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Review

Radiomics for Response and Outcome
Assessment for Non-Small Cell
Lung Cancer

Liting Shi, MS1, Yaoyao He, BS1, Zilong Yuan, BS2, Stanley Benedict, PhD3,
Richard Valicenti, MD3, Jianfeng Qiu, PhD1, and Yi Rong, PhD3

Abstract
Routine follow-up visits and radiographic imaging are required for outcome evaluation and tumor recurrence monitoring. Yet
more personalized surveillance is required in order to sufficiently address the nature of heterogeneity in nonsmall cell lung
cancer and possible recurrences upon completion of treatment. Radiomics, an emerging noninvasive technology using medical
imaging analysis and data mining methodology, has been adopted to the area of cancer diagnostics in recent years. Its potential
application in response assessment for cancer treatment has also drawn considerable attention. Radiomics seeks to extract a
large amount of valuable information from patients’ medical images (both pretreatment and follow-up images) and quantita-
tively correlate image features with diagnostic and therapeutic outcomes. Radiomics relies on computers to identify and
analyze vast amounts of quantitative image features that were previously overlooked, unmanageable, or failed to be identified
(and recorded) by human eyes. The research area has been focusing on the predictive accuracy of pretreatment features for
outcome and response and the early discovery of signs of tumor response, recurrence, distant metastasis, radiation-induced
lung injury, death, and other outcomes, respectively. This review summarized the application of radiomics in response
assessments in radiotherapy and chemotherapy for non-small cell lung cancer, including image acquisition/reconstruction,
region of interest definition/segmentation, feature extraction, and feature selection and classification. The literature search for
references of this article includes PubMed peer-reviewed publications over the last 10 years on the topics of radiomics, textural
features, radiotherapy, chemotherapy, lung cancer, and response assessment. Summary tables of radiomics in response
assessment and treatment outcome prediction in radiation oncology have been developed based on the comprehensive
review of the literature.

Keywords
chemotherapy, NSCLC, radiomics, radiotherapy, response assessment, systemic therapy

Abbreviations
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Introduction

Lung cancer is one of the most common cancer in the world,

accounting for the first place in men (16.7%) and third in

women (8.7%).1 When cancer is suspected, further confirma-

tion and follow-up are required in order to assist clinicians with

accurate diagnosis and develop properly indicated treatment

regimens. Tumor biopsy and physiology analysis are the most

accurate way for diagnosis. Yet biopsy has limitations, that is,

the location of tumor biopsied may strongly affect physiology

results.2 Medical imaging systems are noninvasive approaches

for tumor assessment and they provide substantial benefits, that

is, tumor’s biological and functional information and its sur-

rounding microenvironment,3 beyond simple tumor visualiza-

tion with newly developed contrast and tracer agents.

