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SCONCE2: jointly inferring single cell copy 
number profiles and tumor evolutionary 
distances
Sandra Hui1*   and Rasmus Nielsen1,2,3 

Background
Cancer evolution is driven by an accumulation of somatic point mutations and large 
copy number alterations (CNAs) [1, 2]. For example, CNAs can affect the transcriptional 
landscape via dosage effects [3], and identifying intra tumor heterogeneity and cell spe-
cific changes in gene expression is clinically relevant. In particular, recent studies have 
shown quantifying these transcriptional changes, by measuring tumor specific total 
mRNA expression, is predictive of disease prognosis and progression across multiple 
cancer types [4]. In this manuscript, we focus on estimating the underlying copy number 
alterations using whole genome sequencing, in order to directly study the evolutionary 
process.

Single cell sequencing can offer a detailed picture of the process of CNA and muta-
tion accumulation that is lost in bulk sequencing, in particular by estimating the 

Abstract 

Background: Single cell whole genome tumor sequencing can yield novel insights 
into the evolutionary history of somatic copy number alterations. Existing single cell 
copy number calling methods do not explicitly model the shared evolutionary process 
of multiple cells, and generally analyze cells independently. Additionally, existing meth-
ods for estimating tumor cell phylogenies using copy number profiles are sensitive to 
profile estimation errors.

Results: We present SCONCE2, a method for jointly calling copy number alterations 
and estimating pairwise distances for single cell sequencing data. Using simulations, 
we show that SCONCE2 has higher accuracy in copy number calling and phylogeny 
estimation than competing methods. We apply SCONCE2 to previously published 
single cell sequencing data to illustrate the utility of the method.

Conclusions: SCONCE2 jointly estimates copy number profiles and a distance metric 
for inferring tumor phylogenies in single cell whole genome tumor sequencing across 
multiple cells, enabling deeper understandings of tumor evolution.
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phylogenetic relationship among different cell types. A challenge in such efforts is that 
single cell sequencing data is typically very noisy due to variable and low sequencing 
depth [5], making accurate genotyping, copy number (CN) calling, and phylogeny esti-
mation difficult. However, as we will show here, by leveraging the shared evolutionary 
history among cells, jointly calling CNAs across cells can lead to increased accuracy and 
give information about the evolutionary relationship between cells, thereby leading to 
improved estimates of tumor phylogenies. Different cells from the same tumor share 
some of their somatic evolutionary history, and information regarding CNAs, and CNA 
breakpoints, from one cell can, therefore, inform CNA calling in other cells.

Unfortunately, the commonly used methods for estimating single cell copy number 
profiles (CNPs), the collection of copy number states across the genome, do not rigor-
ously use this shared information. Instead, most methods, including SCONCE [6] and 
the commonly-used AneuFinder [7, 8], independently call CNPs. Although SCONCE 
[6], a copy number calling method for single cell tumor data, was previously shown to 
outperform competing methods in absolute copy number and breakpoint detection 
accuracy [6], it does not utilize any information from shared evolutionary histories 
between cells. Other methods, such as CopyNumber [9] and SCIcONE [10], jointly call 
CNPs by forcing breakpoints to be shared across all cells. However, we showed in previ-
ous work that SCONCE [6] outperforms these methods as well, despite not analyzing 
cells jointly. In contrast, WaveDec [11], a method designed to detect shared and cell spe-
cific copy number events in copy number arrays and applied to a subset of sequencing 
data from [12], takes an orthogonal approach by transforming log2-ratio copy number 
data into the wavelet space. This transformation allows separation of common/shared 
and individual CNAs, as shared events are captured by the approximation coefficients 
and individual events are described by the detail coefficients.

Despite these limitations in copy number calling, several distance metrics for copy 
number profiles have been developed for estimating tumor phylogenies using algorithms 
such as neighbor-joining [13, 14]. Commonly used pairwise distance metrics include the 
Euclidean distance [12, 15], the MEDICC distance described by [16], and the cnp2cnp 
distance presented by [17]. Although the Euclidean distance is easy to calculate, large 
and/or overlapping CNAs can artificially inflate this measure, leading to overestima-
tion of dissimilarity. The latter two methods measure distance between two CNPs by 
attempting to find the minimum number of deletion and amplification events needed to 
transform one CNP into the other, without allowing regions that are lost to be regained. 
The MEDICC model is limited to maximum copy number 4 and events that increase 
or decrease copy number by one, while the cnp2cnp metric relaxes both of these con-
straints. Cordonnier et  al. [17] re-implemented the MEDICC algorithm to allow copy 
numbers greater than 4, and showed that while both the cnp2cnp and MEDICC dis-
tances outperform the Euclidean distance for the purpose of phylogeny estimation, 
cnp2cnp is more accurate on error free data and MEDICC is more accurate on data with 
errors.

However, none of these methods use explicit evolutionary models of CNAs to pro-
vide joint estimates of CNPs and evolutionary distance. Here, we present SCONCE2, 
an expansion on SCONCE, that further develops SCONCE’s underlying tumor evo-
lutionary model to jointly model the CNA process in two cells. SCONCE2 takes 



Page 3 of 23Hui and Nielsen  BMC Bioinformatics          (2022) 23:348  

advantage of the shared evolutionary history between cells, and produces more 
accurate single cell CNP estimates and pairwise estimates of the evolutionary dis-
tances between cells, by combining information across multiple cells. We show that 
SCONCE2 estimates more accurate CNPs and tumor phylogenies than competing 
methods using extensive simulations, and apply it to previously published data from 
[12, 18] to illustrate its utility.

Results
To infer the evolutionary history of tumor cells, SCONCE2 models the evolution of 
pairs of cells. We assume a pair of cells, (A, B), have a partially shared evolutionary 
history originating from a healthy ancestral diploid cell, D. The shared part of their 
evolutionary history is represented in a tree, T = [t1, t2, t3] , by a branch of length t1 , 
running from an non-tumor diploid cell (D) to an unobserved divergence point, Z. 
From Z, cells A and B evolve independently, with branch lengths t2 and t3 , respectively 
(see Fig. 1). A core goal is to estimate this tree and to distinguish between shared evo-
lutionary events and independent cell specific events.

