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Lateral diffusive spin transport in layered structures

H. Dery,* Ł. Cywiński, and L. J. Sham
Department of Physics, University of California San Diego, La Jolla, California 92093-0319, USA

�Received 27 October 2005; revised manuscript received 15 December 2005; published 20 January 2006�

A one-dimensional �1D� theory of lateral spin-polarized transport is derived from the two-dimensional flow
in the vertical cross section of a stack of ferromagnetic and paramagnetic layers. This takes into account the
influence of the lead on the lateral current underneath, in contrast to the conventional 1D modeling by the
collinear configuration of lead/channel/lead. Our theory is convenient and appropriate for the current in-plane
configuration of an all-metallic spintronics structure as well as for the planar structure of a semiconductor with
ferromagnetic contacts. For both systems we predict the optimal contact width for maximal magnetoresistance
and propose an electrical measurement of the spin-diffusion length for a wide range of materials.

DOI: 10.1103/PhysRevB.73.041306 PACS number�s�: 72.25.Dc, 72.25.Mk, 85.75.�d

Spintronics promises an increase in the logical express-
ibility of electronic circuits and the integration of nonvolatile
magnetic memory.1,2 A quantitative and yet simple theory of
spin transport is essential for interpreting experimental re-
sults and designing practical lateral devices which are im-
perative in large scale integrations. The most popular analyti-
cal approach to spin transport extends drift-diffusion
equations to include the spin degree of freedom.3–7 One-
dimensional �1D� equations of this kind have successfully
explained the current-perpendicular-to-the-plane giant
magnetoresistance4 and the spin injection from a ferromag-
netic metal into a semiconductor in a vertical
geometry.3,6,8–10 Theories of spin transport for the current
in-plane focus on the boundary scattering to explain the mag-
netoresistive effect in ultrathin layered systems.11,12 How-
ever, many of the experiments involving nonmagnetic
metals13,14 or semiconductors15,16 are performed in the planar
geometry where the thickness of the layers exceeds the mean
free path. For these systems, an application of either existing
1D models is a rough approximation, unable to account for
some observed features whose interpretation required a nu-
merical 3D treatment.17 The role of the contact width in
lengthening the effective path between two leads versus the
spin-diffusion length was mentioned.18 The effect of leakage
from a two-dimensional electron gas into the ferromagnetic
gate of finite lateral size on the spin currents in the channel
has been investigated.19 What remains lacking is a simple
theory in which the spin injection from contacts of finite
width is normal to the spin current in the plane of the con-
duction channel.

In this paper, starting from a study of the two-dimensional
current flow in the vertical cross section of the planar system,
we derive an analytical 1D theory of spin transport in lateral
structures. The analysis takes into account the lateral extent
of the interface between ferromagnetic �FM� and normal �N�
materials. We obtain a transparent physical picture and de-
rive useful analytical formulas. The most important result
obtained is the dependence of the magnetoresistance �MR�
on the contact width. The knowledge of this aspect of lateral
spin-valve physics is essential to the design of structures
with high MR. In addition, our analysis suggests a technique
to obtain the spin diffusion length of a paramagnetic material

by a simple set of electrical measurements. For compounds,
such as silicon, that are inaccessible to optical characteriza-
tion of spin polarization,15,16 development of the electrical
method is of great importance.

Figure 1 depicts a typical planar system, homogeneous in
the z direction. A model of a one-dimensional current flow
from lead B via the normal region to lead C cannot describe
the flow under the leads because of the simultaneous in-plane
flow and the injection or extraction from above. Hence, we
must first consider the two-dimensional transport governed
by the spin-diffusion equation:

�2�s�x,y� =
�s�x,y� − �−s�x,y�

�Ls�2 , �1�

where �s is the spin-dependent electrochemical potential
with s=± denoting the spin species. The characteristic dis-
tance of the spin flip is Ls=�Ds�s,−s, where �s,−s is the spin-
flip time and Ds is the diffusion constant of the spin compo-
nent s. The measurable spin-diffusion length L, on whose
scale the splitting of � changes, is given by L−2=Ls

−2+L−s
−2.

