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Bimodal activation of BubR1 by Bub3 sustains mitotic
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aLudwig Institute for Cancer Research and Departments of bCellular and Molecular Medicine and cMedicine, University of California, San Diego, La Jolla,
CA 92093

Contributed by Don W. Cleveland, August 25, 2014 (sent for review May 6, 2014)

The mitotic checkpoint (also known as the spindle assembly
checkpoint) prevents premature anaphase onset through gen-
eration of an inhibitor of the E3 ubiquitin ligase APC/C, whose
ubiquitination of cyclin B and securin targets them for degrada-
tion. Combining in vitro reconstitution and cell-based assays, we
now identify dual mechanisms through which Bub3 promotes mi-
totic checkpoint signaling. Bub3 enhances signaling at unattached
kinetochores not only by facilitating binding of BubR1 but also by
enhancing Cdc20 recruitment to kinetochores mediated by BubR1’s
internal Cdc20 binding site. Downstream of kinetochore-produced
complexes, Bub3 promotes binding of BubR1’s conserved, amino ter-
minal Cdc20 binding domain to a site in Cdc20 that becomes exposed
by initial Mad2 binding. This latter Bub3-stimulated event generates
the final mitotic checkpoint complex of Bub3–BubR1–Cdc20 that se-
lectively inhibits ubiquitination of securin and cyclin B by APC/CCdc20.
Thus, Bub3 promotes two distinct BubR1-Cdc20 interactions, involving
eachof the twoCdc20 binding sites of BubR1andacting at unattached
kinetochores or cytoplasmically, respectively, to facilitate production
of the mitotic checkpoint inhibitor.

Upon entry into mitosis, each duplicated chromosome aligns
at metaphase through capture of spindle microtubules by

the kinetochore assembled onto its centromere. Premature chro-
mosome segregation often leads to abnormal chromosome num-
ber, or aneuploidy, a hallmark of cancer. The mitotic checkpoint
(also known as the spindle assembly checkpoint) is the major cell-
cycle control mechanism in mitosis. It functions to ensure accurate
chromosome segregation through production of an inhibitory sig-
nal generated by unattached kinetochores (1), thereby delaying
anaphase onset until all of the chromosomes attach to spindle
microtubules (2–4). This signaling pathway is initiated by a com-
plex of Mad1 (mitotic arrest deficient 1) and Mad2 (mitotic arrest
deficient 2) immobilized at unattached kinetochores (5). This
complex then recruits a secondMad2molecule (5–7) and catalyzes
(8–10) its conformational change from open or N1 (inactive) to
closed or N2 (active) (11, 12) state. Closed Mad2 can bind Cdc20
(cell division cycle 20), the mitotic activator of the E3 ubiquitin
ligase APC/C (anaphase promoting complex or cyclosome) that is
responsible for advance to anaphase by its ubiquitination and
subsequent proteasome-dependent degradation of cyclin B and
securin. Diffusible Mad2–Cdc20 produced by unattached kinet-
ochores recruits a complex of Bub3 (budding uninhibited by
benzimidazole 3) and BubR1 (Bub1 related protein 1). It does this
either by exposing a previously inaccessible site inCdc20 for binding
to BubR1’s N-terminal Cdc20 binding domain (13) and/or by a di-
rect interaction between Cdc20-bound Mad2 and BubR1 (14).
A four-protein complex of Mad2, BubR1, Bub3, and Cdc20,

named the mitotic checkpoint complex (or MCC), has long been
implicated in the inhibition of APC/CCdc20 ubiquitination of
securin and cyclin B1 (14, 15). However, the identity of the ul-
timate mitotic checkpoint inhibitor remains controversial, with
some investigators arguing that Mad2 plays the predominant role
(16) and others arguing that the inhibitory activity of APC/CCdc20

is provided by BubR1 (13, 17), or both BubR1 and Mad2 (14,
15). We recently demonstrated that the N-terminal Mad3 ho-
mology domain of BubR1 (including one of its two Cdc20 binding

