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Continental scale, high order, high spatial resolution, ice sheet
modeling using the Ice Sheet System Model (ISSM)

E. Larour,1 H. Seroussi,1,2 M. Morlighem,1,2 and E. Rignot1,3

Received 1 July 2011; revised 1 January 2012; accepted 10 January 2012; published 10 March 2012.

[1] Ice flow models used to project the mass balance of ice sheets in Greenland and
Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf
Approximation (SSA), sometimes combined into so-called “hybrid” models. Such models,
while computationally efficient, are based on a simplified set of physical assumptions
about the mechanical regime of the ice flow, which does not uniformly apply everywhere
on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes
are taking place at present. Here, we present a new thermomechanical finite element model
of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses,
high spatial resolution capability and data assimilation techniques to better capture ice
dynamics and produce realistic simulations of ice sheet flow at the continental scale.
ISSM includes several approximations of the momentum balance equations, ranging from
the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also
relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM
employs data assimilation techniques, at all levels of approximation of the momentum
balance equations, to infer basal drag at the ice-bed interface from satellite radar
interferometry-derived observations of ice motion. Following a validation of ISSM with
standard benchmarks, we present a demonstration of its capability in the case of the
Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet
realistically at a high spatial resolution, with higher-order physics, thereby providing a
pathway for improving projections of ice sheet evolution in a warming climate.

Citation: Larour, E., H. Seroussi, M. Morlighem, and E. Rignot (2012), Continental scale, high order, high spatial resolution, ice
sheet modeling using the Ice Sheet System Model (ISSM), J. Geophys. Res., 117, F01022, doi:10.1029/2011JF002140.

1. Introduction

[2] Detailed and realistic modeling of the evolution of the
Antarctic and Greenland Ice Sheets is needed to improve pro-
jections of sea level rise in awarming climate [Intergovernmental
Panel on Climate Change (IPCC), 2007]. Such amodeling effort
requires an accurate representation of the physics of ice motion,
well-constrained boundary conditions at varying geometrical
scales and computationally scalable software packages. In the
past, large-scale ice sheet models were based on simplified
models for ice flow, e.g., the Shallow Ice Approximation (SIA),
which assumes that the basal shear stress of grounded ice is
completely balanced by the gravitational driving stress [Hutter,
1982]. The SIA is computationally efficient and practical,
especially for long-term reconstructions, but it is not relevant
for short-term projections of the rapid evolution of ice streams,
glaciers and ice shelves in response to climate change.

[3] On floating ice shelves, the SIA breaks down as verti-
cal shear becomes negligible compared to lateral shear. The
Shallow Shelf or Shelfy Stream Approximation (SSA) pro-
vides a viable, alternative solution that neglects vertical shear
stresses and assumes that horizontal velocity is depth inde-
pendent [MacAyeal, 1989; Morland and Zainuddin, 1987].
The SSA was initially designed for floating ice shelves and
was extended to the case of fast-flowing ice streams, where
most of the displacement is due to sliding. The SSA is a two-
dimensional model that solves for the depth-averaged
velocity and therefore cannot be applied in areas where ver-
tical variations in speed are not negligible like in the vicinity
of grounding lines (where ice detaches from the bed and
starts floating), ice stream margins, or the complex flow near
an ice divide.
[4] Higher-order models, e.g., the three-dimensional (3D)

Blatter-Pattyn approximation (BP) [Blatter, 1995; Pattyn,
2003], are more desirable in these situations. These models
capture longitudinal stresses that are significant in fast-flowing
ice streams, as well as components of the vertical shear stress
that dominate in areas where flow is slow, and sliding at the
base is small. These models are especially relevant for areas
where both regimes of ice flow are of equal importance,
as shown by Pattyn [1996] for the Shirase Glacier, East
Antarctica. These models are usable over most of the ice sheet
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and ice shelf areas, but their assumptions are not strictly valid
near grounding lines where a full-Stokes model (FS) is sig-
nificantly more accurate [Lestringant, 1994; Nowicki and
Wingham, 2008; Durand et al., 2009a, 2009b; Gagliardini
et al., 2010; Morlighem et al., 2010]. FS is the most physi-
cally relevant model, but it is computationally expensive,
therefore challenging to use at the continental scale at a high
spatial resolution. Furthermore, FSmay not be needed on large
parts of the ice sheet where the resulting improvement in
model accuracy will not be significant.

[5] Here we present a new finite element, thermomechanical
numerical model of ice flow named ISSM (Ice Sheet System
Model) that includes higher-order stress components, high
spatial resolution capability and relies on a massively paralle-
lized architecture. In the first part, we describe the equations
adopted in ISSM to model ice flow, including its thermal
regime, stress regime, boundary conditions and ice rheology.
In the second part, we describe how we solve these equations
using the Finite Element Method (FEM), static adaptive mesh
refinement, scalable parallel iterative and direct solvers, and a
specifically tailored software architecture. We then discuss our
implementation of inverse methods, and what was done in
ISSM tomake it applicable at the continental scale. In the third
part, we discuss the evaluation of ISSM against ice flow
benchmarks. In the fourth part, we present an application of
ISSM to the modeling of the entire Greenland Ice Sheet (GIS)
to illustrate the large scale applicability of ISSM. In the fifth
part, we discuss the results and various steps for improving
the model. We conclude on the utilization of ISSM to
improve projections of ice sheet contribution to sea level rise.

2. Model

[6] ISSM is a coupled thermomechanical ice flow model.
It relies on the classical conservation laws for momentum
balance, mass balance and energy balance, combined with
constitutive material laws and boundary conditions. These
laws have been described in numerous prior publications but
are repeated here for the sake of completeness and to explain
precisely how ISSM is implemented. In the following sub-
sections, we describe the mechanical model, the thermal
model, boundary conditions, calving front and grounding
line dynamics. All notations and values for physical con-
stants are presented in Table 1 for ease of use. Figure 1 can
be used as reference for the geometrical information and
notations used in the model.

2.1. Mechanical Model

[7] ISSM comprises four different ice flow models, based
on a gradual simplification of the full-Stokes (FS) momen-
tum balance equations. The first model is FS:

r � sþ r g ¼ 0 ð1Þ

Tr _ɛð Þ ¼ 0 ð2Þ

where r � s is the divergence vector of the stress tensor, s,
r the ice density, g the acceleration due to gravity, _ɛ the
strain rate tensor and Tr the trace operator.
[8] Equation (1) expresses the balance of stresses, and

equation (2) expresses the incompressibility of flow. In
equation (1), acceleration is neglected, following a scale
analysis by Reist [2005] that shows ice flow acceleration is
negligible even in the most extreme surges or streamflow
that may occur in a glacier.
[9] The material constitutive law describes the deforma-

tion of ice under stress. For incompressible viscous fluids,
the constitutive law has the form:

s′ ¼ 2m _ɛ ð3Þ

Table 1. Notations, Physical Constants, and Values for Parameters
Used in ISSM

Symbol Description Unit (Value)

A0 Ice flow factor Pa�n a�1

b Lower surface z-coordinate m
ba Bathymetry m
bHE Depth of ice bottom in

hyd. equ.: bHE = �Hr/rw
m

B Ice hardness Pa a1/n

c Ice specific heat capacity J kg�1 K�1 (2093)
cpM Mixed layer specific heat J kg�1 K�1 (3974)
g Acceleration due to gravity m s�1 (9.81)
g Acceleration due

to gravity norm
m s�1 (9.81)

G Geothermal heat flux W m�2 (0.05)
H Ice Thickness m
kth Ice thermal conductivity W m�1 K�1 (2.4)
L Ice specific latent heat of fusion J kg�1 (3.34 � 105)
_M b Melting rate m a�1 ice equivalent
_M s Accumulation rate m a�1 ice equivalent
n Glen’s flow law exponent dimensionless (3)
p Ice pressure Pa
Q Activation energy for ice J mol�1

R Universal gas constant J mol�1 K�1 (8.31)
s Upper surface z-coordinate m
T Ice temperature K
T* Ice temperature corrected for

changes in melting point
K

Tf Pressure melting point K
u, v, w Ice velocity components m s�1

�u, �v Depth-averaged ice
velocity components

m s�1

v Ice velocity vector m s�1

�v Depth-averaged ice velocity vector m s�1

vb Ice velocity vector, tangential
to the bedrock

m s�1

w Mesh velocity m s�1

a Basal drag coefficient (Pa s/m)1/2

b Rate of change of melting
point with pressure

K Pa�1 (9.8 � 10�8)

g Thermal exchange velocity m s�1 (1.00 � 10�4)
Gb Geometric domain defined by the

bed of the ice sheet/ice shelf
N/A

Gs Geometric domain defined by the
surface of the ice sheet/ice shelf

N/A

_ɛ Strain rate tensor s�1

_ɛe Effective strain rate tensor s�1

llog Tikhonov regularization term
for logarithmic cost function

m�3 s�1 Pa�1 (8.1 � 10�15)

labs Tikhonov regularization term
for absolute cost function

m5 s �3 Pa�1 (8.1 � 10�15)

m Ice viscosity Pa s
�m Depth-averaged viscosity Pa s
r Ice density kg m�3 (916)
rw Water density kg m�3 (1000)
s Cauchy stress tensor Pa
s′ Deviatoric stress tensor Pa
tb Friction stress Pa
F Deformational heating W m�3
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where s′ = s + pI is the deviatoric stress tensor, I the
identity matrix, p the ice pressure and m the ice effective
viscosity. The ice effective viscosity is assumed to be non-
linear and follow a Norton-Hoff law [Glen, 1955]:

m ¼ B

2 _ɛ
1�n
n
e

ð4Þ

where B is the ice hardness, n Glen’s law exponent and _ɛe
the effective strain rate (defined as the second invariant of
the strain rate tensor). B is temperature dependent and
follows an Arrhenius law:

