
UC Irvine
ICS Technical Reports

Title
Automatic view schema generation in object-oriented databases

Permalink
https://escholarship.org/uc/item/9xj8434c

Authors
Rundensteiner, Elke A.
Bic, Lubomir

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9xj8434c
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Automatic View Schema Generation in
Object-Oriented Databases

Elke A. Rundensteiner and Lubomir Bic ,-

Department of Information and Computer Science
University of California, Irvine

January, 1992

Technical Report 92-15

i

I ' : i I

Automatic View Schema Generation in Object-Oriented
Databases

ELKE A. RUNDENSTEINER and LUBOMIR BIC

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
e-mail: rundenst@ics.uci.edu

telephone: (714) 856-4101
fax: (714) 856-4056

January, 1992

Abstract

An object-oriented data schema is a complex structure of classes interrelated via generalization
and property decomposition relationships. vVe define an object-oriented view to be a virtual schema
graph with possibly restructured generalization and decomposition hierarchies - rather than just one
individual virtual class as proposed in the literature. In this paper, we propose a methodology, called
J\!fulti View, for supporting multiple such view schemata. Multi View is anchored on the following
complementary ideas: (a) the view definer derives virtual classes and then integrates them into one
consistent global schema graph and (b) the view definer specifies arbitrarily complex view schemata
on this augmented global schema. The focus of this paper is, however, on the second, less explored,
issue. This part of the view definition is performed using the following two steps: (1) view class
selection and (2) view schema graph generation. For the first, we have developed a view definition
language that can be used by the view definer to specify the selection of the desired view classes
from the global schema. For the second, we have developed two algorithms that automatically
augment the set of selected view classes to generate a complete, minimal and consistent view class
generalization hierarchy. The first algorithm has linear complexity but it assumes that the global
schema graph is a tree. The second algorithm overcomes this restricting assumption and thus allows
for multiple inheritance, but it does so at the cost of a higher complexity.

Index Terms: Automatic generation of view schemata, validity criteria for the view generalization
hierarchy, object-oriented views, view definition language, schema design.

CO~VTE.\'TS

Contents

1 INTRODUCTION

2 BASIC CONCEPTS

2.1 The Object Data ~Iodel

2. 2)!Iultiple View Schemata Concepts

2.3 The Validity of the View Generalization Hierarchy

3 THE j'vfultiView METHODOLOGY

3 .1 The Basic Philosophy

3.2 The Derivation of Virtual Classes

3.3 The Integration of Virtual Classes into the Global Schema .

4 VIEW SCHEMA DEFINITION

4.1 Using A View Definition Language

4.2 View Schema Creation and Deletion Commands

4.3 View Schema Manipulation Commands

4.4 Examples of View Schema Definition ..

1

3

3

6

7

10

10

11

13

15

15

17

18

20

5 AUTOMATIC GENERATION OF A VALID VIEW SCHEMA HIERARCHY 21

5.1 Problem Definition . 21

5.2 View Schema Generation For Global Schemata without Multiple Inheritance 22

5.3 View Schema Generation For Global Schemata with Multiple Inheritance 28

6 RELATED WORK 40

7 CONCLUSIONS 42

References 43

LIST OF FJG[.RES

List of Figures

l Examples of Base, (;lobal and View Schemata.

II

2 View Schema Validity Example: :Vfinimality, Completeness and Consistency Criteria. 9

3 The Afulti View Approach: From Base over Global to View Schematas. 11

4 1~sing the Select Operator to Create the Virtual Class Women. 13

5 Integrating the Virtual Class Women Into the Global Schema. 14

6 From Base over One Integrated Global Schema To Multiple View Schemata. 16

7 The BNF Syntax Of the View Definition Language. . 17

8 The Virtual Schema Creation Algorithm Al. 23

9 Example Snapshots For Tracing of the Al Algorithm. 24

10 Redundant and Required Edges. 27

11 An Example of Creating Redundant View ls-A Arcs. 29

12 Algorithm A2 for Removal of Redundant Arcs. . . . 30

13 An Example of Removing Redundant Edges Using Algorithm A2. 31

14 View Schema Creation Algorithm A3. 34

15 View Schema Creation Algorithm A4. 36

16 Example of the Algorithm A4 for Creating A Valid Schema. 37

LVT R<J or ·r·rros

1 INTRODUCTION

.\fany databases developed for advanced application domains, su~h as, Computer-Aided De~ign

and Manufacturing, are now being build using object-oriented database (OODB) models. These

applications require customized interfaces to the global information suitable for different types of

user groups and tasks. \Ve therefore need to develop a technology for OODBs - similar to the

view mechanism in relational databases - that would support the construction of various (possibly

conflicting) interfaces to the schema by hiding irrelevant portions of the data, or by augmenting it,

or by restructuring it.

While the concept of views has been studied extensively in the context of the relational model,

it is largely unexplored for the newly emerging more powerful OODBs. Some initial proposals of

views on OODBs have emerged that define a view to be a virtual class derived by an object-oriented

query [5, 14, 7]. Note however that an object-oriented data schema is a complex structure of classes

interrelated via various relationships, such as, the orthogonal generalization and decomposition

hierarchies [7, 8], whereas a relational schema is simply a set of 'unrelated' relations [3]. An object

based view thus should be defined to be a virtual, possibly restructured, subschema graph of the

global schema [17] rather than just one individual virtual class - disjoint from all other classes of

the schema. We call this concept of an object-oriented view a view schema. The construction of

these view schemata raises a number of challenging research issues in terms of how to restructure

view schema graphs and how to relate ~ ',13m with the global schema structure.

Note that we cannot simply modify the global object schema so that it suits the requirements

of one particular user. Instead, we need to support a number of different, potentially conflicting,

view schemata of the same data model, each of which supporting a particular user's point of

view. Consequently, we are concerned here with the virtual restructuring for each given view while

maintaining all other view schemata; rather than with permanently changing the global database

as is done in schema evolution [2].

These complete (possibly conflicting) view schemata have to be integrated with one another and

with the underlying global schema into one consistent whole. This integration has to maintain the

difference in the generalization and decomposition hierarchies of the view schemata. The proposed

Multi View methodology solves this problem by breaking it into two independent steps: (1) the

derivation of virtual classes via a query and their integration into one consistent global schema

graph and (2) the definition of view schemata composed of both base and virtual classes on top

of this augmented global schema. An additional requirement is that the originally specified object

schema (with stored rather than derived classes) remains intact so that it can be used by other users,

I.YTROD r·c·rros

if so desired. The J[ulti Vieu: methodology accomplishes this by treating the original base schema as

a opecial non-modifiable view schema. Some of the functionalities that .VlultiView supports are the

following: (1) virtual modification of the type structure and of the object membership of existing

classes, (2) sharing of property functions and object instances among stored and derived classes

without unnecessary duplication, (3) virtual restructuring of the generalization and the property

decomposition hierarchy, (4) sharing of classes, property functions, and objects among different

view schemata, (5) construction of an arbitrarily complex view schema as required by a particular

user task, and (6) integration of each view schema with all other schemata into one 'consistent

whole'.

The generalization hierarchy of a view schema, i.e., the is-a relationships among the classes of

a view schema, has to be consistent with the semantics of the respective classes, i.e., with their

subset and subtype relationships. Inserting arbitrary is-a relationships between view classes in a

view schema may result in an inconsistent schema. For instance, the view definer may assert an

is-a arc between two classes in the view schema that are not is-a related in the global schema.

Then the view schema would imply an incorrect property inheritance and subset relationships

among these two classes (and possibly also their subclasses). We define a validity criterion for

view schemata in terms of the completeness, minimality and consistency properties of the view

schema class hierarchy. This new concept allows for the identification of inconsistencies between

the generalization hierarchies of the global and the view schemata.

Rather than requiring manual entry of view is-a arcs by the view definer and then checking the

entered information for validity, we develop the automatic generation of the view schema hierarchy

as a more desirable option. Automatic view generation will not only prevent the introduction of

errors into the view schema, but also simplify the task of the view definer. MultiView therefore

supports automatic view generation. In particular, we present two algorithms that automatically

augment the set of selected view classes to generate a valid view schema hierarchy. The first

algorithm has linear complexity but it assumes that the global schema graph is a tree. The second

algorithm overcomes this restricting assumption and thus allows for multiple inheritance, but it

does so at the cost of a higher complexity. We show the correctness of both algorithms.

In summary, this paper makes the following contributions. First, we extend the concept of

an object-oriented view from an individual virtual class to a complete view schema. This requires

the introduction of new concepts, such as, the validity of a view schema, which represents a step

towards the development of an object-oriented database theory. Second, we present a general

methodology for supporting multiple (possible contradicting) view schemata in OODBs, called

MultiView. MultiView supports all of the above mentioned functionalities. Third, we present

2 BA.SIC CONCEPTS 3

solutions to some of the subtasks related to the proposed view paradigm. In particular, we have

developed a language for view schema definition and two efficient algorithms for the automatic

generation of the view schema hierarchy.

The paper is organized as follows. In Section 2, we introduce object-oriented concepts required

for supporting multiple view schemata. In Section 3, we outline the Multi View paradigm and sketch

solutions for accomplishing the first phase of the approach. The view definition language and the

algorithms for genera.ting the view class hierarchy are given in Sections 4 and .5, respectively. We

compare Multi View to related work in Section 6 and conclude with Section 7.

2 BASIC CONCEPTS

2.1 The Object Data Model

Below, we introduce the basic concepts of OODB models needed for the remainder of the paper. Let

0 be an infinite set of object instances. Each element o E 0 is an instance of an abstract data type

(ADT), i.e., it can be manipulated only by means of the interface of the respective ADT. Let P be

an infinite set of property functions. Each property function p E P can be a value from a predefined

enumeration type, an object instance from some class, or an arbitrarily complex function. Each

property function p E P has a name and signature (i.e., domain types). Let C be the set of all

classes. A class Ci E C has a unique class name, a type description and a set membership. The

type associated with a class corresponds to a common interface for all instances of the class, that

is, the collection of applicable property functions. We refer to the name of the type associated with

a class C by type(C) and to the set of property functions defined for C by properties(C). If p E

Pis a property function defined for C, i.e., p E properties(C), then we refer to the domain of the

property function p by domainp(C). A class is also a container for a set of objects. The collection

of objects that belong to a class C is denoted by extent(C) := {o I o EC} with the member-of

predicate "E" defined based on the object identities of the object instances [12). We can now define

the following relationships between classes.

Definition 1. For two classes Cl and C2 E C, Cl is called a subset of C2, denoted by Cl ~ C2,

if and only if (Vo E OJ ((oEC'l) ==> (oEC2)).

2 B.-'tSIC <'OYC'EPTS

Definition 2. For ltco classt.' CJ and C:2 <::: C. CJ Is calhd r1 subtype of C:2, denoted by Cl ::S CJ.

zj and only zj (properties(CJ) d properties(C'2)) and(<:/ p E properties(C'2)) (domainp(C'2)

2 domainn(Cl)).

The first condition of Definition 2 states that a subtype must have the same attribute as

its supertype and possibly additional ones. The second condition states that the domains of the

attributes of a subtype must be contained within the domains of the attributPs of the supertype,

but that they could possibly be restricted.

Definition 3. For two classes Cl and C2 E C, Cl is called a subclass of C2, denoted by Cl is-a

C2, if and only if (Cl ::; C2) and (Cl ~ C2).

Informally, we say that Cl is is-a related to C2 (denoted by Cl is-a C2) if (1) every member

of Cl is a member of C2 (the subset relationship) and (2) every property defined for C2 is also

defined for Cl (the subtype relationship).