Diagnostic interpretation of medical images has become more

sophisticated and focused on disease types. For instance, most

tumors exhibit heterogeneity, both spatially and temporally,

which can be visualized and tracked with new radiomics

applications on chest radiographs and computed tomography

(CT) images. Lambin et al4 was the first to introduce the

concept of “radiomics” in 2012 and presented its key tech-

nique and application prospects. Kumar et al5 further

expanded the definition and analyzed the challenges of each

step of its workflow, especially for lung cancer in the same

year. Radiomics is essentially derived from the concept of

computer-aided diagnosis, which uses computer assistance

in processing a large number of imaging features extracted

from various imaging modalities, including CT, positron

emission tomography (PET), magnetic resonance imaging,

and/or other medical imaging modalities.4,5 This strategy

transforms the regions of interest (ROIs) into high-

resolution, minable data by introducing the big data technol-

ogy and using automatic data feature algorithms.5 Adopted

from radiology, this technique has been recently explored in

cancer treatments, including tumor targeted drug therapy,6

preoperative assessment of tumor surgery,7,8 and response

and outcome assessments after radiotherapy and systemic

therapy.9-13

The applications of radiomics for non-small cell lung cancer

(NSCLC) include (1) treatment efficacy and response evalua-

tion, (2) to assist noninvasive early diagnosis, and (3) predic-

tion of treatment outcomes. It becomes possible to detect tumor

occurrence at an early stage, as well as to predict treatment

efficacy and detect recurrence or metastasis after a given treat-

ment regime of radiation and/or systemic therapy.9,14 With the

established database, care providers can now more practically

predict treatment outcomes and possible radiation-induced

injuries and seek out personalized and precise treatment

options for patients.15

Previous review articles have provided summaries of radio-

mics analysis approaches, mathematical algorithms, and clin-

ical applications in diagnosis, prognosis, or outcome

predictions.5,16-18 In 2014, Mattonen et al10 reviewed novel

techniques focusing on quantitative imaging feature analysis

for response assessment after radiotherapy for lung cancer. In

2016, Parekh and Jacobs17 summarized approaches and math-

ematical algorithms applied to lung, breast, liver, and so on.

The development of radiomics and its application have also

been discussed in various aspects.19-21 More recently, several

papers reviewed related texture analysis applied to PET/CT

images for tumor response assessment16,22,23 in the past 2

years. Scrivener et al2 and Lee et al18 focused on the applica-

tion to lung cancer, while Sollini et al24 proposed harmonizing

PET radiomics methods for their applications in NSCLC.

Radiomics currently plays an important role in providing a

fundamental methodology for future personalized treatment

and follow-up in the era of precision medicine. Our focus is

to elaborate the specific applications of radiomics in the con-

text of radiotherapy with or without systemic regimen for

NSCLC and its current research developments using CT and

PET images. A comprehensive literature search was conducted

using the PubMed database to include papers published from

the year of 2007 to present, with the keywords of radiomics,

textural features, radiotherapy, systemic therapy, chemother-

apy, lung cancer, and response assessment. Summary tables

in response assessment and treatment outcome prediction in

radiation oncology have been developed based on the compre-

hensive review of the literature.

The Workflow of Radiomics

The workflow of radiomics, as shown in Figure 1, includes (1)

imaging acquisition/reconstruction, (2) ROI definition/seg-

mentation, (3) image feature extraction, and (4) image feature

selection and classification. Research interests have been
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widely focused on metrologies and challenges, as well as clin-

ical applications of these aspects. Herein we describe in details

various stages in the radiomics workflow.

Imaging Acquisition and Reconstruction

Acquiring high-quality and standardized images is a prere-

quisite for the accuracy and consistency of radiomics data.

A large amount of the standardized image data can help

establish a response assessment model to predict the prob-

ability of recurrence and metastasis after treatment.6,25

Within those 2 commonly available types of image acqui-

sition modalities for treating NSCLC, CT and PET, choos-

ing a consistent image modality for the diagnosis and

follow-up scans is essential to avoid divergence and discor-

dance in the extracted feature data. In addition, even for the

same imaging modality, the variations in acquisition para-

meters (kV, mAs, slice thickness, breathing control method,

configurations, field strength, and contrast media) and

reconstruction parameters (reconstruction kernels or filters)

are likely to affect image values for scanning the exact same

subject, which might complicate the process of ROI-based

image segmentation and feature extraction.5,26-30 Thus, it is

essential to maintain homogeneity in image scan protocols

for a radiomics study.

Region of Interest Segmentations

Image segmentation for ROI creations is a crucial step, which

directly affects the quality of subsequent feature extraction,

thus affects the correctness and accuracy of research

results.20,31 Segmentation includes manual, semiautomatic, and

automatic segmentations. Manual segmentation means that an

experienced physician manually delineates the ROI on images,

which is currently the most widely used method.28,32 Manual

segmentation has minimal needs in specialized algorithms but

demands user specialty and experience. It is also time-

consuming and can have significant intra- and interobserver

variability, which may cause obstacles in big data analysis.33

The automatic segmentation does not require manual inter-

vention and functions through computer-aided automation

with preset parameters. However, it relies on the accuracy

of algorithms and their ability to differentiate ROIs from

surrounding tissues. Semiautomatic segmentation takes

advantages of both manual intervention and software

automation, which makes it a preferable method for radiomics

data analysis.5,14,19,34 Semiautomatic segmentation that uses

computer segmentation method cannot be reliably used alone.

