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ORIGINAL ARTICLE
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Abstract This paper is concerned with the prediction of mass and momentum transport in

turbulentwall jets developing over smooth and transitionally rough planewalls. The ability to

accurately predict the resulting wall shear stresses and vertical profiles of the Reynolds

stresses in these flows is prerequisite to the accurate prediction of bed scour, sediment re-

suspension and transport by turbulent diffusion. The computations were performed by

solving the Reynolds-averaged forms of the equations describing conservation of mass,

momentum and concentration. The unknown correlations that arise from the averaging

process (the Reynolds stresses in the case of the momentum equation, and the turbulent mass

fluxes in the case of concentration) were obtained from the solution of modeled differential

equations that describe their conservation. Since these models are somewhat more complex

than those typically used in practice, their benefits are demonstrated by comparisons with

results obtained from simpler, eddy-viscosity based closures. Comparisons with experi-

mental data show that results of acceptable accuracy can be obtained only by using the

appropriate combination of models for the turbulent fluxes of mass and momentum that

properly account for the reduction of the Reynolds stresses due to wall damping effects, and

for themodification of themass transfer rates due to interactions with themean rates of strain.

Keywords Turbulent wall jet � Transitional roughness � Turbulent mass transport

1 Introduction

The paper deals with the prediction of turbulent mass and momentum transport in jets

developing over plane smooth and transitionally rough surfaces. Figure 1 shows a schematic

of the flows considered, and defines various flow parameters. Turbulent wall jets are
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encountered in nature in the form of gravity currents, avalanches and other large-scale sus-

pension clouds Rastello and Hopfinger [1], Etienne et al. [2]. They also arise as turbidity

current which are submerged sediment-laden flows that transport large volumes of sediment

downslope in lakes and marine basins Kneller and Buckee [3], Gray et al. [4]. Their occur-

rence on erodible surfaces of cohesive or noncohesive materials is known to be the cause of

significant local scour Mazurek et al. [5], Rajaratnam [6] and Hogg et al. [7]. The ability to

accurately predict the turbulence field in a developing wall jet, and the associated mass

transport, is essential to the accurate prediction of the evolution of scour holes, sediment

suspension, and subsequent transport by the mean flow and turbulent diffusion. The prediction

of the evolution of turbulent wall jets is not straightforward. The flow can be viewed as the

combination of an outer free shear layer and a flat-plate boundary layer below it, divided by a

mixing layer Barenblatt et al. [8]. Interactions occur across the interface (defined by the loci of

points of maximum velocity) and extend deep within each layer. The intensity of these

interactions increases with the difference between the jet’s maximum velocity and that of the

free stream and reaches a maximum when the jet develops in stagnant surroundings. Among

the interesting consequence of this interaction is the separation between the points where the

mean shear (oU/oy in the notation of Fig. 1) and the shear stress are zero. The extent of this

separation increases with streamwise development [9]. Boussinesq’s assumption of a linear

relationship between the turbulent stresses and the local mean rates of strain, the cornerstone

of most practical turbulence closures, implies that these two points are always coincident.

Clearly models which utilize this assumption will fail to correctly capture the consequences

of this interaction on the transport processes that occur across the interface. The most

notable of these is the significant reduction of the Reynolds stresses in the wall jet relative to

an equivalent plane free jet Albayrak et al. [10]. Since most models for suspended sediment

transport obtain the turbulent mass fluxes from Fick’s law which is formulated by analogy to

Boussinesq, then these models too are unlikely to yield the correct vertical profiles of

suspended sediment. The limitations in Boussinesq do not arise in Reynolds-stress transport

closures where the components of the Reynolds stress tensor are obtained from the solution

of modeled differential transport equations describing their conservation. The same is true

for the turbulent mass fluxes where obtaining them from the solution of their differential

conservation equations obviates the need to rely on Fick’s law. The primary objective of this

paper is to determine whether adoption of these more complex turbulence closures leads to

distinct improvements in the accuracy to which the Reynolds stresses and the turbulent mass

fluxes can be predicted relative to the simpler gradient-transport closures.

