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Naturally occurring human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) variability
has implications for the success of antiretroviral therapy. We determined the sequence of the polymerase-
coding region of RT from virus isolates from 12 Zimbabwean individuals recently infected with HIV-1. The 12
RT sequences differed from the consensus B RT sequence at 10.5% of nucleotides and 5.8% of amino acids.
Susceptibility testing of five isolates to zidovudine, didanosine, lamivudine, and nevirapine demonstrated
susceptibilities similar to those of wild-type subtype B isolates. Phylogenetic analysis of 40 HIV-1 RT se-
quences, including the 12 Zimbabwean subtype C sequences, 11 subtype B sequences, and the 17 remaining
published non-subtype B sequences showed sufficient intrasubtype RT sequence variation to differentiate
subtype A, B, C, and D isolates. Five recently reported subtype C RT sequences from India grouped with the
Zimbabwean subtype C sequences but had significantly less intraisolate sequence variation. Both intra- and
intersubtype RT comparisons were notable for extraordinarily high ratios of synonymous to nonsynonymous
differences. Although substitutions in the HIV-1 RT gene are limited by functional constraints, variation
between RT sequences demonstrates phylogenetic relationships that parallel env and gag gene variation.

Genetic analysis of human immunodeficiency virus type 1
(HIV-1) isolates has revealed at least 10 distinct group M
(main) subtypes (A to J), as well as several highly divergent
(group O [outlier]) isolates (16, 25, 30, 31, 33, 48). Differences
between group M subtypes are based on the approximately
30% intersubtype genetic divergence in the env region and
14% intersubtype distance in the gag region (16, 25, 30, 31, 33,
48). Although HIV-1 genetic variation is one of the major
obstacles to the development of a successful vaccine, it is not
known if such variation also influences the initial susceptibility
of HIV-1 to antiretroviral drugs. For example, the evolution-
arily related virus, HIV-2, is intrinsically resistant to non-
nucleoside RT inhibitors (36), and there have been conflicting
reports on the susceptibility of HIV-2 to nucleoside analog RT
inhibitors (7, 39).

Subtype B is the most prevalent HIV-1 subtype in North
America and Europe, and subtype B HIV-1 RT sequences
have been extensively reported and studied (33). However,
there are few published RT sequences of non-subtype B HIV-1
isolates. Subtype C is one of the most prevalent HIV-1 sub-
types and is especially common in Africa and India (21, 47, 48).
In 1996, one subtype C HIV-1 RT sequence from Ethiopia (41)
and five subtype C HIV-1 RT sequences from India (47) were
reported. We determined the RT sequence of the polymerase-
coding region of 12 additional subtype C isolates from HIV-
1-infected individuals in Zimbabwe and assessed the suscepti-
bility of five of these isolates to nucleoside analog and
nonnucleoside RT inhibitors.

* Corresponding author. Mailing address: Division of Infectious
Diseases, Stanford University, Stanford, CA 94305. Phone: (415) 725-
2946. Fax: (415) 725-2395. E-mail: rshafer@cmgm.stanford.edu.
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MATERIALS AND METHODS

Study population. The HIV-1-infected persons included 11 men, (ages, 21 to
45 years) and one woman (age, 24 years). The 11 men were recent seroconvert-
ers; each acquired HIV-1 infection via heterosexual transmission and serocon-
verted within the 6 months prior to contributing blood samples in March 1995
(28). The woman was a sexual partner of one of the men, but there were
otherwise no epidemiologic links between the study subjects. The 11 men were
factory workers in Harare and did not have a history of travel outside Zimbabwe
(28).

Virus isolation. Peripheral blood mononuclear cells (PBMC) were cocultured
with phytohemagglutinin-stimulated PBMC from HIV-seronegative blood do-
nors. When the p24 antigen concentration in the culture exceeded 20 ng/ml,
multiple aliquots of cell-free supernatant were harvested for drug susceptibility
testing and the pellets of cultured cells were saved for DNA sequencing.

HIV-1 RT sequencing. Cell pellets of the cultured cells were digested with
proteinase K, and the resulting lysate was subjected to nested PCR with primer
pairs RT18-RT21 and RT19-RT20 (Table 1). Direct sequencing of PCR product
was performed by using overlapping internal primers (Table 1), Tag polymerase,
and dye-labelled dideoxy terminators (Applied Biosystems, Inc., Foster City,
Calif.). The sequence between codons 26 to 245 of the RT gene was examined.