Further manual intervention is needed to ensure the accuracy

of segmentation.35

Reproducibility of quantitative PET and CT image features

in NSCLC concerning variations caused by segmentation

methods and patient factors had been studied and proved

stable.36-41 Several studies used intraclass correlation coeffi-

cient (ICC)42 to compare the repeatability in manual, auto-

matic, and semiautomatic segmentation methods.36,38,39

Among them, Parmar et al39 concluded that semiautomatic

features provide higher reproducibility than manual segmenta-

tions (ICC: 0.85 + 0.15 vs 0.77 + 0.17). Semiautomatic multi-

seed point segmentation can generate stable segmented

volumes with similarity index above 0.93, compared to

0.73 in manual segmentation.41 Overall, ROI identification and

segmentation are critical factors in the process of imaging

analysis and feature extraction.43,44

Image Feature Extraction

Exploring possible correlations between image feature infor-

mation with tumors’ phenotypes and prognostics is currently

the main interest in radiomics research. Publications have

shown potential diagnostic and prognostic powers from

Figure 1. The workflow of radiomics.
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radiomics signatures for lung patients.45-50 Present literatures

have reported clinical factors, conventional features, and tex-

ture features for radiomics or delta-radiomics studies.19,45,51-56

Different from clinical factors and conventional features that

are acquired from hospital records or radiology readings, tex-

ture features are calculated mathematically by software plat-

forms, such as MATLAB or Python. Texture feature is the

spatial distribution of gray-level intensity in images and ana-

lyzed by 2 main mathematical techniques in NSCLC: statistical

methods and transform-based methods, of which the first one is

most used for lung cancer.6,16,32,45,51,57 More specific descrip-

tion of radiomics features are summarized in Table 1. Cur-

rently, one of the predictive models is established based on

size, concavity, contour, and spiculation.48 In fact, the size-

based features can be good predictors of cancerous nodules

by itself and has significant correlation with overall survival

(OS).46 Additionally, the diversity of image features, such as

tumor’s growth rate and volume change, and multivariate anal-

ysis can improve prediction accuracy.46,51 It is even possible to

determine benign or malignant lymph nodes status by using CT

texture features.49,50 More significant features are to be discov-

ered and validated.

Feature Selection and Classification

Feature selection and classification are also crucial after

extracting a large number of features, most of which may

be noise or intercorrelated features. The procedure of

selecting and classifying features is to reduce the dimen-

sion.28,58 There are a few publications on comparing the

abilities of different feature selection methods and machine

learning classifying methods to predict outcomes for

lung.58,59

Feature selection preserves a subset of useful and unique

features, reducing the computational costs and increasing the

accuracy of predation, which can be applied to supervised and

unsupervised learning.60,61 Previous research had demon-

strated that Wilcoxon selection method had highest perfor-

mance in supervised learning,62 while principal component

analysis58 had higher prediction performance than Wilcoxon

(area under the receiver operating characteristic curve [AUC]

¼ 0.70. vs 0.67) in unsupervised learning.58 Feature selection

algorithms, that is, filtering, wrapper, and embedded methods,

have their merits and demerits.60,63 The filtering methods are

independent of the chosen predictors, with efficient numeracy

and statistical scalability, which can reduce dimensionality

Table 1. Features Extracted From PET and/or CT Images.

Class Type Method Feature Name

Clinical factors Age, gender, histology type, stage, etc

Conventional features PET only SUV metrics SUVmean

SUVmax

SUVpeak

COV

SD

AUC-SCH

TLG

MTV

CT only HU metrics Mean

Maximum

COV

SD

PET/CT Size, shape, volume, diameter, solidity, eccentricity, etc

Texture features (PET/CT) First order IVH Mean, variance, skewness, kurtosis, energy, entropy

Law’s Level, edge, spot, wave, ripple

High order GLCM Contrast, correlation, entropy, dissimilarity, energy, and so on

GLRLM Run percentage

Short run emphasis

Long run emphasis

Gray-level nonuniformity

Run-length nonuniformity

GLSZM Zone size percentage

Zone size nonuniformity

Gray-level nonuniformity, etc.