Fig. 1 Schematic of smooth and rough wall jets and their bulk parameters

486 Environ Fluid Mech (2016) 16:485–502

123



2 The mathematical models

2.1 Mean-flow equations

The time-averaged equations for steady, constant property flow at high Reynolds number

are written in Cartesian-tensor notation as follows:

oUi

oxi
¼0 ð1Þ

Uj

oUi

oxj
¼ o

oxj
m
oUi

oxj
� uiuj

� �
� 1

q
op

oxi
ð2Þ

Uj

oH
oxj

¼ o

oxi

m
Scl

oH
oxi

� uih

� �
ð3Þ

where H is a general transported scalar which in this study would be the concentration, m is
the kinematic viscosity, Sc is the molecular Schmidt number, and uiuj and uih are,

respectively, the unknown Reynolds stresses and the turbulent mass fluxes.

2.2 The models for uiuj

The eddy-viscosity closure used in this study utilizes Boussinesq’s hypothesis which, as

previously mentioned, makes the unknown turbulent stresses linearly proportional to the

local mean rates of strain:

�uiuj ¼ mt
oUi

oxj
þ oUj

oxi

� �
� 2

3
dijk ð4Þ

where mt is the turbulent viscosity which in the present study is determined by using the k-�
model which is agruably the most widely turbulence closure in practice. In this model, mt is
obtained from:

mt ¼ Cl
k2

�
ð5Þ

where Cl ¼ 0:09 and k and �, respectively the turbulence kinetic energy and its dissipation

rate, are obtained from the solution of the equations:
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where Pk is the rate of production of turbulence kinetic energy:

Pk ¼ �uiuj
oUi

oxj
þ oUj

oxi

� �
; ð8Þ

and the Cs and rs are coefficients assigned here their standard values: (C�1 , C�2 , rk, r�) =
(1.44, 1.92, 1.0, 1.22).
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It is worth noting that substitution for �uiuj from Boussinesq in the expression for Pk

precludes the latter from ever assuming negative values. For the case of a wall jet, and to

the boundary-layer approximation of oU/oy � oV/ox; Pk does indeed become negative in

the region in between the points where the locations where the shear stress is zero and the

velocity is a maximum.

In Reynolds-stress transport closures, the Reynolds stresses are obtained from the fol-

lowing transport equation:

Uk

ouiuj

oxk

zfflfflfflffl}|fflfflfflffl{Convection:Cij

¼ � uiuk
oUj

oxk
þ ujuk
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� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Production:Pij
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oxk
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In the above, Pij, the rate of production term which is exact and in no need of modeling.

The diffusion term consists of three terms, namely turbulence fluctuations, pressure fluc-

tuations and molecular diffusion of which only the latter is exact. In this work, the pressure

diffusion term is neglected since the measurements of Irwin [11] in a turbulent wall jet

show that it makes negligible contribution to the stress balances. The turbulent diffusion

term is modeled as proposed by Daly and Harlow [12] i.e. by assuming that the diffusion of

a component of the Reynolds stress tensor is proportional to its spatial gradient:

�uiujuk ¼ Cs

k

�
ukul

ouiuj

oxl
ð10Þ

The coefficient Cs is assigned its usual value of 0.22.

The physical role of the pressure-strain correlations term (Uij) is to redistribute the

turbulence energy amongst the three normal-stress components and to reduce the shear

stresses. It is therefore the most direct agency through which the damping effects of a solid

wall are felt within both the wall and the free shear layers and is thus expected to play a

major role in the prediction of wall jets. The literature contains several proposals for

modeling this term most of which can be expressed in a unified form as [13]:

Uij ¼� ðC1�þ C�
1PkÞbij þ C2� bikbkj �

1

3
bklbkldij

� �

þ C3 � C�
3II
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2

b

� �
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2

3
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� �

þ C5kðbikWjk þ bjkWikÞ

ð11Þ

where Sij ¼ 1
2

oUi

oxj
þ oUj

oxi

� �� �
is the mean rate of strain, Wij ¼ 1

2
oUi

oxj
� oUj

oxi

� �� �
is the mean

vorticity tensor, bij ¼ uiuj=uquq � 1
3
dij

	 

is the turbulence anisotropy and IIb ¼ bijbij

	 

is the

second invariant of anisotropy. Alternative proposals for modeling this term have been

reported, differing only in the relative weighting assigned to the various terms in Eq. (11).
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Since the objective of this paper is determine whether a Reynolds-stress transport closure

can accurately predict this flow, computations were performed with three of these pro-

posals in order to determine their relative merits. The first of these is due to Gibson and