Because the number of pairs of cells grows quadratically with the number of cells, 
n, full joint maximum likelihood estimation of all parameters can become compu-
tationally challenging. We, therefore, first run SCONCE on all cells independently 
to obtain cell specific estimates of model parameters. We then take the median of 
the estimates of evolutionary parameters {α,β , γ } , corresponding to the rates of dif-
ferent types of copy number events (see One cell continuous time Markov process), 
to combine the disjoint SCONCE estimates into summary estimates across all cells. 
Then, for each pair of cells, we estimate branch lengths of tree T = [t1, t2, t3] using 
maximum likelihood, and use the Viterbi algorithm to calculate paired decoded copy 
number profiles. Because each cell appears in n− 1 pairs, this produces n− 1 paired 
CNP estimates per cell. Finally, for each cell, we take the per window mean across 
each cell’s n− 1 paired CNP estimates to calculate consensus CNPs. This pipeline is 
described in Detailed SCONCE2 pipeline and illustrated in Fig. 2.

By analyzing each cell in the context of multiple pairs, we obtain increased accuracy 
in copy number calls and breakpoint detection, as well as usable tree branch length 
estimates. We examine the properties of these estimates on both simulated and real 
data.

Fig. 1 Pairwise tree structure, showing the tree, T = [t1, t2, t3] , between the pair of cells A and B, where the 
branch with length t1 represents their shared evolutionary history from an ancestral diploid cell, D, before 
diverging at the unobserved state Z. The branches with lengths t2 and t3 show independent evolution to cells 
A and B, respectively. Copy number in adjacent bins along the genome is shown in parentheses
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Simulations

In order to rigorously test SCONCE2, we applied it to four simulated datasets and 
two real datasets, from [12, 18]. We simulated 128 cells on four different tree struc-
tures: tree A) is maximally imbalanced and ultrametric, tree B) is perfectly balanced 
and ultrametric, tree C) is maximally imbalanced and not ultrametric, where inter-
nal and terminal branches have uniform length, and tree D) is maximally imbalanced 
and not ultrametric, where internal branches have equal length and terminal branch 
lengths decay logarithmically (tree structures shown in Additional file  1: Fig.  S1). 
Simulated cells from each tree structure were divided into five discrete test subsets of 
20 cells each.

Briefly, the simulated genome is modeled as a collection of line segments, where 
amplifications and deletions occur according to a Markov process and have lengths sam-
pled from a truncated exponential distribution. Copy number events occur within the 
tree structure, such that ancestral CNAs are propagated to descendent cells. Note, the 
simulation model is more biologically realistic and intentionally structured to be sub-
stantially different from the SCONCE2 inference model, in order to avoid biasing accu-
racy results to favor our method. We previously described this simulation model in [6], 
and full simulation details are given in Simulations.

Fig. 2 Detailed flowchart of the SCONCE2 pipeline. We demonstrate the pipeline with cell triplet {A, B, C} , 
without loss of generality. Each tumor cell is initially independently analyzed through SCONCE, which gives 
parameter estimates and copy number profiles for each cell (red box). These parameter estimates are then 
summarized (yellow box), and branch lengths for tree T = [t1, t2, t3] are estimated for each pair of cells (green 
box). Finally, for each cell, paired copy number profiles are summarized into a consensus copy number profile 
(blue box). Each step is fully described in Detailed SCONCE2 pipeline
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Copy number and breakpoint detection accuracy

Sum of squared error on CNPs

To measure copy number accuracy, we calculated the sum of squared errors (SSE) 
between the inferred copy number and the true simulated copy number across genomic 
windows for each cell. To evaluate each step in the SCONCE2 pipeline, we calculated 
the SSE on copy number profiles generated from individual cell estimation (SCONCE), 
on profiles from each pair of cells (one pair), and on consensus profiles estimated using 
three different summary statistics (mean, median, mode) across multiple pairs of cells. 
We also compared to AneuFinder [7, 8], a commonly used method for single cell copy 
number calling, and the second-most accurate one, after SCONCE, among methods 
evaluated in previous work [6]. In all subsequent results, we report summary statistics 
across all subsets for each tree/simulation set. Recall full simulation descriptions are 
given in Simulations.

In tree A (maximally imbalanced ultrametric tree; Fig. 3A), using pairs of cells had lower 
SSE than individual cells (SCONCE) alone, with respective median SSE values of 26.01 
and 37.31. Furthermore, using the mean had the lowest median SSE of 17.83, with median 
and mode at 23.68 and 24.04. These SSE values were lower than AneuFinder, which had a 
median SSE value of 51.78. Similar results for tree B (perfectly balanced ultrametric tree) 
are shown in Fig. 3B, with median SSE values of 28.37, 21.25, 14.74, 17.90, 18.09, and 41.80 
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Fig. 3 Boxplots of genome wide sum of squared error (SSE) between true simulated copy number profiles 
and inferred copy number profiles, across methods. SSE results are shown for cell specific CNPs from SCONCE 
(independent cell inference); joint inference on each pair of cells (one pair); summary functions across all pairs 
of cells (mean, median, and mode); and AneuFinder. Different methods are shown across the x-axis, and SSE 
is shown on the y-axis. Median SSE for each method is printed at the top of each column. Each dot represents 
one cell (note, in ”one pair”, each cell appears multiple times), and the median SSE is printed at the top of 
each column. Panel letters correspond to tree labels A (maximally imbalanced ultrametric tree), B (perfectly 
balanced ultrametric tree), C (maximally imbalanced non ultrametric tree with uniform branch lengths), and 
D (maximally imbalanced non ultrametric tree with logarithmically decaying branch lengths). SSE results are 
consistently lower when using data from multiple cells
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for individual cells, single pairs, mean, median, mode, and AneuFinder, respectively. In the 
same order, the median SSE values for tree C (maximally imbalanced with uniform inter-
nal branch lengths) were 73.19, 46.50, 22.20, 32.69, 33.22, and 109.31, and the median SSE 
values for tree D (maximally imbalanced with logarithmically decaying branch lengths) 
were 60.13, 40.36, 23.05, 32.00, 33.02, and 76.18 (see Fig. 3C, D). Clearly, there is a sub-
stantial improvement in accuracy by using pairs of cells instead of individual cells, and this 
improvement in accuracy is larger if multiple pairs are used.