NGTDM Coarseness, contrast, busyness, complexity, texture strength

Transform based Wavelet, Fourier, LoG

Abbreviations: AUC-CSH, area under the curve of the cumulative SUV-volume histogram; COV, coefficient of variation; CT, computed tomography; GLCM,

gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; HU, Hounsfield unit; IVH, intensity–volume

histogram; Law’s, Law’s texture measures; LoG, Laplacian transform of Gaussian filter; MTV, metabolic tumor volume; NGTDM, neighborhood gray-tone

difference matrix; PET, positron emission tomography; SD, standard deviation; SUV, standardized uptake value; SUVmax, maximum SUV; SUVmean, average

SUV; SUVpeak, peak SUV; TLG, total lesion glycolysiss.
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and overfitting compared to the wrapper and embedded meth-

ods.63 Comparison of 14 filter feature selection methods indi-

cated that Wilcoxon selection has the highest performance in

predicting OS (AUC ¼ 0.65 + 0.02) with maximum stability

(0.84 + 0.05).62

Among the two feature classifications, that is, supervised

and unsupervised classifiers, the former requires user to pro-

vide patients’ radiomics features and outcomes as training data

(ie, support vector machines, random forest, decision tree,

neural networks, boosting, discriminant analysis, k-nearest

neighbors, etc),64-68 while the latter doesn’t require outcome

data (ie, consensus clustering, k-means clustering, hierarchical

clustering, etc).17 Parmar et al62 and Zhang et al58 proved that

random forest classifier has the highest prediction performance

in OS (AUC ¼ 0.66 and 0.71).

Moreover, a combination of different feature selection

methods and classifiers can achieve different prediction

results. It was found that a combination of Wilcoxon selec-

tion model with random forest classifier has the best per-

formance for predicting OS, while near-zero variance

selection model combined with random forest classifier is

appropriate for predicting recurrence (AUC ¼ 0.76), and

zero variance selection model with naive Bayes classifier

is the best to predict death (AUC ¼ 0.77), and mixture

discriminant analysis classifier alone (AUC ¼ 0.73) was

best for predicting recurrence-free survival .58 Identification

of feature selection methods, classification methods, and

analyzing tools is a crucial step for improving accuracy,

stability, and performance of features for assessing response

and predicting clinical outcomes. Radiomics is an emerging

area, so does the development of feature selection and clas-

sification algorithms. The optimal method is still being

developed based on clinical needs.

Radiomics in Response and
Outcome Evaluation

Literature on applying radiomics to assess response and predict

treatment outcome for lung is based on pretreatment images

(Table 2) and follow-up images (Table 3). Pretreatment ima-

ging radiomics is used to discover the association of quantita-

tive features extracted from images taken prior to treatment

with response and outcomes monitored upon treatment com-

pletion. The focus of these studies is on the ability of predicting

prognosis from the pretreatment features.8,52,74,75 Delta-

radiomics is a method that compares the changes within those

features extracted from pretreatment images and follow-up

images during and/or after the treatment, in order to identify

signs of recurrence, metastases, or other morality.15,56,77,81,83

Positron emission tomography and CT images have been

widely used for lung patients and thus are readily available for

radiomic analysis. Positron emission tomography images pro-

vide molecular metabolic information and thus detect disease

early, while CT provides anatomical characteristics. The end

points mostly studied in PET images are Response Evaluation

Criteria in Solid Tumors (RECIST)-based responses12,13,79 and

outcomes, such as recurrence,52,53,69,78,81 distant metastases

(DM),57,69 and survival.54,55,71,72 The end points in CT images

focus on pathological response, mutation status, and distin-

guishing radiation-induced lung injury (RILI). The image fea-

tures with high correlation to those end points are listed in

Tables 2 and 3. Most of these study trials are retrospective,

thus patients’ images along with clinical outcome data are

achieved from records of medical institutions or hospitals.

