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ABSTRACT
We study the dynamics associated with the extension of turbulent convective motions from a
convection zone (CZ) into a stable region (RZ) that lies below the latter. For that purpose, we
have run a series of 3D direct numerical simulations solving the Navier–Stokes equations under
the Boussinesq approximation in a spherical shell geometry. We observe that the overshooting
of the turbulent motions into the stably stratified region depends on three different parameters:
the relative stability of the RZ, the transition width between the two, and the intensity of
the turbulence. In the cases studied, these motions manage to partially alter the thermal
stratification and induce thermal mixing, but not so efficiently as to extend the nominal CZ
further down into the stable region. We find that the kinetic energy below the convection zone
can be modelled by a half-Gaussian profile whose amplitude and width can be predicted a priori
for all of our simulations. We examine different dynamical length-scales related to the depth
of the extension of the motions into the RZ, and we find that they all scale remarkably well
with a length-scale that stems from a simple energetic argument. We discuss the implications
of our findings for 1D stellar evolution calculations.

Key words: convection – Sun: interior – stars: interiors.

1 IN T RO D U C T I O N

Understanding the dynamical interaction between an unstable
turbulent convective region and an adjacent stable one remains a
long-standing unsolved problem in fluid dynamics. This situation
is nevertheless fairly ubiquitous in both geophysical and astro-
physical settings. Here on Earth for example, it commonly occurs
in the atmosphere, where re-radiance of solar surface warming
creates a mixed layer below the very stable nocturnal inversion
layer (Deardorff, Willis & Lilly 1969). In stars, which are the main
topic of this paper, the coexistence of convective and radiative layers
is almost ubiquitous across masses and evolutionary stages. For
example, A-type stars possess two convection zones, an upper one
driven predominantly by the ionization of hydrogen and a lower
one driven by the second ionization of helium, with a radiative zone
in between. In the Sun, by contrast, an outer convection zone sits
atop an inner radiative zone and below a stable atmosphere, and
the transitions are due to changes in the heat capacity (caused by
the partial ionization zones of hydrogen and helium) and opacity
(due to the temperature dependence of heavier ions). Since there is
no impermeable interface between the stable and unstable layers,
fluid flows originating from one can continue into the other. Primary
questions are then whether the convective region can be extended
from its original size, and whether the stability characteristics of
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the system are altered significantly. In all that follows, we shall
adopt the terminology introduced by Zahn (1991): if motions are
found beyond the convective layer but do not extend its size then
the dynamics are termed ‘overshooting’; if the convective region is
extended, the dynamics are called ‘penetration’.

Any form of mixing beyond the classical boundary set by
the Schwarzschild criterion could have crucial impacts on stellar
evolution and surface abundances through the transport of chemicals
and angular momentum (e.g. Straus, Blake & Schramm 1976;
Spite & Spite 1982; Ahrens, Stix & Thorn 1992; Pinsonneault 1997;
Herwig 2000; Baraffe et al. 2017). The transport of magnetic fields
between the two regions has also been suggested as playing a major
role in the dynamo process (e.g. van Ballegooijen 1982; Parker
1993; Charbonneau & MacGregor 1997). Furthermore, thanks to
the development of helio- and asteroseismology, we now have
the opportunity to directly measure the extent of an adiabatically
stratified zone (e.g. Christensen-Dalsgaard, Gough & Thompson
1991; Silva Aguirre et al. 2011). This provides a direct test of stellar
evolution, and can, in particular, reveal the presence of penetration
beyond the expected edge of a convective region (e.g. Deheuvels
et al. 2016; Christensen-Dalsgaard, Gough & Knudstrup 2018).
Because of its obvious importance, a great body of work has already
been generated on penetrative and overshooting convection, and yet
some of the crucial questions remain poorly understood. In what
follows, we summarize some of the salient modelling milestones of
the field, review any outstanding questions, and place our work in
their context.
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Convective overshooting in a spherical shell 1221

The answer to the most basic question of ‘does penetration or
overshooting actually happen?’ has been addressed using a classic
example of such dynamics, the ice–water system. Adjacent convec-
tive and stable regions in this system can be created thanks to the
unusual equation of state for water, which is quadratic with a density
maximum at 4 ◦C. When a layer of water sits on top of ice (at 0 ◦C)
with an upper boundary temperature of more than 4 ◦C, a system is
created where a convectively unstable layer (between the ice and the
location of the density maximum) sits below a convectively stable
layer (above the density maximum). A long history of exploration of
this problem exists, from experiments (e.g. Malkus 1960; Townsend
1964), through linear and weakly non-linear analytic work (e.g.
Veronis 1963), to numerical simulations both old (e.g. Musman
1968; Moore & Weiss 1973) and new (e.g. Couston et al. 2017). This
simple toy model clearly demonstrates that the weak overshooting
predicted by linear theory is replaced by deeper penetration when
non-linear feedback on the thermal stratification is allowed. This
raises the crucial question of whether similarly large deviations
from linear theory predictions (the Schwarzschild criterion) exist in
stars.

Answering this question requires moving beyond the assumptions
of the works cited above, which was almost all 2D and (essentially)
incompressible. A first attempt to understand 3D and compressible
effects numerically came from modelling via modal expansions,
an approach that is motivated by the observable cellular nature
of convection. The horizontal structure of the flow is expanded
as a low-order discrete spectrum of horizontal planform modes,
allowing numerical resources to be devoted to solving the vertical
and temporal problem. This approach, first introduced by Herring
(1963) and Roberts (1966), but popularized in a series of papers
by Gough, Spiegel and Toomre (Gough, Spiegel & Toomre 1975;
Toomre, Gough & Spiegel 1977, 1982), was first applied to the
Bénard convection problem, and commonly uses severe truncations
of the modal expansion (1–3 modes) with planforms such as rolls,
squares, and hexagons.

The technique has been extended to penetrative and overshooting
problems involving multiple layers in a number of ways. Using
a complex equation of state to include the ionization regions,
as well as the anelastic formalism, the papers by Latour et al.
(Latour et al. 1976; Toomre et al. 1976; Latour, Toomre & Zahn
1981) study the convection zones of A-type stars and find that
they could interact despite the intervening radiative zone thanks to
extended fluid motions. Somewhat later, Zahn, Toomre & Latour
(1982) and Massaguer et al. (1984) simplified the model set-up to
address the question of penetration specifically. Using Boussinesq
and anelastic equations, respectively, they initiate layers by directly
specifying a depth-dependent background adiabatic gradient in
order to study a single convection zone sandwiched between two
stable layers. This compact series of papers has led to some
important realizations. First, a fairly deep penetration of the order of
the depth of the unstable layer is found in all cases that agrees well
with laboratory experiments (although it depends on the stability
of the stable layer and on the aspect ratio of the cells). Secondly,
flow asymmetries make substantial differences in the amount of
overshoot or penetration. For instance, stratification combined with
pressure effects (buoyancy braking in the upflows and enhanced
driving in the downflows) in the anelastic case causes slower upflows
and faster downflows compared to the Boussinesq case, which leads
to enhanced downward penetration. Topological asymmetries (as
induced by non-Cartesian effects or simply through a particular
selection of horizontal planform) have similarly important impact
on the problem.

The discovery of the importance of flow asymmetries on the
extent of overshooting and penetration has naturally prompted
new investigations into the effect of compressibility. A big step
forward was made by Hurlburt, Toomre & Massaguer (1986) and
Hurlburt et al. (1994), with fully non-linear, compressible, 2D,
Cartesian simulations of overshooting/penetrative convection. Note
that these two papers also introduce yet another way of creating a
radiative/convective system, by using a vertically varying thermal
conductivity profile. This creates a variation in the background
radiative temperature gradient in the different layers that can be
selected to achieve different stability properties, and the background
model ultimately takes the form of stacked polytropes. This set-
up naturally introduces the concept of ‘stiffness’ S as the ratio
of the subadiabaticity of the stable region to the superadiabaticity
of the unstable region. Most notably, these papers investigate the
dependence of the depth δ of extended motions on the stiffness
S, revealing two separate regimes: one associated with penetration
(δ ∝ S−1) and one with overshoot (δ ∝ S−1/4) (more on this topic
later). These studies also demonstrate the generation of gravity
waves in the stable interior by the overshooting, both in fully
compressible simulations (e.g. Hurlburt et al. 1986, see also Pratt
et al. 2017) and in anelastic ones (e.g. Rogers & Glatzmaier
2005; Brun, Miesch & Toomre 2011). Freytag, Ludwig & Steffen
(1996) performed fully compressible 2D, radiation-hydrodynamics
simulations of the narrow convection zones sandwiched between
stable layers created by a complex equation of state including
ionization found in A-type stars and cool DA white dwarfs. This
paper notably finds deep overshooting, attributes the exponential
drop off observed in the overshoot velocity to the stable ‘tail’ of
the convectively unstable modes excited in the convection zone,
and derives a depth-dependent diffusion coefficient to describe the
corresponding mixing. This exponential formulation for mixing by
overshooting convection is now commonly used in stellar evolution
codes (e.g. Herwig 2000; Paxton et al. 2011, 2013; Sukhbold &
Woosley 2014).

3D simulations of the Cartesian stacked polytropic model became
possible in the latter part of the 1990s. Singh, Roxburgh &
Chan (1995), Singh, Roxburgh & Chan (1998), and Saikia et al.
(2000), for instance, present a series of low-resolution large-eddy
simulations with subgrid scale modelling while Muthsam et al.
(1995) present low-resolution finite-difference models. All of these
are fully compressible, and mostly appear to confirm the ideas of the
2D simulations and analysis, including the various aforementioned
scalings with the stiffness, S. Somewhat later, however, Brummell,
Clune & Toomre (2002) presented a more comprehensive parameter
survey performed with high-resolution, direct numerical simula-
tions (DNS), including much more turbulent cases and a wider range
of S. That work finds only overshooting and no true penetration, even
in the parameter regimes where it would be most likely to occur, such
as high Rayleigh number, low Prandtl number, and low S. Instead,
the transition from adiabatic to subadiabatic stratifications is seen to
be rather smooth, and takes place across an extended partially mixed
region. The authors attribute this mainly to the low filling factor of
the downflowing convective plumes in the turbulent compressible
case, arguing that the earlier low-resolution 3D models only found
penetration because they were far more laminar and almost 2D.