B Tð Þ ¼ A0exp
�Q

RT∗

� �� ��1=n

ð5Þ

where A0 is the flow factor, Q the activation energy for ice
creep, R the universal gas constant and T* = T � bp the
absolute temperature corrected for the dependence of melting
point on pressure, b being the rate of change of melting point
with pressure. The values of these constants follow Payne
et al. [2000] (see Table 1). Alternatively, ice hardness, B,
could be chosen to follow the temperature-dependent rela-
tionship discussed by Cuffey and Paterson [2010].
[10] Using equation (3) and Glen’s flow law (equation (4)),

Equation (1) can be rewritten in terms of velocity compo-
nents and pressure:

∂
∂x

2m
∂u
∂x

� �
þ ∂
∂y

m
∂u
∂y

þ m
∂v
∂x

� �
þ ∂
∂z

m
∂u
∂z

þ m
∂w
∂x

� �
� ∂p

∂x
¼ 0

ð6Þ
∂
∂x

m
∂u
∂y

þ m
∂v
∂x

� �
þ ∂
∂y

2m
∂v
∂y

� �
þ ∂
∂z

m
∂v
∂z

þ m
∂w
∂y

� �
� ∂p

∂y
¼ 0

ð7Þ
∂
∂x

m
∂u
∂z

þ m
∂w
∂x

� �
þ ∂
∂y

m
∂v
∂z

þ m
∂w
∂y

� �
þ ∂
∂z

2m
∂w
∂z

� �

� ∂p
∂z

� rg ¼ 0 ð8Þ

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0 ð9Þ

where (u, v, w) are the x, y and z components of the velocity
vector v, in the (x, y, z) Cartesian coordinate system, with z in
the vertical direction. Equations (6), (7), (8), and (9) are at the
core of FS. This model includes four unknowns (u, v, w, p)
and it is therefore computationally demanding to solve for.
[11] The second model is a simplified three-dimensional

(3D) model from Blatter [1995] and Pattyn [2003] (BP)
derived from FS by making two assumptions: (1) the hori-
zontal gradients of vertical velocities are negligible com-
pared to the vertical gradients of horizontal velocities:

_ɛxz ¼ 1

2

∂u
∂z

; _ɛyz ¼ 1

2

∂v
∂z

ð10Þ

and (2) the bridging effects [van der Veen and Whillans,
1989] are negligible, which reduces the third equation of
the momentum balance (equation (8)) to:

∂
∂z

2m
∂w
∂z

� �
� ∂p

∂z
� rg ¼ 0 ð11Þ

For a more exhaustive presentation of this derivation, we
refer the reader to Schoof and Hindmarsh [2010]. The first
two FS equations (equations (6) and (7)) are then reduced to:

∂
∂x

4m
∂u
∂x

þ 2m
∂v
∂y

� �
þ ∂
∂y

m
∂u
∂y

þ m
∂v
∂x

� �
þ ∂
∂z

m
∂u
∂z

� �
¼ rg

∂s
∂x
ð12Þ

∂
∂x

m
∂u
∂y

þ m
∂v
∂x

� �
þ ∂
∂y

4m
∂v
∂y

þ 2m
∂u
∂x

� �
þ ∂
∂z

m
∂v
∂z

� �
¼ rg

∂s
∂y
ð13Þ

[12] These two equations are at the core of the BP model,
which has only two unknowns (u and v) instead of four.
Vertical velocity, w, is recovered through incompressibility,
and is hence decoupled from the initial system of equations.
[13] The third model, the Shallow-Shelf or Shelfy-Stream

Approximation (SSA) [MacAyeal, 1989] results from further
assuming that vertical shear is negligible:

_ɛxz ¼ 0; _ɛyz ¼ 0 ð14Þ

Figure 1. Glacier cross section. The transition between grounded ice (ice sheet) and floating ice
(ice shelf) is the grounding line. Purple arrows show a simplified representation of ice flow near the
ice sheet/ice shelf transition.
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This assumption makes equations (12) and (13) independent
of z. Depth averaging yields:

∂
∂x

4H�m
∂u
∂x

þ 2H�m
∂v
∂y

� �
þ ∂
∂y

H�m
∂u
∂y

þ H�m
∂v
∂x

� �
¼ rgH

∂s
∂x
ð15Þ

∂
∂y

4H�m
∂v
∂y

þ 2H�m
∂u
∂x

� �
þ ∂
∂x

H�m
∂u
∂y

þ H�m
∂v
∂x

� �
¼ rgH

∂s
∂y
ð16Þ

where �m is the depth-averaged ice viscosity, H the local ice
thickness and s the upper surface elevation. Vertical velocity,
w, is again recovered through incompressibility (equation (2)).
SSA is a two-dimensional (2D) model with two unknowns
(u and v). It is therefore considerably faster to solve than BP
because it is a 2D model whereas BP is a 3D model.
[14] The last model implemented in ISSM is the Shallow

Ice Approximation (SIA) [Hutter , 1983]. In this model, only
the deviatoric stress components s′xz and s′yz are included. The
horizontal gradients of vertical velocity are also neglected
compared to the vertical gradients of horizontal velocities, so
the FS equations are reduced to:

∂
∂z

m
∂u
∂z

� �
¼ rg

∂s
∂x

∂
∂z

m
∂v
∂z

� �
¼ rg

∂s
∂y

ð17Þ

[15] This simple model is the basis of many ice sheet models
used in long term reconstruction of ice sheet dynamics [Payne
and Baldwin, 2000; Ritz et al., 1997;Huybrechts et al., 2003].
It is computationally efficient, as each equation (for compo-
nents u and v) can be solved independently, involving only one
degree of freedom.

2.2. Mechanical Boundary Conditions

[16] For all four models (FS, BP, SSA and SIA), boundary
conditions are required to ensure a solution can be computed.
At the surface of the ice sheet, we assume a stress-free surface:

s � n ¼ 0 ð18Þ
where n is the unit outward-pointing normal vector. Friction is
applied at the ice-bedrock interface. The basal drag follows an
empirical relationship presented by Paterson [1994] and first
calibrated by Budd et al. [1979], written in a viscous-type law
of friction:

tb ¼ �a2vb ð19Þ
where vb is the basal velocity vector tangential to the glacier
base plane, tb the tangential component of the external force
s � n, and a2 a positive constant (i.e., stress opposes ice
motion). Paterson [1994], usually includes the effective pres-
sure in the basal friction law, to account for the presence of
water lubricating the ice-bedrock interface. However, ISSM
is not currently capable of modeling the distribution of water
under an ice sheet.
[17] At the ice-seawater interface, water pressure is imposed

according to:

s � n ¼ �rwgz n for z < 0
s � n ¼ 0 for z ≥ 0

ð20Þ

where rw is the water density and z the vertical coordinate
equal to zero at sea level (positive upwards). For the BPmodel,
the ice pressure is taken equal to the lithostatic pressure so that
this boundary condition may be expressed in terms of the
deviatoric stress:

s′ � n ¼ rwg min z; 0ð Þ � rg s� zð Þð Þn: ð21Þ
[18] We assume this approximation to be valid as long as

the term ∂
∂z (2m

∂w
∂z) can be neglected in equation (11). A more

complete implementation of this boundary condition
assuming non lithostatic pressure is currently being imple-
mented for such cases.
[19] For SSA, this boundary condition is depth-integrated:

s′ � n ¼ 1

2
rgH2 � 1

2
rwg min b; 0ð Þ2

� �
n ð22Þ

where b is the elevation of the ice lower surface.
[20] On all other boundaries where stresses are not speci-

fied, velocity constraints are applied. This is necessary in
order for the formulations to be complete and for non-sin-
gular solutions to exist. Usually, observed surface velocities
are used to constrain such boundaries.

