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Abstract
Personal thermal comfort models are a paradigm shift in predicting how building oc-
cupants perceive their thermal environment. Previous work has critical limitations 
related to the length of the data collected and the diversity of spaces. This paper 
outlines a longitudinal field study comprising 20 participants who answered Right- 
Here-	Right-	Now	surveys	using	a	smartwatch	for	180 days.	We	collected	more	than	
1080	field-	based	surveys	per	participant.	Surveys	were	matched	with	environmental	
and physiological measured variables collected indoors in their homes and offices. 
We then trained and tested seven machine learning models per participant to predict 
their thermal preferences. Participants indicated 58% of the time to want no change in 
their thermal environment despite completing 75% of these surveys at temperatures 
higher	than	26.6°C.	All	but	one	personal	comfort	model	had	a	median	prediction	accu-
racy	of	0.78	(F1-	score).	Skin,	indoor,	near	body	temperatures,	and	heart	rate	were	the	
most	valuable	variables	for	accurate	prediction.	We	found	that	≈250–	300	data	points	
per participant were needed for accurate prediction. We, however, identified strate-
gies	to	significantly	reduce	this	number.	Our	study	provides	quantitative	evidence	on	
how to improve the accuracy of personal comfort models, prove the benefits of using 
wearable devices to predict thermal preference, and validate results from previous 
studies.

K E Y W O R D S
ecological	momentary	assessment,	internet	of	things	(IoT),	machine	learning,	personal	thermal	
comfort model, skin temperature

1  |  INTRODUC TION

Occupant	thermal	comfort	significantly	affects	how	people	perceive	
their indoor environment, and thermal dissatisfaction is an ongoing 
challenge.	 Evidence	 shows	 that	 approximately	 40%	of	 the	 90 000	
surveyed	occupants	 in	North	America	were	dissatisfied	with	 their	
thermal environment.1 Thermal comfort models are designed to 
predict	 comfort	 toward	 addressing	 this	 challenge.	 All	 major	 ther-
mal comfort standards have models that are considered aggregate 

in nature.2,3	 All	mainstream	 aggregate	models	 aim	 to	 predict	 how	
a “typical” person or a group of people would perceive their ther-
mal environment in terms of given environmental (e.g., relative hu-
midity, indoor air temperature [ti]), and personal (i.e., clothing and 
metabolic rate) parameters. For example, the Predicted Mean Vote 
(PMV) predicts the average thermal sensation of a group of people 
sharing the same environment, as an outcome of the heat transfer 
balance model between the human body and its surrounding envi-
ronment. The PMV was developed through laboratory experiments 
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by Fanger,4	 and	 is	 now	 included	 in	 both	 the	 ISO	7730:20052 and 
ASHRAE	55-	2020	Standards.3

1.1  |  Limitations of aggregate models

Both the PMV and the adaptive models have several limitations 
when used to control the temperature in buildings,5- 7 despite 
their successful adoption into international standards. (1) Required 
inputs—	In	 real	 buildings,	 it	 is	 extremely	 challenging	 to	 accurately	
measure some input variables needed to calculate PMV, such as 
metabolic rate, clothing, airspeed, and mean radiant temperature.8 
(2) Prediction accuracy— Even when all input variables are accurately 
measured, these models have poor accuracy both in predicting 
group and individual thermal comfort.9 (3) Training—	Aggregate	mod-
els do not adapt or re- learn.6 They were developed using fixed and 
limited datasets and did not benefit from new feedback provided 
by people. They do not learn and adapt to specific conditions.5 (4) 
Limited inputs—	Aggregate	models	only	use	a	small	set	of	input	vari-
ables. They do not use variables, such as skin temperature (tsk), heart 
rate (HR), age, or health status, that may affect the thermal percep-
tions of people.5

1.2  |  The emergence of personal comfort models

Personal comfort models challenge the one- size- fits- all approach of 
aggregate	models.	Instead	of	an	average	response	from	a	group	of	
people, a single model is trained and tested for each participant. 
Personal comfort models are, however, not limited to predicting one 
person's thermal preference. Their aggregated outputs can be used 
to predict the thermal preference of a large group of people sharing 
the same environment.5	Since	their	introduction,	personal	comfort	
models have been expanded to leverage data collected using a wide 
array of sensors, including portable sensors and devices,10,11 build-
ing management systems,12,13 personal comfort systems,14 as well 
as onboard sensors in wearable devices and smartphones. This net-
work of sensors can remotely and non- intrusively measure, log and 
store spatiotemporal environmental and physiological data.

Wearable devices have increased the viability of personal model 
development due to the use of physiological sensors to improve 
model accuracy. For example, skin temperature (tsk) reflects the va-
somotor tone15 while heart rate correlates with activity levels. This 
is supported by previous research that has shown that the use of tsk 
as an independent variable can improve the prediction accuracy of 
thermal comfort models.16- 21	In	certain	applications,	tsk may be even 
determined using non- contact sensors like infrared.22- 24 However, it 
is essential to emphasize that non- contact sensors are less accurate 
than those that are in direct contact with the skin; they can only 
monitor tsk from body areas that are in the line of sight to the camera 
and are expensive to install.6	They,	however,	do	not	require	having	a	
sensor to be worn by people. Experimental methodologies collect-
ing tsk are common and iButtons sensors are often used. They can 

accurately measure and log tsk.
25- 27 Currently, most smartwatches 

on the market can measure HR with sufficient accuracy for thermal 
comfort research; however, none incorporate sufficiently accurate 
skin temperature sensors.18

1.3  |  Limitations of personal comfort models

Despite the momentum of personal comfort models, there are still 
several unknowns and limitations as outlined in a recent review.28 
This analysis pinpoints a lack of diversity in space types, climates, 
and conditions used to train personal comfort models. The review 
showed that only 3 out of 37 studies selected for analysis included 
data collection outside office spaces or lab- based thermal chambers 
used to emulate an office environment.28	Another	limitation	is	that	
there was a wide range of the amount of longitudinal data collected 
in the studies, with anywhere between 8 and 416 points collected 
per person. Researchers placed little emphasis on whether the 
length and data amount were exhaustive in capturing the predict-
ability	of	 an	 individual.	 In	 addition,	 in	personal	 comfort	model	ex-
periments, it is not common or easy to log and measure information 
about the participant's dynamic personal factors such as clothing or 
activity levels.29	Addressing	the	lack	of	diversity	and	the	amount	of	
data is not easy due to experimental constraints.