sites) (18), along with its associated Bub3, but not Mad2, accounts
for the inhibition of APC/CCdc20 both in vitro using purified com-
ponents and in vivo after induced degradation of either BubR1 or
Mad2 (13). These latter in vivo efforts were interpreted to dem-
onstrate that Mad2 can dissociate from an initial complex with
Cdc20 (or APC/CCdc20) in an activated conformation capable of
catalyzing additional Bub3–BubR1–Cdc20 complexes. Thus, we
proposed that BubR1–Bub3–Cdc20 is the mitotic checkpoint in-
hibitor that blocks APC/C-dependent ubiquitination of cyclin B
and securin, through dual catalytic steps, an initial one at kinet-
ochores and another acting within the cytoplasm mediated by
kinetochore-derived, activated Mad2 (13).
Bub3 was identified as a mitotic checkpoint protein through

genetic screening in budding yeast (19), and subsequent work in
higher eukaryotes also demonstrated a profound defect in this
checkpoint in the absence of Bub3 (20–23). Recently, Bub3 has
been shown to bind the phospho MELT motif on KNL-1 for
kinetochore localization of Bub1 (budding uninhibited by
benzimidazole 1), disruption of which caused a defective
checkpoint (24–27) with Bub1 binding to kinetochores appar-
ently required for binding of other checkpoint proteins (28–32).
A role for Bub3 in mitotic checkpoint silencing has also been
proposed in fission yeast (33). Bub3 binds to the Gle2-binding-
sequence (GLEBS) motif of Bub1 and Mad3 (the yeast homolog
of BubR1) in a mutually exclusive manner, with binding mediated
through the top face of its β-propeller (34). Another GLEBS
motif-containing protein, BugZ, was also shown to interact with
Bub3, stimulating its mitotic function by promoting its stability
and kinetochore loading (35–37). Bub3 not only mediates BubR1
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localization to the kinetochore (38) but is also incorporated into
the MCC with Cdc20, BubR1, and Mad2 (15). Failure of Bub3
binding to BubR1 has been shown to weaken the mitotic check-
point (39–41). However, it has remained unclear how Bub3
stimulates mitotic checkpoint signaling through binding to BubR1.
Using cell-based assays and our established in vitro reconstituted

APC/C activity assay (8, 13), we now have investigated the mech-
anism by which Bub3 contributes to the mitotic checkpoint. We
find that Bub3 promotes two distinct BubR1–Cdc20 interactions,
involving each of the two Cdc20 binding sites of BubR1 and acting
at unattached kinetochores or cytoplasmically, respectively, to fa-
cilitate production of the mitotic checkpoint inhibitor.

Results
Bub3 Directly Stimulates Production of the APC/CCdc20 Inhibitor of
Cyclin B1 Ubiquitination. To determine the specific contribution
of Bub3 binding to BubR1 in the mitotic checkpoint, endogenous
BubR1 was depleted in cells using an siRNA and replaced by
expression of inducible, siRNA-resistant, Myc and GFP amino-
terminally tagged BubR1 variants (Fig. S1C and Fig. 1 A and B).
To disrupt binding to Bub3, we converted the conserved gluta-
mate at residue 409 of the GLEBS motif of BubR1 (34) to lysine.
Depletion of Bub3 produced a severe defect in nocodazole-induced,
chronic mitotic checkpoint signaling (Fig. S1 A and B), as expected
from prior work (23). The BubR1E409K variant with a defect in Bub3
binding gave rise to extensive chromosome misalignment yet
failed to delay anaphase onset in an unperturbed mitosis (Fig. S1
D and E). Additionally, BubR1E409K allowed much faster mitotic
exit than wild-type BubR1 in cells with unattached kinetochores
produced either by nocodazole-induced microtubule disassembly
(Fig. 1 C and D) or inhibition of the kinetochore-bound, kinesin
family member CENP-E (Fig. S1 F–H). Taken together, these
results indicate that the Bub3–BubR1 interaction is required for
sustained mitotic checkpoint signaling.
Bub3 has been copurified with BubR1 and Mad2 in Cdc20