Launder [14] (hereafter referred to as GL). This is arguably the best known and most

widely used pressure-strain model and one which differs from the other two considered

here in that it requires the specification of a function to represent the effects of a solid wall

in damping the fluctuating pressure field in its vicinity. In flows over complex geometries,

ambiguity arises in the way in which this function should be specified, though this would

not be the case here since only one wall is present, and the flow is predominantly parallel to

it. The remaining two proposals do not employ a wall-damping function. They are the

proposal by Speziale et al. [15] (hereafter SSG) which contains a contribution term which

is quadratic in the Reynolds stresses, and that of Dafalias and Younis [16] (hereafter DY)

which is linear in these quantities and which is consistent with the requirement that the

model should not depend on vorticity. The coefficients appropriate to these proposals are

presented in Table 1.

The final approximation needed to close Eq. (9) relates to the term representing dissi-

pation by viscous action. At high values of the turbulence Reynolds number, the dissipative

motions are assumed to be isotropic and the dissipation rate (�) is then obtained from Eq. (7).

2.3 The models for uih

In the scalar-flux transport modeling approach, the mass fluxes are obtained from the

solution of the transport equation:

Uk

oðuihÞ
oxk

¼ o

oxk

m
Sc

ouih
oxk

þ Ch
k

�
ukul

ouih
oxl

� �
þ Pih;1 þ Pih;2 þ pih ð12Þ

In the above, diffusion of uih by turbulent fluctuations has been modeled via gradient-

transport assumptions with Ch ¼ 0:15 Malin and Younis [17]. The rate of dissipation by

viscous action vanishes at high turbulence Reynolds numbers and is dropped. The pro-

duction terms are exact and are given by:

Pih;1 �� ukui
oH
oxk

ð13Þ

Pih;2 �� ukh
oUi

oxk
ð14Þ

The fluctuating pressure–scalar–gradient correlation term (pih), may be viewed as the

counterpart of the pressure–strain term in the uiuj transport equation and is expected to play

an equally role in accounting for the effects of interactions on the mass transport across the

wall jet. Its role is generally to reduce uih. This term is usually modeled as the sum of three

elements:

Table 1 Coefficients for the
alternative pressure-strain models

Model C1 C�
1 C2 C3 C�

3 C4 C5 C�1 C�2 C�

DY 4.0 3.0 0 0.8 2.0 0.6 0 1.45 1.9 0.18

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4 1.44 1.83 0.18

GL 3.6 0 0 0.8 0 1.2 1.2 1.44 1.83 0.16
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pih ¼ pih;1 þ pih;2 þ pih;w ð15Þ

the separate contributions arising respectively from purely turbulence interactions, inter-

actions between the mean strain and fluctuating quantities and corrections to allow for wall

damping. Following Monin [18], and Gibson and Launder [14], these contributions are

modeled follows:

pih;1 ¼� C1h
�

k
uih ð16Þ

pih;2 ¼� C2hPih;2 ð17Þ

pih;w ¼� Ch;w
�

k
uihninkf ð18Þ

where nk is the wall-normal unit vector, and f is a wall-proximity function defined as in the

original reference. The coefficients of these models, which were determined by reference

to measurements of streamwise and cross-stream flux components in homogeneous shear

flows Malin and Younis [17], are assigned the values: ðC1h;C2h;Ch;wÞ ¼ ð2:85; 0:55; 1:2Þ.
While the effects of mean velocity gradients appear explicitly in the exact equation for

the turbulent scalar fluxes Eq. (14), these effects are entirely absent from Fick’s law which

makes the mass fluxes proportional to the gradients of concentration:

�uih ¼ Ct

oH
oxi

ð19Þ

The eddy diffusivity Ct is related to the eddy viscosity via a relation of the form

Ct ¼
mt
Sct

k2

�
ð20Þ

where Sct is the turbulent Schmidt number.