2.3. Thermal Model

[21] The ice hardness, B, in equation (4) is temperature
dependent. The thermal equation is derived from the energy
balance equation and includes conduction-advection in three
directions. We do not use s-coordinates [Pattyn, 2003] but
rely on the Arbitrary Lagrangian-Eulerian (ALE) method
[Hughes et al., 1981;Donea et al., 2004]. The mesh velocity,
w, is therefore included in the equation to account for mesh
displacements:

∂T
∂t

¼ w� vð Þ � rT þ kth
rc

DT þ F
rc

ð23Þ

where T is the ice temperature, kth the ice thermal conduc-
tivity, c the ice heat capacity, assumed to be both constant,D
the Laplace operator, and F the heat production term
(deformational heating):

F ¼ Tr s _ɛð Þ ¼ 4m _ɛ2e ð24Þ

where _ɛe is the effective strain rate.
[22] Ice temperature needs to be kept below the pressure

melting point. Our strategy for implementing this will be
presented in the Numerical Implementation Section.

2.4. Thermal Boundary Conditions

[23] The thermal model presented above is constrained
using the following boundary conditions. At the surface, air
temperature is prescribed as a Dirichlet boundary condition
equal to the mean annual air temperature, Ts:

T ¼ Ts: ð25Þ

On grounded ice, we impose the following relationship
between the geothermal heat flux, G, and the frictional heat
flux:

kthrT � n ¼ G� tb � vb: ð26Þ
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Under floating ice, we use the simple parameterization from
Holland and Jenkins [1999]:

kthrT � n ¼ �rwcpMg T � Tf
� � ð27Þ

with cpM the mixed layer specific heat capacity, g the ther-
mal exchange velocity, and Tf = 273.15 � bp the tempera-
ture of freezing of seawater. This parameterization does not
explicitly account for melting at the base, which has been
shown to be a very important process. Further work is
indeed required to couple ISSM and ocean circulation
models in order to accurately capture such melting rates.
For all remaining boundaries, a zero flux boundary condition
is applied.

2.5. Mass Transport Model

[24] The mass conservation equation relates ice thickness
to ice flux divergence, surface mass balance and basal mass
balance. This equation is used to calculate the rate of ice
thickness change:

∂H
∂t

þr � H�v ¼ _Ms � _Mb ð28Þ

where H is ice thickness, �v = ( u ,�v ) the depth-averaged
velocity, _M s the surface mass balance (m a�1 in ice equiv-
alent, positive for accumulation, negative for ablation) and
_M b the basal melting rate (m a�1 in ice equivalent, positive
when melting, negative when freezing). This equation is
used to change the glacier thickness at each time step. In
order to update surface and bed position using the new
thickness, we implement the following strategy: for groun-
ded ice, the bedrock is assumed to stay constant in time, and
the entire thickness is added to the bedrock position to infer
the new surface; for floating ice, the thickness increment is
distributed between the bed and surface using a hydrostatic
assumption. This strategy is not ideal for floating ice in the
immediate vicinity of the grounding line, where it has been
shown that hydrostatic equilibrium is not always fulfilled
[Lestringant, 1994]. This is specifically an issue for the FS
model which does not assume hydrostatic equilibrium, and
which can be very sensitive to variations in the ice geometry
near the grounding line. Further work is therefore required to
implement a formulation of the transport equations using the
local surface velocity to transport the upper free surface,
similar to what has been implemented by Nowicki and
Wingham [2008] and Durand et al. [2009a, 2009b].

2.6. Mass Transport Boundary Conditions

[25] The following boundary conditions are used for the
mass transport model in case of regional scale models, where
boundaries define a closed domain. Ice thickness is then
constrained on the inflow boundary, or at the ice divide
(where mass advection is negligible):

H ¼ Hobs ð29Þ

where Hobs is the measured ice thickness. At outflow
boundaries, we apply a free-flux boundary condition so that
the mass flux is left unconstrained. For large scale ice sheet
models, where the only boundary is the ice front, no con-
straint is needed at the ice divide, only free-flux boundary
conditions for the entire ice front.

2.7. Ice Front Dynamics

[26] The present-day ice front position is imposed as a
mesh boundary, which remains fixed in time. We apply a
free-flux boundary condition at the ice front where the melt
rate and calving rate are assumed to exactly compensate for
the ice speed at the front, i.e., we assume a stable, fixed ice
front position. In future developments, we will allow this
boundary to migrate with time, with a migration controlled
by a calving law. At this time, ISSM includes the simplest
form of calving front dynamics.
[27] Indeed, this criterion is also used for the entire ice

margin of the ice sheet. In case the margin retreats, ISSM
assumes a minimum ice thickness of 1 m, which allows for the
retreating ice to become dynamically decoupled from the rest
of the ice sheet, without introducing instabilities in the ice flow
dynamics, and without the need for actively imposing velocity
constraints when the ice is fully retreated. This scenario will
also be covered more efficiently when dynamic boundary
migration is implemented.

2.8. Grounding Line Dynamics

[28] Grounding line migration is a key control on ice flow
dynamics [Schoof, 2007a, 2007b; Nowicki, 2007; Durand
et al., 2009b, 2009a], which is important to capture in
order for transient ice flow models to be realistic. In ISSM,
we use a simple 3D grounding line migration criterion based
on the hydrostatic equilibrium (see Figure 1). At each time
step of the transient ice flow solution, we check the fol-
lowing for every vertex of the mesh:
1. The criteria b ≤ ba where ba is the depth of the glacier

bed or seafloor. For most ice sheet/ice shelf configurations,
b is negative. If this condition is verified for a floating vertex
(i.e., on an ice shelf), we ground the vertex and force b = ba.

2. The criteria b > bHE where bHE is the depth of the
bottom of the ice in hydrostatic equilibrium: bHE = �Hr/rw.
If this condition is verified for a grounded vertex (i.e., on the
ice sheet), we unground the vertex and force b = bHE.
[29] These two criteria are applied with the additional con-

straint that water cannot penetrate under an ice shelf cavity if
there is no open channel for the water to circulate. This means
that we do not allow vertices that are not connected to the
grounding line to unground. Of course, the presence of
hydrological networks connected to the open ocean near the
grounding line is contrary to this assumption. However ISSM
is not currently capable of modeling such water distribution
under an ice sheet, especially when interactions with the open
ocean are considered. Further work is therefore required to
include better hydrological/ocean circulation interactions into
our migration criteria.
[30] Furthermore, our criteria for grounding line migration

need to be further refined, using a full-Stokes computation of
the stress-balance of the ice sheet/ice shelf system, and
migration based on contact and pressure conditions at the
grounding line [Nowicki and Wingham, 2008; Durand et al.,
2009a, 2009b]. Work is currently in progress toward imple-
menting such criteria.

3. Numerical Implementation

[31] The previous section dealt with the classic equations
for modeling ice flow. Solving these equations is a challenge
when the goal is to capture ice flow at the continental scale,
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e.g., in Greenland or Antarctica. In this section, we describe
how we approach this challenge in ISSM using the FEM,
static adaptive mesh refinement, parallel iterative solvers,
and inverse methods for the different approximations of
ISSM.

3.1. FEM Discretization and Treatment
of Nonlinearities

[32] ISSM employs the Continuous Galerkin Finite Element
Method for discretization of the ice flow equations. This
method allows for the use of unstructured meshes, which are
most efficient to capture varying spatial resolutions across an
ice sheet. For the set of diagnostic equations, triangular
Lagrange P1 elements (piecewise linear) are used in 2D and
prismatic P1 elements in 3D, except for FS. These elements
are simple to implement and provide stable discretizations. For
FS, they become unstable, and condensed MINI elements
[Gresho and Sani , 2000b] have to be used to fulfill the com-
patibility Ladyzhenskaya-Babuška-Brezzi (LBB) condition.
In order to treat the material nonlinearity introduced by the
viscosity dependence on the effective strain rate (equation (4)),
we rely on a Picard iteration scheme [Hindmarsh and Payne,
1996; Reist, 2005; De Smedt et al., 2010]. Several stopping
criteria are implemented:

1. The criteria, �res < �1, where �res is defined as kKUold� Fk/
kFk where K is the current iteration stiffness matrix, F the
current load vector, Uold the solution vector at the previous
iteration, k�k the Euclidean norm, and �1 a threshold (usually
taken a 10�4, see Table 1). This criterion ensures the con-
vergence of the mechanical stress equilibrium.

2. The criteria, �rel < �2, where �rel is defined as k(Uold�U)/
Uoldk∞, whereU is the solution vector of the current iteration,
k�k∞ the infinity norm, and �2 a threshold (usually taken
as 10�2, see Table 1). This criterion ensures the convergence
of the solution vector in relative terms.