complex(es) from cells with an activemitotic checkpoint (15, 17, 42),
suggesting a contribution by Bub3 to the inhibition of Cdc20. To
determine the direct contribution of Bub3 to the inhibition of APC/
CCdc20 in vitro, Bub3 and various combinations of full-length BubR1
(hereafter referred to as BubR1FL) and Mad2 (Fig. 1E) were coin-
cubated at concentrations approximating physiological (150, 150,
and 300 nM, respectively) (8, 42). Mad2 and/or BubR1 were then
added to bead-bound APC/CCdc20 (at 2:1 or 1:1 stoichiometries,
respectively, relative to Cdc20). APC/C and any associated proteins
were recovered, and ubiquitination activity toward cyclin B
substrate was assayed after addition of E1, the E2 UbcH10, and
ubiquitin (see schematic in Fig. 1F). Incubation of Mad2 and
BubR1FL at levels approximating their known physiological con-
centrations partially suppressed APC/CCdc20-mediated cyclin B
ubiquitination, as determined by quantifying unubiquitinated cyclin
B (Fig. 1G, lane 6,H, and I). AlthoughBub3 alone or in combination
with Mad2 produced no APC/CCdc20 inhibition, when added with
BubR1FL and Mad2, it stimulated them to produce complete
loss of cyclin B ubiquitination (Fig. 1 G, lane 7, H, and I). Thus,
Bub3 directly promotes the production of an APC/CCdc20 inhibitor,
independent of any function for it at kinetochores.

Bub3 Binding Enhances Inhibition of APC/CCdc20 Mediated by the Mad3
Homology Region of BubR1. BubR1 contains two Cdc20 binding
sites, a conserved site in the N-terminal Mad3–homology domain
and an internal site that is present only in higher eukaryotes. The
two Cdc20 binding sites of BubR1 have been shown to be able,
respectively, to mediate inhibition of Cdc20 activation of APC/C in
Mad2-dependent (13, 41) and Mad2-independent manners (42).
We tested the contributions of the individual Cdc20 binding sites of
BubR1 in Bub3-stimulated inhibition of APC/CCdc20 ubiquitination
of cyclin B in vitro. Bub3 enhanced inhibition of APC/CCdc20

mediated by BubR11–477 (hereafter referred as BubR1N), which con-
tains BubR1’s N-terminal Cdc20 binding site (Fig. 2A). In contrast,
Bub3 did not affect Mad2-independent inhibition by BubR1 of free
Cdc20 activation of APC/C (inhibitionmediated by a BubR1 variant
[BubR1357-1050] containing only its internal Cdc20 binding site—
hereafter referred to as BubR1C) (Fig. S2). This stimulated in-
hibition required a direct interaction between BubR1N with Bub3,
as Bub3 failed to activate Bub3 binding-defective BubR1N-E409K

(Fig. 2D–F). The E409K mutation itself did not affect function of
BubR1, as there was no difference between wild-type BubR1N

and BubR1N-E409K in their ability to inhibit APC/CCdc20 in the ab-
sence of Bub3 (Fig. S3). Consistently, a Bub3 variant (Bub3R183E)
that contains a mutation of arginine 183 (corresponding to arginine
197 in yeast, a residue required for its interaction with Bub1 or
Mad3) (34) bound less to BubR1N and also produced a corre-
spondingly reduced ability to stimulate BubR1N inhibition of APC/
CCdc20 (Fig. S4). Collectively, these data indicate that Bub3 binding
to BubR1 specifically promotes the Mad3–homology domain
(BubR1N)-mediated production of an APC/CCdc20 inhibitor.

Bub3 Promotes Assembly of the BubR1–Cdc20 Mitotic Checkpoint
Inhibitor. Our previous study found that BubR1 binding to
Cdc20 (through the N-terminal Cdc20 binding domain), but not
Mad2, is critical for inhibition of APC/CCdc20 recognition of cyclin B
(13). Because Bub3 stimulated the inhibition of APC/CCdc20 by
BubR1N (Fig. 2), we therefore tested in vitro if Bub3 promoted
BubR1N association with Cdc20. Bead-bound APC/CCdc20 was
purified after incubating with various combinations of BubR1N,
Mad2, and Bub3, and APC/C-associated proteins were then ana-
lyzed (Fig. 3A; see schematic at top). BubR1N, with or without
Bub3, failed to produce a significant amount of BubR1N–Cdc20
complex in the absence of Mad2 (Fig. 3A, lanes 3–5), indicating
a Mad2 dependency for establishing an initial BubR1N–Cdc20
interaction. This Mad2-dependent BubR1N–Cdc20 interaction
was enhanced by twofold by coincubation with Bub3 (Fig. 3 A,
lanes 6–8, and B), quantitatively accounting for the twofold
stimulation of APC/CCdc20 inhibition by Bub3 (Fig. 2C). We
further confirmed that Bub3-stimulated inhibition required its
binding to BubR1N, as Bub3 was unable to promote APC/CCdc20