Several proposals have been made to include an explicit dependence on the gradients of

mean velocity in the model for turbulent scalar fluxes (e.g. Yoshizawa [19], Rubinstein and

Barton [20]). The one chosen for this study is the model of Younis et al. [21] which was

developed by postulating a functional relationship based on the terms that appear in the

exact equation and then using tensor representation theory to derive a model which, after

simplification, reads:

�uih ¼C1

k2

�

oH
oxi

þ C2

k

�
uiuj

oH
oxj

þ C3

k3

�2
oUi

oxj

oH
oxj

þ C4

k2

�2
uiuk

oUj

oxk
þ ujuk

oUi

oxk

� �
oH
oxj

ð21Þ

Note that Fick’s law is represented by the first term in Eq. (21). The model coefficients

were assigned the values (C1, C2, C3, C4) = (-0.045, 0.37, -0.0037, -0.023). These

values were deduced by the model’s originators by calibrating it against the LES and DNS

results of Kaltenbach et al. [22] for scalar diffusion in homogeneous turbulence with

uniform shear and constant scalar gradients. While the flows under present consideration

are very different from those of [22]—being inhomogeneous and with a shear rate that

changes sign with distance from the wall—no changes are made to these values on the

basis that a properly-formulated model, once calibrated in simple flows should be expected

to apply in the more complex flows under present consideration. In what follows, this
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model’s ability to predict the rate of mass transfer across the interface between the wall and

free layers will be assessed.

2.4 The wall functions for smooth and transitionally rough surfaces

When utilizing turbulence closures that are valid only at high turbulence Reynolds num-

bers, ‘wall functions’ are needed to bridge the near-wall regions where the turbulence

Reynolds number are low and where viscous effects dominate. These functions are based

on experimental correlations which, for the case of velocity, are provided by the

assumption that the universal logarithmic law of the wall is valid:

U

us
¼ 1

j
log yþ þ B ð22Þ

where j ¼ 0:41 is the von Kármán’s constant and B = 5.0.

Findings from several experiments on wall jets confirm the applicability of this law for

the case where the jet develops over a smooth surface [23, 24]. For the case of a rough

surface, Nikuradse [25] classified roughness based on sand grain roughness Reynolds

number, defined as kþs ¼ ksus=m. A flow is considered smooth if kþs � 5, transitionally

rough when 5\kþs \70 and rough for kþs � 70. For the case of transitional roughness that

is of interest here, Brzek et al. [26] proposed a power-law relationship that takes the form:

Um

us
¼ 2

~Co

~Ci

� �2
yþd;1=2

� ��2~c ð23Þ

with the coefficients defined as

~Co ¼Coð1þ CokÞ ð24Þ

~Ci ¼Ci=ð1þ CikÞ ð25Þ

~c ¼ cþ ck ð26Þ

and

Cok ¼ 0:00576 kþs
	 
0:517 ð27Þ

Cik ¼ 0:03551 kþs
	 
0:88647 ð28Þ

ck ¼ 0:0065 kþs
	 
0:60126 ð29Þ

This is supplemented by the coefficients given in the proposal of George and Castillo [27]:

Co

Ci

¼C01
Ci1

exp
ð1þ aÞA

Wa

� �
ð30Þ

c ¼ c1 þ aA

W1þa
ð31Þ

where W ¼ lnDyþd;1=2 and the dimensionless half width of the wall jet is defined as

yþd;1=2 ¼ yd;1=2us=m. The coefficients used are assigned the values proposed by Rostamy

et al. [28] (Table 2).
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3 Solution of equations

The equations of Sect. 2 were solved simultaneously by means of the EXPRESS code [29].