3. The criteria, �abs < �3, where �abs is defined as kUold�Uk∞
and �3 a threshold (usually taken as 10 m/a, see Table 1). This
criterion ensures convergence of the solution vector in
absolute terms.
[33] All three criteria can be combined, although ISSM

ensures that at least the first criterion on the convergence of
the mechanical stress equilibrium is always met.
[34] For the thermal model, P1 elements are used, com-

bined with the Streamline Upwind Petrov-Galerkin (SUPG)
[Gresho and Sani, 2000a] formulation to prevent potential
numerical oscillations due to dominant advection terms.
Temperature is kept below the pressure melting point using
an iterative penalty-based scheme, similar to those used for
contact problems [Courant, 1943]. This method is similar in
nature to Zwinger et al. [2007], with the difference that
penalties are used instead of Dirichlet boundary conditions.
Once the number of applied penalties does not vary anymore
for additional iterations, we consider that convergence has
been reached.
[35] For the mass transport model, we use an implicit finite

difference approximation in time, which is more stable than
explicit schemes. For this type of hyperbolic problems,
instabilities still develop when relying on the standard
Galerkin FEM, and for this case, we use either streamline
upwinding or discontinuous Galerkin finite elements
[Johnson et al., 1984; Brezzi et al., 2004].

[36] Using the FEM for the thermal, mechanical and mass
transport equations allows us to significantly improve numer-
ical performance, when combined with a judicious selection of
the underlying mesh. Static adaptive mesh refinement is the
method we have implemented to optimize the number of
degrees of freedom solved in each set of equations.

3.2. Mesh Refinement

[37] At the continental scale, solving for ice flow velocity
involves a large number of degrees of freedom (hereafter
referred to as dof), which can prove computationally chal-
lenging, even using parallel technologies and computer clus-
ters. In order to minimize the number of dofs, ISSM relies on
static anisotropic adaptive mesh refinement. This technique
distorts the mesh and reduces discretization errors, while
minimizing the number of dofs required. The mesh refinement
is done once during model setup (static), as opposed to during
the solution run (dynamic). This approach is physically real-
istic provided ice flow does not evolve drastically, which
restricts this approach to short term transient runs. For longer
transients, further work is required to ensure dynamic adapta-
tion of the mesh to capture the evolving ice flow.
[38] Static anisotropic adaptive mesh refinement is based

on the fact that interpolation-based a-priori error estimates of
a finite element P1 solution (piecewise linear) depend only
on its Hessian [Habashi et al., 2000] provided that the
solution is regular enough. For each element of a mesh, E,
the difference between a P1 interpolated field, uh, and the
exact field, u, is bounded as follows:

∣u xð Þ � uh xð Þ∣ ≤ Ch2 sup
x∈E

∣Hu xð Þ∣ ð30Þ

where C is a constant that depends only on the space
dimension, h is the characteristic length of the element,
Hu (x) is the Hessian matrix of u (x), and ∣Hu (x)∣ its
spectral norm.
[39] According to this equation, if we compute the Hessian

of the observed surface velocities, we can optimize the mesh
distribution accordingly. Here, we implement an edge-based
anisotropic mesh optimization methodology inspired by the
YAMS and BAMG libraries [Frey, 2001; Hecht, 2006] to
equi-distribute the interpolation error in each direction of
each element to control the global interpolation error. An
example of static adaptive anisotropic mesh refinement is
shown in Figure 2 for Jakobshavn Isbræ, West Greenland.
[40] Figure 2a shows a uniform 1,500 element mesh com-

prised of triangles of approximately equal area. In compari-
son, Figure 2b shows a 1,500 element mesh adapted using
InSAR surface velocities. Shear margins are well captured by
the algorithm, while the interior of the ice sheet, where ice
flow deformation is weak, is captured by a coarser mesh.
Comparison between the two meshes shows that for an equal
number of elements, anisotropic mesh refinement captures
ice flow far more efficiently, resulting in tremendous com-
putational gains.

3.3. Solvers and Performance

[41] ISSM relies on the suite of solvers provided by the
Portable, Extensible Toolkit for Scientific Computation
package (PETSc) [Balay et al., 1997, 2008; see also Porta-
ble, extensible toolkit for scientific computation, 2011,
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http://www.mcs.anl.gov/petsc] to compute solution vectors
for the diagnostic, mass transport and thermal models. These
solvers are used on a per-case basis, according to how well
conditioned the equations are.
[42] For the SSA, we rely on the iterative GMRES solver

[Saad and Schultz, 1986] combined with a Jacobi pre-
conditioner. The SSA is sufficiently well conditioned for this
solver to converge consistently. For the BP, the conditioning
is not as good and we have to switch to a preconditioning
based on the Multigrid Algebraic method [Briggs et al.,
2000]. This solver converges consistently for this type of
model. For FS, the system of equations is a saddle point
problem, for which special preconditioning is needed, based
on block factorization of the stiffness matrix, and pre-
conditioning of the Schur complement [Benzi et al., 2005].
Work is currently in progress to implement this solver. As an
alternative, ISSM uses the Multifrontal Massively Parallel
Sparse direct solver (MUMPS) [Amestoy et al., 2001, 2006].
Although poorly scalable, this solver does not suffer from
convergence issues, as it relies on a direct solving method.
[43] The performance of ISSM is entirely dependent on

the solver phase, where 95% of the computational time is
spent, irrespective of the ice flow approximation used.
Scalability is improved for the SSA and BP, for which iter-
ative solvers are used. Further work is required to implement
a scalable FS solver, similar to what was implemented by
Leng et al. [2010], but the performance of the MUMPS
solver still ensures that reasonable computational times are
reached, as shown later on.

3.4. Inverse Methods

[44] Ice flow models are difficult to constrain when para-
meters such as ice hardness or basal drag coefficient are

unknown. For example, the basal drag coefficient, a in
equation (19), cannot be measured directly, and it is one of
the most critical parameters controlling ice flow. This is why
we need inverse methods.
[45] Inverse methods have been developed and imple-

mented in ISSM for the SSA model to invert for the basal
drag coefficient as well as the depth-averaged ice hardness,
following work from MacAyeal [1993], Rommelaere and
MacAyeal [1997], Larour et al. [2005], Vieli et al. [2006],
Khazendar et al. [2007, 2009], Joughin et al. [2010], and
Morlighem et al. [2010]. For BP and FS, ISSM extends the
inversion to 3D models [Morlighem et al., 2010].
[46] We use a partial differential equation constrained

optimization algorithm similar to MacAyeal [1992], which
consists in a gradient minimization of a cost function that
measures the misfit between observed (uobs, vobs) and mod-
eled (u, v) horizontal surface velocities. The algorithm cal-
culates the gradient of the cost function with respect to the
unknown parameter. This cost function is generally taken as:

J u; vð Þ ¼
Z
Gs

1

2
u� uobsð Þ2 þ 1

2
v� vobsð Þ2dGs ð31Þ

where Gs is defined as the ice upper surface domain.
[47] This cost function works better in areas of high-

velocity than in slow moving regions because the adjoint
state (Lagrange multipliers vector) is larger where the
velocity misfit is high, which occurs in regions of high speed.
To minimize this effect, we use a cost function that measures
the logarithm of the misfit instead [Morlighem et al., 2010]:

J u; vð Þ ¼
Z
Gs

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p þ ɛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uobs2 þ vobs2

p
þ ɛ

 !2

dGs ð32Þ

Figure 2. Anisotropic adaptive mesh of Jakobshavn Isbræ, West Greenland. (a) InSAR surface velocity
interpolated on a uniform mesh and (b) InSAR surface velocity from Rignot [2008] interpolated on
adapted mesh (in white). Both meshes comprise 1,500 elements.
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where ɛ is a minimum velocity used to avoid zero velocity,
and log is the natural logarithm. This cost function enables a
robust estimation of the basal drag coefficient or depth-
averaged ice hardness after only a few iterations over the
entire model domain.
[48] To derive the adjoint, ice viscosity is assumed to be

independent of the velocity. This is convenient because for a
linear material law, the system of ice flow equations becomes
self-adjoint. This assumption is not rigorous because vis-
cosity depends on the strain rate, but this simplification
allows an easy calculation of the adjoint state for all three ice
flow models (SSA, BP and FS), is widely used in the litera-
ture [MacAyeal, 1992, 1993] and has a limited impact on the
control method convergence [Goldberg and Sergienko,
2011].
[49] This data assimilation technique has been successfully

extended to BP and FS [Morlighem et al., 2010]. The major
difference with SSA is that only the surface horizontal veloc-
ities are taken into account in the cost function evaluation,
while the gradient with respect to the basal drag coefficient, a,
or the depth-averaged ice hardness, B, are computed at the
base only. In 3D models, we have yet to implement ice hard-
ness inversions across the entire thickness of the ice sheet. We
are so far limited to depth-averaged hardness.
[50] A Tikhonov regularization term which penalizes the

oscillations of the unknown parameter, resulting from the
noise in the observations, can be added to the misfit to sta-
bilize the inversion [Vogel, 2002]. This term is defined as:

J að Þ ¼
Z
Gb

1

2
l k rak2dGb ð33Þ

where Gb is the bed domain, a is the inverted parameter, and
l the Tikhonov parameter. In order to choose l, an L-curve
analysis could be employed, as done by Jay-Allemand et al.
[2011], however, for the GIS, the cost of such an analysis
would be prohibitive. The choice of l also depends heavily
on the type of basin, cost-function and model. For our
application to the GIS, our strategy was to increase l to
improve the parameter regularity, while retaining significant
similarity with the l = 0 misfit. This strategy led to a value of
l for the GIS inversion of the basal drag coefficient of 8.1 �
10�15 for both logarithmic (m3/s/Pa) and absolute (m5/s3/Pa)
cost functions. The approach is qualitatively similar to the
L-curve analysis, while avoiding the need for repeated inver-
sions of the entire ice sheet, which is prohibitive. In terms of
convergence, given the fact that we rely on a succession of
logarithmic and absolute cost functions in each iteration step
of the inversion, an objective convergence criterion is difficult
to assess. Our strategy to decide on the convergence of the
inversion is essentially qualitative, and is based on an estimate
of how flat the misfit becomes after a certain amount of
iterations, for both logarithmic and absolute cases.
[51] For the remainder of this study, we limit ourselves to

the case of a basal drag coefficient inversion, where ice hard-
ness is computed using the thermal model and equation (5).
For each step of the optimization, one theoretically needs
to re-calculate a thermomechanical equilibrium solution
and update ice hardness, B, accordingly on grounded ice,
to ensure consistency between ice flow velocity and ice
viscosity. This can be done at the regional scale [Morlighem
et al., 2010], on models for which computation time is small

enough to allow for simultaneous inversion of the basal drag
coefficient and update of the thermal regime. Practically, for
large scale models such as Antarctica or Greenland, com-
putation times are such that the inversion cannot include
updates to the thermal regime. This implies that the tem-
peratures for such large models is computed initially, before
the inversion is started, and then kept constant throughout
the inversion. This allows computation times for each
inversion step to remain manageable.

3.5. Software Architecture and Management

[52] ISSM relies on a suite of languages and libraries to
achieve high performance computing and scalability. The
primary software language is C/C++ [Stroustrup, 1997],
which allows for flexible and object oriented development.
This kernel is then integrated within the MATLAB envi-
ronment (MathWorks, software, 2008) to facilitate ease of
use, and linked to the Message Passing Interface MPI
[Gropp et al., 1996; Gropp and Lusk, 1996] and the PETSc
libraries to achieve parallelization. Tight integration of these
capabilities ensures high performance computing and a sig-
nificant amount of scalability. For more details on this
software integration, and additional packages relied upon to
ensure among others accurate verification and validation as
well as easy installation, we refer the reader to Appendix A.

4. Verification of ISSM With Benchmarks

[53] Here we describe the evaluation of ISSM using the
ISMIP-HOM (Ice Sheet Model Intercomparison Project for
Higher-Order Models) [Pattyn et al., 2008] benchmark. This
benchmark targets validation for three dimensional ice flow
models. Our results show an excellent agreement with the
participating models, for all A to F tests. Here, we present
some of these results, specifically for tests A, C and F. We do
not show results for tests B, D and E as these tests are specific
to flowband models. In experiments A, C and F, we rely on
triangular elements and a regular mesh with 50 intervals in
both horizontal directions and 20 extruded layers vertically.
[54] Figure 3 shows test A results of the ISMIP-HOM

benchmark using the BP and FS. This test is a diagnostic
experiment that involves an ice slab flowing over a sinu-
soidal bumpy-bed with zero velocity at the base. We use the
penalty method to impose periodic boundary conditions on
the sides. The test is performed for six domain lengths, L,
ranging from 5 km to 160 km. Our modeled surface velocity
agrees well with the benchmark velocity computed by other
software in the benchmark (Figure 3). Results from both
higher-order and full-Stokes models are within the interval
described by the benchmark models [Pattyn et al., 2008].
[55] Experiment C of the ISMIP-HOM benchmark is

similar to A, except for a flat bedrock and a bed that is not
frozen. The basal friction coefficient is prescribed by a
sinusoidal periodic law, so periodic boundary conditions are
also applied here. Our results using both FS and BP agree
quite well with the benchmark results (Figure 4), and are
also within the intervals described by other models. We note
that the results for both BP and FS are very similar at all
domain lengths.
[56] The last ISMIP-HOM benchmark presented here is

experiment F, which is a transient experiment for a slab of
ice that flows over a sloping bed. The initial bedrock and
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surface are parallel and ice thickness is prescribed at
1,000 m. A Gaussian bump is introduced at the center of the
basal topography. As in the previous two experiments,
penalties are applied to simulate the periodic boundary
conditions. They are used for both velocity and thickness.
The free surface and velocity evolve until a steady state
solution is reached. This experiment is run with basal sliding
(slip bed) and without basal sliding (no-slip bed). Results are
presented in Figure 5 for BP and FS. The steady state surface
found by both models and for both basal conditions agrees
very well with the results of the ISMIP-HOM benchmarks.
The steady state surface velocity found for the non-slip bed
is slightly higher than the results of other models. Steady
state surface velocity solved by ISSM is higher for the BP
solution and lower for the FS solution by about 1 m a�1

compared to the case of the slip bed experiment. Only a
handful of ice sheet models have successfully performed these
tests. In addition, this test exhibits challenges in terms of mass
conservation, especially for finite element based treatments of
mass transport [Gagliardini and Zwinger, 2008]. In order to
check whether our implementation conserves mass throughout
the transient run, we computed the total mass of the slab of ice
at the beginning of the run and at the end. Both masses were
identical within 8 digits. This demonstrates that our numerical

implementation efficiently conserves mass within single float
precision.

5. Example Modeling of the Greenland Ice Sheet

[57] Running a transient ice flow model at the continental
scale and at high spatial resolution is a significant challenge
given the sheer size of the discretized system of equations
involved. Here, we discuss the application of ISSM to infer the
basal drag coefficient of the Greenland Ice Sheet using three
different formulations: (1) SSA, (2) BP, and (3) FS. We also
discuss the application of ISSM to model transient ice flow
using the higher-order BP, over long time periods (500 years)
using inversion methods to initialize unknown boundary
conditions. A detailed scientific interpretation of the results is
out of the scope of this paper, and will be addressed in a
companion paper. Our intent here is to demonstrate that ISSM
can be used in diagnostic and transient mode, and efficiently
rely on data assimilation methods to replicate the ice flow
velocity of an entire ice sheet with high accuracy.

5.1. Input Data and Model Setup

5.1.1. Input Data
[58] The following data sets are used to constrain our

inversion. InSAR surface velocities are from [Rignot et al.,

Figure 3. Results of ISMIP-HOM benchmark test A. Surface velocity (m a�1) across the bump at y = L/4
for different length scales, with L ranging from 5 to 160 km. Values computed with ISSM higher-order
and full-Stokes models (NFS ISSM and FS ISSM) are compared to the values found by other models
(NFS and FS) in the original ISMIP-HOM benchmark [Pattyn et al., 2008].
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2011] for year 2009–2010. Bed elevation and ice thickness
are from the Center for Remote Sensing of Ice Sheets
(CReSIS), augmented with recent data from the 2009 and
2010 Operation IceBridge airborne campaigns [Allen, 2009].
Surface elevation is deduced from bed elevation and ice
thickness data from CReSIS. The spatial extent of the ice
sheet is from the fuzzy ground cover mask of Box and
Decker [2010]. We treat the entire ice sheet as grounded,
hence floating ice shelves in the north are ignored to sim-
plify the problem. Boundary conditions for the thermal
model are surface temperature from Ettema et al. [2009] and
geothermal heat flux from Shapiro and Ritzwoller [2004].
[59] For the transient ice flow simulations, we rely on the

model setup presented on the SeaRISE website (http://websrv.
cs.umt.edu/isis/index.php/SeaRISE_Assessment), which is fairly
similar to our inversion setup. The datasets include mean
annual surface temperature from Fausto et al. [2009], pre-
cipitation rates from Burgess et al. [2010], basal heat flux
from Shapiro and Ritzwoller [2004], and bedrock topogra-
phy, ice thickness and surface elevation from Bamber et al.
[2001]. Observed surface velocities are also provided by
Joughin et al. [2010] and filled with balance velocities [see,
e.g., Bamber et al., 2000] in the areas where observations are
not available. Discontinuities introduced by this patching
remain small enough at the level of mesh resolution imple-
mented for the inversions not to focus on the velocity jumps

at the boundaries. At high resolution though, this could be an
issue, which should be investigated further.
5.1.2. Model Initialization
[60] As explained earlier, running large-scale, fully-

coupled, thermal-mechanical inversions is prohibitive given
our current computational capabilities. Here, we infer ice
viscosity at the beginning of the inversion and keep it
constant throughout the initialization. To calculate ice
viscosity, we need to calculate the strain heating and basal
shear heating components from the thermal model based on
a flow simulation that best matches the observed surface
velocities. To solve this recursive problem, we model an
initial flow using an ad-hoc basal drag coefficient (a in
equation (19)) of 1.5 � 105 (Pa s/m)1/2 for surface velocity
greater than 60 m a�1 and 9 � 105 (Pa s/m)1/2 for surface
velocity less than 60 m a�1. In addition, we use a Dirichlet
boundary condition at the surface to impose observed surface
velocities. The resulting flow field is used to calculate a
thermal regime and ice viscosity that best match the
observations. By keeping ice viscosity constant throughout
the computation, we improve computational efficiency to the
point of making the inversion possible at the continental
scale. However, because ice viscosity is evaluated using an
ad-hoc basal drag law, the contribution from basal friction
induced heating is probably not accurately constrained,
especially in fast-moving ice streams where the ice-bed