HIV-1 env heteroduplex mobility assay analysis. HIV-1 proviral DNA from
cultured PBMC was amplified as previously described (1, 8, 9). First-round
primers ED3 and ED14 and second-round primers EDS and ED12 amplified an
~1.3-kb fragment spanning the V1 to V5 region of gp120 (Table 1). Five mi-
croliters (approximately 100 to 250 ng of DNA) of second-round product from
each sample was mixed with 5 pl of homologous PCR product from a panel of
subtype references and 1.1 pl of 10X heteroduplex annealing buffer. The mixture
was heated to 94°C for 2 min, cooled rapidly on ice, mixed with loading dye, and
loaded onto a 5% acrylamide gel. Gel electrophoresis was performed with stan-
dardized conditions (1, 8, 9). To assign an uncharacterized isolate to a known
subtype, the PCR fragment from the unknown isolate was reannealed with the
corresponding fragment from multiple representatives of the previously identi-
fied subtypes. The heteroduplexes exhibiting the fastest mobilities between the
unknown and the most closely related subtype indicated the likely envelope
subtype of the isolate.

Drug susceptibility testing. The PBMC assay was identical to a previously
described assay (44). A 50% tissue culture infectious dose of 30 to 100 infectious
units of virus stock was used to infect one million PBMC in the presence or
absence of increasing concentrations of the appropriate drug. After 4 days, the
levels of p24 antigen produced were measured in the cell-free supernatant and
the drug concentrations required to inhibit p24 antigen production by 50%
(ICsp) and by 90% (ICy,) compared to the drug-free controls was determined by
nonlinear regression. The drugs and the concentrations used were as follows:
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TABLE 1. Oligonucleotide primers for PCR, sequencing, and heteroduplex mobility assay
Method and primer Sequence Orientation Position” Reaction
RT-PCR and sequencing
RT18 GGAAACCAAAAATGATAGGGGGAATTGGAGG Sense 2376-2406 External PCR
RT19 GGACATAAAGCTATAGGTACAG Sense 2453-2474 Nested PCR
RT20 CTGCCAGTTCTAGCTCTGCTTC Antisense 3461-3440 Nested PCR
RT21 CTGTATTTCTGCTATTAAGTCTTTTGATGGG Antisense 3538-3508 External PCR
88 TAAAATTAAAGCCAGGAATGGATG Sense 2577-2600 Sequencing
89 AATCTGACTTGCCCAATTCAATTT Antisense 3335-3359 Sequencing
B GGATGGAAAGGATCACC Sense 3002-3018 Sequencing
B-reverse GGTGATCCTTTCCATCC Antisense 3002-3018 Sequencing
3w ATGTTTTTTGTCTGGTGTGGT Antisense 3191-3211 Sequencing
Heteroduplex mobility assay
ED3 TTAGGCATCTCCTATGGCAGGAAGAAGCGG Sense 59565985 External PCR
ED5 ATGGGATCAAAGCCTAAAGCCATGTG Sense 6556-6581 Nested PCR
ED12 AGTGCTTCCTGCTGCTCCCAAGAACCCAAC Antisense 7822-7792 Nested PCR
ED14 TCTTGCCTGGAGCTGTTTGATGCCCCAGAC Antisense 7960-7931 External PCR

“ Sequence positions correspond to bases of the HIV-1 HXB, genome (GenBank accession no. K03455).

zidovudine (AZT) 0.0005, 0.005, 0.05, 0.5, and 5 pM; didanosine (ddI) 0.6, 1.2,
2.5, 5, and 10 pM; lamivudine (2',3’-dideoxy-3’'-thiacytidine) (3TC) 0.016, 0.08,
0.4, 2, and 10 wM; and nevirapine, 0.016, 0.08, 0.4, 2, and 10 uM.

Nucleotide and amino acid sequence analyses. The RT sequences of 11 sub-
type B HIV-1 isolates isolated prior to 1990 (LAI, SF2, NL43, MN, JRCSF, OYI,
CAM1, HAN, D31, RF, and YU2), the consensus subtype B sequence, the
subtype D sequences (ELL, NDK, and Z2Z6), the subtype O sequences (ANT70
and MVP5180), two of the subtype A sequences (U455 and IBNG), and a
presumed subtype A-D recombinant (MAL) were obtained from the Los Alamos
HIV Sequence Database (33). Five recently reported Indian subtype C se-
quences (47) and four additional non-subtype B sequences were obtained from
GenBank: CM240 (subtype A) (4), 90cf402 and 93th253 (subtype A) (12), and
C2220 (subtype C) (41).