These equations hold for ferromagnetic and normal metals5

and also hold for nondegenerate semiconductors with the
additional condition of a small electric field.6 Since the cur-
rent is driven by the gradient of the electrochemical poten-
tial, the continuity of the normal component of the spin cur-
rent across two adjacent layers i and k provides the boundary
conditions,

FIG. 1. �Color online� A two-dimensional sketch of a planar
system with ferromagnetic and normal materials. A–D represent
boundaries which may be connected to the external circuit. All of
the labeled lengths enter into our 1D transport equations.
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�s
i�n̂i · ��s

i� = Gs
i,k��s

k − �s
i� = − �s

k�n̂k · ��s
k� , �2�

where �s
i and n̂i refer to layer i conductivity and outward

interface normal, respectively, and Gs
i,k is the spin-dependent

barrier conductance. Treating interfacial spin scattering re-
quires additional relaxation terms in Eq. �2� as formally
handled by Fert and Lee.20 However, for a barrier which
satisfies the condition in Eq. �4a�, this procedure20 is equiva-
lent to using Eq. �2� with renormalized barrier conductances

whose spin selectivity G̃+
i,k / G̃−

i,k is closer to unity. We will
show that the optimal contact width is nearly independent on
the latter.

Although Fig. 1 illustrates only two layers �normal and
FM�, the equations derived below hold for multilayers. To
reduce the essential features of the 2D flow to 1D, we define
the vertical �y� average of �s in each layer,

�s
i�x� =

1

hi�
y0

i

y1
i

dy �s
i�x,y� , �3�

with hi being the thickness of the layer between its bound-
aries, �y0

i ,y1
i �. For thin layers, �s

i�x ,y� may be replaced by its
vertical average �s

i�x�. The conditions of validity follow the
requirement that the gradient correction along y to �s in Eq.
�3� be negligible to O�h2�,

�a� h � �s/Gs,

and

�b� h � Ls, �4�

with the help of Eqs. �1� and �2�. Under these conditions we
can derive a set of 1D equations governing the lateral �i.e., in
the layer plane� spin transport. Integrating out the y depen-
dence in Eq. �1� and using Eq. �2� yields

��s
i�x�

�x2 =
�s

i�x� − �−s
i �x�

�Ls
i�2 +

Gs
i,i+1

�s
ihi ��s

i�x� − �s
i+1�x��

+
Gs

i,i−1

�s
ihi ��s

i�x� − �s
i−1�x�� . �5�

This kinetic theory assumes that the relevant length scales
exceed the electron mean free path. Thus, the present analy-
sis cannot address the quantum realm of the MR effect in
ultrathin layered systems.11

We now divide the lateral transport into regions of vertical
stacks. Consider a region with a vertical stack of NL layers.
For example, in the region of width wL covered by the left
lead in Fig. 1, NL=2, excluding the insulator. Transport in the
layers of the stack is governed by 2NL coupled members of
Eq. �5� which in the matrix form are simply

��2/�x2�� = M · � , �6�

with the column vector � of elements �s
i and the positive

definite matrix M of elements from Eq. �5�. The solution has
the form

��x� = 1�a + bx� + �
j=1

NL−1

vj�pje
�jx + qje

−�jx� , �7�

where 1, a column of ones, is an eigenvector of M with zero
eigenvalue and vj is an eigenvector with eigenvalue � j

2. In-
terfacial spin scattering changes the values of vj and � j

2 but
not the general form of the solution as the boundary condi-
tions are linear20 in the electrochemical potentials. The con-
nection of the vertical stacks to the outside of the system and
to each other is maintained by the boundary conditions. Be-
tween stacks they are given by the continuity of �s�x� and
their first derivatives �currents� through each homogeneous
layer. At the outermost boundaries �such as A and D in Fig.
1� the conditions are prescribed by the external driving terms
of the electrochemical potential in the form of either a con-
stant voltage maintained at an electrode or an injection cur-
rent �including zero� through an interface. Applying currents
and/or voltages to B and C interfaces result in the presence
of inhomogenous terms in Eq. �6�. These boundary condi-
tions provide a unique set of solutions for the parameters
a ,b , pj ,qj in Eq. �7�. This method of a solution is a consid-
erable simplification compared to solving the 2D spin-
diffusion equation for the same planar structure, and yet it
includes the influence of the vertical layers on the lateral spin
current flow. In the following, we will show the versatility of
this simplified approach as well as testing its validity against
the 2D solution.