Figure 4. Results of ISMIP-HOM benchmark test C. Surface velocity (m a�1) across the bump at y = L/4
for different length scales, with L ranging from 5 to 160 km. Values computed with ISSM higher-order
and full-Stokes models (NFS ISSM and FS ISSM) are compared to the values found by other models
(NFS and FS) in the original ISMIP-HOM benchmark [Pattyn et al., 2008].
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interface is not frozen. This should impact the basal drag
coefficient inversion most in fast-moving areas. However,
for these areas, the basal drag coefficient will be small
overall, which should mitigate the issue.
[61] Once ice viscosity is computed, we then relax the

surface Dirichlet boundary conditions, so that we can carry
out a basal drag inversion with a fully unconstrained forward
model. However, we still need to impose ice velocity at one
location to avoid the situation of a singular forward model.
Here, we impose a zero ice velocity on the Geikie Plateau,
East Greenland, because this is an area where few quality
thickness data are available, and where therefore it is almost
impossible to model ice flow realistically.
[62] For the transient simulation, an identical process is

carried out to initialize the inversion of the basal friction
using a BP model.
5.1.3. Mesh
[63] For the inversion, the Greenland Ice Sheet is meshed

using static adaptation based on the InSAR surface veloci-
ties. We use 115,000 elements in the horizontal plane
(62,000 vertices). Resolution is 2 km at the coast, where
most of the deformation occurs, and 30 km in the interior,
where ice velocity is less than a few m a�1. For the 2D SSA,
this mesh results in a system of 124,000 dofs, which is
solvable on any small-scale cluster. For BP and FS, the

2D mesh is extruded vertically with 20 layers. This results
in a system of 2,500,000 dofs for the BP model and
5,000,000 dofs for the 3D FS. For such large systems, we
need large clusters, i.e. with at least a few hundred CPUs.
For the transient run, the SeaRISE experiment relies on a
different mesh, with 10 vertical layers, and 446,000 elements
overall (for 270,000 vertices), resulting in a system of
540,000 dofs.
[64] Because we keep the number of layers constant over

the entire GIS, large variations in size from one element to
another will occur, especially vertically. Indeed, ice thick-
ness can vary from meters to thousands of meters across the
entire GIS, which represents a variation of 3 orders of
magnitude. To assess the impact of bad aspect-ratios in our
elements, we carried out a comprehensive study, presented
in Table 2, where we varied the number of vertical layers
and the vertical aspect ratio (between the smallest and lon-
gest element) for the GIS. The results show that between 2
and 20 vertical layers, the aspect ratio drops by 1 order of
magnitude. The condition number for the discretized system
of equations (also defined at the radius of the eigenspectrum
of the discretized system of equations) correspondingly
increases by almost 2 orders of magnitude for the BP model
and FS models and almost 3 orders of magnitude for the 3D
thermal model. While this tends to show a larger impact on
the thermal model, the magnitude of the condition number

Figure 5. Results of ISMIP-HOM benchmark test F. Steady state surface velocity (m a�1) and steady
state surface elevation (m) along the central flow line for non-sliding and sliding cases. Values computed
with ISSM higher-order and full-Stokes models (NFS ISSM and FS ISSM) are compared to the values
found by other models (NFS and FS) in the original ISMIP-HOM benchmark [Pattyn et al., 2008]. Line-
arized results from Gudmundsson [2003] are also shown in black for the no-slip bed case.
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for the thermal model is still 8 orders of magnitude smaller
than for BP and FS models. Therefore, the impact of aspect-
ratios on the 3D thermal model remains small. For the BP
and FS models, aspect-ratios impact FS models more, which
explains why iterative solvers fare better for BP models than
for FS models. These results also show how increasingly
difficult solving for BP and FS is with increasing vertical
resolution, as the conditioning of the system matrices
degrades rapidly. A compromise must therefore be found
between the need for increased vertical resolution and the
difficulty of solving such vertically refined models.

5.2. Performance

[65] To solve the large system of equations for the
Greenland model, we used the NAS’s Pleiades cluster with
30 Intel Westmere nodes, 6 CPUs per node. Each Westmere
node carries 24 Gb of memory, which is necessary for the
MUMPS solver to operate efficiently. Each CPU accesses
4 Gb of RAM, which is necessary for the MUMPS Symbolic
LU factorization during the direct solve phase. Not all three
models converged equally fast, but we stop the inversion in
each case after 50 gradient descents. The run time statistics
are listed in Table 3. The results demonstrate that ISSM is
able to perform higher-order data assimilation at large scale
under 2 hours CPU and FS diagnostic modeling at the con-
tinental scale, with data assimilation on an entire ice sheet
completed in less than 18 hours CPU.
[66] In terms of scalability, Figure 6 and Table 4 present

results on the parallel efficiency and computation times for a
series of models of increasing size (from 100 dofs to
1,000,000 dofs) and complexity (2D SSA, 3D Thermal, 3D
BP and 3D FS), using an increasing number of CPUs (1 to
180, identical to the CPUs used in the inversion of basal
friction on the GIS). These results demonstrate that at low
number of CPUs (<10), parallel efficiency runs at 50% or
more (except for small models with less than 1,000 dofs).
Here, parallel efficiency is defined as the ratio t1/(N tN),
where N is the number of CPUs for the run, tN the amount of
computational time required for the run and t1 the amount of
computational time required for the same run using only
1 CPU. At higher number of CPUs, efficiency degrades
quickly, but still remains above 10% for most models. Such

evolution is to be expected for parallel direct solvers such as
MUMPS. A comparative study based on a parallel iterative
solver for the 2D SSA model (in red on Figure 6) shows
much improved parallel efficiency, albeit with a similar
decrease at higher number of CPUs. Table 4 also shows that
for large sized models (100,000 dofs), run times are on the
order of minutes, which demonstrates ISSM’s efficiency in
handling large and complex models.
[67] For our transient run, scalability studies were not

carried out, given the prohibitive amount of time and
resources this would require, given that we are running using
a higher-order BP model. However, we can rely on the
SeaRISE transient run to provide some statistics that dem-
onstrate the applicability of ISSM to continental scale tran-
sient ice flow simulations. The model comprises 540,000 dofs
which are run for 500 years, for a total of 3,000 time steps.
The runs were computed on the NAS’s Pleiades cluster in
40 hours, on 40 Harpertown nodes (6 CPUs per node, for a
total of 240 CPUs). The statistics for the run are also pre-
sented in Table 3. This experiment proves that (1) ISSM is
capable of handling higher-order transient ice flow simula-
tions at the continental scale, using high-resolution aniso-
tropic meshes; and (2) ISSM can evolve the geometry of an
ice sheet in time. Of course, many issues remain regarding
this simulation, especially in the initial setup, but such
analysis of the SeaRISE experiment are outside the scope of
the present study.

5.3. Results

[68] The basal drag coefficient for all three models is
shown in Figure 7, with corresponding modeled and
observed surface velocities in Figure 8. Differences between
all three modeled velocities and observed surface velocity
are shown in Figures 9a–9c. Differences between all three
modeled velocities are shown in Figures 9e–9g.
[69] All three inversions show similar patterns of basal

drag coefficient, however with different amplitudes. For the
2D SSA model (Figure 7a), the basal drag coefficient is the
lowest, because this model does not include internal vertical
deformation and thereby results in stiffer ice. Explained
otherwise, 2D SSA only treats depth-averaged ice velocity
that are best-fitted to surface velocities. This implies that ice
velocity near the bedrock is faster, hence resulting in lower
friction. In the BP model (Figure 7b), the basal drag coeffi-
cient is 50% higher in the interior as a result of increased
vertical internal deformation. In 3D FS, the basal drag
coefficient is another 30% higher than for the BP because
the model includes all modes of vertical shearing. This is
probably due to the fact that FS captures the entire stress
tensor, which is equivalent to making ice softer on average
for the same flow parameters. However, other reasons might
be at play, such as the influence of bridging effects
[Morlighem et al., 2010], or the fact that convergence might
not have been fully reached for the whole ice sheet, or in
certain specific areas.
[70] All three velocity calculations are in excellent agree-

ment with observations (Figures 9a–9c). Most of the dis-
crepancies between models and observations are near the
coastline, where surface velocities are highest, reaching up
to 11 km/a on the Jakobshavn Glacier. Intrinsic differences
between models (Figures 9d, 9e, and 9f) are on average less
than 50 m/a, demonstrating the ability of even the simplest