In parallel with the predominantly numerical efforts described
above, a variety of more phenomenological models have been
proposed to date. Early works in stellar evolution typically
use a non-local formulation of mixing-length theory (e.g.
Spiegel 1963; Shaviv & Salpeter 1973; Cogan 1975; Maeder 1975),
with results that vary widely depending on specific assumptions
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1222 L. Korre, P. Garaud and N. Brummell

associated with the non-local integration scale, as criticized by
Renzini (1987). As the aforementioned numerical simulations
began to provide more insight into the dynamics of overshooting
convection, phenomenological models have shifted towards more
realistic representations of the convective flows. In addition to
the semi-analytical weakly non-linear theories discussed earlier,
van Ballegooijen (1982), for instance, includes the effect of the
horizontal flows near the base of the convection zone via linear
convective roll modes with an assumed non-linear saturation ampli-
tude, with similar results to those of the mixing length theory (that
only includes vertical motions). Schmitt, Rosner & Bohn (1984)
builds on the emerging idea that the convective motions are more
plume-dominated than cellular by using a meteorological model for
plumes in a stable stratification with entrainment (Morton, Taylor &
Turner 1956); the model formally reduces to the mixing length
model of Shaviv & Salpeter (1973) in the limit of zero entrainment.
Schmitt et al. (1984) find that shallow penetration is likely in the
solar case, with the depth being dependent mainly on the velocity
and filling factor of the plumes at the base of the convection zone
(and insensitive to other parameters, such as the entrainment rate),
and that the transition to radiative dynamics below likely takes place
through a very thin thermal adjustment boundary layer.

The work of Zahn (1991) simplifies these ideas by applying
scaling arguments to the problem. He separates the dynamics
below the convection zone into a true penetrative region (where the
motions are vigourous enough to mix the background stratification
to adiabatic) and a thermal boundary layer containing overshooting.
His model recovers the dependence of the penetration depth on
the typical convection zone velocity (∝ w3/2) and on the assumed
filling factor of the plumes (∝ f1/2) found numerically by Schmitt
et al. (1984), which is interesting since both models make rather
different assumptions on the nature of the plumes. Zahn (1991)
also finds that the depth of this layer depends on the gradient of
the conductivity profile, leading to a value of about 50 per cent of
a pressure scale height in the solar case. Finally, Zahn’s thermal
boundary layer is very thin as in Schmitt et al. (1984). A similar
model is used in Hurlburt et al. (1994) but with the smooth
conductivity profile replaced by a more abrupt piecewise-constant
one corresponding to their stacked polytrope numerical simulations.
Writing their predictions for the depth δ of the mixed layers in
terms of the stratification (stiffness) ratio, S, they can explain their
aforementioned observed scaling laws, namely δ ∝ S−1 for true
penetration and δ ∝ S−1/4 for the thermal boundary (overshoot)
layer. They explain the transition in the scalings with increasing
S as a tradeoff between the increase in buoyancy braking and the
decrease in local Péclet number.

Rempel (2004) builds upon these previous works with a semi-
analytical model that follows a distribution of plumes throughout
both the convection zone and overshoot region and includes their
interaction with the upflows. This model thereby essentially incor-
porates non-locality and entrainment and further allows departures
from the parameter regimes where mixing length theory is most
likely to work (i.e. towards parameter regimes accessible by numer-
ical simulations). Its predictions mirror the findings of Schmitt et al.
(1984) and Zahn (1991) but also reveal the extra dependencies of the
overshoot characteristics on the total energy flux (determining the
vigour of the eddies in the convection zone) and the assumed degree
of mixing by entrainment. In particular, the dependence on the non-
local convective efficiency is postulated to explain the presence
of true penetration in mixing length results (which are necessarily
highly turbulent) by contrast with its absence in the 3D simulations
(where the degree of turbulence is limited due to numerical issues).

Furthermore, this approach demonstrates that an ensemble of
plumes with a distribution of velocities behaves quite differently
from one where all the plumes have the same assumed velocity. In
particular, the former results in a much smoother thermal transition
between the penetration layer and the deeper radiative stratifica-
tion than the latter, which has important observational implica-
tions for helioseismology (e.g. Monteiro, Christensen-Dalsgaard &
Thompson 1994; Monteiro & Thompson 1998).

To summarize, the main robust conclusions of these numerical
and phenomenological modelling efforts are that penetration and
overshooting can take place down to some fraction of the pressure
scale height that depends on the exit velocity and the filling factor
(or scale) of the downflowing motions at the base of the convection
zone. The velocity of downflowing plumes depends on the strength
of the convection itself in a non-local, bulk sense, requiring high
Péclet number for any chance of penetration. Meanwhile the
filling factor of these plumes depends on many factors such as
geometry (2D versus 3D), compressibility, stratification, and on a
turbulent entrainment efficiency that remains poorly constrained.
These models also reveal dynamical differences between smooth
and abrupt transitions in the background stratification associated
with both radiative and adiabatic temperature gradients (e.g. Zahn
1991; Rogers & Glatzmaier 2005).

Moving forward, the next natural step towards a better under-
standing of overshooting and penetration should involve 3D simu-
lations in a spherical geometry and some effects of compressibility
– either using fully compressible equations or anelastic equations.
Although quite a number of simulations of this variety have actually
been performed, the vast majority of them have not explicitly
examined the penetrative/overshooting question, since they were
directed at the global dynamo problem or the solar tachocline prob-
lem (for recent efforts, see e.g. Brun, Browning & Toomre 2005;
Browning et al. 2006, 2007; Miesch, Brun & Toomre 2006; Ghizaru,
Charbonneau & Smolarkiewicz 2010; Brun et al. 2011; Racine
et al. 2011; Strugarek, Brun & Zahn 2011). Since such dynamo-
directed models require significant turbulence, the considerable
expense of these computational efforts has been dedicated to a
small number of simulations that are the most relevant, rather than
an exhaustive study of parameter space. Notable exceptions are the
work of Browning, Brun & Toomre (2004) and Brun et al. (2017)
who look at differential rotation and overshoot in core-convective
stars and solar-type stars, respectively. In both cases, however, the
set of simulations presented are far from actual stellar parameters
in terms of actual diffusivities and vary quantities such as the
rotation rate and/or the stellar mass, rather than input parameters
that more directly control the strength of the convection and the
stratification of the nearby radiative zone. Because of this, the results
cannot easily be used to form a prognostic model for overshoot and
penetration in more stellar-like conditions.

This paper therefore presents a parametric survey of stellar-like
overshooting convection in a 3D spherical geometry using DNS.
As a first step towards understanding the full problem, we consider
Boussinesq dynamics (Spiegel & Veronis 1960) only, arguing that
in many instances the interface between radiative and convective
regions is located very deep in the interior of the star where
this approximation is not perfect but reasonable. For example, the
pressure scale height at the bottom of the solar CZ is approximately
1/3 of the depth of the solar CZ. This means that convective motions
on scales substantially smaller than this are well approximated by
the Boussinesq approximation, but that larger scale motions would
be subject to compressibility effects that are ignored here. We also
ignore rotation in order to isolate the effects of geometry (asymme-
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try) and of the model parameters. Our goal is to quantitatively
characterize various aspects of the dynamics of the over-
shoot/penetration zone, in particular, the relationship between the
typical velocity of convective eddies and the amount of mixing
induced beyond the edge of the original convection zone. Ultimately,
we shall answer the question of when one should expect overshoot
or true penetration in a star and provide a usable prescription for
mixing by overshooting convection that can easily be incorporated
into 1D stellar structure models.

The paper is organized as follows. In Section 2, we describe
the model configuration along with the initial conditions and
the boundary conditions. In Section 3, we present some general
characteristics of a canonical simulation and we describe three
characteristic length-scales. In Section 4, we provide a model
for the kinetic energy profile below the base of the convection
zone. In Section 5, we focus on thermal mixing in the radiative
zone due to the overshooting of the turbulent motions in the
stable region. Finally, in Section 6, we summarize our results,
provide comparisons with previous numerical work, and discuss
the implications of these results in the solar and stellar overshooting
dynamics.

2 MO D EL SET-U P

We are interested in studying a two-layered system consisting of
a convectively unstable zone (CZ) overlying a radiative zone (RZ)
which is everywhere locally stable to convection according to the
Schwarzschild criterion. The numerical model used builds upon
the purely convective spherical shell set-up described in Korre,
Brummell & Garaud (2017) extended to include a convectively
stable inner spherical shell beneath the unstable one. Our chosen
shell has an outer radius ro, and inner radius ri = 0.2ro, with the
CZ–RZ interface located at rt = 0.7ro. This geometry was chosen
to mimic that of the Sun, as an example of a fairly typical low-mass
star. The position of the inner boundary does not affect any of our
results, as long as ri � rt. The selection of the convection zone
aspect ratio rt/ro is expected to affect the results, on the other hand.
However, we have chosen to keep it fixed since there are already
many other parameters that need to be varied in the simulations (see
below).

In an attempt to be relevant for stellar contexts, we adopt a number
of specific dynamical ingredients. We solve the 3D Navier–Stokes
equations under the Spiegel & Veronis (1960) Boussinesq approxi-
mation, which takes into account a non-zero adiabatic temperature
gradient to account for weak compressibility. We assume constant
thermal expansion coefficient α, viscosity ν, thermal diffusivity κ ,
adiabatic temperature gradient dTad/dr, and gravity g. Note that
these quantities would of course not be constant over the range r =
[0.2ro, ro] in a star – this assumption is made for simplicity. We
fix the heat flux at the inner boundary to account for the energy
generated from nuclear burning in the stellar core, whereas at the
outer boundary we fix the temperature. While the latter does not
realistically capture the more complex radiative transfer processes
that are known to control the photospheric boundary conditions in
solar-type stars, we use this approximation because it is simple,
with the expectation that it does not affect the convective dynamics
near the bottom of the convection zone. Finally, we perform all
of our simulations in a low Prandtl number regime (where the
Prandtl number is the ratio of the viscosity to thermal diffusivity),
which is again more relevant in the astrophysical context. To the
authors’ knowledge, this is the first time that penetrative convection
is being studied in a Boussinesq spherical shell geometry with the

temperature boundary conditions as described above and in the low
Prandtl number regime.

We let T(r, θ , φ, t) = Trad(r) + 	(r, θ , φ, t) where Trad is the
temperature profile our system would have under pure radiative
equilibrium, and where 	 describes temperature fluctuations away
from that radiative equilibrium. As part of the Boussinesq approx-
imation, a linear relationship is assumed between the temperature
and density perturbations such that ρ/ρm = −α	, where ρm is
the mean density of the background fluid. Then, the governing
Boussinesq equations are (Spiegel & Veronis 1960)

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = − 1

ρm

∇p + α	ger + ν∇2u, (2)

and

∂	

∂t
+ u · ∇	 + ur

(
dTrad

dr
− dTad

dr

)
= κ∇2	, (3)

where u = (ur, uθ , uφ) is the velocity field and p is the pressure
perturbation away from hydrostatic equilibrium.