The three types of class relationships are reflexive, antisymmetric and transitive. These three

properties mean for instance the following for the is-a relationship. By reflexivity, the is-a rela

tionship (C; is-a C;) holds for all C;. By antisymmetry, the is-a relationships (Ci is-a Cj) and (Cj

is-a C) imply (Ci=Cj). By transitivity, the is-a relationships (C; is-a Cj) and (Cj is-a Ck) imply

(Ci is-a Ck).

Given a collection of classes for a particular database application, we want to organize them in a

fashion such that these class relationships are explicitly represented rather than having to recompute

them continuously. The subset class relationship can be used to determine the containment of the

object instances associated with one class within the content of another class. This may for instance

be useful for query processing where we need to build the union of two classes. If it is known that

one of the two classes is a subset of the other, then the union result corresponds simply to the

larger of the two classes. No actual query processing is required. The maintenance of the subtype

relationship on the other hand is useful for the reuse of property function code; this feature is

commonly known as property inheritance.

Let S = {Cdi = 1, .. ., n} be a set of classes. We call C1 a direct subclass of Cn and Cn a direct

superclass of C1 if (C1 =/= Cn) and there are no other classes CkJ E S (with j=l, .. ., m) for which

the following is-a relationships hold: (C1 is-a Ck1) and (Ck1 is-a Ck2) and ... and (Ckm is-a Cn)·

C1 is called an (indirect) subclass of Cn and Cn an (indirect) superclass of C1 if there are one or

) fl-\:·1IC COS('EPTS -
,)

more classes Ck
1

i:: SI with j= 1.2, ... , m) for which the above is-a relationships hold. This indirect

subclass relationship between C 1 and Cn is denoted by (C'i is-a* C'n) for (j2:0) and by (C'1 is-a+

C'n) f 01 (j 2: l). A graph· theoretic represent at ion of a set of classes S that explicitly represents all

direct subclass relationships among the classes in terms of edges is defined below.

Definition 4. A (generalization hierarchy) schema is a directed acyclic graph1 S=(V, E),

u·here V is a finite set of vertices and E is a finite set of directed edges. Each element in V

corresponds to a class C, while E corresponds to a binary relation on V x V that represents all

direct is-a relationships between all pairs of classes in V. In particular, each directed edge e from

C1 to C2, denoted by e = <C1 , C2>, represents the direct is-a relationship between the two classes

(C1 is-a C2).

Since the is-a relationship is reflexive, antisymmetric and transitive, the generallzation hier

archy graph (or schema graph) is a directed acyclic graph without any loops. Furthermore, since

we only store the direct subclass relationships, there will be no self-loops in a schema graph. An

edge e= <Ci, Cj > is called a self-loop if its source node Ci and its sink node Cj are identical, i.e.,

i=j. The schema graph also has no multi-edges, since each direct subclass relationship is stored

but once. Two or more edges are called multi-edges if they have the same source and the same sink

node, respectively. For instance, the edges el=<Ci, Cj> and e2=<Ck,C1> with (i=k) and (j=l)

are multi-edges.

Once these class relationships are compiled and maintained in this graph format, we can read

them directly from the structure of the graph without having to repeatedly compute the subclass

relationships. For instance, C1 is a direct subclass of Cn if the edge e = <C1, Cn > exists in E. C1 is

an indirect subclass of Cn, denoted by (C1 is-a* Cn), if there is a path through the class hierarchy

of length one or longer connecting C1 and Cn. More formally, if there are one or more classes Ck;

E V (with j=l,2, .. ., m) with the edges ei = <C1, Ck1 >, ez = <Ck1 , Ck2 >, ... , em+1 = <Ckm, Cn>

in E. Finally, a path of length two or larger represents the subclass relationship (C1 is-a+ C2).

A schema has one designated root node, the class called Object, which is the superclass for all

classes in the schema. This Object class contains all object instances of the database and its type

description is empty. All edges in a schema are directed from the designated root node Object to

the leaf nodes of the graph. This assures that the schema graph is one DAG rather than consisting

of multiple possibly disconnected subgraphs.

1 A schema without multiple inheritance corresponds to a tree rather than a DAG.

» B.L"'f<' CO.\(EPTS 6

2.2 Multiple View Schemata Concepts

We distinguish between base and virtual classes. Base classes are defined during the initial

schema definition. Object instances that are members of base classes are explicitly stored as base

objects. Virtual classes are defined during the lifetime of the database using some object-oriented

queries, i.e., their definitions are dynamically added to the existing schema. A virtual class has an

associated membership derivation function that will determine its exact membership based on the

state of the database. The extent of a virtual class is generally not explicitly stored, but rather

computed upon demand.

Definitio_n 5. The base schema (BS) is a (generalization hierarchy) schema S=(V,E), where all

nodes in V correspond to base classes with stored rather than derived object instances.

Definition 6. Let BS be a base schema. The global schema (GS) is an extension of the base

schema that is augmented by the collection of all virtual classes defined during the lifetime of the

database as well as is-a relationships among this extended set of classes.

A subgraph of the global schema which contains only virtual classes and their is-a relationships is

commonly called a virtual schema [17].

Definition 7. Given a global schema GS=(V,E), then a view schema (VS), or short, a view, is

defined to be a schema VS= (VV, VE) with the following properties:

1. VS has a unique view identifier denoted by < VS >,

2. VV ~ V, and

3. VE ~ transitive-closure(E).

The first condition states that each view schema is uniquely identifiable. The second property

states that all classes of VS also have to be classes in GS, i.e., they have been properly integrated

with the global information. The third property states that the view schema maintains only is-a

relationships among its view classes that are directly derivable from GS. In other words, an edge

< Ci, Cj > can only exist in VE if either < Ci, Cj > exists directly in E or if it is indirectly

derivable via the transitivity of the is-a relationship, i.e., only if (C isa * Cj) in GS. A view schema

·> Ii' \.'-;f(' r O.\"CEPTS -
I

is a 'ipecial case of a schema. Therefore all properties of a general schema defined in Section 2. l.

must also hold. \Ve call the classes in a view schema (both the base and the virtual ones) v1F1c

classes and the is-a relationships among these view classes l.'ie w is-a relationships.

(a) Base schema BS. (b) Global schema GS.

?
~

(c) View schema VS1. (d) View schema VS2.

Figure 1: Examples of Base, Global and View Schemata.

Example 1. Figure 1 shows the relationship between (a) the base schema BS, (b) the global schema

GS, and (c) and (d) two different view schemata VS1 and VS2. We depict base and virtual classes

by circles and dotted circles, respectively. The global schema GS in Figure 1. b is derived from the

base schema BS in Figure 1.a by deriving the virtual classes VC4 and VC5 and by interconnecting

them with the remaining classes in GS to create a valid schema. The view schemata in Figure 1. c

and 1. d are derived from GS by selecting a subset of its classes and interconnected them into a valid

schema using view is-a arcs.

Note that the base schema is a special case of a view schema that consists exclusively of all

base classes and no virtual classes. We will maintain the base schema as a view schema, i.e., there

will be a view object table (or base table) that lists all base classes and their is-a relationships

(See [12]). This is important so that users of the data model can see the original data model of the

application domain without having to consider derived information. This base table is a special

view table in as much as it is predefined and not modifiable.

2.3 The Validity of the View Generalization Hierarchy

Next, we introduce criteria that indicate whether the class generalization hierarchy of a view schema

is consistent with the one of the underlying global schema.

·) BASIC COSCEPTS

Definition 8. GiL'en a t·ieu· schema VS=(VV, VE) rlefined on the glob,,; schEma GS={i',E). For

all clas.,es Ci ,C2 in VV, un is-a arc from source C 1 to sink C2 is required in VS, if (Ci is-a* C 2)

in GS and there is no Cr in VV such that (C1 is-a* Cr) in GS and (Cx 1s-a* C 2) in GS. The vieu;

VS is complete, if the set VE of all its view is-a relationships contain,, all required arcs in VS.

This defines the completeness criterion of is-a arcs as follows: if two classes C'i and C2 in VS

are is-a related in GS then they also have to be is-a related in VS. If there is no indirect path of

length greater than one between C1 and C2 in VS (such that, C1 is-a+ C2 in VS), then the edge

(C1 is-a C2) is required in VS.

Definition 9. Given a view schema VS=(VV, VE) defined on the global schema GS=(V,E). For

all classes C1 1C2 in VV, an is-a arc from source C1 to sink C2 is redundant in VS, if there is a

class Cx in VV such that (C1 is-a* Cx) in GS and (Cx is-a* C2) in GS. The view VS is minimal,

if none of the view is-a arcs in the set VE is redundant in VS.

This defines the minimality criterion of is-a arcs as follows: if there is an indirect is-a path

(i.e., a path of length greater or equal to two) between two classes then then~ should not also be a

direct is-a arc between them. Stated differently, an is-a arc from source C 1 to sink C2 is redundant

in VS if there also is an is-a arc path of length greater or equal to two from C1 to C2 in VS (i.e.,

C1 is-a+ C2).

Definition 10. Given a view schema VS=(VV, VE) defined on the global schema GS=(V,E). For

all classes C1,C2 in VV, an is-a arc from source C1 to sink C2 in VS is incompatible if the edge

<C1 ,C2> is in VE and not(C1 is-a* C2) in GS. The view VS is consistent, if none of its view

is-a arcs in the set VE is incompatible.

This defines the consistency criterion of is-a arcs as follows: an is-a arc from source C1 to sink

C2 can exist in VS if and only if the two classes are is-a related in GS. In other words, it indicates

the following equivalence relationship for all classes C1 ,C2 in VV: (C1 is-a* C2) in VS ~ (C1

is-a* C2) in GS. Note that this consistency criterion is a direct consequence of the basic definition

of a view schema (Definition 7). The third requirement 'VE ~ transitive-closure(E)' implies the

consistency of the view schema, i.e., it implies that all is-a relationships in VS must be directly

derivable from the is-a relationships in GS.

2 BASIC CUSCEPTS ')

Definition 11. A rlew schrnw VS=t\T. \'Ej for a git·rn global schema GS=(V.E) ls is-a valid

(or valid) if the set of all L'ieu· is-a rtlatlon.<hips VE a111ong its view classes vi· is complete and

minimal and consistent.

This definition states that a valid view schema VS=(VV, VE) contains all required is-a re

lationships and no redundant or incompatible is-a relationships. We demonstrate the concepts

introduced in this section with the example given in Figure 2.

(b) View schema VS1 (c) View schema VS2
(a) Global schema GS. is not minimal. is not complete.

(d) View schema VS3
is not compatible.

Figure 2: View Schema Validity Example: Minimality, Completeness and Consistency Criteria.

Example 2. Figures 2.b, 2.c, and 2.d depict three different view schemata defined on the global

schema GS depicted in Figure 2. a. The view VSl in Figure 2. b is not a valid view schema, since

it violates the minimality criterion. The edge e4 ,1 = < C4,C1 > is redundant in the view schema

VSl, since by transitivity, the relationships (C4 is-a C2) and (C2 is-a C1) also imply the relationship

(C4 is-a* Ci). The edge e4,1 = < C4,C1 > can therefore be removed from VSJ without losing the

information that (C4 is-a C1). The second view schema VS2 in Figure 2.c is also not is-a valid.

VS2 violates the completeness criterion, since the required edge e4,s = < C4, Cs > is missing. Edge

e4 ,5 has to be added to the schema to indicate the information that (C4 is-a Cs). The third view

schema VS3 in Figure 2.d is not is-a valid, since it violates the consistency criterion. The edge e3,5

= < C3 , C5 > is incompatible in VS, since the relationship (C3 is-a* Cs) does not hold in GS.

