse and

upgrade the 1/z scaling of the component amplitudes to that of the full superamplitude.

Thus the massive super-BCFW shifted superamplitude vanishes at infinity and therefore

this is a valid shift.

This proves the validity of massive super-BCFW shifts of Coulomb branch super-

amplitudes. In concert with the aforementioned validity of super-BCFW when massless

legs are shifted, this shows that all Coulomb branch superamplitudes are super-BCFW
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constructible.

2.5 Scattering Amplitudes on the N = 4 Coulomb

Branch

The study of amplitudes at the origin of moduli space has revealed surprising struc-

tures and remarkable simplicity. The question of how much of this survives with massive

states is not only of intrinsic interest, but also has use in understanding the loop-level

properties of the massless theory. A first attempt to construct massive amplitudes and

trace the way that the massless amplitudes are deformed by Higgsing was made in (18).

They used a superspace representation analogous to that traditionally used at the origin

of the moduli space, in which the full R-symmetry is manifest (although the little group

is not). Of particular note for the discussion here is that they were able to deduce that

the superamplitudes could be decomposed into distinct ‘band’ structures interrelated by

SWIs, analogous to the usual sectors classified by degree of helicity violation, as well as

find explicit expressions for the simplest cases of these. The use of soft limits discussed

above was also proposed, which was then expanded upon in (19) to reconstruct tree-level

amplitudes as a series expansion in mass.

After hints arising in loop computations (see e.g. (47; 48)), dual conformal symmetry

was discovered in massless gluon amplitudes at strong coupling through holographic

computations in (1), where it was shown that this was the conformal symmetry associated

with Wilson loops T -dual to the amplitude. As mentioned above, this symmetry has also

been discovered in the planar amplitudes at weak coupling, thereby suggesting some non-

perturbative property of the theory that may be accessible through analytic techniques.

At leading order, dual conformal symmetry is enhanced to superconformal and combines
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with spacetime superconformality into a Yangian symmetry (see e.g. (49) for review

of integrability in N = 4 SYM). The breaking of dual conformality at loop level by

IR divergences is understood from the Wilson loop duality (50) and has been used to

fully determine the amplitudes with fewer than six legs (51). However, the extent of the

usefulness and survival of the enhancements in scattering amplitudes at loop-level is still

under investigation (52–56), although some of the progress has made use of this at the

level of the loop integrands where infrared divergences can be sidestepped.

Loop-level investigations into dual conformal symmetry led to the suggestion of using

Higgsing as a way of regulating IR divergences in loop amplitudes between massless parti-

cles (57). This was subsequently used in (58; 59) to constrain the form of loop integrands

(an amusing application of this to computing the hydrogen spectrum in N = 4 SYM

was shown in (60)). The resulting prediction of this symmetry that 1-loop amplitudes do

not involve triangle integrals (like their massless counterparts (61)) was verified in (17),

where a massive on-shell superspace was also set-up.

Following (24), it was attempted in (25) to obtain massive amplitudes in N = 4

SYM in 4d by dimensional reduction from amplitudes in 6d, N = (1, 1) SYM. The 6d

SYM amplitudes also feature dual conformal symmetry at tree-level (as well as at loop-

level integrands), despite not being conformal themselves (22) (this was also observed

in 10d N = 1 SYM, which also reduces to this 6d theory (45)). The realisation of

this symmetry and the way that it is inherited by the massive 4d amplitudes, its possible

relation to the Yangian and its usefulness in providing a guiding structure for determining

the superamplitudes were discussed in (22) and (25). The former used reduction of the 6d

dual conformal symmetry to establish that the massive N = 4 tree amplitudes and loop

integrands were dual conformal invariant, while some progress was made in the latter

using this, as well as 6d super-BCFW recursion (21), to build some superamplitudes at

low numbers of legs with manifest dual conformal symmetry (tests at loop-level were made
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in (23)). The symmetry algebra has been more recently discussed in (62). However, a

general procedure for efficiently computing higher leg amplitudes is still left outstanding.

As stated in the introduction, (27) (and, more recently, (28)) introduce CHY formulae

for all 6d N = (1, 1) massless amplitudes which may reduced to give a general formula

for all 4d massive N = 4 tree amplitudes in a CHY form. It remains to be seen exactly

how these special symmetries affect the structure of the massive amplitudes and can be

used to explicitly construct them. The first step in such an investigation is to calculate

and dissect some tree amplitudes in a presentable way. Once the patterns are identified,

they can be used to guide the development of systematic computational techniques. We

do this in the hope that it will ultimately help in grappling with the way in which the

aspects of spin, supersymmetry and dual conformal symmetry interplay.

The first steps toward elucidating the special symmetries of the Coulomb branch

amplitudes is to compute the simplest examples and search for the patterns. It is this

goal that we initiate in the remainder of this section.

2.5.1 Special Massive Kinematics and Three Particle Superam-

plitudes

Special BPS Kinematics

Similarly to their massless counterparts, on-shell three-particle amplitudes of massive

BPS vector multiplets exhibit special kinematical properties. Without loss of generality,

we will consider the superamplitudeA3[W ,W ,W ] with two BPS and one anti-BPS states.

Conservation of the central charge implies that m2 = m1 + m3. This configuration of

masses yields precisely a massive analogue of the special 3-particle kinematics of massless

3-leg amplitudes, because restricting the momenta to be real implies that they are parallel.

The special kinematic features of the 6d three-particle amplitudes have been described
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in (44). The 4d BPS particles have analogous properties. We will introduce these follow-

ing the presentation in (44) before giving a more geometric account further below.

It is simple to show that
[
iIjJ

]
±
〈
iIjJ

〉
has vanishing determinant as a matrix in

little group indices for any pair of legs i and j, where the (−) is to be chosen if i and j

have central charges of opposite sign and (+) is chosen if they are the same. This implies

the factorisation

[
iIjJ

]
±
〈
iIjJ

〉
= uIi v

J
j (2.41)

for some pure (complexified) SU(2) spinors ui and vi. It follows from these equations

and the spin sums that ui,I
[
iI
∣∣ ∝ vi,I

[
iI
∣∣ ∝ uj,I

[
jI
∣∣ for each i and j and likewise

ui,I
〈
iI
∣∣ ∝ vi,I

〈
iI
∣∣ ∝ uj,I

〈
jI
∣∣ and that uIi ∝ vIi for each leg - it is only distinct GL(1)

rescaling redundancies that distinguishes ui from vi. These GL(1) rescaling freedoms

represent the complexification of the U(1) “tiny groups” of each pair of particles (63).

This is the subgroup of Lorentz transformations that stabilises a pair of massive momenta.

However, we find that this doubling is practically unnecessary and fix the scales so that

vi = ui for each i. The following identities then hold:

[
1I2J

]
−
〈
1I2J

〉
= uI1u

J
2[

2J3K
]
−
〈
2J3K

〉
= uJ2u

K
3 (2.42)[

3K1I
]
+
〈
3K1I

〉
= uK3 u

I
1

and they imply

u1,I
〈
1I
∣∣ = u2,J

〈
2J
∣∣ = u3,K

〈
3K
∣∣ ≡ ⟨u|

u1,I
[
1I
∣∣ = −u2,J

[
2J
∣∣ = u3,K

[
3K
∣∣ ≡ [u| . (2.43)
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The spinors in a general little group frame may therefore be decomposed into com-

ponents in this special frame in which the null vector decomposition “aligns” in this

complexified way. The little group spinors may be decomposed into a magnitude and

direction as uIi = |ui|ûIi , where ûIi is a unit SU(2) spinor. To construct a little group

basis including ui,I , define

ŵi,I = û†i,I + ωiûi,I , (2.44)

as linearly independent spinor, where ωi ∈ C is free (so ŵi need not be a unit spinor). A

little group spinor basis may be completed with

wi,I =
1

|ui|
ŵi. (2.45)

This is effectively a dual spinor and satisfies wIi ui,I = 1. This condition is necessary for

the momenta to be on-shell (and the overall sign is fixed by requiring that the momenta

be future-pointing in the real limit). The momenta may then be decomposed as

pi = wi,I
∣∣iI] ⟨u| ∓ |u]

〈
iJ
∣∣wi,J (2.46)

(the (+) is for BPS, (−) for anti-BPS). The real momentum limit corresponds to ωi → 0,

but for complex momenta, ωi is an undetermined residual redundancy. In this latter

case, the spinors in each term in the decomposition are not complex conjugates and the

little group is complexified from SU(2) to SL(2,C).

The resemblance of (2.46) with the 3-particle massless special kinematics is clear. As

will be shown further below, in the high energy limit, the null vectors in one of these sets

all shrink to zero, recovering the usual special 3-particle kinematics for massless particles.
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Calling the spinors ŵi,I
∣∣iI〉 = |iw⟩ (and similarly for the left-handed spinors), then

[
iIjJ

]
±
〈
iIjJ

〉
= ûIi û

J
j ([i

wjw]± ⟨iwjw⟩) , (2.47)

The ûi give the direction in which the little group matrix on the left hand side of (2.47)

has its only non-zero entry given by the accompanying factor. The combination

|ui||uj| = [iwjw]± ⟨iwjw⟩ (2.48)

is here the massive analogue of the spinor bilinears of massless particles like ⟨ij⟩ and

[ij], only one of which is non-zero, as determined by the configuration of special 3-

particle massless kinematics. We will see below that the special massive kinematics will

imply that the amplitudes will be functions of this combination of bilinears, along with

accompanying little group tensor factors that encode polarisation information. However,

first note that these relations may be inverted to give

|u1| =

√
([1w2w]− ⟨1w2w⟩) ([3w1w] + ⟨3w1w⟩)

([2w3w]− ⟨2w3w⟩)
(2.49)

and similarly for the others. Note that because the ui spinors carry the scale in (2.49),

they contain more information than merely a preferred little group decomposition in

which the spinors of each leg align. This discussion is also entirely independent of the

choice of ωi variables in the definition of wi frame spinors (2.44).

As is clear in (2.46), for a single leg, the little group basis choice {ui, wi} still has a

remaining GL(1,C) little group freedom under which ui and wi rescale oppositely. The

choice of scales given by the equations (2.43) reduces this to a single GL(1,C) for all

three legs. In the special case of real momenta, (2.43) also leaves the overall direction

free. However, this is fixed by the complex deformation.
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Geometrically, a massive momentum vector may be decomposed into a sum of two

future-directed, light-like vectors. The SU(2) little group invariance represents the man-

ifold of all such decompositions. Each null vector rotates about the massive vector under

the Wigner rotations, but their sum remains unchanged. When the three leg momenta

are real and parallel, each can be decomposed into a linear combination of the same two

real null vectors. However, when complexified, the massive leg momenta need no longer

be proportional and the requirement that their null vector decompositions coincide be-

comes a more stringent constraint. Here, “coincide” means that they have vanishing

dot products (as is clear for e.g. the first terms in (2.46) for each i). However, in this

complexified context, null vectors with vanishing dot product need no longer be linearly

dependent (proportional). This is the complexification of the notion of massive momenta

being parallel. The spinors constituting each null vector are also no longer complex

conjugates. As a result, the little group is also complexified from SU(2) to SL(2,C).

The existence of the preferred spinor direction is analogous to that provided by the

massless particle in the general 3-leg amplitude with one massless leg and two massive

legs of equal mass, as classified in (30). It is therefore analogously possible to construct

general 3-particle amplitudes between massive particles obeying this mass constraint

by expanding the polarisation-stripped amplitude tensor in a basis spanned by tensor

products of |u]α and ϵαβ. However, by Lorentz invariance, the amplitude tensor must be

of even total rank, so factors of |u]α may always be paired and eliminated using (2.42)

and (2.43). Doing so will always leave (after applying the spin sums) terms proportional

to ϵαβ and (p1p2)αβ, which are precisely the building-blocks used for the general 3-leg

amplitude of three massive particles proposed in (30). Thus these special kinematics

provide no new constraints on possible Lorentz structures in amplitudes nor any new

features beyond the general case.

However, the special case in which one leg is massless and the other two have equal
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mass can be regarded as a limiting case. Taking m3 → 0 and m2 → m1 = m, then in the

helicity basis for the little group frame,

u3+ → ±
√
mx u3− → ±

√
m/x (2.50)

(the sign choice in each limit is to be the same). These components of the frame spinor

produce the helicity-weight-carrying scalar units x = u3+/u3−, introduced in (30). The

remaining u1 and u2 spinors can still be used as building-blocks, but can be related to x

and |3⟩ and |3] through (2.42). Explicitly,

uI1 = ∓
√
x

m

[
1I3
]

uJ2 = ±
√
x

m

[
2J3
]
. (2.51)

Nevertheless, the case of a massless leg with two massive legs of equal mass is dis-

tinguished from other cases obeying the mass selection rule in that it does not have a

non-trivial, real momentum, collinear limit. As a result, x is a purely complex momen-

tum object with no analogue in amplitudes of other mass configurations. The significance

of this was observed recently by (33), where it was shown that amplitudes of magnetic

monopoles factorise differently on each of the two possible complex momentum con-

figurations corresponding to the same factorisation channel, which was interpreted as

signifying the presence of a Dirac string. In contrast, the Bhabha scattering calculation

presented in Section 2.4.2 illustrates the simplest way in which the x factors across a fac-

torisation channel can be combined that does not depend upon the complex momentum

configuration chosen, see discussion in (33).
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Three-Particle Superamplitude

To begin with, we present the 3-particle superamplitude for massless legs in non-chiral

superspace, which is

A3[G1, G2, G3] =
1

⟨12⟩ ⟨23⟩ ⟨31⟩
δ(4)(Q†)

∏
a

(⟨12⟩ η̃†a3 + ⟨23⟩ η̃†a1 + ⟨31⟩ η̃†a2 )

+
1

[12] [23] [31]
δ(4)(Q)

∏
a

([12] ηa3 + [23] ηa1 + [31] ηa2). (2.52)

The first term is the MHV sector and the second is the anti-MHV (MHV) sector. Each

term is only non-zero for distinct special massless kinematical configurations. This may

be obtained from the well-known chiral form by the half-Fourier transform. We henceforth

choose to absorb the annoying factor of
√
2 in the supercharges in (2.15) into the definition

of the coupling so that it is implicitly to be omitted in all appearances of the delta

functions δ(4)(Q) and δ(4)(Q†).

We next turn to deriving the superamplitude for massive legs. Usually, supersym-

metry invariance of an amplitude immediately implies that An ∝ δ(4)(Q†a)δ(4)(Qa+2).

However, as will be shown below, the special kinematics here implies that 2 pairs of su-

percharges of each chirality degenerate, leaving only 6 independent (if the momenta were

restricted to be real, then all 4 pairs would be related). This occurs as a result of the

special spinor direction given by the uIi . It is simple to show that
〈
uQ†a〉 = − [uQa+2] =∑

imiu
I
i η
a
iI . In this case, the superamplitude may be deduced from the little group scal-

ing of the external legs (which are invariant in this coherent state basis) and invariance

under the independent supersymmetries. Building a supersymmetry invariant involves

introducing a new reference spinor |q⟩ ̸∝ |u⟩, effectively to decompose the supercharges

into the shared components that are parallel to |u⟩ and the remaining independent com-

ponents. Projected onto |u⟩ and |q⟩, the delta functions may be factorised as δ(4)(Q†a) =
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1
⟨qu⟩2 δ

(2)(
〈
qQ†a〉)δ(2)(〈uQ†a〉) and δ(4)(Qa+2) =

1
m4

1⟨qu⟩
2 δ(2)(⟨q| p1 |Qa+2])δ

(2)(⟨u| p1 |Qa+2]),

where both expressions are independent of |q⟩. Up to a multiplicative prefactor, the su-

persymmetry invariant may be obtained by dropping the repeated factor in both δ(4)(Q†a)

and δ(4)(Qa+2). This is easily verified as being annihilated by all of the supercharges. To

determine the numerical prefactor, we demand that the result match onto (2.52) in the

limit of massless legs. The superamplitude is thus determined to be

A3[W1,W2,W3] =
1

m2
1 ⟨q| p1p3 |q⟩

δ(4)
(
Q†a) δ(2) (⟨q| p1 |Qa+2])

=
1

⟨q| p1p3 |q⟩
δ(4) (Qa+2) δ

(2)
(〈
qQ†a〉) . (2.53)

The superamplitude has been expressed in a form in which the auxiliary spinors ui do

not appear explicitly, although they still constrain the reference spinor |q⟩ to satisfy

⟨uq⟩ ̸= 0. While δ(4)(Q†a) = 1
⟨qu⟩2 δ

(2)(
〈
uQ†a〉)δ(2)(〈qQ†a〉) is clearly independent of the

reference spinor, this remains true of 1
⟨qu⟩2 δ

(2)(⟨q| p1 |Qa+2]) up to terms that vanish when

multiplied by the other delta functions. It is therefore justified to the drop of the factor of

δ(2)(⟨u| p1 |Qa+2]) in δ
(4)(Q) to obtain the SUSY invariant in the first form in (2.53) (and a

similar argument applies to the second). The reference spinor itself is unnecessary for the

component amplitudes and may be eliminated after these are extracted. However, it is

needed to squash them all into the superamplitude in this way. A similar representation

of the massless three particle superamplitude in 6d was found in (63), which presumably

reduces to the expression above upon dimensional reduction.

Also of note is that this superamplitude combines terms that belong to distinct su-

persymmetric sectors (MHV and MHV in the massless limit) into a single Grassmann

polynomial. We will return to this point and see the combination of sectors even more

explicitly in Section 2.5.3.

The most remarkable feature of the massive 3-leg superamplitude (2.53) is the kine-
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matic factor in the denominator. This vanishes in the collinear limit - the one situation

in which the momenta can be both real and on-shell. This factor is reminiscent of the

Parke-Taylor factors of the exact, massless Yang-Mills 3-leg amplitude e.g. ∼ ⟨12⟩4
⟨12⟩⟨23⟩⟨31⟩ ,

as well as its supersymmetrised counterpart δ(Q)
⟨12⟩⟨23⟩⟨31⟩ . For these theories, when glued

into a 4-leg amplitude on a factorisation channel, the factors in the denominator com-

bine to produce the pole representing the other factorisation channel of the amplitude,

as arranged for automatically by BCFW recursion (64), (30). However, in the massive

case here, the kinematic factor is neither present nor necessary in any of the component

amplitudes. Instead, its appearance is orchestrated as a consequence of the maximal

supersymmetry. Its presence likewise suggests that the Coulomb branch superampli-

tudes share in the special constructibility properties of their massless counterparts, as

confirmed by the existence of super-BCFW. This will be explored further below.

An alternative representation of the three particle superamplitude also exists that

more directly utilises the special kinematical properties of the BPS states. In the special

frame selected by {ui, wi}, the multiplicative supercharges may be decomposed as

Q = |u]
∑
i

ηiw −
∑
i

± 1

|ui|
|iw] ηiu Q† = − |u⟩

∑
i

ηiw +
∑
i

1

|ui|
|iw⟩ ηiu, (2.54)

calling Grassmann variables ηiu = uIi ηi,I and ηiw = wIi ηi,I (not ŵi as used in the definition

of |iw⟩). Now, partially solving the supercharge conservation constraints [uQ] = 0 and〈
uQ†〉 = 0 implies that ηiu = ±ηju for all legs i and j (where the (+) applies if the central

charges of i and j are the same and (−) if they are opposite). This consequently implies

that, on the support of this solution, the supercharges are parallel to the special frame

spinor directions e.g. Q ∼ |u] (
∑

i ηiw − Cη1u). The constant C may be determined by

introducing the reference spinor |q] satisfying [qu] ̸= 0 (any of the |iw] would be possible
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choices):

C =
1

[qu]

∑
i

1

(ui)
[qiw] . (2.55)

An alternative representation of the supersymmetric delta function may therefore be

deduced by combining each of the three distinct Grassmann terms in (2.54) above into a

single product

A3[W1,W2,W3] =
∏
a

((∑
i

ηaiw

)
(ηa1uη

a
2u + ηa2uη

a
3u − ηa3uη

a
1u)− Cηa1uη

a
2uη

a
3u

)
. (2.56)

Note that, thus far, every expression involving a decomposition into this special little

group frame is independent of the choice of ωi in (2.45). These parameters remain free.

Further simplification may be achieved by partially fixing the ωi parameters to set C = 0,

or equivalently

∑
i

1

|ui|
|iw] = 0

∑
i

± 1

|ui|
|iw⟩ = 0 (2.57)

(these two equations are equivalent). On the support of each other’s delta functions, the

supercharges then reduce to the first terms in (2.54). The superamplitude simplifies to

A3[W1,W2,W3] =
∏
a

(∑
i

ηaiw

)
(ηa1uη

a
2u + ηa2uη

a
3u − ηa3uη

a
1u) . (2.58)

This is analogous to the form commonly presented in 6d (22).

The massive amplitudes are built out of these combinations of bilinears in (2.48).

In (2.58), these are split apart into their ‘square roots’ |ui|. In extracting a component

amplitude, four factors of ui and two of their duals wi =
1

|ui|ŵi are produced. These

combine into spinor bilinears through (2.48). This demonstrates how the frame spinors
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uIi can be used as alternative building blocks with which to construct the three particle

amplitudes.

To illustrate this more explicitly, the three massive vector component amplitude may

be extracted from (2.58) to give

A[W I1I2
1 ,W

J1J2
2 ,WK1K2

3 ]

=
2∏
i=1

(
|u2||u3|
|u1|

ŵIi1 û
Ji
2 û

Ki
3 − |u3||u1|

|u2|
ŵJi2 û

Ki
3 ûIi1 +

|u1||u2|
|u3|

ŵKi
3 ûIi1 û

Ji
2

)
.

(2.59)

The little group indices are implicitly to be symmetrised over (we will assume this in all

subsequent expressions where they arise as indexing polarisation states of external legs).

The diagonal terms in the product have the form e.g.

∏
i

(
|u2||u3|
|u1|

ŵIi1 û
Ji
2 û

Ki
3

)
=

([2w3w]− ⟨2w3w⟩)3

([1w2w]− ⟨1w2w⟩) ([3w1w] + ⟨3w1w⟩)
∏
i

ŵIi1 û
Ji
2 û

Ki
3 (2.60)

It is clear that the prefactor multiplying the spinors is the massive upgrade of the Parke-

Taylor factor. The remaining factor accounts for the spin components with respect to a

given quantisation axis. Likewise, the cross terms are of the form

(
|u2||u3|
|u1|

|u3||u1|
|u2|

ŵI11 û
I2
1 û

J1
2 ŵ

J2
2 û

K1
3 ûK2

3

)
=

([2w3w]− ⟨2w3w⟩) ([3w1w] + ⟨3w1w⟩)
[1w2w]− ⟨1w2w⟩

ŵI11 û
I2
1 û

J1
2 ŵ

J2
2 û

K1
3 ûK2

3 . (2.61)

The prefactor here suggestively resembles the massless amplitude for photon/gluon emis-

sion by a scalar.

In all expressions prior to (2.58), all occurrences of the ωi parameters cancelled-

out and could be set to zero without loss of generality (effectively setting ŵi = û†i ).
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While yielding the pleasing expressions above, the cost of the frame choice that sets

C = 0 is that further complication in the general expression has been transferred into

the ŵi, which cannot be identified as unit spinors determined by the û†i alone. Alternative

expressions with this interpretation could be extracted directly from (2.56) at the expense

of additional manifest complication.

In the limit that all legs become massless, (2.48) implies that the frame spinors

all converge to a particular helicity, which corresponds to the configuration of massless

special 3-particle kinematics. Either ûi+ → 0 for each i and the right-handed massless

spinors align or ûi− → 0 and the left-handed spinors align. The combinations of bilinears

(2.48) appearing in the superamplitude behave as ([iwjw]± ⟨iwjw⟩) → û†i+û
†
j+ [ij] or

([iwjw]± ⟨iwjw⟩) → ±û†i−û
†
j− ⟨ij⟩ for each i, j. The surviving factors of uiI then become

“square-roots” of the massless bilinears e.g. u3+ →
√

[23][31]
[12]

or u3+ →
√

⟨23⟩⟨31⟩
⟨12⟩ .

Furthermore, in either massless complex kinematical configuration, C → 0 and only

the terms retained in the C = 0 frame remain in the massless limit. The factors of ŵi

may be identified with as û†i and consequently the massless limit may be read-off from

the expressions (2.58) and (2.59). For example, in the case where all left-handed spinors

become proportional, the second factor in (2.58) converges to δ(4)(Q), while the first

becomes the remaining Grassmann quadratic (including the Parke-Taylor factor) in the

MHV term in (2.52). The diagonal term in the all vector component amplitude above

(2.60) clearly converges to the Parke-Taylor three vector amplitude A[g∓1 , g
±
2 , g

±
3 ] for the

relevant helicity and massless special kinematics choices, otherwise it converges to zero.

Likewise, the cross-terms like (2.61) converge to amplitudes expected for a Goldstone

boson emitting a gluon, as expected from the Higgs mechanism. The remaining factors

of the unit frame spinors û
(†)
i± ultimately cancel-out.

In practice, although carrying the redundant reference spinor, the form (2.53) is

relatively easy to use in practical calculations. We will choose to continue to use the
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spacetime spinor formulation of (2.53) in the remainder of this paper. Following a similar

argument to that presented above for (2.53), a simple representation for the 2-massive-leg

superamplitude may instead be derived by finding the SUSY invariant δ(4)(Q†a)δ(4)(Qa+2)

and dropping one of the repeated factors of the degenerate supercharges. The overall

coefficient is then fixed by the little group scaling of the legs. In this case, the special

kinematics implies that ⟨3| p1 |Qa+2] = −m
〈
3Q†a〉. The 3-leg superamplitude is then

determined to be

A3[W1,W2, G3] =
−x

m3 ⟨q3⟩2
δ(4)

(
Q†a) δ(2) (⟨q| p1 |Qa+2])

=
−x

m3 ⟨q3⟩4
δ(2)

(〈
3Q†a〉) δ(2) (〈qQ†a〉) δ(2) (⟨q| p1 |Qa+2])

=
−x

m ⟨q3⟩2
δ(4) (Qa+2) δ

(2)
(〈
qQ†a〉) . (2.62)

The reference spinor |q⟩ must satisfy ⟨q3⟩ ̸= 0. Because this superamplitude must be

invariant under the little group scaling of its legs, the helicity-carrying factor x has been

re-introduced. The presence of x is expected because of its appearance in the component

amplitudes like A3[W
I1I2 ,W

J1J2
, g+] and it emerges in taking the massless limit m3 → 0

of u3,K
∣∣3K] /(〈q3K〉u3,K) in (2.53), as explained previously above.

Explicitly expanding the delta functions gives

A3[W1,W2, G3] =
−1

m
x
∏
a

(
−
[
32I
]
ηa1Mη

Ma
1 ηa2I +

[
31I
]
ηa1Iη

a
2Mη

aM
2 +

[
1I2J

]
ηa1Iη

a
2Jη

a
3

−x−1
〈
1I2J

〉
ηa1Iη

a
2J η̃

†a
3 +

1

2
mηa1Mη

Ma
1 ηa3 +

1

2
mηa2Mη

Ma
2 ηa3 +

1

2

m

x
ηa1Mη

Ma
1 η̃†a3

+
1

2

m

x
ηa2Mη

Ma
2 η̃†a3 +

[
1I3
]
ηa1Iη

a
3 η̃

†a
3 −

[
2I3
]
ηa2Iη

a
3 η̃

†a
3

)
,

(2.63)

which allows the components to be efficiently read off. Notably, the reference spinor
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introduced in the delta functions has completely disappeared and does not affect the

components.

The form of the two-equal-mass superamplitude makes clear that the interactions of

BPS states with massless gauge bosons are monomials in x. In the above case, this has the

physical interpretation of the BPS states having gyromagnetic ratio g = 2 exactly (and

likewise no anomalous electric quadrupole moment, as seen in the N = 1 case in (29)).

The different Lorentz structures of the couplings are fully protected by supersymmetry.

Explicitly, we may extract the collection of such component amplitudes as

A[W ,W , g−] =
x

m

∏
a

(
[1I2J ]ηa1Iη

a
2J +

1

2
mηa1Mη

Ma
1 +

1

2
mηa2Mη

Ma
2

)
(2.64)

A[W ,W , g+] =
1

mx

∏
a

(
⟨1I2J⟩ηa1Iηa2J −

1

2
mηa1Mη

Ma
1 − 1

2
mηa2Mη

Ma
2

)
. (2.65)

2.5.2 Four Particle Superamplitudes

Using massive super-BCFW, we next present a derivation of the general 4-leg super-

amplitude for legs of arbitrary mass. In this case, the Grassmann dependence is entirely

determined by the factor δ(4)(Q†,a)δ(4)(Qa+2). Thus, only the coefficient of the delta func-

tion need be calculated and this is fixed by any single component amplitude. While the

expected form of the superamplitude is obvious and follows from supersymmetry, fac-

torisation and the (trivial) spin of the external superfields, the following derivation will

illustrate how these emerge from combining the on-shell 3-leg amplitudes (2.53). It will

also provide a simple demonstration of the mechanics and use of massive super-BCFW.

We will calculate A4[W1,W2,W3,W4]. This colour-ordering implies that the masses

obey the constraint m1 + m3 = m2 + m4. The cases with different combinations of

particles and anti-particles may be obtained by obvious modification. For any such

superamplitude that respects colour neutrality of the broken gauge group, there will
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always be two consistent factorisation channels in which the on-shell, internal particle

has mass given by the sum of the masses of the other legs on each subamplitude (weighted

by the sign of their central charges).

As noted above, 4d massive super-BCFW may be obtained by dimensionally reducing

that of massless 6dN = (1, 1) SYM. An analogous calculation of the 4-leg superamplitude

in 6d was performed in (21), supersymmetrising the computation in pure YM in (44).

In 4d, the special case of two massless legs have been previously calculated by (18) and

(27), for the simple case of an U(N +M) → U(N) × U(M) breaking pattern (where

there are two possible structures with consistent colour-ordering). The former used non-

supersymmetric BCFW recursion applied to the component amplitude A4[W,W, g+, g+]

to determine the kinematical coefficient of the delta functions, while (27) used the general

CHY-like formula. These are a special case of our result.

First define generalized Mandelstam variables sij = −(pi + pj)
2 − (mi ±mj)

2, where

the masses are added if the lines have the same sign central charge and subtracted if

opposite. For a general amplitude with any number of legs, these satisfy the useful

identities
∑

j sij = 0 and
∑

j ̸=k sij =
∑

j ̸=i skj, by conservation of momentum and the

mass constraint. Other relations may be similarly derived.

Applying the super-shift to legs 1 and 2, the superamplitude is determined from a

single factorisation channel:

4̄

ˆ̄21̂
P̂

3

L R

Figure 2.1: The single BCFW diagram for four-point recursion.
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A4[W1,W2,W3,W4] =

∫
d4ηP̂ ÂL[W4, Ŵ1,WP̂ ]

−1

s14
ÂR[W−P̂ , Ŵ2,W3], (2.66)

where P̂ is the momentum of the internal line, taken as outgoing from the left subampli-

tude in Figure 2.1 and incoming into the right subamplitude. Hats denote shifted legs,

to be evaluated on the residue determined by s41̂ = 0, although it will be unnecessary in

this example to determine either the residue or the shift vector. Assuming that m1 < m4,

then the internal on-shell particle has mass mP = m4 −m1 and is BPS in the left super-

amplitude. In the right amplitude, it is an incoming BPS state, which can be regarded

by crossing symmetry as an outgoing anti-BPS state with momentum −P .

Analytically continuing spinors and Grassmann variables from negative to positive

energies requires the rules

∣∣−P I
]
= i
∣∣P I
] ∣∣−P I

〉
= i
∣∣P I
〉

ηI−P = iηIP , (2.67)

which are little group covariant (and consistent with (65)). These rules imply that the

sign of the mass as it appears in the Weyl equation or the spin sums effectively reverses

so that e.g. p
∣∣−pI] = −m

∣∣−pI〉 for a leg of mass m and momentum p. See Appendix

A of (29) for spinor conventions and identities. As a result, while the BPS condition for

an analytically continued leg (2.13) is unchanged (noting that both the momentum and

central charges reverse under crossing), a relative negative sign appears in the spinor-

stripped counterparts (2.5). As a result, under the conventions employed here, the left-

handed multiplicative supercharges of the crossed legs pick up an extra negative sign

relative to that of the other outgoing legs.

Likewise, the corresponding massless variables in the conventions employed here must
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also all acquire a factor of i upon analytic continuation

|−p] = i |p] |−p⟩ = i |p⟩ η−p = iηp η†−p = iη†p. (2.68)

The remaining calculation involves combining the delta functions and simplifying. It

is through combining the delta functions that the extra pole is generated, effectively as

a Jacobian factor arising from the mismatch between the aligned frame spinors uI
P̂
on

the left and right on-shell amplitudes. This overlap was also the source of the additional

pole in 6d YM (21). We give details of this in Appendix 2.A, but the result is that

ÂL[W4, Ŵ1,WP̂ ]ÂR[W−P̂ , Ŵ2,W3] =
1(

u
(L)

P̂M
u
(R)M

P̂

)2 1

(⟨q| p4p̂1 |q⟩)2

× δ(4) (Q) δ(4)
(
Q†) δ(2) (〈qQ̂†

R

〉)
δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
. (2.69)

Here the L and R subscripts index parameters originating in the factorised on-shell

amplitudes, the hats indicate that they are shifted and the U(2) R-indices have been

omitted for brevity. The supercharges without subscripts represent those for the full

4-leg superamplitude. The multiplicative factor arises from a succession of basis changes

and invocations of constraints from the other delta functions. This critically provides the

factor that will become the pole representing the other factorisation channel.

After factoring out the total supersymmetric delta function, the remaining Grassmann

integral is simple to perform, giving

∫
d4ηP̂ δ

(2)
(〈
qQ̂†

R

〉)
δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
=
(
⟨q| p̂1P̂ |q⟩

)2
. (2.70)
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Combining all of the factors and using P̂ = −p̂1 − p4, the superamplitude reduces to

A4[W1,W2,W3,W4] =
δ(4)(Q)δ(4)(Q†)

s41

−1(
u
(L)

P̂M
u
(R)M

P̂

)2 . (2.71)

All of the kinematical factors cancel out with the exception of the internal propagator for

this factorisation channel and another factor given by the overlap of the frame spinors

for the internal line. This form was also reached in the analogous 6d calculation (21; 44)

and the demonstration that this is the pole of the other factorisation channel is similar.

We repeat the argument from the 4d perspective in Appendix 2.A, the result of which is

that

(
u
(L)

P̂M
u
(R)M

P̂

)2
= −s12. (2.72)

As explained in Subsection 2.5.1, the ui spinors select a preferred decomposition of mas-

sive momenta into a sum of two parallel null vectors. This new pole occurs when the

frame spinors for the internal line in the BCFW diagram align. This equivalently means

that the two sets of parallel null vectors that span the massive momenta on each side

of the factorisation channel align. This is just the complexification of the alignment of

the external massive momenta on opposite sides of the the factorisation in the BCFW

diagram, which is exactly the condition required for the alternative factorisation channel.

The 4-leg superamplitude is therefore

A4[W1,W2,W3,W4] =
δ(4)(Q†a)δ(4)(Qa+2)

s12s41
. (2.73)

The residue and the momentum shift ultimately cancelled out in this calculation and did

not have to be solved for. This amplitude closely resembles its counterparts in unbroken
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Yang-Mills, where both manifestly feature poles in both s and t factorisation channels in

a single term. The superamplitude in which any of the legs is massless may be obtained

as an obvious limiting case.

Just as in massless (super-)Yang-Mills, only one factorisation channel (or BCFW

diagram) was sufficient to determine the 4-leg amplitude from the elementary 3-leg am-

plitudes. The pole providing the other factorisation channel originates from the kine-

matic “singularity” in the 3-leg superamplitude (2.53). The numerator (specified here

by supersymmetry) determines the polarisation structure. It is a simple task to extract

component amplitudes of massive states. As an example, the four massive vector boson

amplitude may be found as

A4[W
I1I2
1 ,W

J1J2
2 ,WK1K2

3 ,W
L1L2

4 ] =
1

s12s41
2∏
i=1

([
1Ii2Ji

] 〈
3Ki4Li

〉
+
〈
1Ii2Ji

〉 [
3Ki4Li

]
+
[
1Ii3Ki

] 〈
2Ji4Li

〉
+
〈
1Ii3Ki

〉 [
2Ji4Li

]
+
[
1Ii4Li

] 〈
2Ji3Ki

〉
+
〈
1Ii4Li

〉 [
2Ji3Ki

])
(2.74)

The massive little group indices are implicitly symmetrised over in the above expressions

as usual. From the perspective of 6d Yang-Mills amplitudes dimensionally reduced to

4d, each factor in the numerator is the reduction of the ‘4-bracket’ of 6d spinors (44).

It is clear that the expected helicity selection rules emerge in the massless limit (see

Appendix A of (29)), where the amplitudes without split helicities are mass suppressed,

most severely when all helicities are the same.
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2.5.3 Five Particle Superamplitudes and Band Structure

Bands

Away from the origin of moduli space, the R-symmetry is broken to USp(4) from

SU(4) and the sectors of distinct levels of helicity violation partially merge. This oc-

curs because processes forbidden by helicity selection rules may now proceed at mass-

suppressed rates. Instead, (18), who work in a chiral superspace in which a SU(2) ×

SU(2) ≤ USp(4) is manifest, are able to classify the residual supersymmetric invariant

sectors by their Grassmann orders under each SU(2) factor. Each of these sectors, in

their formulation, is an inhomogeneous polynomial that spans several overlapping even

Grassmann orders, which were described as ‘bands’. The polynomial of (K+1)th lowest

degree was called the NKMHV sector, in analogy with the massless superamplitudes.

Each invariant term in the superamplitude is then classified under this product structure

as a Nk1MHV× Nk2MHV band.

In non-chiral superspace the superamplitudes are instead homogeneous of degree 2n in

Grassmann variables and a distinct U(2) R-subgroup is realized explicitly, which foretell a

different organization of the bands here (we retain the term ‘band’ for supersymmetrically

closed sector, as well as the Nk1MHV × Nk2MHV notation). The simplest non-trivial

example of a superamplitude with independent (albeit simple) bands is at five legs and

our exploration here will provide insight into the band structure for general Coulomb

branch superamplitudes. The three and four leg superamplitudes discussed above are

special cases.

As discussed in (18), the three leg massive superamplitude is non-trivial and actually

contains three such independent terms. In the little group violating chiral superspace

used by the authors, these appear as MHV and MHV superamplitudes with a form almost

identical to their massless counterparts, as well as a new MHV×MHV term that vanishes
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in the massless limit. None of these are manifestly visible in our expression (2.53), because

they are represented by sectors of specific helicities, all of which are combined here into a

massive little group invariant. That the three-leg superamplitude combines each helicity-

violating band into a single, little group and supersymmetric invariant means that super-

BCFW recursion cannot be automatically applied sector-by-sector as it is in the massless

case. This weakening of the massless helicity selection rules may potentially complicate

calculations if little group invariance is to be preserved.

We here illustrate the decomposition into bands of the 3-particle superamplitude,

choosing the special case (2.62) for simplicity. To reveal the separate supersymmetric

invariant sectors, we explicitly strip off a massive spinor from one of the supercharges.

We define

ζa1I ≡
1

m

〈
1IQ

†a〉 (2.75)

such that we may write the degenerate component of the delta functions as

δ(2)
(〈
3Q†a〉) = δ(2)

(〈
31I
〉
ζa1I
)
. (2.76)

The distinct bands closed under supersymmetry now correspond to the components of

this sum in the helicity basis, so we may exhibit the band structure as

A3[W1,W2, G3] =
−x

m3 ⟨q3⟩4
δ(2)

(〈
qQ†a〉) δ(2) (⟨q| p1 |Qa+2]) (2.77)

× 1

2
ϵab

[〈
31+
〉2
ζa1+ζ

b
1+ + 2

〈
31+
〉 〈

31−
〉
ζa1+ζ

b
1− +

〈
31−
〉2
ζa1−ζ

b
1−

]
,

where the first term corresponds to the MHV band, the last to the MHV band, and the

middle to the MHV ×MHV band, which vanishes in the massless limit. In other little

group frames these bands will be scrambled, though still exist as separate supersymmetric

121



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

invariants. This decomposition into bands makes it clear the way in which the separate

sectors of helicity violation are combined in the massive case.

The four leg superamplitude has only one distinct supersymmetric structure. Just

as for the massless case, there is only the MHV sector, which is identical to its parity

conjugate MHV sector.

Beyond 4 legs, the bands may be identified by solving the SWIs directly. At five

legs, supersymmetry implies that A5 = δ(4)(Q†,a)δ(4)(Qa+2)F , where F is some function

quadratic in Grassmann variables. Proceeding as in the general strategy laid out in (29),

the appearance in F of Grassmann variables for two of the lines may be eliminated here

using the constraints imposed by the supersymmetric delta functions. Then supersym-

metry requires that QaF = 0 and Q†a+2F = 0. These Grassmann PDEs may be solved by

finding ‘Grassmann characteristics’ - combinations of Grassmann variables upon which F

cannot depend. Then F is a function of the other independent Grassmann variables that

‘label’ the characteristics (this resembles the method used in (66) to solve the SWIs). In

this manner one may construct linear combinations of Grassmann variables, which we

term ‘triads’, that are annihilated by Qa and Q†a+2 and which include the ηs of only

three of the legs.