One way to set up the desired two-layered system is by ensuring
that dTrad/dr − dTad/dr is negative in the CZ and positive in the
RZ. Since Trad is the temperature profile at radiative equilibrium,
and since we considered that ν and κ are constant, the only way to
ensure that its gradient changes significantly (aside from geometric
effects) is to assume the existence of a heating source localized near
rt, such that

κ∇2Trad = −Hs(r). (4)

The function Trad(r) is the solution of this equation with the
boundary conditions

− κ
dTrad

dr

∣∣∣∣
r=ri

= Frad, (5)

where Frad is the temperature flux per unit area through the inner
boundary and

T (ro) = To. (6)

Integrating equation (4) once yields

κ
dTrad

dr
+

( ri

r

)2
Frad = − 1

r2

∫ r

ri

Hs(r
′)r ′2 dr ′, (7)

showing that we can generate any functional form we desire for
dTrad/dr with a suitable choice of Hs(r). Note that in practice (see
below), the exact expressions for Hs(r) and Trad(r) are not needed.

We non-dimensionalize the problem by using [l] = ro, [t] = r2
o /ν,

[u] = ν/ro, and [T] = |dTo/dr − dTad/dr|ro as the unit length,
time, velocity, and temperature, respectively, where dTo/dr ≡
dTrad/dr|r=ro is the radiative temperature gradient at the outer
boundary. Then, we can write the non-dimensional equations as

∇ · u = 0, (8)

∂u
∂t

+ u · ∇u = −∇p + Rao

Pr
	er + ∇2u, (9)

and

∂	

∂t
+ u · ∇	 + β(r)ur = 1

Pr
∇2	. (10)

In all that follows, all the variables and parameters are now implicitly
non-dimensional. This introduces the Prandtl number, Pr, and the
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global Rayleigh, Rao, defined as

Pr = ν

κ
and Rao =

αg

∣∣∣∣dTo

dr
− dTad

dr

∣∣∣∣ r4
o

κν
, (11)

as well as the function β(r) which is given by

β(r) =
dTrad

dr
− dTad

dr∣∣∣∣dTo

dr
− dTad

dr

∣∣∣∣
. (12)

By suitably selecting Hs(r), and therefore Trad(r), we can create a
profile for β(r) that results in a convectively stable region for ri ≤
r < rt and an unstable region for rt ≤ r ≤ ro. Here, we choose to
impose a function β(r) of the form

β(r) =

⎧⎪⎪⎨
⎪⎪⎩

−S tanh

(
r − rt

din

)
when r < rt,

− tanh

(
r − rt

dout

)
when r ≥ rt,

(13)

where din and dout constrain the width of the imposed radiative–
convective boundary, while S is the stiffness parameter that mea-
sures the relative stability of the radiative and the convective zones.
Note that din is chosen such that the derivative of β(r) is continuous
at rt = 0.7, which implies that din = Sdout. The quantity d−1

out is
the derivative of the function β at r = rt, and therefore describes
the steepness of its profile. In this model β(r) tends to −1 in the
bulk of the convection zone, and to S in the bulk of the radiative
zone. In stars, this is of course not the case, and β(r) can vary
very significantly within both convective and radiative zones, so
this model is chosen for simplicity but with the ability to explore
certain questions raised in the introduction related to the effect of
the stiffness and the abruptness of the transition. Note that in the
Sun, |β(r)| decreases substantially from the top to the base of the
convection zone (see Korre et al. 2017), the slope of the transition
into the radiation zone is rather smooth, and |β(r)| in the radiative
zone is of the same order as |β| in the bulk of the convection zone
(which implies that S would be of the order of unity).

The function β can also be expressed as minus the ratio of the
local Rayleigh number Ra(r) to Rao, namely

β(r) = −Ra(r)

Rao
, (14)

where

Ra(r) = −
αg

(
dTrad

dr
− dTad

dr

)
r4

o

κν
, (15)

and where the minus sign in equation (15) ensures that Ra(r) is
positive in convective regions. In Fig. 1, we show representative
profiles of β(r) in order to demonstrate their dependence on the two
parameters S and dout. Higher values of S result in a larger jump in
β(r) from the base of the CZ inward, while lower values of dout at
fixed S lead to a steeper and more sudden transition.

In order to study the dynamics of our two-layered system and
understand the mixing processes that occur due to the propagation
of the convective motions into the stable layer, we have run 3D
DNS solving the Boussinesq equations in a spherical shell, exactly
as outlined above, using the PARODY code (Dormy, Cardin & Jault
1998; Aubert, Aurnou & Wicht 2008). In all of our simulations,
the Prandtl number is fixed and equal to Pr=0.1. The boundary
conditions for the temperature are such that we have fixed flux at
the inner boundary that translates into a no-flux boundary condition

Figure 1. The profile of β(r) versus the radius r, for S = 5 and three different
dout values.

for the perturbations 	, ∂	/∂r|ri = 0, and fixed temperature at
the outer boundary that translates into a zero temperature boundary
condition for 	, 	(ro) = 0. For the velocity, we employ stress-free
boundary conditions. Each simulation is evolved from a zero initial
velocity and small-amplitude perturbations in the temperature field
until a statistically stationary and thermally relaxed state is achieved.
To determine when this is the case, we look both at the total kinetic
energy per unit volume in the domain, E(t) = 1

2 (u2
r + u2

θ + u2
φ),

and at the temperature perturbation gradient at the surface.
We have run a large number of simulations, whose input parame-

ters are summarized in Table 1. In Section 3, we present an in-depth
study of a typical simulation, focusing on identifying measures
of the dynamics of overshooting and/or penetrative convection in
the vicinity of the CZ–RZ interface. In Sections 4 and 5 we then
look in turn at selected properties of our results across all available
simulations.

3 G E N E R A L C H A R AC T E R I S T I C S O F A
TYPI CAL SI MULATI ON

Throughout the paper, we define the time and spherical average of
a quantity as

q̄(r) = 1

4π(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0
q(r, θ, φ, t) sin θ dθ dφ dt, (16)

where t1 and t2 are an initial and a final time, taken once the system
has reached a statistically stationary state. We sometimes choose
to present properties of the downflows and upflows separately.
Therefore, we also define the average over downflows and upflows
only as

q̄down(r) = 1

Adown(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0
q(r, θ, φ, t)H (−ur ) sin θ dθ dφ dt,

(17)

q̄up(r) = 1

Aup(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0
q(r, θ, φ, t)H (ur ) sin θ dθ dφ dt,

(18)
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Convective overshooting in a spherical shell 1225

Table 1. Columns 1–7: summary of all input parameters and resolution of our simulations. Column 8 reports on the length-scale δG discussed in Section 3.
Column 9 reports on the length-scale δen discussed in Section 4. Column 10 reports on the length-scale δ	 discussed in Section 3, and column 11 reports on
δu discussed in Section 3. Columns 12 and 13 report on Pe and Peov as discussed in Section 3. The respective Reynolds numbers are Re=10Pe and Reov =
10Peov.

Case # S dout din Rao Pr Nr × Nθ × Nφ δG δen δ	 δu Pe Peov

1 100 0.0003 0.03 106 0.1 350 × 192 × 192 0.020 0.017 0.059 0.048 7.3 0.5
2 5 0.003 0.015 106 0.1 300 × 192 × 192 0.060 0.045 0.150 0.130 8.4 1.7
3 10 0.003 0.03 106 0.1 300 × 192 × 192 0.049 0.039 0.130 0.100 8.2 1.3
4 20 0.003 0.06 106 0.1 300 × 192 × 192 0.044 0.037 0.110 0.092 8.2 1.2
5 2 0.01 0.02 106 0.1 300 × 192 × 192 0.096 0.069 0.240 0.220 8.9 2.9
6 5 0.01 0.05 106 0.1 300 × 192 × 192 0.071 0.057 0.170 0.150 8.8 2.1
7 10 0.01 0.1 106 0.1 300 × 192 × 192 0.064 0.054 0.150 0.130 8.6 1.8
8 5 0.03 0.15 106 0.1 300 × 192 × 192 0.091 0.078 0.220 0.190 9.0 2.7
9 10 0.03 0.3 106 0.1 300 × 192 × 192 0.089 0.077 0.210 0.190 9.0 2.6
10 5 0.05 0.25 106 0.1 300 × 192 × 192 0.104 0.091 0.260 0.230 9.0 3.1
11 5 0.003 0.015 107 0.1 400 × 288 × 320 0.047 0.034 0.110 0.094 21.7 3.4
12 10 0.003 0.03 107 0.1 400 × 288 × 320 0.038 0.030 0.090 0.075 21.7 2.7
13 20 0.003 0.06 107 0.1 400 × 288 × 320 0.035 0.029 0.085 0.070 21.5 2.5
14 5 0.01 0.05 107 0.1 400 × 288 × 320 0.057 0.045 0.140 0.120 22.3 4.2
15 10 0.01 0.1 107 0.1 400 × 288 × 320 0.052 0.043 0.120 0.104 22.0 3.8
16 5 0.03 0.15 107 0.1 400 × 288 × 320 0.077 0.062 0.170 0.150 22.6 5.8
17 10 0.03 0.3 107 0.1 400 × 288 × 320 0.075 0.062 0.170 0.150 22.5 5.6
18 5 0.05 0.25 107 0.1 400 × 288 × 320 0.090 0.073 0.200 0.180 22.1 6.6
19 5 0.003 0.015 108 0.1 585 × 516 × 640 0.035 0.026 0.080 0.069 50.5 5.9
20 10 0.003 0.03 108 0.1 585 × 516 × 640 0.030 0.024 0.068 0.058 49.7 4.9
21 20 0.003 0.06 108 0.1 585 × 516 × 640 0.028 0.024 0.063 0.054 49.6 4.6
22 5 0.01 0.05 108 0.1 585 × 516 × 640 0.045 0.036 0.097 0.089 51.6 7.8
23 10 0.01 0.1 108 0.1 585 × 516 × 640 0.043 0.035 0.094 0.085 51.5 7.3
24 5 0.03 0.15 108 0.1 585 × 516 × 640 0.063 0.050 0.140 0.120 51.5 10.9
25 10 0.03 0.3 108 0.1 585 × 516 × 640 0.062 0.050 0.130 0.120 51.3 10.6

where H is the Heaviside function, Adown is the area covered by the
downflows, namely

Adown(r) = 1

t2 − t1

∫ t2

t1

∫ 2π

0

∫ π

0
H (−ur ) sin θ dθ dφ dt, (19)

and Aup is the area of the upflows such that

Aup(r) = 1

t2 − t1

∫ t2

t1

∫ 2π

0

∫ π

0
H (ur ) sin θ dθ dφ dt . (20)

We begin by presenting the results of a typical run where S = 5,
dout = 0.003, and Rao = 107 (Case 11 in Table 1), which illustrates
some of the most basic characteristics observed in almost all of our
simulations. Table 1 summarizes its input parameters, resolution,
and some of the quantities of interest discussed below. The profile
of β(r) corresponding to these parameters is shown as the purple
line in Fig. 1.