We note that, as an artifact of the genome binning procedure, true fractional copy num-
bers may occur from small CNAs completely contained within window boundaries, or from 
CNAs crossing window boundaries (for example, observing windows with true copy num-
bers 1 → 1.25 → 2 ). As such, the mean and median have the lowest SSE values because 
they allow fractional copy numbers. However, many downstream tools expect integer copy 
number profiles for single cells, so users may wish to round to the nearest integer or use the 
mode option.

Breakpoint distance and detection

In order to measure breakpoint detection accuracy, we calculated the genome wide dis-
tance between inferred and true breakpoints, penalized by the number of total inferred 
breakpoints. Specifically, for each simulated breakpoint, we calculated the distance to the 
nearest inferred breakpoint. Because erroneously inferring breakpoints at every position in 
the genome would artificially lower this genome wide distance, we also calculated 
ω =

# inferred breakpoints
# true breakpoints  , such that lowest breakpoint distances with ω values closest to 1 

indicate greatest accuracy.
In all simulation sets, using the mean consistently had ω values closest to 1, again due to 

fractional copy number states, as well as lower total breakpoint distance than other meth-
ods. Across trees, results from AneuFinder, followed by SCONCE, had the highest break-
point distances and ω values further from 1. For tree A (ultrametric maximally imbalanced 
tree; Fig. 4A), SCONCE, single pairs, mean, median, mode, and Aneufinder had median 
distance values of 1167, 1006, 394, 1018.5, 1019.5, and 1172, and median ω values of 0.466, 
0.490, 0.921, 0.486, 0.486, and 0.462, respectively. Similarly, for tree D (maximally imbal-
anced with logarithmically decaying branch lengths, Fig. 4D), median distance values were 
153.5, 85, 33, 77, 77.5, and 168.5, and median ω values were 0.504, 0.535, 1.007, 0.535, 
0.534, and 0.489, in the same order as above. Full median distance and ω values are given 
in Additional file 1: Tables S2 and S3. Similarly to the observations for the CNP estimates, 
breakpoint detection also improves when using pairs of cells, and improves when estimates 
from multiple pairs are combined, particularly if combining using the mean. As previously 
noted in Sum of Squared Error on CNPs, binning the genome can result in fractional copy 
numbers for some bins. Compared to the median and the mode, the mean is better able to 
capture these fractional copy number states, resulting in lower breakpoint distances and ω 
values closer to 1.

Optimal number of pairs to use

Because there are n
2

 pairs for n cells, averaging over more pairs of cells comes at a 

computational cost. Furthermore, as we will show, adding too many divergent cells 
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can reduce the accuracy, as including highly divergent cells in the average may 
increase the noise.

To determine the optimal number of cells to summarize across, we estimated sum-
marized (mean) copy number profiles with increasing numbers of cells. As each cell 
was added, we calculated the difference in SSE relative to SCONCE (individual cells). 
Cells were added in three different orderings: most to least similar (i.e., nearest first, 
as defined by the Euclidean distance between the cells’ SCONCE profiles), least to 
most similar (furthest first), and randomized order. In tree A, the median pairwise 
Euclidean distance between SCONCE profiles was 88.0625 for the nearest/most simi-
lar cells, 138.9585 for the tenth most similar cells, and 205.853 for the least similar 
cells. Median pairwise Euclidean distances for all datasets are given in Additional 
file 1: Table S4.

In Fig. 5, we summarize the change in SSE across κ cells for each tree. Across all trees, 
SSE improves fastest when adding nearest cells first, and slowest for adding furthest cells 
first, with the random ordering in between. When adding nearest cells first, the SSE ini-
tially sharply decreases, levels off and reaches the largest decrease after approximately 10 
cells, and then increases. Specifically, the mean change in SSE when adding nearest cells 
first reached the greatest decrease in SSE from SCONCE of -20.710, -17.491, -56.185, 
and -38.570 when κ = 12, 10, 9, 15 cells for trees A, B, C, and D, respectively. In contrast, 
when κ = 20 cells, the change in SSE from SCONCE was -19.721, -16.757, -53.461, and 
-37.920 for trees A, B, C, and D, consistent with the results shown in Fig. 3.
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Fig. 4 Breakpoint detection accuracy results across methods. Total distance to nearest breakpoint is shown 
on the y-axis, and ω = # inferred breakpoints

# true breakpoints
 is shown along the x-axis. Each dot represents one cell, colored by 

method. Methods with the highest breakpoint detection accuracy cluster near ω = 1 (vertical red dotted 
line) and have lowest total breakpoint distance. Each panel corresponds to a simulation set (A-D). In all 
simulation sets, using the mean, median, and mode have lower total breakpoint distance than independent 
cell analyses. Furthermore, using the mean results in ω values closest to 1, as it is able to infer fractional copy 
numbers
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When summarizing over κ < n− 1 cells, for a given cell, some of the other cells will 
not be used in that cell’s consensus profiles. As a time saving measure, these excluded 
cell combinations are not analyzed. Therefore, we recommend users summarize over 
κ = 10 cells, added in order of most to least similar.

For completeness, SSE and breakpoint detection across parameter sets when sum-
marized over only the nearest 10 cells is shown in Additional files 1: Figures S2, S3, 
and Tables S5 and S6.

Using multiple cells results in better CNA detection

Plotting true simulated copy number profiles against inferred copy number profiles 
shows why performance improves when using multiple cells. For example, in Fig. 6, 
SCONCE erroneously combined two breakpoints for cell A, while predicting cell B’s 
breakpoint too far to the left (column labelled SCONCE). However, when analyzed as 
a pair, a shared breakpoint was inferred (left arrow), and the second breakpoint (right 
arrow) in cell A was correctly inferred (one pair column). While the shared break-
point was closer to the true breakpoint, it was not until CNPs are summarized across 
multiple cells that the breakpoint was called in the correct position. Using the mean 
results in slightly fuzzier boundaries due to non-integer copy number calls (middle 
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rare copy number events getting averaged out
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column), which better reflected the true underlying data, while the median and mode 
(right two columns) result in integer jumps at bin boundaries.