Nucleotide and amino acid sequences were aligned by using the Genetics
Computer Group Wisconsin Package (13). Synonymous and nonsynonymous
nucleotide distances were calculated by the method of Nei and Gojobori (34),
using MEGA DNA analysis software (20). Pg is the number of observed synon-
ymous substitutions divided by the number of possible synonymous substitutions;
Py is the number of observed nonsynonymous substitutions divided by the num-
ber of possible nonsynonymous substitutions. Phylogenetic distances were cal-
culated from the sequence alignments by using the Kimura two-parameter model
(13, 19). Dendrograms were created by neighbor-joining, maximum parsimony,
and maximum likelihood methods (PHYLIP version 3.5 [10] and fastDNAmI
version 1.0.6 [35]). Bootstrap analysis was used to test the robustness of the
neighbor-joining trees (10).

Nucleotide sequence accession numbers. Nucleotide and amino acid se-
quences of codons 26 to 245 of RT from 12 Zimbabwean HIV-1 subtype C
isolates were submitted to GenBank (accession numbers U83603 to U83614).

RESULTS

HIV-1 env heteroduplex mobility assay analysis. Each of the
12 Zimbabwean HIV-1 isolates was categorized unequivocally
as subtype C by the heteroduplex mobility assay. The subtype
C reference strains used in the assay included MA959
(Malawi), ZM18 (Zambia), IN868 (India), and BR25 (Brazil)
9).

Amino acid alignment of Zimbabwean subtype C RT se-
quences. The amino acid alignment of codons 26 to 245 of the
RT genes of primary isolates from 12 HIV-1-infected persons
from Zimbabwe is shown in Fig. 1. The consensus subtype C
sequence (in bold type) differed from the consensus subtype B
sequence at 11 residues (V35T, E36A, T39E, S48T, K122E,
D123G, K173A, D177E, T200A, Q207A, and V245Q). None of
these 11 residues have been reported to confer drug resistance
to current nucleoside analog or nonnucleoside RT inhibitors.
Seven of these residues are naturally occurring variants re-
ported in subtype B isolates (35T, 48T, 122E, 123G, 177E,
200A, and 207E) (33). Four residues (36A, 39E, 173A, and
245Q) have not been reported in subtype B isolates but were

present in at least one of the five Indian subtype C sequences
reported (47) and in related primate immunodeficiency viruses
(33). Residues 36A and 48T occurred in most subtype C se-
quences but were rarely present in any of the other HIV-1
subtypes.

Inter- and intrasubtype genetic distances. The 12 subtype C
Zimbabwean RT sequences differed from the consensus sub-
type B RT sequence at 10.5% (9.6 to 11.7%) of 660 nucleotides
and 5.8% (4.1 to 6.8%) of 220 amino acids (Fig. 2). The
intersubtype distances (Zimbabwean subtype C versus consen-
sus subtype B) were significantly greater than the intrasubtype
C sequence distances (10.5 versus 5.5% for nucleic acids [P <
0.001] and 5.8 versus 3.7% for amino acids [P < 0.001]) (Fig.
2).

The average intrasubtype nucleotide sequence divergence
was significantly higher among the 12 Zimbabwean subtype C
isolates (5.5%) than among the 5 recently reported Indian
subtype C isolates (3.3%; P < 0.001) and 11 subtype B isolates
(2.8%; P < 0.001).

Phylogenetic analysis of HIV-1 RT sequences. Phylogenetic
analysis of RT nucleotide sequence data using neighbor-join-
ing, parsimony, and maximum likelihood algorithms yielded
essentially identical results. Figure 3 shows a neighbor-joining
tree constructed by using the nucleotide sequence data of 11
subtype B HIV-1 RT sequences, the 12 subtype C Zimbabwean
RT sequences, and the remaining published non-subtype B
HIV-1 RT sequences. The high bootstrap values at the rele-
vant nodes along the tree indicate that the subtype B, C, and D
sequences each form a consistent clade. Four of the subtype A
sequences also appear to form a clade (U455, CM240, 90cf402,
and 93th253); in contrast, two of the putative subtype A se-
quences (IBNG and MAL) are on different branches of the
tree.

