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As climate change unfolds, changes in population dynamics and
species distribution ranges are expected to fundamentally reshuf-
fle communities worldwide. Yet, a comprehensive understanding
of the mechanisms and extent of community reorganization
remains elusive. This is particularly true in riverine systems, which
are simultaneously exposed to changing temperature and stream-
flow, and where land-use change continues to be a major driver of
biodiversity loss. Here, we use the most comprehensive compila-
tion of fish abundance time series to date to provide a global
synthesis of climate- and LU-induced effects on riverine biota with
respect to changes in species thermal and streamflow affinities.
We demonstrate that fish communities are increasingly dominated
by thermophilic (warm-water) and limnophilic (slow-water) spe-
cies. Despite being consistent with trends in water temperature
and streamflow observed over recent decades, these community
changes appear largely decoupled from each other and showwide
spatial variation. We further reveal a synergy among climate- and
land use-related drivers, such that community thermophilization is
heightened in more human-modified systems. Importantly, com-
munities in which species experience thermal and flow regimes
that approach or exceed their tolerance thresholds (high commu-
nity sensitivity), as well as species-poor communities (low commu-
nity resilience), also display faster rates of compositional change.
This research illustrates that quantifying vulnerability of riverine
systems to climate change requires a broadening from a narrower
thermal focus to more integrative approaches that account for the
spatially varying and multifaceted sensitivity of riverine organisms
to the interactive effects of water temperature, hydrology, and
other anthropogenic changes.

climate vulnerability | community temperature index | community flow
index | freshwater ecosystems | river fragmentation

Mounting evidence indicates that climate change is driving
widespread community reorganizations (1, 2) and consti-

tutes a leading threat to riverine biodiversity (3–5). This is
problematic as flowing water ecosystems lie at the forefront of
the current biodiversity crisis and are also among the most bio-
diverse on Earth (6). Studies point to the multifaceted nature of
climate-induced effects in these ecosystems (7–9), emerging
through alterations of both thermal and flow regimes globally
(10, 11). Concurrently, land use remains a major and persistent
driver of biodiversity loss in these ecosystems (4), whose long-
lasting effects can mediate present-day biological responses to
further environmental change (12). Recent calls have intensified
to simultaneously explore the effects of thermal, hydrologic, and
land-use drivers to strengthen our understanding and prediction
of riverine biodiversity responses to climate change.
From a climate-change perspective, communities affected by

greater climate exposure (characterized by the direction and
magnitude of changes in water temperature and streamflow over
time) are expected to display the fastest turnover rates (1, 2).

This occurs through the gradual replacement of thermally and
hydrologically sensitive species by species with broader temper-
ature and flow affinities that colonize these newly climatically
suitable areas from downstream reaches (4, 5, 13). It is also in-
creasingly clear that climate change is not likely to act in isola-
tion from other threats, and particularly so in human-dominated
flowing water ecosystems (14). Human appropriation of land for
agriculture and urban infrastructure, whose effects range from
habitat loss, modified hydrology, riverscape fragmentation, alter-
ation of riparian areas, to shifts in fluxes of energy and pollutants
(15), can either amplify or dampen the effects of climate change.
Removal of riparian vegetation may increase both incoming and
outgoing radiation, leading to hotter, drier, and more variable
thermal conditions than expected based on climate change alone
(16). Interruptions of the river continuum or decreases in lon-
gitudinal connectivity may also limit species abilities to track their
climatic niche through space, partially offsetting range expansion
processes expected from climate change operating in isolation (17).
An additional concern is that land use and climate change may
indirectly select for species with the same suite of traits (e.g.,
pollution-tolerant species often also display warm-water affini-
ties) (18), thus promoting faster community reorganizations (19,
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20). Land-use conversion can also decrease population size and
genetic diversity, decreasing species ability to cope with other threats,
including climate change (21). Although climate and land-use
changes are perceived as self-reinforcing threats to biodiversity
and human security (14, 22), their combined ecological effects re-
main unclear, which may limit our ability to establish conservation
priorities at the local, regional, and continental scales (19).
Beyond extrinsic factors, the reshuffling of biological com-