Choosing a BPS line i and an anti-BPS line j, we define Grassmann triads ‘anchored’

at massless legs k and massive legs ℓ as

ξak,ij ≡ ηak +
(
mjη

a
iI

〈
iI
∣∣+miη

a
jJ

〈
jJ
∣∣) πij |k] /π2

ij (2.78)

ξ̃†ak,ij ≡ η̃†ak +
(
miη

a
jJ

[
jJ
∣∣−mjη

a
iI

[
iI
∣∣) πij |k⟩ /π2

ij (2.79)

ξaℓ,ijL ≡ ηaℓL +
(
mjη

a
iI

〈
iI
∣∣+miη

a
jJ

〈
jJ
∣∣) πij |ℓL] /π2

ij ±
(
miη

a
jJ

[
jJ
∣∣−mjη

a
iI

[
iI
∣∣)πij |ℓL⟩ /π2

ij

(2.80)

where the upper sign in the last line is for BPS states and the lower sign for anti-BPS
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states, and we have defined πij ≡ mipj+mjpi for ease of reference. Since i, j differ in the

signs of their central charges, π2
ij = mimjsij, where sij are the generalized Mandelstam

variables. The triads have the massless limits

ξak,ij → ηak +
[jk]

[ij]
ηai +

[ki]

[ij]
ηaj ≡

ma
ijk

[ij]
(2.81)

ξ̃†ak,ij → η̃†ak +
⟨jk⟩
⟨ij⟩

η̃†ai +
⟨ki⟩
⟨ij⟩

η̃†aj ≡
m̃†a
ijk

⟨ij⟩
(2.82)

(
ξaℓ,ij+, ξ

a
ℓ,ij−

)
→

(
±
m̃†a
ijℓ

⟨ij⟩
,
ma
ijℓ

[ij]

)
, (2.83)

where the massless ma
ijk = [ij] ηak + [jk] ηai + [ki] ηaj variables were recognized in (66) as

useful for solving the SWIs in the chiral superspace at the origin of moduli space. It is

straightforward to take limits where only line i or j becomes massless. In the following

we will use the same symbols for triads regardless of the masses of lines i, j, and rely on

these limits to provide their definitions.

We may now write any superamplitude as a sum of a large-enough set of products

of these triads with undetermined coefficients, and then project onto various component

amplitudes to fix them. For a 5-leg superamplitude with up to four massive legs, we may

characterize the band structure using the triads of a single massless leg as

A5 [G1, V2, V3, V4, V5] =
δ(4)(Q†,a)δ(4)(Qa+2)

2s245
ϵab ×

[
A5[g

−, V−, V−, V+, V+]ξ
a
1,23ξ

b
1,23+

2A5[S42 + S31, V−, V−, V+, V+]ξ
a
1,23ξ̃

†b
1,23 + A5[g

+, V−, V−, V+, V+]ξ̃
†a
1,23ξ̃

†b
1,23

]
. (2.84)

Here V is either a massless G or a massive W or W , while V± is the highest- or lowest-

weight state in the multiplet, which are respectively S12, S34 and ϕ̃, ϕ for the massless and

massive vectors. We note that the denominator merely cancels out the kinematic factors

in the delta function and is not a pole, as the kinematic poles are contained within the
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component amplitudes which are here left undetermined.

It is clear in this form that each of the terms is closed under supersymmetry. In the

language of (18), the first term in (2.84) is the MHV×MHV band, the third is its parity

conjugate and the second is the MHV × MHV band (and its conjugate). Notably, this

characterization of the bands respects little group covariance, but is determined by the

massless multiplet’s helicity states.

However, we may alternatively characterize the band structure using the triads of a

single massive leg, which identifies the bands with the polarizations of the massive W .

The 5-leg superamplitude with at least one massive leg may be written as

A5 [W1, V2, V3, V4, V5] =
δ(4)(Q†,a)δ(4)(Qa+2)

2s245
A5[W

(IJ), V−, V−, V+, V+]ϵab ξ
a
1,23Iξ

b
1,23J .

(2.85)

The comparison of (2.84) and (2.85) thus reflects clearly how the introduction of masses

combines amplitudes of different helicity components and how this in turn combines the

different bands of the superamplitude.

As is evident in these formulae, the 5-leg superamplitudes have the special property

that the bands are each fixed by a single component amplitude, so they may be fully

determined once these are known. For the case of two massive legs, (18) used BCFW

recursion to derive the partial amplitudes for a massive vector boson, its antiparticle

and any number of massless gluons, which, after conversion to the little group covariant

notation, may be written as

An[W
I1I2
1 ,W

J1J2
2 , g+3 , . . . g

+
n ]

=
−
〈
1I12J1

〉 〈
1I22J2

〉
[3|
∏n−1

i=4 (m
2 − (pi + · · ·+ pn + p1)(p2 + · · ·+ pi)) |5]

⟨34⟩ ⟨45⟩ . . . ⟨n− 1n⟩
∏n

i=4((p2 + · · ·+ pi−1)2 +m2)
, (2.86)

where n− 2 is the number of gluon legs. Likewise, partial amplitudes with any number
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of massless scalars S24 were derived as

An[W
I1I2 ,W

J1J2
, S24, . . . S24] =

mn−4
[
1I12J1

] 〈
1I22J2

〉∏n
i=4((p2 + · · ·+ pi−1)2 +m2)

, (2.87)

where n− 2 is the number of scalar legs.

For 5-legs, these component amplitudes may be combined into the superamplitude

A5[W1,W2, G3, G4, G5] =
δ(4)(Q†,a)δ(4)(Qa+2)

s51s23s45
ϵab×(

⟨3| p2p1 −m2 |5⟩
2 [34] ⟨45⟩

ξa3,12ξ
b
3,12 +mξa3,12ξ̃

†b
3,12 +

[3| p2p1 −m2 |5]
2 ⟨34⟩ [45]

ξ̃†a3,12ξ̃
†b
3,12

)
, (2.88)

where

ξa3,12 =
−1

s12

(
[3| p1 + p2

∣∣1I〉 ηa1I + [3| p1 + p2
∣∣2J〉 ηa2J + s12η

a
3

)
ξ̃†a3,12 =

−1

s12

(
⟨3| p1 + p2

∣∣1I] ηa1I − ⟨3| p1 + p2
∣∣2J] ηa2J + s12η̃

†a
3

)
. (2.89)

Note that the denominator of the superamplitude is somewhat different from (2.84) as the

component amplitudes that have been matched onto are different, but the band structure

is still clearly visible in terms of orders in helicity violation. As anticipated, the ξa3,12ξ̃
†b
3,12

term, which represents the MHV × MHV band, clearly vanishes in the massless limit,

leaving the usual MHV sector and its parity conjugate MHV.

With more legs, each band can consist of multiple combinations of triads and they

are also no longer fixed by single component amplitudes. The exceptions to this, most

clearly illustrated if there are enough massless legs for the superamplitude to be described

entirely with massless triads, are always the MHV × MHV band, which corresponds

to the only term that is purely holomorphic in triads anchored at massless legs (and

analogously for the MHV×MHV band), and the MHV×MHV band, which involves a
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single term with an equal number of triads and conjugate triads, each of a different type.

For example, the 6-leg superamplitude A[W ,W , G,G,G,G] has bands described by ξa3,45,

ξa4,56 and their conjugates. The MHV × MHV band is given by the single holomorphic

term ϵab(ξ
a
3,45ξ

b
3,45)ϵcd(ξ

c
4,56ξ

d
4,56), the terms in the NMHV × MHV and MHV × NMHV

bands are of the form ∼ ξ3ξ̃, while the terms in the NMHV × NMHV band are of the

form ∼ ξ2ξ̃2. However, when most of the legs are massive, there will not be a form in

which all of the Grassmann triads are anchored to massless legs and the little group

will combine the bands into components of an SU(2) tensor, similar to that observed in

(2.85).

In addition to having more available Grassmann structures, terms within each band

are related by the massive R-symmetry generators (2.14) that are not part of the U(2)

linearly represented on the on-shell superspace. A similar analysis to (66) could be

performed to determine the Grassmann structure for higher leg superamplitudes. We

will instead return our attention toward super-BCFW recursion, which has the capacity

to generate complete expressions instead.

Five Particle Superamplitudes

5̄ 4̄

ˆ̄21̂

I

P̂ 3
L R +

4̄

5̄

ˆ̄21̂

II

P̂

3

L R

Figure 2.2: The two BCFW diagrams for five-point recursion.

Using the insight provided above into the helicity structure of the the 5-leg superam-

plitude, we proceed to use massive super-BCFW to compute it in full generality. This

gives a first non-trivial application of BCFW recursion to computing amplitudes in which

every leg is massive.
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Much of the ensuing calculation resembles that performed in 6d in (21) and (44).

However, utilising the interpretation of the bands above, we are able to take short-cuts,

despite the calculation presumably being attainable through dimensional reduction and

not yet adapted with variables likely accommodating of dual conformal symmetry, as

used in (22) and (25).

We will choose to compute the superamplitude A[W1,W2,W3,W4,W5] for m1 <

m5. Results for other choices of central charges and masses are obtained by trivial

modification. Applying the massive super-BCFW shift to the first and second legs, the

superamplitude recurses to the two factorisation channels depicted in Figure 2.2. The

resulting superamplitude is

A[W1,W2,W3,W4,W5] =

∫
d4ηP̂ ÂL[W5, Ŵ1,WP̂ ]

−1

s15
ÂR[W−P̂ , Ŵ2,W3,W4]

∣∣∣
z
(1)
∗

+

∫
d4ηP̂ ÂL[W4,W5, Ŵ1,WP̂ ]

−1

s23
ÂR[W−P̂ , Ŵ2,W3]

∣∣∣
z
(2)
∗
. (2.90)

Each term is to be evaluated upon a different pole, respectively determined to be at

s1̂5 = 0 ⇒ z(1)∗ =
s15

2r · p5

s2̂3 = 0 ⇒ z(2)∗ =
−s23
2r · p3

. (2.91)

In each term, combining the delta functions to produce the full 5-leg supersymmetric

delta function is easy, as, on the support of the 3-leg superamplitude’s delta function,

the 4-leg superamplitude’s delta function is equivalent to the overall delta function for

the full superamplitude. This leaves the 3-leg delta function to be integrated in the state

sum.

The calculation may be continued by substituting the shifted momenta and Grass-

mann variables into the two terms, adding them together and simplifying. Outside the
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total supercharge conserving delta functions, only η1, η2, η3 and η5 manifestly appear in

the two terms above. However, we know that these must able to be arranged (after use of

the constraints imposed by the delta functions) into the triad structure discussed above,

such as that succinctly presented in (2.85). Choosing to represent the superamplitude

using triads ξa3,12, we only need to identify the coefficient of the terms containing a factor

of ϵabη
a
3K1

ηb3K2
to bootstrap the entire superamplitude. This is because, in this case, the

massive bands are each determined by a polarisation component of a single component

amplitude, A[ϕ1, ϕ2,W
K1K2
3 , ϕ̃4, ϕ̃5]. This allows us to henceforth discard all terms in the

calculation that do not have a factor of ϵabη
a
3K1

ηb3K2
, but only after first using the delta

function constraints to eliminate η4 and η5, the latter of which appears in the first term.

Inverting the delta function constraints Q = 0 and Q† = 0 for the supercharges

implies that, in expressing
∣∣5M〉 η5M as a linear combination of η1, η2 and η3, the latter

term is

m4m5

s45

(
1− p5p4

m4m5

)(
p4
m4

+
p3
m3

) ∣∣3K] η3K =
m4m5

s45

∣∣AK〉 η3K , (2.92)

where we define the spinor
∣∣AK〉 above to condense notation (we do not bother here to

present the terms proportional to other Grassmann variables, as these do not contribute

to the η23 term in the superamplitude).

Resuming our calculation of the BCFW diagrams in Figure 2.2, the first diagram

contributes

∫
d4ηP̂ ÂL[W5, Ŵ1,WP̂ ]

−1

s15
ÂR[W−P̂ , Ŵ2,W3,W4]

∣∣∣
z
(1)
∗

=
δ(4)(Q)δ(4)(Q†)

s15s2̂3s34

1

⟨q| p5p̂1 |q⟩
∏
a

(
m1

〈
q5M

〉
− ⟨q| p̂1

∣∣5M]) ηa5M ∣∣∣
z
(1)
∗
, (2.93)

where we have performed the Grassmann intergral and retained only the η25 terms.
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The exchange symmetry of the little group indices of the factors contracted against

the η5 variables implies that, by fermion statistics, only the component of the product

of η5 variables that is antisymmetric in R-indices provides a non-zero contribution, so

η15M1
η25M2

∼ −1
2
ϵabη

a
5M1

ηb5M2
. Then applying the Schouten identity, (2.93) can be simplified

to

δ(4)(Q)δ(4)(Q†)

s15s2̂3s34

−1

m2
5

〈
5M1
∣∣ p̂1p5 ∣∣5M2

〉(−1

2
ϵabη

a
5M1

ηb5M2

)
(2.94)

(leaving implicit evaluation on the first residue). Substituting in (2.92) gives the η23

contribution from the first BCFW diagram

δ(4)(Q)δ(4)(Q†)

s15s2̂3s34s
2
45

(−m2
4)
〈
AK1

∣∣ p̂1p5 ∣∣AK2
〉(−1

2
ϵabη

a
3K1

ηb3K2

)
. (2.95)

The spinor bilinear in the term above may be simplified to

〈
AK1

∣∣ p̂1p5 ∣∣AK2
〉
=

1

m3m2
4

(〈
3K1
∣∣ p4 ∣∣3K2

]
(s45s1̂3 − s1̂4s35)

−
〈
3K1
∣∣ p̂1 ∣∣3K2

]
s45s34 +

〈
3K1
∣∣ p5 ∣∣3K2

]
s1̂4s34

)
. (2.96)

The second BCFW diagram in Figure 2.2 may be evaluated almost identically to the

first. In this case no factors of η4 or η5 appear, so only the coefficient of the η23 term

needs to be retained. This contributes

δ(4)(Q)δ(4)(Q†)

s45s23s1̂5

−1

m3

〈
3K1
∣∣ p̂2 ∣∣3K2

](−1

2
ϵabη

a
3K1

ηb3K2

) ∣∣∣
z
(2)
∗
. (2.97)

The next step is to add the two BCFW terms together and combine them into a

simplified expression. Explicitly evaluated on the residues (2.91), the shifted Mandelstam

129



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

invariants appearing in each term may be expressed as

s2̂3

∣∣∣
z
(1)
∗

=
1

r · p5
(s23(r · p5) + s15(r · p3)) , s1̂5

∣∣∣
z
(2)
∗

=
1

r · p3
(s23(r · p5) + s15(r · p3)) .

(2.98)

Following (21) by calling ϕ = s23r · p5 + s15r · p3, the two BCFW terms can be combined

to give

− δ(4)(Q)δ(4)(Q†)

m3s23s34s45s51ϕ

(s23
s45

(r · p5)
( 〈

3K1
∣∣ p4 ∣∣3K2

]
(s45s1̂3 − s1̂4s35)−

〈
3K1
∣∣ p̂1 ∣∣3K2

]
s45s34

+
〈
3K1
∣∣ p5 ∣∣3K2

]
s1̂4s34

)∣∣∣
z
(1)
∗

+ s34s15(r · p3)
〈
3K1
∣∣ p̂2 ∣∣3K2

] ∣∣∣
z
(2)
∗

)
.

(2.99)

The terms proportional to
〈
3K1
∣∣ r ∣∣3K2

]
arising from the shifted momenta cancel after

substituting the residues. In order to progress further, the ambiguity from momentum

conservation and the mass selection rule can be fixed to help combine terms. Choosing to

do this by eliminating p4 and m4 from the expression, the special identities between Man-

delstam invariants introduced just prior to the computation of the 4-leg superamplitude

in Section 2.5.2 can be used for simplification. In doing so, all remaining dependence on

the shift vector r in the numerator of (2.99) factorises into a factor of ϕ and thus cancels

against that in the denominator. This leaves an expression for the η23 term in the 5-leg

superamplitude that is independent of the shift vector and is little group covariant. The

full superamplitude may then be obtained by the replacement η3 7→ ξ3,12. The result is

A[W1,W2,W3,W4,W5] = − δ(4)(Q)δ(4)(Q†)

2m3s51s23s34s245

(
s23(s15 + s25)

〈
3K1
∣∣ p1 ∣∣3K2

]
− s23s12

〈
3K1
∣∣ p5 ∣∣3K2

]
+ (s35s12 − s13(s25 + s15))

〈
3K1
∣∣ p2 ∣∣3K2

] )
ϵabξ

a
3,12K1

ξb3,12K2
,

(2.100)
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which agrees precisely with (2.88) in the appropriate limit.

Remarkably, at no point in the calculation is the identity of the shift vector r actually

needed - it cancels out in the end. However, just as for the cancellation of spurious poles

observed in massless recursion at higher legs, this only occurs after contributions from

distinct factorisation channels (BCFW diagrams) are added together. This means that,

despite manifestly breaking little group covariance, recursion nevertheless delivers a little

group invariant expression. While invariance is not manifest term-by-term, it is broken in

a controlled way. The shift vector seems only to be the needle threading the factorisation

channels into a complete superamplitude. This clearly invites a search for an alternative

picture of how the factorisation channels are being combined. Especially important to be

investigated is the significance of the little group breaking in the BCFW representation

of the superamplitude for dual (super)conformal invariance.

Although the 5-leg superamplitude does have non-trivial distinct bands, it is never-

theless an especially simple example in which each band is determined by a single super-

symmetry invariant, and hence component amplitude, so that only the U(2) R-symmetry

subgroup provides non-trivial, independent constraints. This may be anticipated from its

massless counterpart, which consists only of MHV and a distinct, yet parity-conjugate,

MHV sector. These are especially simple to derive using massless super-BCFW recur-

sion. In the massive case considered here, the three different bands, most clearly visible

in (2.88) when some of the legs are massless, may be directly attributed to those of the

three-leg superamplitude that are fused in super-BCFW recursion along the factorisation

channel. We leave to be explored exactly how a massive manifestation of dual conformal

invariance, which, for massless superamplitudes, is provided through super-BCFW, may

interplay with both the little group and the band structure. Many simplifying features

at five legs will not be present at six legs, which will provide a more acute test of the

symmetries, their constraining power and the usefulness and meaning of recursion.
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It was proposed by (24) that the 6d SYM superamplitudes (or equivalently, the 4d

massive superamplitudes) could be entirely determined (or “uplifted”) by their restric-

tions to 4d massless states. This made use of the expressions using dual variables, in

which both dual conformal and permutation symmetries can be made manifest with rel-

atively simple expressions for the superamplitudes. The uplift was demonstrated up to 5

legs, where the compact structure made it obvious by eye, once compact 4d and 6d build-

ing blocks manifesting the dual symmetries were identified. However, complications were

encountered in (25) at six legs, where the form of the 4d superamplitude produced by

BCFW recursion in non-chiral superspace was not automatically amenable to the uplift.

Again, the difference arises because of the new, independent bands and their additional

structures.

Because we are not fully manifesting the symmetries, in particular parity (through

our use of chiral spinors) and the 6d Lorentz invariance, the uplift from (2.88) (or its

fully massless limit) to (2.100) is not obvious, although there is a clear resemblance in the

structures, especially in the way that the bands are combined (the converse operation,

the massless limit, is easily seen and verified and relates the terms in the two expressions).

It is suggested in (25) that the MHV sector by itself in the massless theory would be

sufficient to determine the entire massive superamplitude, if the uplift were correct. This

is plausible for the five leg case here, where the MHV sector corresponds to a single little

group combination of the triads in (2.100). However, the continuation at six legs is the

real test. The extent to which the embedded massless theory controls the structure of

the massive theory remains an open question.
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2.6 Conclusion

The spinor helicity formalism has provided a set of variables with respect to which

a broad set of phenomena can be formulated and uncovered on-shell purely through re-

course to fundamental principles of quantum mechanics and relativity, without introduc-

ing quantum fields and path integrals and their associated unphysical redundancies. The

little group has provide an organisation of these variables enabling them to be adapted

to insightfully describe the kinematics of massive particles. Treating both massive and

massless states on the same footing, it may then be determined precisely to what extent

features of quantum field theories are emergent from assumptions about infrared prop-

erties. Supersymmetry provides an idealisation that is already known to enhance many

of the on-shell properties of unbroken Yang-Mills amplitudes.

The power of on-shell methods for massive theories may be strongest on the Coulomb

branch of N = 4 SYM, the maximally supersymmetric theory of massive particles, just

as they are at the origin of moduli space for massless states. As a first step toward fully

determining the on-shell properties of the theory, we have determined the elementary

three-leg superamplitudes. These superamplitudes surprisingly have kinematic factors in

their denominators akin to those of massless (super-)Yang-Mills, despite this not being a

feature of their component amplitudes. Using super-BCFW recursion for amplitudes of

massive particles, we have shown how, by combining on-shell 3-particle superamplitudes

across a factorisation channel, a new pole emerges that completes the 4-leg massive su-

peramplitude. This pole arises from combining supersymmetry invariants across the fac-

torisation channel, an operation that simultaneously ensures that the arbitrary reference

spinors in the 3-particle superamplitudes are cancelled. This property is not a feature

of the non-supersymmetric Higgsed Yang-Mills counterpart. We have then provided the

first non-trivial use of BCFW recursion to compute a scattering amplitude entirely in-

133



Constructing N = 4 Coulomb Branch Superamplitudes Chapter 2

volving massive particles, doing so to determine the general 5-leg superamplitude on the

Coulomb branch.

The next objective is to compute higher leg superamplitudes. We have shown here

that massive super-BCFW recursion offers an avenue for doing this. However, guidance

is still necessary for interpreting the expressions that it leaves. Just as for the massless

superamplitudes, such a beacon may be provided by dual conformal symmetry. Super-

BCFW for massless amplitudes was crucial in deriving a representation in which the

dual superconformal symmetry could be deduced (as a sum over R-invariants that, in

momentum twistor space, makes dual conformal symmetry manifest). However, its full

consequences for the massive amplitudes and relationship with the little group has yet

to be fully elucidated. Also, while we have demonstrated that super-BCFW is indeed

valid, we expect that, just as at the origin of moduli space, this is more directly a

consequence (or maybe expression of) dual conformal symmetry or a deeper structure.

The hypothesized Grassmannian formulation of the N = 4 SYM amplitudes on the

Coulomb branch - the ‘symplectic Grassmannian’ (61), may make this more explicit.

The 6d point of view may also provide the framework within which these structures can

be seen (27), (28).

Having established the on-shell properties of this idealised theory, the extent to which

they descend to theories with less supersymmetry remains to be explored. In the massless

theory, the constructibility of the superamplitudes descend to those of pQCD. We have

given a brief discussion of how certain tree superamplitudes may be projected down to

theories of less supersymmetry in Appendix 2.B. Further progress would require a strategy

for projecting out effectively closed subsectors or finding an adaptation of massive (super)-

BCFW recursion to these theories.
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2.A Four Particle Superamplitude Details

To begin combining the delta functions in the 3-leg superamplitudes, we express

both left and right superamplitudes in the form in the first line of (2.53). Clearly

δ(4)(Q̂L)δ
(4)(Q̂R) = δ(4)(Q)δ(4)(Q̂R). By construction, Q̂L+Q̂R = Q is unshifted (and sim-

ilarly for the conjugate supercharges). Representing the right delta function as the second

line in (2.53) and using δ(4)(Q̂R) = 1
m2

1⟨q|p4p̂1|q⟩
δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
δ(2)

(
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

])
gives δ(2)

(
⟨q| p̂1

∣∣∣Q̂L

])
δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
= δ(2) (⟨q| p̂1 |Q]) δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
. Note that

the same reference spinor |q⟩ may be used for both left and right factors. Such a spinor

always exists that is parallel to neither u4L
〈
4L
∣∣ nor u3K 〈3K∣∣. This leaves the remain-

ing delta functions δ(2)
(〈
qQ̂†

R

〉)
δ(2)

(
⟨q| p̂1

∣∣∣Q̂R

])
δ(2)

(
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

])
from which to

extract the final factor required for the full 4-leg delta function.

On the combined support of the other delta functions, δ(2)
(
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

])
= C2δ(2)

(
u4L

〈
4L
∣∣ p̂1 |Q]), where the constant C2 =

m2
1(

u
(L)

P̂M
u
(R)M

P̂

)2
⟨q|p3p̂2|q⟩
⟨q|p4p̂1|q⟩ . This follows

from the relations

u
(R)

P̂M

〈
P̂M
∣∣∣ = αu

(L)

P̂M

〈
P̂M
∣∣∣+ β ⟨q| (2.101)

u
(R)

P̂M

[
P̂M
∣∣∣ = αu4L

〈
4L
∣∣ p̂1
m1

+ β ⟨q| P̂
mP

, (2.102)

where

α =
u3K

〈
3Kq

〉
u4L ⟨4Lq⟩

β =
u3K

〈
3K4L

〉
u4L

⟨q4L⟩u4L
. (2.103)

The scalar coefficients of the spinors in the first line above have been obtained by use

of (2.43). The second line may be obtained by (2.43) and the Weyl equations. On the

support of δ(2)
(〈
qQ̂†

R

〉)
and δ(4)(Q†) ∝ δ(4)

(〈
qQ̂†

R

〉
+
〈
qQ̂†

L

〉)
, then

〈
qQ̂†

R

〉
,
〈
qQ̂†

L

〉
∼
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0 and terms proportional to these in the other delta functions may be dropped. Thus

δ(4)(Q†) ∝ δ(2)(u
(R)

P̂M

〈
P̂MQ†

〉
)

= δ(2)(u
(R)

P̂M

〈
P̂MQ̂†

R

〉
+ αu

(L)

P̂M

〈
P̂MQ̂†

L

〉
)

= δ(2)(u
(R)

P̂M

[
P̂MQ̂R

]
+ αu

(L)

P̂M

[
P̂MQ̂L

]
)

= δ(2)

(
αu4L

〈
4L
∣∣ p̂1
m1

(∣∣∣Q̂R

]
+
∣∣∣Q̂L

])
+ βu4L

〈
4L
∣∣ P̂
mP

∣∣∣Q̂R

])

= δ(2)
(
(α + βγ)u4L

〈
4L
∣∣ p̂1
m1

∣∣∣Q̂R

]
+ αu4L

〈
4L
∣∣ p̂1
m1

∣∣∣Q̂L

])
⇒ u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

]
∼ −α
α + βγ

u4L
〈
4L
∣∣ p̂1 ∣∣∣Q̂L

]
. (2.104)

In the penultimate line, it has been used that

⟨q| P̂
mP

= γu4L
〈
4L
∣∣ p̂1
m1

+ λ ⟨q| p̂1
m1

, (2.105)

where the identity of the scalar λ is unimportant and

γ = − ⟨q| p̂1p4 |q⟩
mPm1 ⟨q4L⟩u4L

. (2.106)

Then

δ(2)
(
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

])
= δ(2)

(
α

βγ
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

]
+

α

βγ
u4L

〈
4L
∣∣ p̂1 ∣∣∣Q̂R

])
= δ(2)

((
α

βγ

)
u4L

〈
4L
∣∣ p̂1 |Q]) (2.107)

Thus C2 =
(
α
βγ

)2
and the expression stated above may be obtained upon simplification

through use of (2.43), and the spin sums and the Weyl equations laid out in Appendix

A of (29).
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The delta function δ(2)
(
u4L

〈
4L
∣∣ p̂1 |Q]) may be amalgamated with the factor of

1
m2

1⟨q|p4p̂1|q⟩
δ(2) (⟨q| p̂1 |Q]) derived above to give δ(4)(Q).

Use of the alternative representation of the 3-leg SUSY delta function in (2.58) may

possibly be yield a simpler computation in this case once the Grassmann integral is

performed (see (21; 25) for how this is done similarly in 6d).

To derive (2.72), using the spin sums and special massive kinematics (2.42) (and that

s1̂2̂ = s12 is unshifted),

−u1̂Iu1̂Ls12 = u1̂Iu1̂NϵML

(〈
1̂N 2̂J

〉 〈
2̂J 1̂M

〉
+
[
1̂N 2̂J

] [
2̂J 1̂M

]
+
〈
1̂N
∣∣ p̂2 ∣∣1̂M]− [1̂N ∣∣ p̂2 ∣∣1̂M〉)

= u1̂Iu
(L)

P̂N
ϵML

(〈
P̂N 2̂J

〉 〈
2̂J 1̂M

〉
+
[
P̂N 2̂J

] [
2̂J 1̂M

]
+
〈
P̂N
∣∣∣ p̂2 ∣∣1̂M]− [P̂N

∣∣∣ p̂2 ∣∣1̂M〉 )
= u1̂Iu

(L)

P̂N
u
(R)N

P̂
u2JϵML

([
2̂J 1̂M

]
−
〈
2̂J 1̂M

〉)
= u

(L)

P̂N
u
(R)N

P̂
ϵMLu1̂Iu

(R)

P̂ J

([
P̂ J 1̂M

]
−
〈
P̂ J 1̂M

〉)
= u

(L)

P̂N
u
(R)N

P̂
u1̂Iu

(R)

P̂ J
u1̂Lu

(R)J

P̂
= u1̂Iu1̂L

(
u
(L)

P̂N
u
(R)N

P̂

)2
⇒
(
u
(L)

P̂N
u
(R)N

P̂

)2
= −s12. (2.108)

2.B N < 4 SYM Superamplitudes from N = 4 SYM

In this appendix we investigate how tree-level superamplitudes in Yang-Mills theo-

ries with less-than-maximal supersymmetry may be constructed from N = 4 SYM to

determine the extent to which the valid BCFW shift may be exploited.

2.B.1 Massless N < 4 SYM

It was observed in (67) that one may extract N = 0, 1, 2 submultiplets from the

N = 4 massless vector multiplet via derivation or deletion of Grassmann variables.
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After defining extraction operators on states, one may then act with these operators on

on-shell superamplitudes to find subamplitudes which describe the interactions of the

submultiplets inside the N = 4 states.

Subsequent to extraction, it is of interest to investigate whether the spectrum may

be truncated in order to obtain superamplitudes of theories with fewer supersymmetries.

In particular, we would like to know when it is possible for the states that have been

removed from the external legs of the superamplitude by the extraction process to be

omitted from the theory altogether while still retaining a meaningful superamplitude.

Calling S a set of extracted superfields closed under some N < 4 supersymmetries, we

say that S forms a ‘closed subsector’ of the N = 4 tree-level theory if, for any tree-level

subamplitude with external states only in S, it contains no contributions from off-shell

states not in S. Then after extracting the subamplitudes of states in S, we may truncate

the spectrum by ignoring the other states and we find the tree-level theory of states in S

enjoying some N < 4 supersymmetry. We denote the steps of extraction and truncation

together as ‘projection’ and say that this procedure projects from N = 4 SYM to the

lower N theory.

The case discussed in (67) is projection to pure (S)YM with N < 4. That is,

one sets S = {N < 4 vector multiplet}. The truncation is valid here because in any

N (S)YM, all other states only couple to the vector multiplets in pairs, so lines of

these particles in Feynman diagrams cannot be produced internally without closing in

loops. So we may extract any tree-level amplitude in, for example, pure N = 1 SYM,

An[G
±, G±, . . . , G±]N=1 (where G± are massless N = 1 gluon superfields), from the

tree-level amplitude An[G,G, . . . , G]N=4 in a manner we will make precise momentarily.

The procedure for finding the extraction operators begins by first choosing which

subset of supersymmetries our residual coherent states will be built out of. We then

find the different ways one may take derivatives with respect to or delete the Grassmann
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variables corresponding to supersymmetries which will disappear. We end up manifestly

with coherent states of the remaining supersymmetries.

Consider first the extraction of N = 2 submultiplets which are coherent states of Qa,

a = 1, 2 (thus reducing to a chiral superspace). For the massless multiplet, we may see

on-shell the familiar statement that it consists of one N = 2 vector multiplet G± and

one hypermultiplet K. With this choice of remaining supersymmetries, we may isolate

these submultiplets from the massless N = 4 multiplet of (2.11) via

G+
N=2 =

1

2

∂

∂η†m
∂

∂η†m
G, G−

N=2 = G
∣∣
η†m→0

(2.109)

K+
N=2 =

∂

∂η†3
G
∣∣
η†4→0

, K̄+
N=2 =

∂

∂η†4
G
∣∣
η†3→0

, (2.110)

where the superscript refers to the helicity of the on-shell supermultiplet, and K and K̄

are the two CP -conjugate N = 1 chiral multiplets into which the N = 2 hypermultiplet

may be decomposed. Here and throughout this appendix we use the SU(2) × SU(2)

bronken R-symmetry notation for the superspace as in the first equation of (2.11).

If we were to instead extract the N = 2 submultiplets which are closed under Q1 and

Q3, we would naturally end up in the non-chiral superspace for the massless multiplets

G+
N=2 =

∂

∂η†4
G
∣∣
η2→0

, G−
N=2 =

∂

∂η2
G
∣∣
η†4→0

(2.111)

KN=2 = G
∣∣
η2,η†4→0

, K̄N=2 =
∂

∂η†4

∂

∂η2
G. (2.112)

We may also go further and extract the N = 1 submultiplets from N = 4, where we

see the massless supermultiplet decompose into a vector multiplet (and CP conjugate)
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G± and three chiral multiplets (and conjugate pairs) χm (for m = 2, 3, 4) as

G+
N=1 =

1

2

∂

∂η†m
∂

∂η†m
G
∣∣
η2→0

, G−
N=1 =

∂

∂η2
G
∣∣
η†m→0

(2.113)

χ2+
N=1 =

1

2

∂

∂η†m
∂

∂η†m

∂

∂η2
G, χ2−

N=1 = G
∣∣
η†3,η

†
4,η

2→0
, (2.114)

χm+
N=1 =

∂

∂η†m
G
∣∣
η†m,η2→0

, χm−
N=1 =

∂

∂η†m
∂

∂η2
G
∣∣
η†m→0

(2.115)

where m indexes which R-index we took a derivative with respect to, which is merely a

more compact notation than we used for the massless hypermultiplet above.

Since the N = 2 vector multiplet forms a closed subsector in pure SYM on its own,

it can be split up into N = 1 submultiplets G±, χ4±. As discussed in (68), one may find

amplitudes for fundamental quarks in (N = 0) QCD from color-ordered amplitudes of

adjoint gluinos merely by using different color factors when summing over color-orderings.

Likewise, one may study N = 1 SQCD with one flavor of massless fundamental quark

chiral superfield at tree-level using this construction.

We can then proceed even further and go to N = 0 non-supersymmetric Yang-

Mills by simply considering each component field separately. As above, one may find

closed subsectors from N = 1, 2 supersymmetry which include, in addition to the gluons,

massless fermions (from N = 1) or both massless fermions and scalars (from N = 2).

Special combinations of amplitudes in the projectedN = 2 SYM theory were used by (68)

in order to compute tree QCD amplitudes with multiple quark flavours while avoiding

internal off-shell interactions with their scalar partners.

2.B.2 Massive N < 4 SYM

The next question is whether any of this structure survives on the N = 4 Coulomb

branch now that we have another type of multiplet. We will not, in fact, find closed sub-
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sectors which include massive states, for the reason that any massive submultiplet couples

at tree-level to all of the massless submultiplets, which will be apparent after we give

the extraction operators for massive states. However, we will be able to find effectively

closed subsectors by restricting our attention to certain subsets of (super)amplitudes, in

which only states in that subsector appear internally. This will allow us to deduce some

interesting features of various N < 4 theories at tree-level.

If we extract N = 2 coherent states of the Q1 and Q2 supersymmetries, then for the

massive multiplet we are left with the long vector multiplet of N = 2. This has exactly

the same field content as the short N = 4 multiplet with which we’ve been working. It’s

clear from the form of the central charge that restricting our attention to the supercharges

which anticommute leaves a massive multiplet without a central charge. We can then

extract tree-level superamplitudes for N = 2 by simply extracting the N = 2 massless

submultiplets in the chiral superspace as in (2.109). One finds nonzero tree-level three-

leg amplitudes of the massive N = 2 vector (denoted as Ω here) with both the massless

vector and the massless hypermultiplet, for example, through

AN=2[Ω, G
+,Ω] =

1

2

∂

∂η†m2

∂

∂η†2m
A[W , G,W ]

AN=2[Ω, K
+,Ω] =

∂

∂η†32
A[W , G,W ]

∣∣
η†42 →0

.

(2.116)

We thus cannot truncate the spectrum by deleting the hypermultiplets, as these appear

in factorization channels of higher-leg subamplitudes containing only external massless

and massive vectors.

Our other option to obtain N = 2 submultiplets is to extract coherent states of a

pair of supersymmetries whose supercharges have nonzero anticommutator, for example

Q1, Q3. For the massless multiplets, this puts us in the non-chiral superspace represen-

tation of (2.111). For the massive multiplets, this extracts the BPS multiplets of N = 2,
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which are simply the massive N = 1 supermultiplets (the extraction of which will be

demonstrated next). The massive states may be described solely as coherent states of

Q1 in both N = 1 and short N = 2 cases, so the differences between subamplitudes with

either BPS N = 2 submultiplets or massive N = 1 submultiplets are attributable to the

massless states present (2.113).

The massive multiplets decompose into one N = 1 vector multiplet and two N = 1

chiral multiplets as

QN=1 =
1

2

∂

∂η2I

∂

∂η2I
W WI

N=1 =
∂

∂η2I
W
∣∣
η2J→0

Q′
N=1 = W

∣∣
η2I→0

(2.117)

QN=1 = W
∣∣
η2I→0

WI

N=1 =
∂

∂η2I
W
∣∣
η2J→0

Q′N=1 =
1

2

∂

∂η2I

∂

∂η2I
W . (2.118)

The massive matter states may be alternatively grouped into massive N = 2 hypermul-

tiplets, just as for the massless case above. To reiterate, we interpret these either as

N = 1 or N = 2 submultiplets depending upon which massless states are in the am-

plitude, which, at this point in the discussion, is simply a collection of components of a

N = 4 superamplitude. We could of course go further and extract the N = 0 components

easily.

Now that we have all of the extraction operators, we may ask which tree-level am-

plitudes may be obtained by truncating the spectrum. While we cannot project from

the Coulomb branch to an entire theory of massive N < 4 SYM, we may still be able to

project onto particular amplitudes in N < 4 SYM theories. The simplest examples are

the three-leg amplitudes of any minimally-coupled matter with Yang-Mills theory. The

extraction of the N = 1 three-leg amplitude for two equal mass vector superfields and a
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positive-helicity massless vector gives

A[WI ,WJ
, G+] =

∂

∂η21I

∂

∂η22J

1

2

∂

∂η†m3

∂

∂η†3m
A[W ,W , G]

∣∣
η21K ,η

2
2K ,η

2
3→0

= δ(2)(Q†)g
[
1I
∣∣α [2J ∣∣β ( 1

mx
ϵαβ −

1

m2
|3]α |3]β

)
. (2.119)

By comparison with the discussion in (29), we see that at tree-level the anomalous mag-

netic dipole moment of the massive vector superfield has been set to zero.

We may next look for higher leg tree-level amplitudes that are not affected by the

absence of truncated particles. The key is that the massive states couple in pairs to the

massless states in N = 4, so this property is inherited in each projected theory and, as

above, the other massless multiplets also couple to the reduced supersymmetry massless

vector multiplet in pairs. This allows us to argue, for example, that the 2 massive

leg, n − 2 massless vector superamplitudes An[M,M,G±, G±, . . . , G±] (gluon helicities

arbitrary) may be found via an appropriate projection, where M may here be any of the

massive multiplets of N < 4. From the above, no other states may appear internally. Of

course this can also be taken one step further down to N = 0, which allows us to find

the tree-level amplitudes for any number of gluons and two massive particles of any spin

≤ 1.

Furthermore, this projection allows us to see an interesting feature for the N = 1

all-plus-helicity amplitudes. The N = 4 Coulomb branch amplitudes have Grassmann

degree 2n, while the extraction operators for such anN = 1 amplitude involve 2(n−2)+2

derivatives, so that these subamplitudes will have Grassmann degree 2. This means that

the Grassmann delta function saturates the Grassmann dependence, so these tree-level

superamplitudes may be entirely characterized once one component amplitude is known,
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for example

An[Q,Q, G+, G+, . . . , G+] =
−1

m
δ(2)(Q†)An[Q̃R, Q̃R, g

+, g+, . . . , g+], (2.120)

in the notation of Section 5.2 of (29). This means that we may perform massless N = 0

BCFW recursion to find a single component amplitude and get the rest for free, rather

than needing to perform the recursion in N = 4 and then project down. In particular,

we may upgrade already-known results for all-n amplitudes in QCD (42; 43; 69; 70) to

full N = 1 SQCD superamplitudes.