Tumor Response Assessments

Positron emission tomography images. Tumor response studied in

PET images including stable disease and progress disease is

assessed by the RECIST and divided into 3 types: complete

response, partial response, and nonresponse.12,13,79 The

extracted features are pretreatment standardized uptake value

(SUV) metrics, metabolic tumor volume (MTV), total lesion

glycolysis, quantitative texture features, such as entropy, cor-

relation, contrast, and uniformity, and “delta-radiomics.”

Among them, texture features outperformed others in predict-

ing tumor response to treatment. Cook et al12,13 showed that

texture features measured by coarseness, contrast, and busy-

ness presented strong correlations with RECIST response to

chemoradiotherapy (CRT; P ¼ .004, .002, .027), while SUV

parameters showed none. Texture features reflecting reduced

heterogeneity measured by first-order standard deviation (SD),

entropy, and uniformity (P < .01, ¼ .001, ¼ .001) also pre-

sented a stronger correlation with RECIST response to erlotinib

than SUV metrics. Dong et al79 found that even though pre-

treatment features, such as coefficient of variation, MTV, and

contrast (AUC ¼ 0.781, 0.686, 0.804) had a predictive capa-

bility for response to CRT, early changes in texture features can

better predict response with higher specificity (80%-83.6%)

and sensitivity (73.2%-92.1%).

Computed tomography images. Different from RECIST

responses studied in PET images, tumor response studied in

CT images mainly focuses on pathological response, and treat-

ment responses such as tumor response to radiation and epider-

mal growth factor receptor (EGFR) mutation status reflected

gefitinib response.6-8,86,87 In terms of predicting pathological

response, pretreatment primary tumor sphericity, texture fea-

tures, lymph node homogeneity, and changes in primary tumor

volume, mass, histogram features, and texture features are

potential predictors for patients with NSCLC after CRT, while

primary tumor intensity variability and size zone variability are

predictive for patients after tyrosine kinase inhibitor ther-

apy.7,86 It is also found that lymph node phenotype has a better

performance in classifying pathologic complete response and

gross residual disease than primary tumor.7 A study tracked

tumor response to radiation in daily CT images during radio-

therapy course found that reductions in mean Hounsfield unit

(HU) in gross tumor volume (GTV) had a strong correlation

with accumulated GTV dose (R2 > 0.99) and were significantly

associated with survival rate.87 In predicting EGFR mutation

status and reflected gefitinib response, a pretreatment Law’s

Shi et al 5
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texture feature and changes in volume, maximum diameter, and

a filter-based feature were proved significant.

The RECIST response has its limitation in diversified clin-

ical applications.88 Radiomic features such as texture features

and volume changes have the potential to better predict tumor

responses and thus may be considered as new tumor response

phenotypes that provide diversified information in the future.

Survival Analysis

Studies focusing on survival analysis include OS, progression-

free survival (PFS), locoregional recurrence-free survival

(LRFS), distant metastasis–free survival (DMFS), disease-

free survival (DFS), disease-specific survival (DSS), and so on.

Positron emission tomography images. For predicting survivals

based on PET images, the best features ever found are: the

high-order contrast for OS (P ¼ .002),12 AUC of the cumula-

tive SUV-volume histogram (AUC-CSH) for PFS, LRFS, and

DMFS (P < .001,¼ .002,¼ .003),54 and mean SUV (SUVmean)

greater than 3.45 for DSS (P ¼ .007).78 Kang et al54 revealed

that maximum SUV (SUVmax) and AUC-CSH reflecting tumor

heterogeneity were significant prognostic factors for PFS,

while AUC-CSH were for LRFS and DMFS.54 Carvalho et

al55 showed that tumor’s relative volume containing >80%
SUV significantly correlates with OS, and a larger tumor’s

relative volume above a higher SUV can lead to better prog-

nosis. Furthermore, the texture feature SumMean for OS by

Ohri et al71 and textural feature dissimilarity for DSS and DFS

by Lovinfosse et al70 are shown to be more powerful indepen-

dent predictors compared to metabolic metrics. Aside from

these features, conventional clinical factors, such as gender,

age, histology, stage, and so on, have also been discussed by

Lovinfosse et al70 and Fried et al72 The latter showed that the

combination of quantitative features with conventional clinical

features can improve OS risk stratification compared with con-

ventional clinical features alone.72 In addition, delta-radiomics

features of fludeoxyglucose-PET are correlated with OS in

patients with NSCLC. Carvalho et al80 validated the predictive

capacity in delta-radiomics features (volume, texture features,

and intensity–volume histogram [IVH]) and demonstrated their

correlations with OS.