association with a shorter BubR1N variant lacking the Bub3 bind-
ing domain (BubR11–363) (Fig. 3C). Consistent with in vitro
results, immunopurified BubR1E409K (Bub3 binding-defective)
from mitotically arrested cells was less associated with Cdc20
and APC/C than wild-type BubR1 (Fig. 3 D and E).

Bub3-Mediated Kinetochore Recruitment of BubR1 Enhances Mitotic
Checkpoint Signaling. Unattached kinetochores stably bind a
complex of Mad1 and Mad2 (5), which catalytically acts (8, 10) to
convert additional Mad2 molecules to an active form that binds
Cdc20, thereby initiating mitotic checkpoint signaling. The other
components of the MCC—BubR1, Bub3 (38), and Cdc20 (43)—
are also recruited to unattached kinetochores (reviewed in ref.
44). Because BubR1 relies on Bub3 for its binding to kinetochore
(38), we tested whether such Bub3-dependent targeting of BubR1
to kinetochores also promotes mitotic checkpoint signaling beyond
kinetochore binding-independent Bub3 stimulation of BubR1–
Cdc20 complex formation (Fig. 3). To produce kinetochore lo-
calization of the cytosolic BubR1E409K, GFP-tagged Mis12 or
Bub3, respectively, was fused in frame to the N or C terminus of the
protein (Fig. 4A). After siRNA-mediated reduction in endogenous
BubR1, these Bub3 andMis12 fusion proteins accumulated to levels
similar to that of the corresponding GFP-tagged BubR1 variants
(Fig. 4B). As expected, BubR1E409K was not kinetochore-associated
unless fused to Bub3 or Mis12 (Fig. 4C).
Compared with BubR1E409K alone, BubR1 significantly extended

nocodazole-inducedmitotic arrest in cells when kinetochore targeted
through Bub3 but not Mis12 (Fig. 4 D and E). BubR1 localization
to the kinetochore per se was necessary for Bub3 enhancement of
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mitotic checkpoint signaling, as the Bub3-dependent extended mi-
totic arrest largely disappeared (Fig. 4F) whenBubR1E409Kwas fused
to a Bub3 variant (Bub3R183E) defective in kinetochore localization
(Fig. 4G).Although the Bub3 fusion enables kinetochore binding of
BubR1E409K through Bub3 binding to Bub1 at the kinetochore,

the E409K mutation in BubR1’s GLEBS motif disrupts the au-
thentic BubR1–Bub3 interaction between the fused Bub3 and
BubR1E409K. As a consequence, it is unlikely that Bub3 fusion to
the C terminus of BubR1E409K directly facilitates BubR1 binding
to APC/CCdc20.
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Despite kinetochore binding-derived stimulation of sustained
checkpoint signaling, cells expressing Bub3-tagged BubR1E409K

exited mitosis in nocodazole significantly faster than cells express-
ing wild-type BubR1 (Fig. 4E, compare blue and purple lines).
Thus, we reasoned that the kinetochore binding-independent Bub3
stimulation of the BubR1–Cdc20 interaction documented earlier
(Fig. 3) was necessary for sustained mitotic checkpoint signaling. In
support of this, wild-type BubR1 fused to Bub3 or Mis12 instead of
BubR1E409K mediated an even further extension of mitotic arrest
regardless of the way it was bound to kinetochores (Fig. S5).
Next, we asked whether kinetochore localization of the