Some simple examples of tree-level amplitudes that may be obtained by projection

to N = 1 SYM with massive vectors are

A[WI ,WJ
, G+, G+] =

δ(2)(Q†)
〈
1I2J

〉
[34]2

(p1 + p2)2 ((p2 + p3)2 +m2)
, (2.121)

A[WI ,WJ
, G+, G−] =

δ(2)(Q†)
(〈
1I4
〉 [

2J3
]
+
〈
2J4
〉 [

1I3
]) ([

1K3
]
η1K −

[
2L3
]
η2L
)

(p1 + p2)2 ((p2 + p3)2 +m2)
.

(2.122)

The above is merely an initial exploration into what the Coulomb branch can tell us

about massive amplitudes in Yang-Mills theories with fewer supersymmetries.
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Chapter 3

Causality, Unitarity and Symmetry

in Effective Field Theory

Sum rules in effective field theories, predicated upon causality, place restrictions on scat-

tering amplitudes mediated by effective contact interactions. Through unitarity of the

S-matrix, these imply that the size of higher dimensional corrections to transition am-

plitudes between different states is bounded by the strength of their contributions to

elastic forward scattering processes. This places fundamental limits on the extent to

which hypothetical symmetries can be broken by effective interactions. All analysis is

for dimension 8 operators in the forward limit. Included is a thorough derivation of all

positivity bounds for a chiral fermion in SU(2) and SU(3) global symmetry representa-

tions resembling those of the Standard Model, general bounds on flavour violation, new

bounds for interactions between particles of different spin, inclusion of loops of dimen-

sion 6 operators and illustration of the resulting strengthening of positivity bounds over

tree-level expectations, a catalogue of supersymmetric effective interactions up to mass

dimension 8 and 4 legs and the demonstration that supersymmetry unifies the positivity

theorems as well as the new bounds.
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3.1 Introduction

Effective field theory (EFT) is a method to mock-up the long distance effects of

high energy states with simplified and fake microphysics that nevertheless successfully

approximates departures from otherwise universal behaviour. This is predicated on the

approximate locality of the interactions involving heavy states (see e.g. (1) for review).

The heavier the state, the shorter its range. If the scales over which these fields can

propagate is too small to be resolved, then the effects can be instead approximated by a

series of local contact interactions. These are usually restricted by the symmetries, from

which the possible interactions can be systematically identified and used to parameterise

the impacts of the microphysics on long distance observables without knowing what it

actually is. This provides a general strategy for accounting for the effects of unknown

short-distance effects and identifying a classification scheme for the possible interactions

that low energy particles may be involved with.

However, demanding local contact interactions alone is not sufficient for consistency

with causality (see e.g. (2)). The couplings parameterising the strength and phase of

these interactions are restricted so that they cannot conspire to mediate macroscopic

superluminal signal transmission. The focus of this work will be on exploring these con-

sistency constraints on the space of effective interactions. The UV completion of these

interactions will be assumed to be a conventional quantum field theory, obeying micro-

causality (analyticity of the S-matrix) and polynomially bounded energy dependence.

For discussions of the relevance of this to various ideas of theories where these conditions

could be modified (usually in relation to quantum gravity), see e.g. (3), (4), (5), (6), (7).

For applications of causality constraints to CFTs and holography, see e.g. (8), (9), (10),

(11), (12), (13), (14), while for application to EFTs, the subject of discussion here, see

(2), (15), (16), (17), (18), (19), (20), (21), (22) for a sample of past studies (among many
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others).

Unitarity in quantum mechanics is the statement of the consistency of time evolution

with the probability interpretation of quantum mechanics - that is, the square magnitude

of a transition amplitude between different states at different times have the interpreta-

tion of a probability. Of interest here will be asymptotic scattering states. Unitarity of

the S-matrix is expressed through the optical theorem and the Cutting rules. For (near)

forward scattering, this relates the residues or discontinuities over the singularities of the

S-matrix to on-shell particle production. Together with its analytic causal properties,

this enables the construction of dispersion relations that constrain the S-matrix for gen-

eral (complex) momentum. For low energy scattering states, the S-matrix is calculable

from an EFT. For high enough order interactions, the dispersion relations form a sum

rule that determines the EFT couplings entirely from the (usually unknown) on-shell pro-

duction rates of states in the UV. The (by now standard) dispersion relation between IR

EFT-calculable processes and high energy production rates is reviewed below in Section

3.2, but see again (2) for more background.

For scattering processes in which the identity of the particles do not change, the sum

rule implies that the IR contact interactions are equated with a positive sum of production

rates in the UV. Because this is necessarily a positive number, the resulting constraints on

the corresponding low energy Wilson coefficients have been called “positivity theorems”.

However, unitarity implies that the dispersion relation contains more information than

simply positivity.

As will be shown in Section 3.2.1, “inelastic processes” (processes in which the identity

of the particles change) are bounded above by elastic ones according to the general
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constraint:

|M ijkl|+ |M ilkj| ≤
√
M ijijMklkl +

√
M ililMkjkj. (3.1)

Here, M ijkl = d2

ds2
Aijkl(s)

∣∣∣
s=0

, where Aijkl(s) is the forward amplitude describing the

scattering process i, j → k, l, where i, j, k, l are any species of particle. Consequently,

the extent to which inelastic effective interactions can violate hypothetical symmetries is

limited.

The term “inelastic” will be consistently (mis)used here to broadly refer to transitions

in which the identity of the scattered particles change, rather than simply their masses.

Here “identity” will usually reference quantum numbers with respect to a complete set

of commuting observables, although this is, of course, a basis-dependent statement. In

particular, (massless) spinning particles will usually be identified by helicity eigenstates

(I will usually also misuse the word “helicity” to mean only the magnitude).

The remainder of the paper focuses both on applications of this result and its conse-

quences, as well as general exploration of the structure of the causality constraints. This

is mostly with an eye toward the Standard Model Effective Theory (SMEFT) (23), a

general EFT parameterisation of the imprints of new, high energy microphysics on the

Standard Model of particle physics (SM). The scope of these bounds are theoretically

more far-reaching than the positivity constraints that have been largely the focus of pre-

vious attention. For example, elastic amplitudes that vanish in the forward limit can

often be crossed into inelastic amplitudes that do not, thus failing to escape from the

sum rule. See (24), (25), (26), (27), (28) for previous applications of causality bounds to

the SMEFT.

155



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

3.1.1 Overview of results

Section 3.2.1 reviews the standard derivation of the dispersion relation between the

twice differentiated forward scattering amplitude and the transition rates into on-shell

states in the UV. This will be focused on forward scattering at dimension 8 level. It

is then shown that unitarity implies the general constraint (3.1) on inelastic processes.

Bounds of this form have been previously identified in (28) for the specific case of parity-

symmetric weak boson interactions, although, to the author’s knowledge, the general

statement above is new. Section 3.2.2 gives some general discussion about the inclusion

of loops of lower dimensional operators in the dimension 8 order contribution to the

amplitude. In particular, unitarity implies the general expectation that the elastic dim-

8 Wilson coefficients decrease with energy scale, which would therefore strengthen the

positivity bounds that would otherwise be inferred at tree-level. The general results are

illustrated in Section 3.3 by a simple example: a complex scalar field. It is shown that

processes that would violate a (hypothetical) U(1) charge must necessarily be bounded

above by charge conserving processes.

In Section 3.4, causality constraints for EFTs with preserved internal symmetries are

examined. Following (29), the causality sum rule can be equivalently characterised as a

convex cone in which UV completable IR amplitudes must lie. In simple examples where

there are no degenerate states unrelated by symmetry, the cone is polyhedral and ele-

mentary convex geometry allows for a complete set of positivity bounds to be extracted,

including those inaccessible from scattering of factorised states. Section 3.2.3 reviews the

convex geometry interpretation of (29) (similar ideas were suggested in (15)), for which

much of this work was inspired at understanding. Using this picture, I compute the com-

plete set of bounds for a single fermion species in the symmetry representations of the

SM (fundamentals of SU(2) and SU(3)) in Section 3.4.2, possibly also including exact
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flavour symmetry. Some of these bounds are altogether new. It is also illustrated how,

with increasingly more symmetry representations, the structure of the positivity bounds

becomes increasingly intricate - the convex cone describing the space of allowed ampli-

tudes becomes increasingly multifaceted. In Section 3.4.3, I give the general bounds on

flavour violation admissible under the general bound on inelastic amplitudes, elaborating

upon the observations of limits on flavour violation made by (25). The results discussed

in this section have direct application to the SMEFT.

Section 3.5 discusses rotational symmetry and the treatment of spin and parity (P ).

Spin is discussed in generality in Section 3.5.1, which is then illustrated with the simple

(and known) example of four photon scattering in Section 3.5.2. It is in particular

shown how P and helicity violation (electric-magnetic duality) are necessarily limited,

explaining the observations made by (24) for vector boson scattering. The results are

then generalised to two distinct species with the same helicity in Section 3.5.4.

Constraints on EFTs with multiple particles of different helicities will be derived in

Section 3.5.5. These add to bounds derived previously for elastic processes involving

states of various spin in (15), (24), (30). In Section 3.6, I catalogue all possible super-

symmetric effective contact interactions with mass dimension up to eight and at most

four particles, identifying which types of interactions are embeddable into supersymmet-

ric EFTs. This culminates in the demonstration that the standard simple positivity

theorems of (2), (16) and the new additions derived here unify under supersymmetry.

Less supersymmetric inelastic interactions appear as amplitudes that must necessarily

raise the lower bounds on the more supersymmetric elastic operators. In this sense

supersymmetry must at least partially emerge from the positivity bounds.

An appendix gives a list of elementary results for projectors for spin indices repre-

sented in SO(2) form, as well as a presentation of the sum rules for the toy two fermion

and multispin theories.
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Note added: As this work was being completed, the work of (20) appeared, which

involves partial overlap with the general discussion of loops provided here. In particular,

the general observation made here about strengthening of the constraints with RG flow

from dim 6 loops is another instance of the result for Goldstone bosons described in (20),

albeit applied in different examples.

More notes added: Subsequent to release of this preprint, the following relevant works

appeared: (31) make some pertinent and interesting comments on positivity constraints

with loops, problems with the forward limit and bounds on multiparticle theories, in

addition to its main thesis of deriving new constraints on higher dimension operators

away from the forward limit. (32) incorporates supersymmetry in constraints of the

form of (31) on Yang-Mills operators, although their discussion has little overlap with

that presented here. In (33), positivity bounds were derived for three flavours of SM

quarks under the assumption of minimal flavour violation but only from consideration

of scattering of pure states. Finally, (34) makes advances on the issue of constraining

theories with multiple species in which the space of couplings is a non-polyhedral cone.

This includes some more thorough derivations of bounds for theories with more than two

distinct species unrelated by symmetries that, in some instances, improves over bounds

presented here (such as on the flavour-violating operators of right-handed electrons).

3.2 Sum Rule and Unitarity

This section reviews the derivation of the standard dispersion relation between the

IR scattering amplitude in an EFT and the full transition rates in the UV, along with

the various caveats and assumptions that will be implicit throughout the remainder of

the paper. This derivation can be found in numerous previous works e.g. (2), (15). The

discussion presented below is closest to (28), from which much of this thinking is inspired.
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The inelastic scattering constraint (3.1) will then be derived. The affects of loops will

also be discussed.

The subsequent discussion will then turn to the process of extracting constraints on

the EFT out of the sum rules. To do this, I will use the picture presented in (29) and

(28) of the space of UV completions as delineating a convex cone to which the space of

all forward effective transition amplitudes in the IR must belong.

All discussion in this paper will specifically focus on constraints at mass dimension 8

order in standard power counting arising from scattering in the forward limit.

3.2.1 Causality sum rule and structure

The standard assumptions of analyticity of the scattering amplitude as a function of

energy will be made. From the point of view of QFT, this is an expected consequence

of microcausality (35), (36), (37). See e.g. (38) for review. This has been somewhat

established for correlators in massive theories and those obeying the Wightman axioms,

like CFTs. If the theory has particles, these presumably extend to the S-matrix. I will

assume that these results also hold for the simple massless theories described here by

assuming that a massless limit can be taken that commutes with the ensuing derivations.

Similarly, it will be assumed that the only singularities of the two-to-two S-matrix in the

forward limit are poles and branch cuts close to the real energy axis directly associated

with on-shell particle production in the s or u-channels.

Call Aijkl(s) the forward scattering amplitude (t = 0) for the process i, j → k, l. Then,

for some complex-valued energy σ, define M
ijkl

(σ2) = d2

ds2
Aijkl(s)|s=σ2 = 1

πi

∮ Aijkl(s)

(s−σ2)3
ds.

The contour is over a small loop enclosing σ2 and no other singularities. The small loop

may then be deformed in the standard way into a contour enclosing and railing along

the poles and branch cuts on the real axis closed-off by a semi-circular arc of some large
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enough radius. The Froissart bound (39) implies that the integrand decays fast enough

along the arc that this part of the integral may be ignored. The supplemental locality

assumption of polynomially bounded energy growth is invoked here (see e.g. (5), (4), (6),

(7) for commentary about the necessity of this assumption and possible consequences of

its modification, usually in the context of gravity).

Crossing can be used to relate the forward amplitude along the negative real axis to

the u-channel amplitude Aijkl(s) = Ail̄kj̄(4m2 − s) (where X̄ denotes the antiparticle of

X). I will assume for simplicity that each particle has mass m, although this will be

ignored for most of what follows (assumed to be small compared to the characteristic

energies of the observed scattering processes). Crossing relations with spinning particles

have been explained in (16) for the forward limit specifically for the present context.

Note that the amplitude A (X, Y → Z,W ) is obtained through LSZ reduction from a

correlator with fields ordered as ⟨0|WZXY |0⟩, which will be of relevance in Section 3.6.

The remaining contour integral over the branch cuts is

M
ijkl

(σ2) =
1

πi

∫ ∞

4m2

(
DiscAijkl(s)

(s− σ2)3
+

DiscAil̄kj̄(s)

(s+ σ2 − 4m2)3

)
ds+ residues at poles. (3.2)

The amplitudes obey the reality condition following from analyticity and unitarity (40)

(
Aijkl(s)

)∗
= Aklij(s∗). (3.3)

This is the S-matrix statement of requiring the Hamiltonian to be Hermitian. This

relation expresses the fact that the discontinuity over the branch cut is related to the
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intermediate state on-shell production rate through unitarity of the S-matrix:

DiscAijkl(s) = Aijkl(s+ iϵ)−
(
Aklij(s+ iϵ)

)∗
= i
∑
X

Mij→X(s+ iϵ)
(
Mkl→X(s+ iϵ)

)∗
,

(3.4)

where Mab→X is the amplitude for particles a and b to transition into intermediate state

X and ϵ→ 0+ is implicit.

Mostly for simplicity, the theories discussed here will all be massless. While the

results above have been derived under the assumption of a mass gap, I will disregard

this and assume that the particle masses in the sum rule can be freely taken to zero

without consequence at this stage. In particular, this will assume that the singularity

structure of the S-matrix in the forward limit is not affected. See (16) for a list of some

other possible issues. The validity of this remains an open question for investigation and

becomes increasingly less certain with increasing spin. These questions have received

particular recent attention in the context of gravity, see e.g. (41), (42), (43), although I

am satisfied here with restricting to flat spacetime QFT with particle helicities ≤ 1.

For massive theories, it is natural to make a real insertion σ2 below the mass threshold

where the amplitude is analytic. This would represent a region of energies in which RG

evolution switches off and the energy-dependence of the amplitude is relatively simple.

For massless theories, the branch cuts cleave the entire complex s space. It will be

assumed that the dispersion relation for these theories can be reached by taking a mass-

deformed theory, analytically continuing the insertion point σ2 above a branch cut to

some σ2 + iδ with δ → 0+ (keeping σ2 real) and then taking the massless limit (so that

the cuts extend to the origin). Note that this procedure does not require the masses to

be sent to zero exactly, but only that they be much smaller than the insertion point. The

insertion point itself can then be taken small in the IR for simplicity: σ2/Λ2 → 0 for UV
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cut-off Λ. One advantage of doing this is that the sum rule becomes symmetric in s and

u-channel cuts.

So taking the massless limit and invoking unitarity, the sum rule becomes

M
ijkl

(σ2) =
1

π

∫ ∞

0

1

(s− σ2 − iδ)3

∑
X

Mij→X
(
Mkl→X

)∗
ds

+
1

π

∫ ∞

0

1

(s+ σ2 + iδ)3

∑
X

Mil̄→X
(
Mkj̄→X

)∗
ds. (3.5)

The limit δ → 0+ is implicit. The insertion point σ ≪ Λ is chosen to be a characteristic

IR energy scale so that the LHS can be evaluated in the EFT. The sum is over all possible

intermediate state X, which may be infinite and continuous. There may also be poles on

the real axis - these will be implicitly included in the integral over the cuts. In the IR,

these may be explicitly calculated anyway.

The integral on the RHS of (3.5) is over both the known IR and the unknown UV.

As a relation between the IR and the UV, the calculable IR part of the integral really

belongs on the LHS and contains significant information. Defining this new combined

left-hand side by M ijkl(σ2), the sum rule therefore becomes

M ijkl(σ2) =M
ijkl

(σ2)− 1

π

∫ λ2

0

( 1

(s− σ2 − iδ)3

∑
X∈IR

Mij→X
(
Mkl→X

)∗
+

1

(s+ σ2)3

∑
X∈IR

Mil̄→X
(
Mkj̄→X

)∗ )
)ds

=
1

π

∫ ∞

λ2

( 1

(s− σ2 − iδ)3

∑
X∈UV

Mij→X
(
Mkl→X

)∗
+

1

(s+ σ2)3

∑
X∈UV

Mil̄→X
(
Mkj̄→X

)∗ )
ds. (3.6)

Here λ is some high energy scale up to which the EFT is still reliable, which may be taken

up to the cut-off Λ. If loops can be ignored in some approximation, then the IR integral
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over the branch cut can be ignored and there is no problem with choosing σ ≈ 0, where

RG evolution (by assumption) has ceased. Otherwise the amplitudes are to be evaluated

above mass thresholds, as would be necessary for (approximately) massless particles, and

σ is chosen to lie over a branch cut. The IR integral is non-trivial and can be computed

to the required level of accuracy in the energy expansion underpinning the EFT. Because

of the pole in the integrand, if σ is to be identified with a real energy scale, then a non-

zero δ is required that must be sent to 0 (it has been assumed that σ2 is positive and

lies above the s-channel cut in (3.6)). When evaluating the dispersion integral along the

branch cut, this leaves behind a finite imaginary part that cancels against the imaginary

part in the loop amplitude M
ijkl

(σ2). More generally, the loop amplitudes also include

logarithmic RG-evolution from the renormalisation scale to the insertion point σ, while

the dispersion integral accounts for further evolution from σ to the scale up to which the

integral is being evaluated.

Taking the insertion point to the origin σ2 → 0, the dispersion relation becomes

M ijkl(0) =
1

π

∫ ∞

λ2

1

s3

∑
X

(
Mij→X

(
Mkl→X

)∗
+Mil̄→X

(
Mkj̄→X

)∗)
ds. (3.7)

The amplitudes Mij→X(s) are vectors in a complex inner product space, where both the

energy s and the couplings to each intermediate state X in the UV completion are the

(infinite and continuous) components. To emphasize this, I will rewrite this full complex

vector as mij. The sum over states X and the dispersion integral define an inner product

in these variables (the accompanying multiplicative factors in the integrand are positive,

so enable this interpretation). The sum rule can then be expressed as

M ijkl = mkl ·mij +mkj̄ ·mil̄, (3.8)

163



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

omitting the specification that σ = 0 from the notation for convenience. The sum

rule (3.8) is the centerpiece of this work. All references to “the sum rule” refer to this

equation, while the terms “LHS” and “RHS” will be used to refer to the left-hand side

and right-hand side of this equation without qualification throughout.

Note that it is not essential to evaluate the sum rule with σ = 0 exactly. In this case,

the s and u-channel terms in (3.8) do not have identical coefficients, but differ only by

subleading factors in σ2/λ2. Taking λ close to Λ and σ ≪ Λ, these terms are already

consistent with the truncation error of the low energy expansion.

The space of couplings of the states in the UV to those in the EFT are parameterised

by the vectors mij. Organised in this way, it is possible to draw many immediate con-

clusions from the sum rule about the EFT directly from the combination of vectors in

this expression. This will be illustrated in numerous examples below. The traditional

positivity theorems for elastic scattering following from the optical theorem are obvious

from (3.8) when k = i and l = j, as each term is the norm of a complex vector, which

must be positive if non-zero. The elastic amplitudes all have the form

M ijij = |mij|2 + |mij̄|2. (3.9)

However, inelastic processes are necessarily bounded from above by elastic processes as

well. The Schwarz and triangle inequalities give upper bounds on the inelastic amplitudes:

|M ijkl| =
∣∣∣mkl ·mij +mkj̄ ·mil̄

∣∣∣ ≤ |mkl||mij|+ |mkj̄||mil̄|. (3.10)

A general upper bound can then be obtained as

|M ijkl|+ |M ilkj| ≤
√
M ijijMklkl +

√
M ililMkjkj. (3.11)
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This demonstrates the schematic pattern and is an entirely general result. When there

are symmetries relating the states, a subset of the vectors mij are related and there are

fewer independent vectors of UV couplings. In this case, stronger bounds may be possible

after the states are classified into symmetry irreps, as will be discussed in Section 3.4.

In general, the bounds of the form (3.11) are necessary but not sufficient, but are being

highlighted here both because they are simple and that they directly demonstrate the way

in which unitarity fundamentally limits the size of inelastic transitions. Improvements

remain an open problem, such as those explored in (28).

Recently, (29), (28) offered the interpretation of the space of points of the form

{mkl · mij + mkj̄ · mil̄} as a convex cone - a convex hull generated by positive linear

combinations of a subset of vectors. Note that it is not necessary that the vectors

themselves be real-valued, nor that the states be self-conjugate. See (29), (28) for further

details. Convex cones can be described in two equivalent ways: by a set of inequalities

delineating hyperplanes (or facets) that bound the cone, or by a set of extremal rays

(ERs) that determine the edges of the cone. Extremal rays are 1d subspaces of single

vectors that cannot be decomposed into a positive linear combination of any other set of

linearly independent vectors in the cone. I will use the term ER ambiguously to mean

either the subspace or a member vector. Any point in the cone can be expressed as a

linear combination of extremal rays with positive coefficients, so the ERs generate the

cone.

The inequality representation is a manifest statement of the constraints on the space

of forward amplitudes or, equivalently, the bounds on the space of Wilson coefficients

allowed in the EFT. The problem at hand is to extract from the sum rule a complete

set of such bounds. The ER representation provides an intermediate alternative that is

straight-forward to determine directly from the sum rule. If the cone is polyhedral, as ex-

pected for theories in which all transitions between states are rigidly fixed by symmetries,
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then standard results from convex geometry may be applied to derive the inequalities

describing the facets. This insight was applied to some simple examples by (29) to de-

rive new constraints through rudimentary convex geometry that were inaccessible from

considering only scattering amplitudes of factorised states. This will be applied to some

more examples below in Section 3.4 with similar results.

It is worth discussing here the action of the discrete symmetries that the forward

amplitudes. The kinematics of forward scattering preserves rotational invariance about

the “beam direction” in the center of mass frame. The angular momentum of each state

projected in this direction is a conserved charge that the external states are labelled by.

This will be the subject of Section 3.5. Besides this however, there remains one further

action of rotational invariance on the S-matrix. Rotations by π perpendicular to the beam

axis effectively interchanges (in the centre-of-mass frame) both particles one with two and

three with four. This equates, up to a possible little group phase for inelastic amplitudes,

the forward amplitudesM ijkl andM jilk. This discrete rotation will be referred to as “Y ”.

This symmetry is in addition to crossing, with which it can combine to produce CPT .

In particular, Y -symmetry also acts on the vectors of UV couplings to imply that, in

general, |mij| = |mji|. In many cases, when transitions between the Y -rotated pairs of

states are prohibited (such as when there is angular momentum about the beam axis),

the vectors themselves lie in orthogonal subspaces that may be directly identified through

Y . Crossing, the Hermitian analyticity condition (3.3) and Y symmetries (as well as the

emergent CPT ) can generally act to simplify the structure of the sum rule. In particular,

mij ·mkl = mk̄l̄ ·mīj̄. Other discrete symmetries may exist for a particular theory, such

as parity, time-reversal and identical particle exchange symmetries. Examples of these

will be given throughout this work, but their existence is theory-dependent.
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3.2.2 Loops

It is appropriate here to emphasise that, with no further assumptions beyond standard

power counting, the dimension 8 order scattering amplitudes receive contributions not

only from terms with single insertions of dimension 8 operators, but also from terms

with multiple insertions of lower dimension operators that altogether give energy scaling

of the same order. Double insertions of dimension 6 operators are particularly common.

Much of previous work on these constraints has neglected the latter terms and are naively

restricted in applicability to UV completions that generate small lower dimension Wilson

coefficients (usually justified by appealing to a weak coupling expansion). It is not

obvious how these bounds would apply to theories saturating naive dimensional analysis

(44), which is characteristic of strongly coupled UV completions. One such example

is chiral perturbation theory in the real world - see (45), (46), (47) for the results of

applications of causality constraints to this. Double insertions of dim-6 cubic vector

operators were, however, considered in (27) and (28), where it was interestingly observed

that they enhanced the positivity constraints on the quartic vector operators.

A significant general statement about loop corrections from 4-point dimension 6 oper-

ators can be likewise made. A loop of two dim-6 insertions produce UV divergent bubble

integrals, which are proportional to logarithm of the Mandelstam variable corresponding

to the partitioning of the legs on either side of the loop. The coefficient of the logarithm

is determined by the unitarity cut across the appropriate channel. For elastic amplitudes,

both the s and u-channel cuts are positive in the forward limit by the optical theorem.

The t-channel cuts vanish in the forward limit by conservation angular momentum. This

is because the dim-6 effective interactions can only mediate scattering in, at most, the

j = 1 partial wave, implying that these terms cannot be proportional to more than one

power of the crossed channel Mandelstam variable, here s or u (or combinations of spinor
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bilinears that effectively behave as square roots of these). There must therefore be an

overall factor that vanishes in the forward limit. The positivity of the s and u-channel

cuts implies that the coefficient of the UV log generated by the loop must be positive.

This means that the dim-8 contact coefficients for elastic processes are always decreasing

with increasing energy scale under renormalisation group (RG) evolution.

As explained above, the IR segment of the dispersion integral effectively accounts

for RG evolution of the coupling from renormalisation scale µ to cut-off Λ. For elastic

scattering, the higher Λ is pushed, the more negative the loop correction appearing on

the LHS becomes. It is for this reason optimal to integrate the IR dispersion integral

as far as the cut-off. It is therefore the smaller, RG-evolved high-scale coupling that

is constrained to be positive. The naive tree-level bounds on the low energy coupling

are therefore strengthened by these dim-6 loops. The low-energy contact interaction is

therefore subject to a stronger lower bound that depends both on the size of the dim-6

operators and the size of the energy hierarchy.

For bubble loop corrections to inelastic processes, another Schwarz-like bound can

be placed on the cuts by noting that the sum over intermediate states (including phase

space integration) is itself an inner product, so that:

∣∣∣∣∣∑
X

Mij→X
(
Mkl→X

)∗∣∣∣∣∣ ≤
√√√√(∑

X

Mij→X (Mij→X)∗
)(∑

X

Mkl→X (Mkl→X)∗
)
.

(3.12)

This bounds the size of the log coefficients for inelastic processes by those of elastic pro-

cesses. In other words, the RG evolution of the corresponding tree operators is restricted

by the elastic ones. This implies that the UV logs from loop corrections on the inelastic

side of the constraints must be smaller than those on the elastic side. The RG evolution

of the elastic amplitudes is therefore typically larger and determines how the constraints
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tighten with scale.

These effects will be illustrated below in Section 3.3.1 in a simple, concrete example.

All calculations performed here will be with the MS renormalisation scheme. Lower-

dimension operators can also contribute to the amplitudes in more ways than simple UV

renormalisations. A more thorough examination of these effects will be left for the future.

It will be likewise assumed that all marginal or renormalisable couplings are pertur-

bative and that the loop corrections that they mediate are subdominant at leading order

in the energy expansion of the EFT. These corrections may nevertheless be included in

a similar way to the loops discussed above. If the energy hierarchy is large enough, the

logarithms associated with these corrections become large and this is no longer justified.

It would be interesting to also investigate how the RG flow would interact with the sim-

plified conclusion derived above. Note that a perturbative treatment would apply under

these conditions to the relevant couplings in the SM with the exception of the strong

gauge coupling, which is non-perturbative at energies below ∼ 1 GeV. Extrapolating

amplitudes in perturbative QCD to low energies is therefore unclear. A possible way of

dodging the problem may be to modify the integration contour to cut-off the dispersion

integral in the IR at some energy s = r and then integrate over a semi-circular arc to the

opposite branch cut. As long as r ≫ ΛQCD, then this should be computable within the

perturbative theory, as long as the analytic continuation is still valid. If r ≪ σ2 ≪ Λ2,

then this will also have only a small effect on the results derived under the assumptions

above. Of course, this different contour choice does nothing to address the question of the

validity of the foundational arguments underpinning the sum rule to Yang-Mills gauge

theory, where the perturbative S-matrix must be presumably matched onto an inclusive

IR observable.
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3.2.3 Constraints

The sum rule in the form (3.8) and the convex cone picture of (29) yields a program

for systematically extracting information in the sum rule into constraints on Wilson

coefficients in an effective action that follows three stages:

1. Write down the sum rule and find the (potential) ERs.

2. Convert into inequalities among amplitudes.

3. Convert into inequalities among Wilson coefficients.

For simple enough theories, inequalities may be deduced directly from inspection of the

sum rule without recourse to the convex cone picture. Invocation of convex geometry

is most useful when the number of ERs is greater than the dimension of the space of

independent amplitudes. As will be elaborated upon much more in Section 3.4, this

typically occurs when many of the states are related by symmetries. While it is simple

enough to outline the strategy above, much of the challenge lies in step 2 which itself thus

far lacks a general procedure, although direct application of (3.11) is often substantial.

Sum rule and extremal rays

If sufficiently simple, constraints on the EFT can be deduced from the sum rule

directly from inspection by expressing it in the form of (3.8), similarly to the way that

the standard postivity results from elastic scattering and the inelastic bound (3.11) were

derived. Examples of this will be given in the sections below. However, this is not always

so simple when symmetries are present that impose further structure over the S-matrix.

Candidate ERs can be constructed by finding the ERs of the cone generated by only

the s-channel term in (3.8), that is, the cone of positive semi-definite (PSD) matrices.

Following (29), these will be referred to as potential ERs (PERs). Once the u-channel
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term is added, all ERs must be PERs of the s-channel cone, but the converse does not

necessarily hold and some PERs may be redundant (lie within the interior).

In the simple case where the symmetries of the theory are stringent enough to restrict

S-matrix transitions to unique (irreps of) initial and final state species, then there is only

a single independent vector in (3.8) that parameterises each transition and the magnitude

squared of a single component of this vector, by itself, represents a full PSD matrix and

defines a PER. Again, see Section 3.4.1 below for further details and explanation. This

will be the situation discussed further below in Section 3.4.2. However, in the presence of

multiple “degenerate” states (irreps) between which “inelastic” transitions are permitted,

each PSD matrix consists of multiple parameters. Each parameter is a complex number

that can be interpreted as a coupling of the IR states to a particular UV state with a

specific set of quantum numbers. As rays, these are only of interest up to an overall

scale. For example, for a theory with two degenerate irreps of scattering states under

some symmetry (or, equivalently, distinct states with transition amplitudes permitted by

symmetries), a PER has the form

 1 r

r∗ |r|2

 (3.13)

for some unknown r ∈ C. The undetermined components effectively parameterise a

continuous family of (P)ERs that generate curved facets. A simple example of this

will be illustrated in Section 3.5.2. Again see (28) for more details and discussion of

application to SM electroweak bosons.
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From rays to amplitudes

While the cone is fully determined as the convex hull of the rays, it is still required

to convert the description into a set of inequalities on the amplitudes. For many of the

simple examples described here, this step is relatively easy given the structure of the

sum rule. However, when the shape of the cone becomes more intricate, as typically

happens when the number of edges is larger than the dimension of the ambient space of

amplitudes, then there is not a simple correspondence between coordinates/amplitudes

and ERs. If the cone is polyhedral, the algorithm of vertex enumeration from convex

geometry may be applied. This will be illustrated in the examples in Section 3.4.2 below.

However, whenever degenerate states exist (two-particle states with the same quantum

numbers, which are typically pervasive amongst theories), the cone is non-polyhedral.

A systematic method for determining the shape of the cone, and hence the causality

bounds, remains a problem for further work.

From amplitudes to effective operators

This step is well-known and not new. Given the effective action for the EFT, the

standard Dyson series expansion can be performed to obtain the relevant scattering

amplitudes at the relevant order of precision - here ∼ s2/Λ4 for typical centre of mass

energy scale
√
s. Their derivatives d2

ds2
A(s) that appear in the sum rule are then functions

of the Wilson coefficients in the action.

The present work will include some exploration of lower dimension operators in the

sum rule, mostly focused on dimension 6, and discuss how they modify constraints previ-

ously limited to dimension 8 Wilson coefficients. It is at this third stage in the program

where this issue becomes relevant. However, an interpretation of the constraints directly

on the structure of the S-matrix is unaffected.
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It is interesting to wonder whether this step can be made altogether redundant. In

such a formulation, the effective action would be redundant and the S-matrix may be

perturbatively constructed directly from its singularity structure out of a set of contact

interactions consistent with Lorentz invariance. The strength of the contact interactions

would be an equivalent parameterisation to the Wilson coefficients. This program would

require both a systematic understanding of the all-order singularity structure of the S-

matrix (i.e. causality and locality) and a systematic method for actually performing

this reconstructing in order to be a complete replacement, although for simple enough

theories at low enough order and few enough legs (which cover all applications considered

here), this is currently feasible.

3.3 Bounds on Inelastic Transitions

This section presents a simple example to concretely illustrate the general discussion

presented above. However, the constraints presented here are also new and demonstrate

the general way in which these bounds fundamentally limit the extent of symmetry

violation by effective interactions.

3.3.1 Multiple scalars

For a theory of a single scalar field ϕ, the positivity of the coefficient of the (∂ϕ)4

operator is well known. This would be the leading irrelevant operator if the scalar was

a Goldstone boson. Now consider a more general EFT of a complex scalar with effective

interaction Lagrangian density

LEFT6 =
c6
Λ2
ϕϕ
(
∂ϕ† · ∂ϕ†) (3.14)
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and

LEFT8 =
c8
Λ4

(∂ϕ · ∂ϕ)
(
∂ϕ† · ∂ϕ†)+ c̃8

Λ4

(
∂ϕ · ∂ϕ†) (∂ϕ · ∂ϕ†)

+
d8
2Λ4

(∂ϕ · ∂ϕ)2 + 2d̃8
Λ4

(∂ϕ · ∂ϕ)
(
∂ϕ · ∂ϕ†)+ conj.. (3.15)

Here c6, c8 and c̃8 are real while d8 and d̃8 are complex. Complex scalars are usually

associated with U(1) symmetries, but this will not be assumed here. Only the existence

of charge conjugation C will be assumed to relate the two real scalar states. Nevertheless,

at dim-6 level, the only possible 4-point operator is charge conserving (this would not

be true if there were more species). See (48) for an analogous recent analysis of a two

scalar system (axion and dilaton) in which both degrees of freedom are totally unrelated

by symmetry (the bound is exactly that expected from (3.11)).

Note that marginal and relevant operators could also be included - it will be assumed

that these are small perturbations such that they can be neglected from the leading

contributions at each order the EFT expansion. Operators composed of more than four

scalars ϕ, such as ϕ6, have also been neglected for simplicity, but would ordinarily be

considered at the same order. This would all be justified if the scalar was a Goldstone

boson, in addition to ruling-out all possible dimension 6 operators and higher point

dimension 8 operators so that LEFT8 would give a complete leading order description of

the interactions. However, I choose to include LEFT6 here to provide a simple illustration

of the inclusion of loops.

Firstly to analyse the structure of the constraints on the S-matrix entries. The sum

rule can be organised into a matrix of incoming and outgoing states. This is given in

Table 3.1. Here, there are four complex vectors with components corresponding to the

amplitudes mϕϕ
i = Mϕϕ→Xi(si), m

ϕϕ̄
i = Mϕϕ→Xi(si), m

ϕ̄ϕ
i = Mϕϕ→Xi(si) and mϕ̄ϕ̄

i =

Mϕϕ→Xi(si), where each entry in the vector corresponds to a particular state i in the UV

174



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

ϕϕ ϕϕ ϕϕ ϕϕ

ϕϕ |mϕϕ|2 + |mϕϕ̄|2 2mϕϕ̄ ·mϕϕ mϕ̄ϕ·mϕϕ+mϕ̄ϕ̄·mϕϕ̄ 2mϕ̄ϕ̄ ·mϕϕ

ϕϕ 2mϕϕ ·mϕϕ̄ |mϕϕ̄|2 + |mϕϕ|2 2mϕ̄ϕ ·mϕϕ̄ mϕ̄ϕ̄·mϕϕ̄+mϕ̄ϕ·mϕϕ

ϕϕ mϕϕ·mϕ̄ϕ+mϕϕ̄·mϕ̄ϕ̄ 2mϕϕ̄ ·mϕ̄ϕ |mϕ̄ϕ|2 + |mϕ̄ϕ̄|2 2mϕ̄ϕ̄ ·mϕ̄ϕ

ϕϕ 2mϕϕ ·mϕ̄ϕ̄ mϕϕ̄·mϕ̄ϕ̄+mϕϕ·mϕ̄ϕ 2mϕ̄ϕ ·mϕ̄ϕ̄ |mϕ̄ϕ̄|2 + |mϕ̄ϕ|2

Table 3.1: Sum rule for complex scalar theory.

completion up to an unimportant overall positive scalar coefficient. CPT implies that

all of the elastic amplitudes are equal so that |mϕϕ|2+ |mϕϕ̄|2 = |mϕ̄ϕ|2+ |mϕ̄ϕ̄|2 and, up

to an irrelevant phase, mϕϕ̄ ·mϕϕ = mϕ̄ϕ̄ ·mϕ̄ϕ. Then Y symmetry by itself also implies

that |mϕϕ̄| = |mϕ̄ϕ| and |mϕϕ| = |mϕ̄ϕ̄|, while mϕϕ̄ ·mϕϕ +mϕ̄ϕ̄ ·mϕϕ̄ = 2mϕϕ̄ ·mϕϕ.

This simplifies the matrix, in particular equating each single-charge violating amplitude

in the upper triangle.

The standard positivity theorems on elastic forward scattering (2) are immediately

clear from the diagonal entries in this table. However, there is clearly more information.

These constraints can be extracted by applying the Schwarz and triangle inequalities.

For example, |2mϕϕ ·mϕϕ̄| ≤ 2|mϕϕ||mϕϕ̄| ≤ |mϕϕ|2+ |mϕϕ̄|2, which is the statement on

the LHS that

|Mϕϕϕϕ| ≤Mϕϕϕϕ, (3.16)

that is, the single-charge violating amplitude must be smaller than the charge conserving

one. Likewise,

2|mϕϕ ·mϕ̄ϕ̄|+ 2|mϕϕ̄ ·mϕ̄ϕ̄| ≤ 2|mϕϕ||mϕ̄ϕ̄|+ 2|mϕϕ̄||mϕ̄ϕ̄|

≤ 2
√(

|mϕϕ|2 + |mϕϕ̄|2
) (

|mϕ̄ϕ̄|2 + |mϕ̄ϕ̄|2
)

(3.17)
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implies that

|Mϕϕϕϕ|+ |Mϕϕϕϕ| ≤ 2Mϕϕϕϕ. (3.18)

These statements can then be converted into constraints on the Wilson coefficients.

At tree-level, these bounds may be directly translated into the statement that the dim-8

charge conserving Wilson coefficients must be larger than the charge violating ones. This

is, however, also an appropriate place to illustrate the inclusion of a loop process in the

sum rule so that the affect of the dim-6 operators can be accounted for.

The relevant amplitudes at dim-8 order are

A
(
ϕ, ϕ→ ϕ, ϕ

)
=
c8
Λ4
u2 +

c̃8
2Λ4

(
s2 + t2

)
+

4

(4π)2
c26
Λ4

(
2

3
u2 +

∫ 1

0

x(1− x)

(
3u2 log

(
µ2

−x(1− x)u

)

+ t(t− u) log

(
µ2

−x(1− x)t

)
+ s(s− u) log

(
µ2

−x(1− x)s

))
dx

)
(3.19)

A
(
ϕ, ϕ→ ϕ, ϕ

)
=
d̃8
Λ4

(
s2 + t2 + u2

)
(3.20)

A
(
ϕ, ϕ→ ϕ, ϕ

)
=
d8
Λ4

(
s2 + t2 + u2

)
(3.21)

A
(
ϕ, ϕ→ ϕ, ϕ

)
= A

(
ϕ, ϕ→ ϕ, ϕ

)
|u7→t,t7→s,s 7→u. (3.22)

As usual, µ is the renormalisation scale. The couplings are implicitly functions of this.