Computed tomography images. Radiomics features in CT images

can predict OS better than PET images. A radiomics model

based on pretreatment CT and recalibrated cone beam CT

images in van Timmeren et al study (concordance index ¼
0.69, P ¼ 4.0 � 10�10) and a combination model of pretreat-

ment features and delta radiomics features in Fave et al’s

study (c-index ¼ 0.675; P ¼ 1.3 � 10�5) are significant pre-

dictors for OS.74,85,89 Overall, in survival studies based on CT

images, those radiomics features quantifying shapes, intensity,

and texture, conventional features (such as Eastern Cooperative

Oncology Group performance status, pleural retraction, and

diameter), and delta-radiomics features are predictive, and

when they are combined with clinical factors, the predictive

capacity can be significantly improved.32,45,74,85

Recurrence Prediction After Treatment

Positron emission tomography images. For recurrence prediction

after treatment based on PET images, SUV metrics and texture

features were both discussed in recent literature. Takeda et al,81

Essler et al78 and Zhang et al53 assessed local recurrence (LR)

in patients with NSCLC after stereotactic body radiotherapy

(SBRT) by PET images and showed SUV metrics as strong LR

predictors, that is, dual-time-point SUVmax or SUVmaxs in the

study by Takeda et al,81 SUVmean >3.44, SUVmax > 5.48, and

their reduction in the study by Essler et al,78 and the cutoff

SUVmax of 5 with 100% sensitivity and 91% specificity in the

study by Zhang et al53 However, SUV metrics are reported less

correlated when compared with other features, such as IVH,

texture features, and so on. Pyka et al69 assessed the relation-

ship of texture features with LR in PET images for patients

with NSCLC after radiotherapy and reported that several tex-

ture features such as entropy (AUC ¼ 0.872) and correlation

(AUC ¼ 0.816) had higher AUC values than SUV metrics in

receiver operating characteristic analysis.

Computed tomography images. Computed tomography–based

radiomics features exhibited lack of prognostic power for

locoregional recurrence (LRR) in many studies,28,32 while 5

pretreatment statistic and texture features in the study by

Huynh et al and end-treatment texture-strength feature in the

study by Fave et al are prognostic for LR, and 3 pretreatment

statistic and texture features in Huynh et al are prognostic for

lobar recurrence.28,32,81,85 Although CT-based radiomic fea-

tures are limited in their ability to predict recurrence compared

to other outcomes, they have the ability to distinguish tumor

recurrences on follow-up CT images earlier than human eyes.

Mattonen et al83 compared the predictive ability between doc-

tors and radiomic features. Although physicians’ average pre-

dictive accuracy rate was 83% for the average prediction period

of 15.5 months, they misdiagnosed at an average error rate of

35%, a false-positive rate (FPR) of 1%, and a false-negative

rate (FNR) of 99% when the follow-up period was shortened to

6 months after radiotherapy. In contrast, the studied five radio-

mics features can accurately determine the recurrence rate with

AUC value of 0.85, classification error rate of 24%, FPR of

24%, FNR of 23% at 6 months.

These recurrence studies show that PET features own higher

predictive abilities and accuracy in tumor recurrence than CT

features.81 Vaidya et al52 also studied the capacity of combined

PET and CT image features, such as SUV or HU, IVH, and

texture features, for LRR prediction in patients with NSCLC

after radiotherapy. It was found that a 2-parameter model of

PET and CT features had higher prediction accuracy for LRR

than PET or CT features alone. Thus, multimodality radiomics

features are superior in predicting tumor recurrence.