Note that each of the Indian subtype C isolates evolved from
within the cluster formed by the Zimbabwean subtype C iso-
lates, which is consistent with the more-recent introduction of
HIV-1 into India. As has previously been reported (25, 33, 47),
subtype B and D isolates were closely related (their mean
intersubtype nucleotide distance was 6.4% (range, 5.2 to
8.3%). The RT sequence of RF, a Haitian isolate, was the most
deeply branching subtype B strain, an observation which has
also been made previously based on an analysis of HIV-1 env
sequences (24).
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FIG. 1. Alignment of amino acid residues between codons 26 to 245 of 12 Zimbabwean HIV-1 subtype C RT sequences. A consensus sequence of the 12 sequences
is shown. Conserved amino acid residues for the 12 sequences are indicated by dashes. The shaded residues are those in which the consensus sequence differs from

the consensus subtype B sequence.

Synonymous and nonsynonymous nucleotide differences.
There was a high ratio of synonymous (causing no amino acid
change) to nonsynonymous (causing an amino change) nucle-
otide differences between the different HIV-1 subtypes (Table
2). Among subtypes A to D, mean intersubtype synonymous
nucleotide differences (Pg) were present at 0.20 to 0.38 of
potential synonymous sites, whereas mean intersubtype non-
synonymous nucleotide differences (P,) were present at 0.01
to 0.04 of potential nonsynonymous sites (Table 2). Mean Pg

and P, values between subtype O and subtypes A to D ranged
from 0.72 to 0.79 and from 0.09 to 0.11, respectively.
Synonymous nucleotide differences between subtypes B and
C were present in several highly conserved amino acids and at
residues involved in drug resistance. For example, the nucleo-
tide triplet coding for 186D, one of the three catalytic aspar-
tates, was GAC in each of the subtype C isolates compared
with GAT for the subtype B sequences (Fig. 4). The nucleo-
tides coding for 65K, 70K, 74L, 181C, 210L, and 219K, sites
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FIG. 2. Nucleotide and amino acid distances between the Zimbabwean sub-
type C and consensus subtype B HIV-1 RT sequences. Shaded bars represent the
percent divergence between each of the 12 subtype C sequences and the con-
sensus B sequence. White bars represent the percent divergence among the
subtype C sequences.

involved in susceptibility to both nucleoside and nonnucleoside
RT inhibitors, were also notable for intersubtype synonymous
nucleotide differences (Fig. 4).

Susceptibility of subtype C sequences to RT inhibitors. Ta-
ble 3 shows the susceptibilities of five of the Zimbabwean
subtype C isolates to AZT, ddI, 3TC, and nevirapine. The
mean AZT ICy, was 0.002 pM (range, 0.001 to 0.004 wM), the
mean ddI ICs, was 0.4 uM (range, 0.2 to 0.7 pM), the mean
3TC ICs, was 0.01 uM (range, 0.002 to 0.03 uM), and the
mean nevirapine ICy, was 0.01 uM (range, 0.003 to 0.1 uM).
Each of the five strains had drug susceptibilities similar to
those obtained using the same susceptibility assay on North
American isolates from untreated individuals (wild-type sub-
type B isolates) (17, 44, 45).

DISCUSSION

Several factors contribute to the generation of HIV-1 ge-
netic variation. First, HIV-1 RT lacks proofreading capability,
and it is estimated that nearly one mutation occurs along the
genome each replication cycle (6, 51). Second, HIV-1 repli-
cates to high titers and undergoes many replication cycles in
vivo (6). Third, HIV-1 is subject to multiple selective pressures
(6, 32, 52). Finally, because the HIV-1 virion contains two
tightly associated homologous RNA molecules, selection pressure
operates on the genome itself, as well as on its products (5, 6).

Although the pol gene is the most conserved region of
HIV-1 (29, 42, 43), variation occurs between different sub-
types. However, the absence of known drug resistance muta-
tions in the RT genes of subtype C isolates suggests that these
mutations are not dominant, naturally occurring alleles. In-

J. VIROL.

deed, the subtype C isolates were also found in vitro to be as
susceptible as wild-type subtype B isolates to nucleoside and
nonnucleoside RT inhibitors.