Taking the forward limit and differentiating give the entries for the LHS of the sum

rule. Because of the singularities, I will take the insertion at s = σ2 + iδ for some σ2 > 0
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and δ → 0+, as explained in Section 3.2.1 above:

M(ϕ, ϕ→ ϕ, ϕ) =
2c8
Λ4

+
c̃8
Λ4

+
4

(4π)2
c26
Λ4

(
29

18
+

2πi

3
+

5

3
log

(
µ2

σ2

))
(3.23)

M(ϕ, ϕ→ ϕ, ϕ) =
4d̃8
Λ4

(3.24)

M(ϕ, ϕ→ ϕ, ϕ) =
4d8
Λ4

(3.25)

M(ϕ, ϕ→ ϕ, ϕ) =
2c̃8
Λ4

+
4

(4π)2
c26
Λ4

(
1

9
+
πi

3
+

2

3
log

(
µ2

σ2

))
. (3.26)

The IR part of the dispersion integral needs to be added to this to obtain the full LHS.

This cancels the imaginary part of the amplitudes above (corresponding to above thresh-

old production of the light states in the EFT), as well as the logarithmic dependence on

σ2, which can be taken arbitrarily soft, leaving behind a scheme-dependent correction to

the coupling representing its RG evolution from µ to the cut-off. The terms from the

dispersion integral relevant for each loop amplitude are:

2

π

∫ Λ2

0

s

(
σ(6)

(
ϕ, ϕ→ ϕ, ϕ

)
(s− σ2 − i0+)3

+
σ(6) (ϕ, ϕ→ ϕ, ϕ)

(s+ σ2)3

)
ds

≈ 5

12π2

c26
Λ4

(
−3

2
+

2πi

5
+ log

(
Λ2

σ2

))
(3.27)

1

π

∫ Λ2

0

(
1

(s− σ2 − i0+)3
+

1

(s+ σ2)3

)∫
A(6)

(
ϕ, ϕ→ ϕ, ϕ

) (
A(6)

(
ϕ, ϕ→ ϕ, ϕ

))∗
dΠds

≈ 1

6π2

c26
Λ4

(
−3

2
+
πi

2
+ log

(
Λ2

σ2

))
(3.28)

where σ(6) denotes cross section determined from the dim-6 tree amplitudes A(6) and Π is

the Lorentz-invariant phase space of the intermediate states being integrates over. The

conventional optical theorem has been invoked in the statement of (3.27) because the

relevant processes are elastic. The constraints (3.16) and (3.18) therefore translate into
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bounds on Wilson coefficients:

4|d̃8| ≤ 2c8 + c̃8 +
c26

(4π)2

(
148

9
+

20

3
log

(
µ2

Λ2

))
(3.29)

2|d8|+
∣∣∣∣c̃8 + c26

(4π)2

(
20

9
+

4

3
log

(
µ2

Λ2

))∣∣∣∣ ≤ 2c8 + c̃8 +
c26

(4π)2

(
148

9
+

20

3
log

(
µ2

Λ2

))
.

(3.30)

The above example also makes explicit the issues of RG-scale dependence described

in Section 3.2.1. The terms proportional to log
(
µ2

Λ2

)
represent RG-evolution of the dim-8

couplings from the renormalisation scale µ to the cut-off Λ. The upper limit of the IR

segment of the dispersion integral could have instead been chosen to be some λ < Λ.

In this case, the above calculation would be mostly unchanged, but with Λ 7→ λ and

the addition of terms O
(
σ2

λ2

)
on the RHS of (3.27) and (3.28). These latter terms were

dropped with λ = Λ because they are higher order in the energy expansion organising

the EFT, but must be retained for smaller λ. They are nevertheless eliminated by

taking σ → 0. As a result, the constraints differ only in the replacement of the cut-off

Λ by the lower energy λ in the logarithms, representing RG-evolution to the scale λ

instead. While the bounds must hold for all λ and therefore represent constraints on

the entire flow, they are typically optimised by taking λ → Λ because of the positive

sign of the c26 log contribution. This is the reason for integrating all the way to the cut-

off. Interestingly, if the sign of the coefficient of the logarithm were instead negative,

then taking λ arbitrarily small would place arbitrarily strong lower bounds on the dim-8

coefficients mediating elastic scattering, effectively ruling them out. That this cannot

happen is consequence of unitarity.

However, it is also of note that the logarithmic term is increasingly negative with

higher cut-off. The division between the dim-8 contact coefficients and the rational terms
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proportional to c26 is renormalisation scheme-dependent and the sum of both terms should

be the object of comparison with the pure tree-level bounds. The dim-6 loop contribution

should be entirely attributed to the logarithm and this contributes negatively to the LHS

of the sum rule, strengthening the bound relative to the tree-level expectation. Stated

equivalently, the contact coefficients decrease with increasing RG scale to the extent

that their IR values can be (at least partially) cancelled. For a given coupling at scale

µ, the constraints fundamentally limit the extent that the cut-off can be extended, or

alternatively, for a given cut-off, improve the positivity bounds on the dim-8 contact

interaction strength in the IR. The mere presence of dim-6 operators therefore enhances

the lower bound on the size of dim-8 operators mediating elastic scattering.

The organisation of the sum rule presented here can be further applied to more

complicated theories with multiple species, of which many examples will follow.

3.4 Bounds with Internal Symmetries - Flavour and

Colour

The presentation of the sum rule illustrated in the previous sections demonstrates

the nature of the new bounds for inelastic processes between distinct particles. The next

level of sophistication to discuss is for theories with multiple states related by symmetries.

Positivity bounds in theories with global symmetries have been discussed previously in

(15). The present discussion will further examine the new positivity bounds suggested in

(29) for theories of particles belonging to non-trivial representations of multiple symmetry

groups. While the action of the symmetries on the states factorise, because all sets of

indices are crossed simultaneously between the s-channel and u-channel terms in (3.8),

they become effectively entangled across different entries in the full matrix of sum rules.
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This raises the possibility of new constraints that cannot be accessed by considering only

elastic scattering of factorised superpositions of states.

The bounds are determined from the ERs in the convex cone picture. Each ER is

itself identified with a particular irrep under the global symmetry that a pair of external

scattering states can couple to. Thus if a particular representation R lies in the Clebsch-

Gordan decomposition of the incoming states in either the s-channel or the u-channel,

it will yield an ER in the RHS of the sum rule. Stage one of the procedure enumerated

in Section 3.2.3 thus reduces to a decomposition of the theory’s amplitudes into a set of

partial amplitudes describing symmetry preserving transitions. This will be elaborated

upon more precisely below.

The goal of this section is to analyse theories of global symmetries with the features

just described and discover new bounds. This will provide a further educational illus-

tration of the structure of the sum rule constraints, the way in which symmetries are

managed and the convex cone of UV completions. More importantly however, the cases

considered here will directly apply to the fermionic operators with the global symmetries

of the SM. The important special case of rotational symmetry will be deferred to the

next section in order to avoid distraction from the goal. However, for the theories of (hy-

per)charged chiral fermions considered here, such a treatment for spin is not necessary

and each left-handed particle and right-handed antiparticle may be treated as indepen-

dent states that have amplitudes related by only CPT , similarly to the scalars in the

previous section (although hypercharge conservation will be assumed here). Note that

the following method for the accounting of symmetries and the algorithm used to derive

the positivity bounds are not intended to represent an application of the simple inelastic

bounds derived earlier in (3.11) and could include more information.
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3.4.1 Background group theory

A 2 → 2 scattering amplitude can be decomposed into partial amplitudes corre-

sponding to symmetry preserving transitions between particular irreps. Assume that

the incoming and outgoing particles transform under representations of some symmetry

group. Generally, the initial states may be decomposed into irreps with Clebsch-Gordan

coefficients defined here as

Cab
Rξι

= ⟨Rξ; ι| (|r1; a⟩|r2; b⟩) (3.31)

to give

|r1; a⟩|r2; b⟩ =
∑
Rξ,ι

Cab
Rξι

|Rξ; ι⟩, (3.32)

where r1 and r2 label the representations of the individual particles, a and b their com-

ponents, while R and ι index the product irreps and components. The index ξ counts

degenerate representations that may arise.

Projection tensors can be defined as

P abcd
Rξξ′

=
∑
ι

Cab
Rξι

(
Ccd
Rξ′ ι

)∗
. (3.33)

These obey orthogonality conditions

1

dimR

∑
a,b,c,d

(
P abcd
Rξξ′

)∗ (
P abcd
R′

ηη′

)
= δRR′δξηδξ′η′ . (3.34)

The final states may be likewise decomposed. The Wigner-Eckart theorem then im-

plies that the resulting transition amplitude is diagonal in representation and compo-

181



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

nents, although transitions between distinct but degenerate representations are permit-

ted. This will be especially important when spin is discussed later. The full amplitude

decomposes as

Aabcd = out (⟨r4; d|⟨r3; c|) (|r1; a⟩|r2; b⟩)in

=
∑
R,ξ,ξ′

P abcd
Rξξ′

ARξξ′
, (3.35)

where the partial amplitudes are defined as

ARξξ′
= out⟨Rξ′ ; ι|Rξ; ι⟩in (3.36)

and may be extracted from the full amplitude by the action of projectors (note that the

RHS of (3.36) is independent of the choice of the component ι and no sum is implied).

The projection operators thus encode all of the symmetry relations between ampli-

tudes of different states. The irreps are the states that block-diagonalise the S-matrix.

Each term in the s-channel of the sum rule (the first term in (3.8)) can be decomposed

into irreps into the form

Ms =
∑
Rs,ξ,ξ′

P abcd
Rsξξ′

mRsξ′
·mRsξ

, (3.37)

where the s subscript on the irrep label R has been used to emphasise applicability to the

s-channel decomposition. The u-channel term in (3.8) can likewise be decomposed with

particles b and d exchanged with each others’ antiparticles. The irreps in this case may

be entirely different. However, by the Wigner-Eckart theorem, it must be possible for the

u-channel projectors to be decomposed as linear combinations of the s-channel ones so
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that the amplitude takes the form (3.35) given entirely in terms of s-channel projectors.

P ad̄cb̄
Ruρρ′

=
∑
Rs,ξ,ξ′

cRuρρ′Rsξξ′
P abcd
Rsξξ′

. (3.38)

The numerical constants cRuρρ′Rsξξ′
of this decomposition are entirely determined by the

Clebsch-Gordan coefficients of the group. These will be presented below for various

examples relevant to the SM. As a result of this decomposition, the sum rule (3.8) in the

presence of global symmetries may be expressed as

Mabcd = P abcd
Rξξ′

mRξ′
·mRξ

+
∑
Rs,ξ,ξ′

cRuρρ′Rsξξ′
P abcd
Rξξ′

mRuρ′
·mRuρ (3.39)

The s label on the irreps of the s-channel has now been dropped. If there are no de-

generacies, then each term in (3.39) is of the form |mR|2 and can be identified with a

PER.

The special case of SU(3) will be used in examples below. Projectors for the ir-

reps that arise in combining fundamental and antifundamental representations will be

necessary. The Clebsch-Gordan coefficients may be easily inferred from the exchange

symmetry structure of the representations in tensor form. The projectors onto each irrep

appearing in the products 3⊗ 3 are then determined as

P ab
3 cd =

1

2

(
δac δ

b
d − δadδ

b
c

)
(3.40)

P ab
6 cd =

1

2

(
δac δ

b
d + δadδ

b
c

)
. (3.41)
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For 3⊗ 3 transitioning into 3⊗ 3, they are

P a d
1 bc =

1

3
δab δ

d
c (3.42)

P a d
8 bc = δac δ

d
b −

1

3
δab δ

d
c , (3.43)

while for 3⊗ 3 transitioning into 3⊗ 3, they are

P a c
1 b d =

1

3
δab δ

c
d (3.44)

P a c
8 b d = δadδ

c
b −

1

3
δab δ

c
d. (3.45)

Raised indices indicate fundamental, lowered are antifundamental. The cases where the

representations are conjugate are identical, with index heights reversed.

It will also be necessary to decompose the projectors in the u-channel into projectors

for the s-channel, which is traditionally referred to as “finding the crossing matrix”. For

the projectors above, these are

P a b
1 dc =

1

3

(
P ab
6 cd − P ab

3 cd

)
(3.46)

P a b
8 dc =

2

3

(
P ab
6 cd + 2P ab

3 cd

)
(3.47)

P a c
1 d b =

1

3
(P a c

1 b d + P a c
8 b d) (3.48)

P a c
8 d b =

1

3
(8P a c

1 b d − P a c
8 b d) (3.49)

P ad
3 cb =

1

2

(
P a d
8 bc − 2P a d

1 bc

)
(3.50)

P ad
6 cb =

1

2

(
P a d
8 bc + 4P a d

1 bc

)
. (3.51)
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Also of use will be the projectors for SU(2). For the product 2⊗ 2, they are

P ab
1 cd = −1

2
ϵabϵcd (3.52)

P ab
3 cd =

1

2

(
δac δ

b
d + δadδ

b
c

)
. (3.53)

The indices can be raised and lowered by ϵ tensors in order to relate these to the projectors

appearing in amplitudes involving the conjugate representations. An additional factor

of −1 must be included for each index either raised or lowered in this way (because, for

a state ψa, defining ψa = ϵabψ
b and ψ†a = ϵabψ†

b , then (ψa)
† = −ψ†a). The u-channel

projectors decompose as

P a b
1 dc = −1

2

(
P ab
1 cd − P ab

3 cd

)
(3.54)

P a b
3 dc =

1

2

(
3P ab

1 cd + P ab
3 cd

)
. (3.55)

For the product 3⊗ 3, they are

P abcd
1 =

1

2
δabδcd (3.56)

P abcd
3 =

1

2

(
δacδbd − δadδbc

)
(3.57)

P abcd
5 =

1

2

(
δacδbd + δadδbc − δabδcd

)
. (3.58)

The indices here label components of the 3 representation, rather than fundamental. The
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u-channel projectors decompose as

P adcb
1 =

1

3

(
P abcd
5 − P abcd

3 + P abcd
1

)
(3.59)

P adcb
3 =

1

2

(
P abcd
5 + P abcd

3 − 2P abcd
1

)
(3.60)

P adcb
5 =

1

6

(
P abcd
5 + 5P abcd

3 + 10P abcd
1

)
. (3.61)

3.4.2 Standard Model fermions

As the SM is a theory of chiral fermions, EFTs of these states will be the focus of

this section. The isospin, colour and flavour representations of the SM fermions will

be systematically considered, with hypercharge conservation imposed. Helicity and hy-

percharge are not independent quantum numbers, so both sets of representations are

equivalent. However, in the product representations of two such states, the non-zero

charged irreps correspond to the rotational singlets, while the charge singlets constitute

the non-trivial angular momentum irreps (see Section 3.5.1 below for more explanation).

This ensures that there are no transitions between distinct degenerate irreps and that

hypercharge conservation is otherwise sufficient to account for both of these symmetries.

I begin with a theory of hypercharged chiral fermions in the fundamental representa-

tion of SU(3). These results would apply to a single flavour of right-handed down or up

quarks, with the SU(3) symmetry being interpreted as colour, or to right-handed leptons

in which the full SU(3) flavour symmetry is preserved in the UV. I will use notation

describing the former. The terms in the sum rule are determined by finding projectors

for the irreps of the external legs, beginning with the s-channel and then crossing to the

u-channel, in a similar way to that illustrated in the previous section. Again parameter-

ising the couplings to UV states by complex vectors, the relevant amplitudes are of the
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form

M (qR, qR → qR, qR) =M3P3 +M6P6

=

(
|m3|2 −

1

3
|m1|2 +

4

3
|m8|2

)
P3

+

(
|m6|2 +

1

3
|m1|2 +

2

3
|m8|2

)
P6 (3.62)

M (qR, qL → qR, qL) =M1P1 +M8P8

=
(
|m1|2 − |m3|2 + 2|m6|2

)
P1

+

(
|m8|2 +

1

2
|m3|2 +

1

2
|m6|2

)
P8. (3.63)

The others are either related by CPT or are zero. The partial amplitudes for only one

of these transitions are independent - the other channel is determined by crossing. It is

easy to see that the parameters m6 and m8 are redundant. The remaining terms clearly

span a 2d cone and can be converted into inequalities

M3 +M6 > 0 (3.64)

M6 > 0. (3.65)

These bounds correspond to those found in (25) and (unsurprisingly) contain no new

information.

Now to advance to fermions in the fundamental representation of SU(2) ⊗ SU(3),

for example, left-handed leptons with flavour symmetry or a single flavour of left-handed
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quark. Adopting the latter interpretation, the independent, non-zero amplitudes are

M (QL, QL → QL, QL)

=

(
|m(1,3)|2 +

1

6
|m(1,1)|2 −

2

3
|m(1,8)|2 −

1

2
|m(3,1)|2 + 2|m(3,8)|2

)
P1P3

+

(
|m(1,6)|2 −

1

6
|m(1,1)|2 −

1

3
|m(1,8)|2 +

1

2
|m(3,1)|2 + |m(3,8)|2

)
P1P6

+

(
|m(3,3)|2 −

1

6
|m(1,1)|2 +

2

3
|m(1,8)|2 −

1

6
|m(3,1)|2 +

2

3
|m(3,8)|2

)
P3P3

+

(
|m(3,6)|2 +

1

6
|m(1,1)|2 +

1

3
|m(1,8)|2 +

1

6
|m(3,1)|2 +

1

3
|m(3,8)|2

)
P3P6

(3.66)

M
(
QL, QR → QL, QR)

=

(
|m(1,1)|2 +

1

2
|m(1,3)|2 − |m(1,6)|2 −

3

2
|m(3,3)|2 + 3|m(3,6)|2

)
P1P1

+

(
|m(1,8)|2 −

1

4
|m(1,3)|2 −

1

4
|m(1,6)|2 +

3

4
|m(3,3)|2 +

3

4
|m(3,6)|2

)
P1P8

+

(
|m(3,1)|2 −

1

2
|m(1,3)|2 + |m(1,6)|2 −

1

2
|m(3,3)|2 + |m(3,6)|2

)
P3P1

+

(
|m(3,8)|2 +

1

4
|m(1,3)|2 +

1

4
|m(1,6)|2 +

1

4
|m(3,3)|2 +

1

4
|m(3,6)|2

)
P3P8.

(3.67)

Choosing the coordinates to be the partial amplitudes (M(1,3),M(1,6),M(3,3),M(3,6)), the

extremal rays can be read-off the sum rule and are (up to an arbitrary scale):

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1,−1,−1, 1), (−2,−1, 2, 1), (−3, 3,−1, 1)}. (3.68)

Note that the terms parameterised by both the vectors m(3,6) and m(3,8) are redundant,

so have been excluded. The standard techniques of vertex enumeration may be directly

applied to this system (see e.g. (49)) in order to convert the extremal rays into linear
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inequalities among coordinates. The present example is readily computed by hand. How-

ever, the following examples rapidly grow in complexity. I use lrs (50) as a cross-check

here and to compute the more complicated examples to follow. The resulting constraints

are

M(1,6) +M(3,6) > 0 (3.69)

M(3,6) > 0 (3.70)

M(1,3) +M(1,6) +M(3,3) +M(3,6) > 0 (3.71)

M(3,3) +M(3,6) > 0 (3.72)

4M(1,3) +M(1,6) + 9M(3,6) > 0 (3.73)

M(1,3) + 3M(3,6) > 0. (3.74)

These bounds can be compared to those given in (25) derived specifically from elas-

tic forward scattering. At tree-level, each partial amplitude corresponds to a particular

dim-8 operator of the form (ψDψ) ·
(
ψ†Dψ†) for chiral fermionic operator ψ. The cor-

respondence is determined by decomposing the bilinears ψDψ into the irreps of SU(2)

and SU(3) given above - each different operator corresponds to one of the four such rep-

resentations and thus corresponds to one of the four such partial amplitudes. The irrep

into which ψDψ is decomposed can only be contracted into a singlet with its conjugate,

thus fully determining the operator. From the correspondence between operators and

partial amplitudes it is sufficient to see that this set of six irreducible bounds contains

more information than the four linear inequalities stated in (25). In particular, the last

two are new. As argued in (29), this is because the crossing between s and u-channel

terms in (3.8) involves simultaneously exchanging all degrees of freedom associated to

the states, effectively entangling them.
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This example illustrates the insight of the convex cone picture in cases where the

space of allowed couplings is bounded by more faces than the dimension of the ambient

space. In simple examples like the pure SU(3) case described above, the number of linear

positivity constraints are comparable to the dimension of the space being bounded, so

bounds can be derived almost by direct inspection of the sum rule and some simple

geometry. However, when the number of vectors parameterising the RHS of the sum rule

exceeds the number of independent partial amplitudes, the space of allowed couplings

becomes a multi-faceted polyhedral cone and the tools of convex geometry must be

invoked.

Next are fermions in the fundamental representation of SU(3)⊗SU(3), such as right-

handed quarks with flavour symmetry. This is similar to the above example. The forward

elastic amplitude M (qR, qR → qR, qR) can be decomposed into four independent partial

amplitudes {M(3,3),M(3,6),M(6,3),M(6,6)}. The positivity constraints can be deduced by

the same procedure to be

M(3,6) +M(6,6) > 0 (3.75)

M(6,6) > 0 (3.76)

M(3,3) +M(3,6) +M(6,3) +M(6,6) > 0 (3.77)

M(6,3) +M(6,6) > 0 (3.78)

M(3,3) + 2M(6,6) > 0. (3.79)

As the SU(2) and SU(3) projectors for these fundamental representations have the same

tensor form, the first four bounds are analogous to those derived from forward scattering

in the QL case above. The last bound again corresponds to positivity of an entangled

amplitude and differs from the example above because of the different crossing relations.
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The final case considered here will be fermions in the fundamental representation of

SU(2)⊗SU(3)⊗SU(3), corresponding to states with isospin, colour and flavour, such as

left-handed quarks. This is substantially more complicated than the previous two exam-

ples. The independent non-zero partial amplitudes are those ofM (QL, QL → QL, QL) =∑
I,a,iM(I,a,i)P(I,a,i), where (I,a, i) indexes SU(2) ⊗ SU(3) ⊗ SU(3) representations.

This is an 8-dimensional space, with a general vector of partial amplitudes denoted by

M = (M(1,3,3),M(3,3,3),M(1,6,3),M(3,6,3),M(1,3,6),M(3,3,6),M(1,6,6),M(3,6,6)). Repeating

the procedure as above, there are 16 PERs (for each partial amplitude in this and the

crossed channel), of which two are redundant, leaving 14 ERs. These may be converted
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into 44 positivity bounds:

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

1 3 2 0 2 0 0 6

5 9 8 0 8 0 2 18

11 15 16 0 16 0 0 48

1 0 1 0 0 3 0 3

4 0 4 0 1 9 1 9

8 0 8 0 3 15 0 24

1 1 0 0 0 0 2 2

8 0 4 0 0 12 5 21

0 1 0 0 0 0 0 6

7 0 2 0 2 0 0 36

2 0 0 0 0 0 1 9

4 0 0 0 0 4 5 13

8 0 0 12 4 0 5 21

3 0 0 5 0 5 0 13

8 0 0 4 0 4 7 23

4 0 0 4 0 0 5 13

0 1 0 0 0 0 0 2

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 3 1 0 2 1 0 7

1 0 0 3 1 0 0 3

4 0 1 9 4 0 1 9

8 0 3 15 8 0 0 24

0 0 0 0 4 0 1 9

4 0 0 8 4 0 3 11

0 0 0 0 1 0 0 3

1 0 1 0 6 0 0 18

0 3 1 0 5 0 0 15

0 1 0 1 3 0 0 9

0 0 1 1 0 0 1 1

4 0 4 0 0 8 3 11

0 0 4 0 0 0 1 9

0 0 1 0 0 0 0 3

1 0 6 0 1 0 0 18

0 1 3 0 0 1 0 9

0 3 5 0 1 0 0 15

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 4 8 0 8 0 7 23

0 0 0 1 0 0 0 1

0 3 2 1 1 0 0 7

0 5 3 0 3 0 0 13

(3.80)

where each row Ai corresponds to an inequality Ai ·M > 0.
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Operators mixing the different types of fermions together can also be considered, but

these will be deferred to a more systematic analysis for now. The cases just described

are especially simple because the UV cone is polyhedral. It is in this sense that the

bounds derived here are well-described as generalisations of “positivity” constraints -

they correspond to identifying the positive combinations of partial amplitudes implied

by the optical theorem, which geometrises into the problem of finding the cone generated

by a finite set of ERs. Examples of non-polyhedral cones, in which a section of the

cone is described by smooth curved surface, will be discussed below. The parameters of

the section correspond to the possible S-matrix transitions between distinct states that

are permitted by the symmetries. No such transitions exist for the simple cases just

discussed, but introducing new particles will usually spoil this.

To close this section, I emphasise that, for the restricted theories of a single species

of fermion in the representations considered here, the listed constraints are complete.

There are no further implications of the sum rule as stated in (3.8) for the structure of

the EFT.

3.4.3 Flavour violation

The inelastic bounds can also be adapted to multiple flavours of particles unrelated

by symmetries, of particular relevance to the SM. These were discussed in (25), where it

was observed that flavour-violating fermion operators were bounded above by the flavour-

conserving ones. I here show that this is a consequence of general inelastic unitarity

bounds and derive general statements for the simplest cases.

Begin with right-handed leptons, the simplest states without non-Abelian symme-

tries, and allow for any number of flavours. As explained in Section 3.4.2, both angular

momentum and hypercharge conservation ensure that, even with multiple flavours, am-

193



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

plitudes of the form eRi, eRj → eRk, eRl contain all possible independent interactions

(other processes being related by CPT or crossing). Labelling the UV coupling vectors

as Mij→X = αij and Mij̄→X = βij, then all elastic and inelastic amplitudes have the

respective forms

M ijij = |αij|2 + |βij|2 (3.81)

M ijkl = αkl ·αij + βkl · βil. (3.82)

This implies the existence of general bounds on flavour-violating transitions in any par-

ticular flavour basis

|M ijkl|+ |M ilkj| ≤
√
M ijijMklkl +

√
M ililMkjkj. (3.83)

This result similarly holds for elastic scattering of right-handed leptons off any other

species of fermion in the SM, as well as left-handed leptons off right-handed quarks,

where the decompositions of the non-Abelian symmetries are trivial.

With left-handed leptons, the amplitudes must be decomposed into SU(2) irreps.

The partial amplitudes for the process LLi, LLj → LLk, LLl are, using the projectors from

Section 3.4.1,

M ijkl
1 = mkl

1 ·mij
1 − 1

2
mkj

1u ·mil
1u +

3

2
mkj

3u ·mil
3u (3.84)

M ijkl
3 = mkl

3 ·mij
3 +

1

2
mkj

1u ·mil
1u +

1

2
mkj

3u ·mil
3u. (3.85)

Here, the subscript u has been introduced to distinguish the UV coupling vectors in the
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u-channel term from the s-channel term. The bounds become

|M ijkl
3 |+ |M ilkj

3 | ≤
√
M ijij

3 Mklkl
3 +

√
M ilil

3 Mkjkj
3 (3.86)

|M ijkl
3 +

1

3
M ijkl

1 |+ |M ilkj
3 +

1

3
M ilkj

1 | ≤
√(

M ijij
3 +M ijij

1

) (
Mklkl

3 +Mklkl
1

)
+

√(
M ilil

3 +M ilil
1

) (
Mkjkj

3 +Mkjkj
1

)
. (3.87)

The factors in the square roots on right-hand sides of these inequalities are positive,

by analogous derivations to the SU(3) case given at the beginning of Section 3.4.2.

Because they have the same non-trivial non-Abelian symmetry structure, bounds for

elastic scattering of left-handed leptons off left-handed quarks have the same form.

For right-handed quarks, analogous results can be derived but with SU(3) partial

amplitudes instead of SU(2). In this case, the partial amplitudes have the form:

M ijkl
6 = mkl

6 ·mij
6 +

1

3
mkj

1 ·mil
1 +

2

3
mkj

8 ·mil
8 (3.88)

M ijkl

3
= mkl

3 ·mij

3
− 1

3
mkj

1 ·mil
1 +

4

3
mkj

8 ·mil
8 . (3.89)

The bounds are

|M ijkl
6 |+ |M ilkj

6 | ≤
√
M ijij

6 Mklkl
6 +

√
M ilil

6 Mkjkj
6 (3.90)

|M ijkl
6 +M ijkl

3
|+ |M ilkj

6 +M ilkj

3
| ≤

√(
M ijij

6 +M ijij

3

) (
Mklkl

6 +Mklkl
3

)
+

√(
M ilil

6 +M ilil
3

) (
Mkj

6 +Mkjkj

3

)
. (3.91)

This applies regardless of which species of right-handed quarks are identified with the

pairs i, k and j, l (all that is important is that the amplitudes are elastic). Similarly,

these results also apply to right-handed quarks scattering off left-handed quarks.

The bounds for left-handed quarks are more intricate because the convex cone de-
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scribing the purely elastic, flavour-conserving amplitudes has a non-trivial (polyhedral)

shape (in other words, more extremal rays than dimension). This issue also arises and

is a general problem when there are multiple degenerate irreps of states in non-trivial

symmetry representations. This was discussed in (28) in the case of the hypercharge

boson coupling to W bosons with parity symmetry respected, where restriction to the

latter of is described by a such a non-trivial cone. This will be elaborated upon further

below, but will here be left as an open problem. It is nevertheless clear that (3.11) can

be directly applied to provide necessary upper bounds.

The general pattern described in the examples here is clear and would also apply

to flavour-changing processes in which a fermion scatters off a boson. There are, of

course, numerous other inelastic processes that can involve flavour violation that would

likewise be bounded in more complicated ways (just as the underlying processes with

flavour ignored). It should be again emphasised that (3.83) is, by itself, also not com-

plete, and further constraints on the general three-flavour systems remain to be precisely

determined.

3.5 Bounds with Helicity

In this section, the residual rotational invariance about the beam axis will be treated

as a global symmetry in a similar way to the internal symmetries described above. This

will allow bounds to be placed on theories with spinning particles in which there is a

transfer of angular momentum.

3.5.1 Rotational symmetry

In the limit of exactly forward scattering, the rotational symmetry about the beam

axis is preserved. This is an additional symmetry that can be managed just as for the
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internal symmetries discussed above. In the center-of-mass frame, call the direction of

particle 1 the z-direction, with respect to which all spin projections will be quantised. It

is however natural to label the external states by helicity, or stated equivalently, by their

little group symmetry of rotations about their momenta. There are two equivalent options

for describing this: states of definite helicity (as was done in Section 3.4.2) and SO(2)

vectors, which were employed in (29), (28). Helicity eigenstates will be predominantly

used in the following examples, in which case the angular momentum along the beam axis

is treated as a U(1) charge in a similar way to the fermion and scalar examples previously.

However, as part of the simple illustrative example below in Section 3.5.2 of identical

spinning particles, I will compare this with an analysis of the sum rule in SO(2) form.

This subsection will be devoted to deriving the relevant projectors and crossing relations

required specifically for this case and addressing issues related to parity-violation. The

more general results necessary for implementing the rotational symmetry in SO(2) form

will be given in the Appendix. The sum rules for the examples in Sections 3.5.4 and 3.5.5

will also be given there in SO(2) form for comparison.

Call hi the magnitude of the helicity of particle i. The polarisation of particle i may

be represented equivalently by 2±hi vectors, where a 2z vector responds to a spatial ro-

tation of angle ϕ about the beam axis by a rotation by angle zϕ. Because the helicity

quantisation axis of each particle is opposite, the rotational symmetry should act oppo-

sitely on each particle’s little group indices, so it is natural to represent the polarisation

of particle 1 by a 2h1 vector and particle 2 by a 2−h2 vector (and likewise for the outgoing

states). The general relationship between the states in tensors of this form and helicity

eigenstates {|h⟩, | − h⟩} is

2±h ∼
1√
2

 |h⟩+ | − h⟩

∓i (|h⟩ − | − h⟩)

 . (3.92)
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While there are two components to a SO(2) vector, the Wigner-Eckart theorem does

not require transitions between the two component states to be related by a symmetry

transformation. Instead, only the U(1) charges (in this case, spin projection) need be

conserved. That the positive and negative charge irreps can have different partial ampli-

tudes is an expression of the possibility of charge conjugation or parity violation. Separate

projectors P± are therefore needed for each distinct charge configuration. It is possible

to define projectors PP = P++P− and P�P = P+−P− corresponding to P symmetric and

violating transitions (these are normalised so that (PP )
∗PP = (P�P )

∗P�P = 2). In many

simple examples, such as those already discussed in Section 3.4.2, CPT is sufficient to

accidentally rule-out (C)P -violating transitions.

Now, consider the product of two states of helicities h1 and h2. The Clebsch-Gordan

coefficients are

Cij
h1+h2

=
1

2
P ij − i

2
Sij Cij

h1−h2 =
1

2
δij +

i

2
ϵij (3.93)

and Cij
−(h1±h2) =

(
Cij
h1±h2

)∗
. The subscripts here denote Jz eigenstate, while the super-

script indices are SO(2) 2h1 and 2−h2 components respectively. The symbol P ij is defined

as having values P 11 = −P 22 = 1 and P 12 = P 21 = 0, while the symbol Sij is defined

as having components S12 = S21 = 1 and S11 = S22 = 0. Note that here and through-

out, as the four particle’s little group indices are in altogether different representations,

use of δ and ϵ is purely symbolic - these are not to be interpreted as invariant tensors.

The helicities identified with the i and j indices are also necessary to uniquely specify

the Clebsch-Gordan coefficients, but have been omitted from the notation here to avoid

clutter, although there are several examples in the appendix where they must be kept

track of.

For the special, yet prevalent case in which the particles have equal (non-zero) helicity
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h1 = h2 = h, the 2h1−h2 representation instead decomposes into two degenerate singlets.

A basis for these will be chosen here to be labelled A and B, where

|0⟩A =
1√
2
(|h⟩|h⟩+ | − h⟩| − h⟩)

|0⟩B =
1√
2
(|h⟩|h⟩ − | − h⟩| − h⟩) . (3.94)

These correspond to the standard SO(2) components of the 2h1−h2 vectors above. Note

that the helicity labels denote spin numbers along opposite quantisation axes. Likewise,

these states have Clebsch-Gordan coefficients

Cij
A =

1√
2
δij Cij

B = − i√
2
ϵij. (3.95)

Note that implicit in this discussion has been a particular phase convention in which

eigenstates of helicity of particle 2 are directly equated with eigenstates of Jz, the rotation

generator about the beam axis. In the present context, this has the further simplifying

implication that the polarisations can be all chosen to be real (or, more precisely, their

spinorial representations) and that the action of P on the states does not produce a

momentum-dependent phase. See Appendices C and I of (51) for more details, as well

as (52).

For identical particles, states A and B are therefore P eigenstates with opposite

eigenvalues, once (anti-)symmetrisation is accounted for. Because fermion pairs have an

intrinsic odd P phase, state A is P even for both bosons and fermions and state B is P

odd. Transitions between these states in the S-matrix are prohibited if P is conserved.

The next step is to find the projectors into which each spinning amplitude decomposes.
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When h1 = h2 = h3 = h4 = h ̸= 0, the projectors for mz = ±2h are

P ijkl

�P 2h
=
i

2

(
δikϵjl + δjlϵik

)
(3.96)

P ijkl
P 2h =

1

2

(
δikδjl + δilδjk − δijδkl

)
, (3.97)

while for singlet states they are

P ijkl
AA =

1

2
δijδkl (3.98)

P ijkl
BB =

1

2

(
δikδjl − δilδjk

)
(3.99)

P ijkl
AB =

i

2
δijϵkl (3.100)

P ijkl
BA =

−i
2
ϵijδkl. (3.101)

The projectors in the u-channel may be decomposed as

P ilkj
P2h = P ijkl

AA + P ijkl
BB (3.102)

P ilkj
AA =

1

2

(
P ijkl
P2h + P ijkl

AA − P ijkl
BB

)
(3.103)

P ilkj
BB =

1

2

(
P ijkl
P2h − P ijkl

AA + P ijkl
BB

)
(3.104)

P ilkj

�P2h
= −P ijkl

AB − P ijkl
BA (3.105)

P ilkj
AB =

1

2

(
P ijkl
AB − P ijkl

BA − P ijkl

�P2h

)
(3.106)

P ilkj
BA =

1

2

(
−P ijkl

AB + P ijkl
BA − P ijkl

�P2h

)
. (3.107)

3.5.2 Simple example: identical spinning particles

The complete set of dimension 8 positivity theorems for pure photon operators can be

easily derived from requiring positivity of forward scattering of linearly polarised photons,
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with polarisations inclined by some relative angle tuned to give an optimal constraint that

is a function of the Wilson-coefficients (24). Here, I will present an alternative derivation

directly from inspection of the sum rule. This is of particular educational value, as it

provides a simple illustrates of several intricacies that can arise in the organisation of

the symmetry structure of the sum rule. A discussion of these issues will also be both

useful and necessary for further applications to theories of spinning particles. I will then

present another derivation of the same results using the convex cone picture. While more

complicated, this will again provide a simple archetypal example of a non-polyhedral cone.

The arguments presented here applies generally for interactions of four identical particles

of any non-zero helicity. While dimension 8 level is assumed here (as everywhere else),

a near identical argument applies to any mass dimension 4n as well, which would be

applicable for analogous results for gravitons assuming that the results of Section 3.2.1

continue to be valid.

Most of the argument is already complete given the projectors above. The four-

particle amplitude can be decomposed into terms given by the projectors. The he-

licity violating partial amplitude is, expressed in terms of amplitudes between helicity

eigenstates, A�P2h = 1
2
(P ijkl

�P2h
)∗Aijkl = 1

2
(A+−+− − A−+−+). In this form, it is clear that

CPT implies that this vanishes, as CPT equates the two forward helicity amplitudes

(as commented above, possible phases that may arise away from the forward limit are

conventional and can be eliminated). The helicity-conserving amplitude is therefore time-

reversal and parity-conserving. However, the crossing relations (3.106) and (3.107) would

appear to generate this partial amplitude from crossing AAB and ABA. This is avoided

if the singlet partial amplitudes obey

ABA(s) = −AAB(s) = (AAB(s))
∗, (3.108)
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where the second equality uses (3.3) and assumes that s is real (that the amplitude is

evaluated away from the threshold singularities). In other words, AAB, and hence MAB,

is purely imaginary. This constraint also saves the parity-violating singlet amplitudes

from the Wigner-Eckart theorem. Without P ijkl

�P2h
, the tensors P ilkj

AB and P ilkj
BA cannot be

individually decomposed into the s-channel projectors. However,

P ilkj
AB − P ilkj

BA = P ijkl
AB − P ijkl

BA , (3.109)

as a result of the identity (3.179). The relation (3.108) thus ensures that it is only

this crossing-consistent combination of parity-violating projectors that appear in the

amplitude.

The s-channel term in the sum rule is

M ijkl
s = |m2|2P ijkl

2 + |mA|2P ijkl
AA + |mB|2P ijkl

BB +mA ·mBP
ijkl
AB +mB ·mAP

ijkl
BA .

(3.110)

Adding the u-channel crossed term gives

M ijkl =

(
|m2|2 +

1

2

(
|mA|2 + |mC |2

))
P ijkl
2 +

1

2

(
2|m2|2 + 3|mA|2 − |mB|2

)
P ijkl
AA

+
1

2

(
2|m2|2 − |mA|2 + 3|mB|2

)
P ijkl
BB + 2mA ·mB

(
P ijkl
AB − P ijkl

BA

)
,

(3.111)

where the crossing relation (3.108) implies that mA · mB is imaginary. This is to be

expected because this transition amplitude is P -violating. The term parameterised by

the vector m2 is redundant, so can be ignored.

Clearly M2 ≥ 0 and implies that the coefficient of the helicity-conserving amplitudes

is positive. A second inequality can then be determined by finding a relation between
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partial amplitudes in (3.111). The optimal constraint follows from |mA·mB| ≤ |mA||mB|

which, on the LHS, implies that

|MAB| ≤
1

2

√
16M2

2 − |MAA −MBB|2, (3.112)

where MR denotes twice differentiated forward partial amplitude corresponding to rep-

resentation R. This represents an upper bound on the size of the P -violating transitions

determined from the P -conserving ones.

The partial amplitudes can be converted into amplitudes between helicity eigenstates.