Table 2. Impact of Aspect Ratio, Ar, on Condition Number of
Stiffness Matrices for Vertical Extrusion Layers on the Greenland
Ice Sheet Modela

Layers Ar (10
�3)

Condition Number

3D BP (108) 3D FS (108) Thermal

2 2.1 0.025 1.2 17
3 1.4 0.17 3.9 950
4 1.1 0.30 7.4 1900
5 0.85 0.50 12 3000
6 0.71 0.75 18 3800
10 0.43 2.6 52 6000
15 0.29 6.0 120 7100
20 0.21 9.5 210 7300
20/2 1/10 38 170 430

aAspect Ratio, Ar (characteristic length ratios from smallest to longest
element) for vertical extrusion layers 2, 3, 4, 5, 6, 10, 15, and 20. Three
models are explored: the 3D BP, 3D FS, and 3D Thermal models. The
last row of the table presents the ratio of 20 vertical layers to 2 vertical
layers.
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models to match velocities on the GIS. Largest differences
are found near the coast, which is expected, because this is
where we attribute most variations between lower-order and
higher-order models. It is however difficult to explain var-
iations between all three velocities to either differences
between the models or variable rates of convergence of the
solutions. Both factors are indeed intrinsically combined and
difficult to separate. Given enough CPU time, all solutions
might eventually converge to similar velocity fields, but this
has not been verified given the computational challenges it
would entail. This is however a conclusion for the diagnostic

Table 3. Computation Times for the Greenland Ice Sheet Model,
Running an Inversion of Basal Friction Using the 2D SSA, 3D
BP, and 3D FS Models and for a Transient 3D BP Model

Model Number of Dofsa Computation Time

2D SSA 125,000 dofs 1 mn 6 s
3D BP 2,500,000 dofs 1 h 52 mn
3D FS 5,000,000 dofs 17 h 54 mn
3D BP Transient 540,000 dofs 40 h

aDegrees of freedom.

Figure 6. Scalability of ISSM diagnostic (2D SSA, 3D BP and 3D FS models) and 3D thermal solutions
for the Greenland Ice Sheet, expressed in terms of parallel efficiency (in % of linear scaling) vs number of
processing elements (1 to 180 Intel Westmere cores on the NAS Pleiades cluster). For each type of solution,
several sized models were implemented, ranging from 100 to 1 million dofs (see corresponding legend in
the BP Diagnostic frame). All runs in blue rely on the MUMPS direct solver. All runs in red rely on a par-
allel iterative GMRES solver (preconditioned using the Additive Schwartz Method and an overlap of 2).
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model only. The conclusions are probably very different for
transient models.
[71] The presence of fast flow features along the coast and

their spatial extent inland is well captured in all three models,
as well as the presence of outlet glaciers within terminal
valleys only a few kmwide. Of course, because our inversion
is essentially an optimization to best-fit observed surface
velocities, such fit is expected from our method. However,
for a model such as 2D SSA, because all components of the
stress tensor are not accounted for, we would expect the
model to be incapable of best-fitting the observations, even
when forced through an optimization algorithm. The inter-
esting feature here is that this does not appear to be the case,
and 2D SSA appears to be very efficient at capturing surface
ice flow even for ice flow regimes where it is at the limit of its
applicability.
[72] Figure 10 shows results for the transient simulation

over 500 years based on the SeaRISE control experiment,
for a higher-order BP model. Results include ice thickness,
surface velocity and depth-averaged temperatures at times
t = 0, t = 100 yr and t = 500 yr. They show a stable evolution
of the ice sheet, with a slight increase in the ice volume of
approximately 1% over 500 years. The ice sheet thins
slightly in the interior, and thickens near the coastline,
especially near outlet glaciers. Temperature variations can be
observed on 79 North Glacier (slight decrease) and along the

southwest coast, where temperature increase by about 5°C.
Such variations are probably due to the initial setup of the
basal friction, which takes into account a steady state instead
of a transient temperature field. The SeaRISE control run
relies on a constant precipitation rate, we therefore expect
our transient run to be very stable. This does appear to be
approximately the case for the thickness and the velocity
field, but temperature variations indeed show the difficulty
of correctly spinning up such transients, and the extensive
work that remains in addressing such difficulties.

6. Discussion

[73] In the example case of the Greenland Ice Sheet, we
run the flow models at an intermediate level of spatial res-
olution, i.e., 30 km in the interior down to 2 km at the coast.
Ultimately, the models should be run at a resolution closer
to one ice thickness at the coast (�600 m) and in the interior
(3 km), which is also closer to the requirements in spatial res-
olution for grounding line dynamics [Nowicki and Wingham,
2008; Morlighem et al., 2010; Durand et al., 2009b]. The
main problem for running such simulations is both the com-
puting power needed and the lack of detailed ice thickness data
at that spatial scale [Seroussi et al., 2011; Morlighem et al.,
2011]. In addition, if spatial resolution is decreased below one
ice thickness, inverse methods may not improve model spin-up

Table 4. Computation Times (in s) for a 100,000 Dofs Large Model (Based on the Greenland Ice Sheet), Using 1, 2, 5, 10, 20, 50, 100,
150, and 180 CPUs and Running the 2D SSA, 3D BP, 3D FS, and 3D Thermal Models

Model 1 CPU 2 CPUs 5 CPUs 10 CPUs 20 CPUs 50 CPUs 100 CPUs 150 CPUs 180 CPUs

2D SSA 67 39 23 17 13 12 12 12 12
3D BP 540 290 150 90 67 45 43 40 41
3D FS 1200 640 300 170 100 60 47 45 45
3D Thermal 360 200 100 71 50 39 38 39 40

Figure 7. Model inversion of basal drag coefficient a (in 105 (Pa s/m)1/2) in Greenland using (a) the 2D
Shelfy-Stream model, (b) the 3D Blatter/Pattyn model, and (c) the 3D full-Stokes model and observed ice
velocity from satellite radar interferometry.
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any further, because at that resolution, relevant information is
smeared by the ice flow model itself [Gudmundsson, 2003;
Hindmarsh, 2004; Truffer, 2004].
[74] The example case of Greenland demonstrates that

inverse methods are readily applicable at the continental
scale with ISSM, even in the computationally demanding
case of the FS. Inverse methods make ice flow models more
realistic by initializing unknown boundary conditions at the
ice-bed interface, at present time, without any spin up. The
state of mechanical equilibrium of the ice sheet is therefore
better constrained. In terms of thermal regime, our method
does not ensure strict consistency between the mechanical
regime (which forces the frictional heating term in the ther-
mal model) and thermal regime. To consider the impact of
this discrepancy, we evaluate the difference between the
temperature field after inversion of the basal friction and the
initial model setup (relying on an ad-hoc basal drag coeffi-
cient distribution). The temperature field after inversion is on

average 2°C warmer over the entire GIS, with peaks at 5°C
in the North-Western area (Petermann Glacier and Humboldt
Glacier in particular). This amounts to a difference of about
1% over the entire GIS, which is attributable to the increased
frictional heating captured by the inversion.
[75] Nevertheless, the computational cost of inversion is

much lower than long (10,000 yr) transient simulations
required for model spin up. This means that ISSM can be
used to help and constrain long transient runs [Huybrechts
et al., 1996; Ritz et al., 1997; Pollard and DeConto, 2009;
Greve, 2005] so as to converge to accurate present time
configurations. It can also be used to run short term (500 yr)
transient flow simulations of the entire ice sheet, assuming
that the pattern of basal friction shown in Figure 7 remains
constant with time. As shown in our results for the SeaRISE
control run, many issues remain regarding the interaction
between inversion methods and spin-up of transient models.
One of the most important ones is that the inversion assumes