munities is also expected to be mediated by the intrinsic sensi-
tivity and resilience (or adaptive) capacity of component species
(23, 24). For instance, it is now recognized that the differences
between local temperature regime and community-level tem-
perature affinity (i.e., community thermal bias, sensu ref. 25)
may ultimately determine the sensitivity of communities to
warming. Similarly, community responses to climate-induced
hydrologic alteration may be contingent on the differences be-
tween the flow affinity of constituent species and the flow regime
they experience (i.e., community flow bias). Specifically, com-
munities with low or negative values of thermal or flow bias (i.e.,
communities that are experiencing temperature or streamflow
that is approaching or exceeding their preferred conditions) are
expected to be more sensitive and exhibit greater scope for
compositional changes in response to altered temperature or
streamflow conditions. Theory also predicts that communities
are more likely to be buffered against environmental change if
constituent species exhibit a variety of traits that enable them to
cope with the novel environmental regime (26, 27). Hence, high
species richness is expected to increase community resilience to
climate change through higher functional redundancy (28) and
probability of containing climate-tolerant species (29). A host of
other species characteristics can also be involved to determine
species ability to cope with or adjust to changing environmental
conditions (i.e., persist in place or shift in space) such as dis-
persal ability or demographic and genetic population attributes,
collectively referred to as species adaptive capacity (23).
This study leveraged species abundance time series of riverine

fish communities from monitoring programs and research pro-
jects around the world to quantify the effects of recent climate
change, land use, and their interaction. We first quantified
temporal changes in fish community composition with respect to
the average affinity of species to both water temperature (com-
munity temperature index [CTI]) and streamflow (community
flow index [CFI]). CTI has become a popular indicator of
warming-induced biodiversity responses, where positive CTI
trajectories indicate an increase in the dominance of warm-water
(as opposed to cold water) species over time—a process termed
thermophilization of communities (30–32).
Similar in concept, we introduce the CFI to describe temporal

changes in community dynamics with respect to flow alterations.
Although streamflow is generally higher in large lowland rivers
compared to headwaters, rapid habitats (i.e., sections of a river
where the river bed has a relatively steep gradient, high water
velocity, and greater turbulence) are generally rare (33, 34).
Hence, riverine fish community composition varies predictably
along the longitudinal gradient, with upstream species better
adapted to rapid habitats (rheophilic species) and downstream
species to slow habitats (limnophilic species) (35). Positive CFI
trajectories thus reflect an increase in the dominance of limno-
philic (as opposed to rheophilic) species over time—a process
referred to as limnophilization of communities.
We tested for directional trends in community trajectories by

characterizing spatiotemporal patterns in CTI and CFI at global
and ecoregion scales. Finally, we investigated possible drivers
underlying variation in CTI and CFI trajectories among different
communities. We predicted that climate exposure (temporal
trends in water temperature and streamflow) (10) together with
land-use change (i.e., agricultural and urban land use) interact
synergistically to affect community trajectories in CTI and CFI.

We also hypothesized that community intrinsic sensitivity (community
thermal or flow bias) and community resilience capacity (species
richness) mediate the rate of change in CTI and CFI. Acknowl-
edging the inherent variability associated with secondary datasets
collected for multiple purposes, we explicitly accounted for spatial
dependencies and sampling unbalance among time series in all the
steps of our analyses (Materials and Methods).

Results
The 12,517 time series of riverine fish communities span 10 to
68 y (average time span = 19 y; average number of census years =
8, range = 2 to 52; average first census year = 1996, range = 1951 to
2010; mainly using electrofishing techniques) and are distributed
over five ecoregions and 446 hydrographic basins (SI Appendix, Fig.
S1). The majority of the 102,285 annual surveys were conducted
consistently in a single quarter or over two consecutive quarters
through time (SI Appendix, Fig. S2). Of the 951 species included in
the analysis, most occur in a single ecoregion (96%), with the highest
total number of species observed in the Nearctic (NAfrotropics = 88;
NAustralasia = 88; NNearctic = 493; NNeotropics = 191; NPalearctic = 141).
However, we note clear spatial disparities in terms of global cover-
age, with a low (Afrotropical and Neotropical) or lack (Indo-Malayan)
of sites in some of the most biodiverse ecoregions (NAfrotropics = 5;
NAustralasia = 506; NNearctic = 2,317; NNeotropics = 76; NPalearctic = 9,613).
We found an overall thermophilization (52.3% of time series)