These are

M2 =M(+,− → +,−) (3.113)

MAA,BB =M(+,+ → +,+)± 1

2
((M(+,+ → −,−) +M(−,− → +,+))) (3.114)

MAB = −1

2
(M(+,+ → −,−)−M(−,− → +,+)) , (3.115)

where the (+) corresponds to AA and (−) to BB. CPT has been invoked for simplifi-

cation. After some rearrangement, the constraints can be re-expressed as

M+−+− >
1

4

√
|M++−− −M−−++|2 + |M++−− +M−−++|2. (3.116)

As mentioned in Section 3.5.1, with the phase conventions chosen here, A(+,+ →

−,−) = A(−,− → +,+) if P is conserved. The MAB partial amplitudes (in the con-

text of W -bosons) were not included in (28), where P -symmetry was assumed. In this

case, the weaker bound on the P -conserving helicity violating interactions alone can

be derived directly from positivity of the combinations of diagonal partial amplitudes

1
2
(MAA +MBB)± 1

4
(MAA −MBB).
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+− ++ −− −+

+− |m+−|2+|m++|2 0 0 0
++ 0 |m++|2+|m+−|2 2m−− ·m++ 0
−− 0 2m++ ·m−− |m−−|2+|m+−|2 0
−+ 0 0 0 |m+−|2+|m−−|2

Table 3.2: Sum rule for photons.

It is possible to perform the above analysis more directly with helicity eigenstates

instead so that both helicity-violating interactions are treated symmetrically, as would

be expected from the structure of the bound. In this case, the sum rule would have

the same structure as the complex scalar example in Section 3.3.1, but with the single

charge-violating amplitudes prohibited. This is given in Table 3.2. The helicity-violating

amplitudes are immediately manifest and the bound in the form of (3.116) follows directly

from bounding the off-diagonal entry, the real and imaginary parts of which correspond

to P -conserving and violating interactions respectively.

Specialising now to photons, the general effective action up to dim-8 is

LEFT8 =
c

16Λ4

((
F 2
)2

+ (FF̃ )2
)
+

d

32Λ4

((
F 2
)2 − (FF̃ )2

)
+

e

16Λ4
F 2
(
FF̃
)
. (3.117)

The operator basis has been selected to match onto specific tree-level 4-leg amplitudes

between helicity eigenstates. The first operator is helicity preserving, the others are

helicity-violating, with the coefficient e being P and CP violating and providing the

imaginary part of the coupling in the corresponding amplitudes. Evaluating the LHS

entries at tree-level, the constraints reduce to

c >
1

2

√
d2 + e2. (3.118)

However, loops of scalar particles mediated by dim-6 operators of the form F 2ϕ2
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also contribute to the dim-8 order four photon amplitudes. If the scalar is complex, the

possible operators are

LEFT6 =
a

Λ2
F 2ϕ2 +

b

Λ2
FF̃ϕ2 + conj

+
ã

Λ2
F 2ϕϕ† +

b̃

Λ2
FF̃ϕϕ†. (3.119)

where a, b ∈ C and ã, b̃ ∈ R. In a supersymmetric theory, discussed more below, ã

and b̃ are prohibited if the scalars are the same, while b = ia. On-shell, this is the

statement that the only permitted contact interactions induce amplitudes A(γ+, γ+, ϕ, ϕ)

and A(γ−, γ−, ϕ, ϕ). In this case, helicity charge of the photons may be extended into

a conserved charge also carried by the scalars, which is a statement of electric-magnetic

duality (53). Alternatively, b = −ia is also compatible if the identification of particle and

antiparticle is reversed. Including these contributions to the amplitudes, the constraints

become:

2c+
8

(4π)2

(
ã2 + b̃2 + 2|a− ib|2 + 2|a+ ib|2

)(
2 + log

(
µ2

Λ2

))
>

∣∣∣∣d+ ie+
8

(4π)2

(
(ã− ib̃)2 + 4(a− ib)(a∗ − ib∗)

)(
2 + log

(
µ2

Λ2

))∣∣∣∣ . (3.120)

Just as in the scalar example discussed in Section 3.3.1, the dim-6 operators strengthen

the lower bound on c (absorbing into it the rational part of the loop correction), at

least assuming that there is little change in the size of the expression on the RHS of the

inequality.

It is possibly enlightening to consider the effect of each term in isolation, with all

others set to zero. In order to maintain consistency with positivity, c will remain active

so that the dim-6 corrections can be consistently negative, while all d and e will be chosen

to cancel the rational terms generated from the dim-6 operators. Activating only ã and
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b̃, then both terms on the left and right side of the inequality are equal in magnitude. If

both terms were positive, then these would simply account for each other on each side

of the sum rule and saturate it to give no information. However, as the logarithm is

negative, these terms actually reinforce each other and strengthen the lower bound on c

beyond 0, the degree to which depending on the size of the hierarchy between IR and UV

scales. Next, if only a and b are active, then the terms on the LHS of the inequality are

always greater in magnitude than those on the RHS although, as before, both strengthen

the tree-level bound. Interestingly, for a give coupling a, the weakest contribution to

the constraint is made for the symmetry-enhanced choice b = ±ia. This is because the

on-shell amplitudes into which the cut scalar loop factorise would be prohibited for the

helicity-violating configurations, as well as for one of the two possible contributions to

the helicity-conserving case. This is typical of the suppression of RG evolution caused

by the enhancement of symmetries.

There are also other potential contributions to the dim-8 order four photon ampli-

tudes, such as from a fermion box of three-particle dim-5 operators, that would appear

on the LHS. A more thorough analysis of the way that lower-dim operators affect the

constraints will be left for another work.

The bound (3.112) is therefore the statement that the helicity-violating amplitudes

must be smaller than the helicity-conserving ones. For photons, this is a leading-order

statement of the hierarchy in coupling strengths of symmetry preserving and symmetry

violating interactions. Helicity conservation corresponds to electric-magnetic duality and

is also selected by supersymmetry, as will be explored further below. This point of view

also “explains” the observation of (24) of the consequential suppression of the P and T

violation in the vector boson EFT. These discrete symmetries can only be violated by

operators that mediate helicity-violating interactions, or, more generally, off-diagonal,

inelastic S-matrix entries. Because the sum rule curbs the size of these interactions,
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it consequently also places fundamental restrictions on the size of T -violation. Note

that, while it is possible to perform a field redefinition (or “duality rotation”) in the

effective action (3.117) to remove the T -violating term (and transfer it into the coupling

of the photon to sources), the combination d2+e2 remains invariant and the constraint is

unchanged. This is the reason that the two couplings must necessarily appear added in

quadrature. On-shell, this is reflected in the overall phase ambiguity of the amplitudes.

This similarly applies to the complex a coefficient in the case that b = ±ia and ã = b̃ = 0.

The bound (3.112) can be alternatively derived from the convex cone picture. Be-

ginning with the sum rule (3.111) (with m2 = 0), the first step is to find the PERs.

These may be determined as the independent contributions with the factorised form

m · m in the s-channel before the crossed u-channel is added. Choose as independent

coordinates the partial amplitudes x = (MAA,MBB,ℑ (MAB)), where MAB is purely

imaginary, so represents only one real dimension. Each PER corresponds to the con-

tribution from a single UV state, so only a single component of the complex vectors

in the sum rule need be chosen. These will be labelled as β and γ. Because of the

crossed-amplitude, there is only a single ray structure that combines all terms generated

by both parameters. As the ray is only defined modulo positive real factors, the coordi-

nates may be rescaled by a factor of 2/|β|2 to give e(r) = (3 − r2,−1 + 3r2, 4r), where

r = −iγ/β ∈ R. It can be verified that this is extremal for all r. This family of ERs

is effectively a 2d surface in a 3d space parameterised by 2 real parameters (including a

positive real parameter rescaling the ray). The cone itself has parabolic sections. The

face of the cone is defined by the normal n to the surface, which (up to an arbitrary

scale) has components ni = ϵijke
j(r)∂e

k

∂r
= (−1− 3r2,−3− r2, 4r). The EFT must in-

duce amplitudes that lie inside the cone, so this implies that x · n(r) < 0 for all r ∈ R.

Imposing this latter condition implies that 3MAA +MBB > 0, MAA + 3MBB > 0 and

|MAB| < 1
2

√
(3MAA +MBB) (MAA + 3MBB), which is just a restatement of (3.112) given
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the relation M2 =
1
2
(MAA +MBB).

3.5.3 Non-Abelian vector bosons

I here make some comments about extending the above analysis to scattering of

(massless) W -bosons in which CP -violation is permitted.

The W -bosons have helicity and adjoint SU(2) indices. The projectors that span the

amplitude are given by products of adjoint isospin and helicity projectors, of which there

are 15. Denoting by αI,m the vector of UV couplings in the RHS of the sum rule for

isospin irrep I and Jz irrep m, then the sum rule can be expressed as

Mai,bj,ck,dl =
∑
I,m,n

αI,m ·αI,n

(
P abcd
I P ijkl

mn + P adcb
I P ilkj

mn

)
. (3.121)

The crossed projectors are then decomposed using the relations stated in the previous

sections to derive the partial amplitudes as a function of the complex vectors αI,m.

Similarly to photons, CPT implies that the helicity-conserving amplitudes are parity

symmetric, so the relations (3.108) hold for each isospin partial amplitude such that

αI,A · αI,B = −αI,B · αI,A. The αI,m · αI,n coefficients determine the space of partial

(forward) amplitudes.

In the simple examples above, the vectors parameterising the sum rule were loosely

in correspondance with the elastic partial amplitudes. An expression of the form |α|2

could be simply translated into a partial amplitude in order to determine the bounds.

However, in the W theory (and any other with sufficiently many degrees of freedom),

these vectors exceed the number of independent partial amplitudes. If only diagonal

S-matrix transitions were permitted, this would correspond to a non-trivial polyhedral

cone with more facets than dimension. Each point in the cone may admit multiple

decompositions into positive sums of extremal rays and different subsets of rays span
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different regions of the cone, complicating the simple inspection arguments used to derive

bounds in the examples above. Geometrically, the problem becomes that of performing

vertex enumeration for non-polyhedral cones, or more simply finding the curved facets

bounding the cone. Some ideas for addressing this were described in (28), but for now

this will be left for future work. The solution to this problem represents the next step

toward bootstrapping constraints on realistic EFTs such as Standard Model EFT.

3.5.4 Two chiral fermions

A simple expansion of the previous example in Section 3.5.2 is given by introducing

a second distinct particle with the same helicity. I will commit to assuming that both

particles are chiral fermions, ψ and λ, because this will be of interest later. However,

the conclusions are more general. It will be additionally assumed for simplicity that each

is charged under its own Z2 symmetry so that they can only be destroyed or created in

pairs.

The elastic amplitudes are affected by the same constraints derived above in Section

3.5.2. The sum rule for these are reproduced here in Table 3.3. Entries below the main

diagonal have been omitted as they are simply related by Hermiticity of the matrix.

Some of the vectors in the last block are Y -rotated versions of counterparts in the third

block and satisfy |mψ+λ+ | = |mλ+ψ+ |, |mψ+λ−| = |mλ−ψ+|.
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λ+λ− λ+λ+ λ−λ− λ−λ+

λ+λ− |mλ+λ− |2 + |mλ+λ+ |2 0 0 0

λ+λ+ . |mλ+λ−|2 + |mλ+λ+|2 2mλ−λ− ·mλ+λ+ 0

λ−λ− . . |mλ−λ−|2 + |mλ+λ−|2 0

λ−λ+ . . . |mλ−λ− |2 + |mλ+λ− |2

ψ+ψ− ψ+ψ+ ψ−ψ− ψ−ψ+

ψ+ψ− |mψ+ψ− |2+ |mψ+ψ+|2 0 0 0

ψ+ψ+ . |mψ+ψ− |2+ |mψ+ψ+|2 2mψ−ψ− ·mψ+ψ+
0

ψ−ψ− . . |mψ−ψ−|2+ |mψ+ψ− |2 0

ψ−ψ+ . . . |mψ−ψ−|2+|mψ−ψ−|2

λ+ψ− λ+ψ+ λ−ψ− λ−ψ+

λ+ψ− |mλ+ψ− |2 + |mλ+ψ+|2 0 0 0

λ+ψ+ . |mλ+ψ− |2 + |mλ+ψ+|2 2mλ−ψ− ·mλ+ψ+
0

λ−ψ− . . |mλ−ψ−|2+ |mλ−ψ+ |2 0

λ−ψ+ . . . |mλ−ψ−|2+ |mλ−ψ+|2

ψ+ψ− ψ+ψ+ ψ−ψ− ψ−ψ+

λ+λ− mψ+ψ− · mλ+λ− +
mψ+λ+ ·mλ+ψ+

0 0 0

λ+λ+ 0 mψ+ψ+ · mλ+λ+ +
mψ+λ− ·mλ+ψ−

mψ−ψ− · mλ+λ+ +
mλ−ψ− ·mψ+λ+

0

λ−λ− 0 mψ+ψ+ · mλ−λ− +
mψ+λ+ ·mλ−ψ−

mψ−ψ− · mλ−λ− +
mλ+ψ− ·mψ+λ−

0

λ−λ+ 0 0 0 mψ+ψ− · mλ+λ− +
mλ+ψ+ ·mψ+λ+

Table 3.3: Sum rule for two fermion theory.
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Both CPT and Y can be invoked to reduce the number of independent vector magni-

tudes |m| to six. After applying the Schwarz and triangle inequalities to the off-diagonal

amplitudes, these all have upper bounds of the form of either |mλ+λ−||mψ+ψ−|+|mλ+ψ+|2

or |mψ+ψ+||mλ+λ+| + |mλ+ψ− |2. Analogous bounds of the form of (3.11) are then given

by

M1 +M2 ≤
√
Mλ+λ−λ+λ−Mψ+ψ−ψ+ψ− +Mλ+ψ−λ+ψ−

, (3.122)

where

M1 ∈ {|Mλ+λ+ψ+ψ+|, |Mλ−λ−ψ−ψ−|, |Mλ+λ+ψ−ψ−|, |Mλ−λ−ψ+ψ+|} (3.123)

M2 ∈ {|Mλ+λ−ψ+ψ−|, |Mλ−λ+ψ−ψ+|} (3.124)

are, respectively, any of the mz = 0 and mz = ±1 amplitudes.

For reference, the general effective action for this theory has terms

LEFT6 =
f

Λ2
ψψψ†ψ† +

g

Λ2
λλλ†λ† +

h

Λ2
ψλψ†λ†

+
k

Λ2
ψψλ†λ† +

k̃

Λ2
ψψλλ+ conj. (3.125)

and

LEFT8 =
a

2Λ4
ψψ∂2

(
ψ†ψ†)+ b

2Λ4
λλ∂2

(
λ†λ†

)
+

c

Λ4
ψλ∂2

(
ψ†λ†

)
+

d

Λ4
∂ψλ · ∂ψ†λ†

+
( ã

2Λ4
ψψ∂2 (ψψ) +

b̃

2Λ4
λλ∂2 (λλ) +

c̃

Λ4
ψλ∂2 (ψλ)

+
d̃

Λ4
ψψ∂2 (λλ) +

e

Λ4
ψψ∂2

(
λ†λ†

)
+ conj

)
. (3.126)

The couplings f, g, h, a, b, c, d ∈ R and k, k̃, ã, b̃, c̃, d̃, e ∈ C. The operators with Wilson
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coefficients denoted with a tilde mediate helicity-violating interactions. Consistency with

supersymmetry will be elaborated on further below (see Section 3.6). The bounds on

amplitudes are readily converted into bounds on dim-8 Wilson coefficients at tree-level

after identifying them with the particular transitions between helicity eigenstates and

channels.

3.5.5 Bounds on simple theories of spinning particles

Similar analyses can be performed on systems with particles of different helicities.

Here, simple cases of mixed scalar, fermion and vector amplitudes will be discussed in

order to derive new constraints.

To begin with, the system will be restricted to consisting of a real scalar, a photon

and a chiral fermion. The full table has dimensions 25 × 25 when external helicity

eigenstates are chosen as a basis, but most of the entries vanish either altogether by

conservation of angular momentum or, specifically at dimension 8, by incompatibility of

Lorentz invariance and dimensional analysis (see discussion below in Section 3.6.2). For

this reason, only the (few) important entries containing new information will be quoted

here. The full sum rule in SO(2) form is given in the Appendix.

Restricting entirely to the bosons to begin with, the entries relevant for photons are

given in Table 3.2 in the section above, while the others of relevance are:

Mϕϕϕϕ = 2|mϕϕ|2 (3.127)

Mγ+ϕγ+ϕ = 2|mγ+ϕ|2 (3.128)

Mγ−ϕγ−ϕ = 2|mγ−ϕ|2 (3.129)

Mϕϕγ+γ+ = mγ+γ+ ·mϕϕ +mγ+ϕ ·mϕγ− (3.130)

Mϕϕγ−γ− = mγ−γ− ·mϕϕ +mϕγ− ·mγ+ϕ (3.131)
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(and others related by crossing). Simplification with CPT and Y (which also equate

|mγ+ϕ| = |mϕγ−| has been invoked. The bounds are identified as:

|Mϕϕγ+γ+ |, |Mϕϕγ−γ−| ≤ 1

2
Mϕγ+ϕγ+ +

√
1

2
MϕϕϕϕMγ+γ−γ+γ− . (3.132)

Unlike the helicity-violating four-vector operators, these bounds are not accessible by

considering elastic forward scattering of a scalar with a linearly polarised vector. Super-

positions of vectors and scalars are instead necessary. The bounds are also stronger by

various factors of 2 compared to what would be anticipated from direct application of

(3.11). This is because the identity of the scalars is crossing symmetric, which simplifies

the sum rule. The analogous bounds with complex scalars, used below in Section 3.6.3,

are weaker.

The other constraint arises for a mixed spin amplitude. The relevant entries are

Mϕψ+ϕψ+

= |mϕψ+ |2 + |mϕψ− |2 (3.133)

Mγ+ψ+γ+ψ+

= |mγ+ψ+|2 + |mγ+ψ−|2 (3.134)

Mϕψ−γ+ψ+

= 2mγ+ψ+ ·mϕψ−
(3.135)

Mϕψ+γ−ψ−
= 2mγ−ψ− ·mϕψ+

, (3.136)

where |mϕψ+ | = |mϕψ− |. The resulting inelastic constraint is

|Mϕψ−γ+ψ+|, |Mϕψ+γ−ψ−| ≤
√
2Mϕψ+ϕψ+Mψ+γ+ψ+γ+ . (3.137)

Along with the postivity constraints given in (16), this completes the causality bounds

for the simple minimal, toy theories of spinning particles. Similar arguments can be used

to adapt these to more complicated theories with more states. This will be partly done
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in the supersymetric case below.

3.6 Supersymmetry

Having addressed the management of spin in the sum rule, it is natural to now ex-

tend this to supermultiplets. Supersymmetry unifies states of different spin and likewise

their interactions. Supersymmetry is a consistent extension of the spacetime symme-

try algebra, so should not affect conclusions drawn from the (rigid) causal structure of

background flat Minkowski space. It is therefore expected that causality constraints on

scattering of a particular set of component states should be shared by the other inter-

actions related by supersymmetry. Precisely these connections will be explored in this

section. For simplicity, attention will be restricted to EFTs with minimal particle content.

3.6.1 Superamplitudes

Superspaces at the level of the effective action are generally arduous and cumbersome

to work with. As is very well appreciated, on-shell scattering amplitudes cut-through the

off-shell baggage of the effective action, not only making computations substantially

easier, but also clarifying the presence and action of symmetries that are either not

manifest or are convoluted in the Lagrangian field theory. The “on-shell superspace”, to

be employed here, makes the super-Ward identities (SWIs) manifest as relations between

scattering amplitudes - see e.g. (54) for review. Amplitudes between individual states in a

multiplet are unified into superamplitudes. This makes transparent the relation between

the unified effective interactions and their component operators without recourse to an

off-shell superspace. The especially simple case of 2 → 2 scattering amplitudes, under

discussion here, are highly constrained by fundamental principles. See (55) for numerous

examples in supergravity.
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The chiral superspace of (56), later used by (57), will be employed here, where the

highest helicity state is selected as the Clifford vacuum for the representation. This deter-

mines the little group representation of the entire “superfield”. The massless multiplets

for N = 1 theories are

Φ+ = ψ+ + ηϕ

V + = v+ + ηλ+

Φ− = ϕ+ ηψ−

V − = λ− + ηv−.

For N = 2, they are

K = χ+ + ηAϕA − 1

2
ϵABη

AηBχ−

V + = v+ + ηAλ+A − 1

2
ϵABη

AηBϕ

K = χ+ + ηAϕA − 1

2
ϵABη

AηBχ−

V − = ϕ+ ηAλ−A − 1

2
ϵABη

AηBv−.

See (57) for general explanation of notation. The multiplet K is a half-hypermultiplet

and is usually paired with a conjugate multiplet of antiparticles, K. However, as both

multiplets have identical helicity structure, it will not be important here to continue

to distinguish between the two. The N = 4 vector is defined in (54) and will not be

reproduced here.

All external states defining the superamplitudes will be taken to be outgoing. This

is the convention adopted in (54). However, it will be necessary to cross two of the

states to be incoming. Crossing has been discussed in the present context in (16) and

will be performed here on the component amplitudes. As mentioned in at the end of

Section 3.2.1, the ordering of the superfields in the correlator from which the amplitude

is derived is ⟨0|4312|0⟩. This gives the order of the states and the Grassmann variables

in the superamplitude, which determines the order in which the Grassmann derivatives

should be applied to extract the components. Note that the Feynman rules for external

antifermion legs include a factor of −1 that is frequently dropped (58), but is required
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here. This implies that a single fermion leg must be accompanied by a factor of −1

when crossed, in addition to the usual rules of reversing the momentum and replacing

the external polarisation.

3.6.2 Effective operators

It is of general interest to classify the effective contact interactions combined together

under various degrees of supersymmetry. Here these will be systematically classified

from dimension 5 to dimension 8 for operators inducing contact interactions between

three or four particles. Again, the discussion will be restricted to helicities h ≤ 1 (so

no (super)gravity). Different species of multiplets with the same superspin will not be

distinguished in order to emphasise the purely kinematical structure of the allowed in-

teractions, but no assumptions will be made about permutation symmetries and internal

quantum numbers (unrelated to the supersymmetry algebra).

Most of the interactions considered here will be four-particle contact interactions.

These are severely constrained by consistency with dimensional analysis, little group

representation, Lorentz invariance, locality and supersymmetry. The last condition is

the requirement that the superamplitude depend on the Grassmann variables exactly

through δ(2)(Q†), while the former conditions demand that the amplitudes be polynomials

in spinor bilinears with the required mass dimension and total helicity charge for each

leg.

While supersymmetry unifies interactions, it can also prohibit them. A common

reason for this is that the spectrum of effective interactions for higher spin particles is

sparser than for lower spin particles, so not all lower spin interactions can be uniquely

paired with a higher spin interaction.
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Dimension 5

An anomalous magnetic dipole moment (MDM)-like operator for matter fermions is

prohibited by supersymmetry (this is already prohibited by exchange antisymmetry if

the fermions are identical). However, the axion/dilaton coupling is promoted to

A(Φ+, V +, V +) ∝ 1

Λ
δ̃(1)(Q) [23] , (3.138)

which also contains a mixed MDM-like interaction between the matter fermion and the

gaugino. This interaction can be further promoted to N = 2 in the superamplitude

A(V +, V +, V +) ∝ 1

Λ
δ̃(2)(Q), (3.139)

which contains no further interactions. There are likewise conjugate superamplitudes

between the corresponding anti-multiplets. Notably, the axion/dilaton cannot belong to

a hypermultiplet.

The Weinberg operator (uniquely) supersymmetrises into itself:

A(Φ+,Φ+,Φ+,Φ+) ∝ 1

Λ
δ(2)(Q†)

[12]

⟨34⟩
. (3.140)

The conjugate amplitude A(Φ−Φ−Φ−Φ−) is similar. Despite appearances, all spinor

prefactors are equivalent. The operator is altogether incompatible with N ≥ 2.

Dimension 6

Cubic vector interactions are altogether prohibited by supersymmetry, so there are

no 3-particle operators to consider.
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Permissible N = 1 superamplitudes are

A(Φ+,Φ+,Φ−,Φ−) ∝ 1

Λ2
δ(2)(Q†) [12] (3.141)

A(V +, V +,Φ+,Φ+) ∝ 1

Λ2
δ(2)(Q†)

[12]2

⟨34⟩
(3.142)

and analogous conjugates. The first superamplitude combines dimension-6 four fermion

operators with scalar and mixed fermion-scalar operators. The superamplitude must be

helicity conserving, so helicity-violating matter interactions are forbidden (such as those

induced by the operators of the form ψψ∂2ψψ). For the scalar interactions, “helicity

preserving” becomes charge preserving (each ϕ must be paired with a ϕ† in the operator).

The second superamplitude does allow for helicity violation, provided that it involves a

gaugino and a matter fermion. It relates this to the bosonic operators of the form F 2ϕ2,

where the scalar must be charge-violating, as well as the MDM-like operator in (3.138),

dressed with an additional scalar.

Each of these superamplitudes may be respectively further enhanced to N = 2,

A(K,K,K,K) ∝ 1

Λ2
δ(4)(Q†)

[12]

⟨34⟩
(3.143)

A(V +, V +, V +, V +) ∝ 1

Λ2
δ(4)(Q†)

[12]2

⟨34⟩2
(3.144)

(and conjugates), neither of which contains any new types of component interactions.

The chiral multiplets of (3.142) must descend from the vector multiplets in (3.144), while

the N = 1 matter interactions can only be promoted to N = 2 matter interactions.

Interestingly, the N = 2 vectors still cannot couple to the hypermultiplets at this order.
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Dimension 7

The N = 1 possibilities are

A(Φ+,Φ+,Φ+,Φ+) ∝ 1

Λ3
δ(2)(Q†){[12] [34] , [13] [24]} (3.145)

A(V +, V +,Φ−,Φ−) ∝ 1

Λ3
δ(2)(Q†) [12]2 (3.146)

The first superamplitude is the first example that admits multiple possible independent

terms, a particular basis for which is given inside the brackets. These correspond to

helicity-violating operators of the schematic form ψψ∂2ϕϕ, where each term corresponds

to a particular distribution of the derivatives. Like the Weinberg operator, these su-

persymmetrise into themselves. The second superamplitude describes operators of the

form F 2ψ2 and its superpartners: the gaugino-scalar coupling, similar to that in (3.145),

but restricted to the term proportional to the Mandelstam invariant of both scalars’

momenta, and a coupling of the schematic form Fλψ†
��∂ϕ†.

The only N = 2 possibility is

A(V +, V +, K,K) ∝ 1

Λ3
δ(4)(Q†)

[12]2

⟨34⟩
. (3.147)

This superamplitude unifies both of the N = 1 superamplitudes listed above (although

selecting-out only one of the terms (3.145) determined by which chiral multiplets are

embedded in the N = 2 vectors).
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Dimension 8

N = 4 compatible interactions become admissible at dimension 8. The only possible

superamplitude consistent with dimensional analysis is

A(V, V, V, V ) ∝ 1

Λ4
δ(8)(Q†)

[12]2

⟨34⟩2
. (3.148)

This is the supersymmetrisation of the helicity-preserving F 4 operator and is (kinemati-

cally) unique.

For N < 4, more possibilities arise than for lower dimension, as dimensional analysis

permits more derivatives and therefore more ways that they can be distributed, as well as

new Lorentz-invariant combinations of fermion chirality. However, supersymmetry still

places stringent constraints on the possible component interactions.

For N = 1, the possible superamplitudes are

A(Φ+,Φ+,Φ−,Φ−) =
1

Λ4
δ(2)(Q†) [12] {cΦ4ss, cΦ4tt} (3.149)

A(V +, V −,Φ+,Φ−) =
cV 2Φ2

Λ4
δ(2)(Q†) [13] [14] ⟨24⟩ (3.150)

A(V +, V +,Φ+,Φ+) =
1

Λ4
δ(2)(Q†) [12] {dV 2Φ2s [12] [34] , dV 2Φ2t [31] [24]} (3.151)

A(V +, V +, V −, V −) =
cV 4

Λ4
δ(2)(Q†) [12]2 ⟨34⟩ . (3.152)

The numerical Wilson coefficients are retained in these expressions to match them with

the operators to be given below.
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Extending to N = 2, the permitted superamplitudes are

A(K,K,K,K) ∝ 1

Λ4
δ(4)(Q†){[12] [34] , [13] [24]} (3.153)

A(V +, V −, K,K, ) ∝ 1

Λ4
δ(4)(Q†) [13] [14] (3.154)

A(V +, V +, V +, V +) ∝ 1

Λ4
δ(4)(Q†)

[12]

⟨34⟩
{[12] [34] , [13] [24]} (3.155)

A(V +, V +, V −, V −) ∝ 1

Λ4
δ(4)(Q†) [12]2 . (3.156)

These mostly just describe promotions of the respective N = 1 superamplitudes into

N = 2. The superamplitudes (3.154) and (3.156) also decompose intoN = 1 components

that include the cΦ4s term in (3.149).

Note that the N = 1, 2 helicity-violating interactions (which have been singled-out in

(3.151) by having coupling labelled as d rather than c), which are the only examples of

inelastic superamplitudes listed above, are also the only type that do not appear when

that N = 4 superamplitude is decomposed into lower N components and are therefore

not N = 4 compatible.

For minimal field theories, it is interesting to consider the terms in an effective action

that would generate the superamplitudes listed above and identify the Wilson coefficients

united by supersymmetry. For a N = 1 chiral multiplet, the dimension 8 operators are

LEFT8 ∝
cΦ4

s

Λ4

(
1

4
ϕϕ(∂2)2(ϕ∗ϕ∗) +

1

2
ψψ∂2(ψ†ψ†) + 2i∂µϕ

†∂νϕ∂νψσ
µψ†
)

(3.157)

(identical particle exchange symmetry rules-out the other possible operator displayed

above in (3.149)). For the vector multiplet,

LEFT8 ∝
cV 4

Λ4

(
1

16

(
(F 2)2 + (FF̃ )2

)
+

1

2
λλ∂2(λ†λ†) + 2iλFLσ

µFR∂µλ
†
)
. (3.158)
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Here, FL = FµνS
µν
L and FR = FµνS

µν
R . The mixed interactions are:

LEFT8 ∝
cV 2Φ2

Λ4

(
2tr (FLσ

µFRσ
ν) ∂µϕ

†∂νϕ− ∂µψλψ
†∂µλ†

− 2iλ†σµ∂νλ∂µϕ
†∂νϕ+ 2iψFLσ

µFR∂µψ
†

−
√
2i∂µψλF

µν∂νϕ
† + conj.

)
(3.159)

+
dV 2Φ2s

Λ4

(
1

8

(
F 2 + iF F̃

)
∂2ϕ2 +

1

4
ψψ∂2 (λλ) + 2

√
2i∂µϕλFL∂

µψ

)
+ conj.

(3.160)

The terms in the effective action above, or equivalently, the amplitudes that they

correspond to, can be compared to those listed in Section 3.5.4 for the two fermion system.

The notable differences are that supersymmetry forbids the helicity-violating interactions

involving only a single species ψ or λ (i.e. ψ2∂2ψ2, λ2∂2λ2 and their conjugates). For

interactions between two different species of fermion, helicity-violating interactions are

permitted. However, only the two interactions listed in (3.159) and (3.160) are allowed.

The others listed in (3.126) are forbidden by supersymmetry. Note that ∂ψλ · ∂ψ†λ† +

1
2
ψλ∂2

(
ψ†λ†

)
= −∂µψλψ†∂µλ†, so supersymmetry only permits this single combination

of mixed helicity conserving interaction.

Before advancing on to the superymmetrised postivity constraints, I first digress to

make a comment on the application to supersymmetry breaking given in (59). The gen-

eral low-energy EFT of a goldstino and R-axion was constructed in (59) to describe the

breaking of N = 1 supersymmetry and its R-symmetry. This action included an interac-

tion of the form given by the mixed interaction in (3.157) (but with a real scalar), as well

as dimension 8 helicity preserving and violating pure goldstino operators. By demanding

positivity of the mixed interaction, an upper bound on the vev of the superpotential was

derived from the product of the R-axion and goldstino decay constants (all parameters

determining the low energy constants in the effective action). This same bound could be
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equivalently obtained by instead applying the conclusions of Section 3.5.2 directly to the

goldstino interactions.

3.6.3 Unity of the positivity theorems and new bounds

To begin with, the positivity constraints on the scalar (2) and the fermion (16) in

(3.157) are unified when the fields are combined in a supermultiplet. Note that these

interactions are consistent with both a Goldstone shift-symmetry for the scalar and a

goldstino non-linear supersymmetry for the fermion. These interactions are expected for

a Goldstone multiplet in a theory with extended SUSY spontaneously broken to N = 1.

Likewise, the interactions in (3.158) must each have positive coefficients (16), which is

consistent with their unification under supersymmetry.

The mixed interactions are similar to those discussed in the previous Section 3.5.5.

The first four terms of (3.159) induce elastic scattering of different species off each other,

so the positivity of the coefficient cV 2Φ2 > 0 is again expected. Interestingly however, the

inelastic partner operators of the form ∂µψλF
µν∂νϕ

† seem to inherit this condition. It

is unclear how these operators would be constrained in the absence of supersymmetry.

Their on-shell contact amplitudes that vanish in the forward limit in all channels, so a

departure away from the forward scattering would seem necessary to access them. This

operator will remain a puzzle here.

Promoting to N = 2, the V 4 and V 2Φ2 (super)-operators unify further and the

positivity of their Wilson coefficients is combined into that of the (N = 2) V 4 operator.

Similarly, positivity of the N = 1 chiral multiplet interactions (3.157) becomes positivity

of the analogous N = 2 hypermultiplet interactions. Promoting further to N = 4, all

of these are unified into the single positivity constraint on the dim-8 vector multiplet

interaction.
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Finally, the new inelastic constraints derived in the previous section also unify. With

supersymmetry, the fermion constraints from Section 3.5.4 simplify, as the amplitudes

A
(
ψ±ψ± → ψ∓ψ∓) = A

(
λ±λ± → λ∓λ∓

)
= A

(
λ±λ∓ → ψ±ψ∓) = A

(
λ±λ± → ψ±ψ±) = 0, (3.161)

while specifically for identical particles, M (ψ±λ± → ψ∓λ∓) = 0. This leaves only one

type of inelastic amplitude and its parity conjugate and the constraints can be stated as

1

2
|Mλ−λ−ψ+ψ+ ±Mλ+λ+ψ−ψ−| < Mψ+λ−ψ+λ− +

√
Mψ+ψ−ψ+ψ−Mλ+λ−λ+λ− . (3.162)

The combinations appearing on the LHS correspond to the P conserving and violating

interactions in the inelastic transitions (corresponding to, at tree-level, the real and

imaginary parts of the coupling dV 2Φ2s above). Notably, the amplitudes forbidden by

the SWIs would all appear as additional contributions to the left hand side of (3.162),

strengthening the lower bound on the elastic amplitudes.

The analysis of Section 3.5.5 can be easily extended to a complex scalar and two

fermion species. With the scalar complex, the bound (3.132) generalises to

1

2
|Mϕϕγ+γ+ ±Mϕϕγ−γ−| < Mϕγ+ϕγ+ +

√
MϕϕϕϕMγ+γ−γ+γ− (3.163)

(after simplifying with CPT and Y ), which has the expected form resembling (3.162).

The last partner relation, involving the mixed fermion-boson amplitudes, can also be

found to be

1

2
|Mϕψ−γ+λ+ ±Mϕψ+γ−λ− | <

√
Mϕλ+ϕλ+Mψ+γ−ψ+γ− +

√
Mϕψ+ϕψ+Mλ+γ−λ+γ− . (3.164)
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SWIs imply that Mϕλ+ϕλ+ = Mψ+γ−ψ+γ− , so this bound has identical structure to the

previous two, completing the full super-positivity constraint. Again, the inelastic com-

ponents of (3.159) do not appear in any of these bounds and seem only to be dragged

into participation by supersymmetry. For Wilson coefficients at tree-level, these bounds

are encapsulated by

|ℜ(dV 2Φ2s)|, |ℑ(dV 2Φ2s)| < cV 2Φ2 +
√
cΦ4scV 4 . (3.165)

In contrast to the case from Section 3.5.2, the space of consistent P -violating inelastic

couplings is a square rather than a disc.

As mentioned above, the inelastic amplitudes are also the only type not consistent

with N = 4 supersymmetry. This indicates that the lower bounds in these inequalities

are minimised by requiring increasingly more supersymmetry (where simple N = 1 is suf-

ficient to rule-out many possible inelastic amplitudes that may potentially appear, such

as the other fermionic helicity configurations in Section 3.5.4). This is the (expected) con-

sequence of symmetries imposing selection rules that prohibit inelastic processes, but also

illustrates how extreme symmetry breaking can be prohibited by the positivity bounds.

3.7 Conclusion

The general implication of unitarity for the causality sum rule (3.8) is to bound

the size of inelastic scattering amplitudes by the size of the elastic ones (3.11). This

places fundamental limits on the extent to which hypothetical symmetries, which manifest

themselves in the S-matrix as selection rules, can be broken by effective interactions.

These constraints appear naively invisible in the construction of a general effective action

of local contact interactions.
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Employing the convex cone picture of (29), the general set of positivity bounds for

fundamental SU(2) and SU(3) fermions were derived, including some that cannot be

obtained from considering scattering of factorised states. Separately, general constraints

on flavour violation were also derived for the cases in which the fermions are only non-

singlets under one symmetry group. Simple inelastic bounds for spinning particles were

also derived, in particular for two scalars and two vectors and the mixed case of two

fermions, a vector and a scalar, where each particle has the same-sign helicity in the all

outgoing convention. It was then shown that all of the standard bounds for particles of

different spin unify under supersymmetry.

In the examples discussed in 3.4.2, all states under consideration are related by sym-

metries. When the particles transform under multiple symmetry groups, the convex cone

picture is needed for a complete characterisation of the information in the sum rule.

However, if transitions between multiple distinct states are permitted by the symmetries,

then the cone is non-polyhedral and the standard results for polyhedral cones cannot be

so simply applied. This was analysed in (28) for parity-symmetric weak boson operators,

where a set of necessary constraints were derived using analytic and numerical meth-

ods. It is easy to apply (3.11) directly to obtain necessary conditions on the couplings.

However, finding the complete set of sufficient bounds remains the most immediate open

problem in applying the constraints from the sum rule to EFTs of multiple species, in

particular the SMEFT. Subsequent to the release of this work, (34) were able to re-

formulate the the sum rule (3.8) as a positive semi-definite statement in a dual space

to the space of external scattering states. Once appropriately crossing-symmetrised, a

tensor in external particle labels may be contracted with (3.8) to obtain an expression

of positive-definiteness. This dual space of positive-definite matrices was identified as

a “spectrahedron”, the geometry of which has been studied in (60), and, as a space of

positive-definite matrices, enabled methods from semi-definite programming to be applied

226



Causality, Unitarity and Symmetry in Effective Field Theory Chapter 3

(see (61) for introduction of recent applications of these ideas to solving the CFT boot-

strap equations). See also (62) for recent progress in applying the S-matrix bootstrap to

constraining Wilson coefficients in EFTs directly from the full crossing constraints. This

leverages positive semi-definiteness of the S-matrix to utilise semi-definite programming.

Generalisation to higher mass dimension, departure from the forward limit and mas-

sive particles are obvious future directions (17), (20), (22), (21). See e.g. (63), (31) for

recent discussions in string theory.

The entire discussion of this work has been concentrated at the level of dimension-8

order effective interactions. These have the minimum energy scaling to ensure that the

integral over the contour deformed to infinity converges to zero and does not introduce

an additional unknown UV ingredient into the sum rule with an unknown impact on the

structure. The results described here at dimension 8 readily extends to higher dimen-

sion 4n for n > 2. However, no statement about lower dimensional amplitudes has been

made, so it would seem that the remarks about symmetry violation would not extend to

them. However, lower dimensional interactions will typically contribute to dimension-8

level interactions through multiple insertions and still appear in the sum rule. The im-

pact of loops in higher order constraints was recently discussed in (20). In agreement

with the observations here, these strengthen the positivity bounds that would naively

apply at tree-level. It would be of interest to further investigate the implications of these

constraints for RG flow, both in the context for the SMEFT and more generally. As

mentioned in (20), this would require a treatment of IR divergences and inclusive ob-

servables. Furthermore, as recent works have shown, even operators appearing at higher

dimension 4n+ 2, for which the standard sum rule does not imply positivity, are highly

constrained away from the forward limit. It would be interesting to establish precise

points of distinction between the rigid set of constraints applicable at dimension 8 and

above and freedom for lower dimensional (including renormalisable) operators. Exami-
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nation of UV completions may provide insight into this. Some discussion of dimension 6

operators has recently been given in (64), (65), (15), (66), although conclusions drawn for

the IR interactions have been predicated on assumptions about the amplitudes having

extra-friendly high-energy scaling.

While most of the applications presented here have had an eye toward the SMEFT, no

analysis of the impacts of these constraints on tests of the SM has been attempted here.