HIV-1 RT subtype variation and phylogenetic analysis. The
subtype C RT nucleotide sequences from HIV-1-infected in-
dividuals in Zimbabwe differed from the consensus subtype B
nucleotide sequence by 10.5%. By comparison, intersubtype
differences in the gag and env genes are usually higher, approx-
imately 14 and 30%), respectively (16, 25, 30, 31, 33). The lower
rate of variability in RT than in gag and env is probably due to
sequence requirements for enzymatic function (29, 43).

The close agreement between neighbor-joining, maximum
parsimony, and maximum likelihood methods in our analysis
supports the reliability of the phylogenetic tree of HIV-1 RT
sequences shown in Fig. 3. The high bootstrap values at rele-
vant nodes strongly suggest that the subtype classification
scheme which is based on HIV-1 env and gag sequences also
extends to the highly conserved RT gene. Bootstrap values
higher than 70% in most cases represent a probability higher
than 95% that the corresponding tree branch accurately rep-
resents the available data (15, 47).

Thirty-six of the 38 group M HIV-1 isolates clustered in the
groups expected based on their gag and env phylogenies. Sub-
types B, C, and D formed clades, and the previously noted
close relationship between subtypes B and D was observed (25,
33, 46). Four of the subtype A isolates also formed a clade.
This clade included three “subtype E” isolates, which are ac-
tually complex hybrids of subtypes A and E (4, 12, 25). Isolate
MAL, which is considered an A-D recombinant based on its
gag (subtype A) and env (subtype D) sequence (25, 33), did not
consistently cluster with any of the other sequences. Isolate
IBNG, which contains subtype A env sequence (33), also did
not cluster with any of the other sequences. A recent analysis
of IBNG suggests that it may also be a recombinant because its
long terminal repeat clusters with subtype G isolates (12).

The lower intrasequence diversity among the recently pub-
lished Indian subtype C isolates compared with that of the
Zimbabwean subtype C isolates and the branching of the In-
dian sequences from within the Zimbabwean cluster are con-
sistent with a founder effect caused by the more-recent intro-
duction of HIV-1 into India. An analogous situation exists in
Thailand, where the intrasubtype genetic distances for the
prevalent subtypes (B and E) are much lower than the intra-
subtype distances of subtypes B and E among African isolates
(12, 31, 48).

Synonymous and nonsynonymous mutations. There was an
extraordinary high ratio of synonymous/nonsynonymous nucle-
otide differences in the RT sequences both within and between
different subtypes (Table 2). Indeed, the mean interpatient
ratios of synonymous to nonsynonymous substitutions (Pg/Py)
ranged from 6.8 to 8.9 within subtypes A to D and from 8.3 to
10.9 between subtypes A to D (Table 2).

During reverse transcription, transitions are more common
than transversions (27, 50, 51); this fact, together with the strict
requirements for RT function, probably explain the high ratio
of synonymous/nonsynonymous intersubtype RT differences.
Higher rates of nonsynonymous mutations (Pg/Py = 1) are
observed in variable parts of the env region, and this phenom-
enon has been attributed to adaptive evolution in response to
immune pressure (2, 40, 42, 52). Similarly, high rates of non-
synonymous mutations have been observed in the RT genes of
patients receiving antiretroviral therapy with RT inhibitors (6,
18, 37).

HIV-1 detection. The development and evaluation of the
currently used nucleic acid-based diagnostic tests for HIV-1
have been based primarily on subtype B strains from North
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FIG. 3. Neighbor-joining tree demonstrating the genetic relationships between the RT genes (codons 26 to 245) of 40 HIV-1 isolates. These isolates included 18
subtype C isolates (12 Zimbabwean isolates, 5 Indian isolates [47], and C2220 [41]), 11 subtype B isolates isolated prior to 1990 (33), 6 subtype A isolates (CM240 [4],
U455, IBNG, MAL, 90cf402 [12], and 93th253 [12]), 3 subtype D isolates (33), and 2 subtype O isolates (33). The subtype O isolates were treated as outgroups. CM240,
90cf402, and 93th253 are each A-E recombinant (subtype E env). MAL is a putative recombinant of env subtype D and gag subtype A. IBNG has a subtype A env gene
but may also be a recombinant. Each number at a node is the percentage of bootstrap samples in which the cluster to the right is found. The tree and bootstrap values

were determined by using PHYLIP version 3.5 (10).