Other requirements for the validity of a view schema, e.g., type closure, are not directly relevant

to our work and therefore are omitted in this paper [12, 5, 17].

.J IH £ Jfl LTIVIEW .\IETHODOLOC 1. l U

3 THE AfultiView METHODOLOGY

3.1 The Basic Philosophy

In this section, we outline our approach for supporting multiple view schemata in OODBs, called

the ;\JultiView paradigm. Multi View is anchored on the following complementary ideas: (1) the

derivation of virtual derived classes and their integration into one consistent global schema graph

and (2) the definition of view schemata composed of both base and virtual classes in terms of the

augmented global schema. The first phase supports the virtual customization of existing classes by

deriving new virtual classes with a possibly modified type description and membership extent. For

this we assume that virtual classes are derived from the global schema using some object-oriented

queries (e.g., see [7, 5, 14]). This fulfills the first requirement for a view support system listed in

Section 1. The integration of the virtual classes into the underlying global schema takes care of the

second requirement, namely, the maintenance of explicit relationships between stored and derived

classes in terms of type inheritance and subset relationships. This is useful for sharing property

functions and object instances consistently among classes without unnecessary duplication. It also

is a necessary basis for the second phase of 1\folti View, namely, for the formation of arbitrarily

complex view schema graphs. If the virtual classes are not integrated with the classes in the global

schema, then a view schema would correspond to a collection of possibly 'unrelated' classes rather

than a generalization schema graph as defined in Definition 7.

The second phase of Multi View utilizes this augmented global schema graph for selection of

both base and virtual classes and for arranging these view classes in a consistent class hierarchy,

called a view schema. This phase handles all remaining requirements for a view support system

listed in Section 1. It supports for instance the virtual restructuring of the is-a hierarchy by

allowing to hide from and to expose classes within a view schema. For the explicit selection of

view classes from the global schema, we hwe developed a view schema definition language that

can be used by the view definer to specify the classes required for a particular view schema (see

Section 4). Note that the is-a relationships among the set of selected view classes of a view schema

are dictated by their subset and subtype relationships as defined in Section 2. Inserting arbitrary

is-a relationships between classes in a view schema may result in an incorrect schema in terms

of property inheritance and subset relationships. Therefore, rather than requiring the manual

insertion of view is-a arcs by the view definer, we have developed algorithms that automatically

augment the set of selected view classes to generate a valid view schema class hierarchy. The first

algorithm has linear complexity but it assumes that the global schema graph is a tree. The second

algorithm overcomes this restricting assumption and thus allows for multiple inheritance, but it

does so at the cost of a higher complexity. These algorithms are presented in Section 5.

3 THE MULTIVIEW METHODOLOGY 11

To make the presented ideas more concrete we now present an example of the steps involved

in constructing a view schema in Mvlti View.

'•
<:::::·· .. , .,,..Lvc4·::

. · ··
··. .····· ··· ... \i,.vc5·:

·

(a) Common Global (b) Class Derivation (c) Class Integration (d) View Class Extraction (e) View Schema
Schema GS. for Type Customization. into underlying GS. for Hiding Information. Generation.

Figure 3: The kfultiView Approach: From Base over Global to View Schematas.

Example 3. This example of the view schema construction process is based on Figure 3. In this

figure we depict base and virtual classes by circles and dotted circles, respectively. Given the global

schema GS in Figure 3. a, the view definer first speczfies one or more virtual classes 1tsing some

object-oriented query} e.g.} the two classes VC4 and VC5 shown in Figure 3.b. Class VC'4, for

instance, is derived based on the two source classes Ci and C3 as depicted by the dotted arrows

pointing from Figure 3. a to Figure 3. b. The integration of the virtual classes VC4 and VC5 into

GS is given in Figure 3.c. View schema definition now proceeds by selecting a subset of classes

from the augmented schema GS. As depicted in Figure 3. d, the selected view classes can be both

base and virtual classes. Lastly} the chosen view classes are interconnected into one schema graph.

The resulting virtital schema graph} called a view schema, is given in Figure 3. e.

Below we outline the basic ideas underlying the first part of the MultiView paradigm. The

goal here is not to present a complete treatment of this subject (which is beyond the scope of this

paper), but rather to explain the basic concepts. A detailed treatment of these issues can be found

in [12].

3.2 The Derivation of Virtual Classes

JV!ultiViewuses class derivation mechanisms for a number of different purposes, such as, to customize

type descriptions, to limit the access to property functions, to collect object instances into groups

meaningful for the task at hand, and so on. For this we assume an object-oriented query language

that can be used by the view definer to derive arbitrarily complex virtual classes. This part of the

.$ THE .WCLT!\1El\' .\fETHODOLOGY l:Z

_\fultiView paradigm is in sync with the work presented in the literature [7, 5, le±]. Examples of

typical operators proposed in the literal ure are selection, projection. set operations, etc. The

result of such a class derivation is a virtual class VC that has a deri\'ed type description and a

derived membership extent (See Section 2 for definitions of these concepts). The Select operator,

for instance, similar to the selection operator defined for relational algebra [3], has the following

syntax:

<virtual-class> :=select from (<source-class>) where (<predicate>),

with <predicate> being some possibly complex function on the source class and its type de

scription. Its semantics are to return a subset of object instances of the source class based on the

evaluation of the associated predicate. More formally stated,

extent(<virtual-class>) := { o E 0 Io E <source-class>/\ <predicate>(o) =true}.

The extent of the virtual class derived by selection is a subset of the extent of the source class;

this subset relationship is denoted by <virtual-class> ~ <source-class> (Definition 1). The type

description of the derived selection class is equal to the type of the source class, i.e.,

type(<virtual-class>) :=type(<source-class>).

By default, this implies the subtype relationship <virtual-class> ~ <source-class> (Definition

2). From these two class relationships we can deduce the is-a relationship <virtual-class> is-a

<source-class> (Definition 3). Next we present an example of applying the Select operator for

class derivation.

Example 4. In Figure 4, the virtual class Women is derived by the query 'Women := select

from (People) where (Sex= "female 11
)". Women contains a subset of the object instances that

are members of the source class People, i.e., Women~ People. Furthermore, Women inherits

the type description from its source class People, while constraining the domain of one of its

property Junctions, namely, the Sex property. Hence the subtype relationship Women ~ People

holds. From these two class relationships we can conclude that (Women is-a People).

While selection is an example of a set-manipulating operator, there are also operators that

work on the type description of a class. The hide operator, for instance, modifies the type descrip

tion of a class by hiding (projecting) some of its property functions; it is similar to the project

operator in the classical relational algebra. Refine is another type-manipulating operator that

:J flfE ./fLTl\1£11 '.fETHODOLOG'i.

Strings

Predicates:
(true)

l:l

............ ., .
•• • Women "•.,

Predicates:
(Sex=Female)

..

Figure 4: Using the Select Operator to Create the Virtual Class Women.

•
I

• • ••

adds additional property functions to a type. It is similar in flavor to calculating a derived. value

for each tuple of a relation ;rnd then adding (joining) this derived value to the relation as an ad

ditional column. Other examples are set operators, such as, union, difference and intersect,

which modify both the type description and the set membership of their source classes. A detailed

analysis of these set operators for OODBs can be found in [11].

3.3 The Integration of Virtual Classes into the Global Schema

For reasons explained in the beginning of this section, the MultiView paradigm will integrate the

virtual classes into the global schema. Algorithms for special classification subproblems have been

proposed in the literature. For instance, Schmolze and Lipkis [13] describe a classifier for 'concepts'

in the KL-ONE Knowledge Representation System. Scholl et al. [14] sketch the class integration

process for a selected subset of the operators of the query language COOL. In [11], we describe

the integration of virtual classes derived using set operations into the underlying schema graph. In

this paper we sketch an overall approach for the class integration problem. A detailed treatment

of this problem is, however, beyond the scope of this paper and can be found in [12].

Class integration is concerned with finding the most appropriate location in the schema graph

for a given virtual class. We exploit the subtype, subset and is-a relationships between the virtual

:J THE .\JCLT!UEW .\IETHODOLOC,"r" 11

clas~ and the classes in the global schema to solve this classification prob!•'lll. The classifier deter

mines the is-a relationships between the \·irtual class VC and all other classes in the global schema

by comp<iring both their type descriptions and their membership predicates. This comparison then

deduces the correct location of VC by placing VC between its most direct sub- and superclasses.

The basic idea for finding the correct position for the class VC in the schema G=(V,E) can be

summarized as follows. First, we find all classes in G that subsume VC, i.e., they are the direct

superclasses of vc defined by parents(VC) := {Ci I eve is-a Ci)/\ (;9Cj E V)(j i= i)((VCis-a

Cj) /\ (C1 is-a Ci))}. Similarly, we find all classes in G that VC subsumes, i.e., they are the di

rect subclasses of VC defined by children(VC) :={Ci I (Ciis-a VG)/\ (/-3Cj E V)(j-:/= i)((Ciis-a

Cj) /\ (Cjis-a VG))}. VC then is placed directly below all classes in the parents set and directly

above all classes in the children set. In general, the classification problem is not decidable since it

may involve the comparison of arbitrary functions and predicates. In the worst case, if some is-a

relationship is not discovered, then this means that the virtual class is placed higher in the class

hierarchy than would theoretically be possible. This would still be a correct but possibly not the

most informative class arrangement.

This process can be fine-tuned for each query operator. This would allow us to limit the search

to a small portion of the global schema based on the semantics of the operator and the position of

the respective source classes [12]. Rather than presenting detailed classification algorithms here,

we demonstrate this process on an example.

Figure 5: Integrating the Virtual Class Women Into the Global Schema.

Example 5. In this example we explain how the virtual class Women derived via the select opera

tor is int~grated into the global schema in Figure 5. As discussed in Example 4, the class relationship

VIEW SCHE.\IA. DEFI.\T[[O.\'

rWomen is-a People) can be derii·ed din:ctly from the semantics of the Select operator. We thue

fore insert the edge (Women is-a People) into the global schema as d(Jne in Figure 5. The clas

sification process is however not complete. Instead, u:e nou· lraL"erse the schema graph downwards

from the source class to find the most speciali::ed classes - lou:est in the is-a hierarchy - that are still

is-a related with the Women class. Since the Employees class has a more refined type definition

than the Women class, the type relationship (Employees ~ Women) holds. We can howet·er

not determine any subset relationship between these two classes. Hence, neither (Women is-a

Employees) nor (Employees is-a Women) is true. The type relationship (Female-Professor

~ Women) holds, because the Female-Professor class inherits the additional property function
1Position' from the Employees class. We can also establish a subset relationship between these two

classes based on their associated predicates. Namely, the predicate 11(Sex=Female)" of the Women

class clearly subsumes the predicate "(Sex=Female) and (Position=Professor)" of the Female

Professor class. Therefore we can infer the subset relationship (Female-Professor ~ Women).

By Definition .J, (Female-Professor ~ Women) and (Female-Professor ~ Women) imply

(Female-Professor is-a Women). Therefore we have added an is-a edge between the two classes

as depicted in Figure 5.

4 VIEW SCHEMA DEFINITION

4.1 Using A View Definition Language

As explained in Section 3, the first phase of Multi View works on the global schema, i.e., view class

derivation moves from the base schema to a more and more complex global schema. An example

of this can be seen in the transition from Figure 6.a to Figure 6.b and from Figure 6.b to Figure

6.c. The second phase of MultiView extracts a view schema from the global schema, i.e., view

schemata subsetting moves from the global schema to one view schema. An example of this view

extraction can be seen from Figure 6.b to Figure 6.d and from Figure 6.c to Figure 6.e. In this

section, we assume that the first phase of Multi View, namely, the definition of virtual classes and

their integration into one underlying global schema, has been taken care of. For the following, we

are concerned with the second phase of Multi View, namely, the definition of a view schema on top

of the augmented global schema. For this we define a view definition language that can be utilized

by the view definer for the specification of view schemata.