Fig. 2(a) shows the evolution of the total kinetic energy per unit
volume E as a function of time t in the simulation. We observe
the initial development of the convective instability in the interval
t ∈ [0, 0.01] as a large spike, followed by its non-linear saturation.
The system reaches a statistically steady state in this global quantity
very fast because the energy is dominated by the dynamics of the CZ
that rapidly equilibrates. However, we must also make sure that the
system reaches global thermal equilibrium. This occurs on a much
slower time-scale, which depends on the radiative diffusion through
the RZ. In our simulations, we estimate that this has occurred when
∂	/∂r|r=ro is statistically stationary and close to zero. This happens
around t = 0.04 in this case. This is almost 200 times slower than
the respective thermal relaxation time of the overshoot layer. The
latter is faster since it is easier for the overshoot layer to thermally
adjust compared with the whole radiative shell.

In Fig. 3, we present snapshots of meridional slices of the velocity
components as a function of depth and latitude, for a selected
longitude, all taken at the same time t during the statistically
stationary state. They clearly show that the convective motions
driven within the CZ are not confined to that region, but instead,
travel some distance beyond the CZ–RZ interface (marked by the
inner black line at rt = 0.7). As we shall demonstrate, there are many
ways in which one can quantitatively study the effect of convective
motions that overshoot below the base of the CZ, such as through
their kinetic energy, through their effect on the mean temperature
profile, as well as through their vertical coherence. Each of these
diagnostics presents a different facet of the problem that we will try
to reconcile through modelling in the following sections.

We begin with Fig. 2(b) that shows the non-dimensional kinetic
energy profile Ē(r) given by

Ē(r) = 1

2
(u2

r + u2
θ + u2

φ), (21)

as black triangles. On the same figure, we plot the radial component
of the kinetic energy (dashed green line), the vertical kinetic energy
of the downflows (dotted cyan line), as well as the horizontal
component of the kinetic energy (red line) given, respectively, by

Ēr (r) = 1

2
u2

r , Ēr,down(r) = 1

2
u2

r ,down, and

Ēh(r) = 1

2
(u2

θ + u2
φ). (22)

There is clearly significant kinetic energy below the CZ corre-
sponding to overshooting. Below the CZ, the motions are no
longer convectively driven and must decelerate. This causes Ē(r)
to decrease sharply inward from the base of the convection zone.
Furthermore, we see that the contributions to Ē(r) coming from

MNRAS 484, 1220–1237 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/1/1220/5280053 by U
niversity of C

alifornia, Santa C
ruz user on 25 January 2019



1226 L. Korre, P. Garaud and N. Brummell

Figure 2. (a) Non-dimensional kinetic energy per unit volume as a function of time for a typical simulation with S = 5, dout = 0.003, and Rao = 107. (b)
Time-averaged non-dimensional kinetic energy profiles as a function of radius, for the same simulation, where Ēr is the total kinetic energy (black triangles),
Ēr is the radial component of the kinetic energy (dashed green line), Ēr,down is the vertical kinetic energy of the downflows (dotted cyan line), and Ēh is the
horizontal component of the kinetic energy (red line).

Figure 3. Snapshot slice showing the velocities ur, uθ , and uφ on a selected meridional plane for a typical simulation of S = 5, dout = 0.003, and Rao = 107.
The inner black line represents the base of the convection zone at rt.

radial and horizontal motions behave very differently from one
another. The vertical kinetic energy Ēr peaks in the middle of the
CZ, and then decreases inward, a result we attribute to a deceleration
of the downflows as they approach the CZ–RZ interface at rt = 0.7
from above. This can indeed be verified in the profile of Ēr,down

that has the same properties, although we also see that it is a little
larger, indicating that downflows must be on average stronger (but
narrower) than the upflows (this can be verified by a direct inspection
of Aup and Adown, not shown). Meanwhile, the horizontal kinetic
energy increases substantially near the bottom of the convection
zone. Thus, there is an exchange of kinetic energy between the
vertical and the horizontal flows, which we interpret as the result
of a deflection of the vertical plumes towards the horizontal. While
this may seem somewhat expected, it is interesting to see that this
occurs in the bulk of the CZ and not only near or below the CZ–
RZ interface, implying that the presence of this interface is felt
in a highly non-local way throughout the entire convection zone.
This result is not an artefact of the Boussinesq approximation, since
it is also seen in anelastic and fully compressible 2D simulations
(e.g. Rogers & Glatzmaier 2005; Pratt et al. 2017) and in 3D fully

compressible simulations (e.g. Singh et al. 1995; Brummell et al.
2002).

From the CZ–RZ interface downwards, we observe a rapid
decrease in Ē(r), which is expected from the stabilizing effect of
the stratification. Note that since the energy in the vertical motions
has already decreased significantly even before reaching the CZ–RZ
interface, most of the remaining energy below the base of the CZ
comes from horizontal motions only. This leads to the conclusion
that horizontal motions are dominant in the average sense below the
CZ and therefore have to be considered in the study of convective
overshooting dynamics, as in the models of e.g. van Ballegooijen
(1982) and Rempel (2004).

In Fig. 4, we plot the total kinetic energy Ē(r) on a log scale to
clarify its features below rt. We see that Ē(r) drops significantly
faster than exponentially with depth below the CZ in contrast with
the model proposed by Freytag et al. (1996; also see Herwig 2000).
In fact, we find that a Gaussian function of the kind

f (r) = A exp

(
− (r − rt)2

2δ2
G

)
(23)
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Convective overshooting in a spherical shell 1227

Figure 4. Kinetic energy profile Ē(r) for S = 5, dout = 0.003, and Rao =
107 against the radius r. The red solid line is the fitted curve of the kinetic
energy profile on this interval.

Figure 5. Profile of C(δ) against δ for S = 5, dout = 0.003, and for Rao =
107.

with δG = 0.047 would be a much better fit to the profile of Ē(r),
at least down to r = 0.58, as shown by the red solid line in Fig. 4.
Below that point, the decay of the kinetic energy is closer to being
exponential in the interval [0.47,0.58]. Even deeper down, Ē(r)
flattens out, presumably as a result of the presence of the inner
boundary. The Gaussian function f(r) can be used to characterize
the spherically averaged kinetic energy profile of overshooting
motions below the CZ and is parametrized by its amplitude A
and by its width δG. Therefore, δG can be used to characterize
the region of influence of convective motions in the stable RZ, at
least energetically speaking and in an average sense.

An alternative measure is the distance that the strongest of
the downflow motions travel into the stable region; therefore, we
introduce the radial correlation function of the vertical velocity field
in the downflows

C(δ) = 1

4π(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0
ur (rt, θ, φ)H (−ur (rt, θ, φ))

×ur (rt − δ, θ, φ) sin θ dθ dφ dt .

(24)

This definition clearly favours the strongest downflows. Fig. 5 shows
C(δ) for our reference simulation. As expected, C decreases with
depth δ below the base of the CZ. Interestingly, we see that instead

Figure 6. Non-dimensional square of the buoyancy frequency N̄2Pr/Rao

(dashed line) compared with the background N2
radPr/Rao (solid line) for S =

5, dout = 0.003, and for Rao = 107.

of merely approaching zero (which would indicate a gradual loss
of correlation), C(δ) actually changes sign (here at δ = 0.094). This
implies that (1) the strongest downflows stop, on average, at a well-
defined depth below the base of the CZ and that (2) there must be
an upflow below each of these downflows. This can only occur if
the downflow spreads laterally upon entering the RZ, and the lateral
divergence of the fluid acts as a pump for the deeper upflow. This
was in fact seen in all of our simulations. We therefore define a
second measure of overshooting, the correlation depth δu as the first
zero of C(δ). This depth measures the average stopping distance of
the strongest downflows. By comparison with Fig. 4, we see that rt

− δu corresponds to the radius where the kinetic energy switches
from the Gaussian to the exponential profile below the CZ. This
might be expected since a radical change in the dynamics of the
fluid is taking place at rt − δu.

By focusing on the fluid motions until this point, we were only
able to address the questions pertaining to overshooting rather
than penetration. In order to see whether penetration occurs, we
must see if substantial thermal (entropy) mixing is occurring.
We therefore examine the non-dimensional spherically averaged
buoyancy frequency N̄ whose square is given by

N̄2(r) = αg

(
dT̄

dr
− dTad

dr

)
r4

o

ν2
=

(
β(r) + d	̄

dr

)
Rao

Pr
. (25)

Fig. 6 shows the profile of N̄2Pr/Rao measured in our sim-
ulations along with the original imposed background profile
N2

rad(r)Pr/Rao = β(r) as a solid line for reference. As expected,
the convective motions in the bulk of the CZ (away from both the
top boundary and the CZ–RZ interface) mix potential temperature
and drive the mean radial temperature gradient towards an adiabatic
state where N̄2 ≈ 0. Below the CZ, we notice that the fluid motions
do affect the thermal stratification, but not strongly enough to
effectively extend the region where N̄2 ≈ 0. This indicates that there
is no penetration (in the strict definition of the term), but also shows
that the resultant profile of N̄2 below rt is much smoother than the
originally imposed one. This partially mixed region, which defines
an intermediate state that is neither pure penetrative convection nor
pure overshooting, was found in nearly all of our simulations and
this is investigated in detail in Section 5. This result is not entirely
surprising. Indeed, the possibility of such an intermediate state was
already discussed by Zahn (1991) and Schmitt et al. (1984) (albeit
briefly), and 3D fully compressible simulations to date have reported
similar findings (e.g. Brummell et al. 2002; Käpylä et al. 2017).
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1228 L. Korre, P. Garaud and N. Brummell

Figure 7. Temperature perturbations for S = 5, dout = 0.003, and for Rao =
107 plotted along with the adiabatic temperature 	ad.