Shi et al 9



Distinguishing RILI

Computed tomography images. Radiomic features from CT

images also demonstrated high potentials in distinguishing

tumor RILI from recurrence15 and RILI severity levels.84 Mat-

tonen et al15 showed that compared with RILI, tumor recur-

rence showed higher HU,and higher SD in ground-glass

opacity (GGO) texture measure. When comparing conven-

tional features (RECIST and volume) and quantitative

changes in CT number (HU) with GGO textural feature,

results showed the predictive time points to distinguish RILI

and recurrence in advance is 9 months post-SBRT and 15

months post-SBRT, respectively. Another publication by the

same group82 described that GGO textural analysis has

potential to predict recurrence within 5 months post-SBRT.

Similar texture analysis methods were adopted by Moran

et al,84 where first-order and gray-level co-occurrence matrix

texture features were extracted to distinguish RILI severity

levels: none/mild, moderate, and severe. Gray-level co-

occurrence matrix texture features (P ¼ .012-.262; AUC ¼
0.643-0.750) have been reported to provide a better

performance than first-order features (P ¼ .100-.990; AUC ¼
0.543-0.661). Cunliffe et al90 also combined radiomic features

with radiation dose and demonstrated that radiomics can

provide a quantitative, personalized measurement of radiation

dose tolerance for individual patients, which can be used to

determine the possibility of radiation-induced pneumonitis

and monitor its progression.

Distant Metastases Evaluation

Positron emission tomography images. For DM evaluation in PET

images radiomics studies, the optimal prognostic model includ-

ing two quantitative image features of intratumoral heteroge-

neity and average of the voxel with SUVmax of the tumor region

(SUVpeak; c-index¼ 0.71) were shown to be able to predict and

categorize patients into low- and high-risk groups. Further-

more, when tumors’ histologic types were combined, the prog-

nostic power of the model was significantly improved.57

Interestingly, it was presented that neither PET metrics nor

texture features were related to DM in the study by Pyka et al.69

Computed tomography images. For DM evaluation in CT images

radiomics studies, one pretreatment feature describing the

range of voxel intensities (Wavelet LLH stats range;

c-index ¼ 0.67) and seven pretreatment average intensity

projection CT radiomics features describing shape and hetero-

geneity (c-index ¼ 0.638-0.676) in the study by Huynh et al

perform well.28,32 Also, Coroller et al found strong prognostic

powers in radiomic features, among which Laplacian trans-

form of Gaussian (LoG) filter features showed the best per-

formance (c-index ¼ 0.61, P < .001).75 Besides, combining

pretreatment texture features with clinical prognostic factors

can significantly improve their predictive abilities.74,85

It is worth noting that only three studies57,72,80 provided

feature validation. Therefore, even though results were shown

promising, lack of feature validation may lead to false posi-

tive and might shadow doubts in the subsequent correlation

studies.

Current Research Challenges and Prospects

Published studies show promising results in NSCLC treat-

ments, yet there are still major challenges and limitations to

resolve before they can be translated into reliable clinical appli-

cation. A number of experimental clinical studies have found

that current restrictions of radiomics in its therapeutic applica-

tion are mainly subjected to (1) image standardization,29,91 (2)

image registration,92-94 and (3) data sharing.5 The on-going

research activities focusing on tackling these limitations are

elaborated subsequently.