In Figure 7, we present the BNF syntax of this view definition language. Note that the syntax

for particular class derivation operators, which are used during the first phase of MultiView, is

not further specified. Recall that MultiView, and of course also the view definition language, is

VIE~V .'i·r lfL'.\l.t DEFISITIOS lh

virtual class)c /
3

'..~~.':
derivation e / e ~~~~.~~~~ ..

(a) Base schema BS.

er
~

(b) Global schema GS.

./ view schema
....... / extraction

>! .•

(d) View schema VS1.

(c) Global schema GS.

..
view ~heme

~./8ct1on
.,:..' .•

(e) View schema VS2.

Figure 6: From Base over One Integrated Global Schema To Multiple View Schemata.

independent of the choice of particular query operators. We also want to stress that phases one

and two of MultiView do not have to be executed sequentially, i.e., they can be intermixed. For

instance, during the process of creating a particular view schema, the view definers may decide

that they need additional virtual classes that are not yet available in the global schema. They then

can use a class derivation operator from the first phase of lvfultiView to augment the global schema

with the necessary virtual class before continuing the definition of the view schema. Note that

the view definition language is concerned only with the manipulation of view classes and not with

view is-a relationships. Rather than specifying is-a arcs manually, MultiView will automatically

generate the set of view is-a arcs that has to be inserted in order to make the view schema valid.

This is the topic of Section 5.

We divide the discussion of the view definition language into two parts. In Section 4.2, we

describe the more general operators that manipulate complete view schemata, while in Section 4.3

we describe the operators used for the definition of a particular view schema. The second operator

type is concerned with modifying a particular, possibly empty, view schema by adding and/or

deleting view classes.

I \/IEff SCHE.\JA DEFT.YITIO.Y

<view-definition> : := <view-creation>; I <view-modification>;
<view-creation> : :=

DEFINE-VIEW <view-name>
<class-creations> I <view-schema-manipulation>
<view-manipulation>

END-VIEW
<view-modification> : :=

MODIFY-VIEW <view-name>
<class-creations> I <view-schema-manipulation>
<view-manipulation>

END-VIEW
<view-manipulation> : := SAVE-VIEW; I DELETE-VIEW;
<view-schema-manipulation> : :=

ADD-CLASS (<class-name>) ;
I ADD-CLASS-DAG (<class-name>) ;
I ADD-VIEW-SCHEMA(<view-name>);
I REMOVE-CLASS (<class-name>) ;
I REMOVE-CLASS-DAG(<class-name>);
I REMOVE-VIEW-SCHEMA(<view-name>);
I RENAME-CLASS (<old-class-name>) by (<new-class-name>);

<class-creations> : :=

<class-name> : = <class-derivation-operator>;

Figure 7: The BNF Syntax Of the View Definition Language.

4.2 View Schema Creation and Deletion Commands

LI

The following operators work on a complete view schema by either initiating or terminating a

transaction on a particular view schema:

1. the DEFINE-VIEW command creates a new view schema;

2. the MODIFY-VIEW command modifies an existing view schema;

3. the SAVE-VIEW command saves a view schema;

4. the DELETE-VIEW command deletes an existing view schema; and

5. the END-VIEW command terminates a transaction on a view schema.

The first operation, the DEFINE-VIEW command, initializes a new empty view schema and

assigns a unique view identifier to it. This operation is executed prior to any other operators.

Hence, the creation of virtual classes or the modification of a view schema VS can be done only in

the context of a view definition transaction of the particular view schema. Within this transaction,

I \/JEW SCHE.\L'i. DEFISITIOS

which is marked by a DEFINE-VIEW command at the beginning and the END-VIEW command at the

end, changes can be made to this one view schema only. Furthermore, the system keeps track of

all virtual classes created by this view schema.

The second operation, the MODIFY-VIEW command, is similar to the first one, except it is applied

to an already defined view schema rather than creating a new one. It thus prepares an existing

view schema VS for modification by the operators described in the next section. All operators

specified within this view definition transaction, i.e., after this MODIFY-VIEW command and before

the terminating END-VIEW command, will modify only VS and no other view schema. Since the

existing view schema VS already has a unique identifier, no new view identifier is allocated.

Once the view definers want to conclude the view definition phase, they issue the SAVE-VIEW

command. This command establishes a view table for the view schema which lists all classes that

are part of this view [12). In addition, the system determines the set of view is-a arcs that have

to be inserted into this view schema and of course also into the view table. This is the topic of

Section 5.

Lastly, a view definer can remove a view schema with the DELETE-VIEW command. This

command not only deletes the view table and view is-a arcs, but it also removes all virtual classes

from the global schema that were created for the definition of that view schema, whenever possible.

Virtual classes can no longer be removed when they are already (directly or indirectly) utilized by

other view schemata.

4.3 View Schema Manipulation Commands

Once an appropriate command (which is either the DEFINE-VIEW or the MODIFY-VIEW command)

has been issued to allow for transactions on a particular view schema VS to take place, then the

commands specified in this section can be used to manipulate VS. This definition of a particular

view schema proceeds using the following two types of steps: (1) the creation of virtual classes and

their integration into the global schema and (2) the insertion of view classes into and deletion of

view classes from the view schema VS. Note that the former assumes that the virtual class is also

automatically added to the current view. The operators for the former are discussed in Section 3,

while the commands for the latter are given next:

1. the "ADD-CLASS<class-name>" command;

2. the "ADD-CLASS-DAG<class-name>" command;

.J \'TEW SCHE.\1. \ DEFI.YITION i ()

:3. the "ADD-VIEW-SCHEMA< t•lr:w-name>" command;

-L the "REMOVE-CLASS <class-name>" command:

.S. the "REMOVE-CLASS-DAG <class-name>" command;

6. the "REMOVE-VIEW-SCHEMA <view-name>" command; and

1. the "RENAME-CLASS <old-class-name> by <new-class-name>" command:

The semantics of these view definition language commands are straightforward. They as

sume that a view schema VS has already been created and opened for manipulation by either a

DEFINE-VIEW or a MODIFY-VIEW command. They then modify this designated view VS by either

adding to or deleting from the schema. The "ADD-CLASS(<class-name>)" command adds a class

with the name <class-name> in GS to the view schema VS. The "ADD-CLASS-DAG(<class-name>)"

command adds all classes to the view schema VS that are classes in the subschema of GS rooted

at the class with the name <class-name>. Finally, the "ADD-VIEW-SCHEMA <view-name>" com

mand adds all classes of the view schema with the view identifier <view-name> to the current view

schema VS.

The next three commands do the same as the ones above but rather than adding they are

deleting the respective classes. The "REMOVE-CLASS <class-name>" command removes the class

with the name <class-name> from VS. Recall that if a virtual class is created during a trans

action of modifying the view schema VS, then it is automatically inserted into the view schema

VS. If during the view creation process this virtual class is removed from the view schema VS,

then the class is also deleted from the global schema. The "REMOVE-CLASS-DAG <class-name>"

command removes the subschema of GS rooted at the class with the name <class-name> from VS.

The "REMOVE-VIEW-SCHEMA <view-name>" command removes the existing view schema with the

identifier <view-name> from VS.

Lastly, the "RENAME-CLASS <old-class-name> by <new-class-name>" command renames an

existing view class of the view schema VS by replacing its name <old-class-name> by the new

name <new-class-name>. We assume scoping here; hence this is a local change that is only visible

from within the current view schema.

4 \'JEW SCHE.\JA D[Ff.\"ITIO:Y :..'IJ

4.4 Examples of View Schema Definition

Below, we demonstrate the above mentioned commands of the view definition language based on

the example views shown in Figure 6.

Example 6. In this example, we discuss the definition of the view schema VSJ in Figure 6.d on

top of the global schema GS depicted in Figure 6. a. Note that the global schema GS is equal to

the base schema BS of this application domain, since no virtual classes have been added yet to this

schema. There are a number of different view creation commands that could be used to accomplish

the definition of this view schema. Below, we give one possible view creation script for VS 1.

View Creation Script For VSl:
DEFINE-VIEW VS 1

VC4 = SELECT Cl where <predicate>;
ADD-CLASS (C1);
ADD-CLASS (C3);
SAVE-VIEW;

END-VIEW

We start the view definition transaction by issuing the DEFINE- VIEW VSl command, which

creates an empty view schema with the identifier VSl. We then define and insert the virtual class

VC4 into the global schema GS. As discussed above, VC4 is also automatically added to the view

schema VSl, i.e., we now have classes(VSl) = { VC4 }. Then the commands ADD-CLASS(Cl) and

ADD-CLASS(C3) are issued to insert the classes Cl and C3 into the current view schema VSl. VSl

now has the classes(VSl) = { VC4, Cl, C3 }. Lastly, VSl is saved with the command SAVE-VIEW.

MultiView then automatically creates the view is-a arcs for VSl as described in Section 5. The

result of this view generalization hierarchy creation is shown in Figure 6. d.

Example 7. The second view schema VS2 in Figure 6. e is defined on top of the global schema GS

depicted in Figure 6. b. A possible view creation script for VS2 is given below.

View Creation Script For VS2:
DEFINE-VIEW VS2

VC5 =SELECT VC4 where <predicate>;
ADD-VIEW-SCHEMA (BS);
SAVE-VIEW;

END-VIEW

Again, we start the view definition transaction by issuing the DEFINE- VIEW VS2 command,

which creates an empty view schema with the identifier VS2. Then the virtual class VCS is defined

.) .\ [;~TO.\fAJI(' GESERA.TIOS OF.-\. 'VALID VIE\V SCHE.\.IA HIERA Hr 'lf !

nnd added to the ylobal schema GS. Then the thrte classes { Cl, C2, C.3} are added to ~'S2, i.t.,

u:e now have classes(VS2} = { VCS, Cl, C:.3. CJ}. This could be rlone by either issuing three

ADD-CLASS commands, or equivalently, we can add the base schema BS to rS:.3 using the command

ADD-VIEW-SCHEMA (BS), since the base schema BS is composed of exactly the three desired classes.

When VS2 is sai·ed, the is-a arcs shown in Figure 6. d are derived automatically by Jfulti View using

algorithms described in Section 5.

Important to note here is that the restructuring of the underlying global schema GS due to the

creation of VS2 did not have any effect on the existing view schema VSl. We have shown elsewhere

that this is in general true, namely, existing view schemata remain valid after the creation of

additional view schemata ([12]). We refer to this property of MultiView as the view independence

property. The interested reader is referred to [12] for a more detailed discussion on the view

definition language and related issues.

5 AUTOMATIC GENERATION
SCHEMA HIERARCHY

5.1 Problem Definition

OF A VALID VIEW

As explained in Section 3, we automate the specification of the view schema class hierarchy rather

than requiring manual entry of the view is-a arcs by the view definer. Automatic view generation

not only simplifies the task of the view definer, but it also prevents the introduction of errors into

the view schema. We identify three types of errors. First, the view definer may omit is-a arcs that

are required to describe the complete semantics of the view schema (Definition 8). This would leave

some of the type inheritance that is actually taking place in the view schema unexposed. Second,

the view definer may insert redundant is-a arcs. This violates the minimality requirement of a view

schema 9, which would for instance obscure the property inheritance among subclasses. Third, the

view definer may assert incorrect is-a arcs (Definition 10). An example of the third type is the

insertion of an is-a arc between two classes in the view schema that are not is-a related in the

global schema; and thus the view schema would imply an incorrect type inheritance. The manual

specification approach requires the development of a view correctness checker that verifies the

correctness of the manually inserted arcs. This view correctness checker would have to determine

which type of error has occurred and then would have to take appropriate actions to correct it.