One	 of	 the	 biggest	 challenges	 that	 researchers	 currently	 face	
is recording how people perceive their thermal environment over 
a long period of time while minimizing the fatigue of completing a 
Right- Here- Right- Now (RHRN) thermal comfort survey. To partially 
solve this issue, Kim et al.30 tried to infer occupants' thermal pref-
erences by analyzing specific behaviors, such as turning on and off 
heating and cooling devices. They then coupled these data with 
environmental readings to infer a user's preferences without them 
having to complete a survey. However, thermal actions may be trig-
gered by other reasons besides thermal discomfort; for example, 

Practical implications

In	addition	to	demonstrating	the	advantages	of	employing	
wearable technology to gather subjective feedback from 
people, our study validates the findings from earlier re-
search	and	offers	quantitative	evidence	on	how	to	increase	
the	precision	of	personal	comfort	models.	Our	methodol-
ogy and results can be used in buildings to develop and im-
plement occupants centric controls. This enables building 
operators to enhance thermal comfort conditions indoors 
while possibly reducing the overall energy consumption of 
the building. We made the decision to openly publish our 
data so that others might use it to test various assump-
tions or create personal comfort models utilizing various 
methodologies.
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Kim et al.30 found that users turn on the heating element in their 
chair to mitigate back pain.

1.4  |  Improving personal comfort models through 
larger and more diverse longitudinal data

To address the limitations mentioned above, an emerging method-
ology focuses on the use of wearable devices to collect physiologi-
cal data and act as the subjective feedback collection interface. This 
method builds upon research in the area of Ecological Momentary 
Assessments	(EMA),	a	form	of	collecting	subjective	information	in	di-
verse field- based settings.31	A	style	of	this	methodology	emerging	as	
a	popular	way	to	reduce	the	incidence	of	survey	fatigue	is	micro-	EMA,	
in which smartwatches are used to prompt a research participant to 
leave feedback in a fast and time- efficient manner.32	Micro-	EMA	has	
been shown to deliver higher response rates with a lower burden 
on research participants than a smartphone or computer- based sur-
vey.33 To build upon this foundation and help solve the issue of col-
lecting perception data from people, our team has contributed to the 
development	of	the	micro-	EMA	Cozie	project	that	targets	indoor	oc-
cupant data collection.34,35 Cozie is an open- source application that 
one	can	install	on	Fitbit	(Versa	2	and	Ionic)	or	Apple	smartwatches.	
The platform has been utilized in previous studies to test the im-
plementation and modelling of smartwatch- based subjective data 
collection,36- 38 study thermal preference, imbalanced classes,39 and 
create personal comfort models using building information model 
components as inputs.40	One	can	find	more	information	about	Cozie	
and the official documentation at https://cozie.app and https://cozie 
- apple.com. Cozie allows people to conveniently complete an RHRN 
survey	 via	 their	 smartwatches.	 Subjects'	 perceptions,	 preferences,	
and behaviors collected via Cozie can then be coupled with environ-
mental data collected from wireless sensing devices and physiologi-
cal data collected by the smartwatch.

1.5  |  Aim and objectives

Our	research	aims	to	resolve	gaps	in	personal	thermal	comfort	mod-
els	by	collecting	field-	based	thermal	preference	data.	Our	methodol-
ogy	is	designed	to	enable	us	to	address	the	following	questions	with	
resulting novel insights:

• How many data points per user must be collected to develop a 
reliable and robust personal comfort model? We collected data 
for	180 days	resulting	in	more	feedback	responses	per	person	(up	
to 1080) than in any previous study.28

•	 Are	environmental	and	physiological	data	sufficient	to	train	per-
sonal thermal comfort models while minimizing the impact on 
users? The methodology of this paper utilizes a novel framework 
of	 simple-	to-	use	 non-	intrusive	 techniques	 to	 collect	 physiologi-
cal, environmental, and geospatial data using smartwatch- based 
micro-	EMA.

• Can increasing the diversity of space types and conditions im-
prove the accuracy of personal comfort models? How can differ-
ent variables contribute to the overall model accuracy? This study 
is designed to collect data from diverse spaces, including the par-
ticipants' homes, where there is a lack of data in previous studies. 
In	addition,	this	paper	is	novel	in	accurately	monitoring	whether	
the RHRN was completed during transitory conditions.

In	addition,	we	decided	to	publicly	share	our	data	so	other	peo-
ple can use it to test different hypotheses or develop personal com-
fort models using a different methodology.

2  |  METHODOLOGY

We collected subjective responses and physiological data from 
human subjects using wearable devices, personal data using surveys, 
and environmental data using data loggers. We then applied super-
vised machine learning algorithms to train personal thermal comfort 
models for each study participant. Thermal preference votes from 
the	 RHRN	 survey	 (i.e.,	 Q.1	 Cozie	 Survey—	Thermal	 preference—	
please	see	Section	2.4) were utilized as the ground truth labels for 
model training and evaluation. The methodology and sensors we 
used to measure and log data are summarized in Figure 1, while a 
flowchart depicting the methodology we used to analyze the data 
is shown in Figure A.2. The human subject experiment for this 
study	 was	 approved	 by	 the	 University	 of	 California	 Berkeley	 IRB	
(Institutional	 Review	 Board:	 2020-	01-	12899).	 We	 compensated	
participants who completed the study with gift vouchers for a total 
amount	of	SGD	400.

2.1  |  Subjects

Participants were recruited through online posting. The inclu-
sion criteria were that the participant must: have lived for at least 
3	months	 in	 Singapore,	 be	 at	 least	 21 years	 old,	 and	 be	 fluent	 in	
English. Personal information (e.g., sex, age, and education) about 
participants was collected using a web- based survey at the begin-
ning of the study.

2.2  |  Wearable sensors

Each participant received a Fitbit Versa (v1 or v2) and was asked to 
wear it daily for the whole duration of the study.

To measure and log wrist skin temperature (tsk,w) and wrist near 
body temperature (tnb,w)	we	installed	two	iButtons,	model	DS1925,	
on	the	Fitbit	wristband.	One	iButton	was	installed	on	the	inner	side	
of the wristband and measured tsk,w in the front part of the wrist. The 
other was installed above the watch display and was used to mea-
sure tnb,w. Figure A.1 shows the exact location of where the iButtons 
were installed.

https://cozie.app
https://cozie-apple.com
https://cozie-apple.com
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More information about the rationale on why we used Fitbit and 
iButton	can	be	found	in	Section	1	of	the	Appendix.

Participants were asked to complete the RHRN no sooner than 
10 min after either wearing the Fitbit or changing clothes or activities. 
This further limits the error in the measurement of tsk,w and ensured 
that they did not complete an RHRN survey during a transitory.