Standardization of Images

Variations in scanning devices, acquisition modes, reconstruc-

tion parameters, and scanning protocols may impact subse-

quent feature analysis as mentioned in “The Workflow of

radiomics”. A study on feature stability in CT perfusion maps

showed that none of radiomics parameters were stable without

standardization, especially for voxel size, temporal resolution,

HU threshold, image discretization, and so on.91 There are two

ways to solve the problem. One is to develop software to cali-

brate existing image data for retrospective analysis. But the

excepted standardization is still difficult to achieve due to the

vast variations in calibration algorithms.95 The other method is

to design prospective trials where all enrolled patients receive

standardized image scans. In addition, there are national image

centers that are currently being planned or constructed, where

images can be obtained within one entity in order to fundamen-

tally resolve the image nonstandardizing issue.19,95

Image Registration

Image registrations, including both rigid and deformable, are

commonly used in the course of radiotherapy treatment of

NSCLC.92 The concept of delta-radiomics demands high

accuracy in image registration when comparing pretreatment

images with posttreatment images and images during treat-

ment. Image registration can be achieved by manual, auto-

matic, or the combination of both.96,97 At present, the

commonly used automatic registration algorithms include

image intensity-based method, and structure-based

method.94,97 Although the impact of image registration on

texture features and change assessment of serial thoracic CT

scans have been studied,93,98,99 it still remains unclear how

image registration accuracy can affect radiomics results and

which method would work the best for delta-radiomics for

NSCLC. Future study areas can be large-scale prospective

clinical trials with the application of delta-radiomics.
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Data Storage and Data Sharing

Radiomics study relies heavily on the statistical analysis.

Sample size is a critical defect in current research. As shown

in Tables 2 and 3, most studies cover limited number of

patients, with one exception that contains a large patient sam-

ple of 647.45 Small sample size poses an obstacle for obtain-

ing high correlations between radiomics features and

treatment outcomes with high confidence interval. Big data

are the premise of using technology to mine the radiomics

features and ensure statistical significance in data analysis.

The establishment of patient database can strengthen standar-

dized management and improve utilization efficiency. The

high-number and high-quality database is the basis for radio-

mics study, in order to effectively predict outcome. Image

data storage and standardization require joint efforts by com-

panies and/or institutions. Institutions such as Cancer Learn-

ing Intelligence Network for Quality and Flatiron Health are

working on data aggregating.100

Additionally, the robustness and stability of the discovered

features need improvement before they are applied to clinical

treatment assistance in NSCLC, so validation and further clin-

ical practice are essential. Future research can also be prospec-

tively designing clinical trials with the focus on implementing

discovered experimental features with high statistical

significance.

Future Developments in Radiomics
for Managing NSCLC

With artificial intelligence being adopted to medical field and

the optimization of machine learning algorithm, limitations in

image preprocessing, that is, ROI segmentation, feature extrac-

tion, and feature selection/classification, may be greatly

improved or even eliminated in a foreseeable future.

The applications are still not adequate to provide satisfac-

tory optimized summary information to direct clinicians in

medical and radiation oncology on how to further manage their

patients, and more “standardized” data are needed from institu-

tions to create these programs. Standardizing is required not only

for image acquisition but also for all the steps in the radiomics

workflow as mentioned in “The Workflow of radiomics”, as

well as all personnel involved, including those in medical and

radiation oncology professions. There is a cultural change under-

way to capture these big data in pursuit of personalized medicine

for patients with NSCLC, and many efforts are underway by

American Society for Radiation Oncology, the American Asso-

ciation of Physicists in Medicine, and American Society of Clin-

ical Oncology to name a few.91

The Cancer Imaging Archive, a National Cancer Institute–

funded information repository that aggregates images (radiol-

ogy, pathology), radiation therapy information objects,

annotations, clinical trial data, and information derived from

quantitative image analysis to support big data analytics, is an

example of a comprehensive approach to acquiring, archiving,

and extracting data that will be useful for the predictive models

that are needed for radiomics to be fully utilized and a great

value to clinicians and their patients.

Conclusion

Radiomics process to assess tumor response and predict recur-

rence, survival, DM, and RILI in NSCLC mainly includes

imaging acquisition/reconstruction, ROI definition/segmenta-

tion, image feature extraction, and image feature selection and

classification. Features quantifying target shape, size, volume,

intensity, texture, and so on, are able to predict outcome and

assess response. Among them, texture features outperform the

others for predicting tumor response, survival, recurrence, DM,

and RILI in PET/CT images and CT images. Delta-radiomics,

which compares the changes within those features extracted

from pretreatment images and follow-up images during and/

or after the treatment, are able to identify signs of recurrence,

metastases, or death early. Image standardization, image reg-

istration, and data sharing are main challenges and limitations

for the clinical applications of radiomics tools. Additionally,

validation and clinical practice are also essential before radio-

mics applied to clinical treatment guidance for NSCLC.
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