and limnophilization (51.3% of time series) of riverine fish
communities over recent decades (Figs. 1 and 2) according to
water temperature (CTI) and streamflow (CFI) trajectories es-
timated from generalized least squares (GLS) models fitted
separately to each time series, respectively (Materials and Methods).
Despite these general trends, these community trajectories (CTI
and CFI) vary widely and are uncorrelated at the global scale (r =
0.04; see also SI Appendix, Figs. S3 and S4). Whereas one-third of
the time series show an increase in the dominance of warm-water
and limnophilic species (33.1%), shifts toward cold-water and
rheophilic species (26.4%), warm-water and rheophilic species
(19.2%), or cold-water and limnophilic species (18.2%) are also
commonly observed. No change in either CTI or CFI was detected
in 2.8% of the communities.
These findings are consistent between occurrence- and

abundance-based community metrics (SI Appendix, Fig. S5), in-
dicating that changes in CTI and CFI did not only result from
changes in species abundance distributions but also from changes
in species turnover. Moreover, these results are robust to alternate

Fig. 1. Temporal trajectories of fish communities. Comparison of the tra-
jectories (β-coefficient) in CTI and CFI indicates the direction of the changes
in community composition over time in terms of species temperature gra-
dient (from cold to warm water) and streamflow (gradient from rheophilic
to limnophilic) affinities as illustrated by the color legend.
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estimations of species temperature (species temperature index
[STI]) and streamflow (species flow index, SFI) affinities. Indeed,
our distribution-based STI (i.e., based on the median instead of
95th percentile of species distribution along environmental gradi-
ents and the mean annual temperature instead of the maximum
monthly annual temperature) was the most correlated with
temperature preferences derived from physiological experiments
(r = 0.78; Nspecies = 580; SI Appendix, Fig. S6), and that using
alternative formulas accounted for less than 1% of the total
variability in the CTI and CFI trajectories (SI Appendix, Table
S1). In addition, although the range coverage of the occurrence
datasets used to estimate STI (using the International Union for
Conservation of Nature [IUCN] range maps as reference) varied
among species (mean = 57%; range = 0.5 to 100%; Nspecies = 586),
there was no systematic bias in comparisons between distribution-
based STI estimates and physiology-based temperature affinities
across the coverage gradient (t value = −0.49, P = 0.628; Nspecies =
484; SI Appendix, Fig. S7).
Lastly, we found little evidence that variability in the time

series characteristics (i.e., sampling quarter consistency and
number of census years) was associated with a directional bias in
the CTI or CFI trajectories (SI Appendix, Fig. S8). However, we
note that despite our efforts, the quarter of sampling displayed a
small directional trend over time, with the most recent surveys
being performed earlier in the year compared to the oldest ones
(linear regression coefficient = −1.19 × 10−3, equivalent to a
mean shift of −0.0119 to −0.081 quarters over the range of study
durations; t value = −4.27, P < 0.001 for all surveys). No temporal
trend was found with regards to the sampling month (t value=−1.07,
P = 0.284 for 98,312 surveys for which this information was avail-
able), supporting the finding above that shifts in sampling window are
minimal, and indicating that it is unlikely to affect our conclusions.
If these small shifts in sampling window did result in community

composition changes, our documented rates of community re-
organization will be conservative estimates as most recent sur-
veys are collected earlier in the year when stream temperatures
are lower.
We found that CTI has increased globally with a mean rate of

thermophilization of 0.003 °C·y−1 (95% CI = 0.001−0.005;
Fig. 3A) according to linear mixed models that accounted for
spatial dependencies (i.e., due to shared environmental condi-
tions and species dispersal among sites within the same hydro-
graphic basin) and sampling imbalance (i.e., the fact that the
precision of the estimates increases with sample size) among the
time series (Materials and Methods). Despite positive trends in all
ecoregions, these increases are significant only for Australasia
(0.019 °C·y−1; 95% CI = 0.011−0.026), with the highest degree of
uncertainty found for Afrotropics and Neotropics that are also
the ecoregions with the smallest sample sizes. No significant
spatial pattern was identified with respect to stream order (linear
effect: t value = 0.09, P = 0.932; quadratic effect: t value = 0.21,
P = 0.831), indicating that both increases and decreases are
observed irrespective of site location along the longitudinal
stream gradient (Fig. 3B).
An increase in CFI is also evident globally, with a mean rate of

limnophilization of 0.07%·y−1 (95% CI = 0.02–0.13). However,
both significant increases and decreases are observed at the
ecoregion scale where estimates range from −1.31%·y−1 (95%
CI = −1.97 to −0.66) for Neotropics to 0.08%·y−1 (95% CI =
0.02 to 0.14) for Palearctic (Fig. 3C). Again, Afrotropics and
Neotropics show the highest degree of uncertainty. Changes in
CFI are also nonrandomly distributed along the longitudinal
stream gradient (linear effect: −1.59 × 10−3, t value = −4.31, P <
0.001; quadratic effect: 3.40 × 10−4, t value = 6.29, P < 0.001),
with the highest rates of limnophilization found for sites located
on higher stream orders (Fig. 3D).