Similar results are observed for real data. For example, in Additional file 1: Figure S4, 
SCONCE missed the left most CNA in cell B (arrow in SCONCE column). When ana-
lyzed as a pair, this CNA was detected, and was shared with cell A (left arrows). Addi-
tionally, a short deletion was called in both cells (right arrows). However, this is a rare 
event, as it was averaged out in the mean, median, and mode analyses (arrows in mean, 
median, and mode columns). Furthermore, in Additional file 1: Figure S5, SCONCE did 
not call a CNA in cell A, but did call a -3 deletion in cell B (arrows in SCONCE column). 
However, when these two cells were jointly analyzed as a pair, there was enough evidence 
to call a -1 deletion in both. When summarizing across multiple cells, this deletion con-
tinued to be supported (right arrow). Additionally, there was some evidence from joint 
analyses with other cells that an additional small deletion existed in cell B, but not in cell 
A (left arrow). However, this small deletion was lost when using the median and mode, 
although the deletion first identified in the joint analysis of cells A and B remained.

Model parameter estimates

For each pair of cells, SCONCE2 estimates the branch lengths for tree T = [t1, t2, t3] 
(see Fig. 1). From the simulated trees, the corresponding tree branch lengths and node 
distances can be extracted for each cell pair. Recall the simulation and inference mod-
els are intentionally formulated differently to evaluate SCONCE2 in more realistic set-
tings (see Simulations). Because the scaling of T  is different between the simulation and 
inference models, we show the R2 values between true (simulated) and inferred values of 
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Fig. 6 Jointly calling CNAs and summarizing data across multiple cells results in more accurate boundary 
detection. Inferred copy number profiles and read depth data are shown for two cells (A: 111, B: 59) simulated 
from tree C (maximally imbalanced, uniform branch lengths). Genomic index shows 110–250 kb windows 
along the x-axis, while the y-axis shows copy number (left) and read depth (right). Gray dots show per 
window read depth, the light blue line and band show the mean and variance of the diploid read depth, the 
dotted red line shows the true simulated copy number, and the blue and yellow lines show the inferred copy 
number calls for each cell. Arrows denote inferred breakpoints, and SSE values are listed for each subpanel. 
Subpanels show results from different copy number calling methods: SCONCE (independent analysis); one 
pair (analysis of cells A and B as a pair); mean, median, and mode (consensus calls from summarizing paired 
CNPs for cells A and B across all relevant pairs of cells). Breakpoint detection accuracy increases as more cells 
are included in the joint analysis
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T = [t1, t2, t3] , as well as the summed distance t2 + t3 as a distance metric between two 
cells.

For tree A (ultrametric, maximally imbalanced), SCONCE2 recovered {t1, t2, t3, t2 + t3} 
values with R2 values of 0.798, 0.35, 0.286, and 0.551 (Fig. 7A), respectively. Additionally, 
for tree D (maximally imbalanced with uniform branch lengths), SCONCE2 had R2 val-
ues of 0.661, 0.564, 0.59, and 0.686, for t1 , t2 , t3 , and t2 + t3 . (Fig. 7D).

We note that the sum t2 + t3 has higher R2 values than those of t2 or t3 individually, 
demonstrating some uncertainty in assigning events to particular branches. Further-
more, because the simulation model generates the number of CNAs from a distribu-
tion relating to a Poisson (however, the distribution is not truly Poisson as the size of 
the genome changes through the simulations), the mean and variance of the number of 
events increases with branch length in expectation. This increased variance is reflected 
by the larger range of branch length estimates as branch lengths increase. Nonetheless, 
as we will show in the next section, SCONCE2 recovers the magnitude of cell relation-
ships sufficiently accurately to allow improved phylogeny estimation.

Phylogeny estimation

Estimating phylogenies on copy number profiles using neighbor-joining [13, 14] requires 
a distance metric between cells. Existing metrics include the Euclidean distance [12], 
and two estimates of the minimum number of CNAs needed to transform one CNP 
into another: the cnp2cnp metric [17] and the MEDICC distance [16] (here, we use the 
implementation in the cnp2cnp program [17]). These methods require prior estimation 
of the CNP. See Running other methods for details on running these programs.
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Fig. 7 Correlation between true branch lengths and estimated branch lengths across simulation sets. Each 
dot represents one pairwise branch length estimate, with true node distance on the x-axis and estimated 
branch length on the y-axis. R2 values from a linear regression on branch length (dark gray lines) is shown for 
each subpanel. Across all simulation scenarios (panels A-D correspond to trees A-D), SCONCE2 consistently 
predicts t1 and t2 + t3 with high R2 values.
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Under the SCONCE2 model, by construction, t2 + t3 measures the pairwise distance 
between two cells. To compare these different distance metrics, we first calculated dis-
tance matrices using pairwise Euclidean, cnp2cnp, and MEDICC distances on CNPs 
called by SCONCE (previously showed to be more accurate than other single cell copy 
number callers [6]), as well pairwise t2 + t3 estimates. Next, we applied neighbor-joining 
to estimate phylogenies and computed the Robinson–Foulds (RF) distance [19] between 
the true trees and the inferred trees. As shown in Fig. 8, across parameter sets, the trees 
inferred from estimates of t2 + t3 had lower Robinson–Foulds distances than trees 
inferred from other distance metrics. For example, for tree A (ultrametric, maximally 
imbalanced), the median RF distances were 27, 27, 29, and 20 for the Euclidean distance, 
cnp2cnp distance, MEDICC distance, and t2 + t3 (Fig.  8), respectively (see Additional 
file 1: Table S7, for all median Robinson–Foulds distances).

Furthermore, we calculated RF distances from phylogenies based on the Euclidean, 
cnp2cnp, and MEDICC distances on consensus CNPs and true simulated CNPs (Addi-
tional file  1: Figure  S6). When summarizing over all pairs of cells, using t2 + t3 con-
sistently had lower median RF distances than other methods on consensus CNPs. For 
example, in tree A (ultrametric, maximally imbalanced), the median RF distances for 
phylogenies estimated from mean consensus profiles were 27, 26, and 28 for the Euclid-
ean, cnp2cnp, and MEDICC distances (Additional file 1: Figure S6A). On distances cal-
culated from the true CNPs, t2 + t3 performed as well or better than the other metrics, 
with the exception of the cnp2cnp distance in tree A, where the Euclidean, cnp2cnp, 
MEDICC distances and t2 + t3 had respective median RF distances of 27, 19, 20, and 20 
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Fig. 8 Robinson–Foulds (RF) distances between true and inferred phylogenies. Phylogenies were estimated 
using neighbor-joining on t2 + t3 estimates, and on the Euclidean, cnp2cnp, and MEDICC distances between 
true CNPs and CNPs inferred from SCONCE. Methods are shown along the x-axis, while Robinson–Foulds 
distances are shown on the y-axis. Across multiple parameter sets (panels A–D correspond to trees A–D), 
using t2 + t3 estimates resulted in a lower Robinson–Foulds distance from the simulated tree, relative to all 
other inferred phylogenies
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(Additional file 1: Figure S6A). However, under experimental conditions, the true CNP 
would be unknown. In all other simulation sets, the phylogenies estimated using t2 + t3 
had lower median Robinson–Foulds distances than all other methods.