This is a finite-volume marching integration method which utilizes transformed coordi-

nates that allow for the computational grid to expand to match the actual width of the wall

jet. This is done to ensure that all the computational nodes used remain within the shear

layer. Second-order accurate discretisation is employed for both streamwise and cross-

stream directions using weighted average approximation for the former and central dif-

ferencing for the latter. Typically, the simulations were carried out with 60 nodes that were

unevenly distributed in the cross-stream direction. Virtually identical results were obtained

on grids utilizing 30 and 90 nodes. The solution was started from uniform velocity and

concentration profiles and was advanced step by step in the direction of flow. The size of

the forward step was limited to 1 % of the local width of the shear layer. At each

streamwise location, iterations were performed until the absolute sum of the residuals for

all the dependent variables fell to below 10-3. Uniform distributions at inlet were also

assumed for the turbulence variables. For the cases of the equilibrium wall jets, the

computations were continued until the appropriately non-dimensionalized flow variables

ceased to change. The streamwise pressure gradient was deduced from the reduced form of

streamwise momentum equation applied in the outer, potential-flow region. The remaining

boundary conditions were as follows: at the free stream, the cross-stream gradients of all

dependent variables were set equal to zero. At the wall, the fluxes of momentum were

deduced either from the universal logarithmic law of the wall (Eq. 22) or from the cor-

relation for transitional roughness (Eq. 23).

4 Results and discussion

4.1 Smooth wall

The first flow considered is that of a wall jet developing over a smooth wall. The exper-

imental data are those of Eriksson et al. [24] who used Laser Doppler Anemometry (LDA)

to measure the development of a wall jet, in water, in stagnant surroundings. The Reynolds

number (based on exit slot height and velocity) was 9600. The slot width was sufficiently

wide for the jet to be essentially two-dimensional. The relative turbulence intensity at exit

from the slot was below 1 %.

Figure 2 presents the predicted and measured evolution of mean streamwise velocity

with downstream distance from the slot. The velocity is non-dimensionalised by the local

maximum value and the cross-stream distance by the jet’s half width. In the initial stage of

development, at x/b = 20, the differential turbulence models appear to slightly overesti-

mate the distance from the wall where the maximum velocity occurs. This is very likely

due to a mis-match between the initial conditions in the experiments (not reported but were

indicated to involve laminar-turbulent transition; something which is beyond the capa-

bilities of the present models), and those that were assumed in the calculations. To test the

Table 2 Coefficients for transitionally rough surface wall function, [28]

a A c1 D C01=Ci1

0.46 2.9 0.0362 1.0 0.02385
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sensitivity of the computations to the assumed initial level of turbulence intensity, cal-

culation were performed with relative intensity levels of 1, 5 and 10 % with no significant

differences observed. The influence of the initial conditions recedes with increasing dis-

tance from the slot where the jet eventually transitions to a fully-turbulent state. There, the

differential models are in close agreement with the measurements. In contrast, the k-�
model does not accurately predict the location of the velocity maximum—a result which,

as will be seen later, arises from the incorrect prediction of the turbulent shear stress there

(Fig. 3).

In Fig. 3, the predicted and measured cross-stream profiles of the turbulent stresses are

compared. The shear stress uv enters, via its spatial gradients, into the balance of

streamwise momentum. The maximum value of this stress is therefore very influential in

determining the rate of momentum transfer across the interface and, consequently, in the

shape of streamwise velocity profile especially near the maximum. Here again it can be

Fig. 2 Predicted and measured streamwise mean velocity. Data of [24]

Fig. 3 Predicted and measured streamwise variation of Reynolds stresses. Data of [24]
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seen that the differential models yield essentially similar results that correspond fairly

closely to the experimental data. Close to the wall, the models results are indistinguishable

but in the mid-region of the free shear layer (f y=y1=2 ¼ 1), the GL model underestimates

the measured values which suggests that the influence of the wall-damping functions that

are unique to that model extend somewhat too far from the wall. The maximum shear stress

is underestimated by the k-� model leading to the observed large differences in the mean-

velocity profiles. The profiles of the normal-stress component u2 show a maximum near the

wall, followed by a steep drop to a minima in the where the velocity gradient and the shear

stress (and consequently its rate of production) are zero. The normal stress remains finite

being maintained by diffusion. Beyond this point, u2 recovers and reaches a maximum at

around the mid-point of the free layer where the shear stress and the mean velocity gradient

are near their maxima. The profile of v2 is less eventful in that it shows a monotonic rise

away from the wall until reaching a maxima at mid-layer before falling off to zero in the

free stream. While there is no direct energy generation into this component, it is main-

tained by energy redistribution from u2 via the pressure-strain terms. The DY model

appears to perform the best in capturing this redistribution.