See (30), (67), (26), (27), (68) for some recent discussion of this. The bounds discussed

here activate at dimension 8 order, which is expected to be typically sub-leading to the

(many) dimension 6 interactions that pervade the SMEFT. However, it may still be

possible to access the affected dimension 8 interactions through non-interference effects

and angular distributions (69), (70). While amplitudes vanishing in the forward limit

(possibly because of angular momentum conservation) appear naively unaffected, this is

not necessarily true in a crossed, inelastic channel described by the same amplitude, and

as result, such a process would not escape constraint.

This entire work has relied upon the S-matrix formulation of causality in order to

derive constraints on effective interactions. However, it would also be interesting to con-

struct background solutions (such as was done in (2)) in order to see precisely how such

a breakdown arises if the constraints are violated, especially for the fermionic and mixed

spin interactions. The validity and scope of the S-matrix formulation is also depen-

dent upon the analytic structure being established and the standard derivation of the

dispersion relations in Section 3.2.1 relied upon this. These have been established for

Wightman theories (at least for the analogous correlation functions) and theories loosely

satisfying the requirements of LSZ reduction. However, this does not include applica-

bility to perturbative gauge theories. Clarification over this issue would be informative.

Some possibly related foundational questions that have practical implications are the in-

terpretation and use of the sum rule in the presence of IR divergences, as well as possible
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extension away from the forward limit where some understanding of the singularity struc-

ture may become necessary. The assumption that all particles can be given a small mass

and that the results will apply to the exactly massless theory also needs to be validated

(in particular, the assumption that the forward and massless limits commute), although

no effort has been made in this direction here. This is least clear for possible applications

to gravitational systems, where other foundational assumptions about locality in the UV

completion are also uncertain.

It would also be interesting to find applications of these bounds to model building.

As mentioned above, the fact that dimension 8 operators usually contribute subleading

effects naively poses an obstruction to the constraints having widespread, leading-order

consequences. Continuing the analysis of (30) for constraining massive higher spin parti-

cles and their hypothetical coupling to the SM is another possible application with direct

consequence for the constraining the space of possible particle models of dark matter or

other hypothetically fields associated with other cosmological mysteries. See e.g. (71)

for discussion of coupling of massive gravitons to (regular) matter, or (18) for various

other theories related to modified gravity. Alternatively, it would be of interest if these

results can be used to make general statements about the nature and scope of symmetry

breaking (such as of time-reversal) that is possible at low energies.
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3.A Sum Rules for Spinning Particles with SO(2)

3.A.1 Angular momentum projectors in SO(2) form

The Clebsch-Gordan coefficients for general spinning particles were given in (3.93).

If one of the helicities is zero, then the Clebsch-Gordan coefficients are

Ci0
h = C0i

h =
1√
2


1, i = 1

−i, i = 2

. (3.166)

The 0 superscript denotes the scalar state. The parity-conjugate coefficients are Ci0
−h =

C0i
−h = (Ci0

h )
∗.

The next step is to find the projectors. There are several special cases. For the case

in which one of the incoming and outgoing particles are scalars, the projectors are simply

P i0k0
Ph = δik P 0j0l

Ph = δjl P i00l
Ph = δil P 0jk0

Ph = δjk (3.167)

P i0k0
�Ph = iϵik P 0j0l

�Ph
= iϵjl P i00l

�Ph = iϵil P 0jk0

�Ph
= iϵjk. (3.168)

More generally, if none of the particles are scalars and h1 ̸= h2, h3 ̸= h4 (so that
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singlets do not appear in the product irreps), then the possible projectors are

P ijkl

�P h1+h2
=
i

2

(
δikϵjl + δjlϵik

)
(3.169)

P ijkl
P h1+h2

=
1

2

(
δikδjl + δilδjk − δijδkl

)
, ifh1 + h2 = h3 + h4, (3.170)

P ijkl

�P |h1−h2| =
i

2

(
ϵijδkl − δijϵkl

)
(3.171)

P ijkl
P |h1−h2| =

1

2

(
δijδkl + δikδjl − δilδjk

)
, if (h1 − h2) = (h3 − h4) , (3.172)

P ijkl

�P |h1−h2| =
i

2

(
δijϵkl + ϵijδkl

)
(3.173)

P ijkl
P |h1−h2| =

1

2

(
δijδkl − δikδjl + δilδjk

)
, if (h1 − h2) = − (h3 − h4) , (3.174)

P ijkl

�P h1+h2
=

−i
2

(
Sijδkl ± P ijϵkl

)
(3.175)

P ijkl
P h1+h2

=
1

2

(
P ijδkl ∓ Sijϵkl

)
, ifh1 + h2 = ± (h3 − h4) , (3.176)

P ijkl

�P h3+h4
=
i

2

(
δijSkl ± ϵijP kl

)
(3.177)

P ijkl
P h3+h4

=
1

2

(
δijP kl ± ϵijSkl

)
, if ± (h1 − h2) = h3 + h4. (3.178)

The u-channel projectors all agree with the required s-channel projectors that they should

be related to under crossing. For example, if h1 + h2 = h3 + h4, it is easily verified that

P ilkj
h1−h4 = P ijkl

h1+h2
(in either parity-symmetric or violating cases). The identity

δijϵkl + δklϵij = δilϵkj + δklϵil (3.179)

is useful in handling the parity-violating projectors.

For the special case in which exactly one of the particles is a scalar, the projectors
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are

P 0jkl

�P h3+h4
=

i√
2

(
δj1Skl − δj2P kl

)
(3.180)

P 0jkl
P h3+h4

=
1√
2

(
δj1P kl + δj2Skl

)
(3.181)

P 0jkl

�P h3−h4 =
−i√
2

(
δj1ϵkl + δj2δkl

)
(3.182)

P 0jkl
P h3−h4 =

1√
2

(
δj1δkl − δj2ϵkl

)
(3.183)

P 0jkl

�P −h3+h4 =
i√
2

(
δj1ϵkl − δj2δkl

)
(3.184)

P 0jkl
P −h3+h4 =

1√
2

(
δj1δkl + δj2ϵkl

)
. (3.185)

Then P i0kl = P 0ikl and P ij0l = P ijl0 = (P l0ij)∗ for each helicity configuration. These

expressions encapsulate each of the possible relations between the helicities of the scat-

tered particles. Again, it can be easily checked that these are consistent with crossing

e.g. for the case h3 = 0 and h1 + h2 = h4, P
il0j
P h4−h1 = P ij0l

P h1+h2
, while the parity-violating

projectors pick-up a negative sign P il0j

�P h4−h1 = −P ij0l

�P h1+h2
.

For the special case in which the outgoing states are both scalars, the projectors are

simply the Clebsch-Gordan coefficients (or if the scalars are incoming, their conjugates)

P ij00
A =

1√
2
δij P 00kl

A =
1√
2
δkl P ij00

B =
−i√
2
ϵij P 00kl

B =
i√
2
ϵkl. (3.186)

These have crossing relations

P 0lk0
Ph =

√
2P 00kl

A P 0lk0
�Ph = −

√
2P 00kl

B . (3.187)

When the particles are not scalars, then if h1 = h4 and h2 = h3, the u-channel
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projectors decompose as

P ilkj

�P h1+h2
= −P ijkl

AB − P ijkl
BA (3.188)

P ilkj
P h1+h2

= P ijkl
AA + P ijkl

BB (3.189)

P ilkj

�P h1−h2 = P ijkl
AB − P ijkl

BA (3.190)

P ilkj
P h1−h2 = P ijkl

AA − P ijkl
BB , (3.191)

while in the opposite channel,

P ilkj
AA =

1

2

(
P ijkl
P h1+h2

+ P ijkl
P h1−h2

)
(3.192)

P ilkj
BB =

1

2

(
P ijkl
P h1+h2

− P ijkl
P h1−h2

)
(3.193)

P ilkj
AB =

1

2

(
P ijkl

�P h1−h2 − P ijkl

�P h1+h2

)
(3.194)

P ilkj
BA = −1

2

(
P ijkl

�P h1−h2 + P ijkl

�P h1+h2

)
. (3.195)

The results given in Section 3.5.1 also apply to the case h1 = h2 = h ̸= h3 = h4,

except that only the transitions between singlet irreps are possible.

3.A.2 Sum rules for two fermion and multispin theories

The sum rule entries for scattering in the two fermion theory of Section 3.5.4 are, in

SO(2) form:
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M (λ, λ→ λ, λ) =

(
|mλλ

1 |2 + 1

2

(
|mλλ

A |2 + |mλλ
B |2
))

P ijkl
P1

+
1

2

(
2|mλλ

1 |2 + 3|mλλ
A |2 − |mλλ

B |2
)
P ijkl
AA

+
1

2

(
2|mλλ

1 |2 − |mλλ
A |2 + 3|mλλ

B |2
)
P ijkl
BB + 2mλλ

A ·mλλ
B

(
P ijkl
AB − P ijkl

BA

)
(3.196)

M (ψ, ψ → ψ, ψ) =

(
|mψψ

1 |2 + 1

2

(
|mψψ

A |2 + |mψψ
B |2

))
P ijkl
P1

+
1

2

(
2|mψψ

1 |2 + 3|mψψ
A |2 − |mψψ

B |2
)
P ijkl
AA

+
1

2

(
2|mψψ

1 |2 − |mψψ
A |2 + 3|mψψ

B |2
)
P ijkl
BB

+ 2mψψ
A ·mψψ

B

(
P ijkl
AB − P ijkl

BA

)
(3.197)

M (ψ, λ→ ψ, λ) =

(
|mψλ

1 |2 + 1

2

(
|mψλ

A |2 + |mψλ
B |2

))
P ijkl
P1

+
1

2

(
2|mψλ

1 |2 + 3|mψλ
B |2 − |mψλ

A |2
)
P ijkl
AA

+
1

2

(
2|mψλ

1 |2 − |mψλ
B |2 + 3|mψλ

A |2
)
P ijkl
BB

+ 2mψλ
A ·mψλ

B

(
P ijkl
AB − P ijkl

BA

)
(3.198)

M (λ, ψ → λ, ψ) =

(
|mλψ

1 |2 + 1

2

(
|mλψ

A |2 + |mλψ
B |2

))
P ijkl
P1

+
1

2

(
2|mλψ

1 |2 + 3|mλψ
B |2 − |mλψ

A |2
)
P ijkl
AA

+
1

2

(
2|mλψ

1 |2 − |mλψ
B |2 + 3|mλψ

A |2
)
P ijkl
BB

+ 2mλψ
A ·mλψ

B

(
P ijkl
AB − P ijkl

BA

)
(3.199)
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M (λ, λ→ ψ, ψ) =
1

2

(
mψψ

1 ·mλλ
1 +mψψ

−1 ·mλλ
−1 +mψλ

B ·mλψ
B +mψλ

A ·mλψ
A

)
P ijkl
P1

+
1

2

(
2mψψ

A ·mλλ
A +mψλ

1 ·mλψ
1 +mψλ

−1 ·m
λψ
−1

+mψλ
B ·mλψ

B −mψλ
A ·mλψ

A

)
P ijkl
AA

+
1

2

(
2mψψ

B ·mλλ
B +mψλ

1 ·mλψ
1 +mψλ

−1 ·m
λψ
−1

−mψλ
B ·mλψ

B +mψλ
A ·mλψ

A

)
P ijkl
BB

+
1

2

(
2mψψ

A ·mλλ
B −mψλ

1 ·mλψ
1 +mψλ

−1 ·m
λψ
−1

+mψλ
A ·mλψ

B −mψλ
B ·mλψ

A

)
P ijkl
AB

+
1

2

(
2mψψ

B ·mλλ
A −mψλ

1 ·mλψ
1 +mψλ

−1 ·m
λψ
−1

−mψλ
A ·mλψ

B +mψλ
B ·mλψ

A

)
P ijkl
BA . (3.200)

Here mff ′

−1 and mff ′

1 for example represent the UV couplings of the f+f ′− and f−f ′+

helicity configurations respectively for any fermions f and f ′. For brevity, the am-

plitude M (λ, ψ → ψ, λ) has not been stated as it is entirely determined from cross-

ing M (λ, λ→ ψ, ψ). The Y -symmetry implies that |mλλ
−1| = |mλλ

1 |, |mψψ
−1 | = |mψψ

1 |,

|mλψ
B | = |mψλ

B |, |mλψ
A | = |mψλ

A |, |mψλ
1 | = |mψλ

−1| = |mλψ
1 | = |mλψ

−1|, which has been used

to (partially) simplify the elastic amplitudes. As for the example of Section 3.5.2, funda-

mental principles rule-out the existence of the parity-violating, spinning component am-

plitudes in all configurations above (although it is present in the omittedM (λ, ψ → ψ, λ)).

The sum rule entries for the simple multispin theory of Section 3.5.5 in SO(2) form

are given next. The terms can be classified by spin projection mz = 0, 1
2
, 1, 3

2
, 2. They

are given in Table 3.4.
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mz = 0 ϕϕ ψψ γγ

ϕϕ 2|mϕϕ|2 0
(
mγγ

A ·mϕϕ +
√
2mϕγ

1 ·mγϕ
1 +

√
2mγϕ

1 ·mϕγ
1

)
PA+(

mγγ
B ·mϕϕ −

√
2mϕγ

1 ·mγϕ
1 +

√
2mγϕ

1 ·mϕγ
1

)
PB

ψψ . 1
2

(
2|mψψ

1 |2 + 3|mψψ
A |2 − |mψψ

B |2
)
PAA+

1
2

(
2|mψψ

1 |2 − |mψψ
A |2 + 3|mψψ

B |2
)
PBB+

2mψψ
A ·mψψ

B (PAB − PBA)

0

γγ . . 1
2
(2|mγγ

2 |2 + 3|mγγ
A |2 − |mγγ

B |2)PAA +
1
2
(2|mγγ

2 |2 − |mγγ
A |2 + 3|mγγ

B |2)PBB + 2mγγ
A ·

mγγ
B (PAB − PBA)

mz =
1
2

ϕψ ψϕ ψγ γψ

ϕψ |mϕψ
1
2

|2PP 1
2

0 0
(
mψγ

1
2

·mϕψ
1
2

+mϕψ
1
2

·mψγ
1
2

)
PP 1

2
+(

mψγ
1
2

·mϕψ
1
2

−mϕψ
1
2

·mψγ
1
2

)
P�P 1

2

ψϕ . |mϕψ
1
2

|2PP 1
2

(
mψγ

1
2

·mϕψ
1
2

+mϕψ
1
2

·mψγ
1
2

)
PP 1

2
−(

mψγ
1
2

·mϕψ
1
2

−mϕψ
1
2

·mψγ
1
2

)
P�P 1

2

0

ψγ . .
(
|mψγ

3
2

|2 + |mψγ
1
2

|2
)
PP 1

2
0

γψ . . .
(
|mψγ

3
2

|2 + |mψγ
1
2

|2
)
PP 1

2

mz = 1 ψψ ϕγ γϕ

ψψ
(
|mψψ

1 |2 + 1
2

(
|mψψ

A |2 + |mψψ
B |2

))
PP1 0 0

ϕγ . |mϕγ
1 |2PP1

(
mγϕ

1 ·mϕγ
1 +mϕγ

1 ·mγϕ
1 + 1√

2
mγγ

A ·mϕϕ
)
PP1+(

mγϕ
1 ·mϕγ

1 −mϕγ
1 ·mγϕ

1 − 1√
2
mγγ

B ·mϕϕ
)
P�P1

γϕ . . |mγϕ
1 |2PP1
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mz =
3
2

ψγ γψ

ψγ
(
|mψγ

3
2

|2 + |mψγ
1
2

|2
)
PP 3

2
0

γψ .
(
|mψγ

3
2

|2 + |mψγ
1
2

|2
)
PP 3

2

mz = 2 γγ

γγ
(
|mγγ

2 |2 + 1
2
(|mγγ

A |2 + |mγγ
B |2)

)
PP2

Table 3.4: Sum rule for theory of spinning particles.
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The vanishing entries correspond to amplitudes that do not have dimension 8 or-

der contributions. Amplitudes with the required mass dimension cannot be constructed

consistently respecting Lorentz invariance and possessing the required little group scal-

ing. Many of the processes, most notably the elastic ones, are also accidentally parity

symmetric as a consequence of CPT (and the fact that the particles are assumed to be

self-conjugate in this theory). Both Y and CPT can be invoked to simplify the entries.

The Y symmetry further relates |mϕγ
1 | = |mγϕ

1 |. The couplings mγγ
2 , mψψ

1 and mψγ
3
2

are

redundant.
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Chapter 4

Cosmological signals of a mirror

twin Higgs

We investigate the cosmology of the minimal model of neutral naturalness, the mirror

Twin Higgs. The softly-broken mirror symmetry relating the Standard Model to its twin

counterpart leads to significant dark radiation in tension with BBN and CMB observa-

tions. We quantify this tension and illustrate how it can be mitigated in several simple

scenarios that alter the relative energy densities of the two sectors while respecting the

softly-broken mirror symmetry. In particular, we consider both the out-of-equilibrium

decay of a new scalar as well as reheating in a toy model of twinned inflation, Twin-

flation. In both cases the dilution of energy density in the twin sector does not merely

reconcile the existence of a mirror Twin Higgs with cosmological constraints, but pre-

dicts contributions to cosmological observables that may be probed in current and future

CMB experiments. This raises the prospect of discovering evidence of neutral naturalness

through cosmology rather than colliders.
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4.1 Introduction

The electroweak hierarchy problem is one of the primary motivators for accessible

physics beyond the Standard Model and has led to an expansive set of searches at the LHC

and beyond. Recent null results in searches for conventional approaches to the hierarchy

problem motivate the exploration of alternative solutions. “Neutral naturalness” provides

one such promising alternative, in which the lightest states responsible for protecting the

weak scale are partly or wholly neutral under the Standard Model (SM). In these theories,

discrete symmetries enforce cancellations between finite threshold corrections to the Higgs

mass. The discrete symmetries may be approximate or exact, although solutions with

approximate symmetries typically require a plethora of new particles near the TeV scale.

Perhaps the simplest avatar of neutral naturalness is the “mirror” Twin Higgs (1), in

which the new physics near the weak scale consists of an identical copy of the Standard

Model related by an exact Z2 exchange symmetry. Higgs portal-type couplings between

the Higgs doublets of the Standard Model and the twin sector lead to accidental global

symmetries that protect the Higgs mass. The lightest partner particles are entirely

neutral under the Standard Model, subject only to indirect bounds from precision Higgs

coupling measurements. In conjunction with supersymmetry or compositeness at 5-

10 TeV, this provides a complete solution to the “little” and “big” hierarchy problems

consistent with current LHC limits. In this respect, the Twin Higgs naturally reconciles

the observation of a light Higgs with the absence of evidence for new physics thus far at

the LHC.

The primary challenge to the mirror Twin Higgs comes not from LHC data, but from

cosmology. An exact Z2 exchange symmetry predicts mirror copies of light Standard

Model states, which contribute to the energy density of the early universe. In particular,

twin neutrinos and a twin photon provide a new source of dark radiation that is strongly
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constrained by CMB and BBN measurements (2; 3). While these constraints could be

avoided if the two sectors were at radically different temperatures, the Higgs portal

couplings required by naturalness keep the two sectors in thermal equilibrium down to

relatively low temperatures. Constraints on dark radiation in the mirror Twin Higgs

have motivated models in which the Z2 symmetry is approximate (such as the orbifold

(4; 5), holographic (6–8), fraternal (9), and vector-like (10) Twin Higgs), in which case

the dark radiation component can be made naturally small. This problem was examined

recently in (11), where the Z2 symmetry in the fermion Yukawa couplings was broken in

order to find an arrangement that would reduce the residual dark radiation from the twin

particles.1 However, such cosmological fixes come at the cost of minimality, as models

with approximate Z2 symmetries require a considerable amount of additional structure

near the TeV scale.

In this work we take an alternative approach and investigate ways in which early

universe cosmology can reconcile the mirror Twin Higgs with current CMB and BBN

observations. In doing so, we find compelling scenarios that transfer the signatures of

electroweak naturalness from high-energy colliders to cosmology. We consider several

possibilities in which the energy density of the light particles in the twin sector is diluted

by the out-of-equilibrium decay of a new particle after the two sectors have thermally

decoupled. Crucially, the new physics in the early universe respects the exact (albeit

spontaneously broken) Z2 exchange symmetry of the mirror Twin Higgs. This symmetry

may be used to classify representations of the particle responsible for this dilution. We

concentrate on two minimal cases: In the first, the long-lived particle is Z2-even and the

asymmetry is naturally induced by kinematics. In the second, there is a pair of particles

which are exchanged by the Z2 symmetry and which may be responsible for inflation.2

1For recent related work on the cosmology and cosmological signatures of non-minimal Twin Higgs
scenarios, see e.g. (12–18).

2A third case exists, in which the particle is Z2-odd. This may additionally be related to the spon-
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Moreover, in these cases the new physics does not merely reconcile the existence of a mir-

ror twin sector with cosmological constraints, but predicts contributions to cosmological

observables that may be probed in current and future CMB experiments. This raises

the prospect of discovering evidence of electroweak naturalness first through cosmology,

rather than colliders, and provides natural targets for future cosmological constraints on

minimal realizations of neutral naturalness.

This paper is organized as follows: We begin in Section 4.2 by reviewing the salient

features of the mirror Twin Higgs. In Section 4.3 we discuss the thermal history of the

mirror Twin Higgs, with a particular attention to the interactions keeping the Standard

Model and twin sector in thermal equilibrium and the cosmological constraints on light

degrees of freedom. In Section 4.4 we present a simple model where the out-of-equilibrium

decay of a particle with symmetric couplings to the Standard Model and twin sector leads

to a temperature difference between the two sectors after they decouple. We turn to

inflation in Section 4.5, constructing a model of “twinflation” in which the softly broken

Z2-symmetry extends to the inflationary sector and leads to two periods of inflation. The

first primarily reheats the twin sector, while the second primarily reheats the Standard

Model sector. We conclude in Section 4.6.

4.2 The Mirror Twin Higgs

We begin by briefly reviewing the salient details of the mirror Twin Higgs. The reader

is referred to any of the references listed in the previous section for further details. The

theory consists of the Standard Model and an identical copy, related by a Z2 exchange

symmetry at a scale Λ ≫ v. The two sectors are connected only by Higgs portal-type

taneous Z2-breaking in the Higgs potential, although we find that a realisation of such a scenario is
dependent upon the UV completion of the model.
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interactions between the two SU(2) doublet scalars.3 Subject to conditions on the quartic

coupling, the Higgs sector enjoys an approximate SU(4) global symmetry.4

The Higgs potential is best organized in terms of the accidental SU(4) symmetry

involving the SU(2) Higgs doublets of the SM and twin sectors, HA and HB. The

general tree-level Twin Higgs potential is given by (see e.g. (9))

V (HA, HB) = λ(|HA|2 + |HB|2 − f 2/2)2 + κ(|HA|4 + |HB|4) + σf 2|HA|2 (4.1)

The first term respects the accidental SU(4) global symmetry, the second breaks SU(4)

but preserves the Z2 and the final term softly breaks the Z2. Clearly, κ, σ ≪ λ are

required for the SU(4) to be a good symmetry of the potential. The coupling κ should

naturally be of order the expected SU(4)-breaking radiative corrections to the potential

induced by Yukawa interactions with the top/twin top, κ ∼ 3y4t /(8π
2) log(Λ/mt) ∼ 0.1

for a cut-off Λ ∼ 10 TeV (yt being the top quark Yukawa coupling and mt its mass).

Requiring λ ≫ κ therefore implies λ ≳ 1. As the SM and twin isospin gauge groups are

disjoint subgroups of the SU(4), the spontaneous breaking of the SU(4) coincides with

the SM and twin electroweak symmetry breaking. Three Goldstone bosons are eaten

by the broken gauge bosons in each sector, leaving one Goldstone remaining. This will

acquire mass through the breaking of the SU(4) that is naturally smaller than the twin

scale f . For future reference, it is convenient to define the real scalar degrees of freedom

in the gauge basis as hA = 1√
2
ℜ(H0

A) − vA and hB = 1√
2
ℜ(H0

B) − vB, where ⟨H0
A⟩ = vA

and ⟨H0
B⟩ = vB.

The surviving Goldstone boson should be dominantly composed of the hA gauge

3Here and in what follows we neglect possible kinetic mixing between the two U(1)Y gauge bosons;
such mixing is not generated in the low-energy theory at three loops (1), and may be forbidden in UV
completions where the mirror symmetry relates sectors with unified gauge groups.

4Properly speaking, the model must contain an SO(8) global symmetry in order to enjoy a resid-
ual custodial symmetry (7; 8), but in linear realizations the SU(4) is sufficient provided that higher-
dimensional operators violating the custodial symmetry are adequately suppressed.
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eigenstate in order to be SM-like. The soft Z2-breaking coupling σ is required to tune

the potential so that the vacuum expectation values (vevs) are asymmetric and that the

Goldstone is mostly aligned with the hA field direction. The (unique) minimum of the

Twin Higgs potential (4.1) occurs at vA ≈ f
2

√
λ(κ−σ)−κσ

λκ
and vB ≈ f

2

√
σ+κ
κ
. The required

alignment of the vacuum in theHB direction occurs if σ ≈ κ. The consequences of this are

that vA ≈ v/
√
2 and vB ≈ f/

√
2 ≫ v (where v is the vev of the SM Higgs, although vA ≈

174 GeV is the vev that determines the SM particle masses and electroweak properties),

so that the SM-like Higgs h is identified with the Goldstone mode and is naturally lighter

than the other remaining real scalar, a radial mode H whose mass is set by the scale f .

The component of h in the hB gauge eigenstate is δhB ≈ v/f (to lowest order in v/f).

Measurements of the Higgs couplings restrict f ≳ 3v (9), and the naive tuning of the

weak scale associated with this inequality is of order f 2/2v2.

The spectrum of states in the broken phase consists of a SM-like pseudo-Goldstone

Higgs h of mass m2
h ∼ 8κv2, a radial twin Higgs mode H of mass m2

H ∼ 2λf 2, a

conventional Standard Model sector of gauge bosons and fermions and a corresponding

mirror sector. The current masses of quarks, gauge bosons, and charged leptons in the

twin sector are larger than their Standard Model counterparts by ∼ f/v, while the twin

QCD scale is larger by a factor ∼ (1 + log(f/v)) due to the impact of the higher mass

scale of heavy twin quarks on the renormalisation group (RG) evolution of the twin

strong coupling. The relative mass of twin neutrinos depends on the origin of neutrino

masses, some possibilities being ∼ f/v for Dirac masses and ∼ f 2/v2 for Majorana masses

from the Weinberg operator. Mixing in the scalar sector implies that the SM-like Higgs

couples to twin sector matter with an O(v/f) mixing angle, as does the radial twin Higgs

mode to Standard Model matter. These mixings provide the primary portal between the

Standard Model and twin sectors.

The Goldstone Higgs is protected from radiative corrections from Z2-symmetric physics
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above the scale f . While the mirror Twin Higgs addresses the little hierarchy problem,

it does not address the big hierarchy problem, as nothing stabilizes the scale f against

radiative corrections. However, the scale f can be stabilized by supersymmetry, com-

positeness, or perhaps additional copies of the twin mechanism without requiring new

states beneath the TeV scale. Minimal supersymmetric UV completions can furthermore

remain perturbative up to the GUT scale (19), (20).

4.3 Thermal History of the Mirror Twin

The primary challenge to the mirror Twin Higgs comes from cosmology, rather than

collider physics. The mirror Twin contains not only states responsible for protecting

the Higgs against radiative corrections (such as the twin top), but also a plethora of

extra states due to the Z2 symmetry that are irrelevant to naturalness. The lightest of

these, namely the twin photon and twin neutrinos, contribute significantly to the energy

density of the early universe around the era of matter-radiation equality, since they have

a temperature comparable to that of the Standard Model plasma at all times. This is

because the same Higgs portal coupling that makes the Higgs natural also keeps the

two sectors in thermal equilibrium down to O(GeV) temperatures. Then the identical

particle content in the twin and Standard Model sectors guarantees that they remain at

comparable temperatures even after they decouple - for every massive Standard Model

species that becomes non-relativistic and transfers its entropy to the rest of the plasma,

its twin counterpart does the same within a factor of f/v in temperature.

In this section we undertake a detailed study of the decoupling between the Standard

Model and twin sectors as well as the constraints from precision cosmology.
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4.3.1 Twin Degrees of Freedom

In thermal equilibrium, each relativistic degree of freedom has roughly the same

energy density. In general, we express the energy density of the universe ρ during the

radiation-dominated era as ρ ≡ g⋆
π2

30
T 4, where we define g⋆ through this relation as

the effective number of relativistic degrees of freedom and T the temperature of the

SM photons. This then determines the evolution of the scale factor through the first

Friedmann equation

H =
1

Mpl

[
π2

90
g⋆T

4

]1/2
(4.2)

(assuming spatial flatness), whereMpl is the reduced Planck mass. In general, the energy

density of a particular species i may be computed from ρi = gi
∫

d3p
(2π)3

fi(p, Ti)E(p), where

gi are the number of internal degrees of freedom, E(p) is the energy as a function of

momentum p, while fi(p, Ti) is the phase-space number density and is a Bose-Einstein or

Fermi-Dirac distribution if the species is in equilibrium at temperature Ti. The number of

effective relativistic degrees of freedom may then be defined for each sector separately as

gSM⋆ (T ) and gt⋆(T ) satisfying ρSM(T ) =
π2

30
gSM⋆ (T )T 4 and ρt(T ) =

π2

30
gt⋆(T )T

4, respectively,

where ρSM(T ) and ρt(T ) are the total energy densities of SM and twin particles. The

values of g⋆(T ) for the SM and twin sectors are shown in Figure 4.1, where all species

within each sector are in thermal equilibrium. These can then be used to calculate the

total number g⋆ as a function of temperature, by weighting twin sector energy density

by its temperature: g⋆(T ) = gSM⋆ (T ) + gt⋆(T̂ )(T̂ /T )
4, where T̂ is the twin sector photon

temperature when the SM photon temperature is T .

Likewise, entropy densities for each sector i are defined as si(T ) =
2π2

45
gi⋆(T )T

3. We

neglect the small differences between the number of relativistic degrees of freedom defined

from energy and entropy densities, which are not significant over the range of tempera-
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tures of interest here.
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Figure 4.1: The effective number of relativistic degrees of freedom for mirror Twin Higgs models
for different values of f/v. The dash-dotted line is the for the Standard Model gSM⋆ (T ) and the
dashed lines are the twin sector degrees of freedom gt⋆(T ). The evolution of g⋆ during the QCD
phase transition (QCDPT) is not well-understood, so we assign the SM QCDPT a central value
of 175 MeV and a width of 50 MeV and interpolate linearly between the values of g⋆ at 225
MeV for free partons and at 125 MeV for pions. Further discussion may be found in (21). For
the twin sector we use a central value and width which are (1 + log(fv )) times larger than the
SM values. Note that new mass thresholds, expected to appear at energies ∼ 10 TeV in UV
completions of the twin Higgs, have not been included.

4.3.2 Decoupling

In the early universe, the two sectors are thermally linked by interactions medi-

ated by the Higgs, which, through mixing with both hA and hB components, allows for
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SM fermions and weak bosons to scatter off or annihilate into their twin counterparts.

However, once the temperature drops sufficiently for this Higgs-mediated interaction to

become rare on the expansion time-scale, the sectors decouple and thereafter thermally

evolve independently. More precisely, thermal decoupling will occur once the rate at

which energy can be exchanged between SM and twin particles (through the Higgs) falls

below the Hubble rate.

Thermal decoupling is traditionally formulated from the Boltzmann equations de-

scribing the evolution of single-particle phase space number densities, wherein collisions

induce instantaneous changes to the shape of these distributions. When the collisions

occur faster than the expansion rate, the phase space probability density functions of

the interacting species are expected to relax to an equilibrium distribution (Boltzmann,

neglecting quantum statistics, will be applicable to our case). However, once the rate

of collisions falls below the expansion rate, collisions become rare on cosmological time

scales and the phase space distributions depart from equilibrium. The decoupling tem-

perature is determined as that at which the scattering rate of a participating particle, Γ,

drops below the Hubble rate, assuming that this occurs instantaneously across the entire

phase space where the number density is significant. This formulation can be used to

determine the time at which a particular species of particle will cease to scatter off twin

particles on cosmological time scales.

In the case of interest here, however, both sectors of particles remain thermalised

within themselves while the interactions between sectors freeze-out. This implies that the

phase space number densities are still Boltzmann distributions throughout decoupling,

with a different temperature for each sector. As it is the twin sector temperature that

ultimately determines the impact of the light twin degrees of freedom on the cosmological

observables (discussed below in Section 4.3.3), we wish to describe the thermal evolution

of the two sectors by that of their entire energy or entropy content and the bulk heat
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flows between them. They may then be identified as thermally decoupled once the rate

at which they exchange energy falls below the expansion rate.

If the SM and twin sector plasmas have temperatures T and T̂ respectively, then

calling q the net heat flow density from the SM to the twin sector, the rate at which the

twin entropy densities st and sSM evolve is determined by

dst
dt

+ 3Hst =
1

T̂

dq

dt
=

1

T̂

(dqin
dt

− dqout
dt

)
(4.3)

dsSM
dt

+ 3HsSM =
−1

T

dq

dt
= − 1

T

(dqin
dt

− dqout
dt

)
. (4.4)

Here, H is the Hubble rate. The heat flow rate has been decomposed into the sum of the

energy transferred into and out of the twin sector by collisions in the second equality in

each line, where dqin
dt

and dqout
dt

are both positive.

The rate of heat flow q may be calculated by performing a phase space average of

the rate that energy is transferred from the SM to the twin sector through particle

interactions. Since the decay rates of top quarks or weak bosons are fast compared to

their scattering rate and the Hubble rate, energy transferred to them is instantaneously

transferred to the rest of the plasma. Similarly, the scattering rate of lighter fermions

off other particles of the same sector (such as photons or gluons) is much faster than

their interaction rate with twin fermions. Energy transferred to the lighter fermions

therefore quickly diffuses throughout their respective plasmas. The rate of heat flow

between sectors may therefore be well approximated by the rate at which energy is

transferred from SM particles to twin particles in Higgs mediated interactions. This

may occur through elastic scattering of SM particles off twin particles or annihilations

of SM particle/antiparticle pairs into twin particles (or the reverse). The energy density
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transferred to twin particle i from SM particle j in scattering is given by

dqij→ij

dt
=

gigj
(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ej(h)
fi(k, T̂ )fj(h, T )(

4Ei(k)Ej(h)

∫
vrel(Ei(p)− Ei(k))

dσij→ij

dΩ
dΩ
)
, (4.5)

where p is the outgoing 4-momentum of particle i. In the cosmic comoving frame, the

phase space number densities fi and fj are just Boltzmann factors, although evaluated

at the different temperatures of each sector. The factor gi is the number of internal

degrees of freedom of particle i, which here includes colour (the cross section should not

be colour averaged, as each colour of quark is present in the plasma in equal abundances

and each mediates the exchange of energy, so have their contributions summed). Finally,

Ei(k) is the on-shell energy of particle i with momentum k, while
dσij→ij

dΩ
is the differential

scattering cross section for species i scattering off j per solid angle Ω and vrel is the usual

relative speed of the incoming particles. As described in (22), the factor in the integrand

giving the energy transferred per reaction is simply a component of a 4-vector,

X = 4Ei(k)Ej(h)

∫
(p− k)vrel

dσij→ij

dΩ
dΩ. (4.6)

This may be calculated in the centre-of-mass frame and then boosted back into the cosmic

comoving frame where the integrals in (4.5) can be evaluated, similarly to the thermal

averaging procedure described in (23).

The integral (4.5) may be decomposed into two terms giving the positive and negative

energy changes of the twin particle, which respectively contribute to dqin
dt

and dqout
dt

. When

evaluated in the centre-of-mass frame, these terms correspond to the cases where the

scattering angle of the twin particle is respectively less than and greater than the angle

between its initial momentum and the total momentum of the system. However, when
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T ̸= T̂ , we find the integrals involved in this decomposition substantially more arduous

than when they are evaluated together.

Energy transferred through annihilations may be similarly calculated as

dqjj̄→īi

dt
=

g2j
(2π)6

∫ ∫
d3k

2Ej(k)

d3h

2Ej(h)
fj(k)fj(h)

×
(
4Ej(k)Ej(h)

∫
vrel(Ej(h) + Ej(k))

dσjj̄→īi

dΩ
dΩ
)

− g2i
(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ei(h)
fi(k)fi(h)

×
(
4Ei(k)Ei(h)

∫
vrel(Ei(h) + Ei(k))

dσīi→jj̄

dΩ
dΩ
)
, (4.7)

where
dσjj̄→īi

dΩ
is now the differential annihilation cross section. This rate may be evaluated

as described above and is more directly amenable to the factorisation of the integrals

observed in (23). See also (24) for further details of similar calculations. The first term

of (4.7) is the energy transferred from the SM to the twin sector and contributes to dqin
dt

in (4.3), while the second term is the energy transferred from the twin sector to the SM

and contributes to dqout
dt

.

In thermal equilibrium, the rate of energy transferred through collisions into one

sector will be balanced by that of energy transferred out of it so that there is negligible

net heat flow. This state will be rapidly attained (compared to the age of the universe)

if
dqin,out
dt

≫ 3HT̂st. However, as the universe expands and the plasma cools, the energy

transfer rates fall faster than the Hubble rate. This is demonstrated in the Figure 4.2

below. Once they drop below the Hubble rate, energy exchange ceases on cosmological

time scales and the sectors thermally decouple, thereafter thermodynamically evolving

independently.

To determine the decoupling temperature of the sectors, we calculate the rates of pos-

itive energy exchange for the twin particles interacting with the SM particles. The cross
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sections are calculated using a tree-level effective fermion-twin fermion contact interac-

tion that, in the full twin Higgs model, would be UV completed by a SM Higgs exchange

(the heavier mass of the radial mode would make its exchange subdominant). The in-

teraction strength is determined by the masses of the fermions through their Yukawa

couplings, as well as the mixing angle of the SM-like mass state h with the gauge eigen-

state hB, giving a 4-fermion coupling of strength
mfmf̂

m2
hf

2 (here mf and mf̂ are the masses

of fermions f and f̂). See (19), (11) for a more detailed discussion of the cross sections.

This effective interaction is appropriate for the temperatures of interest here and helps to

simplify the integrals of (4.5). In order to further simplify the integrations of (4.5) when

it is to be decomposed into terms in which the energy exchange is positive and negative,

we calculate dqin
dt

under the assumption that the sectors have the same temperature (this

ensures that the rate dqout
dt

is identical). This is then combined with the rate of energy

transferred from annihilation. A similar calculation of these rates was recently performed

in (11), for cases where the Yukawa couplings do not respect the Z2 twin symmetry.

In Figure 4.2 we compare the energy transfer rate to the Hubble rate in order to

determine when decoupling occurs. As long as the energy exchange rate exceeds the ex-

pansion rate, the sectors will be thermalised and have the same temperature. Decoupling

then occurs once this rate drops below the Hubble rate. From Figure 4.2, this occurs

at a temperature ∼ 2 GeV. However, even after the energy exchange rate drops below

the Hubble rate, the sectors will remain at the same temperature unless some event that

either injects or redistributes entropy occurs within a sector (such as the temperature

dropping below a mass threshold). As the heavy quark masses roughly coincide with

the decoupling temperature, these do cause the twin sector to be mildly reheated with

respect to the SM below decoupling. However, the resulting temperature difference is

small and the energy exchange rates are expected to continue to be well-approximated

by the rates presented in Figure 4.2 beyond decoupling.
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The lower plot of Figure 4.2 illustrates the decomposition of the energy exchange

rates into contributions from interactions involving different SM quarks. The interaction

cross sections are proportional to the Yukawa couplings of the interacting fermions. The

greatest heat exchange is therefore expected to be mediated by the most massive particles,

provided that their abundances are not too Boltzmann suppressed. As expected, at

temperatures ∼ 1 GeV, the bottom quark is the best conduit of thermal equilibration,

followed by the charm quark and then the τ (with colour factors enhancing the former two

with respect to the latter). The rate of heat flow that the top quarks and weak bosons can

mediate at these temperatures (or below) is negligible because of Boltzmann suppression.

The bend in the curves at temperatures ∼ 5 GeV in the lower plot corresponds to

a transition from temperatures where the dominant energy exchange rate is through

scatterings to those where it occurs through annihilations, as can be seen in the upper

plot. The annihilation rate into twin bottom quarks is the dominant component at high

enough energies (again because of the larger Yukawa coupling), but this becomes rapidly

threshold suppressed as the temperature drops. As can also be inferred in the upper plot,

the energy exchange rate through annihilations involving the twin charmed quarks and

tau leptons overtakes that of twin bottom quarks at similar temperature, but are still

subdominant to scatterings.