The first illustrative example involves a semiconductor as
the normal layer of the structure in Fig. 1. A and D are
disconnected from the outside while B and C are voltage
biased. The spin-diffusion length in the normal layer is LN.
We divide the normal channel into sections belonging to five
vertical stacks as shown in Fig. 1. In the middle section of
the channel, the solution is,5,6

�±�x� = �e/�N�Jx + � ± �pce
x/LN + qce

−x/LN� , �8�

where J, �, pc, and qc are constants to be determined by the
boundary conditions. The total current flowing between the
two leads is I=JhN per unit length of the structure in the z
direction. For the two sections outside the footprint defined
by the two leads, we introduce the notion of the “open”
versus “confined” geometry depending on whether dL ,dR	
or �LN. In both geometries the pattern of the net charge
current occurs only between the leads B and C. This means
that the outside sections lack the linear term of Eq. �8�. Ad-
ditionally the open geometry includes only an exponentially
decaying solution away from the closer lead, and in contrast
with the confined geometry, spin polarization extends notice-
ably outside of the footprint between B and C, thus reducing
the spin accumulation densities. In each of the vertical stacks
containing a lead, due to vastly different conductivities of the
semiconductor and ferromagnetic metal we can decouple the
equations for �s in the N semiconductor and in the FM metal
and solve for the eigenvalues of M in the former

��s,c�
2 = �
 + 1 ± �1 + �2�/�2LN

2 � ,

�
,�� = 2LN
2 �G+ ± G−�/��NhN� , �9�

where the first of each pair of symbols �s ,c� or �
 ,�� takes
the upper sign. The electrochemical potential in the FM is
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practically a constant ��FM =−eV�, and in the semiconductor
layer under the biased lead is

�±�x� = − eV + �1 ± ���pe�sx + qe−�sx�

+ �� � 1��re�cx + se−�cx� , �10�

where p, q, r, and s are constants to be determined by bound-
ary conditions and �=cot� 1

2 tan−1 ��. Consider the case that
spin polarization is robust so that 
 and � are comparable. If

�1, then �c�1/LN and �s�1/LN. The s mode is limited
by the spin-diffusion constant, and it corresponds to spin
accumulation ��	1 in this case�. If 
	1, then both eigen-
values are nearly independent of LN, and neither of the eigen-
vectors is a pure spin mode ��	1�: the inhomogeneity of
injection dominates the spatial dependence.

To illustrate the effect of the contact width on MR, we use
the experimentally verified barrier parameters of a Fe/GaAs
system at 300 K.21,22 The tunneling conductances are of the
order of 102–103 
−1 cm−2 with the ratio of spin-up to spin-
down conductance G+ /G−	2. The N channel doping is n0
=4�1015 cm−3 and the spin relaxation time is �s=80 ps
�Ref. 23�, which corresponds to LN	1 �m. The thickness of
the N channel is hN=100 nm, and the inner channel length is
dm=200 nm.

The MR effect is defined as �IP− IAP� / IP with IP�IAP� be-
ing the total current when the FM contacts are magnetized in
parallel �antiparallel� directions. The calculated MR is shown
in Fig. 2�a� as a function of the contact width, where for
simplicity we have used w=wL=wR. In the confined geom-
etry, dL=dR=0, the effective 1D method �solid line� is com-
pared with the results of 2D numerical calculation �dots�,
showing excellent agreement. We note the deleterious effect
of the open geometry �dashed line� compared with the con-
fined geometry �solid line� because of the weaker spin accu-
mulation in the semiconductor channel which produces the
MR effect.24

Note the existence of the optimal contact width for the
maximum MR effect that arises out of the balance between
spin injection and spin relaxation in the channel. The spin
accumulation in the normal conduction channel is built up
from injection along the width of the ferromagnetic contact.
When the width is too small the resulting injection levels are
not sufficient to evidently split the spin-dependent electro-
chemical potentials. Consequently the MR effect is small. On
the other hand, when the contact width w exceeds the spin
diffusion length LN spin polarization diffuses in both direc-
tions beneath the wide contact and spin information from the
far side is already “lost” when reaching the near side. In this
case the build-up from vertical injection along the width of
the contact beyond LN becomes ineffective, the spin injection
and the MR effect approach asymptotic values. The differ-
ence between the open and confined structures is removed, as
can be seen from the merging of the solid and dashed lines in
Fig. 2�a�. The magnitude of MR at the optimal contact width
depends also on the spin selectivity of the barriers, � in Eq.
�9�, as illustrated in Fig. 2�b�. Figure 2�c� shows a much
weaker dependence on the spin selectivity of the optimal
contact width in units of the spin-diffusion length �wopt /LN�.
The ratio depends only on 
 as defined in Eq. �9�. For 