A wall jet attains the self-preserving condition when its half width grows linearly with

downstream distance and the spreading rate attains a constant value. The predicted and

measured growth of the jet’s half width is presented in Fig. 4. A mean spreading rate in the

region between x/b = 20 and x/b = 200 was calculated for comparison with the experi-

mental data. Eriksson gives a spreading rate of 0.078. In their extensive survey, Launder

and Rodi [30] quoted a spreading rate of 0.073 ± 0.002 for a plane wall jet in stagnant

surroundings. George and Castello [31] demonstrated that the spreading rate is not nec-

essarily strictly independent of x but that there’s a dependence on Reynolds number as

well. In this study, the calculated spreading rates were 0.0791 for the DY model, 0.0769 for

SSG, and 0.0726 for the GL model. The k-� model result was 0.0805 which is on par with

the GL model in terms of relative difference with the measurements.

The predicted variation of the skin-friction coefficient Cf (¼ 2ðUs=UmÞ2) with Remð¼
Umb=mÞ is shown in Fig. (5). These results were obtained from a single run. Also plotted

there are measurements by Abrahamsson et al. [32] and the correlations of Bradshaw and

Gee [33] Cf ¼ 0:0315Re�0:182
m

	 

. There is little that distinguishes the differential stress

models results from each other while the k-� model results are significantly lower. Since

the wall shear stress is among the principal parameters that determine the rate of bed-load

Fig. 4 Variation of jet half-
width with distance. Data of [24]
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transport, it is to be expected that the extent of scour in an erodible boundary would be

significantly underpredicted by this model.

4.2 Smooth wall with mass transfer

Attention is now turned to the case of mass transport in a wall jet, specifically to determination

of the mass-transfer rates at the wall, and the resulting cross-stream profiles of concentration.

The predictions are compared with the measurements obtained by Mabuchi and Kumada [34]

in a jet developing over a plane napthalene covered surface. The napthalene method is an

excellent source for experimental data on mass transport since the results are well repro-

ducible and the accuracy is high with the experimental uncertainty estimated to be 	 7% for


2r Goldstein and Cho [35]. The jet was issued from a rectangular slot with Re0 = 17,200

into stagnant surroundings. Using typical values for air at ambient temperatures and the

mean nozzle exit velocity of U0 = 51.6 m s-1 a slot height of b = 5.27 mm was calcu-

lated. A trip wire was placed at the nozzle exit to accelerate the transition to turbulent

conditions. The measured relative turbulence intensity at exit was 	 0:6 %. The Sherwood

number (Sh), which is the dimensionless gradient of concentration at the wall and which

physically represents the ratio of convective to diffusive mass transfer, was obtained in the

experiments by measuring the sublimation of napthalene. The laminar Schmidt number at

ambient temperature T = 295.25 K was obtained from the correlation Scl ¼ 2:28

T=298:16ð Þ�0:1526
[35]. The turbulent Schmidt number was taken as Sct ¼ 0:9.

The predicted and measured profiles of mean velocity are compared in Fig. 6a. It can

again be seen that the differential stress models yield predictions that are in good agree-

ment with the experimental data. In contrast, and as before, the k-� model result is sig-

nificantly at variance with the data, especially in the near wall area. The cross-stream

profiles of mean concentration are presented in Fig. 6. The profiles have been non-di-

mensionalized with the maximum value which is obtained at the wall. For clarity, only the

results obtained with the DY model are presented—these are representative of the other

models’ predictions. No experimental data are available for comparisons. The most

notable observation is the close correspondence between the predictions of the complete

mass-flux transport closure, and the algebraic model of [21] which allows for the turbulent

mass fluxes to depend on the gradients of both mean concentration and mean velocity. The

results obtained with Fick’s law are distinctly different from the other models’, in both the

near-wall and the free shear flow regions.

Fig. 5 Variation of Cf with Rem
for wall jet on plane smooth
surface
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The predicted and measured variation of Sherwood number at the surface with

streamwise distance from the virtual origin is presented in Fig. 7 for the near-field zone,

and in Fig. 8 for the far field. Plotted there are the results obtained with the three models for

the turbulent mass fluxes. The flow field predictions were obtained using the DY model.