2.3  |  Environmental sensors

Environmental data were monitored and logged using three sensors. 
One	was	installed	in	the	room	of	their	house,	where	they	spent	the	
majority of their time indoors. This room corresponds to the “Home” 
location	in	question	three	of	the	Cozie	survey	as	shown	in	Figure 2. 
Another	was	used	to	measure	and	log	ti and relative humidity at the 
participant's workplace. This room corresponds to the “Work” loca-
tion in the Cozie survey. The workstation could be in their office or 
home if they were working from home. Finally, the third sensor on a 
bag/backpack of their choice. Participants were instructed to select 
“Portable”	in	question	three	when	within	a	2	m	radius	of	this	sensor.	

Detailed	information	about	each	sensor	used	is	presented	in	Section	
1 of the Appendix and Table A.1.

2.4  |  Surveys

Participants were asked to complete, on average, a total of 42 RHRN 
surveys	per	week	over	a	period	of	180 days	using	the	Cozie	clock	face.	
Figure 2	shows	the	flow	of	questions	that	were	included	in	the	RHRN	
survey.

Q.1— “Would you prefer to be?” assesses the thermal preference 
using	a	three-	point	scale.	Q.2—	“Are	you?”	logs	if	participants	completed	
the	survey	either	indoors	or	outdoors.	Q.3—	“Are	you	near	a	sensor?”	de-
termines if a participant is in proximity to one of the three environmen-
tal sensors. Q.4— “What are you wearing?” participants reported their 
clothing level using a 4- point ordinal scale. Q.5— “Can you perceive air 
movement around you?” assesses if the air surrounding the participant 
was	still.	Q.6—	“Activity	last	10-	min?”	participants	reported	their	activity	
level over the last 10 min. Q.7— logged if the survey is answered during 
a transitory situation or in a near “steady- state” environment.

F I G U R E  1 Methodology	used	to	collect	data	in	our	study.	Participants	answered	the	RHRN	surveys	using	the	Fitbit	Cozie	clock	face.	
Physiological data and RHRN responses were first sent to the Fitbit companion application and then synced with a cloud database. 
The HR data were downloaded from the Fitbit accounts. tsk,w and tnb,w were measured using two iButtons which were installed on the 
Fitbit	wristband.	Indoor	location	was	monitored	using	two	BLE	beacons	communicating	with	the	BEARS	Android	application	when	each	
participant's phone was in their proximity. Environmental data were uploaded to the cloud database using Wi- Fi. Finally, participants were 
reminded to complete the RHRN surveys using Telegram, a messaging application.
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The	 questions	 flow	was	 always	 displayed	 in	 the	 same	 order.	 A	
custom- made algorithm analyzed real- time environmental data and 
occupants' indoor location that was logged by an application we de-
veloped. Participants received a message when in the proximity of the 
two environmental sensors, and they had completed less than 10% of 
the total RHRN surveys in those environmental conditions.

2.5  |  Weather data

Weather	data	were	obtained	from	the	Singapore	Government	web-
site that provides 1- min interval data.41 Weather data was merged 
with	the	GPS	information	collected	by	the	Cozie	app	and	answers	to	
question	two	of	the	RHRN	survey.

2.6  |  Data analysis

The source code we used to analyze the data and the full dataset are 
publicly available at this URL: https://github.com/Feder icoTa rtari ni/
dorn- longi tudin al- tc- study.

2.6.1  |  Data	preparation

Participants completed surveys while performing a wide range of 
activities, wearing different clothing, being in multiple locations, and 
being exposed to a broad range of environmental conditions.

We aimed to develop a personal thermal comfort model for each 
participant, which could potentially be used to better control and op-
erate	buildings.	Consequently,	we	decided	to	exclude	the	responses	

that participants provided: (i) while exercising, (ii) when not in the 
proximity of either of the environmental sensors provided (answered 
“No” to Q.3), (iii) during a transitory situation (answered “Yes” to Q.7), 
(iv) when outdoors, and (v) while not wearing the smartwatch cor-
rectly. The rationale behind our decisions was that personal comfort 
models could mainly be used indoors to improve thermal comfort con-
ditions where environmental conditions can be controlled. We provide 
a detailed description of how we implemented the above- mentioned 
selection	criteria	in	Section	2	of	the	Appendix.

2.6.2  |  Supervised	machine	learning	algorithms

We used seven supervised machine learning classifiers to predict 
thermal preferences: Logistic Regression (LR), Random Forest (RDF), 
Extreme	Gradient	Boosting	(XGB),	Support	Vector	Machine	(SVM),	
K-	Nearest	Neighbors	(KN),	Gaussian	Naive	Bayes	(GNB),	and	Multi-	
Layer	Perceptron	(MLP).	We	used	the	Kruskal–	Wallis	H- test to test 
the null hypothesis that the population median of all the groups is 
equal.	 The	 Kruskal–	Wallis	H-	test	 was	 used	 since	 the	 ANOVA	 as-
sumptions were not satisfied, and it is a non- parametric version of 
ANOVA.	The	rejections	of	the	null	hypothesis	do	not	indicate	which	
of	the	groups	differs.	Comparisons	between	groups	are	required	to	
determine which groups are different.

2.6.3  |  Training	data	size

One	of	our	objectives	was	to	determine	how	the	number	of	training	
data points would affect the model accuracy. This has practical ap-
plications	since	it	would	inform	us	of	the	minimum	required	number	

F I G U R E  2 Right-	Here-	Right-	Now	(RHRN)	survey	questions	displayed	using	the	Cozie	clock	face

https://github.com/FedericoTartarini/dorn-longitudinal-tc-study
https://github.com/FedericoTartarini/dorn-longitudinal-tc-study
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of RHRN to be collected from each participant. The hypothesis is 
that a higher number of data for each participant would lead to more 
accurate results. To test this, we randomly selected 100 data points 
for testing and then trained the models using the first 42 RHRN sur-
veys	(approximately	1 week	of	data)	each	participant	completed.	We	
then iteratively trained a new model for each increment which com-
prised additional 84 training data points.

2.6.4  |  Independent	variable	selection

The independent variables we used to train our models are shown 
in Table 1. Each column represents a sub- set of variables and each 
row the respective model. The variables were grouped as follows: 
environmental— outdoor air temperature, outdoor humidity ratio, 
indoor air temperature (ti), and humidity ratio indoors (Wi);	 clo–	
met—	self-	reported	clothing	and	activity	as	explained	in	Section	2.4; 
wearable— location, heart rate (HR), wrist skin temperature (tsk,w), and 
wrist near body temperature (tnb,w); time— hour of the day, weekday 
or weekend, and day of the week.

We also computed some variables (hist) to take into account how 
thermal history may have influenced how participants perceived their 
environment at the time of completing the RHRN survey. For each of 
the time- series data included in either the environmental or the wear-
able variable sets, we calculated the following additional variables: 
exponentially weighted moving average and gradient over a 20 and 
60 min	period	preceding	the	survey.	The	average	and	gradient	for	the	
weather data were calculated using timeframes of 1 and 8 h.