To better understand what might be the cause of this partial
mixing, we now look at the details of the thermal transport. Fig. 7
shows the time- and spherically averaged temperature perturbations
	̄ along with the mean temperature perturbation in the upflows
(	̄up) and downflows (	̄down). We also show the temperature that a
downflow travelling adiabatically from the surface (where 	 = 0)
would have as a function of r, namely 	ad(r) = − ∫ r

ro
β(r ′) dr ′. We

observe that the mean temperature gradient follows the adiabatic one
quite closely in the CZ, but that 	̄ is systematically larger than 	ad

due to the existence of the outer thermal boundary layer. Moreover,
we see that 	̄down is lower than 	̄ in the CZ, which is expected since
cooler fluid parcels are accelerated downwards. Downflowing fluid
parcels crossing the base of the CZ into the RZ begin to heat up
through adiabatic compression and become significantly warmer
than the mean. This provides them with an upward acceleration
that gradually slows them down. Upflows follow a reverse pattern,
where they are warmer than 	̄ in the CZ, and cooler than 	̄ in the
RZ. Interestingly, we find that 	̄down increases by a little just above
the base of the CZ, a result that could either be due to non-linear
mixing with the warmer upflows, or, to a diffusive heat flux coming
from the much warmer perturbations below the base of the CZ.

We note that there is a point lower in the RZ (here, around r = 0.6),
at which 	̄, 	̄down, and 	̄up approximately coincide. We therefore
define a new length-scale δ	 that corresponds to the distance of
this point from the CZ–RZ interface. Upflows and downflows are
neutrally buoyant at r = rt − δ	. Below that level, we see that
the correlation between the temperature and the direction of the
flow becomes much weaker. This then implies that motion must
no longer be of convective type and therefore this length-scale
is another measure of where the dynamics change character. We
find that δ	  δu, and as mentioned before, rt − δu also appears
to coincide with the radius where the kinetic energy profile Ē(r)
transitions from a Gaussian to an exponential (see Fig. 4). Finally,
we also overlay the length-scale δ	 on Fig. 6 for comparison. Not
surprisingly perhaps, we observe that δ	 coincides with the depth
of the region in the RZ where N̄2 deviates most strongly from the
radiative equilibrium profile. Therefore, δ	 provides a length-scale
that is associated with the depth of (partial) thermal mixing in the
stable region.

Another way of quantifying the transition from the fully mixed
CZ, to the partially mixed overshoot layer, to the unmixed interior

(below δ	), is to look at the Péclet number, which is commonly
defined as the ratio of advective to diffusive thermal time-scales. In
the bulk of the convection zone, the Péclet number can be estimated
as

Pe = ucz(ro − rt)

κ
= 0.3urmsPr, (26)

where the first expression contains only dimensional quantities and
the second only contains non-dimensional ones. In the second
expression, urms is the typical non-dimensional rms convective
velocity (which can be extracted from the DNS). In the first
expression, ucz is its dimensional counterpart, with ucz = urmsν/ro.
In the overshoot layer on the other hand, an appropriate length-scale
of eddies might be δG, and their non-dimensional rms velocity drops
from urms to 0 over that length-scale, so we define the Péclet number
as

Peov = urmsδGPr. (27)

Note that the definition of any Péclet number is somewhat arbitrary,
since there is ambiguity in the choices of the characteristic length
and velocity scales. Using our particular choices above consistently,
however, we can at least compare simulations. We find that Pe ∼22,
and Peov ∼ 3, for our canonical Case 11 of S = 5, dout = 0.003, and
Rao = 107. This finding is consistent with the expectation that the
CZ is well mixed (with a large Pe), while the overshoot layer is only
partially mixed (with Peov of the order of unity). Note that associated
Reynolds numbers can be calculated as Re=Pe/Pr = 10Pe (and
similarly for Reov).

To summarize our results so far, our inspection of the dynamics
observed in this simulation has suggested the definition of three
distinct length-scales that each provides a different measure of the
impact of convective motions on the underlying radiative zone. The
first is the width δG of the Gaussian function fitted to the total
kinetic energy profile below the base of the CZ. This parametrizes
the profile of the decay of the turbulent kinetic energy with distance
away from the CZ–RZ interface. The second is δu, given by the first
zero of the radial correlation function of the downflows, C(δ). This
can be interpreted as the length-scale down to which the strongest
downflows travel before stopping. The third is the distance δ	 from
the base of the CZ down to the point of neutral buoyancy where
	̄ = 	̄down = 	̄up which is both a good estimate of the stopping of
motions and of the vertical extent of the partially thermally mixed
region in the stable RZ. We have found that δG < δu  δ	 for this
simulation, a result that actually holds for all of our simulations (see
Table 1). This suggests that while δG may provide an average view
of the kinetic energy available for mixing below the base of the
convection zone, much of that mixing is actually controlled by the
strongest downflows, which overshoot much more deeply. These
results are qualitatively consistent with the findings of Brummell
et al. (2002) and Pratt et al. (2017) in fully compressible simulations,
suggesting that the use of the Boussinesq approximation does not
dramatically alter the dynamics of overshooting convection (at least
near the base of a convective region deep within a star). In the
following sections, we now look more broadly at how δG, δu, and
δ	 vary with input parameters.

4 MO D E L L I N G TH E K I N E T I C E N E R G Y
PROFI LE BELOW THE BA SE OF THE C Z

In Section 3, we argued that the kinetic energy profile just below the
base of the CZ resembles the Gaussian function f(r) given in (23).
Fig. 8 shows that this is the case in all of our simulations, which span
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Convective overshooting in a spherical shell 1229

Figure 8. Kinetic energy profiles on a log scale for all the different S, dout

and for (a) Rao = 106, (b) Rao = 107, and (c) Rao = 108.

a fairly wide range of values of the stiffness S, transition width dout,
and Rayleigh number Rao. Comparing Figs 8(a)–(c), we clearly see
that increasing the input Rao increases the overall kinetic energy
in the system (and accordingly, the amplitude of the Gaussian),
which is expected since Rao controls the strength of the convection.
Interestingly, varying S and dout (at fixed Rao) has very little effect
on the kinetic energy within the CZ. This result is consistent with
the notion that the turbulent intensity within the CZ only depends
on its bulk Rayleigh number (Korre et al. 2017)

Rab =
∫ ro

rt
Ra(r)r2 dr∫ ro

rt
r2 dr

, (28)

which is roughly equal to Rao here since β(r)  −1 for r > rt (see
equation 13).

Korre et al. (2017) showed further that in spherical Rayleigh–
Bénard convection bounded by impermeable walls, the mean kinetic

Figure 9. Plot of the extracted value of the amplitude of the Gaussian A
against our model for the mean kinetic energy in the CZ (see equation 29).

energy of the convection zone Ecz scales as

Ecz = 3.7Ra0.72
b , (29)

when its base is at rt = 0.7ro and Pr = 0.1, which is also the case
for the CZ in this paper. To verify whether this scaling also applies
in a penetrative set-up and therefore could be used in a predictive
model, we compare the total kinetic energy at rt to the predicted
value of Ecz in Fig. 9. The quantity Ē(rt) is extracted from the
simulations by fitting f(r) to the data and assuming Ē(rt)  A. We
see that the predicted scaling works remarkably well for the more
turbulent cases (Rao = 107 and 108) and can therefore be used to
obtain a good order-of-magnitude estimate of the amplitude of the
turbulence present both within the CZ, as well as below the CZ–RZ
interface through (23) provided a model for δG is also available.

To construct such a model, we use a simple energetic argument.
Assuming that a parcel travels a distance δen from the base of the CZ
adiabatically down to the point where its potential energy is equal
to its initial kinetic energy, we can write

Ecz = δen
Rao

Pr

∫ 0.7

0.7−δen

β(r) dr (30)

for the profile of β(r) given in equation (13). Note that this assumes
that the background temperature profile has not been modified too
much by the overshooting motions; we could in principle obtain
a more accurate estimate for δG by using the actual stratification
profile N̄2Pr/Rao computed from the simulations instead of the
function β(r) in the integrand. In practice, however, we verified
that this does not make a substantial difference to the computed
value of δen in any of our simulations, where thermal mixing is
always weak. Using β(r) in the integrand on the other hand has
definite advantages: the integral can be evaluated analytically so
equation (30) becomes

Ecz = δen
Rao

Pr
Sdin ln

[
cosh

(
δen

din

)]
. (31)

Equation (31) can easily be solved numerically for δen, for any input
S, Rao, and din.

In Fig. 10, we plot δG against the energy-based theoretical
prediction δen for all available simulations. The quantity δG was
measured from the DNS simulations by fitting the Gaussian profile
(23) to the total kinetic energy profile Ē(r) from rt down to rt − δ	

(see Section 3), and all the results are reported in Table 1. We
observe that all the points lie close to the straight line δG = 1.2δen

(dashed black line). This result is rather remarkable given that our
input parameters span a fairly large region of parameter space, with
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1230 L. Korre, P. Garaud and N. Brummell

Figure 10. Plot of δen versus δG for all the cases where Rao has been used
as reference.

a resulting δG ranging from ˜0.01 to ˜0.12. The result suggests
that the physics of the energetic argument put forward is mostly
correct. Note that the downflows originating from the convection
zone obviously do not all have the same kinetic energy, so Ecz

is merely an estimate of their mean, and δen is correspondingly
merely an estimate of how far a typical eddy could overshoot. As
a result, the prefactor relating δG to δen could have been any factor
of the order of unity, but just happens to be 1.2 in this particular
set of simulations. We expect this prefactor to vary somewhat if the
Prandtl number varies dramatically, or if compressibility is taken
into account.

While equation (31) does not have any analytical solutions in
general, it has two limits of interest. When δen � din, equation (31)
becomes

Ecz  δen
Rao

Pr
Sdin

(
1

2

(
δen

din

)2
)

, (32)

leading to

δen 
(

2EczdoutPr

Rao

)1/3

⇒ δG ≈ 1.2

(
2EczdoutPr

Rao

)1/3

(33)

= 1.2

(
2EczdinPr

SRao

)1/3

.

Physically speaking, this limit corresponds to the case where the
downflows only sample the transition region below the CZ where
β(r) varies linearly with distance to rt. As such, it is not surprising
to find that δG in this case does not directly know about S, but only
knows about the slope of β(r). In Fig. 11(a), we plot the measured
δG versus the transition width dout along with the predicted line for
δG as expressed in equation (33). We clearly see that our prediction
works remarkably well for the cases where δG < din.