Instead, we propose the use of an automatic view generator which is guaranteed to generate a

valid view schema. Note that the proposed automatic view generator is similar in flavor (and in its

power) to the view correctness checker.

.J AUTO.\UTIC GLSER.-\TIOS UF .\I/A.LID \'ff\\ . . '<CHE.\fA HIERARCHY

In the remainder of this section, we present t\\O algorithms that automate the view schema.

creation process. The first algorithm has linear complexity but it assumes that the global schema

has a tree structure. The second algorithm overcomes the restricting assumption of a tree class

hierarchy, but it does so at the cost of a larger complexity.

The problem we address in this section can be formally stated as follows. Let GS = (V .. E)

be a global schema. Assume that a subset of classes VV ~ V of GS has been marked by the

view identifier < VS>, i.e., these marked classes have been selected to belong to the view schema

VS via the operations given in Section 4.2. We wish to develop an algorithm that automatically

determines a set VE of is-a edges among classes in VV, such that VS= (VV, VE) is a valid view

schema. For a definition of valid view schema see Definition 11.

5.2 View Schema Generation For Global Schemata without Multiple Inheri
tance

First we describe the algorithm Al for the automatic generation of a view schema, which assumes

that the global schema class structure is a tree. The algorithm traverses the GS schema tree in a

breadth-first manner from the root down to the leaves. For each node Ci in GS (starting with the

root node) that is marked by <VS> it searches all branches in the subtree rooted at Ci. An is-a

edge is inserted into VS between the parent Ci of a subtree and all subclasses of Ci that (1) are

also marked by <VS> and (2) are the closest to Ci in the tree. More formally, if (C1, C2 E VS)

and (C1 is-a* C2) in GS and (f-l Ci in VS}((C1 is-a* Ci) and (Ci is-a* C2}}, then the algorithm

Al inserts the edge (C1 is-a C2) into VS. By Definition 11, this newly inserted edge is a required

edge. This edge is guaranteed not to become redundant, since in a tree-structured graph there is

at most one path between any two nodes.

For a given parent node Ci, this search process stops when the algorithm either finds a marked

child or a leaf node of GS on all branches of Ci's subtree. The algorithm terminates when all

subtrees rooted in nodes Ci marked by <VS> have been searched. Hence, each marked node serves

as direct parent for subclasses in its class hierarchy once. A detailed description of the algorithm

Al is presented in Figure 8.

Next we present a step-by-step example of applying the Al algorithm to generate a view

schema.

Example 8. Figure 9 presents an example of applying the Al algorithm to generate a view schema.

The figures with numbers ending in "1" show how the search process proceeds through the global

.) ACT0.\/.-1.TIC GE.\'ER.\TIO.V OF A \:-\LID \"/EH' SCHE.\fA HIERARCHY

Assumption:

Global Sclwma GS is tree-structured (~o multiple inheritance;.

Input:

Global Schema GS= (V,E) and View Schema VS=(VV, VE)
with VY<;;; V marked by the view identifier <VS> and VE=©.

Output:

Determine a set of is-a edges VE on VV,
such that VS = (VV, VE) is a valid view schema on GS.

Data Structures:

ParentQueue is a queue to hold nodes of GS.
ChildrenQueue is a queue to hold nodes of GS.
Parent and Child are variables that hold one class each.

Algorithm Al: Creation of Is-A Arcs for A View Schema.

algorithm Edge-Creation(GS, VS) is
Push the root of GS onto ParentQueue2 .

while (Parent = pop(ParentQueue)) do
Put all children of Parent in GS onto the Children Queue.
while (Child= pop(ChildrenQueue)) do

if Child is in VS then
insert isa(Child,Parent) into edges(VS);
put Child onto ParentQueue;

else
Put all children of Child in GS onto the ChildrenQueue;

endif
end while

end while
end algorithm;

Figure 8: The Virtual Schema Creation Algorithm Al.

2 We assume here that each view schema includes the root object class of the global schema. This assures that each
view schema is a DAG rather than a forest.

.; A.CTO.\fATIC (;ESERATIOS OF A.. \'AUD HEW SC'HE.\JA HIER.\RCHY

(a1) Global schema. (a2) View Schema. (b1) Global schema. (b2) View Schema.

(c1) Global schema. (c2) View Schema. (d1) Global schema. (d2) View Schema.

(e1) Global schema. (e2) View Schema. (f1) Global schema. (12) View Schema.

Figure 9: Example Snapshots For Tracing of the Al Algorithm.

I :\ UTO.\J.-\. TIC GE.YER.\ nos OF.-\. LH.ID \:IE\\ .. '=i('f{ £.\[.-\. HIER.-\. RCHY 2.S

schema G'S. and tho.5e ending in "f!'' describe the incremental insertion of edges into the 1·ieu;

schema VS.

Figures 9.al and 9.a2 l'-how GS and the .,elected nodes of VS, respectively. First the root class

C1 of GS is put onto the ParentQueue. The Parent C1 is popped from the queue. Then all children

of Parent are inserted into the ChildrenQueue, and the Child C2 is popped from the queue. This

results in the state listed below (and shown in Figure 9. al).

ParentQueue = < >
Parent = C1
ChildrenQueue = < C3 >
Child = C2

The if-statement then finds that the Child C2 is in not VS and inserts all children of C2 into

the ChildrenQueue. VS stays unchanged as shown in Figure 9.a2. A new iteration of the inner

while loop results in the following search state (corresponding to Figure 9.bl).

ParentQueue = < >
Parent = C1
ChildrenQueue = < >
Child = C3

Again the Child C3 is not in VS, therefore we insert the children { C4 , C7 } of C3 into the

ChildrenQueue. VS still stays unchanged as shown in Figure 9.b2. The state generated by the next

iteration of the inner while loop is shown below (and in Figure 9.cl):

ParentQueue = < >
Parent = C1
ChildrenQueue = < C1 >
Child = C4

This time the Child C4 is in VS. Hence we insert an edge from the Child to the Parent into

VS, namely, the edge (C4 is-a C1). The resulting VS is depicted in Figure 9.c2. We also add the

Child C4 to the ParentQueue. The next iteration results in the state given below (and in Figure

9.dl).

ParentQueue = < C4 >
Parent = C1
ChildrenQueue = < >
Child = C1

The Child C7 is again in VS, hence we insert the edge (C1 is-a C1) into VS (Figure 9.d2}. We

also add the Child C7 to the ParentQueue. Since the ChildrenQueue is empty, we start with the

outer while loop by popping a new Parent C4 off the ParentQueue. The children { Cs , C6 } of C4

are added to the ChildrenQueue, and the new state is given below (and in Figure 9.el).

.J .-lG~TO.\I.\TIC C:ESERATIOS OF.-\. \'.-\.LID \'!EH' Sr'HE.\f..\ HIERA.Rr HY

ParentQueue = < C;- >
Parent = C4
ChildrenQueue = < C6 >
Child = Cs

26

Since the current Child C.5 is in VS, u:e insert an edge between Cs and the new Parent C4 into

VS (as shown in Figure 9.e2). We also add the Child Cs to the ParentQueue. The new state after

the pop of the ChildrenQueue is given below (and in Figure 9.fl).

ParentQueue = < C7, Cs >
Parent = C4
ChildrenQueue = < >
Child = Ce

C6 is not in VS. However, Ce is a leaf of GS and therefore no new children are added to the

ChildrenQueue. The ChildrenQueue is again empty. We start with the outer while loop and pop

a new Parent C1 from the ParentQueue. No more edges are created since both C1 and Cs are leaf

nodes. The view schema shown in Figure 9.j2 is the final result.

Theorem 1. (Correctness) The algorithm A 1 generates a valid view schema VS=(VV, VE) as

suming the underlying global schema GS=(V,E) does not have multiple inheritance.

Proof (By Contradiction): For the resulting view schema VS to be valid, we need to show that

the algorithm Al creates all required and no redundant and no incompatible is-a edges for VS.

Part I: The algorithm Al creates no redundant is-a edges.

Assume that Al inserted an edge (C2 is-a C1) into VS that is redundant in VS (See Figure

10.a). By Definition 9, this means that: (1) the classes C1 and C2 are in VS, and (2) there exists

another class C3 in VS with C3 f::C1 f.C2, such that (C1 is-a* C3) in GS and (C3 is-a* C2) in GS. For

Al to insert the edge (C2 is-a C1) into VS, the state must have been Parent=C1 and Child=C2.

Since the schema is a tree, there is exactly one path from C1 to C2. Therefore, Al must have

traversed this path from the Pare;nt C1 down to Child C2 without finding any marked node Ck

on the path. If Al would have found a marked node Cb then it would have stopped the search

for Parent=C1 along this branch. This is a contradiction to the assumption that the inserted edge

(C2 is-a C1) is redundant, i.e., that there is a marked node C3 between C2 and C1. Hence, the

assumption is incorrect.
q.e.d.

.J ACTO.\l...i.TlC GE.\ ERA.TIO.'¥ OF . ..i. LU /JJ \1Eff SCHE.\L'l HIERARCHY

(G2 is-a C1)
in VS

in VS

(a) Edge (C2 is-a C1) is redundant in VS.

in VS

for all Ci in GS: with
(C2 is-a Ci) and (Ci is-a C1):
-> Ci not in VS

(b) Edge (C2 is-a C1) is required in VS.

Figure 10: Redundant and Required Edges.

Part II: The algorithm Al creates all required is-a edges.

•)C° _,

Assume that Al did not insert an edge (C2 is-a C1) into VS even though the edge (C2 is-a C1)

was required in VS (See Figure 10.b). By Definition 8, for the edge (C2 is-a C1) to be required in

VS means that: (1) the classes C1 and C2 are in VS, and (2) C1 and C2 are is-a related in GS by

(C1 is-a* C2), and (3) V Ci in GS with (C2 is-a* Ci) and (Ci is-a* C2), the class Ci f. VS. C1

E VS implies that at some point during the algorithm, Al will make this marked node a parent,

i.e., Parent=C1. Thereafter, Al would search all branches of the subtree rooted at C1 for marked

children. For Al not to discover the node C2 , it must find some other marked node C before

finding C2 (i.e., above C2 and below C1). But by Definition 11, there is no such node Ci between

C2 and C1 that is marked. Hence, the assumption leads to a contradiction.
q.e.d.

Part III: The algorithm Al creates no incompatible is-a edges.

Assume that Al inserted an edge (C2 is-a C1) into VS that is incompatible in VS. By Definition

10, this means that C2 and C1 are not is-a related in GS, i.e., there is no path in GS between C2

and C1. For Al to insert the edge (C2 is-a C1) into VS, the state must have been Parent=C1 and

Child=C2 • Since the algorithm Al is traversing GS rather than VS, this situation can only occur

if the node C2 was found by traversing GS downwards from C1 on some path in GS. Hence, the

node C2 is a subclass (child) of C1 in GS, denoted by (C2 is-a * C1). This is a contradiction to the

assumption that this relationship does not hold in GS.

.1 A CTO.\IAT!C GE;VERAT!O.\ OF A VA.LID \1£~\" S< 'H L.\fA HIERARCHY

q.e.d.

Theorem 2. (Complexity) The complexity of the algorithm Al is linear in the number of nodes

in GS, i.e., O(IGS!), assuming the class hierarchy of the global schema is a tree.