The decoupling temperature depends upon f/v, which sets both the mass scale of

the twin sector and the strength of the Higgs-mediated coupling. As f/v is increased,

decoupling occurs earlier because of the greater Boltzmann suppression, although this is

only a relatively small effect that, for f/v = 10, increases the decoupling temperature by

only 4 GeV.

When the twin sector is colder than the SM (which will be important for much of

what follows) the heat flow is typically dominated by annihilations of SM into twin

particles. However, the energy exchange from elastic scattering can be comparable to
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Figure 4.2: Rates of energy density exchange per twin entropy density ( 1
3stT̂

dqin
dt ) decomposed

into contributions from scattering and annihilation (top) and for interactions involving different
species of SM fermions (bottom), along with the Hubble parameter, for f/v = 4. The decoupling
temperature is that where the sum of the energy exchange rates equals the Hubble rate, which
occurs at Tdecoup ≈ 2 GeV.

that from annihilations, as illustrated in Figure 4.2. Although the energy exchange in an

annihilation will generally exceed that of a scattering because all of the energy involved

in the process must be transferred, the annihilation rate also becomes more Boltzmann
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or threshold suppressed when the temperature drops below the mass of the heavier twin

particles. It is therefore not always clear that energy transfer through annihilations

dominates.

Decoupling is not exactly instantaneous and there is some range of temperatures over

which the rate of heat flow freezes-out. The net heat flow rate dq
dt

is greater for larger

temperature differences between sectors. The generation of a potentially large tempera-

ture difference within this brief epoch of sector decoupling, such as those discussed below

in Section 4.4, may be cut off when the heat flow rate becomes comparable to the Hubble

rate. For a given SM temperature T , the minimum twin-sector temperature T̂min during

the decoupling period may be roughly estimated as that which satisfies

H ∼ 1

3stT̂

dq

dt

∣∣∣
T̂=T̂min

. (4.8)

Twin temperatures colder than T̂min will partially thermalise back to this value. As

the participating fermions are not non-relativistic, instantaneous decoupling is not as

accurate an approximation as it is, for example, for chemical decoupling of a WIMP,

although it is still reliable.

In Figure 4.3, we show the minimum temperature that the twin sector may have as

a function of SM temperature for heat flow to freeze out, estimated using (4.8). Only

annihilations have been included in the determination of the minimum temperature,

although we have verified that, for these temperatures, the scatterings contribute only

≲ 10% to the heat flow. Note that while the energy exchange rate, such as 1

T̂

dqin
dt

in

(4.3), in scattering processes may be faster, the net energy flow rate, or heat flow ( 1

T̂

dq
dt

in

(4.3)), which is the difference between energy exchange rates into and out of the sector,

is actually dominated by annihilations. Generally, we find that decoupling begins at

temperatures ∼ 4 GeV. The temperature difference can reach an order of magnitude
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without relaxing once the SM temperature drops to ∼ 1 GeV.
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Figure 4.3: Minimum temperature of the twin sector that will not be heated by interactions
with a hotter SM plasma, as a function of SM temperature, for f/v = 4. Also shown is the SM
temperature, for reference.

While the extent of thermal decoupling is temperature dependent, the maximum

temperature difference that will not relax grows quickly as the SM temperature drops.

Then we may describe the two sectors as being decoupled if, in a given cosmology, all

events that raise the temperature of one sector relative to the other (such as the crossing

of a mass threshold and the resulting entropy redistribution, the most significant of which

is the confinement of colour) induce temperature differences that are too small to partially

relax.

At energies ≲ 1 GeV in Figure 4.2, the reliability of the calculation of the heat flow

rate diminishes because of the strengthening of the strong coupling and the eventual

confinement of colour. Fortunately, for a cooler twin sector, which will be of interest in

subsequent sections, annihilations from the SM dominate other processes over most of

the parameter space. These are the least sensitive to higher order corrections and non-

perturbative effects because of their higher temperature, and hence energy, compared
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to the potentially cooler twin sector. The range of temperatures illustrated in Figures

4.2 and 4.3 have been selected to roughly illustrate the duration of decoupling, but

may extend below the range where the perturbative calculation of the heat flow rate is

valid. For example, at temperatures below the twin sector QCDPT, which occurs at

∼
(
1 + log(f

v
)
)
higher temperatures than in the SM, the partonic calculation of twin

quark/anti-quark pair production must be replaced by a hadronic one. Furthermore, the

growth of the twin strong coupling necessitates that the quark-Higgs Yukawa couplings

be RG evolved to the scale of the energy exchanged, which can induce an O(1) change

to the cross section, although this has only a relatively small effect on the decoupling

temperature. It is nevertheless clear that decoupling is mostly complete by then and that

these uncertainties are not large enough to affect this conclusion.

In the standard mirror Twin Higgs cosmology, knowing the decoupling temperature

tells us how the temperatures of the two sectors will be related at subsequent times.

The sectors separately evolve adiabatically after decoupling, though they redshift in the

same way and differences in temperature only arise from events that redistribute entropy.

Non-minimal cosmological events that could potentially cause the temperatures of each

sector to diverge can therefore only be effective if they leave each sector colder than this

approximate decoupling temperature.

4.3.3 Cosmological Constraints

Given that the twin and Standard Model sectors remain in thermal equilibrium to

O(GeV) temperatures, the simplest mirror Twin Higgs scenario is cosmologically invi-

able due to the presence of light twin species (photons and neutrinos) with abundances

comparable to those of the SM. The cosmological observables through which evidence of

light species may be inferred are typically represented by Neff , the “effective number of
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neutrino species” in the early universe; their individual masses, which determine their

free-streaming distances; and the “effective mass” meff
ν , which parameterises their con-

tribution to the present-day energy density of non-relativistic matter. These observables

are probed by both the CMB and large scale structure (LSS).

Effective number of neutrinos

The parameter Neff describes the amount of radiation-like energy density during the

evolution of the CMB anisotropies before photon decoupling. It is defined as the effective

number of massless neutrinos with temperature as predicted in the standard cosmology

that would give equivalent energy density in radiation:

ρr = ργ +
7

8

(
4

11

)4/3

Neffργ, (4.9)

where ρr is the energy density of radiation and ργ is the energy density of photons (the

factor of
(

4
11

)4/3
arises from the relative reheating of the photons from electron/positron

annihilation, which occurs after most of the neutrinos have decoupled, and the factor of

7/8 is from the opposite spin statistics). A deviation from the Standard Model predic-

tion of 3.046 (25) is denoted by ∆Neff = Neff − 3.046. This definition of radiation, or

equivalently, relativistic degrees of freedom, becomes less clear if the new fields have a

non-negligible mass, as we discuss further below.

We here review the CMB physics of dark radiation, summarising the discussion in

(26). See also (2) for further review. The angular size and scale of the first acoustic

peak is well-measured and this approximately fixes the scale factor at matter-radiation

equality aeq. If we imagine fixing all other ΛCDM parameters, extra radiation would

delay the epoch of matter-radiation equality. This would have a pronounced effect on

the power spectrum in the vicinity of the first acoustic peak through the early Integrated

264



Cosmological signals of a mirror twin Higgs Chapter 4

Sachs-Wolfe (eISW) effect. The modes corresponding to this feature entered the horizon

close to matter-radiation equality and the evolution of their potentials is highly sensitive

to the radiation energy density. However, the impact of a ∆Neff ∼ O(1) deviation on the

peak height can be simultaneously balanced by increasing the amount of non-relativistic

matter, to the extent to which other observations providing independent constraints upon

Ωc permit (for ΛCDM+Neff , a variation of ∼ 10% in Ωch
2 is consistent with present

CMB+BAO measurements (2), although these variations must be consistent with other

observables). This degeneracy is not expected to be broken by CMB-S4 (27).

Given that aeq is approximately fixed, the utility of Neff arises because, in simple ex-

tensions of the ΛCDM model, it approximately corresponds to the suppression of power

in the small scale CMB anisotropies that arises from Silk damping. The reason for this is

roughly that, although the greater expansion rate induced by the extra radiation reduces

the time that CMB photons have to diffuse before decoupling, it also reduces the sound

horizon size more severely. As the angular size of the sound horizon is determined by

the location of the acoustic peaks and is also well measured, the reduction in the sound

horizon must be compensated for by a reduction in the angular diameter distance to the

CMB. This effectively raises the angular distance over which photon diffusion proceeds

and results in a prediction of smoother temperature anisotropies at small scales. This

correspondence with the Silk damping allows Neff to be approximately factorised from

other parameters and constrained independently, providing a direct observational avenue

for detecting the presence of new, massless fields (26) (see (28) for further implications

for model building). This relationship arises because the fixing of aeq implies that Neff

effectively determines the energy density of the universe, and hence the Hubble rate, dur-

ing CMB decoupling. Note, however, that further extensions of ΛCDM may complicate

this correspondence, in particular deviations from the standard Big Bang Nucleosynthesis

prediction of the primordial helium abundance.
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The contribution to Neff (or ∆Neff) in the mirror Twin Higgs arises from two sources:

the twin photons, which can be treated as massless dark radiation with an appropriate

twin temperature T t
eq at the time of matter-radiation equality, and the twin neutrinos,

whose non-zero masses may need to be accounted for. For the twin photons, the con-

tribution to Neff is simple; their equation of state is always w = 1/3 and their energy

density is given by g π
2

30

(
T t
eq

)4
, where g = 2. The twin temperature at matter-radiation

equality is found from the SM temperature using comoving entropy conservation,

T t
eq

T SM
eq

=

(
gt⋆(Tdecoup)

gSM⋆ (Tdecoup)

)1/3
(
gSM⋆ (T SM

eq )

gt⋆(T
t
eq)

)1/3

, (4.10)

where the two sectors have the same number of thermalized degrees of freedom by this

time. Here, T SM
eq is the SM photon temperature at matter-radiation equality and Tdecoup

is the sector decoupling temperature.

Since neutrinos are massive, their behavior is more complicated. Their equation of

state parameter takes on a scale factor dependence which is controlled by their mass.

In the Standard Model, this sensitivity is negligible because present CMB bounds imply

that neutrinos are ultra-relativistic at aeq to good approximation (2). However, the factor

by which the twin neutrino masses are enhanced may raise them to order T teq or greater

(see Section 4.2 for discussion of the scaling of the masses with f/v).

To better describe the impact of the extra twin (semi-)relativistic degrees of freedom

on the CMB, we choose to define Neff through the effects of neutrinos at matter-radiation

equality, when the impact on the expansion rate of the universe for most of the period

relevant for the evolution of the CMB is greatest. Note that, in their presentation of joint

exclusion bounds on Neff and
∑
mν (the sum of SM neutrino masses) or meff

ν (effective

mass contributing to the present-day non-relativistic matter density of an extra sterile

neutrino), the Planck collaboration define Neff as the value in (4.9) at temperatures
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sufficiently high that the neutrinos are fully relativistic. Our values cannot be directly

compared with their analysis, although we consider ours to be a reasonable rough estimate

that is more representative of the CMB constraints. The ensuing correction from the finite

neutrino masses is, in the cases considered in this work, a small effect anyway.

To determine this correction and provide a definition of Neff that better describes the

impact of quasi-relativistic particles on the CMB, we first define the epoch of matter-

radiation equality as the time at which the average equation of state parameter of the

universe is w̄ = 1/6 (the equation of state is defined as ρ = w̄P , where ρ is energy density

and P is pressure). We can express this condition as

d lnH

d ln a

∣∣∣∣
aeq

= −7

4
, (4.11)

as in (29). Call the quasi-relativistic neutrino energy density ρ̃(a) with time-evolving

equation of state parameter w(a), which is to be balanced against some extra non-

relativistic energy density ∆ρCDM(a) ∝ a−3 to keep aeq the same. This amount of

non-relativistic energy density ∆ρCDM is

∆ρCDM(aeq) = ρr(aeq)− ρm(aeq)− 2aeq
dρ̃

da

∣∣∣∣
aeq

− 7ρ̃(aeq), (4.12)

where ρr and ρm are the energy densities of the radiation and non-relativistic matter. For

a perfect fluid, dρ̃
da

= −3(1 + w(a))ρ̃/a (neglecting the anisotropic stress that is expected

only to contribute to a weak phase shift in the CMB (30)), this results in a Hubble

parameter of

H2(aeq) =
2

3M2
pl

[ρr(aeq) + 3w(aeq)ρ̃(aeq)] . (4.13)
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This suggests a definition of the effective number of neutrinos, Neff , via

H2(aeq) =
2

3M2
pl

(
ργ +Neffρ

th
ν,m=0

)∣∣
aeq

(4.14)

Neff ≡
∑
i

wi
1/3

ρi
ρthν,m=0

, (4.15)

where ρi is the contribution to the energy density from some species i with equation of

state parameter wi and ρ
th
ν,m=0 is the energy density of a massless neutrino with a thermal

distribution in the standard cosmology. Then 3w gives the ‘relativistic fraction’ of the

energy density. Note that this is simply a ratio of the pressure exerted by the new fields

to that of a massless neutrino. The effectiveness of this approximation was discussed in

(31) in the context of thermal axions (while effective at keeping aeq fixed, changes to odd

peak heights subsequent to the first are imperfectly cancelled and require further changes

to H0 to compensate - see Section 4.3.3 below).

Calling T iν the temperature at which the neutrinos in sector i freeze-out and aiν the

corresponding scale factor, then assuming instantaneous decoupling, the phase space

number density for scale factor a is given by a redshifted Fermi-Dirac distribution (32)

f iα(p) ≈
[
1 + epa/(a

i
νT

i
ν)
]−1

(4.16)

for the α neutrino mass eigenstate in the i sector (mi
α ≪ T iν , so has been dropped). The

energy density and pressure are

ρiνα =
gα
2π2

∫ ∞

0

dp p2
√
p2 + (mi

α)
2f iα(p) (4.17)

P i
να =

gα
2π2

∫ ∞

0

dp
p4

3
√
p2 + (mi

α)
2
f iα(p), (4.18)

where gα = 2 is the number of degrees of freedom for a neutrino species.
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Since the neutrino decoupling temperature depends on the strength of the weak in-

teraction as Tν ∝ G
−2/3
F , while GF ∝ v2, then the twin neutrino decoupling temperature

T t
ν is related to the SM neutrino decoupling temperature T SM

ν by

T t
ν = (f/v)4/3T SM

ν . (4.19)

We can then simply use (4.17) and (4.18) at matter-radiation equality to find ∆Neff

(assuming instantaneous decoupling). We thus obtain

H2(aeq) =
2

3M2
pl

(
ρSMγ + 3.046ρthν,m=0 + ρtγ +

∑
α

3wναρ
t
να

)∣∣∣∣∣
aeq

(4.20)

and

∆Neff =

(
11

4

)4/3
120

7π2 (T SM)4

(
ρtγ +

∑
α

3wtναρ
t
να

)
, (4.21)

where we now have equation of state parameters wνα for each neutrino, while ρSMγ and

ρtγ are the SM and twin photon energy densities, ρthν,m=0 and ρtνα are the neutrino energy

densities.

Neutrino masses

Because they are so weakly interacting, the neutrinos have a long free-streaming

scale given by the distance travelled in a Hubble time vν/H, with vν ∝ m−1
ν the speed of

the neutrino once it becomes non-relativistic. This defines a free-streaming momentum

scale kfs =
√

3
2
aH
vν

∝ mν , above which neutrinos do not cluster. Below this scale,

perturbations in the matter density consist coherently of neutrinos and other matter,

but well above it only non-neutrino matter contributes to density perturbations. This
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results in a suppression of the matter power spectrum on large scales which is proportional

to the fraction of energy density in the free-streaming matter. Since this occurs at late

times when neutrinos are non-relativistic, the energy density is simply ρνα = nναmνα

for each neutrino species α, where nνα is the number density. Constraints on the sum

of neutrino masses then come from the observations of power on small scales, which is

suppressed relative to that expected for massless neutrinos by a factor 1 − 8fν , where

fν = Ων/Ωm is the fraction of non-relativistic energy in neutrinos at late times (33).

More generally, inferences of the matter power spectrum constrain the present-day

energy density fraction of free-streaming species that do not cluster on small scales and

have since become non-relativisitic, Ων = (
∑
mν +meff

ν )/(94.1 eV), where
∑
mν is the

sum of SM neutrino masses and meff
ν is the sum of twin neutrino masses weighted by

their number density

meff
ν =

nt
ν

nSM
ν

∑
α

mt
να . (4.22)

Here nt
ν is the number density of a relic twin neutrino flavour and nSM

ν is that for a SM

neutrino. It is assumed that the neutrinos have been thermally produced as hot relics.

The relic abundance of a neutrino species is given by its number density when it

decoupled, diluted by the factor by which the universe has since expanded. The scale

factors at which neutrino decoupling occurs in the two sectors, aSMν and atν can be deter-

mined from (4.19), the relative temperatures in the two sectors and comoving entropy

conservation, to obtain

atν = aSMν

(
v

f

)4/3(
gt⋆ (Tdecoup)

gSM⋆ (Tdecoup)

)1/3

(4.23)

where the same mass thresholds have been assumed in each sector below their neutrino

decoupling temperatures, so that gSM⋆
(
T SM
ν

)
= gt⋆ (T

t
ν). The neutrino number densities
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are then

nt
ν

nSM
ν

=

(
T t
νa

t
ν

T SM
ν aSMν

)3

=
gt⋆ (Tdecoup)

gSM⋆ (Tdecoup)
. (4.24)

For f/v from 3 to 10 and using Tdecoup ∼ 2− 6 GeV from Section 4.3.2, we find

gt⋆ (Tdecoup) / g
SM
⋆ (Tdecoup) ∼ 0.8 and thus arrive at

meff
ν ≈ 0.8

(
f

v

)n∑
α

mSM
να , (4.25)

where n = 1 for Dirac masses and n = 2 for Majorana masses.

If they are sufficiently light and hot, the twin neutrinos only affect the CMB as dark

radiation and their masses may then only be inferred from tests of the matter power

spectrum. However, if heavier and colder, they are better described as a hot dark matter

component. Their impact on the CMB is discussed in (34), where the shape of the

power spectrum can depend upon the individual neutrino kinetic energies through their

characteristic free-streaming lengths. The early Integrated Sachs-Wolfe effect (eISW) is

also sensitive to the masses if the neutrinos become non-relativistic during decoupling

(thereby affecting the radiation energy density and the growth of inhomogeneities) (33).

There is a significant degeneracy in cosmological fits to the CMB between Ωm and

H0 (the Hubble constant) (35), where raising the non-relativistic matter fraction, such

as with nonrelativistic neutrinos, can be accommodated by a decrease in H0 (or equiva-

lently, the dark energy density), which keeps the angular diameter distance to the CMB

approximately fixed. This degeneracy can be broken by measurements of the baryon

acoustic oscillations (BAOs), which are sensitive to the expansion rate of the late uni-

verse and provide an independent measurement of Ωm and H0. It is through combination

with these results that bounds from Planck on neutrino masses are strongest (2).
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Bounds

The authors are unaware of any specialised analysis of the present and projected future

cosmological constraints on scenarios with both massless dark radiation and additional

light, semi-relativistic sterile neutrinos. In the absence of this, we use bounds from (2)

as a rough indication of the present level of sensitivity to these parameters, which we

nevertheless expect to be a reliable indication of the (in)viability of this model. The 95%

confidence limits on these parameters are Neff = 3.2±0.5 and
∑
mν < 0.32 eV when each

are constrained separately with the other fixed. This, of course, overlooks correlations

between the impacts of masses and ∆Neff on the CMB and LSS. Bounds on an additional

sterile neutrino as the only source of dark radiation are also presented with number

density, or equivalently, contribution to ∆Neff, left to float. These are similar to the limit

on
∑
mν . It was found in (36) that, allowing

∑
mν and meff

ν to float independently for

a single extra sterile neutrino, the bound mildly relaxes to meff
ν ≲ 1 eV, although the

bound may be stronger depending on the combination of data sets chosen (the lensing

power spectrum presently prefers higher neutrino masses and raises the combined bounds

if included). Other bounds from LSS on
∑
mν exist and are potentially stronger than

those placed from the CMB, possibly as low as meff
ν ≲ 0.05 eV, again depending on data

sets combined (see (37), (38)), although these are subject to greater uncertainties in the

inference of the power spectra of dark matter halos from galaxies surveys and the Lyα

forest.

It must also be noted that the shape of the CMB temperature anisotropies depends

upon both the mass of individual neutrino components (through their free-streaming

distance) and their contribution to the energy density of the nonrelativistic matter that

does not cluster on small scales. However, it is not expected that improvements in bounds

on the former will be made from improved measurements of the primary CMB itself,
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but rather from weak lensing of the CMB, in conjunction with future measurements

from DESI of the BAOs to break degeneracy with Ωm. The lensing spectrum, like

inferences of the matter power spectrum made in galaxy surveys, is expected to measure

the suppression of small scale power and therefore to strengthen constraints upon meff
ν ,

rather than the individual neutrino masses. One of the goals of CMB-S4 will be the

detection of neutrino masses, given the present lower bound
∑
mν ≳ 0.06 eV from

oscillations. Projected bounds are as low as ∼ 0.02 eV (27), although this assumes

no extra dark radiation or sterile neutrinos. A projection of the joint bound on Neff

(from extra massless dark radiation) and meff
ν combining improved measurements CMB

temperature measurements, lensing and BAOs indicates a limit of meff
ν ≲ 0.1 eV at 1σ

(27). Any contribution from additional states to meff
ν may therefore be testable and

bounded by the excess of the neutrino mass inference over the minimum neutrino mass,

although laboratory measurements or measurements of ∆Neff will be required to further

ascertain the contribution from the new particles.

Constraints on ∆Neff from improved measurements of the damping tail as part of

CMB-S4 are projected to be ∼ 0.02− 0.05 at 1σ (27). In the following sections, we use

an optimistic estimate of 0.02 for its reach in order to identify as much of the potentially

testable parameter space as possible.

To estimate the impact of current and projected CMB limits on the mirror Twin

Higgs, we consider two scenarios: the minimal Standard Model neutrino mass spectrum of

mν = [0.0, 0.009 eV, 0.06 eV] and a degenerate spectrum ofmν = [0.1 eV, 0.1 eV, 0.1 eV] /3

from (2). In Figure 4.4 we plot the predictions of the mirror Twin Higgs for ∆Neff and

meff
ν for both types of spectra, as well as for both Dirac and Majorana masses (which

scale differently with f/v). As is plainly evident, the mirror Twin Higgs is ruled out

cosmologically, no matter the choices of neutrino masses one makes, if only for the pres-

ence of the twin photon. In the standard cosmology, the twin sector will have roughly
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Figure 4.4: Predicted values of ∆Neff and
∑

mν + meff
ν for minimal and degenerate neutrino

mass spectra with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015
constraint(2) is the dashed line; the corresponding Neff upper bound is well below the bottom
of the plot. All points are excluded by the combination of bounds on ∆Neff and

∑
mν +meff

ν .

the same temperature as the SM, giving 4.6 ≲ ∆Neff ≲ 6.3 for f/v < 10, according

to the definition of (4.21). This range depends upon f/v through the twin neutrino

decoupling temperature (4.19), which determines the extent to which the twin photons

are reheated relative to the twin neutrinos after twin electron/positron annihilations.

This is sufficiently large that even the cold dark matter fraction cannot be adjusted to

keep matter-radiation equality fixed, resulting inevitably in changes to the height and

shape of the first acoustic peak. The energy density in neutrinos is predicted to be above

the present observational upper bounds for most neutrino mass configurations, with the
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exception of the minimal values permitted by neutrino oscillation measurements with

f/v ≲ 6. We therefore discuss cosmological mechanisms in which the twin radiation is

diluted to levels compatible with these observational bounds in the subsequent sections

of this paper.

4.4 Reheating by the decay of a scalar field

We now turn to simple scenarios that reconcile the mirror Twin Higgs with cosmo-

logical bounds, while taking care to respect the softly-broken Z2 symmetry. We begin

with the out-of-equilibrium decay of a particle with symmetric couplings to the Standard

Model and twin sectors, in which the desired asymmetry is generated kinematically. That

is to say, the dimensionless couplings between the decaying particle and the two sectors

are equal, and asymmetric energy deposition into the two sectors is a direct consequence

of the asymmetric mass scales. In this respect, the scenario is philosophically similar to

Nnaturalness (39), albeit with a parsimonious N = 2 sectors. See also (40), (41) and

(24) for other recent related ideas of using long-lived particles for the dilution of dark

sectors.

For simplicity, here we will focus on the case of a real scalar X coupled symmetrically

to the A and B sector Higgs doublets. Due to the difference in masses between the sectors

after electroweak symmetry breaking, simple kinematic effects give X a larger branching

ratio into the Standard Model. This occurs over a range ofX masses within a few decades

of the weak scale. If X decays out-of-equilibrium below the decoupling temperature of

the two sectors, this injects different amounts of energy into the two sectors, effectively

suppressing the temperature of the twin sector relative to the Standard Model. This

relative cooling suppresses the contribution of the light degrees of freedom of the mirror

Twin Higgs to below cosmological bounds. Insofar as the asymmetry is driven entirely
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by kinematic effects arising from v ≪ f , the resulting temperature inequality between

the two sectors is proportional to powers of v/f .

The requisite suppression of the twin sector temperature relative to the Standard

Model temperature necessitates that the X dominate the cosmology before it decays.

Our main discussion will follow the simplest case of an X which dominates absolutely

before it decays, comprising all of the energy density of the universe and effectively acting

as a ‘reheaton’. Afterwards, we will discuss the possibility of a ‘thermal history’ for X

– a scenario where X is in thermal equilibrium with the two sectors, then chemically

decouples at some high temperature and grows to dominate the cosmology before it

decays. This scheme will result in additional stringent constraints on the viable parameter

space.

4.4.1 Asymmetric Reheating

A Z2-even scalar X which is a total singlet under the SM and twin gauge groups

admits the renormalisable interactions

V ⊃ λxX(X + x)
(
|HA|2 + |HB|2

)
+

1

2
m2
XX

2, (4.26)

where mX is the mass of X (neglecting corrections from mixing that will be shown below

to be tiny), λx is a dimensionless coupling and x is a dimensionful parameter, which one

may imagine identifying as a vacuum expectation value (vev) of X in an UV theory.

Note that these interactions preserve the accidental SU(4) symmetry of the Twin Higgs.

The X field may additionally possess self-interactions, which we omit here as they do

not play a significant role in what follows.

The interactions in (4.26) allowX to decay into light states in the Standard Model and

twin sectors. If X reheats the universe through out-of-equilibrium decays, the reheating
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temperatures of the two sectors will be determined by its partial decay widths, assuming

that the decay products do not equilibrate. In the instantaneous decay approximation,

X decays when the Hubble parameter falls to its decay rate ΓX ∼ H. As we will show in

Section 4.4.2, in order to evade cosmological constraints we need the X to decay mostly

into the SM, so we may estimate ΓX ∼ Γ(X → SM). Then the energy that was contained

in the X is transferred into radiation energy density, with the resulting temperature of

the radiation given by (see (42))

T ∼ 1.2

√
ΓXMpl√

g⋆
(4.27)

where g⋆ is the effective number of relativistic degrees of freedom, as defined in Section

4.3, of the particles that are being reheated. Our numerical calculation of the reheating

temperature, which will be presented in Section 4.4.2, indicates that the approximation

T ∼ 0.1
√
ΓXMpl reliably reproduces the reheating temperature over the range of interest.

As shown in Section 4.3.2, the two sectors thermally decouple when the temperature

falls below Tdecoup ∼ 1 GeV, so reheating must take place to below this temperature. At

even lower temperatures, big bang nucleosynthesis (BBN) places strong constraints on

energy injected into the SM at temperatures below O(1− 10) MeV (43). Requiring that

the SM reheating temperature is above ∼ 10 MeV, these constraints on the SM reheating

temperature become constraints on the decay rate of the X into the SM, which in the

above approximation becomes

5× 10−21 GeV ≲ ΓX ≲ 3× 10−16 GeV. (4.28)

This then constrains the couplings λx and x of the X to the Higgs sector. Importantly,

it means that X must couple very weakly, in order to be long-lived enough to reheat to
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a low temperature, as will be shown below.

The asymmetry in partial widths arises from different effects depending upon the

mass of X. For masses below the SM Higgs threshold, it is predominantly differences in

mass mixing with the two Higgs doublets that produces the asymmetry, where the size

of the mixing angles determines the effective coupling of X to the SM and twin particles

and therefore its branching fractions. For masses below the twin scale, the relative size

of the mixing scales inversely with the vevs in each sector. Thus the hierarchy v ≪ f

already present in the Higgs sector can automatically gives rise to a hierarchy in partial

widths. Note that additional threshold effects can enhance the asymmetry further, in

particular whenX has mass above threshold for a significant decay channel in the SM, but

below the corresponding mass threshold in the twin sector. Decays into on-shell Higgses

complicate this picture further. In what follows, we first give an analytic calculation of

the mass mixing effect, then present a more precise calculation of the decay widths into

each sector.

To lowest order, X decays via its interactions with the SM and twin Higgs, and only

to other fermions and gauge bosons through its mass mixing with the Higgs scalars.

Expanding the X potential after the SU(4) is spontaneously broken, the mixing term

between X and hA in the scalar mass matrix is
√
2λxxvA, while that between X and hB

is
√
2λxxvB. The hA and hB components of the X mass eigenstate, which we denote

respectively as δXA and δXB, can then be determined. The expressions for the mixing

angles are in general complicated, but they simplify in limits mX < f and mX ≫ f :

(δXA, δXB) ≈


4λxxvA
m2

X−m2
h

(
1√
2
, vA
f

)
mX < f

λxxf
m2

X

(√
2vA
f
, 1
)

mX ≫ f

(4.29)

to lowest order in (v/f)2 and κ/λ. The partial width for the decay of X into SM states
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(excluding the Higgs) is

Γ(X → SM) ≈ |δXA|2 Γh(mh = mX), (4.30)

where Γh(mh = mX) denotes the decay width of a SM Higgs if it were to have mass

mX . Note that the Higgs partial width must be computed using the vev vA ≈ v/
√
2 to

determine the masses and couplings of the SM particles. The partial width of the X into

twin states is computed the same way using δXB and the vev vB ≈ f/
√
2.

From the mixing angles (4.29), it is already apparent over what mass range asym-

metric reheating from X decays will work. These give

Γ(X → SM)

Γ(X → Twin)
∼


f 2/v2A ≫ 1 mX < f

v2A/f
2 ≪ 1 mX ≫ f.

(4.31)

Thus when the mass of X is less than the twin scale, the Standard Model will be reheated

to a higher temperature than the twin sector, but in the large mass limit this mechanism

works in the opposite direction and would appear to lead to preferential reheating of the

twin sector.

More precise statements about the relative branching ratios and resulting temper-

atures require additional care. In addition to decaying through mass mixing, X can

decay into the Higgs mass eigenstates themselves if above threshold. As the energy is

ultimately transferred to the SM and twin sectors, we then need to consider how these

states decay and account for the further mixing of the Higgs mass eigenstates into Higgs

gauge eigenstates.

For mX > 2mh, decay can occur into the lighter (SM-like) Higgs mass eigenstate h
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with partial width

Γ(X → hh) ≈ λ2xx
2

16πmX

√
1−

(
2mh

mX

)2

. (4.32)

Similarly, for mX > 2mH , decays can proceed into HH with a similar partial width,

but with the h mass replaced with that of the H. Above the intermediate threshold

mX > mh +mH , there is also the mixed decay

Γ(X → hH) ≈ λ2x
2πmX

√
1−

(
mH +mh

mX

)2

(fδAX + 2vAδBX)
2. (4.33)

Here, δAX ≈ −δhAδXA − δhBδXB is the component of the hA gauge eigenstate in the X

mass eigenstate and δBX ≈ δhBδXA − δhAδXB is the corresponding component of the hB

gauge eigenstate, where δhA and δhB are, respectively, the components of the SM Higgs

in the hA and hB gauge eigenstates to zeroth order in λx. Combining all ingredients, this

decay width is of order λ4xx
2. Since it is only the total decay width that is constrained to

be small by the demand that the SM reheating temperature lie in the required window,

this fixes only a product of λx and x. If x ∼ v, then the mixed decay to hH is effectively

second order in the small coupling λ2x and can be neglected relative to the other partial

widths. Conversely if x≪ v, then λx is much larger and this decay cannot be neglected.

In what follows we will work in the region of parameter space where mixed decays to hH

are negligible.

The rate of heat flow into each sector may be well approximated by adding the decay

rates of X into each channel and weighting these by the fraction of energy transferred

into the particular sector. Of course, when X decays into Higgs particles, these in turn

decay out of equilibrium into both the Standard Model and twin sectors. As the Higgs

decays are almost instantaneous, the fraction of energy transferred into each sector is

simply that carried by the Higgs decay products multiplied by their branching fractions
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for each sector. The total rate at which X particles are transferred into the SM plasma

is

W (X → SM) ≈ Γ(X → SM) + Γ(X → hh)Br(h→ SM)

+ Γ(X → HH)(Br(H → SM) +Br(H → hh)Br(h→ SM)). (4.34)

The corresponding rate for energy deposition into the twin sectors is simply given by the

replacement of SM 7→ Twin. The first term is the rate at which X decays directly into

the SM through mass mixing with the Higgs. The second is the fraction of X energy

that is transferred into lighter Higgs states that subsequently decay into the SM. The

third is the analogous term for decays into the heavy Higgs, where cascade decays of the

H into the h and subsequently other SM particles must be included. Note that decays

of the heavy Higgs into the light Higgs make up a majority of decay width, because of

the large quartic coupling required for the twin Higgs potential.

Below the hh threshold, it is possible for X to decay via one on-shell and one off-

shell Higgs boson. The partial width for off-shell Higgs production was calculated for

X → hh∗ → hbb̄ and found to be negligible compared to two-body decays through mass

mixing and so we omit three-body decay widths in what follows.

Ultimately, the complete partial widths for the decay of X into the Standard Model

and twin sectors includes the sum of decays into Higgs bosons h and H and direct decays

into the fermions and gauge bosons of the two sectors. We compute the latter to an

intended level of accuracy of ∼ 10% (including, e.g., NLO QCD corrections to decays

into light-flavor quarks), mostly following (44). The resulting partial widths into the

Standard Model and twin sectors are shown as a function of mX in Figure 4.5 with the

ratio of branching fractions displayed in Figure 4.6.

Over much of the space below the Higgs mass, the branching ratio exhibits the ex-
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Figure 4.5: The partial widths of the X into the SM (solid blue line) and twin sector (dashed
orange) for f/v = 3 in units of (λxx)

2. The light gray bands indicate regions of QCD-related
uncertainty in the SM calculation, while the darker gray bands indicate the corresponding
regions of uncertainty for the twin calculation.

pected (f/v)2 scaling from the mass mixing. Below ∼ 40 GeV, suppression of the twin

partial width arises because the twin bottom quark pair production threshold is crossed.

As mX nears mh, the SM branching fraction grows by ∼ 4 orders of magnitude as the

WW ∗, ZZ∗, and then WW and ZZ decays go above threshold. Since the analogous

thresholds are at much higher energies in the twin sector, the enhancement is not paral-

leled by decays into the twin sector until mX is close to the twin scale. There is therefore

a large range of masses mh ≲ mX ≲ mH over which the SM branching fraction dominates

by several orders of magnitude.

Above the X → hh threshold, the ratio of decay widths is roughly constant in mass

up to the HH threshold. The twin sector decay rate is dominated by decays of on-shell

light Higgs into twin states, Γ(X → Twin) ≈ Γ(X → hh)Br(h → Twin) ∝ 1/mX as

in (4.32). If the SM were also predominantly reheated through this channel, then the
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Figure 4.6: The ratio of branching fractions of the X into the SM and twin sectors at f/v = 3.
The dashed line gives the expected (v/f)2 scaling from the mass mixing; deviations are due to
various mass threshold effects.

ratio of branching fractions would again be approximately δ2hA/δ
2
hB ≈ (f/v)2. However,

the SM decay width also receives a larger contribution from decays through mass mixing

between the X and the Higgs gauge eigenstates.

For masses mX > 2mh, decays through mass mixing are dominated by the SM WW

and ZZ channels. In this mass region, the decay rate of a Higgs into longitudinally

polarized vector bosons scales as Γ(h → WW,ZZ) ∼ m3
X , but the mixing angle scales

as δ2AX ∼ 1/m4
X (as in (4.29)), resulting in the same ∼ 1/mX scaling and thus a roughly

constant ratio in this range of masses. Near mX ∼ 1 TeV, decays into twin vector bosons

through mass mixing begin to dominate, and there is no favourable asymmetry in the

branching fractions, as discussed in this section. Even at higher masses, the effects of

heavy Higgs decays into light Higgs do not compensate sufficiently, as this partial width

scales with mX in the same way as the partial width for longitudinally polarised weak

bosons.

The constraint on the decay width from the required reheating temperature (4.28)
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translates into a constraint on the size of the coupling λxx. For mX ≳ mh, this gives

10−8.5GeV ≲ λxx ≲ 10−6 GeV, while for lower masses, this range increases to 10−7GeV ≲

λxx ≲ 10−5.5 GeV at mX ∼ 20 GeV.

The gray bands in Figure 4.5 highlight regions where our analytic estimates of the

partial widths encounter enhanced uncertainties arising from the bottom and charm

thresholds in both sectors. Over most of these ranges, we estimate the size of these

uncertainties to be either ∼ 10% or confined to very small subregions. The thicknesses of

these bands have been chosen conservatively, and ultimately the branching ratios should

be accurate to within a factor of ±ΛQCD of the bottom and charm mass thresholds. In

particular, the prescription of (45) has been followed for approximating the bottom partial

width close to the open flavour threshold. Resonant decay into gluons from bottomonia

mixing has been neglected, although these resonant mass ranges are expected to be

only ∼ MeV wide at the CP-even, spin-0 bottomonia masses mX = mχbi
(see (45) and

(46)). It should be noted, however, that at temperatures above that of the QCD phase

transition, the quark decay products behave differently compared to that expected in

a low temperature environment. In particular, for hot enough temperatures, the b or

c quarks may not hadronise and the partonic partial widths may more reliable. The

applicability of the treatment of the flavour thresholds used here may therefore not be

valid if the decay occurs in the hot early universe. However, it is only very close to the

threshold itself (within several GeV) that this uncertainty becomes significant. Finally,

quark masses have been neglected in the gluon partial width. For mX close to the flavour

thresholds, this approximation breaks down, but the gluon branching fraction is only

∼ 10% and so the error does not contribute to the uncertainty of the total width by more

than this order (it is this uncertainty that is responsible for most of the extension of the

length of the gray bands about the flavour threshold).

Close to the charm threshold, the analogous uncertainties are even more poorly under-
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stood. Below the charm threshold, hadronic decays of a light scalar are highly uncertain

(see (47) for discussion). We avoid these regions altogether by restricting our consider-

ations to mX roughly above the twin charm threshold. Note that below the SM charm

threshold, the smaller decay rate of a Higgs-like scalar necessitates larger couplings λXx

for X to have a lifetime within the required reheating window. The larger couplings

then imply potentially stronger constraints from invisible mesonic decays. See (46–48)

for further discussion and recent analysis of the pertinent experimental constraints.

Taken together, the results in Figures 4.5 and 4.6 bear out the expectation that a

scalar X with symmetric couplings to the Standard Model and twin sectors may nonethe-

less inherit a large asymmetry in partial widths from the hierarchy between the scales v

and f . Across a wide range of masses mX , the asymmetry is proportional to (or greater

than) v2/f 2, tying the reheating of the two sectors to the hierarchy of scales.

Before proceeding to our computation of cosmological observables, we comment on

an alternative variation on the reheating mechanism presented here that involves having

X odd under the twin parity. This permits two renormalisable interactions with the

Higgses to give a Higgs potential of the form:

V ⊃m2
0

(
|HA|2 + |HB|2

)
+ λ0

(
|HA|4 + |HB|4

)
+ ϵX2

(
|HA|2 + |HB|2

)
+ ϵ̃X

(
|HA|2 − |HB|2

)
. (4.35)

If X then acquires a vev at some scale, it may be possible to arrange for the resulting

spontaneous breaking of the Z2 to give that required in the Higgs potential. However,

we find that, in order for X to be long-lived and reheat the universe, its couplings to the

Higgs must be highly suppressed and therefore that the resulting vev of X required to

explain the soft Z2-breaking in the Higgs potential must be many orders of magnitude

above the twin scale. If this is to be identified with the characteristic mass scale of X,
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then a UV-completion of the twin Higgs is required for anything further to be said of the

prospects of this possibility. However, if such a UV completion has similar structure to

the couplings in (4.35), then asymmetric reheating may require a cancellation between

the odd and even couplings ofX to the Higgs potential in order to suppress its twin-sector

branching fraction (because the odd coupling appears with opposite signs in the coupling

between X and the hA and hB states). We do not consider this possibility further.