For completeness, we additionally calculated Robinson–Foulds distances on phylog-
enies estimated from consensus CNPs from summarizing over the nearest 10 cells. For 
tree A (ultrametric, maximally imbalanced), the median RF distances on mean consen-
sus CNPs over the nearest 10 cells were 27, 27, and 26 for the Euclidean, cnp2cnp, and 
MEDICC distances, respectively (Additional file  1: Figure  S7A). Note that in order to 
estimate phylogenies using our t2 + t3 metric, all pairs of cells must be analyzed, and 
cannot benefit from the time savings of analyzing a selected subset of pairs of cells (see 
Optimal number of pairs to use). This is a weakness of our method, as analyzing all pairs 
of cells comes at an increased computational cost.

Discussion
We present a novel method, SCONCE2, that combines data across single cells in a man-
ner that is grounded in a principled model of stochastic tumor evolution. It jointly calls 
copy number alterations in single cell sequencing of cancer cells with higher accuracy 
than competing methods on both simulated and real data. Additionally, SCONCE2 cal-
culates an informative pairwise distance metric that can be used to estimate phylogenies 
with less error than other methods.

Similar to SCONCE, one weakness of SCONCE2 is the requirement for matched dip-
loid cells in order to normalize GC content and mappability biases. These diploid cells 
must be sequenced under the same experimental conditions for proper GC content and 
mappability normalization, and may not be directly of interest to investigators, thereby 
potentially increasing cost. However, infiltrating diploid cells are often sequenced 
as a byproduct of single cell sequencing, and can be identified with orthogonal meth-
ods, such as cell sorting. For example, in the two datasets analyzed here, no additional 
sequencing was necessary to purposefully produce matched diploid sequencing data.

Additionally, SCONCE2 does not use SNPs or genotype likelihoods, or do any allelic 
phasing, to inform copy number calls or t2 + t3 estimates. Although calling SNPs in low 
coverage and noisy single cell data is difficult, incorporating genotype likelihoods can 
add information and increase confidence in these procedures. For example, using the 
allele frequency in variable single nucleotide sites can support concordant or rule out 
discordant copy number states. Furthermore, estimating the counts of variable sites on 
specific branches in T = [t1, t2, t3] (see Fig. 1) can increase confidence in branch length 
estimates. Adding genotype likelihoods of single nucleotide variants is the subject of 
future work.

Another weakness of SCONCE2 is that it takes longer to run, relative to other methods. 
However, if investigators are primarily interested in copy number calling, significant time 
can be saved by summarizing over a selective subset of pairs of cells (that is, noninforma-
tive pairs are not analyzed), described in Optimal number of pairs to use. But, if investiga-
tors are interested in estimating phylogenies using our t2 + t3 metric, all pairwise distances 
must be estimated to calculate a complete distance matrix (described in Phylogeny Estima-
tion), thereby negating this time saving measure. Because the distance matrix dimensions 
and number of pairwise comparisons grow quadratically with the number of cells analyzed, 
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the computational complexity and run time cost grows quickly. However, if investigators 
are interested in both copy number calling and phylogeny estimation using our t2 + t3 met-
ric, after all pairwise parameter estimates are calculated (the most computationally inten-
sive step), investigators have the flexibility to quickly call consensus copy number profiles 
over an arbitrary number of pairs. Despite the computational complexity of this model, we 
propose the increased accuracy of both copy number calls and phylogeny estimation out-
weighs the increased computational run time cost.

Conclusions
In conclusion, we present a principled method, SCONCE2, for simultaneously and accu-
rately calling and aggregating copy number profiles across multiple tumor cells, and esti-
mating pairwise evolutionary distances, using single cell whole genome sequencing. This 
work shows jointly analyzing cells in single cell experiments to leverage their shared evolu-
tionary history increases accuracy in copy number calling and phylogeny estimation, with 
implications for deepening our understanding of tumor evolution.

Methods
Evolutionary process modeling

We first review the Markov processes introduced in [6]. Briefly, we assume an evolutionary 
process that is continuous in time but discrete along the length of the genome. However, 
notice that this is just an approximation, as the true process along the length of the genome 
is not Markovian (see Simulations).

One cell continuous time Markov process

The one cell continuous time process from [6] models the copy numbers of two adjacent 
genomic bins, in positions i and i + 1 in the genome, on the same lineage (cell) with copy 
number U ,V ∈ Sc = {0, 1, . . . , k} , respectively, where k is the maximum allowed copy 
number. We assume that (U, V) evolve through time with the following rate parameters: 

 which leads to the following instantaneous rate matrix for the joint process for two bins 
on one lineage: Q = {q(U ,V ),(U ′,V ′)}:

(1a)α = rate of ± 1 CNA

(1b)β = rate of any CNA

(1c)γ = relative rate of CNAs affecting both U and V
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To ensure all rows sum to 0, we set the diagonal elements to the negative row sum, 
r(U ,V ) = −

∑

(u′,v′)�=(U ,V ) q(U ,V ),(u′,v′) . Note that Q defines the instantaneous rate of 
events such as (U ′,V ′) = (U + n,V − k), n > 0, k > 0 (i.e., events where (U,  V) are 
changed by different CNAs) to be equal to 0. However, (U, V) can be changed by differ-
ent CNAs for any evolutionary time interval t > 0 . Additionally, note we use the sum 
α + β as the rate for events with ±1 CNA, to allow ±1 copy number events to have a 
higher rate than larger magnitude copy number events.