We	 used	 the	 SHapley	 Additive	 exPlainations	 (SHAP)	 method	
to determine how much each variable influences the output of the 
model.	The	primary	idea	behind	Shapley's	value-	based	explanations	
of machine learning models is to divide the credit for a model's out-
put among its input variables using fair allocation outcomes from co-
operative game theory.42,43	The	use	of	the	SHAP	approach	allowed	
us to understand and interpret how and why our complex models 
made specific predictions.

We included env, time, and wearable in all models since previous 
research has demonstrated that the inclusion of these variables into 
personal comfort models significantly increases their prediction ac-
curacy.18 We, therefore, decided only to test whether the use of his-
torical and self- reported clothing and activity would have improved 
the prediction accuracy in our case.

We have shared the data we collected publicly so other research-
ers may test different hypotheses or use a different approach from 
the one described in this paper.

Including	 indoor	 air	 temperature	 (ti), wrist skin temperature 
(tsk,w  ),	and	wrist	near	body	temperature	(tnb,w) in all models may in-
troduce multicollinearity. The environment to which a person is 
exposed, the clothing they wear, and the actions they perform, 
together which several other factors that affect how indoor air 
temperature (ti), wrist skin temperature (tsk,w), and wrist near body 
temperature (tnb,w) are correlated. We, therefore, decided to keep 
them all in the models since they allowed us to potentially capture 
all the above- mentioned interactions that cannot be measured but 
still play a significant role in how people perceive their thermal en-
vironment. For example, the near- body temperature may approxi-
mate the air temperature when a person is exposed to elevated air 
speeds.	On	the	other	hand,	it	will	be	more	influenced	by	the	skin	
temperature when the person is resting and the air in the room is 
still.	It	is	worth	mentioning	that	Apple	in	their	latest	smartwatch,	
the	Apple	Watch	8	released	 in	October	2022,	also	 included	two	
temperature sensors, one that measures the skin temperature 
and one below the screen to isolate the body temperature from 
the	 outside	 environment.	 Apple	 claims	 that	 this	 allows	 them	 to	
get a more accurate estimate of the variables that they want to 
predict.44

2.7  |  PMV estimation

We used the measured environmental variables and personal fac-
tors,	qualitatively	 logged	by	 the	participants	 to	calculate	 the	PMV	
using the following assumptions. The activity levels reported by the 
participants were mapped using the following values resting = 0.8 
met, sitting = 1.1 met, and standing = 1.4 met. While reported cloth-
ing values were mapped as follows very light = 0.3 clo, light = 0.5 
clo, medium = 0.7 clo, and heavy = 1.0 clo. These numbers were de-
termined by asking each participant which clothes on average they 
wore when selecting one of the above options. The mean radiant 
temperature	was	assumed	to	be	equal	to	ti.

45 The relative airspeed 
value	was	calculated	assuming	the	airspeed	to	be	equal	to	0.1	m/s	
and using the self- reported activity levels. We are fully aware that 
these assumptions have limitations and do affect PMV prediction 
accuracy; however, similar assumptions have been previously used 

TA B L E  1 Independent	variables	used	to	train	the	respective	model

Variable sets

Model env time wear clo– met env- hist wear- hist

Thermal preference PCM x X x

Thermal	preference	PCM	clo–	met x X x x

Thermal	preference	PCM	clo–	met	hist x X x x x x

Note:	We	used	the	following	abbreviations	in	the	table:	self-	reported	clothing	and	activity	(clo–	met),	environmental	(env),	wearable	(wear),	and	
historical (hist).
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in thermal comfort research.30 Finally, we mapped the PMV val-
ues into thermal preference votes using the following assumptions: 
“Warmer” for PMV <1.5, “Cooler” for PMV >1.5, and “No Change” 
for	−1.5 ≤ PMV ≤ 1.5.	This	 is	 the	 same	assumption	made	by	Fanger	
who considers dissatisfied those people who reported their abso-
lute value of thermal sensation to be either 2 or 3.4 This is based on 
the assumption that, for example, people who have a thermal sensa-
tion of “Warm” or “Hot” is highly probable that they may want to be 
“Cooler.”	In	this	paper,	we	did	not	draw	conclusions	on	the	accuracy	
of the PMV model, but we only used it as a benchmark value to as-
sess the accuracy of the thermal personal comfort models.

2.7.1  |  Evaluation	criteria

The model prediction accuracy was evaluated using the following 
metrics: F1- micro, F1- macro, and Cohen's kappa. We calculated 
all these metrics for a more precise interpretation of the results, 
however, we only reported the F1- micro scores unless there was a 
significant disagreement between the prediction accuracy scores 
of different metrics. F1- micro ranges between 0 and 1 where 1 
represents the optimal prediction value. F1- micro measures the 
prediction	 accuracy	 and	gives	 equal	 importance	 to	precision	 (true	
positives divided by all positive results) and recall (true positives di-
vided by the number of samples that should have been identified as 
positives).	In	multilabel	classification,	(i.e.,	in	our	case	since	thermal	
preference assumes three values) the F1- micro is calculated globally 
across all classes.

2.7.2  |  Training	and	testing

Hyper- parameters optimization is done using a random search and 
5- fold cross- validation. We tested 10 random combinations of hyper- 
parameters in each of the 5- fold, and the best performing model, 
in	terms	of	objective	metric	as	specified	in	Section	2.7.1, is chosen. 
Table A.2 shows the parameters chosen for training the models and 
performing the random search. We repeated this entire process 100 
times for each model.

3  |  RESULTS

The	 longitudinal	 study	 commenced	 in	 April	 2020	 and	 ended	 in	
December	2020	 in	Singapore.	A	total	of	20	participants	 (10	males	
and 10 females) took part in our study. Key information about each 
participant is presented in Table 2.

3.1  |  Dataset preparation and cleaning

Participants	completed	a	total	of	22212	RHRN.	Of	the	total	surveys	
collected, participants completed 2% of them while exercising, 6% 

while outdoors, and 12% while in transitory conditions. These sur-
veys were not included in the data analysis as previously explained 
in	Section	2.6.1.

The tsk,w and tnb,w data we measured while the participants com-
pleted the RHRN are depicted in Figure 3A.	In	approximately	97%	of	
the total completed surveys, the value of tsk,w was higher than tnb,w .	
This result was expected since the maximum value of ti that partici-
pants experienced throughout the study never exceeded 34°C. For 
example, the delta between tsk,w and tnb,w in participant 10 was as 
low	as	−0.7°C,	while	 the	average	value	across	all	participants	was	
−3.2°C.	We	consequently	remove	the	data	using	the	methodology	
detailed	in	Section	2	of	the	Appendix. This removed more than 15% 
of the total number of surveys collected by the following partici-
pants 05, 10 (73% excluded), 12, 14, and 18.