Figure 8. Modeled surface velocity (in m a�1) (using inverted basal drag coefficient) for (a) the 2D
Shelfy-Stream model, (b) the 3D Blatter/Pattyn model, and (c) the 3D full-Stokes model. (d) Observed
InSAR surface velocities (in m a�1) of the Greenland Ice Sheet.
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that the ice sheet is in thermal steady state, which is clearly
not the case. Differences between the real temperature field
and our model occur at the beginning of the run, which
makes it difficult to assess how much of the subsequent
evolution of the temperature field is real or model induced.
Another issue is that our transient model assumes that basal
friction remains constant through time. However, the
hydrological network under the ice sheet is certain to evolve
through time, which will impact basal friction significantly.
The absence of a hydrological model in ISSM currently
precludes us from capturing such changes. Finally, issues
regarding the availability of datasets at the continental scale
and at high resolution remain. Such datasets are currently
being improved upon, notably by Operation IceBridge, but
entire regions remain that cannot be constrained reliably,
among them southwest Greenland and the Geikie Plateau,
where reliable thickness datasets are not yet available.
[76] Data assimilation techniques are however likely to

become an integral and growing part of ice sheet models,
especially as more observations are gathered about ice sheets
from a variety of airborne and spaceborne instruments. A sim-
ilar approach has been developed for data assimilation in ocean
models [Marshall et al., 1997]. In this study, data assimilation
only employed ice surface velocity. In the future, similar

capabilities will be developed to incorporate other variables,
e.g., changes in surface elevation measured from altimeters or
changes in ice mass measured from time-variable gravity.
[77] The ability of ISSM to model an entire ice sheet on a

reasonable size computer cluster is not the result of a single
numerical breakthrough but the result of combining multi-
ple, complex numerical capabilities. These unique capabili-
ties are as follow. First, ISSM uses the FEM, which makes it
possible to rely on anisotropic meshes and thereby limit the
number of dofs. A regular grid of Greenland at 1 km requires
7 million dofs. The same level of precision can be obtained
with an unstructured mesh comprising one tenth of the ele-
ments. The gain is at least a factor 10 in solution time. Second,
the architecture of ISSM is optimized for large scale data
assimilation. ISSM is coded in C/C++, fully object oriented,
which enables harmonious model development. ISSM relies
onMPICH as a parallel communication layer, which enables it
to run on large clusters, e.g., the NAS’s Pleiades Cluster (more
than 100,000 Intel cores). To reach full scale capability, par-
titioning of the elements at the earliest stages of every ice flow
model is key and is achieved successfully in ISSM using
METIS. Similarly, ISSM uses iterative solvers from PETSc to
achieve scalability. At present and pending further develop-
ment, ISSM is already capable of tackling systems of several

Figure 9. (a–c) Differences between modeled and observed surface velocities (in m a�1) for the 2D
Shelfy-Stream, 3D Blatter/Pattyn, and 3D full-Stokes models, respectively. (d–f) Differences between
modeled surface velocities for the 3D Blatter/Pattyn vs 2D Shelfy-Stream, 3D full-Stokes vs 3D Blatter/
Pattyn, and 3D full-Stokes vs 2D Shelfy-Stream, respectively.
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millions dofs, with computation times on the order of hours
for continental scale simulations, including for the FS model.
[78] Several modules are currently being developed to

improve ISSM. One module will include a calving law to
constrain ice front positions and their time evolution, follow-
ing the work of Alley et al. [2008], Walter et al. [2010], and
Bassis [2011]. Second, we will include a more sophisticated,
higher-order scheme of grounding line dynamics as by
Nowicki [2007] to capture ice flow instabilities, nonlinearities
and hysteretic effects, which may not be well captured with
our current hydrostatic criterion. Third, we will include a
model of subglacial hydrology that will constrain the repre-
sentation of basal friction. This would enable more realistic
descriptions of the time evolution of basal drag as by Johnson
[2002]. By computing the water distribution evolution in time,
it would be possible to assess the value of the effective water
pressure, which is an integral part of any basal friction law
[Johnson, 2002; Le Brocq et al., 2009]. Indeed, water at the
ice-bed interface increases lubrication of bedrock, which in

turn increases basal sliding [Weertman, 1957]. Finally, ISSM
will include a capability to automatically compute the adjoint
state of a model using automatic differentiation compilers, as
pioneered by ocean models [Marshall et al., 1997] and com-
pilers such as OpenAD [Utke et al., 2008]. These compilers
calculate the adjoint for any model for which a simple ana-
lytical solution might not exist. This capability would enable
ISSM to assimilate data sets from a variety of sensors and
platforms to reduce model uncertainties. We will rely on
ADIC2 [Narayanan et al., 2010], to try and address issues that
compilers such as OpenAD currently encounter with C++
object orientation and integration of complex solver libraries
such as PETSc.

7. Conclusions

[79] The capability to run large scale, high spatial reso-
lution, higher-order ice flow models, constrained using
inverse methods, is critical to improving reconstructions or

Figure 10. Transient ice flow simulation of the Greenland Ice Sheet, using the higher-order BP model,
from present-time to 500 years into the future. (a–c) Thickness, H; velocity, V; and depth-averaged tem-
perature, Tavg at time t = 0, as initialized by the basal friction inversion. (d–f) Thickness, H; velocity, V;
and depth-averaged temperature, Tavg at time t = 100 years. (g–i) Thickness, H; velocity, V; and depth-
averaged temperature, Tavg at the end of the transient run, t = 500 years.
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projections of the mass balance of large ice sheets. The Ice
Sheet System Model (ISSM) offers a solution to this problem
by using finite element methods, anisotropic static mesh adap-
tation, scalable solvers and parallel technologies. Unknown
model parameters such as basal drag are constrained using
inverse methods applied to satellite-derived observations of
surface motion. ISSM offers varying orders of complexity
ranging from simple 2Dmodels to the full-Stokes 3D solution.
ISSM is user friendly, highly modular, and may be run on
massive computer clusters or a single CPU within MATLAB.
The implementation of ISSM is validated with standard
benchmarks and its applicability at the large scale is demon-
strated in the case of Greenland using higher-order and full-
Stokes models. ISSM is now public domain, released under a
three clause BSD License, available at http://issm.jpl.nasa.
gov. This will provide a pathway for the development of more
advanced, more realistic numerical models of ice sheet flow
that will improve our capability to project ice sheet evolution.

Appendix A: Software Architecture
and Management

[80] ISSM relies on the C language [Kernighan, 1988] for
the numerical implementation of finite elements. For man-
agement of all objects, the C++ language [Stroustrup, 1997]
is used, which strongly relies on polymorphic capabilities.
This allows ISSM to be both flexible (new finite elements
are added rapidly) and scalable (C is a fast language, for
which many compilers and math kernels are well optimized,
such as the Intel compiler and the Math Kernel Library).
[81] To improve ease of use, ISSM is hosted in MATLAB

(MathWorks, software, 2008), a common scientific plat-
form. The C/C++ core is interfaced to the MATLAB envi-
ronment using the External API. This ensures that pre and
post-processing can be carried out using MATLAB modules
(also called MEX functions). These modules behave as stan-
dard routines, but they encapsulate intrinsic ISSM capabilities.
The result is a seamless integration of ISSM’s ice flow model
within MATLAB.
[82] ISSM is first and foremost a parallel architecture. While

it can be used in serial mode within MATLAB, it is designed
to run massively parallel computations on large clusters, e.g.,
the NASAAdvanced Supercomputing (NAS) Pleiades cluster.
When running on these clusters, ISSM relies on its C/C++ core
compiled as a stand-alone executable. Parallelism is achieved
through the Message Passing Interface [Gropp et al., 1996;
Gropp and Lusk, 1996]. This library is flexible enough to
allow runs on distributed as well as shared memory clusters.
[83] The numerics are implemented with PETSc. This

library defines objects such as vectors, matrices and solvers,
which are used directly in ISSM. These objects are abstracted
to hide serial vs parallel implementations, so that PETSc is used
in serial or parallel mode the same way. PETSc also provides
access to a wide array of direct and iterative solvers, proprietary
as well as external, along with corresponding preconditioners.
[84] In addition to MATLAB and PETSc, ISSM relies on

a wide array of external packages, of which we only list the
most important ones.

1. TRIANGLE: Two-Dimensional Quality Mesh Gener-
ator and Delaunay Triangulator [Shewchuk, 1996, 2001].
This package is used for creating unstructured isotropic two-
dimensional triangular meshes.

2. VALGRIND: instrumentation framework for building
dynamic analysis tools [Nethercote and Seward, 2007; see
also Valgrind, 2011, http://valgrind.org]. This package is
used to find memory leaks in the code, as well as for opti-
mizing memory management.

3. METIS: Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of SparseMatrices [Karypis and Kumar,
1998]. This package is used to partition objects such as ele-
ments and vertices across a cluster. This partitioning scheme
results in partitions that have equal numbers of elements on
each cluster node. This also ensures a good computational
load balance, because resulting stiffness matrices are well-
partitioned, which results in tremendous gains during the
solve phase.
[85] ISSM also provides a suite of tools to automatically

carry out nightly runs. These nightly runs consist of
approximately one hundred test cases based on a variety of
configurations that range from synthetic square ice shelves
and ice sheets to simplified versions of Pine Island and
Nioghalvfjerdsfjorden glaciers. More than 2000 output
fields are tested against archived files and an HTML report
is automatically generated and sent by email every night
to all developers, for verification and validation. This
ensures that no error is introduced in the software during
capability development.
[86] To ensure easiness of installation of our suite of tools,

we rely on Autotools [Vaughan et al., 2000], a software
package for automatic installation of makefiles. ISSM also
uses a versioning system for hosting the code [Pilato et al.,
2008], which allows multiple developers to synchronize
development of the code and regular maintenance. Finally,
ISSM comes with a full-fledged documentation, which is
compiled at each new installation and is synchronized on the
ISSM website (http://issm.jpl.nasa.gov).
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