In the opposite limit, when δen � din,

Ecz  δen
Rao

Pr
Sdin

(
δen

din

)
, (34)

leading to

δen 
(

EczPr

SRao

)1/2

⇒ δG ≈ 1.2

(
EczPr

SRao

)1/2

. (35)

In this limit the downflows penetrate down to the region where
β(r)  S, so it is not surprising to see that δG depends on S, but is
independent of dout. Fig. 11(b) shows the measured δG against the

stiffness parameter S along with the scaling given in equation (35).
We find that the scaling law S−1/2 works for the simulations in which
δG > din, but is off by a constant factor. This is not too surprising
since the expansion used to obtain equation (35) is technically valid
only in the limit (δen/din) → ∞, which does not hold true for any of
our simulations where δG is fairly close to din.

Ultimately, we see that δG is either proportional to S−1/3 or to
S−1/2, implying that it decreases with increasing S in both limits.
This is in agreement with the naive expectation that turbulent
fluid motions generated in the CZ have a harder time penetrating
deeply into a more strongly stratified RZ. These scalings are quite
different from the ones proposed by Zahn (1991) and Hurlburt
et al. (1994), which both argue for a penetration depth (i.e. the
depth of the adiabatically stratified layer) scaling as S−1, and an
overshoot depth (the depth of their thermal adjustment layer) scaling
as S−1/4. The difference between their theory and our results is
relatively easy to understand, however. To start with, their model
set-up is quite different from ours, relying on changes in the
thermal conductivity to drive the transition from a radiative to
a convective environment, whereas we produce this transition by
effectively adding a heating source (see Section 2). Since their
theoretical predictions fundamentally rely on the changes in thermal
conductivity, it is not surprising that they would be at odds with our
own scalings. Furthermore, their S−1 scaling relies on the existence
of an adiabatic penetrative layer, and their S−1/4 scaling relies on
an exponentially damped overshoot. Neither of these dynamics are
seen here. Note also that Rogers & Glatzmaier (2005) presented the
results of 2D anelastic simulations of penetrative and overshooting
convection, where they confirmed the S−1 scaling in the penetrative
limit, but report on a much shallower scaling law ∼S−0.04 in the
moderate- and high-S non-penetrative limit. While their definition of
S differs somewhat from that of Hurlburt et al. (1994), that difference
cannot fully explain the rather large discrepancy in observed scaling
with S. Instead, clues to the possible origin of this discrepancy
might lie in the applied thermal boundary conditions: Rogers &
Glatzmaier (2005) use isothermal boundary conditions, and state
that ‘In simulations in which a constant heat flux boundary condition
is used at the top, the scaling relation at moderate S values is not as
shallow’. Our findings then do not contradict any of these results.

Finally, we note that δG counterintuitively decreases with in-
creasing Rao in both of these limits. Indeed, one would expect that
the increase in the turbulent convective velocities associated with a
higher Rao would lead to deeper overshooting into the RZ. However,
the background stratification of the deep RZ in our model set-up
scales like N̄2  SRao/Pr that increases with increasing Rao for
fixed values of S. We therefore see that this second effect dominates
the system dynamics, leading to a shallower – not deeper – δG as
Rao increases.

5 TH E R M A L M I X I N G I N T H E R Z

In this section, we focus on quantifying the properties and depen-
dence on input parameters of the regime of partial thermal mixing
in the RZ. Fig. 12(a) shows 	̄down, and 	̄, as defined earlier, for
the simulation with S = 5, dout = 0.003, and Rao = 107 (Case 11,
Table 1) analysed in Section 3, along with a more laminar case of
Rao = 106 (Case 2, Table 1) and a more turbulent case of Rao = 108

(Case 19, Table 1). Fig. 12(b) shows the corresponding buoyancy
frequency profiles, and Fig. 12(c) shows the associated turbulent
temperature flux (see below for its definition and discussion).

Within the CZ, we find that N̄2 is closer to 0 (and correspondingly
that 	̄ follows 	ad more closely) for larger Rao. This is to be
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Convective overshooting in a spherical shell 1231

Figure 11. Plot of the measured δG against (a) the transition width dout, and (b) the stiffness parameter S. In (a), only those simulations for which δG < δin

are shown. Also shown is the predicted scaling law for δen given in equation (33). In (b), only those simulations for which δG > δin are shown. Also shown is
the predicted scaling law for δen given in equation (35).

expected since a more turbulent convection zone is more efficient in
driving the mean temperature towards an adiabatic state. Meanwhile
in the radiative region, we recover the same overall behaviour
for N̄2, 	̄down, and 	̄ that was already observed in the reference
simulation: mixing is not strong enough to cause an extension of
the convection zone, but does smooth out the mean stratification
down to a depth ∼δ	 below the base of the CZ. We also see that δ	

decreases with increasing Rao (and same is true for δu), as shown
in Table 1. This trend mirrors the corresponding decrease in δG

with increasing Rayleigh number discussed in Section 4, which
was attributed to the increasing stratification of the RZ. Since δ	

continues to be a good proxy for the depth of the partially thermally
mixed region (see Fig. 12b), our findings therefore imply that the
latter becomes shallower with increasing Rao.

More generally, we have found that δu, δ	, and δG are all
very closely related to one another across all of our simulations
and can easily be predicted from the energy-based length-scale
δen proposed in Section 4. Indeed, as shown in Fig. 13, we find
that δu  δ	  2.9δen. In other words, the energy-based argument
proposed in Section 4 applies equally well to predict the neutral
buoyancy point and the stopping depth of individual (strong)
downflows, albeit with a somewhat larger prefactor. This provides
a very simple way of estimating the depth of the partially thermally
mixed region below the base of the convection zone simply from
knowledge of the model parameters.

A complete model for thermal mixing by convective overshoot
requires a quantitative understanding of the strength of such mixing,
i.e. of the turbulent heat flux. In this particular model set-up, the
turbulent heat flux can easily be measured once the system is in a
statistically stationary state. Indeed, taking the horizontal average
of the thermal energy equation (10) in that state, integrating it once,
and applying the boundary condition at ri, we find that

F̄T ≡ ur	 = 1

Pr

∂	̄

∂r
, (36)

or in other words, that the sum of the turbulent and diffusive heat
fluxes associated with the temperature perturbation 	̄ must be zero.
This is consistent with our assumption that the total flux through
the system is fixed. We then have

F̄T = 1

Pr

(
N̄2Pr

Rao
− β(r)

)
, (37)

so the turbulent temperature flux F̄T can easily be visualized on
Fig. 12(b) as the (signed) difference between the dashed line and
the solid line (times Pr−1). It is shown, for better clarity, in Fig. 12(c)
for the same runs.

As expected, the temperature flux is generally negative in the
radiative zone and positive in the convection zone. It almost
always changes sign very close to the radius where N̄2 changes
sign. In none of the simulations do we see the formation of an
extended stably stratified region subject to substantial positive
non-local convective fluxes of the kind reported by Käpylä et al.
(2017), who called such a layer a ‘Deardorff layer’ following
Deardorff (1966) and Brandenburg (2016). This difference between
our simulations and theirs is probably due to two complementary
effects. Käpylä et al. (2017) ran fully compressible simulations
that more realistically capture the asymmetry between weak warm
upflows and strong cold downflows than our Boussinesq set-up.
This asymmetry promotes non-local heat transport by the plumes,
allowing the strongest cold downflows to penetrate more coherently
and more deeply into the RZ than they would otherwise before
warming up. Compressibility is however not a sufficient condition
for the formation of a significant Deardorff layer, since none were
seen in the compressible simulations of Brummell et al. (2002) or
Pratt et al. (2017). Käpylä et al. (2017) explain this, showing that
the Deardorff layer is almost absent if the thermal diffusivity profile
(or equivalently, the background radiative temperature profile) is
fixed and varies abruptly with depth, which is indeed the case in
the simulations of Brummell et al. (2002). In our numerical set-up,
which uses the Boussinesq approximation, the asymmetry between
upflows and downflows is weak, induced only by the spherical
geometry and the boundary conditions. In addition, most of our
simulations were run with a transition steepness set by taking dout =
0.003, which is very sharp (e.g. see Fig. 12). We therefore should
not expect to see the formation of a Deardorff layer in these cases.
We can, however, detect the existence of one in the largest dout runs
(i.e. when dout = 0.03; see Fig. 14) but it remains very shallow.
As such, our simulations cannot really probe the dynamics of the
Deardorff layer even though we might expect that one should be
present in the Sun.

The magnitude of the turbulent flux below the CZ increases with
Rao, as seen in Fig. 12(c), even though the depth of the mixed layer
concurrently decreases. This is not surprising since the rms velocity
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1232 L. Korre, P. Garaud and N. Brummell

Figure 12. (a) Plot of the temperature perturbations (where the solid lines
correspond to 	̄ and the dashed lines correspond to 	̄down) along with the
respective adiabatic one (dotted black line), (b) plot of N̄2(r)Pr/Rao along
with the respective N2

rad(r)Pr/Rao, and (c) plot of the fluxes F̄T , for S = 5,
dout = 0.003, and three different Rao.

of the downflows increases with Rao (see equation 29). However, the
increase of F̄T with Rayleigh number is not particularly pronounced,
perhaps scaling as F̄T ∼ Ra0.18

o . Within the scope of the simulations
shown here, we see that increasing Rao by a factor of 100 only
increases the peak value of |F̄T | by a factor of about 2.2 in the
RZ. This shows that the turbulent flux itself does not scale as
steeply as the rms velocity (which would lead to F̄T ∼ Ra0.36

o ),
implying in turn that the amplitude of the temperature fluctuations
must decrease with increasing Rao. This can, in fact, easily be
verified in Fig. 12(a), which shows that the profiles of 	̄, and 	̄down

are much closer to one another at Rao = 108 than at Rao = 106.
This result can be explained by noting that turbulence plays an
increasingly dominant role at larger Rayleigh number and has
a tendency to homogenize the temperature between upflows and
downflows. Given the weak dependence on Rao, the range of
available simulations is unfortunately not large enough to extract
a reliable scaling law between F̄T and Rao – the latter could be
a power law (in which case the power would be of the order of
0.18, as mentioned earlier), but could just as well be logarithmic, or
take some other form. As a result, we defer any prediction on the
scaling of F̄T with Rao to future work. Nevertheless, our results
point to the crucial importance of accounting for the turbulent
mixing between upflows and downflows when modelling mixing by
overshooting convection, something that had rarely been taken into
account in previous plume models of overshoot (Shaviv & Salpeter
1973; Schmitt et al. 1984) until the work of Rempel (2004).