The results show that the algebraic YSC model and the differential mass-flux model yield

identical results that accord very closely with the measurements. The exception being close

to the nozzle exit where the initial conditions that prevailed in the experiments are not well

specified. In contrast, Fick’s law, in combination with the k-� model, yields results that are

significantly at variance with the measurements.

4.3 Transitionally rough wall

Recent measurements of a wall jet developing over a transitionally rough surface were

reported by Rostamy et al. [28]. The measurements were obtained in a water flume using

(a) (b)

Fig. 6 a Predicted and measured velocity distribution at x/b = 25. Data of [34]. b predicted profiles of
mean concentration

Fig. 7 Near-field variation of
Sherwood number with
streamwise distance. Data of [34]
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LDA. The Reynolds number was Re0 ¼ 7500, with a slot height of b = 6 mm and a mean

exit velocity U0 = 1.21 m s-1. The relative turbulence intensity at the nozzle exit was less

than 1 %. To generate roughness, a grit sheet with a nominal grain size of kg = 0.53 mm

was positioned at x = 10b. The equivalent sand grain roughness size was estimated to be

ks 	 1:1mm.

The predicted and measured cross-stream profiles of mean velocity for flow over the

transitionally rough surface are compared in Fig. 9. Measurements obtained in the same

study for a flow over a smooth surface are included for comparison. Profiles are pre-

sented for two downstream locations. The k-� model results are clearly in error at both

locations. The transitionally rough profiles for the differential stress models all appear to

overestimate the measurements near the wall. The SSG model produces markedly better

agreement with the measurements in the region adjacent to the free stream. This is due to

the inclusion in this model of terms that are quadratic in the Reynolds stresses (the C2 term

in Eq. 11). The contribution of these terms to the overall level of the pressure-strain

correlations has been shown to become influential in the development of free shear flows

Fig. 8 Far-field variation of
Sherwood number with distance.
Data of [34]

(a) (b)

Fig. 9 Velocity profiles for transitionally rough and smooth surfaces at: a x/b = 50, b x/b = 70. Data of
[28]
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[36] and hence the observed improvement in its prediction of the outer regions of the wall

jet.

For a self-similar mean velocity profile the momentum field can be characterized by the

following relation [37]: Z 1

0

U2dy ¼ kU2
my1=2 ð32Þ

where

k ¼
Z 1

0

�
U

Um

�2
d

�
y

y1=2

�
ð33Þ

The values obtained with the different turbulence models are compared with the experi-

mental data by Rostamy and Wygnanski in Table 3. The DY and SSG models results are

closest to the measured values, while the GL model yields a lower value. The k-� model

results are significantly lower still. A comparison for the spreading rate is also given in

Table 3. According to Rostamy there is almost no change in the spreading rate due to

transitional roughness. This is borne out in the Reynolds-stress models results (Fig. 10).

The variation of friction coefficient with Reynolds number is shown in Fig. 10. The

present predictions are compared with the measurements of Tachie et al. [23] and Eriksson

et al. [24]. For the smooth wall case, the DY and SSG models yield almost

Table 3 Predicted and measured
momentum field characterization
and spreading rates for smooth
and transitionally rough surfaces

k dy1=2=dx � 10�2

Smooth Rough Smooth Rough

Wygnanski et al. [37] 0.74 – – –

Rostamy et al. [28] 0.745 0.731 7.91 8.06

DY 0.739 0.741 8.98 9.00

SSG 0.740 0.742 8.71 8.75

GL 0.731 0.734 8.14 8.10

k-� 0.699 0.705 9.17 9.12

Fig. 10 Skin-friction coefficient in transitionally rough wall jet
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indistinguishable results in contrast with the k-� model which obtains significantly lower

values. For the rough wall case, the DY and SSG models again yield a close match to the

data while the k-� model significantly underestimates the velocity in the near-wall region.