N-terminal Cdc20 binding site of BubR1 was sufficient for its kinet-
ochore localization-dependent enhancement of mitotic checkpoint
signaling. A GFP-tagged N-terminal BubR1 variant (BubR11–363
that lacks the Bub3 binding site) was directly fused to Bub3 orMis12
(Fig. 5A). After suppressing endogenous BubR1 with siRNA, each
Bub3 or Mis12 fusion protein accumulated to a level similar to un-
tagged BubR11–363 (Fig. 5B). Bub3- and Mis12-tagged BubR11–363
variants bound to kinetochores, whereas BubR11–363 did not (Fig.
5C). Both full-length BubR1 and the Bub3–BubR11–363 fusion
bound dynamically, with similar turnover kinetics measured
by fluorescence recovery after photo bleaching (FRAP) during
nocodazole-induced mitotic arrest (Fig. 5 D, E, andG). In contrast,
FRAPmeasurementswithMis12-taggedBubR11–363 revealed it to be
bound stably to kinetochores, with little exchange with time (Fig. 5 F
andG). However, unlike full-length cytosolic BubR1 (BubR1E409K)
(Fig. 4E), neither enabling dynamic nor stable association of
BubR11–363 with kinetochores extended the time of nocodazole-
inducedmitotic arrest (Fig. 5H and I). This indicates a requirement
for additional domains of BubR1 for kinetochore binding-
dependent enhancement of sustained mitotic checkpoint signaling.

The Internal Cdc20 Binding Site of BubR1 Accelerates Cdc20 Recruitment
to Kinetochores. Full-length BubR1 has been shown (13) to sustain
more robust mitotic checkpoint signaling than the kinetochore
localization-competent variant BubR1N, which contains the Bub3
and N-terminal Cdc20 binding sites but is missing the internal
Cdc20 binding site and the kinase domain. Although the role of the
BubR1 kinase domain remains controversial [with evidence that
kinase activity is stimulated by binding to CENP-E (45) and con-
flicting with evidence that it is an inactive pseudokinase (46)],
BubR1 has been recently proposed to be required for Cdc20 re-
cruitment to the Drosophila melanogaster kinetochore (47, 48).
These findings led us to test whether BubR1 localization to the
kinetochore enhances recruitment of Cdc20 to kinetochores in
human cells. Using siRNA we replaced endogenous BubR1 with
an siRNA-resistant MycGFP–BubR1 variant and measured Cdc20
intensity at the kinetochore during mitotic arrest produced by ad-
dition of monastrol, an inhibitor for the mitotic kinesin Eg5. Cdc20
intensity at the kinetochore was reduced at least 75% upon de-
pletion of endogenous BubR1 (Fig. 6 A and B). Expression of re-
combinant wild-type BubR1 or the kinetochore binding-competent
BubR1 variant (BubR1E409K–Bub3) fully restored the Cdc20 level
at kinetochores, whereas expression of the kinetochore binding-
deficient BubR1 variant (BubR1E409K) did not.
Next, we assessed the contribution to kinetochore binding of

Cdc20 and to sustained mitotic checkpoint arrest provided by
each of the two Cdc20 binding sites of BubR1. Expression of
a BubR1 variant lacking the N-terminal Cdc20 binding site
[BubR1Δ(1–356)] fully restored Cdc20 levels at kinetochores in
BubR1-depleted cells. On the other hand, expression of a BubR1
variant lacking the internal Cdc20 binding site [BubR1Δ(525–700)]
did not (Fig. 6 C and D). Importantly, wild-type BubR1 mediated
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longer mitotic arrest of nocodazole-treated cells than did
BubR1Δ(525–700) (Fig. 6E), suggesting a role of BubR1–Bub3-
mediated kinetochore binding of Cdc20 in sustaining mitotic
checkpoint signaling. Kinetochore levels of Mad1 and Mad2
were indistinguishable in cells supported by the various BubR1
variant regardless of the levels of kinetochore binding of BubR1
or Cdc20 (Fig. S6). This outcome was inconsistent with the
possibility that a less efficient Mad1–Mad2-mediated initiation
of checkpoint signaling was the result of reduction in Mad1–
Mad2 at unattached kinetochores.