This	sub-	set	of	the	original	dataset,	which	included	13 073	sur-
vey responses, was used in the data analysis. The filtered number of 
surveys for each participant is shown in Figure 3B.

3.2  |  Dataset overview

The	13 073	survey	responses	are	summarized	in	Figure 4. Votes in 
Q.1— “Thermal preference” were mostly “No Change” (58%) followed 
by	“Cooler”	 (35%).	This	study	took	part	during	the	COVID-	19	pan-
demic, and most of the participants had to work from home for the 
whole study duration. Participants in their homes had full control of 
the air- conditioning set- point and could use electric fans to increase 
airspeed in their surroundings.

Most of the participants reported being involved in sedentary 
activities in 77% of the cases. Participants perceived air movement 
only less than 30% of the time, and 69% of them wore “Light” clothes.

To better depict how participants perceive their thermal environ-
ment, in Figure 5 we plotted the distribution of the thermal prefer-
ence votes (Q.1) grouped by the participant. While the great majority 
voted “No Change,” two wanted to be “Cooler” more than 90% of the 
time. Even if participants had similar distributions of thermal pref-
erence votes, such as participants 05 and 13, they might have dif-
ferent	thermal	comfort	needs,	requirements,	and	preferences.	This	
situation can be explained by the fact that the participants wore dif-
ferent clothes, engaged in different activities, and were exposed to 
different environmental conditions. The values of ti recorded when a 
participant completed the survey are shown in Figure 6. The Figure 
also	depicts	the	outdoor	temperature	measured	in	Singapore	during	
the	 entire	 study	period.	 Singapore	 is	 characterized	by	 a	 tropically	
hot and humid climate with limited seasonal temperature variation. 
Temperature variation mainly occurs intra- day.

The thermal preference votes grouped by the self- reported 
clothing and metabolic rates are shown in Figure 7. Participants ac-
tively adjusted clothing to improve their thermal comfort. They wore 
“Very light” clothes to compensate for warm indoor air tempera-
tures. Participants also actively increased their clothing levels when 
exposed to temperatures they deemed to be “Cold.” Thus, 67% of 
participants wearing “Heavy” clothing felt comfortable. Wearing 
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more clothes alone did not always suffice to compensate for cold 
indoor	conditions.	Overcooling	 indoors	was	the	 leading	cause	that	
27% of them wanted to be “Warmer,” even though participants wore 
“Heavy” clothing in a tropical climate. This is a common issue for 
buildings located in the tropics.46	Overcooling	does	not	only	neg-
atively impact building energy consumption, but in the tropics has 
also been shown to worsen occupants' cognitive performance.47 
Approximately	74%	of	the	participants	who	reported	to	be	“Resting”	
voted	“No	Change”	in	question	Q.1.

3.3  |  Thermal preference personal comfort models

The prediction accuracy of the personal comfort model we devel-
oped is depicted in Figure 8. The figure shows the F1- micro scores 
for the three sets of variables grouped by the supervised machine 
learning model we used to train the personal comfort models. We 
also report the PMV model results.

The prediction accuracy of all the personal comfort models de-
veloped with the supervised machine learning algorithms was sig-
nificantly (p < 0.01)	and	substantially	(excluding	XGB)	higher	(≈37%)	
than	the	results	obtained	from	the	PMV	model.	In	our	study,	we	only	
qualitatively	logged	clothing	levels	and	metabolic	rates,	and	we	did	
not	measure	 airspeed	 as	 detailed	 in	 Section	2. Hence, we do not 
have sufficient evidence to prove that the PMV has low predic-
tion accuracy. We simply report the results of the PMV to provide 
a benchmark to show the increase in accuracy that personal com-
fort models can achieve. This is, however, a common issue in real 

buildings, hence these values must also be assumed to calculate the 
PMV.

One	of	the	main	objectives	of	this	study	was	to	determine	how	
different sub- sets of variables would affect the accuracy of the mod-
els.	Adding	an	increased	number	of	variables	to	the	model	did	not	al-
ways	improve	its	accuracy.	In	some	cases,	it	had	the	opposite	effect	
and	led	to	a	decreased	F1-	micro	score.	Similar	results	were	also	ob-
tained in previous studies.18 This can be partially explained because 
participants completed surveys in near- steady- state conditions. 
Hence, including historical data is not always beneficial. Moreover, 
self- reported clothing and activity may not have accurately enough 
represented participants' actual clothing ensembles or metabolic 
rates since their selection was limited to four choices. This is a pos-
itive result since in a real- life scenario we would not have access to 
this information.

The distribution of the F1- micro scores was significantly dif-
ferent when we compared the results of the following models: 
XGB,	SVM,	RDF,	LR,	MLP	using	different	variable	sets.	However,	
the significant increase in model complexity would not justify the 
modest increase in prediction accuracy in most practical applica-
tions.	On	average,	training	one	model	once	with	the	full	variable	
set	 for	 each	 20	 users	 resulted	 took	 83,	 6,	 620,	 11,	 and	 67 s	 for	
XGB,	SVM,	RDF,	LR,	MLP	models,	respectively.	We	consequently	
decided	to	present	only	the	results	from	the	SVM	model	trained	
with the environmental— wearable— time independent sets of vari-
ables in Figures 9 and 10.	Firstly,	because	the	SVM	model	is	less	
computationally intensive to train and secondly because it is a lin-
ear model, hence it is better suited to predict thermal preference 
which is an ordinal variable. We are providing supporting evidence 
on	this	in	Section	4.	Linear	models	use	a	multidimensional	hyper-
plane to classify the data, this may lead to lower prediction ac-
curacy if compared with non- linear models. Nevertheless, linear 
models ensure that as ti increases, all other variables being fixed, 
the prediction does not switch back and forth between “Warmer,” 
“No Change,” and “Cooler.” This issue is particularly relevant when 
personal comfort models are used in real- life applications to op-
erate buildings. Non- linear model predictions may be the cause of 
instabilities	 in	 the	HVAC	controller	and	 limit	 the	use	of	personal	
comfort models to control buildings.

3.3.1  |  Influence	of	data	size	on	prediction	power

Figure 9A depicts how the F1- micro score varies as a function of 
the number of training data points for each participant. The figure 
also shows the F1 mean score (black line) and its standard deviation 
(shaded area) across all participants.