The corresponding probability matrix, P , of time dependent transition probabilities of 
adjacent bins changes from (U, V) to (U ′,V ′) is calculated as the matrix exponential

where t is evolutionary time.

Two cell evolutionary process expansion

We now extend this single lineage process to describe the joint evolutionary process in 
two cells. Consider a pair of cells (A, B) and their most recent common ancestor in a 
tree, T = [t1, t2, t3] , where t1 denotes the branch length of their shared history and t2 and 
t3 denote the branch lengths from divergence, at unobserved state Z, to cells A and B, 
respectively (see Fig. 1).

Under this tree structure, adjacent bins in cells A and B have a shared evolutionary 
history for time t1 from an ancestral diploid state (i.e., D  :  (2,  2)) to an intermediate 
unobserved state, Z : (W, Y), with associated transition probability P(2,2),(W ,Y )(t1) . After 
divergence, bins in cell A evolve from (W, Y) to (CNiA,CNi+1,A) in time t2 with transition 
probability P(W ,Y ),(CNiA,CNi+1,A)(t2) , where CNiA,CNi+1,A ∈ Sc denote copy number in 
windows i and i + 1 for cell A. Similarly, bins in B evolve from (W, Y) to (CNiB,CNi+1,B) 
in time t3 with transition probability P(W ,Y ),(CNiB ,CNi+1,B)(t3).

Approximating discrete Markov process along the genome

Next, we convert these continuous time process transition probabilities for adjacent bins 
in two cells into the transition probabilities for the approximating discrete Markov pro-
cess for pairs of cells along the entire length of the genome, further described in Two 
Cell Hidden Markov Model Description. We do this by expanding the state space to the 
product space of the state space for each cell, Sc . This expansion of the state space to the 
joint CN state for two cells is necessary as the correlation structure along the length of 

(2)q(U ,V ),(U ′,V ′) =



























































γ (α + β) if (U ′,V ′) =

�

(U + n,V + n)
(U − n,V − n)

, n = 1

γβ if (U ′,V ′) =

�

(U + n,V + n)
(U − n,V − n)

, n > 1

α + β if (U ′,V ′) =

�

(U ± n,V )

(U ,V ± n)
, n = 1

β if (U ′,V ′) =

�

(U ± n,V )

(U ,V ± n)
, n > 1

r(U ,V ) if (U ′,V ′) = (U ,V )

0 otherwise

(3)P(U ,V ),(U ′,V ′)(t) = eQt
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the genome prevents the use of standard tree-based dynamic programming algorithms 
such as Felsenstein’s pruning algorithm [20].

The state space, Sd , for this discrete process is composed of pairs (CNiA,CNiB) , 
representing the copy numbers for window i in cell pair (A,  B), where 
CNiA,CNiB ∈ Sc = {0, 1, . . . , k} for a fixed maximal copy number k, such that

We define matrix F(T ) = {f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )} as the transition probability of 
moving from state (CNiA,CNiB) in window i to (CNi+1,A,CNi+1,B) in window i + 1 , given 
evolutionary tree T = [t1, t2, t3] , for cell pair (A, B). Therefore, the matrix F(T ) is defined 
as

which can be used to calculate a transition matrix, M(T ) , along the length of the genome 
for pairs of cells. This is done by dividing the joint probability of the CN state in both 
cells (A and B) in both bins (i and i + 1 ), with the marginal probability of CN state in 
both cells (A and B) in bin i, i.e., dividing each entry in F(T ) with the corresponding row 
sum: 

We have thereby constructed a process with state space on the copy numbers of 
pairs of cells, Sd . The matrix M(T ) gives the probabilities of observing transitions from 
(CNiA,CNiB) in window i to (CNi+1,A,CNi+1,B) in window i + 1 , along the genome, for 
cell pair (A, B), given evolutionary tree T  . We also note that the process along the length 
of the genome is not Markovian, as breakpoints appear in pairs, inducing an inherently 
non-Markovian correlation structure (see also [6]). However, to facilitate computation, 
we will approximate the process as a Markovian process with transition probabilities 
given by M(T ) . We note that while this model approximates the evolutionary process 
and paired nature of breakpoints via the genome wide transition matrix M(T ) , it does 
not explicitly model pairs of breakpoints jointly, potentially leading to unpaired break-
points. This Markov chain will then be used for inferences in a Hidden Markov Model 
framework with emission probabilities similar to those described in [6].

Two cell hidden Markov model description

Expanding on the framework of [6], we define a Hidden Markov Model (HMM) [21–
23] to infer copy number across the genome for pairs of tumor cells, using binned read 
depth data.

(4)Sd = Sc × Sc = {(0, 0), (0, 1), (0, 2), . . . , (k , k)}

(5)

f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
∑

W ,Y∈Sc

(

P(2,2),(W ,Y )(t1)×

P(W ,Y ),(CNiA,CNi+1,A)(t2)×

P(W ,Y ),(CNiB ,CNi+1,B)(t3)
)

(6a)M(T ) = {m(CNiA,CNiB),(CNi+1,A,CNi+1,B)}(T )

(6b)m(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T ) =
f(CNiA,CNiB),(CNi+1,A,CNi+1,B)(T )
∑

(c,d)∈Sd
f(CNiA,CNiB),(c,d)(T )
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Recall that cells A and B are associated with the evolutionary tree, T  , shown in Fig. 1. 
The sample space of read data, A , is composed of pairs of observed per window read 
count values, (xiA, xiB) , xiA, xiB ∈ N0 = {0, 1, 2, . . . }:

This HMM uses the state space of paired copy numbers, Sd , defined in Eq.  4 and the 
transition matrix M(T ) , defined in Eq. 6.

Emission probabilities

Assuming conditional independence between cells, the emission probabilities of the 
HMM are:

As these probabilities are calculated similarly for cells A and B, we only describe the der-
ivation for cell A (note: we previously described this derivation in [6]).

We assume XiA follows a negative binomial distribution, such that

where 

Estimation of constants {a, b, c} is described in Initial independent parameter estima-
tion using SCONCE. In the following, we will describe the full SCONCE2 estimation 
procedure in detail.

Detailed SCONCE2 pipeline

Given binned read depths for tumor and matched diploid cells, joint copy number call-
ing in SCONCE2 takes place in four main steps: (1) independently estimating model 
parameters and copy number profiles for each cell using SCONCE, (2) combining inde-
pendent parameter estimates across cells, (3) estimating tree branch lengths for each cell 
pair, and (4) creating summarized copy number profiles. This process is illustrated in 
Fig. 2.