TABLE 2. Intra- and intersubtype proportions of synonymous and nonsynonymous RT nucleotide differences”

Synonymous differences (Pg) between subtypes

Nonsynonymous differences (Py)

between subtypes

Pg/Py ratio” between subtypes

Subtype
A B C D (0] A B C D (0] A B C D (¢}
A 0.13 0.32 0.38 0.33 0.72 0.02 0.04 0.04 0.04 0.11 6.8 8.4 10.2 9.4 6.9
B 0.13 0.34 0.20 0.79 0.01 0.04 0.03 0.10 8.2 9.7 8.3 7.8
C 0.18 0.34 0.77 0.02 0.01 0.10 8.9 10.9 7.8
D 0.08 0.77 0.01 0.09 7.5 8.4
(6] 0.35 0.03 13.0

¢ Includes mean results obtained from 4 subtype A isolates, 11 subtype B isolates, 18 subtype C isolates, 3 subtype D isolates, and 2 subtype O isolates. IBNG and
MAL were excluded because they did not cluster with subtype A, B, C, or D.
b The Jukes-Cantor transformations (adjustments for multiple substitutions) of the Pg/Py, ratios (Dg/D ratios) were slightly higher than the untransformed Pg/Py,
ratios, because the transformation had a greater effect on the synonymous substitution rates than on the nonsynonymous substitution rates. However, this transfor-
mation could not be applied to the synonymous differences between subtype O and subtypes A to D because substitutions at these synonymous sites were fully saturated

(Ps > 0.7).
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FIG. 4. Summary of synonymous versus nonsynonymous differences between each of the 12 Zimbabwean subtype C sequences and the consensus B sequence. The
consensus B amino acid sequence is shown. The number of subtype C isolates with synonymous substitutions is shown by the length of the white bar below the horizontal
line. The number of subtype C isolates with nonsynonymous substitutions is shown by the length of the shaded bar above the horizontal line. The 12 residues enclosed
in squares are sites of drug resistance mutations. M41L, D67N, K70R, L210W, T215Y, and K219Q are associated with resistance to AZT; L74V is associated with

resistance to ddI; K65R is associated with resistance to ddC; M 184V is associated with resistance to 3TC; Q151M is associated with resistance to multiple nucleoside
analog RT inhibitors; and Y181C is associated with resistance to nonnucleoside analog RT inhibitors.

America and Europe (16). The sensitivity of these tests in Our results, however, suggest that although the amino acid
detecting divergent strains like group O and group M subtypes residues of HIV-1 RT are highly conserved, there is tremen-
other than subtype B requires further evaluation. Most cur- dous potential for synonymous mutation. Thus, it is likely that

rently available data suggest that the most sensitive primers for optimal strategies for HIV-1 RT detection may require PCR
detecting different HIV-1 subtypes lie in specific regions of gag protocols using degenerate primers that take into account the
and pol (14, 38, 49). redundancy of the genetic code.



VoL. 71, 1997

TABLE 3. Drug susceptibilities of subtype C HIV-1 isolates”

Drug susceptibilities (ICs5¢/ICqy, [wM])

Virus isolate
AZT ddI 3TC Nevirapine
z84 0.001/0.004 0.7/1.4 0.03/0.1 0.03/0.2
z1373 0.004/0.02 0.6/1.1 0.02/0.1 0.003/0.1
21624 0.001/0.008 0.4/1.3 0.01/0.03 0.003/0.05
z1875 0.003/0.007 0.3/1.3 0.002/0.02 0.01/0.08
22107 0.004/0.01 0.2/1.1 0.01/0.04 0.1/0.4

“Mean ICs, and ICy, for wild-type North American and subtype B HIV-1
isolates to different drugs were as follows: AZT, 0.001 to 0.002 and 0.01 pM,
respectively; ddl, 0.4 and 1.2 pM, respectively; 3TC 0.01 and 0.05 uM, respec-
tively; nevirapine, 0.03 and 0.1 pM, respectively (17, 44, 45).

HIV-1 treatment. Antiretroviral drug therapy, while cur-
rently beyond the means of most infected individuals in devel-
oping countries, may ultimately be used in the treatment and
prevention of perinatal infection (26). In addition, non-subtype
B viruses are already present in Europe and North America,
and their prevalence in these areas is increasing (3, 11, 22, 23).
Our study suggests that African subtype C HIV-1 isolates are
susceptible to commonly used RT inhibitors. As the HIV-1
pandemic expands and the indications for drug therapy in-
crease, further sequencing and susceptibility analysis of the
molecular targets of therapy of global HIV-1 isolates will be
needed.
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