Discussion
A prevailing hypothesis for Bub3’s function in generation of the
mitotic checkpoint inhibitor is that it simply delivers BubR1 to
the kinetochore and thus elevates the local concentration of
BubR1 to facilitate rapid initial production of an anaphase in-
hibitor (e.g., refs. 2, 40, 49). Here we have established that Bub3’s
role is much more than this. Our evidence identifies a dual mode
of stimulation by Bub3 of BubR1’s mitotic checkpoint function to
produce the mitotic checkpoint inhibitor (modeled in Fig. 6F).
First, Bub3’s binding to BubR1 directly stimulates assembly of the
BubR1–Cdc20 mitotic checkpoint inhibitor through facilitating
association of the conserved Mad3–homology domain of BubR1

with Cdc20 independently of kinetochore localization. Second,
we have further demonstrated that Bub3 binding also mediates
Cdc20 localization to the kinetochore via BubR1’s internal Cdc20
binding site as a means to reinforce the kinetochore-dependent
first step in mitotic checkpoint inhibitor generation.
Recently, we demonstrated that BubR1, but not Mad2, bind-

ing (through the N-terminal Cdc20 binding site) is critical for
inhibiting APC/CCdc20 recognition of cyclin B (13). Our evidence
in the current study has established that Bub3 promotes this
BubR1–Cdc20 interaction, thereby uncovering a previously un-
known role for Bub3 in production of the mitotic checkpoint
inhibitor through action at the most downstream step of the
signaling pathway. Two previous studies proposed that the first
KEN box in the N-terminal Cdc20 binding site of BubR1 is re-
sponsible for BubR1 binding to Cdc20 (14, 41). Based on this, it is
plausible that Bub3 binding may alter the conformation of the
initially rod-shaped BubR1 N terminus (34, 50) in a way to either
promote the initial assembly or stabilization of a BubR1–Cdc20
complex for generating the characteristic, selective inhibition
of APC/CCdc20.
In addition to its stimulatory function in cytosolic assembly of

the mitotic checkpoint inhibitor (Figs. 1 and 2), our evidence es-
tablishes that Bub3 also mediates BubR1-dependent kinetochore
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recruitment of Cdc20 as a means to further strengthen initiation
of mitotic checkpoint inhibitor production (Fig. 6F). How BubR1
and Cdc20 recruitment to kinetochores serves to power check-
point signaling is not settled, with two (not mutually exclusive)
mechanisms likely. First, recruitment at kinetochores of Cdc20 by
BubR1’s internal Cdc20 binding site may facilitate initial forma-
tion of Mad2–Cdc20 complexes whose assembly is enhanced by
the elevated local concentration at those kinetochores of Cdc20.
Alternatively, the internal Cdc20 binding site may serve as a
docking site of preassembled Mad2–Cdc20 for its handover to the
N-terminal Cdc20 binding site of BubR1 for the assembly of the
BubR1–Cdc20 mitotic checkpoint inhibitor. Evaluating between
these hypotheses will now require testing (i) whether the two
Cdc20 binding sites of BubR1 associate with Cdc20 in-
dependently of each other, including whether a transient complex
forms in which both Cdc20 binding sites are associated with one
molecule of Cdc20 as an intermediate form, and (ii) whether the
internal Cdc20 binding site of BubR1 binds to Mad2–Cdc20.
Our study has further revealed that BubR1’s diffusion into the

cytosol, as well as its kinetochore localization, is crucial for mi-
totic checkpoint signaling, as indicated by the fact that tethering
cytosolic BubR1 (BubR1E409K) stably to the kinetochore (via
Mis12) was even more detrimental to mitotic checkpoint sig-
naling than was keeping BubR1 only in the cytosol (Fig. 4E). By
contrast, enabling dynamic attachment of an otherwise cytosolic