Proof: GS being a tree structure implies that there is exactly one unique path to reach each node

from the root. Hence, a node can never be reached through a second path, and therefore each node

(except the root node) is placed into the Children Queue exactly once. It is inspected in constant

time by checking its annotation to determine whether it belongs to the view schema, and then it

is removed from the ChildrenQueue. Now, it is either completely discarded, or, it is placed in the

ParentQueue in order to be compared to its children. Each of these comparisons with the same

node as parent can be charged to the respective children rather than to the parent node. Hence,

every node is inspected exactly once, and the complexity is O(IGSI).
q.e.d.

5.3 View Schema Generation For Global Schemata with Multiple Inheritance

The algorithm Al presented in the previous section does not generate a valid view schema if the

underlying global schema is a DAG rather than a tree, as shown in the lemma below.

Lemma 1. For a global schema GS with multiple inheritance, the algorithm Al generates a view

schema with all required but possibly also redundant is-a arcs.

Proof: Part II of the proof for Theorem 1, which shows that all required edges are added to VS,

also applies here. However, part I of Theorem 1, which shows that no redundant edges will be

added to VS, is no longer applicable. In a schema with multiple inheritance, some classes have

more than one path connecting them. In this case, the algorithm does not prevent the insertion of

redundant edges as shown in the example in Figure 11. There are two different paths to reach C4

in GS in Figure 11. The algorithm Al first searches along the first path and creates the (C4 is-a

C1) arc (Figure 11.c). It then searches along the second path and discovers the (C4 is-a C3) arc

(Figure 11.d).
q.e.d.

In order to create a valid view schema for a global schema with multiple inheritance, we need

the ability to remove redundant arcs. Below we present the algorithm A2 which solves this problem

.~ ACTO.\UTJC CESERATIO.\/ OF .-1 \'AUD 1/IEH. SCHE.\IA HIERAHCH!.

Q! (0 -~0 parent=C1
•\

(C1 .

8
children=C3, C4

children=C4

@ C4

(a) Global schema. (b) Virtual schema VS (c) Edge creation bet. (d) Edge creation bet.
with W={C1 ,C3,C4}. C1 and its children. C3 and its children.

Figure 11: An Example of Creating Redundant View Is-A Arcs.

based on the transitive closure property of the is-a relationship. Recall that an is-a arc (path of

length 1) between two nodes C1 and C2 is redundant if and only if there is another path between

these two nodes that is of length 2 or larger. Assume that for every pair of nodes, we have the

length of the longest path between the two classes. This length is set to negative infinity, if they are

not is-a* related. We then insert an is-a arc between two classes in VS if the length of the longest

found path between the two classes is equal to one. Such an edge is a required edge, since there

is no secondary path to connect the two classes. If this length is larger than one then this edge is

a redundant edge. Therefore, we do not insert it into VS. The exact algorithm for the removal of

redundant arcs is given in Figure 12.

Algorithm A2 uses a Longest-Path procedure that is a variation of the well-known all-pair

cheapest path algorithm, which computes for each ordered pair of nodes (v,w) of a graph G the

highest cost of all paths between them. This algorithm is based on the assumption that we have

a directed graph G=(V ,E) in which each edge is labeled by an element from a closed semiring

(S,+,*,0,1) (e.g., [1], pg. 195-201]). We thus label the edges of the schema graph by the length

of the longest paths between two nodes. The system (IU"-oo" ,Max,Plus,"-oo" ,0) then is a closed

semiring with I the integer labels of the edges of the graph, Max and Plus the addition and mul

tiplication operators on the semiring, respectively, and "-oo" and "O" the identity elements. The

Longest-Path procedure then computes Ati,j) with l::;i,j::;n and o::;k::;n with Afi,j) the maximum of

the longest of the paths from Ci to Cj, such that all classes on the paths, except the two endpoints,

are in the set { C1, C2 ,. • ., Ck}. First, the algorithm computes the length of the longest paths be

tween all pairs of nodes that go through no other nodes (i.e., with indices k::;O). Then, it computes

the length of longest paths that go through nodes with indices k::;l. And so on. Informally, this

is based on the idea that the longest paths between Ci and Cj which pass through no node with

an index higher than ck is the longer one of the following two: (1) the longest path which passes

.J _'tCTO.\fATIC GESERATIOS OF .'t \-'AUD \'IE\\. SCHL\Ll HILIL-lHCHY

Input:

VS=(VV, VE) a view schema with the classes VCi (i=l,. .. , n)
with VE containing all required and possibly some redundant edges of VS.

Output:

VS=(VV, VE) a valid view schema.

Data Structures:

A and tmp are integer matrices of size n = IV s1.
A(ij) E I U -oo will indicate the length of the longest path bet. VC; and V Cj.

Algorithm A2: Removal of Redundant Edges.

procedure Initialize-LP (VS) return A is
for ij from 1 ton do

if (i=j) then A(ij) := O;
elseif (VCi ls-a VCj) in VE then A[ij) := 1;
else A(ij) := -oo
end if

endfor
end procedure

procedure Longest-Path (A) return A is
tmp :=A; .
for k from 1 to n do

for ij from 1 to n do
tmp(ij) := Max(tmp(ij], A[i,k] + A[kj]);

endfor
A:= tmp;

endfor
end procedure

procedure Edge-Removal(A,VS) is
for ij from 1 to n do

if (A[ij)>l) then
remove the edge (V C; is- a V Cj) from VE;

endif
endfor

end procedure;

algorithm Edge-Reduction(VS) is
A := Initialize-LP (VS).
A := Longest-Path (A);
Edge-Removal(A, VS);

end algorithm

Figure 12: Algorithm A2 for Removal- of Redundant Arcs.

:rn

.5 .-'l. CT0.\1.4 T[(GESEH.-\.TIOS OF.\ L\ LID \"IE\\' SCHE.\l.-1. HIERARCH \'

through no node higher than C'k-l, or 1:2) the path which is the longest path from C, to C1; and

then the longest from C1; to C1 , passing through no node higher than C1;_ 1 between these points.

This recurrence of the maximal path calculation holds for graphs with no cycles, and indeed our

schema graphs are non-cyclic.

C1 C3C5 cs C1 C3C5 cs
C1 0 - - - C1 0 - - -
C3 1 0 - - C3 1 0 - -
C5 1 1 0 - C5 1 1 0 -
CB 1 1 - 0 ca 1 1 - 0

(a) View Schema with (b) Matrix A initialized (c) VS with initialized (d) A after one
all required and some to A(k) with k=O. path-length for edges. iteration:A(1)=A(O).
redundant edges.

C1 C3C5 cs
C1 0 - - -
C3 1 0 - -
C5 2 1 0 -
cs 2 1 - 0

(e) A after two or
more iterations:
A(2)=A(3)=A(4).

(f) VS with maximal
path-length on edges.

C1 C3C5 cs
C1 0 - - -
C3 1 0 - -
cs - 1 0 -
cs - 1 - 0

(g) A after Edge
Removal.

(h) VS after Edge
Removal.

Figure 13: An Example of Removing Redundant Edges Using Algorithm A2.

Example 9. In Figure 13, we present an example of applying the A2 algorithm to remove redun

dant edges from a view schema. Figure 13.a depicts the view schema VS with all required and

possibly some redundant edges. The Initialize() procedure of algorithm A2 expresses VS in matrix·

format as shown in Figure 13. b. For each pair of classes we place a "1 » into the matrix A if they are

connected by an is-a edge, a ((O" if they are identical, and a "-" (representing a ((-oo "), otherwise.

This is equal to Ak(. .) with k=O, meaning that considered paths go through no other nodes, i.e.,
1,J

are of length one (Figure 13.c). Then the Longest-Path() procedure of A2 is applied to the matrix A

to find the longest path between all pairs of classes. The first iteration of the Longest-Path function,

(see Figure 13.d) which searches for paths that go through no node with an index higher than k=l

(which in our example corresponds to the node C1), finds no new paths, i.e., A{i,j) =Afi,j). The

second iteration (see Figure 13.e) then finds paths that go through no node with an index higher

J .-'i. CTO.\l.l TIC GE.YE RA TIO.\' OF.-\ \A.LID HEH' SCHE_\H 1f IER.-\RCH1' :i2

than k=:! (u·hich in our uample corresponds to the nodes C1 and C3). Iterations thru and four

do not find any new paths (there are none left). The longest paths found are shown in Figure J.3.f.

.Vou.: the Edge-Removal() procedure removes all edges that correspond to matrix entries larger than

one (from Figure 13.e to J.J.g). An entry larger than one means that there is a path of length

greater or equal to 2 between two nodes in VS, and hence a direct is-a arc between these two nodes

u:ould be redundant. Finally, the virtual schema VS shown in Figure 13.h remains, containing all

required and no redundant edges.

Theorem 3. (Correctness) Given a view schema V=(VV, VE) with all required and possibly

redundant is-a edges, the algorithm A2 generates a valid view schema V'=(VV', VE') with VV'= VV.

Proof: We need to show that the algorithm A2 removes all of the redundant and none of the

required edges. First, A2 initializes the matrix A by storing the following value at each position

A(Ci, Cj):

if Ci = Ci
if (Ci is-a Cj) in VS
otherwise

(1)

This thus represents the graph in a matrix format by indicating the initial distance between

each pair of classes Ci and Cj in VS by the entry A(Ci, Cj). This assumes that the paths go through

no any other node with index greater than 0, i.e., we only consider direct arcs. If there is a direct

edge (Ci is-a Cj) then the distance is initialized to one. If there is no edge (Ci is-a Cj) then the

distance A(Ci, Cj) is initialized to "-oo".

As discussed above, the Longest-Path procedure is a variation of a well-known algorithm of

cost calculations of paths. The proof of correctness for this part of the algorithm can be derived

from a standard algorithms book (e.g., [1]) and thus is not given here. For the following, we assume

that the Longest-Path procedure indeed terminates with each entry of the matrix A (i,j) indicating

the length (i.e., the number of is-a edges) of the longest path between the nodes Ci and Cj. We

thus have:

A(C;, C;) = {
0
n (with 1 .:::; n .:::; oo)
-00

if Ci = Ci
if (Ci is-a* Cj) (2)
if not(Ci is-a * Cj)

.) .\ ["TOJ.UTIC GE.VERA.TIO.\" OF A LUJD \'IE\V SCHE.\JA. HIERARCHY

:\ow it remains to show that the Edge-Removal() procedure removes all redundant and none

of the required edges.

Part I: The Edge-Removal() procedure removes all redundant edges.

Assume that the algorithm did not remove a redundant edge (C1 is-a C2). By Definition 11,

an edge (C1 is-a C2) is redundant if there exists some other class C3 in the schema such that (C'1

is-a* C3) and (C3 is-a* C2). Hence, there is a path of length greater or equal to two from C'1 to

C2 , namely, the path going through the node (:3. Therefore, the Longest-Path procedure would

produce an entry A(C1 , C2) ?'. 2. The Edge-Removal() procedure removes all edges (Ci is-a C;)

from VS with A(Ci, Cj) > 1. Therefore, this is a contradiction to the assumption that the edge is

redundant.
q.e.d.

Part II: The Edge-Removal() procedure removes none of the required edges.

Assume that the algorithm did remove a required edge (C1 is-a C2). By Definition 11, an

edge (C1 is-a C2) is required if there exists no other class C3 in the schema such that (C1 is-a*

C3) and (C3 is-a* C2). If there is no class on the is-a path between C1 and C2, but C1 and

C2 are is-a related, then the only connection between the two nodes is a direct is-a arc. The

Longest-Path procedure would produce the entry A(C1 , C2) = 1 for such a path of length one.