4.4.2 Imprints on the CMB

For appropriate values of mX , the out-of-equilibrium decay of X reheats the two

sectors to different temperatures and effectively dilutes the energy density in the twin

sector. We obtain an analytic estimate of the effects of the X decay on the number of

light degrees of freedom observed from the CMB by approximating both the decay of X

and the decoupling of species as instantaneous in Section 4.4.2. We then demonstrate

that this estimate is reliable over most of the parameter space of interest with a numerical

calculation in Section 4.4.2. In Section 4.4.2 we consider neutrino masses and their joint

constraints with Neff .

Analytic estimate of Neff

If X dominates the energy density of the universe and then decays, depositing energy

ρSM and ρt into the SM and twin sectors respectively, then the temperature ratio is

determined by

ρt
ρSM

=
gt⋆(T

t
reheat)

gSM⋆ (T SM
reheat)

(
T t
reheat

T SM
reheat

)4

≈ Γ(X → Twin)

Γ(X → SM)
, (4.36)

where T SM
reheat and T t

reheat are the reheating temperatures for each sector, while gSM⋆ and

gt⋆ are the SM and twin effective number of relativistic degrees of freedom, respectively.

We have assumed that the two sectors are cool enough that they have already decoupled.
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We point out that not only does the number of effective degrees of freedom in each sector

need to be evaluated at the temperature of that sector, but that gt⋆ and gSM⋆ differ as

functions of temperature due to the differences in the spectra of the sectors, as seen in

Figure 4.1. As is well-known (42), reheating is a protracted process that occurs over

a time-scale given by the lifetime of the reheaton. During this time, the temperature

of the plasma cools slowly because, while the energy is being replenished by the decay

of the reheaton, it is simultaneously diluted and redshifted with the expansion of the

universe. It is assumed in (4.36) that any primordial energy density in either sector is

subdominant.

The temperatures of both sectors then redshift in the same way, so the only additional

differences between their temperatures arise from changes to the effective number of

degrees of freedom in each sector. By conservation of comoving entropy within each

sector, each evolves as T ieq/T
i
reheat =

(
gi⋆(T

i
reheat)/g

i
⋆(T

i
eq)
)1/3

a(Treheat)/a(Teq) where T
i
eq is

the temperature of the sector at matter-radiation equality, which the CMB probes as

explained in Section 4.3.3, and a(T ) is the scale factor as a function of temperature. In

the mirror Twin Higgs model, the two sectors have the same number of light degrees of

freedom at recombination (three neutrinos and a photon, assuming that the neutrinos

are still relativistic), so

(
T t
eq

T SM
eq

)4

=

(
T t
reheat

T SM
reheat

)4(
gt⋆(T

t
reheat)

gSM⋆ (Treheat)

)4/3

=
Γ(X → Twin)

Γ(X → SM)

(
gt⋆(T

t
reheat)

gSM⋆ (Treheat)

)1/3

. (4.37)

As our range of reheat temperatures encompasses the QCD phase transitions of both

sectors, the factors of g⋆ can be important.

Given the temperatures of the two sectors after X decays, we can obtain a simple es-

timate of the contribution to Neff that neglects the impact of masses of the twin neutrinos
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discussed in Section (4.3.3),

(∆Neff)mν=0 =
4

7

(
11

4

)4/3

gSM⋆ (T SM
eq )

ρt(T
t
eq)

ρSM(T SM
eq )

(4.38)

≈ 7.4× Br(X → Twin)

Br(X → SM)

(
gt⋆(T

t
reheat)

gSM⋆ (T SM
reheat)

)1/3

. (4.39)

In this limit the most recent Planck data give a 2σ bound of ∆Neff ≲ 0.40 assuming

pure ΛCDM+Neff (2). This translates into the requirement
ρt(T t

eq)

ρSM(TSM
eq )

≈ Γ(X→Twin)
Γ(X→SM)

≲ 0.05,

ignoring possible differences in g⋆.

Of course, as discussed in Section 4.3, the twin neutrino masses are relevant at the

temperature of matter-radiation equality, so we can obtain a more meaningful estimate

of ∆Neff using the results of Section 4.3.3 evaluated at the twin temperature determined

above:

∆Neff =

(
11

4

)4/3
120

7π2
(
T SM
eq

)4
(
ρtγ
(
T t
eq

)
+
∑
α

3wtνα
(
T t
eq

)
ρtνα
(
T t
eq

))
(4.40)

T t
eq = T SM

eq

(
Γ(X → Twin)

Γ(X → SM)

)1/4(
gt⋆(T

t
reheat)

gSM⋆ (T SM
reheat)

)1/12

(4.41)

with T SM
eq ≈ 0.77 eV (2) the photon temperature. While the right-hand side of this

equality has implicit dependence on T t
eq through g

t
⋆, this is only important if the reheating

occurs between the SM and twin QCDPTs and the neglecting of the factors of g⋆ is

otherwise reliable. With the further inclusion of Standard Model neutrino masses or an

extra sterile neutrino, the bound described above weakens to ∆Neff ≲ 0.7. As discussed in

Section 4.3.3, we are not aware of any analyses specific to our model involving both pure

dark radiation and three sterile neutrinos with masses of order the photon decoupling

temperature of the CMB and possibly cooler temperatures. In the absence of such

an analysis, we use the inequality ∆Neff ≲ 0.7 to indicate where the present CMB
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measurements are likely to constrain the light degrees of freedom of this model, leaving

a more detailed analysis of the CMB constraints as future work. In this case, the bound

on the decay width ratio is Γ(X→Twin)
Γ(X→SM)

≲ 0.09. The next generation of CMB experiments

are projected to strengthen this constraint to ∆Neff ≲ 0.02 at the 1σ level (49).

Numerical Calculation of Neff

A more precise study of the effect of X decay on the number of effective neutrino

species at recombination may be performed by numerically solving a system of differential

equations for the entropy in X and the two sectors as a function of time. Following the

analysis of Chapter 5.3 of (42) we have

H =
1

a

da

dt
=

√
1

3M2
Pl

(ρX + ρSM + ρt) (4.42)

dρX
dt

+ 3HρX = −ΓXρX (4.43)

ρi =
3

4

(
45

2π2gi⋆

)1/3

S
4/3
i a−4 (4.44)

S
1/3
i

dSi
dt

=

(
2π2gi⋆
45

)1/3

a4
(
ρXΓX→i +

dqj→i

dt

)
, (4.45)

where Si are comoving entropy densities and it has been assumed that X is cold by the

time it decays so that ρX = mXnX with number density nX (this is reliable as we only

consider mX > 10 GeV, which is above the decoupling temperature of ∼ 1 GeV). The

rate of heat flow from sector j to i per proper volume,
dqj→j

dt
, is defined in (4.7). To

account for the temperature-dependence of the effective number of relativistic degrees of

freedom in each sector, these equations are solved iteratively in the profiles of gi⋆(T
i).

The equations are solved in three stages: before, during and after the decoupling of

the SM and twin sectors. The ratio f/v is fixed to 4 for this analysis. Initial conditions

were chosen with ρ = 10−12ρX , for combined SM and twin energy densities ρ. However,
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it is only the requirement that the initial energy density of X dominates over that of

the SM and twin sectors that is important for simulating the cosmology over the times

of interest here, as the entirety of the latter is then generated by the subsequent decay.

The results close to the decoupling and reheating epochs are otherwise insensitive to

the initial conditions and ultimately match onto the standard outcome (42) expected by

equating the Hubble rate with the decay rate of X. The sectors are assumed to be in

thermal equilibrium and sharing entropy until a temperature of 10 GeV, below which

they are evolved separately with the heat flows
dqi→j

dt
switched on. Elastic scatterings

were neglected from the heat flow rate to accelerate the computation. It was verified for

the results found below that their contribution to the heat flow was always ≲ 10% while

the heat flow was itself not dominated by the Hubble rate. Heat flow was switched off

again once the twin temperature reaches 0.1 GeV, by which time thermal decoupling is

long-since complete, and the sectors are subsequently evolved separately. Again, although

the strengthening of the colour force and the QCDPT make the perturbative tree-level

computation of the scattering rates unreliable at temperatures below∼ 1 GeV, as found in

Section 4.3.2 and also in the results below, the sectors decouple above these temperatures.

Notably, the impact of X on the expansion rate causes decoupling to occur at slightly

hotter temperatures than expected from the analysis of Section 4.3.2 for the decoupling

in the standard cosmology.

The ratio of energy densities in each sector determines Neff, from (4.40). A plot of this

ratio over time is shown in Figure 4.7, with the expectation under the approximations of

the previous section shown as well. This approximation is reliable as long as the lifetime

of X is much longer than the temperature at which decoupling concludes, here ∼ 1 GeV.

The larger asymptotic value of the ratio of the blue line arises because the lifetime lies

close to the decoupling period, so that a significant fraction of the energy is transferred

while the sectors are thermalised or partially thermalised and does not contribute toward

290



Cosmological signals of a mirror twin Higgs Chapter 4

10-17 GeV

10-18 GeV

10-19 GeV

10-20GeV

10-21GeV

Γt /ΓSM

10-15 10-13 10-11 10-9 10-7 10-5 10-3

0.05

0.10

0.50

1

Time (s)

E
ne
rg
y
D
en
si
ty
ra
tio

Figure 4.7: Ratio of twin to SM energy densities throughout decoupling and reheating, for
different decay rates ΓX . The dashed line corresponds to the prediction of from the ratio of
decay widths, here selected to be 1/16.

asymmetric reheating. Equivalently, as will be discussed below, insufficient time elapses

between decoupling and reheating for the twin energy density to dilute and be repopu-

lated by the decays to the level predicted by (4.36). The subsequent bump represents the

period between the reheating of the twin sector by its QCD phase transition followed by

that of the SM. The green and orange lines correspond to reheating temperatures that

lie between SM and twin QCD phase transitions. In these cases, the reheating of the

SM from the subsequent SM QCD phase transition raises its energy density relative to

the twin sector above that expected from the ratio of branching fractions. As this occurs

after the lifetime of the reheaton, the estimate of the reheating temperatures presented

in (4.37) is still good as subsequent changes in the ratio due to the evolution of g⋆ are

accounted for in our analysis of the reheating scenarios.

The steep drop in the energy density ratio corresponds to the brief period during

which the energy density of the twin sector present at decoupling dilutes and redshifts,
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which continues until it reaches a comparable size to the energy density that is being

replenished by reheating. If the twin-sector branching fraction is highly suppressed, as

can occur in the “valley” region in Figure 4.6 withmh ≲ mX ≲ 2mh, then a longer time is

required for this to happen, especially close to the decay epoch where the diminishing of

the X population also contributes to a reduced reheating rate. These effects can prolong

the time required for the energy density ratio to converge to the asymptotic prediction

of (4.36).

Contour plots of ∆Neff as a function of mX and f/v appear in Figure 4.8, along with

current and predicted bounds using the analytic results of Section 4.4.2. The minimum

neutrino mass configuration with Dirac masses has also been assumed, although the

results are relatively insensitive to this provided that the twin neutrino masses are not

well above the eV scale. A SM reheating temperature of 0.7 GeV has been assumed. At

this temperature, we have verified using the numerical calculation of Section 4.4.2 that the

twin sector reheating temperature is always roughly above the twin neutrino decoupling

temperature over the parameter space of the figure, ensuring that the neutrinos thermalise

once produced in the decays and hence that the predictions of Section 4.4.2 are valid. A

treatment of the case in which the twin neutrinos are produced below their decoupling

temperature is beyond the scope of this analysis, but would involve the computation of

the phase space spectrum of the neutrino decay products of the X.

Also, as discussed in Section 4.3.2, a large temperature difference may partially relax

back if reheating occurs close to sector decoupling. However, a reliable calculation of the

heat flow at the temperatures of interest here must incorporate non-perturbative effects.

We do not perform such a computation, but note that, at a slightly higher SM reheating

temperature of 2 GeV where this computation is more reliable, ∆Neff in Figure 4.8 can

be raised by up to an order of magnitude in the region with f/v ≲ 4 and 150GeV ≲

mX ≲ 200GeV, notably where the twin sector partial width is suppressed relative to the
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SM by several orders of magnitude. The resulting ∆Neff prediction is, nevertheless, still

out of observable reach. At the lower SM reheating temperature assumed in Figure 4.8,

it is expected that decoupling will be further advanced and the enhancement in ∆Neff

would be weaker.

We emphasize that, if the lifetime of X is sufficiently close to the time of decoupling,

or equivalently, that the reheating temperature is sufficiently close to the decoupling

temperature, then the residual twin energy density left-over may be comparable to or

greater than that regenerated by reheating. Consequently, the suppression in ∆Neff would

be less than that predicted in (4.37). In this respect, the projection of Figure 4.8 should

be regarded as a lower bound on ∆Neff . In the regions of high suppression, such as the

“valley” region, the full asymmetry may not be generated before the complete decay of

X when the reheating temperature is of similar order as the decoupling temperature. In

particular, for the reheating temperature chosen here of 0.7 GeV and branching fraction

Br(X → Twin) ∼ 10−5, the numerical calculation of the energy density ratio saturates

at ∼ 4× 10−5. We do not include this effect in Figure 4.8 as its only impact is to mildly

shift the unobservably small ∆Neff = 10−4 contour. Lower reheating temperatures would

agree with the prediction of (4.36) were it not for the caveat that the twin neutrinos

may be produced out of equilibrium. However, this minimum value at which ∆Neff is

saturated can grow significantly with hotter reheating temperatures upon which it is

highly dependent.

CMB-S4 observations will be able to probe a large portion of the most natural pa-

rameter space, save the region mh ≲ mX ≲ 2mh where decays into the Standard Model

dominate well beyond the ratio f 2/v2, as previously discussed. Significantly, precision

Higgs coupling measurements at the LHC are unlikely to probe the mirror Twin Higgs

model beyond f ∼ 4v, so that the observation of additional dark radiation may be the

first signature of a mirror Twin Higgs.
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Figure 4.8: Contours of log10∆Neff as a function of mX and f/v, for T SM
reheat = 0.7 GeV. The

dark blue region is in tension with Planck, while the light blue region will be tested by CMB-S4.
Gray regions are where the X mass is below the twin charm threshold and our calculation of
the twin sector partial width is unreliable.

Neutrino Masses

In addition to the bounds on Neff , we must also respect the bounds on neutrino

masses. The analysis remains nearly the same as in Section 4.3.3, but now with the

twin neutrinos at a lower temperature, as determined above. As mentioned above, for

large enough f/v and SM reheating temperature sufficiently close to the lower bound,

the reheating temperature of the twin sector may be below the twin neutrino decoupling

temperature and the resulting energy density would be more difficult to compute. For

294



Cosmological signals of a mirror twin Higgs Chapter 4

simplicity, we choose λxx large enough such that the twin reheating temperature is always

above the twin neutrino decoupling temperature.

As before, we compute meff
ν as

meff
ν =

nt
ν

nSM
ν

∑
α

mt
να . (4.46)

In relating the scale factors at neutrino decoupling in each sector, we now have to use

the above temperature ratio to find, analogously to Section 4.3.3, that

meff
ν =

(
Γt

ΓSM

)3/4(
gt⋆ (T

t
reheat)

gSM⋆ (T SM
reheat)

)1/4(
f

v

)n∑
α

mSM
να , (4.47)

where, again, n = 1 for Dirac masses and n = 2 for Majorana masses. Interestingly, if

the branching ratios scale as Γt/ΓSM = (v/f)2, then we have meff
ν ∝ (f/v)−3/2+n, so the

contribution grows with f/v for Majorana masses, but is suppressed for Dirac masses.

As before, we consider the minimal mass spectrum of mν = [0.0, 0.009, 0.06 eV] and

a degenerate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3. In Figure 4.9 we plot the

predictions of the X reheating for ∆Neff and meff
ν for both spectra and both Dirac and

Majorana masses using the approximations of Section 4.3.3, for f/v from 3 to 10 and

assuming the Γt

ΓSM
∼ (v/f)2 scaling; there are regions in the space of mX where the

suppression of meff
ν would be much higher.

Dashed lines indicate the rough locations of present experimental limits from Planck

2015, and projected bounds from CMB-S4. As mentioned in Section 4.3.3, we are unaware

of any study of bounds on both meff
ν and ∆Neff treated jointly. In the absence of this, we

show present and projected constraints on Neff and
∑
mν from (50) and (27), ignoring

correlations, as described in Section 4.3.3.
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Figure 4.9: Predicted values of ∆Neff and
∑

mν + meff
ν for minimal and degenerate neutrino

mass spectra with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015 (2)
bounds on

∑
mν and Neff , as discussed in Section 4.3.3, are represented by the dashed lines,

and the projected CMB-S4 constraints are given by the dotted lines. It has been assumed that
Γt
ΓSM

∼ (v/f)2. Note however, that, from Figure 4.8, this scaling of the partial widths holds
only for the mass range 50GeV ≲ mX ≲ 120GeV, outside of which the twin partial width is
more suppressed and the model is only testable through ∆Neff over a smaller range in f/v.

4.4.3 Thermal Production

In our discussion up to this point, we have been agnostic about the origin of the cosmic

abundance of X and have operated under the assumption that it absolutely dominates

the cosmology before it decays. Here, we consider the possibility that X was thermally

produced through freeze-out and subsequently dominates the universe as a relic before

decaying. This thermal history is viable, but places strong constraints on the mass and

couplings of the X.

The energy density of relativistic species redshifts as ρr ∝ a−4 ∝ T 4, while the energy
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density of non-relativistic, chemically decoupled matter scales as ρm ∝ a−3. The energy

density contained in the X can therefore only grow relative to the energy density in

the thermal bath once it becomes non-relativistic. We found in Section 4.4.2 that by

recombination, ρt/ρSM ≲ 0.09 is needed to evade current bounds on ∆Neff. Thus we

need to have the energy density in the X dominate over the SM and twin plasmas by

more than this factor when it decays. If X becomes non-relativistic instantaneously at

the moment that its temperature reaches some fraction c ∼ O(0.1) of its mass, then, as

T ∝ 1/a and ρX is ∼ 1/g⋆ of the total energy density, the mass is required to satisfy

mX ≳ 10/c × g⋆ (T = mX)T
SM
Xreheat. Since the SM reheating temperature is strongly

constrained to be above BBN, this effectively puts a lower limit on the mass of the X.

Importantly, X must freeze-out when relativistic or its energy density will be further

Boltzmann suppressed. The lower limit on the mass of the X becomes an upper limit

on the X’s couplings - if it couples too strongly to the thermal bath, then it won’t freeze

out early enough to be hot.

In fact the situation is somewhat less favorable than the above analysis suggests,

because it is relevant operators that must keep X in thermal equilibrium. For an X

with the interactions introduced in Section 4.4.1, the annihilations have rates that scale

with temperature as Γ ∼ nX ⟨σv⟩ ∼ T for T ≳ mX ,mh (where nX is the number

density of X and ⟨σv⟩ is its thermally averaged annihilation cross section). However,

in a radiation-dominated universe, H ∼ T 2. Thus, at high enough temperatures, X is

not in thermal equilibrium with the plasma and it is only once the universe cools enough

that it may thermalise. Then, as the temperature drops, XX → qq̄ annihilations become

suppressed by the Higgs mass and subsequent Boltzmann suppression causes X to freeze-

out. Note that the rates of these annihilation processes are controlled by the coupling

λx, independently of x, which is unconstrained by itself (other processes mediated by

λxx are found to be subdominant in the ensuing analysis, for the range of λx over which
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thermal production is successful). If the coupling is too weak to begin with, then the X

never thermalises and thermal production cannot happen. Thermal production therefore

requires a careful balancing of parameters - small coupling λx is preferred for X to

freeze-out hot and as early as possible, but the coupling is bounded from below by the

requirement that X reach thermal equilibrium. This combination of constraints severely

restricts the size of the parameter space over which thermal production is viable to cases

in which the coupling is selected so that X enters and departs from thermal equilibrium

at close to the same temperature.

To obtain numerical predictions for this scenario, the calculation of Section 4.4.2

was modified to account for the time after the freeze-out of X before it becomes non-

relativistic. During this period we use (4.16) and (4.17) for the energy density of the

X, approximating decays as being negligible, before switching over to (4.43) when the

temperature drops below the mass of the X. The approximation that the X does not

decay appreciably while it is relativistic must be good if there is to be sufficient time

for it to grow to dominate between becoming non-relativistic and decaying. The decay

width of X was fixed to 5× 10−21GeV, corresponding to a reheating temperature close

to the ∼ 10 MeV lower limit, in order to maximise the amount of time over which the

energy density of X may grow relative to the SM plasma, thereby providing the greatest

possible reheating.

The predictions for ∆Neff from a thermally produced X are shown in Figure 4.10 for

the small regions of parameter space where this is viable, with f/v = 4. We find that the

dominant annihilation channels over this region are XX → tt̄ and XX → bb̄, mediated

by the light Higgs, as well as their twin analogues, mediated by the heavy Higgs. As

expected, the primordial energy density in the twin sector is too large compared to that

generated by the X for the asymmetric reheating to be effective when mX is too light

(≲ 100 GeV in this case). Similarly, when the coupling is too strong, the X is held
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in equilibrium for longer and freezes-out underabundant compared to the twin energy

density. However, when the coupling is too weak (the gray region), X never thermalises

to begin with (close to the boundary with this region, X freezes-out almost immediately

after thermalising). The peak in the contours occurs because of the “H-funnel” in which

the twin Higgs resonantly enhances annihilations into twin quarks. All of this region will

be testable by CMB-S4.
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Figure 4.10: Parameter space where thermal production of X gives a large enough relic abun-
dance to dilute the twin sector, for f/v = 4. In the gray region, the coupling is too weak
for X to ever reach thermal equilibrium. The blue region is in tension with recent Planck
measurements of ∆Neff , whereas all of the white region will be tested by CMB-S4. Predictions
presented here for ∆Neff close to the gray boundary are more uncertain because of the high
sensitivity of the freeze-out temperatures to the coupling.
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4.5 Twinflation

As an alternative to the model presented above of late, out-of-equilibrium decays

of a Z2-symmetric scalar, one may imagine that the field driving primordial inflation

reheats only the Standard Model to below the decoupling temperature of the two sectors.

Production of the twin particles then ceases at some time after the temperature drops

below the decoupling temperature during reheating.

To make this consistent with a softly-broken Z2 symmetry, we extend the inflationary

sector and introduce a ‘twinflaton’ that couples solely to the twin sector. The combined

inflationary and twinflationary sectors respect the Z2 symmetry. However, if the two

sectors are entirely symmetric then one generally expects both inflationary dynamics to

happen coincidentally, which would result in identical reheating. We therefore rely on soft

Z2-breaking to give an asymmetry between the two sectors that causes the twinflationary

sector to dominate the universe first. With the right arrangement we can end up with

two distinct periods of inflation - a first caused by the “twinflaton” and a second that

then reheats the Standard Model to below the decoupling temperature, having diluted

the sources of twin-sector reheating from the first period.

One simple mechanism for Z2-breaking which is well-suited for introducing asymme-

try to inflationary sectors is to introduce an additional Z2-odd scalar field η (as was done

in (51)). This admits linear and quadratic interactions to antisymmetric and symmetric

combinations of the inflationary sector fields, respectively. When η acquires a vev, this

introduces an asymmetry in the fields to which it was coupled, dependent on the combi-

nation of its vev and its couplings. If η is coupled to both the inflationary sectors and the

Higgs sectors, it could be the sole source of Z2-breaking in a twinflationary theory. One

may generally imagine that, in some UV completion, the mechanism that softly breaks

the symmetry in the Higgs potential could also be the origin of the soft breaking of the
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inflationary sector.

Cosmologically, this possibility may have similar observational signatures as the model

discussed in Section 4.4, where the amount of twin-sector dark radiation is determined

by the partial widths of the inflaton of the second inflationary epoch. If this dominantly

couples to the SM, then ∆Neff will be suppressed which, while successfully resolving the

cosmological problems of the Mirror Twin Higgs, may also be observationally inaccessible.

However, additional, distinctly inflationary signatures may make this potentially testable

by other cosmological observations.

The mechanism of twinflation completes a catalog of models of asymmetric reheating

by late decays, which may be indexed by representations of the twin parity: the case

of a Z2-even particle, in which a kinematic asymmetry in the partial widths provides

the reheating asymmetry, the case of a Z2-odd particle, which can also provide the

spontaneous Z2-breaking required in the Higgs potential, and the case where two distinct,

long-lived particles couple to each sector, which may also be related to inflation.

4.5.1 Toy Model

As a toy model we here consider ‘twinning’ the simple φ2 chaotic inflation scenario.

The inflationary dynamics in this case are easy to understand and we have the additional

benefit that this inflationary model has been considered in the literature before as ‘Double

Inflation’ (see (52), (53) and (54)). We furthermore specialize to ‘double inflation with

a break’, where there are two distinct periods of inflation which produces a step in the

power spectrum, and we consider the constraints that this places on our model. In this

case, it is assumed that each inflaton field couples and therefore decays dominantly into

the sector to which it belongs. We will comment briefly on the case without a break and

the additional signals one could look for in that case.

301



Cosmological signals of a mirror twin Higgs Chapter 4

The potential of the inflationary sector for inflaton φA and twinflaton φB is

V =
1

2
m2
Aφ

2
A +

1

2
m2
Bφ

2
B, (4.48)

where mA ̸= mB may arise from soft Z2- breaking, perhaps related to the soft Z2-

breaking in the Higgs potential. In order for the ‘twinflation’ to occur first, we require

that the energy of the B field initially dominates the energy density of the universe. We

take the initial positions of the fields to be the same and m2
B ≫ m2

A.
5 Call φA(0) =

φB(0) = n
√
2Mpl = nφc, where φc is the critical value at which inflation stops and

mB = rmA = rm with n, r > 1. The inflationary dynamics are then those of slowly-

rolling scalar fields. At some point in the early universe we imagine that the slow-roll

approximation holds for both fields and the inflationary sector dominates the universe.

The dominating field then slow-rolls down its potential for n2−1
2

e-folds, while the lighter

field’s velocity is suppressed by approximately φA

r2φB
. Solving the system numerically

reveals that the motion of φA during this period can be neglected entirely.

After φB reaches the critical value
√
2Mpl, it stops slow-rolling and begins oscillating

around the minimum of its potential. For there to be two distinct periods of inflation,

there must be a period where these oscillations dominate the universe, which requires that

the energy densities of each inflaton ρA and ρB satisfy ρB(φc) = r2m2M2
pl > ρA(φ(0)) =

n2m2M2
pl and therefore r > n. For a φ2

B potential, the energy in these oscillations

redshifts as ρB ∼ a−3. Eventually, the energy density in φB drops below that of φA and

a new epoch of inflation, driven by φA, begins. This provides a further n2−1
2

e-folds of

inflation to give n2 − 1 in total, while the B-sector energy density is diluted away.

Note that in order for our toy model to reheat below the decoupling temperature of the

5Note that merely giving the twin field a much larger initial condition does not instigate twinflation.
The dynamics of the subdominant field in this case are such that it will track the dominant field and
both will reach the critical value at the same time. This is easily confirmed numerically.
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two sectors, reheating must occur well after the end of inflation. If, during the coherent

oscillation of an inflaton, it becomes the case that the inflaton decay width Γ ∼ H, then

reheating will occur and result in temperature Treheat ∼ 0.1
√

ΓMpl. However, if Γ ≫ H

when inflation ends, then all of the energy in the inflaton is immediately transferred and

we instead have reheating temperature Treheat ∼ 0.1
√
mαMpl for an inflaton of mass mα.

But in order for Treheat ≲ 1 GeV, it is required that mα ≲ 10−7 eV, so this possibility that

the inflaton is short lived is not viable. The procedure of twinning inflationary potentials

may be generalised to other, more realistic models, provided that this constraint upon

the reheating temperature can be satisfied.

4.5.2 Observability

One could always make a twinflationary scenario consistent with observational con-

straints by letting the second inflationary period of inflation last long enough. In our

toy model, this would correspond to setting n high enough that the momentum modes

which left the horizon during the first inflation have not yet re-entered the horizon - such

a scenario would look exactly like single-field chaotic inflation.

Alternatively, we may also allow for n small enough that all the momentum modes

that left the horizon during the second inflation are currently sub-horizon. In this case,

fluctuations at large enough wavenumbers (equivalently, small enough length scales) are

‘processed’ (cross the horizon) at a different inflationary energy scale than those that

were processed earlier, giving a step in the power spectrum. While Planck has measured

the primordial power spectrum for modes with 10−4 Mpc−1 ≲ k ≲ 0.3 Mpc−1 (where

the lower bound is set by the fact that smaller modes have not yet re-entered the hori-

zon), proposed CMB-S4 experiments will increase this range (27) somewhat, as will be

discussed further below. We wish to show that the power spectrum of our toy model is
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not ruled out and, furthermore, may be observed in the coming decades.

The height of the step in the primordial power spectrum is determined by the energy

scale of each period of inflation, so modes crossing the horizon in the second inflationary

period should be suppressed by a factor of r2 > n2 ≳ 25 compared to those exiting

in the first period. This degree of suppression is ruled out by Planck for the range of

modes over which it has reconstructed the power spectrum (50). A computation of the

primordial power spectrum for double inflation was given in (53). It was found that

significant damping does not occur for modes which cross outside the horizon during the

first inflationary period, re-enter during the inter-inflationary period and again cross the

horizon during the second inflationary period. It is only those scales which first cross the

horizon during the second inflationary period that are significantly damped (although

other features in the shape, such as oscillations, may be present for modes that are

subhorizon during the intermediate period).

The relation of this characteristic scale to present-day observables is easily done using

the framework given in (55). Let the subscripts a, b, c, d, e respectively correspond to

the beginning of the first inflationary period, the end of that period, the beginning of

the second inflationary period, the end of that period, and the beginning of radiation

domination. During the coherent oscillation periods, the inflaton acts as matter and the

energy density falls as ρ ∝ a−3. Let ki be the momentum whose mode is horizon-size at

the i epoch; ki = aiHi. The scales ki can be related using the number of e-folds in each

period, which are themselves determined from the first Friedmann equation. Denoting

Nij = ln
aj
ai
, we have ka = e−Nabnkb, kb = e

1
2
Nbckc and similarly for the other characteristic

modes, where, in particular, slow-roll inflation predicts that Nab = Ncd = n2−1
2

. The

evolution of the characteristic momentum scales is shown schematically in Figure 4.11.

304



Cosmological signals of a mirror twin Higgs Chapter 4

Figure 4.11: Schematic evolution of the characteristic scales in Twinflation, as seen by compar-
ing wavenumbers to the Hubble radius over time. Note that the time axis is not a linear scale.

Finally, ke can be determined using the conservation of comoving entropy:

ke =
πg

1/3
⋆ (T0)g

1/6
⋆ (Treheat)T0Treheat

3
√
10Mpl

, (4.49)

where T0 and a0 are the temperature and scale factor today and Treheat is the reheating

temperature (which is sufficiently low that only SM particles are produced). We work

explicitly with the convention a0 = 1. The characteristic modes associated with the

break can then be determined.

As mentioned above, (53) shows that damping occurs for modes that exit the horizon

only during the second inflationary period, so we should take the characteristic damping
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scale to be the smallest such scale, which here corresponds roughly to kb This can be

determined as

kb = ne
1
2
Nbc−Ncd+

1
2
Ndeke

= n
( r
n

)1/3
exp

(
−n

2 − 1

2

)[ 1
2
m2M2

pl

π2

30
g⋆(Treheat)T 4

reheat

]1/6
πg

1/3
⋆ (T0)g

1/6
⋆ (Treheat)T0Treheat

3
√
10Mpl

(4.50)

where kc only differs by the factor of (r/n)1/3 (which is roughly close to unity). Once

again, between kb and kc are oscillatory features, so kb should merely be taken as the

rough characteristic scale of the damping.
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Figure 4.12: The prediction for the characteristic suppression scale as a function of the initial
values of the fields. The mapped regions should be interpreted not as having hard boundaries,
but rather fuzzy endpoints where they break down. Here we have used Treheat = 10 MeV and
r = 2n.

Now the characteristic damping scale is determined by m, n, r, and Treheat. Our

observational bound on kb is that Planck has not seen this suppression on momentum

scales at which it has been able to reconstruct the primordial power spectrum from the

angular temperature anisotropy power spectrum, which is roughly k ≲ 0.3 Mpc−1. We

have constraints on the reheating temperature from rethermalization of the twin sector

or interrupted big bang nucleosynthesis 10MeV ≲ Treheat ≲ 1 GeV, on having a period
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of intermediate matter domination between the two inflations r > n and on the total

number of e-folds n2 − 1 ≳ 25 to solve cosmological problems. Note that we require

fewer e-folds of inflation than is typically assumed in the standard cosmology. Since the

low reheating temperature gives fewer e-folds from reheating up to today, less inflation

is needed to explain the large causal horizon and flatness.

The normalization of the spectrum provides a further constraint, the most recent

measurement of which come from Planck (50). The scalar power spectrum at k⋆ =

0.05 Mpc−1 is measured to be PR(k⋆) = e3.094±0.034 × 10−10. Then for k⋆ < kc (i.e.

k⋆ having left the horizon during the first period of inflation and not re-entered before

the second, so no deviation from single-field inflation would be seen at this scale), the

spectrum of (53) yields the constraint

2.03× 10−6 =
r2m2

M2
pl

ln

(
kb
k⋆

)(
ln
kb
k⋆

+
n2

2

)
. (4.51)

The characteristic scale (4.50) depends much more strongly on n than it does on any

of the other parameters. In Figure 4.12, we give a rough idea of the scale as a function of

n, having set Treheat = 10 MeV and r = 2n, while m is chosen to satisfy the normalization

condition. We also show the constraint on kb set by Planck. Note again that the region

described as “observationally single-stage inflation” does still provide a solution to the

problem of reconciling cosmology with the mirror Twin Higgs.

CMB-S4 will improve the constraint on kb through its improved measurement of polar-

ization anisotropies (27). With only precision measurements of temperature anisotropies,

the un-lensed power spectrum cannot be so easily reconstructed from the lensed spec-

trum. The effects of gravitational lensing of CMB place an upper limit on the size of

primordial temperature anisotropies that can be measured (56), which Planck has satu-

rated. However, the polarization anisotropy power spectrum allows the removal of lensing
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noise from the temperature spectrum so that higher primordial modes can be detected.

The polarization power spectrum itself also gives us another window into the high-ℓ

modes of the primordial power spectrum, as the signal does not become dominated by

polarized foreground sources until higher scales near ℓ ∼ 5000. CMB-S4 is projected to

make cosmic variance limited measurements of both the temperature and polarization

anisotropy power spectra up to the modes where they become foreground-contaminated

and so provide additional information on the shape of the primordial power spectrum

(27). The map from measurements of angular modes ℓ to contraints on spatial modes

k depends on the evolution of the power spectrum between inflation and the CMB, so

forecasting constraints requires careful study. However, these improvements will not test

most of the parameter space presented in Figure 4.12, where the step is predicted on

extremely small distance scales.

We have discussed a twinflationary model of double inflation with a break for sim-

plicity, but there is a parametric regime where double inflation without a break gives the

required amount of asymmetric reheating into the Standard Model. With two periods

of inflation, the second period dilutes the energy density of the heavier field sufficiently

that there is no observable signal of it produced in reheating. However, even with only

one period, inflation can continue for long enough after the inflaton turns the corner in

field space such that, at late times, the fraction of the inflaton in the B state relative

to the A state is small enough that the expected energy densities that are transferred

into each sector satisfy ρB/ρA < 0.1. This occurs as long as r ≳ 1.2, assuming that

the mixing angle of the slow-rolling field with the φA and φB fields entirely determines

the fraction of its energy that reheats each sector. There is thus a much larger range of

r where this toy model of inflation passes Neff bounds than our above analysis shows.

The resulting imprint on the CMB could resemble that of the long-lived decay model of

Section 4.4, with ∆Neff again being related to the ratio of branching fractions, although
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this is dependent upon the UV completion of the Twin Higgs.

When there is only one period of inflation, the step is smoothed out and less pro-

nounced and it is necessary to locate the feature numerically. Furthermore, having mul-

tiple degrees of freedom available allows for non-trivial evolution of momentum modes

after they become super-horizon, which does not occur in single-field inflation but may

be calculated from the full solution to the field equations (54). While a twinned poten-

tial leading to two periods of inflation generally predicts a step in the power spectrum,

when there is no break the predictions, and thus constraints, this prediction become more

model-dependent. Therefore we leave detailed predictions in that case for future study

using realistic models and merely state that the range of r = 1 to n interpolates between

the single field spectrum and that with a step, as one would expect.

There are also at least two other detectable effects one might expect in double inflation

without a break and in general realistic twinflationary models. Interactions between

inflaton fields may produce primordial non-Gaussianities, while the presence of additional

oscillating degrees of freedom may produce isocurvature perturbations. These do not

appear in our toy model because the heavy field is exponentially damped during the

second inflation. CMB-S4 is projected to improve Planck’s bounds on non-Gaussianities

by a factor of ∼ 2 and on isocurvature perturbations by perhaps an order of magnitude

(though model-independent projections have not been made), so may be able to detect

or place useful constraints on realistic twinflationary models (27).

We have introduced twinflation as a mirror Twin Higgs model which suppresses the

cosmological effects of twin light degrees of freedom. It extends the mirror symmetry to

the inflationary sector. The soft Z2 symmetry-breaking of the Higgs sector may be used

in the inflationary sector to cause distinct periods of inflation. There exists a parametric

region where this is cosmologically indistinct from single-stage inflation, but also another

in which it may be observable. As the direct product of inflation and the Mirror Twin
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Higgs, this is in some sense a minimal solution.

4.6 Conclusion

In this work we have considered scenarios in which cosmology provides meaningful

insight on solutions to the electroweak hierarchy problem. In particular, we have demon-

strated several simple mechanisms in which the cosmological history of a mirror Twin

Higgs model is reconciled with current CMB constraints and provides signatures accessi-

ble in future CMB experiments. In the case of out-of-equilibrium decays, we have found

that decays of Z2-even scalars sufficiently dilute the energy density in the twin sector

without the addition of any new sources of Z2-breaking. In much of the parameter space,

the residual contribution to ∆Neff is directly proportional to the ratio of vacuum expec-

tation values v2/f 2 parameterizing the mixing between Standard Model and twin sectors

(as well as the tuning of the electroweak scale), and may be within reach of CMB-S4

experiments. In the case of twinflation, we have found that a (broken) Z2-symmetric in-

flationary sector may successfully dilute the energy density in the twin sector, as well as

potentially leave signatures in the form of a step in the primordial power spectrum or in

departures of primordial perturbations from adiabaticity and Gaussianity. In both cases,

these models raise the tantalizing possibility that signatures of electroweak naturalness

may first emerge in the CMB, rather than the LHC.

There are a variety of possible directions for future work. Here we have focused on

the cosmological consequences of late-decaying scalars and twinned inflationary sectors

without specifying their origin in a microscopic model. It would be interesting to con-

struct complete models (where, e.g., supersymmetry or compositeness protect the scale

f from UV contributions) in which the existence and couplings of late-decaying scalars

arise as intrinsic ingredients of the UV completion. Likewise, we have considered only
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a toy model of twin chaotic inflation; it would be interesting to see if twinflation may

be realized in complete inflationary models that match the observed spectral index and

constraints on the tensor-to-scalar ratio.

While we have taken care to ensure that our scenarios respect the well-measured cos-

mological history beneath T ∼ 1 MeV, we have not addressed the origin of the observed

baryon asymmetry. In the case of out-of equilibrium decays, there are a number of pos-

sibilities. It is plausible that a somewhat larger baryon asymmetry is generated through

various conventional mechanisms and diluted by late decays. Alternatively, the decay

mechanism itself may possibly be expanded to generate a baryon asymmetry or some

other late decay may generate the baryon asymmetry below ∼ 1 GeV. In the case of

twinflation, inflationary dilution of pre-existing baryon asymmetry requires that baryo-

genesis occur in association with reheating or via another mechanism at temperatures

below ∼ 1 GeV. It would be worthwhile to study models for the baryon asymmetry

consistent with these scenarios. Steps in this direction have been taken in (17), which

attempted to relate this to asymmetric dark matter in the twin sector.

Likewise, any investigation of dark matter, be it related directly to the twin mech-

anism or otherwise, must also address implications of the dilution. Previous work at-

tempting to construct dark matter candidates in the twin sector (11–18)) has relied upon

explicit Z2-breaking that is not present in the mirror model. Dark matter may alterna-

tively be unrelated to the Twin Higgs mechanism, such as a a WIMP in some minimal

extension of the electroweak sector that freezes-out as an overabundant thermal relic and

is then diluted to the observed density during reheating. Alternatively, it may be that

the dark matter abundance is produced directly during reheating. It would be interest-

ing to study extensions of our scenarios that incorporate dark matter candidates directly

related to the mechanism of dilution.

Finally, we have only approximately parameterized Planck constraints and the reach
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of CMB-S4 on twin neutrinos and twin photons. Ultimately, more precise constraints

and forecasts may be obtained via numerical CMB codes. This strongly motivates the

future study of CMB constraints on scenarios with three sterile neutrinos and additional

dark radiation whose temperatures differ from the Standard Model thermal bath.
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