BubR1 variant to the kinetochore (by fusing it to Bub3) signifi-
cantly strengthened sustained mitotic checkpoint signaling (Fig.
4E). This evidence adds further support for our model for
production of a diffusible mitotic checkpoint inhibitor in which
the majority of Mad2-associated Cdc20 complexes diffuse through-
out themitotic cytoplasm, followed by capture by cytosolic BubR1 to
produce the bona fide inhibitor of APC/CCdc20 recognition of cyclin
B and securin (13).
Finally, we note that BubR1 at the unattached kinetochores

has been reported to recruit PP2A-B56α, which in turn affects
kinetochore–microtubule attachment (51–53) through a region
similar to the one required for its recruitment of Cdc20 for mi-
totic checkpoint signaling. This raises an interesting, now test-
able, possibility that there is crosstalk between these two distinct
protein–protein interactions at kinetochores, one to initiate mi-
totic checkpoint signaling and the other to coordinate microtubule–
kinetochore attachment to silence that signaling.

Materials and Methods
Constructs. Full-length and fragments of the human BubR1 ORF were cloned
into either a pcDNA5/FRT (FLP recombination target)/TO (tetracycline resistance
operon)-based vector (Invitrogen) modified to contain an amino-terminal Myc–
LAP epitope tag for mammalian cell expression or a pFastBac1-based vector
(Invitrogen) modified to contain an amino-terminal GST–human rhinovirus
(HRV) 3C site for insect cell expression. The LAP tag consists of GFP–HRV 3C
(LEVLFQGP)–6xHis. All other DNA constructs were previously described (8, 42).
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Antibodies. The antibodies used in this study are as follows: BubR1 (SBR1.1,
a gift from S. Taylor (University of Manchester, Manchester, England);
A300-386, Bethyl Laboratories), Bub3 (SB3.2, a gift from S. Taylor), Mad2
(A300-300A, Bethyl Laboratories), Cdc20 [A301-180A, Bethyl Laboratories;
SC-13162, Santa Cruz Biotechnology (for immunofluorescence)], Mad1
(BB3-8, a gift from A. Musacchio, Max Planck Institute, Dortmund, Ger-
many), ACA (Antibodies Inc.), Myc (16-213, Millipore), Cdc27 (54), α-Tubulin
(DM1α, Sigma-Aldrich), GST (SC-33613, Santa Cruz Biotechnology), and His
(A00186, GenScript).

Generation of Stable Cell Lines and RNAi. Parental Flp–In TRex–HeLa or –DLD-1
parental cells that stably express mRFP-tagged histone H2B (H2B–mRFP)
were as previously described (55, 56). Stable, isogenic cell lines expressing
MycGFP–BubR1 were generated using FRT/Flp-mediated recombination (57).
Expression of MycGFP–BubR1 was induced with 1 μg/mL tetracycline. siRNAs
directed against the 3′ untranslated region of BubR1 (5′-CUGUAUGUGCU-
GUAAUUUA-3′) or Bub3 (58) were purchased from Thermo Fisher Scientific
(Dharmacon). Cells were transfected with 50 nM of oligonucleotides using
Lipofectamine RNAiMAX (Invitrogen). We added tetracycline 24 h after
transfection to express MycGFP–BubR1 for 24 h before collecting cells for
immunoblotting or analyzing by time-lapse microscopy.

Live-Cell Microscopy. Todeterminemitotic timing, cellswere seededonto μ-Slide
(ibidi) and 48 h posttransfection transferred to supplemented CO2-independent
media (Invitrogen). Cells were maintained at 37 °C in an environmental control
station and images collected using a Deltavision RT system (Applied Precision)
with a 40 × 1.35 NA oil lens at 3–5-min time intervals. For each time point, 6 ×
3 μM or 6 × 4 μM z sections were acquired for RFP and maximum intensity

projection created using softWoRx. Movies were assembled and analyzed using
QuickTime (Apple) or FIJI (Image J, National Institutes of Health) software.