The Edge-Removal() procedure however removes edges (Ci is-a Cj) from VS only if A(C, Cj) > 1.

Therefore, this is a contradiction to the assumption that the removed edge is required.
q.e.d.

Theorem 4. (Complexity) The worst-case complexity of algorithm A2 is O~VSl3) with IVSI

the number of classes in the view schema VS.

Proof: We break the proof of complexity into the following steps:

• The algorithm A2 first initializes the matrix A by storing a value at each position A(i,j). The

complexity thus is the size of the matrix, i.e., O(IV Sj 2
).

• The Longest-Path procedure involves the computation of three nested for-loop. These three

nested for-loops are of size IVSI each. The body of the three for loops is of constant time.

Hence, this computation has the complexity of O(jVSj3).

• Lastly, the removal of redundant edges is done by inspecting each field in the matrix A once.

The complexity thus is the size of the matrix, i.e., O(IV Sl 2).

J .t CTO.\UTIC G £.VERA.TIO.\' OF .1 'vALID \ -r.r·n· SCHE.\IA HIERA.RCH'/

\Ve now can combine these complexities to get the total complexity of A2. Complexity(A'2) = 0(

IV sf + /V 51 3 + IV s1 2
) = O(ivs13

).

q.e.d.

~ow we put the edge generation algorithm Al together with the redundant edge removal

algorithm A2 to create a complete algorithm for automatic view generation.

Theorem 5. Given a global schema GS=(V,E) with possibly multiple inheritance 111d a set of view

classes VV ~ V, the algorithm A3 shown in Figure 14 generates a valid view schema VS=(VV, VE}.

Input:

Global Schema GS= (V,E) and View Schema VS=(VV, VE)
with VV ~ V marked by the view identifier <VS> and VE=0.

Output:

The View Schema VS=(VV, VE) with VS valid.

Algorithm A3: Complete Valid View Schema Generation 1

algorithm View-Schema-Creationl(GS, VS) is
Edge-Creation(GS, VS);
Edge-Reduction(VS);

end algorithm;

Figure 14: View Schema Creation Algorithm A3.

Proof: (Correctness) The proof of correctness of algorithm A3 is straightforward. First, it

applies algorithm Al to create all required and possibly some redundant edges of the view schema.

Theorem 1 shows the correctness of this edge creation algorithm Al. Then, it applies the edge

removal algorithm A2 to the resulting schema to remove all redundant edges. The correctness of

this second step has been shown in Theorem 3. The result thus is a view schema with all required

and no redundant edges, i.e., VS is a valid view schema.
q.e.d.

Algorithm A2 removes all redundant edges from a view schema. Consequently, we need no

longer be concerned with preventing the creation of redundant edges during the first stage of the

view schema creation algorithm. We can therefore replace the edge generation algorithm Al by a

transitive closure algorithm that does the following: Given a graph G=(V,E}, it creates a new graph

G*=(V,E*)with (VCi,Cj EV) ((Ci is-a Cj) EE*~ (Ci is-a* Cj) EE). As can easily be seen,

this generates all required but also all redundant is-a edges. This leads to a simpler implementation

of the view schema creation algorithm, since the edge creation algorithm Al is not implemented

at all. Instead, the initialization procedure of mapping the schema graph structure into a matrix

·> A CTO.\.IA TIC (;£.VERA.TIO.\' OF.-_ V.-\ UD HE ff SCHE.\J.\ HIER.-\RCHY

representation is applied directly to GS, rather than VS, and all subsequent computations are

performed on the matrix representation. Hence, rather than first manipulating the schema graph

to insert edges by algorithm Al and then manipulating the schema graph to remove redundant

edges by algorithm A2, this algorithm works directly on the matrix representation. At the very

end, once all required edges have been identified, it inserts these edges into the graph.

We list the transitive closure algorithm at the top of Figure 15 for the sake of completeness.

Note that only a minimal change is required to convert the Longest-Path algorithm (top of Figure

12) to the Transitive Closure algorithm, which conceptually is equivalent to converting the system

(IU"-co" ,Max,Plus, "-oo" ,0) to the system ({O, l},And,Or,l,O) with l=true and O=false. This

code conversion is done by modifying the Longest-Path algorithm in two ways: (1) initialize the

matrix representation for transitive closure by storing whether there is (is not) an is-a arc rather

than storing the path length, and (2) the body of the nested for loop is replaced by a test for

whether a path exists rather than accumulating the distance of the longest path. Due to this reuse

of code, the implementation effort is minimal. The detailed algorithm A4, which uses the transitive

closure algorithm in place of algorithm Al, is presented in Figure 15. Note that this algorithm has

the additional advantage that the complexity analysis is straightforward.

Next, we explain the algorithm A4 for creating a valid view schema based on the example

presented in Figure 16.

Example 10. The steps of the algorithm A4 for valid view schema creation are:

1. A4 is given as input a global schema graph GS with a subset of nodes marked by the identifier

<VS> (Figure 16.a).

2. Step 1 of A4 initializes the matrix A for the calculation of the transitive closure (Figure 16. b).

3. Step 2 of A4 then computes the transitive closure on the is-a relationships of the classes in

GS. The transitive closure for GS in a graph representation and in a matrix representation are

shown in Figure 16.c and 16.d, respectively.

4. Step 3 of A4 then reduces the matrix representation A for GS to the matrix representation B

for VS by selecting all classes that belong to the virtual schema VS and all arcs of GS among

these classes. The matrix A and the reduced matrix .B are shown in Figure 16. d and 16. e,

respectively.

5 .-\ r·TO.\IATIC GE.\TRATIOS OF.-\. VALID \'lEff SCHE.\IA HIERA.RCHY

Input:
Let G'S=(V,E) be a global and VS=(V\. \:E) a view schema with \'V;::;V and VE=0.

Output:
VS=n·v. VE) a valid view schema.

Data Structures:
A and tmp are integer matrices of size [GS[; 8 is a matrix of size [V Sf;
A(ij) E {O, l} indicates whether (VC, is-a VCj) or not.

Algorithm A4: Complete Valid View Schema Generation 2

procedure Initialize-TC (GS) return A is
for ij from 1 to [GS[do

if (i=j) then A[ij] := l;
elseif (Ci is-a Cj) in V then A[ij] := 1;
else A[ij] := O;
endif

endfor
end procedure

procedure Transitive Closure (A) return A is
tmp :=A;
for k from 1 to jGSI do

for ij from 1 to jGSj do
tmp[ij] := tmp[ij] or (A[i,k] and A[kj]);

endfor
A:= tmp;

endfor
end procedure

procedure Reduce-Matrix (A) return B is
for ij from 1 to IAI do

if (Ci E VS) and (Ci E VS) then
if (i=j) then B[Ci, Ci] := O;
elseif (A[Ci, Cj]=l) then B[Ci, Cj] := l;
elseif (A[C;, Cj] = 0) then B[Ci, Cj] := -oo;
endif

endif
endfor

end procedure

procedure Edge-Insertion(B,VS) is
for ij from 1 to IVSI do

if (B[iJ]=l) then
insert the edge (V C; is-a V Cj) into VS;

endif
end for

end procedure;

algorithm View-Schema-Creation2(GS, VS) is
A : = Initialize-TC (GS);
A :=Transitive-Closure (A);
B: = Reduce-Matrix(A);
B := Longest-Path (B);
Edge-Insertion(B, VS);

end algorithm;

Figure 15: View Schema Creation Algorithm A4.

.J A CTO.\f.J,, TIC GESER.4TIOS OF A LtLID \'IE\\' SCHE.\I:'t HIERARCHY

C1 C2 C3 C4C5P6Pn::B
C1 1 o o o o o o O
C2 1 1 0 0 0 0 0 0
C3 1 0 1 0 0 0 0 0
C4 o 1 1 1 O o o o
C5 O 0 O 1 1 0 o 0
C6 o 0 0 1 0 1 0 0
C? 0 0 0 o o 1 1 0
CB 0 0 0 0 0 1 0 1

(a) GS with multiple inheritance
and VS with VV={C1 ,C3,C5,C8}.

(b) Initialize Matrix A
for transitive closure.

C1 C1 C3 C5 CB C1 C31C5 CB
C2 C1 1 0 0 0 C1 0 - - -
C3 C3 1 1 0 0 C3 1 0 - -
C4 C5 1 1 1 0 C5 1 1 0 -
C5 ca 1 1 0 1 CB 1 1 - 0
C6
C7

(c) Transitive Closure on GS.

C1 C3IC5 CB
~1 0 - - -
f-.-3 1 0 - -
f-.-5 2 1 0 -
~8 2 1 - 0

(e) Reduce A to B: (f) Re-Initialize B (g) Find all I
(d) Matrix A holds transitive B holds the transitive for Longest Path longest paths (h) VS after
closure for is-a arcs in GS. closure for vs. Calculations. in B. Edge Insertion.

Figure 16: Example of the Algorithm A4 for Creating A Valid Schema.

.J A.CTO.\fA.TIC GE.VERA.TIO.\/ OF A L\LID \If-.\\. SCHE.\L.\. HIER.-l._RCHY

5. Step 3 of A4 also re-initializes the nwtrzx B lo prepare it for the lungtst-path calculations by

replacing the true/false L'alues by path lengths. The matrix B with the transitive closure and

the re-initialized matrix B are shown in Figure 16. e and 16.f, respectively.

6. Step 4 of A4 finds the length of all longest paths between each pair of nodes in VS. (transition

from Figure 16.e to 16.f). A detailed example of how the longest-path calculation is carried

out can be found in Figure 13~ In particular, Figure 13. b is equal to the input to the procedure

shown in Figure 16. e and Figure 13.f is equal to the result given in Figure 16.g.

7. Step 5 of A4 then inserts all arcs into VS that have a maximal path length of exactly one in B

(Figure 16.h). The resulting graph is the final virtual schema VS.

Having given the intuition behind the steps of the algorithm A4, we sketch a proof for its

correctness.

Theorem 6. The algorithm A4 presented in Figure 15 generates a valid view schema.

Proof: Algorithm A4 implements the above described steps and thus creates a valid schema. The

correctness of each step is shown below:

1. First, A4 initializes the matrix A to store the graph GS in a matrix representation.

2. Step 2 of A4 computes the transitive closure on the is-a relationships in matrix A to find all

pairs of classes that are is-a* related in GS. This procedure corresponds to a variation of the

well-known transitive closure algorithm. The proof of correctness for this can be derived from

a standard algorithms book (e.g., [1]) and thus is not given here. The result of this procedure

is the transitive closure of the is-a relationships, which is the following:

A(C· C·) _ { 1 (true) if (C1 is-a* C2) in GS
1

' J - 0 (false) otherwise

Since a class is trivially is-a related to itself, this is equivalent to:

{

1 (true)
A(Ci, Cj) = 1 (true)

0 (false)

if (C1 = C2)
if not(C1 = C2) and ((Ci is-a* C2) in GS)
if not(C1 is-a* C2) in GS

(3)

(4)

Using the terminology defined in Section 2.3, this is equivalent to representing all required and

all redundant but no incompatible is-a relationships of the graph.

.J AL'TOMATIC GENERATION OF A VALID \lIEvV SCHE.\IA HIERARCHY 39

3. Step 3 of A4 reduces matrix A to matrix B by extracting all entries .4.(C;, Cj) with C;,C'j E VS

i.e., B(Ci,Cj):=A(Ci,Cj) for C'i,Cj E VS. Since A represents the transitive closure for GS, B

will now represent the transitive closure for VS as shown below. The transitive closure of is-a

edges means that for each class Ci E GS, the matrix A will hold the edges to all other classes

Cj with which Ci is is-a related, i.e., ('V j with 1 :S j :S IGSI) ((C; is-a* Cj) ==> A(C,,Cj)=l).