	1, wopt /LN	2/
. For 
�1, the optimal contact width
wopt /LN is approximately 6

5 or 3
8 for the open or confined

geometry, respectively. These results enable the extraction of
the spin-diffusion length of a test material by measuring the
MR of several structures with different contact widths from
the same growth.

To demonstrate the use of our method for the all-metallic
system, we turn to a second example. In the planar structure
of Fig. 1, a constant current is injected from region A into a
10 nm thick paramagnetic metal layer. The structural param-
eters in terms of the spin-diffusion length of the N layer are
0.2dL=0.2dR=2dM =LN. The FM layers B and C are of the
same thickness and serve as floating contacts. We use the
Al/Co system parameters at 300 K where the ratio of spin-up
to spin-down conductance is G+ /G−=2 �Ref. 25� and their
sum is 1.5�109 
−1 cm−2. The normal layer intrinsic param-
eters are �N=3�105 
−1 cm−1 , LN=0.35 �m. In the Co lay-
ers the majority channel conductivity and spin-diffusion
lengths are, respectively, 0.1�N and 12 nm. The respective
values of the Co minority channel are 0.04�N and 20 nm. For
the ease of toggling between P and AP configurations we use
a width ratio of 2 between left and right Co regions. For the
FM/N regions the solutions are given by Eq. �7�. In the
middle N channel the solution of �s�x� is given by Eq. �8�
while at the outer channels the form of �s�x� lacks the diverg-
ing exponential.

For each magnetic configuration �P or AP� we calculate
the voltage drop VBC with the electrochemical potentials av-
eraged along each Co layer. The MR is defined as 
1
−VBC

P /VBC
AP
. Figure 3�a� shows the MR effect. It peaks at the

right contact width of wR�0.5LN. The optimal contact width
depends mostly on 
, insensitive to varying the spin selec-
tivity, the middle N channel length, or the outer N channel
lengths �not shown�. Figures 3�b� and 3�c� show, respec-
tively, the current densities in the normal layer for parallel
and antiparallel magnetic configuration at the optimal contact

FIG. 2. �a� Magnetoresistance effect versus the contact width of
a GaAs channel at 300 K. The solid �dashed� line denotes a con-
fined �open� structure. The dots are the results of a 2D numerical
computation in the confined geometry. �b� Magnetoresistive effect
versus 
 for three cases of spin selectivity, � /
 in the confined
geometry, calculated for the optimal contact width corresponding to
the same 
 value shown in �c�.
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width. The solid �dashed� lines depict spin-up and spin-down
current components along the x direction. Despite the small
MR effect, its observation is well within existing experimen-
tal abilities. Thus a similar analysis to the previous FM/

semiconductor example leads to an electrical method to mea-
sure the spin-diffusion length of the normal material.
However, the extraction of LN requires that it greatly exceeds
the FM spin diffusion length.

In summary, we have presented an effective 1D theory
which describes the spin-dependent transport beneath and
between ferromagnetic contacts in the lateral geometry.
Within realistic constraints on the ratio between the layer
conductivity and the contact conductance, the derived set of
coupled linear equations governing the lateral diffusive spin
currents is almost as accurate as the 2D spin diffusion equa-
tion but much simpler to use. This method retains the impor-
tant role of the contact width, predicting an optimal contact
width for the maximal magnetoresistive effect in the lateral
spin valve. We have also quantified the effect of open chan-
nels, where spins can diffuse away from the active region
underneath the FM contacts, in contrast with the confined
structures, where the spin accumulation is kept between the
two contacts. Our results provide crucial guidelines for de-
sign of lateral spin-valve type devices. They also yield a
method of extracting the spin-diffusion length in an all-
electrical measurement. At room temperature where the spin-
diffusion length lies in the submicron region, this method
does not have the difficulty of wavelength resolution in the
optical techniques.

This work is supported by NSF Grant No. DMR-0325599.
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