FRAP. The FRAP experiment was performed on HeLa Cells seeded 24 h before
the experiment in 35-mm glass-bottom culture dishes (Mat Tek Corporation).
Growth medium was changed to CO2-independent medium before imaging.
Images were collected, at 37 °C, with an Olympus 100X/1.35, UPlan Apo
objective using a DeltaVision Core system (Applied Precision) equipped with
a Coolsnap camera (Roper). Photobleaching was performed using a Quanti-
fiable Laser Module (Applied Precision) with the 488-nm laser line. Images
were taken on a single plan, on the GFP channel, every second before the
laser event. A 1-s laser event was performed, and images were acquired with
increasing time interval following photo bleaching starting with 500-ms
intervals. Fluorescent intensity was measured, using FIJI (ImageJ, National
Institutes of Health), in a circle surrounding the GFP kinetochore signal, and
a background was measured from an equivalent area adjacent to the ki-
netochore signal. Background subtraction and normalization of the mea-
sured signal was done using Excel software (Microsoft). The fitting of the
data was done using Prism software (GraphPad), using a least square poly-
nomial equation, and the recovery half-time was measured from the curve.

Indirect Immunofluorescence. Cells were fixed in 4% (vol/vol) formaldehyde at
room temperature for 10 min with or without preextraction by 0.1% Triton
X-100 for 60 s. Incubationswith primary antibodieswere conducted in blocking
buffer for 1 h at room temperature. Immunofluorescence images were col-
lected using a Deltavision Core system (Applied Precision). For quantification of
kinetochore signal intensity, undeconvolved 2Dmaximum intensity projections
were saved as unscaled 16-bit tagged image file format (TIFF) images and signal
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intensities determined using MetaMorph (Molecular Devices). A 12 × 12 pixel
circle was drawn around a centromere [marked by anti-centromere antibodies
(ACA) staining] and an identical circle drawn adjacent to the structure (back-
ground). The integrated signal intensity of each individual centromere was
calculated by subtracting the fluorescence intensity of the background from
the intensity of the adjacent centromere. About 20 centromereswereaveraged
to provide the average fluorescence intensity for each individual cell.

Protein Purification. GST or His-tagged human BubR1, Bub3, and Cdc20 were
expressed in Sf9/High-Five insect cells using the Bac-to-Bac expression system

(Invitrogen) and affinity purified over nickel–nitrilotriacetic acid beads
(Qiagen) or Glutathione Sepharose beads (GE Healthcare Life Sciences).
His–Mad2 and other GST-tagged proteins were expressed from Rosetta
Escherichia coli after induction with isopropyl beta-D-1-thiogalactopyranoside,
and purified. APC/C was immunoprecipitated from interphase Xenopus egg
extracts as previously described (8).

APC/C Ubiquitination Activity Assay. The APC/C ubiquitination activity assay
was performed as previously described (59) and activity assessed by
ubiquitination-derived depletion of the cyclin B1–102 substrate. Quantitative
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expression of BubR1FL or BubR1 deleted in its internal Cdc20 binding site. Time-lapse microscopy was used to determine nocodazole-induced duration of
mitotic arrest after replacing endogenous BubR1 with a MycGFP–BubR1 in DLD-1 cells. (F) A model for dual modes of BubR1 activation by Bub3 for generating
the mitotic checkpoint inhibitor. Mitotic checkpoint signaling is promoted (a) at kinetochores by Bub3-dependent recruitment to those kinetochores of BubR1
and Cdc20 (through binding of the internal Cdc20 binding site of BubR1 to Cdc20) and (b) in the cytosol by Bub3 stimulation of Mad2-dependent BubR1–
Cdc20 formation (through binding of the conserved N-terminal Cdc20 binding site of BubR1).
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analysis of cyclin B1–102 depletion was performed as previously described
(13). Briefly, the level of cyclin B1–102 was determined against a series of
dilution of the proteins.

APC/C Binding Assay. APC/C was immunoprecipitated from Xenopus inter-
phase egg extracts for 2 h at 4 °C using a peptide-derived anti-Cdc27 antibody
crosslinked to Affiprep Protein A (Bio-Rad) beads. The APC/C beads were
washed with Tris-buffered saline (TBS) buffer supplemented with 0.4 M KCl
and 0.1% Triton X-100 and incubated with Cdc20 and checkpoint proteins
sequentially or simultaneously for the indicated time at room temperature.
Unbound proteins were removed bywashing the beads twice with 20 volumes

of TBS buffer. The APC/C complex was eluted from the beads by Cdc27 peptide
competition (2 mg/mL) as described and analyzed by immunoblotting.
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