Finally, we explore the dependence of thermal mixing on S and
dout in Fig. 14(a), which shows N̄2(r)Pr/Rao and N2

rad(r)Pr/Rao =
β(r) for our typical simulation of S = 5, dout = 0.003, and Rao =
107 (case 11, Table 1) along with one from a simulation with the
same S = 5 and Rao but a larger dout = 0.03 (shallower transition;
case 16, Table 1), and one with the same dout = 0.003 and Rao,
but a larger S = 10 (stiffer case; case 12, Table 1). Fig. 14(b)
shows the corresponding turbulent fluxes for the same simulations.
We see that increasing S at fixed dout varies δ	 a little (so the
partially mixed layer below the CZ is somewhat shallower), but the
magnitude of the turbulent flux is hardly affected. Increasing dout

at fixed S on the other hand has a much larger effect on δ	 (which
increases significantly), and on the fluxes (which decrease by about
25 per cent). This shows the importance of smooth versus abrupt
transitions in β(r), but we have not yet been able to construct a
quantitative model to explain these results.

6 SUMMARY AND DI SCUSSI ON

6.1 Summary

In this paper, we have presented a series of numerical experiments
designed to quantify the interaction between a convective zone and
an underlying stably stratified zone, in a spherical geometry and
within the context of the Boussinesq approximation. In order to
mimic the stellar case, we have used a fixed-flux inner boundary
condition at a radius located somewhat above the nuclear burning
region, and a fixed-temperature outer boundary condition. For
simplicity, all the diffusivities as well as gravity are held constant
in the domain, and so is the adiabatic temperature gradient. As
a result, a heating source must be invoked in the vicinity of the
radiative–convective interface to ensure that the lower part of the
domain is indeed stably stratified, while the upper part of the
domain is convectively unstable. The selected radial distribution
and amplitude of the heating source sets the radiative temperature
gradients in the radiative and convective zones, respectively, and
can be adjusted to create stable and unstable regions with varying
relative stability (quantified through the non-dimensional stiffness
parameter S), as well as steeper or shallower transitions between the
two (quantified through the non-dimensional transition width dout):
see Section 2. For simplicity, the overall geometry of the system
was fixed to mimic the solar case (with the radiative–convective
interface located at rt = 0.7ro), and we also fixed the Prandtl
number Pr = ν/κ = 0.1 in all of our simulations. The parameters
varied were S and dout as well as the global Rayleigh number Rao
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Convective overshooting in a spherical shell 1233

Figure 13. Comparison of δu, δ	, and δG against the estimated δen for the simulations indicated on the legend. Also shown are the best fit to the data, namely
1.2δen for δG and 2.9δen for δu and δ	.

Figure 14. (a) Comparison of N̄2(r)Pr/Rao with the corresponding background, β(r), for simulations with Rao = 107, two different values of S (5 and 10),
and two different values of dout (0.003 and 0.03). (b) Corresponding turbulent temperature fluxes for the same simulations.

(defined in equation 11). Increasing Rao is therefore equivalent
to reducing the viscosity and thermal diffusivity concurrently. We
explored simulations with Rao ranging from 106 to 108. Note for
comparison that Pr ∼ 10−6 and Rao � 1020 in the Sun, so none
of the simulations should be used to directly infer properties of
the overshooting convective motions. Instead, we merely seek to
understand how the properties of the radiative–convective interface
scale with input parameters, to later attempt an extrapolation of the
results to the solar case (while always maintaining some degree of
healthy skepticism).

Our simulations all share the same characteristics. We found as
in Korre et al. (2017) that at fixed aspect ratio and fixed Pr, the
mean kinetic energy in the CZ, called Ecz, scales as Ra0.72

b (see
equation 29), where Rab is the volume-averaged Rayleigh number
within the CZ (see equation 28), which in this work is quite close
to Rao. The total kinetic energy of fluid motions decays below the
radiative–convective interface as a Gaussian function of the distance
to rt (see equation 23) whose width δG can be predicted from first
principles using a simple energy argument (aside from a constant
of the order of unity). Indeed, assuming that an average downflow

travels a distance δen adiabatically from the base of the convection
zone until its potential energy equals its estimated initial kinetic
energy Ecz, we can compute δen by solving equation (31). We then
showed that, for all available simulations, δG  1.2δen. Through this
equation, we can then quantify how δG varies with both the stiffness
and steepness of the background stratification profile as well as with
the input Rayleigh number.

We also looked more specifically at how far the strongest
downflows penetrate into the RZ, by computing the correlation
function C(δ) between the radial velocity at rt and a distance δ away
from it. We found that these strong downflows stop at a distance δu 
2.9δen from the base of the convection zone, for any S, dout and Rao.
This distance δu, computed as the first zero of C(δ), also turns out to
correspond to the level of neutral buoyancy for the downflows δ	.
The strict correlation discovered between δu, δG, and δen therefore
strongly suggests that the simple energetic argument put forward is
sufficient to characterize the dynamics of the overshooting plumes.

We found that the region between rt − δu and rt is partially
thermally mixed (at these values of the Rayleigh number), resulting
in an adjusted buoyancy frequency profile substantially smoother

MNRAS 484, 1220–1237 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/1/1220/5280053 by U
niversity of C

alifornia, Santa C
ruz user on 25 January 2019



1234 L. Korre, P. Garaud and N. Brummell

than that of the imposed background. However, we did not see any
actual penetration in the traditional definition of the extension of
the CZ into the RZ (e.g. Zahn 1991; Hurlburt et al. 1994). This is
because the turbulent temperature flux F̄T induced by overshooting
motions in the RZ remains moderate in all the simulations. We found
that it is independent of S and only scales weakly with Rayleigh
number (increasing by a factor of about two when Rao increases by
a factor of 100), suggesting either a very weak power law (F̄T ∝
Ra0.18

o ) or a logarithmic dependence on Rao.
Finally, below rt − δu the nature of the system dynamics clearly

change. The turbulent temperature flux becomes negligible, and the
kinetic energy profile is no longer Gaussian, but appears closer to
exponential. While weak fluid motions are present, they appear to
be more related to the ‘damped tail’ of linearly unstable convective
modes (in the sense described by Freytag et al. 1996, for instance)
rather than to internal gravity waves.

6.2 Comparison with previous numerical experiments

As discussed in Section 1, there have been quite a few numerical
investigations of the dynamics of overshooting and penetrative
convection to date. In what follows, we focus on the ones that
address the question of overshoot under a convective zone (some-
times referred to as ‘undershoot’, although we prefer not to use that
terminology), rather than above it. These include (among others)
the 2D fully compressible simulations of Hurlburt et al. (1986),
Hurlburt et al. (1994), Freytag et al. (1996), and Pratt et al. (2017),
the 3D fully compressible simulations of Brummell et al. (2002),
Singh et al. (1995; see also Singh et al. 1998; Saikia et al. 2000),
Käpylä et al. (2017), the 2D anelastic simulations of Rogers &
Glatzmaier (2005; see also Rogers, Glatzmaier & Jones 2006), and
the 3D ones of Brun et al. (2017).

Several general conclusions can be drawn from comparing the
outcome of these simulations to one another and to ours. First and
foremost is that penetrative convection in the strict definition of the
term (i.e. the extension of the convection zone substantially beyond
the threshold for linear instability) had so far not been observed in
fully turbulent 3D simulations (Brummell et al. 2002; Brun et al.
2017; Käpylä et al. 2017), and this continues to be the case here.
As reviewed in Section 1, the fact that penetration is seen in 2D
at sufficiently low values of S (e.g. Rogers & Glatzmaier 2005)
and in very laminar 3D simulations (e.g. Saikia et al. 2000) can
be attributed to the artificially large geometric filling factor of 2D
plumes versus 3D plumes (Brummell et al. 2002; Rempel 2004).
However, none of the existing 3D simulations (including ours) reach
particularly high values of the Rayleigh number. Hence, whether
this result will continue to hold when progress in supercomputing
allows us to simulate convection at much higher Rayleigh numbers
remains to be determined (see below for more on this point).

A second common point between (almost) all simulations is that
the kinetic energy of vertical motions within the downflows drops
substantially within the CZ as they approach the RZ from above,
owing to their lateral deflection, even in low stiffness cases. As a
result, the dominant contribution to the total kinetic energy within
the RZ is from horizontal flows. While this may superficially seem at
odds with the standard mental picture one may have of overshooting
plumes, note that most of the vertical transport is still carried
out by the strongest, most-concentrated downflowing motions, as
was described in other simulations, e.g. Brummell et al. (2002)
and Pratt et al. (2017), but the content of these strongest plumes
(heat, chemical species) is then advected (and mixed) laterally by
turbulent horizontal flows. Precisely how strong these concentrated

downflows can get (for given Rayleigh and Prandtl numbers in
the CZ) depends on the dimensionality of the simulations and on
the compressibility of the fluid (Boussinesq versus anelastic versus
fully compressible). Since the strength and depth of the downflows
control other RZ processes, such as the generation of gravity waves
or the formation of a Deardorff layer, for instance, it is not surprising
to see that the latter are strongly model-dependent, present in some
simulations, absent in others.

A third common point between all simulations is that the depth of
the turbulent overshooting layer (as measured by looking at either
the kinetic energy profile or the kinetic energy flux below the base of
the CZ) does seem to decrease with increasing stiffness S, which is
an intuitive result. What differs however is the measured scaling law
relating this depth to S. Hurlburt et al. (1994) and Brummell et al.
(2002) both ran DNS of overshooting convection in 2D and 3D,
respectively, where the radiative–convective transition is caused by
a sudden change in the thermal conductivity. They both state that
their results are consistent with estimates based on a variant of
Zahn’s theory (Zahn 1991), which predicts that the overshooting
depth should scale as ∼S−1/4 when the total flux through the system
is fixed. Our findings are not directly comparable to those reported
in Zahn (1991), who only considered two distinct regimes: a very
high Pe regime and a very low Pe regime. The high Pe regime is
associated with pure penetrative convection while in the low Pe
regime, diffusion dominates and leads to a thermal boundary layer
associated with overshooting. Instead, the Péclet numbers estimated
in the overshoot region, and shown in Table 1 range from about 0.5
to approximately 10. Our reported values of Peov are clearly neither
in the very low Pe regime nor in the very large Pe regime, thus
our findings cannot be directly compared to the regimes found in
Zahn (1991). Rogers & Glatzmaier (2005) presented 2D anelastic
simulations with fixed temperature boundary conditions, where the
radiative–convective transition is also caused by a sudden change
in the thermal conductivity and found a much shallower scaling
law ∼S−0.04. Meanwhile, in our Boussinesq 3D fixed flux DNS,
where the transition is driven by the existence of a heating source
around rt, we find somewhat steeper scaling laws, with ∼S−1/3 or
∼S−1/2 depending on whether the background radiative temperature
gradient is shallower or steeper, respectively. We believe that the
observed difference in the scaling laws reported in these various
papers is more likely to be due to the differences in boundary
conditions or model set-up used rather than compressibility, but
this should be verified in future work. It would be interesting, for
instance, to run a comparative study of overshooting and penetrative
convection in various systems that all have the same background
profile of N2, but that are driven in different ways (i.e. by varying
the diffusivities, or the equation of state, or using a heating function,
for instance).