5 Concluding remarks

The paper puts on record the capabilities and limitations of a number of turbulence closures

in predicting the transport of mass and momentum in wall jets developing over smooth and

transitionally-rough surfaces. The turbulence closures consisted of the widely-used k-�
model, and the more advanced closures that require the solution of modeled differential

transport equation for each component of the Reynolds-stresses and the mass fluxes. Also

considered is an algebraic model for the turbulent mass fluxes that allows for the depen-

dence of these fluxes on the gradients of both the mean concentration and the velocity.

Alternative proposals for modeling the unknown fluctuating pressure strain correlations

were assessed with reference to detailed measurements of turbulent wall jets developing

over smooth surfaces. It was found that the three proposals examined yielded essentially

similar results with the DY model offering best overall performance (Table 4; Fig. 11). The

results also suggest that the use of the model of the GL model is not recommended for

these flows as it involves the use of a wall-damping function whose influence extends well

into the outer region. While all the differential models succeeded in reproducing the

measured variation of wall shear stress with Reynolds number, the k-� closure failed badly

in this respect producing results that seriously underestimate this parameter. Since the wall

shear stress is the driving parameter in nearly all models for bedload sediment transport,

the present results would suggest that the use of this model will produce erroneous results

leading to, for example, underestimating the extent of bed scour. Concerning the rate of

mass transfer from the wall, a process that plays an important part in determining the

occurrence and extent of sediment re-suspension, the use of the k-� model together with

Fick’s law again produces results that are at variance with the measurements. In contrast,

both the differential and the extended models for the turbulent mass fluxes provide an

accurate prediction of the mass transfer rate yielding essentially indistinguishable results.

This argues in favor of using the simpler, extended algebraic model for predicting sediment

transport post re-suspension.

Acknowledgments M. Zumdick gratefully acknowledges the financial support provided by the Hermann-
Reissner-Stiftung to support his stay at the University of California, Davis.

Appendix: Numerical accuracy

Grid-independence tests were performed with the number of cross-stream nodes varied by a

factor of 3 viz. 30, 60 and 90. The differences between the results obtained with the finest

and the coarsest grids was of the order of 1 % (e.g. the jet’s spreading rate, a sensitive

parameter whose value is detemined by the details of the turbulence field, was predicted with

the 30 nodes simulations to be 0.079 and with the 90 nodes simulations to be 0.078). The

reasons for such small dependence of the computed results on the grid arise from the fact that

the flow is uni-directional and is thus largely free of the interpolation errors that arise when

the flow streamlines are not aligned with the grid lines. Indeed the computational grid is
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designed so as to adapt to the physical extent of the flow and in this way remain aligned with

the streamlines, and with all the cross-stream nodes always located within the flow.

Quantification of the degree of correspondence between the predictions and the mea-

surements of Eriksson et al. [24] is presented in Table 4 for the maximum values of the

Reynolds stresses at three streamwise locations, and in Fig. 11 for the cross-stream profiles

of streamwise velocity. Undoubtly some of the observed differences arise from short-

comings in the models but it should also be noted that the experimental results themselves

are subject to uncertainties. In this regard, it is interesting to note that all the models yield

differences that are positive in sign which may suggest that the measurements underesti-

mate the actual values to some extent. Figure 11 also shows that the percentage differences

decrease markedly with distance from the nozzle exit. This is to be expected considering

that the starting profiles for the computations had to be assumed due to the absence of

measurements there.

See Table 4 and Fig. 11.

Table 4 Percentage difference beween predicted and measured maximum Reynolds stresses

uv=U2
m u2=U2

m v2=U2
m

x=b ¼ 40 70 40 70 100 40 70 100
Exp. 0.0151 0.0156 0.0157 0.0431 0.0451 0.0485 0.0234 0.0238 0.0257

DY (%) 19.1 7.6 4.8 7.8 4.4 0.4 29.9 15.0 17.7

SSG (%) 22.4 9.6 6.7 8.5 4.4 0.4 38.0 24.2 26.7

GL (%) 31.0 17.9 15.7 8.8 0.4 5.0 45.3 28.0 30.6

k-� (%) 6.5 7.0 6.1 – – – – – –

Data of Eriksson et al. [24]

Fig. 11 Cross-stream variation of relative differences beween predicted and measured mean velocity. Data
of Eriksson et al. [24]
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