The sample average accuracy mean score plateaued at around 
≈300	data	points.	This	suggests	that	this	may	be	the	optimal	number	
of points we may need to collect when training personalized comfort 
models.	It	should	be	noted	that	there	was	high	variability	when	the	
curve plateaued for each individual. This is due to the inherited differ-
ences across the personal preferences of subjects and the conditions 

TA B L E  2 Information	about	the	subjects

ID Sex Age Education BMI (kg/m2)

1 M 38 Doctoral degree 23.51

2 M 36 Doctoral degree 29.40

3 M 30 Doctoral degree 25.54

4 F 40 Master's degree 18.29

5 M 31 Doctoral degree 25.39

6 M 44 Doctoral degree 21.22

7 F 30 Bachelor's degree 25.93

8 M 35 Doctoral degree 25.10

9 F 24 Master's degree 23.24

10 M 24 High school graduate 23.05

11 F 29 Master's degree 20.20

12 M 34 Doctoral degree 28.20

13 M 31 Bachelor's degree 25.34

14 M 35 Bachelor's degree 23.03

15 F 33 Doctoral degree 18.34

16 F 26 Bachelor's degree 20.45

17 F 36 Doctoral degree 18.37

18 F 26 Bachelor's degree 22.04

19 F 24 Bachelor's degree 16.44

20 F 32 Doctoral degree 20.96
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they were exposed to. Figure 9B shows the overall accuracy of each 
personal	comfort	model	over	the	100	iterations.	It	can	be	observed	
that each personal comfort model converged to a stable value across 
all 100 iterations. The standard deviation of all 20 personal comfort 
models over all 100 iterations was similar across different partici-
pants, with a mean value of 0.035 and a standard deviation of 0.011. 
The same cannot be said about the overall accuracy of each personal 
comfort model, where the median F1 score for participant 14 was 
0.99 while for participant 7 was 0.56. This, in other words, means 
that	not	all	personal	comfort	models	performed	equally.	Some	almost	

always correctly predicted the thermal preference vote reported by 
the participants, while others had a significantly lower accuracy.

3.3.2  |  Importance	of	independent	variables

The	 absolute	 mean	 SHAP	 values	 across	 all	 six	 best-	performing	
supervised machine learning models are shown in Figure 10.	 Sub-	
variables	groups	defined	in	Section	2.6.4 are color- coded. While in-
door air temperature (ti), wrist near body temperature (tnb,w), heart 

F I G U R E  3 Wrist	skin	temperature	(tsk,w) and wrist near body temperature (tnb,w) measured when the participants completed the RHRN 
survey.	(A)	Shows	all	the	data	collected	from	the	participants	while	(B)	shows	the	sub-	set	of	the	original	dataset	that	was	used	in	the	data	
analysis.	The	inclusion	criteria	we	used	to	filter	the	original	dataset	are	detailed	in	Section	3.1. The number above each violin plot is the 
number of RHRN surveys completed by each participant.
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F I G U R E  4 Distribution	of	the	answers	
provided by all the participants.

F I G U R E  5 Distribution	of	the	thermal	
preference responses (Q.1) provided by 
each participant throughout the study 
period.

F I G U R E  6 Indoor	air	temperature	(ti
) measured when participants completed 
the RHRN survey. Data have been 
grouped by the participant. The last violin 
plot (purple) shows the average outdoor 
air	temperature	measured	in	Singapore	
(SG)	throughout	the	whole	duration	of	the	
study.
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rate (HR), wrist skin temperature (tsk,w), and humidity ratio indoors 
(Wi) contributed the most to the models' final predictions, we ob-
served	 a	 significant	 difference	 of	 SHAP	 values	 between	 different	
participants	and	across	different	models.	 In	Figure	A.3, we report 
the	mean	SHAP	values	 across	 all	 participants	 for	 each	 supervised	
machine-	learning	 model.	 A	 detailed	 discussion	 of	 these	 results	 is	
presented	in	Section	4.2.

4  |  DISCUSSION

The results of our study enabled us to draw several connections to 
the existing literature, discuss the usefulness and limitations of the 
methodology and results, and motivate future work.

4.1  |  Impact of training data size on 
model prediction

One	novel	aspect	of	our	study	was	the	duration	of	the	data	collec-
tion, which enabled us to gather the longest longitudinal data set 
so far among studies that aimed to develop personal thermal com-
fort models.28 We collected more than double the amount of points 
per participant and we made the dataset publicly available. Personal 
comfort models necessitate data for both testing and training. 

Hence, a sufficiently large number of data points from each par-
ticipant	is	required	for	the	machine-	learning	algorithm	to	converge.	
Figure 9 illustrates how increasing the size of trained data improves 
the	model	prediction	power	based	on	the	collected	data	set.	Across	
all participants, the model prediction accuracy (F1- micro) stabilized 
to	a	plateau	at	around	300	data	points.	Individual	personal	models	
show varying degrees of sensitivity to dataset size. This insight high-
lights	the	diminishing	return	of	collecting	more	than	250–	300	data	
points for most test participants. This result is specific to our study 
and other authors may find a different range based on their study 
methodology.	 Our	 results	 agree	 and	 provide	 additional	 support-
ing evidence to validate those obtained by Liu et al.18	Arguably,	the	
amount of data needed to characterize thermal comfort could be re-
duced even further with the development of targeted sampling that 
strategically	requests	feedback	only	when	required	to	increase	the	
model prediction power.48	In	our	study,	we	already	implemented	this	
strategy. Participants received a text message when exposed to en-
vironmental conditions that they rarely experienced before, to maxi-
mize the chances of obtaining a balanced dataset. However, we still 
asked them to complete, on average, a total of six surveys per day. 
This	requirement	can	be	significantly	reduced	or	removed	altogether	
in future studies thanks to targeted surveys. For some participants, 
the prediction accuracy slightly decreased as the trained data size 
increased from 42 to 126. This situation is expected since, as time 
passes, they may be exposed to a broader range of environmental 

F I G U R E  7 Distribution	of	the	thermal	
preference responses (Q.1) provided by 
all participants throughout the study 
period grouped by their reported clothing 
insulation (Q.4) and metabolic rate (Q.6). 
The number above each bar shows the 
total number of responses collected for 
that specific answer.