In any case, gaining a better understanding of the scaling of the
overshoot depth with S is arguably less important than constraining
its scaling with the Rayleigh number, since S is not expected to be
too large in stars. Rao, on the other hand, needs to be increased
by more than 10 orders of magnitude to reach the stellar regime.
Not many studies have systematically looked into this problem. The
work of Brummell et al. (2002) seems to suggest (see their Section
3.7) the approximate scaling δ ∼ Ra−0.25. In Rogers & Glatzmaier
(2005), the situation is complicated by the fact that the measured
scalings with Rayleigh number appear to depend sensitively on S:
in the less stiff cases, the overshooting layer depth increases with
Rayleigh number, but the opposite is true for stiffer cases. The
simplicity of our simulations, however, easily allows us to vary Rao

independently of all other parameters, and we find that δG ∼ Ra−0.09
o
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Convective overshooting in a spherical shell 1235

in the case where the transition is steep, and δG ∼ Ra−0.14
o when it is

shallow. In both cases the overshoot depth therefore decreases with
Rao at fixed S as discussed in Section 4 (see equations 33 and 35,
using Ecz ∼ Ra0.72

o ), although the actual power law is quite shallow.
Finally, we note that very few studies, to our knowledge, really

looked into the actual spatial variation of the kinetic energy profile
with depth (which is a good proxy for the variation of the mixing
coefficient with depth, see below). Freytag et al. (1996) were the
first to clearly state that their simulations show an exponential
decay of the rms velocities with depth below the convection zone.
They showed that this profile is consistent with these velocities
being the stable exponentially decaying tail of the linearly unstable
convective modes. Unfortunately, this also demonstrates that their
simulations cannot be in the turbulent regime, a notion that is
consistent with a simple visual inspection of their fig. 2–5. By
contrast, our simulations are quite turbulent down to about rt −
δu (although obviously, the Rao = 106 cases are somewhat less
turbulent than the Rao = 108 ones in the first place). We find that
the kinetic energy profile is Gaussian instead of exponential in that
region, and only becomes exponential once the fluid motions are
sufficiently slow for all non-linearities to be negligible.

6.3 A prescription for mixing by overshoot

In this section, everything is now presented and discussed in
dimensional terms (assuming cgs units). All the variables are now
implicitly dimensional. Our numerical results have led us to suggest
a very simple Gaussian model for the kinetic energy profile below
the base of the convection zone given by

E(r) = Ecz exp

(
− (r − rt)2

2δ2
G

)
, (38)

where Ecz is the typical kinetic energy of fluid motions within the
convection zone (i.e. somewhere within the bulk of the zone). This
quantity can, for instance, be determined from mixing length theory
in a stellar evolution code, or from equation (29) in more idealized
Boussinesq set-ups (recalling that the prefactor could depend on
the Prandtl number and on the aspect ratio of the convective
region). The length-scale δG, on the other hand, can be estimated by
using the energy-based length-scale δen discussed in Section 4 (see
equation 30), with δG  δen. A factor of unity relating the two is left
unspecified here and may weakly depend on the Prandtl number
and on compressibility. Dimensionally speaking, the length-scale
δen can be found by solving the equation

1

2
v2

cz = −δen

∫ rt

rt−δen

g

Hp

(∇ − ∇ad) dr, (39)

where vcz is the convective velocity in the bulk of the convection
zone, g is the local gravity, ∇ = ∂ln T/∂ln p is the radiative
temperature gradient, ∇ad = (∂ln T/∂ln p)ad is the adiabatic tem-
perature gradient, and Hp is the pressure scale height. With this
formula, the computation of the depth δG only depends on the
local temperature gradient as well as standard variables returned by
stellar evolution codes, rather than the manner in which this tem-
perature gradient (and the CZ–RZ transition) is actually generated.
Note that this energy-based argument for estimating the overshoot
depth is ultimately quite standard; it recovers, for instance, that
of Christensen–Dalsgaard et al. (2011; see their equation 18) if
∇ − ∇ad is taken to be approximately constant below the base of

the convection zone, in which case δen satisfies

δen

Hp

=
(

v2
cz

2gHp|∇ − ∇ad|
)1/2

. (40)

If, on the other hand, ∇ − ∇ad is assumed to vary linearly with
depth below the CZ, with ∇ − ∇ad  η(r − rt), then

δen

Hp

=
(

v2
cz

gH 2
pη

)1/3

. (41)

Note that if convection is very efficient and transports the majority
of the stellar luminosity, then equations (39)–(41) can be expressed
in terms of the convective flux (instead of the convective velocity).
To do so, we assume that the two are related according to

Fconv = 4ρcpT

gδlm
v3

cz, (42)

where δ = ∂lnρ

∂ ln T
, cp is the specific heat at constant pressure and lm is

the mixing length (see e.g. Kippenhahn & Weigert 1990; Chapter 7).
Under the conditions for which this relationship holds, then we
would have

δen ∝ F 1/3
conv (43)

if ∇ − ∇ad is almost constant below the CZ and

δen ∝ F 2/9
conv (44)

if ∇ − ∇ad increases linearly away from the radiative–convective
interface.

From the kinetic energy profile (38), we can then form a dif-
fusion coefficient to model compositional mixing by overshooting
motions

Dov(r) = Dcz exp

(
− (r − rt)2

2δ2
G

)
, (45)

assuming that Dov ∝ v2
czτcz as in Freytag et al. (1996), where τ cz

is some convective turnover time-scale just above the base of the
convection zone.

In order to apply equation (41) to the Sun, we extract all the
relevant quantities from the interface between the interior radiation
zone and convective envelope of a 1 solar mass Main-Sequence
model computed with MESA1 (Paxton et al. 2011, 2013). We
find that vcz  6000 cm s−1 in the bulk of the convection zone,
and g  50 000 cm s−2, Hp  5 × 109 cm, and η  10−10 cm−1

near the interface, leading to δen/Hp  0.006. Similar calculations
made at the interface between the interior convective zone and
radiative envelope of a 2 solar mass Main-Sequence model yield
vcz  7000 cm s−1, g  200 000 cm s−2, Hp  5 × 109 cm, and η

 10−11 cm−1, leading to δen/Hp  0.01. In both cases, δen (and by
definition δG) is quite a small fraction of a pressure scale height
and would result in much shallower predictions for the depth of the
overshoot-mixed layer than what is commonly assumed in stellar
evolution models [e.g. from the model of Herwig (2000) with f 
0.1Hp]. Even shallower predictions would be obtained using values
of vcz taken closer to the edge of the convective region. Whether
overshoot is, in fact, as shallow as predicted in real stars remains
to be determined. As discussed in Section 1, it is not unlikely that
moving beyond the Boussinesq approximation could result in a
somewhat larger overshoot depth than what we currently see in the
simulations, simply because of the pressure-induced enhancement

1Version 6794.
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of the asymmetry between narrow downflows and broad upflows.
In addition, since δen depends sensitively on vcz, the reliability
of our model predictions effectively depends on the reliability of
mixing-length theory (Böhm-Vitense 1958; Cox & Giuli 1968) in
estimating the typical velocities of convective motions deep within
a star. Asteroseismology will hopefully help constrain the latter
in the coming years. Nevertheless, it is difficult to see how the
overshoot depth could vary substantially away from δen predicted
using the simple energy balance argument given in equation (39). It
is worth remembering at this point that Zahn’s original models
(Zahn 1991; Hurlburt et al. 1994) also predict a very shallow
overshoot layer (in the strict definition of the term) – but that layer
only starts beyond a thermally mixed penetration layer that can be
much larger (at least for the smaller values of S). As such, our
findings (in terms of strict overshoot) are not inconsistent with
observations of substantial mixing beyond the edge of a convective
region (Liu et al. 2014; Deheuvels et al. 2016), as long as these
observations are interpreted as evidence for penetration (rather than
overshoot).

As discussed in Section 5, estimating the amount of thermal
mixing below the CZ (and therefore quantifying penetration) is
much more complicated, as this requires knowledge not only of the
velocities, but also of the typical temperature fluctuations associated
with upflows and downflows relative to the background profile,
which in turn depend on the relative importance of both small-scale
horizontal turbulent mixing and thermal diffusion, as well as the
global thermal equilibrium. This cannot be done using simple local
energetic/thermal balance arguments, and it seems that the only way
forward is to analyse the results of numerical simulations to create an
empirical model for the heat flux. The problem with this approach,
however, is that it is very sensitive to the model set-up used (i.e.
compressible versus anelastic versus Boussinesq, 2D versus 3D,
boundary conditions, method for generating the CZ–RZ transition),
as noted by the rather vast discrepancies in results obtained in the
numerical experiments discussed in Section 1. Further work will be
required to better understand the causes of this sensitivity and to
determine what results can and cannot be carried over (qualitatively
and quantitatively) from idealized models to more realistic stellar
environments.

Within the scope of numerical simulations run in the same set-up
as ours, we could tentatively extrapolate our results to estimate the
magnitude of the turbulent temperature flux F̄T induced below rt

by the convective motions. However, we found that the latter only
varies very weakly with Rayleigh number to the extent that we are
unable to propose any definite model for the former. If a power
law is assumed, then our results suggest that F̄T ∝ Ra0.18

o . If that
scaling holds, we predict that it may be possible to see convective
penetration in Boussinesq convection at higher Rayleigh numbers
(holding the Prandtl number constant). Indeed, taking our reference
simulation (Pr = 0.1, S = 5, dout = 0.003, Rao = 107) for instance,
we see that the turbulent flux would have to be about five times larger
than it is to drive the profile of N̄2 towards an adiabat below the base
of the CZ, which would require an input Rayleigh number (defined
as in equation 11) of the order of about 1011. Another way of looking
at the problem is to estimate how the Péclet number varies with Rao.
Given that Peov = urmsδGPr, where urms ∝ Ra0.36

b (see equation 29)
and δG ≈ δen [where δen is given by equation (33), for instance],
we find that Peov ∝ Ra0.27

o . It would require a Rayleigh number 104

times larger, therefore a Péclet number 10 times larger than what
we currently have in order to get a fully mixed region, i.e. pure
penetration. This is quite large, but may actually be achievable in

the not-too-distant future2 (especially if one were to use a reduced
computational domain consisting of a wedge, rather than a full
sphere).
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