(7)A = N0 × N0 = {(0, 0), (0, 1), (0, 2), . . . }

(8)P(XiA = xiA,XiB = xiB|CNiA,CNiB) = P(XiA = xiA|CNiA)P(XiB = xiB|CNiB)

(9)E(XiA) = �iA =
(

CNiA ×
µi

2

)

× sA + ε

(10)XiA ∼ NegBinom
(

�iA, σ
2
iA = a�2iA + b�iA + c

)

(11a)CNiA = the copy number in windowifor cellA

(11b)µi = the mean diploid read depth in window i

(11c)ε = constant sequencing error term

(11d)sA = library size scaling factor for cell A

(11e){a, b, c} = constants learned from diploid data
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Initial independent parameter estimation using SCONCE

We first estimate constants {a, b, c} , defined in Eqs. 10 and 11e, using maximum likeli-
hood on diploid cells only, as previously described in [6]. We note that most single cell 
tumor sequencing projects naturally also produce data from non-tumor diploid cells as 
part of standard sequencing techniques, and that these cells conveniently can be used for 
standardization [12, 24–30].

In order to obtain initial estimates of all model parameters, we analyze all tumor cells 
independently through SCONCE, described in detail in [6] and briefly summarized here. 
This is done to avoid the computational cost of joint estimation for all model parameters 
across all pairs of cells. The SCONCE pipeline first estimates the transition matrix of 
an unconstrained CN HMM, with associated library size scaling factor sA , for each cell 
using a modified Baum-Welch [31] algorithm. These estimates are then used to obtain 
initial starting points for each model parameter for an optimization of the likelihood 
function using the Broyden–Fletcher–Goldfarb-Shanno (BFGS) algorithm [32]. This 
results in parameter estimates {ŝA, α̂A, β̂A, γ̂A, t̂A} , for cell A. Recall sA is the library size 
scaling factor, defined as the coverage for the cell relative to the average diploid library 
size, {α,β , γ } are the instantaneous rates for copy number events, and tA is the total 
branch length from the ancestral diploid cell to cell A (see the red block in Fig. 2.).

Combining parameter estimates across multiple cells

To analyze shared evolutionary history between n cells, we first combine independ-
ent estimates across all cells of the transition rate parameters, {α,β , γ } , assumed to be 
shared among all cells, using the median to form joint estimates: 

We note that a full joint optimization could possibly lead to better model parameter 
estimates, especially for highly heterogeneous tumor populations, as the median is not 
strongly affected by extreme or highly variable individual estimates. However, we opted 
not to pursue the estimation of such estimates because of considerations of computa-
tional efficiency. This is illustrated in the yellow block in Fig. 2.

Estimating pairwise tree branch lengths

Next, we estimate parameters of the joint two-cell process for all 
(

n
2

)

 pairs of cells. The 

branch lengths of tree T = [t1, t2, t3] , are specific to each pair of cells, and branch length 
estimates from SCONCE, t̂ , are used to inform the initial optimization starting point for 
T  . For example, for pair (A, B), the initial branch length estimates, denoted with ∗ , are: 

(12a)α̂ = median(α̂A, α̂B, . . . , α̂n)

(12b)β̂ = median(β̂A, β̂B, . . . , β̂n)

(12c)γ̂ = median(γ̂A, γ̂B, . . . , γ̂n)

(13a)t∗1 =
min(t̂A, t̂B)

2
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For each pair of cells, we use the BFGS algorithm to maximize the forward log like-
lihood in order to estimate T  . To calculate the forward log likelihood of an observed 
sequence, the HMM is reset into the initial probability vector, defined as the steady 
state distribution, at the beginning of each chromosome to ensure chromosomal 
independence.

Because each set of branch lengths, [t1, t2, t3] , is specific to each pair of cells, this pro-
cedure is trivially parallelizable (see the green block in Fig. 2).

Summarized copy number calling

After pairwise branch lengths are estimated, we use the Viterbi algorithm [33, 34] to esti-
mate the most likely joint copy number profile for each pair of cells. If cell A appears in 
n− 1 pairs, this results in n− 1 separate CNP estimates for cell A. In order to calculate 
a single consensus copy number profile, CNA,consensus , we use either the mean (default), 
median, or mode of the CN in each window among the n− 1 estimates.

While adding more information to each consensus copy number profile by summariz-
ing across multiple cells initially increases accuracy, summarizing across too many diver-
gent cells is not optimal because more accurate estimates about each cell are obtained 
using closely related cells than highly divergent cells (Fig. 5). Therefore, in order to bal-
ance combining data from multiple cells and maintaining cell specificity, the user can 
also choose to summarize across a subset of the κ nearest neighbors for each cell, instead 
of all n− 1 pairs a particular cell appears in. The nearest neighbors for each cell is defined 
by the Euclidean distance between individual copy number profiles from SCONCE. 
Then, the consensus copy number profile is calculated only across the κ selected pairs.

Note, because of the genomic binning procedure, true copy number events may be 
split across bin boundaries or be completely contained within one bin, resulting in bins 
with non-integer average copy number. Using the mean and median summary functions 
can result in non-integer copy number calls, which more accurately represent the under-
lying biology as genomes are not truly organized in discrete bins. However, many down-
stream tools for single cell analyses require integer copy number profiles, so these values 
may need to be rounded for downstream analyses.

Simulations

In order to evaluate the accuracy of SCONCE2, we use the Line Segments model from 
SCONCE [6], which simulates copy number events on a fixed length reference genome 
as additions or deletions to a collection of line segments, and does not impose a maxi-
mum copy number limit. Note that although copy number events change the number 
and length of line segments, the reference genome length is constant. Additionally, copy 
number events create pairs of breakpoints at either end of the event, which are explicitly 
maintained in this simulation model, unlike the approximating discrete Markov process 
in the SCONCE2 inference model (see Approximating discrete Markov process along 
the genome), thereby making the simulation model more biologically realistic.