F I G U R E  8 F1-	micro	scores	for	the	
thermal preference personal comfort 
models determined using the full dataset 
for each participant over 100 iterations. 
The light blue shaded area depicts the 
interquartile	range	for	the	PMV	model.	
We used the following abbreviations: 
MLP, Multi- Layer Perceptron; RDF, 
Random	Forest;	SVM,	Support	Vector	
Machine;	KN,	K-	Nearest	Neighbors;	GNB,	
Gaussian	Naive	Bayes;	XGB,	Extreme	
Gradient	Boosting;	LR,	Logistic	Regression
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factors and conditions that they did not experience before, and the 
model needs to learn how to predict participants' thermal prefer-
ences under these new sets of conditions. This result is a signifi-
cant advantage that personal comfort models have over aggregate 
models since they can be re- trained as new data are collected. This 
situation may be partially alleviated by the use of transfer learning, 
ensemble strategies, and domain adaptation which can be used to 
predict individual thermal preference even when there is a lack of 
data regarding a specific person.49,50

We also observed that, for some participants, the F1- micro curves 
did not vary much as a function of the data size (e.g., participants 9 
and	10).	Some	possible	causes	of	this	are	that	participants	were	con-
stantly exposed to warm temperatures and that some did not maintain 
compliance with experimental guidelines. The latter point is discussed 
in	 Section	4.3. For example, participant 10 was always exposed to 
temperatures above 27.5°C when completing the RHRN survey and 

reported wanting to be “cooler” 98% of the time. This scenario is ex-
pected	in	Singapore,	where	the	recorded	outdoor	temperature	over	
the 6- month study period was higher than 26.5°C for 75% of the time.

4.2  |  Independent variables' importance in thermal 
preference prediction

We	used	SHAP	values	to	quantify	of	the	impact	that	each	independ-
ent variable had on the accuracy of the personal models. While the 
average magnitude for each variable varied in different models in-
door air temperature (ti), wrist near body temperature (tnb,w), heart 
rate (HR), wrist skin temperature (tsk,w), and humidity ratio indoors 
(Wi) contributed the most to the models' final predictions. This in-
sight is in line with the existing body of knowledge since ti is the 
primary driver of sensible heat loss or gain from the environment to 

F I G U R E  9 F1-	micro	scores	for	the	thermal	preference	personal	comfort	models	determined	using	the	Support	Vector	Machine	(SVM)	
algorithm.	(A)	Shows	the	mean	F1-	micro	score	for	each	participant,	as	well	as	the	mean	score	(black	line)	and	standard	deviation	across	
(shaded area) the whole study sample. The markers show the participant's mean F1- micro scores calculated by averaging the mean scores 
obtained	across	the	100	iterations,	for	that	specific	number	of	training	data	points.	A	different	number	of	valid	surveys	were	completed	by	
different	participants.	The	bar	plot,	in	(A)	over	the	chart,	shows	the	number	of	answers	that	were	used	to	calculate	the	sample	mean	score	
and	the	respective	standard	deviation.	(B)	Shows	all	the	F1-	micro	scores	determined	using	the	full	dataset	for	each	participant	over	100	
iterations

F I G U R E  1 0 Absolute	mean	SHAP	
value of the six best- performing 
supervised machine learning models. 
Variables are color- coded, environmental— 
using shades of gray, wearable— using 
shades of purple, and time— using shades 
of orange. Where tout stands for outdoor 
air temperature and Wout stands for 
humidity ratio outdoors.
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the	human	body.	Our	results	reinforce	previous	work.18 The HR is a 
proxy for the level of activity of the person, and it is positively corre-
lated with the metabolic rate. The value of tsk,w reflects the vasomo-
tor tone. The human body uses vasoconstriction and vasodilation for 
thermoregulation.15 Finally, Wi influences the latent heat loss toward 
the	environment.	On	the	other	hand,	the	outdoor	air	temperature,	
occupant location, and outdoor humidity ratio only had a marginal 
contribution to the final prediction, which can be explained by the 
fact that these variables do not directly influence people's thermal 
sensation or preference, in particular during steady- state conditions. 
The value of the outdoor air temperature only indirectly affects oc-
cupants' thermal preferences since they may influence the type of 
clothing that participants decide to wear before leaving their homes. 
This result may, however, only be applicable to climates similar to the 
one	in	Singapore	that	are	characterized	by	limited	variability.

4.2.1  |  Self-	reported	clothing	and	activity

We found that including self- reported clothing and activity in some 
models did not significantly increment the model prediction accu-
racy. While this seems to be counterintuitive since both clothing and 
metabolic rate play a significant role in human thermoregulation, we 
believed that they did not increase the model prediction accuracy 
since	they	were	reported	qualitatively	by	participants	who	only	had	
four	options	to	choose	from.	Other	measured	variables	like	HR may 
better correlate with the participant's actual metabolic rate than 
self- reported activity. This result has positive implications since, in a 
real- world application, the building controller would not have access 
to information about clothing and activity levels.

4.2.2  |  Near-	body	temperature

While our results showed that tnb,w significantly contributed to the 
model prediction, it should be noted that tnb,w was strongly corre-
lated with both ti and tsk,w.	Consequently,	 it	would	be	sufficient	 to	
measure	these	two	latter	variables	in	most	cases.	On	the	other	hand,	
only using tnb,w as a proxy for ti would decrease the complexity of 
the data collection, but at the same time, it would reduce the over-
all model accuracy. We decided to measure, log, and include in the 
models tnb,w since many people in warm climates use fans to cool 
themselves. Measuring airspeed in the proximity of the occupants 
in longitudinal studies is impractical, very expensive, and inaccurate. 
Battery- powered anemometers would need to be recharged fre-
quently,	are	very	expensive,	and	are	sensitive	to	direction.	Airspeed	
varies	significantly	both	spatially	and	temporally;	consequently,	ac-
curate readings can only be obtained in laboratories using scientific- 
grade sensors installed on stands mounted near the subject. The 
value of wrist near body temperature can then be used as a proxy 
to partially compensate for the lack of airspeed data. When airspeed 
is low, tnb,w is significantly affected by the thermal plume of the par-
ticipant and in turn by tsk.

51	On	 the	other	hand,	when	participants	

are cooling themselves using electric fans, the airflow disrupts the 
thermal plume, and tnb,w is mainly influenced by ti.

4.2.3  |  Skin	temperature

Participants did not report any significant discomfort by wearing the 
iButton	 for	 an	 extended	 period.	 At	 the	 end	 of	 the	 study,	 16	 par-
ticipants	answered	positively	to	the	following	question:	“Would	you	
wear the Fitbit and complete a few surveys per day for two weeks for 
no financial reward, if you knew that the information would improve 
your well- being indoors?” However, measuring tsk,w using an iBut-
ton adds complexity and maybe still a source of mild discomfort for 
some people. iButton cannot communicate wirelessly; hence data 
cannot be accessed in real time. There have been several announce-
ments from the leading smartwatch manufacturers to include a skin 
temperature	sensor	in	their	devices.	Still,	at	the	time	of	writing	this	
manuscript, no smartwatch available on the market could measure 
it	 accurately.	However,	 in	 September	2022	at	 the	 time	of	 review-
ing	this	manuscript,	Apple	announced	that	they	have	released	a	new	
Apple	Watch	that	can	accurately	measure	skin	temperature.

