Title
Nationwide Potential for Uncontrolled Donations after Cardiac Death in the Era of Extracorporeal Cardiopulmonary Resuscitation

Permalink
https://escholarship.org/uc/item/9xk201x2

Journal
Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 20(5.1)

ISSN
1936-900X

Authors
Latiff, E
Ho, A FW
Shahidah, N
et al.

Publication Date
2019

License
https://creativecommons.org/licenses/by/4.0/
5 Nationwide Potential for Uncontrolled Donations after Cardiac Death in the Era of Extracorporeal Cardiopulmonary Resuscitation

Latiff E¹, Ho A FW² ³, Shahidah N⁴, Ng YY⁵, Leong BSH⁶, HGan HN⁷, Mao DR⁸, Chia MYC⁹, Cheah SO⁵, Ong, MEH¹⁰ /¹ Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ² SingHealth Duke-NUS Emergency Medicine Academic Clinical Programme, Singapore; ³ Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore; ⁴ Department of Emergency Medicine, Singapore General Hospital, Singapore; ⁵ Emergency Department, Tan Tock Seng Hospital, Singapore; ⁶ Emergency Medicine Department, National University Hospital, Singapore; ⁷ Accident & Emergency, Changi General Hospital, Singapore; ⁸ Department of Acute and Emergency Care, Khoo Teck Puat Hospital, Singapore; ⁹ Emergency Medicine Department, Ng Teng Fong General Hospital, Singapore; ¹⁰ Health Services & Systems Research, Duke-NUS Medical School, Singapore

Objective: One organ donor can save 10 or more lives. Despite legislating an opt-out programme in Singapore, rates of organ donation and transplant are still low. This study explored the potential national numbers for uncontrolled donations after cardiac death (uDCD) amongst out-of-hospital cardiac arrest (OHCA) patients in Singapore. In addition, we also attempted to explore the influence of extracorporeal cardiopulmonary resuscitation (ECPR) on uDCD, and the possible negative effects on potential survivors.

Design and Method: We analysed OHCA cases from 2010–2016 in the Pan-Asian Resuscitation Outcomes Study. Four established criteria for identifying individuals eligible for uDCD (Madrid, Maastricht, Paris, and San Carlos Madrid) were retrospectively applied onto the population. Within these four groups we applied a condensed ECPR eligibility criteria, and thereafter applied an estimated ECPR survival rate, extrapolating for possible survivors if ECPR had been applied, assuming a neurologically-intact survival rate of 12.3% (derived from literature reviews).

Results: A total of 12,546 cases qualified for analysis. The four criteria produced four groups eligible for uDCD: Madrid (n = 1202, 9.6%); Maastricht (range (n) = 1987-2460, 15.8-19.6%); Paris (range (n) = 544-648, 4.3-5.1%); and San Carlos Madrid (n = 660, 5.3%). Within these groups, a subset would have been eligible for ECPR: Madrid (n = 208); Maastricht (n = 266); Paris (n = 102); and San Carlos Madrid (n = 152). From these, the potential numbers of neurologically-intact survivors were as follows: Madrid (n = 26, 2.1%); Maastricht (n = 33, 1.3-1.6%); Paris (n = 13, 1.9-2.3%); and San Carlos Madrid (n = 19, 2.8%).

Conclusion: The potential exists to increase the organ donor pool in Singapore by shifting from current criteria of neurological death to cardiac death. A small proportion of these patients qualified for ECPR. However, sizeable numbers of cases were suggested for organ donation despite the possibility of eventually attaining neurologically-favourable recovery through ECPR.

Figure 1. Compiled potential uDCD organ donor numbers. uDCD, uncontrolled donations after cardiac death; OHCA, out-of-hospital cardiac arrest.

Figure 2.1. Application of Madrid criteria. PAROS, Pan-Asian Resuscitation Outcomes Study; OHCA, out-of-hospital cardiac arrest; HIV, human immunodeficiency virus.
Figure 2.1. Application of Maastricht criteria.

PAROS, Pan-Asian Resuscitation Outcomes Study; OHCA, out-of-hospital cardiac arrest.

Figure 3.1. Application of condensed ECPR criteria (Madrid).

PAROS, Pan-Asian Resuscitation Outcomes Study; OHCA, out-of-hospital cardiac arrest.
ECPR, extracorporeal cardiopulmonary resuscitation; ROSC, return of spontaneous circulation.

Figure 3.1. Application of condensed ECPR criteria (Paris).

Table 4.1. Number of possible survivors among eligible organ donors.

<table>
<thead>
<tr>
<th></th>
<th>Madrid</th>
<th>San Carlos</th>
<th>Maastricht</th>
<th>Maastricht WC</th>
<th>Paris</th>
<th>Paris WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1202</td>
<td>660</td>
<td>2460</td>
<td>1987</td>
<td>648</td>
<td>544</td>
</tr>
<tr>
<td>Number of patients eligible for ECPR (%)</td>
<td>17.3</td>
<td>23.0</td>
<td>10.8</td>
<td>13.4</td>
<td>15.7</td>
<td>18.8</td>
</tr>
<tr>
<td>Number of survivors (%)</td>
<td>25.6</td>
<td>18.7</td>
<td>32.7</td>
<td>32.7</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Figure 4.2. Percentage of possible survivors among eligible organ donors. ECPR, extracorporeal cardiopulmonary resuscitation.