We can consequently conclude the following: (for each C, E VS) ('V j with 1 :S j :S IGSI) ((CJ

E VS) and (Ci is-a* Cj)) ==> B(Ci,Cj)=l). The matrix representation of B thus corresponds

to the following:

{

1 (true)
B(Ci, Cj) = 1 (true)

0 (false)

if (C1 = C2)
if not(C1 = C2) and ((C1 is-a* C2) in VS)
if not(C1 is-a * C2) in VS

(5)

4. For the longest path calculations, Step 3 of A4 replaces the true/false values of Equation 5 by

path lengths. In particular, if B(Ci,CJ=false, then it sets B(Ci,Cj):=-oo. For Ci and Cj

with i=j, it sets B(Ci, Cj):=O. In all other cases, B(Ci, Cj) remains "1''. B thus is:

if C1 = C2
if C1 is-a * C2 (6)
if not(C1 is-a* C2)

This clearly corresponds to the initial path length for direct paths as is required for input to

the longest-path calculation algorithm of A2.

5. Step 4 corresponds to algorithm A2. It runs the Longest-Path algorithm on this reduced matrix

B to determine the length of the longest paths between any pair of classes in VS. This step

has already been shown correct in Theorem 3, and the result is given in Equation 2.

6. Step 5 then inserts all required edges into VS as follows. For each pair of classes (Ci, Cj) with

B[i,j)= 1, it inserts the edge (Ci is-a Cj) into VS. The correctness of this step can be easily

derived from Theorem 3.

q.e.d.

Theorem 7. (Complexity) The worst-case complexity of the A4 algorithm is O~GSl3) with IGSI

the number of classes in the global schema GS.

Proof: We break the proof of complexity into the following steps:

• The algorithm A4 first initializes the matrix A by storing a value at each position A(i,j). The

complexity thus is the size of the matrix, i.e., O(IGSl2).

6 RELATED H'ORJ;

• The Transitive-Closure procedure inrnlves the computation of three nested for-loop of size

IG'SI each. The body of the three for loops is of constant time. Hence, this computation has

the complexity of 0(iGSl3).

• The Reduce-Matrix function inspects each entry of matrix A exactly once, and thus has com

plexity of O(IGSl 2).

• The complexity of the maximal path computation has been shown to be O(!V 5\ 3) in Theorem

4.

• Lastly, the insertion of all required edges is done by inspecting each field in the matrix B once.

The complexity thus is the size of the matrix, i.e., O(\V 5\ 2
).

We can now combine these complexities to get the total complexity of A4. Note that the two

most time-consuming steps of the algorithm are the transitive closure on GS and the longest path

computation on VS, while all other steps are of quadratic or lesser complexity. Since the number of

classes in GS is larger or equal to the number of classes in VS, we can conclude that the complexity

of the first computation outweighs the complexity of the second. Hence, the total complexity for

algorithm A4 is O(IGS\ 3
).

q.e.d.

Note that the view schema generation algorithm A4 has to be executed once for each view

schema, namely, after the initial specification of the view schema. Furthermore, the first part of

the A4 algorithm (the transitive closure on the global schema) will not have to be computed for each

and every view schema. Instead it can be computed once a-priori (after creating the base schema).

Thereafter it is updated only when new virtual classes are added to the global schema. Hence, the

complexity for view schema generation in most instances only equals the complexity of the second

part of A4, i.e., complexity(A4) = complexity(A2) = O(IV S\ 3), which may be considerably smaller

than the complete complexity shown in Theorem 7.

6 RELATED WORK

Most initial efforts of defining views for OODBs suggest the use of the query language defined

for their respective object model to derive a virtual class .. For instance, the work by Heiler and

Zdonik [5] and the work by Scholl et al. [14] fall in this category. MultiView can use any of these

proposed class derivation mechanisms to implement the first phase of view schema generation, i.e.,

the customization of individual classes. It thus is a superset of these approaches.

6 RELATED \VORI\. I I

,\lost of these approaches do not discuss the integration of derived classes into the global

schema. Instead, the derived classes are tre.ated as "stand-alone" objects [5], or they are attached

directly as subclasses of the schema root class [7]. Scholl et al.'s recent work [14] is an exception:

they discuss the classification of virtual classes derived by a selected subset of the operators of the

query language COOL into one schema. They do however not consider the problem of generating

multiple view schemata, and hence JiultiView can be considered to be a compatible extension of

their work.

Tanaka et al. present an early work on schema virtualization [17]. Their work does not

distinguish between the task of integrating derived classes into a common schema and the task of

generating view schemata. The interplay between these tasks is not well-defined in their approach.

Also, they allow for the arbitrary addition of is-a edges in a virtual schema, which in many cases

will lead to an inconsistent schema, rather than supporting the automatic generation of the class

hierarchy of a view schema as done in MultiView. Their approach thus does not assure the validity

of a view schema. They point out that work is needed for developing a definition language for

view schemata. In this paper, we have provided a solution for this. In fact, by breaking the view

schemata definition process into a .number of distinct phases, we were able to reduce the view

definition language to an extremely simple language. In summary, Multi View is a more systematic

approach compared to their rather ad-hoc proposal.

Shilling and Sweeney [15] present an alternative approach for supporting views for object

oriented systems. Namely, they extend the conventional concept of a class object from having one

type (one ADT interface) to having multiple interfaces. The purpose is to limit the access rights

to property functions and to control the visibility of instance variables. We accomplish the same

goal by using the type refinement capability of the generalization hierarchy to differentiate between

different combinations of property functions defined for a collection of objects. Our work is simpler,

since it does not require the extension of the traditional class concept. Furthermore, Shilling and

Sweeney approach the problem from the programming language point of view, and thus they are

not concerned with the sets of objects attached to a class, i.e., the class extent. Consequently, they

do not address the derivation of new classes by restricting the membership of a class via a select-like

query. Lastly, their approach focuses on one class only, and the effects of multiple interfaces on the

class generalization hierarchy are not addressed.

Gilbert's proposal [4], similar to (15), is also based on the idea of defining multiple interfaces for

a class object. Multi View does not require the extension of the traditional class concept, and thus

can be implemented directly with the existing object-oriented database technology, while Gilbert's

approach could not. Nonetheless, MultiView is as powerful as the multi-interface approach; any

view schema that can be defined using the multi-interface approach can also be defined using our

strategy. In addition, our work allows for the direct application of the class derivation mechanisms

proposed in the literature. The use of general query operators is currently not handled by [4].

7 CONCLUSIONS

In this paper, we have defined an object-oriented view to be a virtual, possibly restructured, sub

schema graph of the global schema rather than just one individual virtual class. We have presented

a novel approach for supporting these multiple view schemata in OODBs, called MultiView. This

approach is simple yet powerful; it allows for instance for the customization of a view schema by

virtually restructuring both the generalization and the property decomposition hierarchies of the

underlying global schema. We have also presented solutions to specific subtasks related to the

proposed view paradigm. In particular, we have developed a language for view schema definition

and two efficient algorithms for the automatic generation of the view schema hierarchy.

Note that our paradigm is not specific to a particular OODB model. This generality allows the

MultiView approach to be incorporated into most existing OODBs. MultiView would then enrich

these systems by allowing them to support a more powerful notion of views. Our paradigm builds

on existing work in as much as it is independent of the class derivation operators chosen from the

set of proposed operators in the literature [5, 7, 14, 11]. A major contribution of the proposed

approach lies in its simplicity compared to alternative proposals [4], and hence the potential ease in

adapting it for existing database systems and in implementing it with existing OODB technology.

We are currently implementing a first prototype of MultiView. Based on this prototype, we

want to explore alternative implementation strategies for MultiView. In particular, the development

of efficient query processing techniques for queries issued to view schemata needs to be further re

searched. Furthermore, the design of a graphical interface for the incremental view definition phase

would be a useful feature for application domains. It would open the avenue for non-database

experts to utilize MultiView to define their desired application-specific views. Indeed, the devel

opment of Multi View has been driven by our need to provide multiple design views for CAD tools

working on a central database, and we are planning to apply MultiView to address this problem.

Acknowledgements. We would like to thank Professor Daniel Gajski for steering us into
this direction of investigating the view mechanism for object-oriented databases. Without his
encouragement, this work would not have come about.

References

[l] Aho, A. V., Hopcroft, J. £.,and Jeffrey. D. (.. The Design and Analysis of Computer Algo
rithms, Addison-Wesley Pub. Company, 1974.

[2] Banerjee, J., Kirn, W., Kim, H.J., and Korth, F., "Semantics and Implementation of Schema
Evolution in Object-Oriented Databases", Proc. of ACM SIMOD 187, May 1987, pp. 311- 322.

[3] Date, C. J ., An Introduction to Database Systems, Vol. I, Fifth Edition, Addison-Wesley
Publishing Company, Inc., 1990.

[4] Gilbert, J.P., "Supporting User Views", OODB Task Group Workshop Proceedings, Ottawa,
Canada, Oct. 1990.

[5] Heiler, S., and Zdonik, S. B., Object views: Extending the vision, In Proc. IEEE Data Engi
neering Conj., Los Angeles, Feb. 1990, pg. 86 - 93.

[6] S. N. Khoshafian and G. P. Copeland, "Object Identity,'' in Proc. OOPSLA '86, ACM, Sep.
1986, pp. 406-416.

[7] Kim, W., A model of queries in object-oriented databases, In Proc. Int. Conf. on Very Large
Databases, pp. 423 - 432, Aug. 1989.

[8] D. Maier, J. Stein, A. Otis, and A. Purdy, "Development of an Object-Oriented DBMS," in
Proc. OOPSLA '86, Sep. 1986, pp. 472-482.

[9] J. Mylopoulos, P. A. Bernstein, and H.K.T. Wong. "A Language Facility for Designing
Database-Intensive Applications," in ACM Trans. on Database Systems, vol. 5, issue 2, pp.
185-207, June 1980.

[10] E. A. Rundensteiner, L. Bic, J. Gilbert, and M. Yin, "Set-Restricted Semantic Groupings,"
in IEEE Trans. on Data and Knowledge Engineering, to appear in April 1993.

[11] Rundensteiner, E. A., and Bic, L., "Set Operations in Object-Based Data Models", in IEEE
Transaction on Data and Knowledge Engineering, to appear in June 1992.

[12] Rundensteiner, E. A., "Supporting Multiple View Schemata in Object-Oriented Databases",
Univ. of California, Irvine, Technical Report #92-07, Jan. 1992.

[13] Schmolze, J. G., and Lipkis, T. A., Classification in the KL-ONE Knowledge Representation
System, The Eigth Int. Joint Conj. on Artificial Intelligence, (IJCAI'83}, Aug. 1983, vol.1,
pg. 330 - 332.

[14] Scholl, M. H., Laasch, C. and Tresch, M., Updatable Views in Object-Oriented Databases,
Proc. 2nd DOOD Conj., Muenich, Dec. 1991.

[15] Shilling, J. J., and Sweeney, P. F., Three Steps to Views: Extending the Object-Oriented
Paradigm, in Proc. of the Int. Conj. on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA '89), New Orleans , Sep. 1989, 353 - 361.

[16] D. W. Shipman, "The Functional Data Model and the Data Language DAPLEX,'' in AC1Vf
Trans. on Database Systems, vol. 6, issue 1, pp. 140-173, Mar. 1981.

[17] Tanaka, K., Yoshikawa, M., and Ishihara, K., Schema Virtualization in Object-Oriented
Databases, In Proc. IEEE Data Engineering Conj., Feb. 1988, pg. 23 - 30.