(13b)t∗2 = t̂A − t∗1

(13c)t∗3 = t̂B − t∗1
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While we previously used neutral coalescent simulations [6]to define trees, we here 
instead adjust the tree structure and the length of the branch leading to the root (ie, 
time to first divergence event) to examine a range of highly different tree structures, 
each including 128 cells. We specify two ultrametric trees with uniform branch lengths 
of 1/128, where tree A is fully pectinate/maximally imbalanced and tree B is perfectly 
balanced, and two non ultrametric trees, where tree C has uniform internal and termi-
nal branch lengths of 1/128, and tree D has uniform internal branch lengths of 1/128 
and logarithmically decaying terminal branch lengths. These tree structures represent 
extremes in terms of how balanced the tree is and in terms of deviations from a molecu-
lar clock (ultrametric property). Following the definitions of [35], tree A models branch-
ing evolution, tree B models neutral evolution, and trees C and D model linear evolution. 
Under certain conditions, the structure of tree B can also be adjusted to model punctu-
ated evolution [35] if the branch leading to the root is lengthened relative to the internal 
tree branches, such that more mutations fall on the shared ancestral/root branch com-
pared to external branches. For illustration, the tree structure for 8 cells is shown for 
each dataset in Additional file 1: Figure S1.

For each tree, the total tree height (longest path from the root to a leaf ) was scaled to 
1, and the branch leading to the root was set to length 1. Simulated reference genome 
lengths were set to 100, with amplification and deletion rates and expected lengths 
shown in Additional file 1: Table S1 (note that genomic length units are arbitrary, where 
expected copy number event lengths are defined relative to the genome length). As pre-
viously described in [6], the locations of copy number events follow a Markov process, 
and the lengths of copy number events follow a truncated exponential distribution.

To simulate read depths across the genome, the human reference genome was divided 
into 12,397 windows (equalling the number of 250 kb non overlapping uniform windows 
in hg19), and the number of reads falling into each window was simulated from a nega-
tive binomial distribution with parameter r = 50 . This results in files listing genomic 
window coordinates and number of reads observed in that window, for every simu-
lated cell (similar to output from bedtools coverage [36] on real data). The total 
expected number of reads for each cell was set to 4,000,000 (322.7 expected reads per 
window) to approximate the observed number of reads per 250 kb window (mean 316.1, 
median 351.2) in diploid cells from [12]. Note the actual number of total observed reads 
in each cell is random.

In order to ensure tree B was a perfectly balanced binary tree and to be consistent 
between tree structures, read depths for 128 tumor cells and 100 diploid cells were simu-
lated for each tree. Read depth across diploid cells was averaged per window for each 
tree. Tumor cells from each tree were divided into five non overlapping subsets of 20 
cells to create test sets. Although healthy cells were shared for each analysis run, each 
test set was otherwise analyzed independently from other test sets from the same tree.

All parameter files used to generate simulations are available on GitHub, along with 
examples of simulated data.

Real data preprocessing

We applied SCONCE2 to two published single cell breast cancer datasets, from [12] 
and [18], a cancer type known for their frequent CNAs [37]. Both of these datasets were 
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processed as previously described [6]. Briefly, for the [12] dataset, we trimmed reads 
using cutadapt [38] and trimmomatic [39], removed low complexity reads with prinseq 
[40], aligned reads to hg19 using bowtie2 [41], removed reads with q scores less than 20 
using samtools [42], and removed PCR duplicates using picard [43]. For the [18] data-
set, we split downloaded preprocessed bam files into cell specific bam files using pysam 
[44], and removed reads with q scores less than 20 using samtools [42]. Finally, we used 
bedtools coverage to count per window read depth for each cell [36]. Cells previ-
ously and orthogonally identified as diploid cells in [12] served as the matched normal. 
For the [18] dataset, cells from subset A were used as the diploid samples, as previously 
described [29].

Running other methods

For benchmarking, we limit our comparisons to other copy number only methods (that 
is, no SNP or phasing information is used): SCONCE [6] and AneuFinder [7, 8] for copy 
number accuracy, and the cnp2cnp [17] and MEDICC [16] distances for phylogeny 
building.

Briefly, we ran AneuFinder with default parameters, with the exception of skipping 
GC and mappability corrections to avoid overcorrecting, as we did not include GC or 
mappability bias in our simulations. To benchmark SCONCE2’s copy number calling, 
we first ran SCONCE [6] with default parameters (k=10). To run AneuFinder [7, 8], 
we skipped the GC and mappability corrections steps to avoid over correcting, as our 
simulation model does not include GC or mappability biases. We directly ran Aneu-
Finder’s findCNVs function (default parameters: method=”edivisive”, R=10, 
sig.lvl=0.1). We extracted copy number calls from the resulting the copy.num-
ber element, and used bedtools intersect [36] to split large segments into 250 
kb windows.

To evaluate SCONCE2’s t2 + t3 distance metric in phylogeny estimation, we compared 
to the cnp2cnp distance [17] and the MEDICC distance [16]. To run cnp2cnp, we first 
converted and rounded called CNPs into fasta files, then ran cnp2cnp in matrix mode 
with default parameters (-m matrix -d any). Because the cnp2cnp metric depends 
on the input sample ordering and is not symmetric, we repeated this process on the 
reversed sample ordering, and summed the two resulting distance matrices to make a 
symmetric metric. To calculate the MEDICC distance, we used the ZZS implementation 
of the MEDICC algorithm in the cnp2cnp program to remove the maximum copy num-
ber limit of 4 in the original MEDICC software, and ran it on the same fasta files (-m 
matrix -d zzs). Full scripts to run other methods are provided on GitHub (runA-
neufinder.sh and runCnp2cnp.sh).

Phylogeny estimation and Robinson–Foulds distance calculations

To estimate phylogenies, distance matrices were first read into R [45]. Next, we applied 
neighbor-joining [13, 14], implemented in the ape [46] package, to each distance matrix 
to estimate phylogenies.

To calculate Robinson–Foulds distances between inferred trees and true trees, we first 
used the read.tree function in the ape [46] package to read true trees in Newick 
format into R. Next, we used the treedist function from the phangorn [47, 48] 
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package to calculate the Robinson–Foulds distance. Full scripts to estimate phylogenies 
from distance matrices and calculate Robinson–Foulds distances between phylogenies 
are available on GitHub (readTreeBranches.R and plotRFdist.R).
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SNP  Single nucleotide polymorphism
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