4.2.4  |  Historical	variables

The increases in model accuracy when historical variables were added 
to the model did not justify the increased complexity. This situation 
can be partially explained by the fact that we carefully chose to ana-
lyze data collected when participants were in near “steady- state” con-
ditions. This choice was driven by the fact that people in their office, on 
average, spend most of their time at their desks in near “steady- state” 
conditions. Predicting how people perceive their thermal environment 
during transitory conditions goes beyond the scope of our research.

4.3  |  The compliance rate of participants and data 
quality considerations

Six	months	of	the	daily	longitudinal	collection	is	a	challenge	in	terms	
of ensuring that participants maintain compliance with experimental 
guidelines. The Cozie smartwatch- based methodology turned out 
to facilitate high compliance with none of the participants dropping 
out from the study, and all completed at least 1080 surveys. This 
result	 reinforces	 previous	work	 in	micro-	EMA	 and	 its	 ease	 of	 de-
ployment in collecting longitudinal data with less survey fatigue.32 
Compliance maintenance was enhanced with notifications sent 
through a messaging app that would remind the participants about 
notable achievements or deficiencies in the experimental process.

Despite the compliance rate, some participants were not fully 
cognizant of their perspective on each response given over the 
6 months	due	to	survey	fatigue.	This	risk	could	be	mitigated	in	future	
work through early detection, incentives, and by significantly re-
ducing the number of surveys that each participant has to complete 
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every week. This risk is significant for data- driven models, which are 
highly	susceptible	to	“bad”	data.	One	possible	other	solution	to	this	
problem is utilizing the model to control their environment actively.

4.4  |  Limitations

One	notable	 limitation	of	 the	 deployment	 is	 that	 the	 Singapore	 cli-
mate	has	little	diversity	across	the	year.	Seasonality	in	other	climates	
may	result	in	longitudinal	data	needing	more	training	beyond	the	200–	
300	points	found	in	this	study.	Studies	in	other	climates	may	need	to	
spread data collection into phases that account for different seasons.

In	 addition,	 the	 experimental	 deployment	 for	 this	 study	 began	
in	April	 2020,	 just	 as	 Singapore	 entered	 a	 lockdown	 period	 due	 to	
COVID-	19	restrictions.	Throughout	the	study,	the	lockdown	situation	
was dynamic, but overall there was less diversity of data collection 
locations than intended. Most of the occupants were forced to work 
from home for the whole duration of the study, while those who were 
allowed	 to	 resume	 going	 to	 the	 office	were	 required	 to	wear	 face	
masks at all times. We started this study before the pandemic started, 
hence	we	did	not	include	any	questions	about	face	masks.

Another	 notable	 limitation	 category	 relates	 to	 the	 nature	 of	
black- box machine learning models in the application of thermal 
comfort prediction. The lack of conversion of model output or ac-
curacy into the physical understanding of what makes people feel 
comfortable or not is troublesome in the context of improving com-
fort, particularly for facility operators. Future work should focus 
on the conversion of the accuracy of prediction to the applicabil-
ity to system and occupant interaction. The previously mentioned 
personal comfort review found similar insight in the literature 
of such models.28	 Among	 the	 different	 models	 tested,	 Random	
Forest is one of the most widely adopted in the literature and its 
performance justifies its adoption (Figure 8). Nevertheless, when 
compared	 to	a	 regression-	based	model	 like	SVM	with	similar	pre-
diction	performance,	Random	Forest	required	100	times	more	com-
putational time for model training, i.e., 620 and 6 s, respectively. 
Coincidentally,	 XGB	 and	MLP	 also	 achieve	 a	 similar	 performance	
but	 require	 roughly	 12	 times	 the	 computational	 time	of	 SVM,	83	
and	67 s,	respectively.	These	results	reinforce	the	selection	of	SVM	
since it does not sacrifice prediction accuracy; as a regression- based 
model,	it	is	more	interpretable	and	requires	less	computational	cost.	
It	 should	 also	 be	 noted	 that	 since	 some	machine	 learning	models	
are not linear, like RDF, this may cause the personal comfort model 
may still predict thermal preference to vary back and forward from 
“warmer” to “cooler” as the temperature increases, despite all other 
inputs being fixed. This situation has several issues. Firstly, it does 
not provide an accurate representation of how people perceive their 
thermal environment nor take into account that thermal preference 
is	an	ordinal	variable.	Secondly,	it	may	be	the	cause	of	instabilities	
if the model is used to actively control a space. We believe that this 
issue has had very little coverage in previous studies that aimed to 
develop personal thermal comfort models, and it should be further 
investigated.

5  |  CONCLUSIONS

We conducted a longitudinal thermal comfort study that aimed to 
develop personal thermal comfort models. Twenty participants took 
part in it, and they completed on average at least six RHRN surveys 
per day for a period of 6 months. We developed an effective meth-
odology that simplified the life of the participants, and none of them 
dropped from the study. We measured and logged environmental 
parameters, physiological signals, outdoor weather data, and partici-
pants' location outdoors and indoors. We used these data to train 
and test a personal thermal comfort model for each participant. We 
were able to determine that:

•	 Cozie,	a	micro-	EMA	open-	source	Fitbit	and	Apple	application,	is	a	
reliable and robust solution to non- intrusively collect participants’ 
feedback in field studies.

• Personal comfort models were able to accurately predict (median 
F1- micro score 0.78) occupants’ thermal preferences. With the 
limitations in data collection posed by the study methodology, 
they could outperform the PMV model.

•	 Indoor	air	temperature	 (ti), wrist near body temperature (tnb,w  ),	
heart rate (HR), wrist skin temperature (tsk,w), and humidity ratio 
indoors (Wi), listed in decreasing order of importance, had the 
highest average marginal contribution to the overall model 
prediction.

• The thermal personal comfort model prediction accuracy (F1- 
micro) plateaued at around 300 data points across all participants. 
Individual	personal	models	are	sensitive	to	dataset	size	to	vary-
ing	 degrees.	 The	 amount	 of	 data	 required	 to	 characterize	 ther-
mal comfort could potentially be reduced with the development 
of	targeted	sampling,	which	strategically	requests	feedback	only	
when it is necessary.

• We made available publicly the data we collected and open- 
sourced the Python code we used to analyze them to enable 
other researchers to test different hypotheses utilizing our data.

NOMENCL ATURE
HR heart rate, beats per minute
PMV Predicted Mean Vote
RHRN Right- Here- Right- Now
SVM	 Support	Vector	Machine
ti indoor air temperature, °C
tnb,w wrist near body temperature, °C
tsk skin temperature, °C
tsk,w wrist skin temperature, °C
Wi humidity ratio indoors, kgwater vapor/kgdry air
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