Fig. 2. Maps of the community trajectories in CTI and CFI illustrated at the (A) global scale and in (B–G) selected areas. Each triangle represents a time series;
its color indicates the direction and magnitude of changes, expressed in °C·y−1 and %·y−1, respectively.
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Changes in CTI and CFI are best explained by a combination
of climate- and land use-related drivers, as well as intrinsic
community properties (Fig. 4) based on the results of a model
averaging procedure involving top Akaike Information Criterion
corrected for small sample size [AICc]-ranked models (ΔAICc ≤
4; see SI Appendix, Table S2 for the results of the full models).
CTI and CFI trajectories are positively associated with climate
exposure in terms of the rate of increase in maximum average
monthly water temperature (Tmax) and streamflow (Qmax).
Communities that experienced higher rates of increase in tem-
perature and flow tend to show steeper trajectories toward
thermophilization and limnophilization, respectively. Notewor-
thy, our climate exposure metrics are significantly and positively
associated with trends derived from in situ measurements of both
water temperature (linear regression coefficient = 0.10; t value =
2.39, P = 0.019; Nsites = 84) and streamflow (linear regression
coefficient = 0.49; t value = 4.97, P < 0.001; Nsites = 48). This
indicates that our metrics, which are calculated from coarse-
resolution environmental time series (resolution ∼10 km), rea-
sonably represent the environmental changes that occurred at
the study sites (SI Appendix, Fig. S9). Land use also appears as an
important driver and interacts with climate exposure in explaining
CTI trajectories. Land use and trends in Tmax have a comparable
effect on the rates of community reorganization and show syner-
getic interactions, such that the increase in CTI (thermophilization)
is higher in human-modified than in more natural systems under
similar rates of increase in Tmax (Fig. 5A). A similar but nonsig-
nificant effect is observed for CFI, indicating that limnophilization
of riverine fish communities likely occur independently from the
gradient of land use (Fig. 5D).

In addition to the degree of exposure to environmental
change, thermal bias and flow bias are the best predictors of CTI
and CFI trajectories, respectively. Specifically, the rates of
change in CTI and CFI are greater at sites in which starting
communities have experienced temperature and streamflow that
were close to or exceeded their average preferences (i.e., low or
negative values of thermal bias and flow bias). Thermal bias and
flow bias also interact with climate exposure, such as climate
change responses are mediated by community intrinsic sensitiv-
ity. The interaction between thermal bias and the trends in Tmax
indicates that the most temperature-sensitive communities (with
low thermal bias) tend to display high rates of CTI increases
irrespective of the magnitude of climate exposure (Fig. 5B). The
intrinsic sensitivity of communities is then gradually less important
in determining CTI trajectories as the trends in Tmax intensify. By
contrast, the interaction between flow bias and the trends in Qmax
indicates that the highest rates of CFI changes are observed only
when both climate exposure and community intrinsic sensitivity are
high (Fig. 5E). CFI trajectories are positively correlated with Qmax
trends in the most flow-sensitive communities (with low flow bias),
but the relationship lessens as flow bias decreases. In accordance
with the effects of diversity on the resilience capacity of commu-
nities, we also identified a significant effect of species richness on
both CTI and CFI trajectories, where species-poor communities
show the greatest rates of change (Fig. 5 C–F).

Discussion
We provide a global synthesis of temporal trends in fish biodi-
versity in response to ongoing environmental changes in flowing
water ecosystems. Our findings demonstrate an overall finger-
print of recent climate-induced changes in water temperature
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and streamflow on riverine fish communities, but concurrently
highlight the varied and complex pathways by which climate ex-
posure interacts with land-use changes and intrinsic community
properties to reshuffle communities. Acknowledging the spatially
varying and multifaceted responses of riverine communities to climate
and land-use changes is thus crucial to develop reliable forecasts to
support adaptive management strategies in these ecosystems.
We show that the increasing dominance of warm-water

(thermophilization) and slow-water (limnophilization) species
in fish communities are widespread phenomena across a range of
geographical and environmental contexts, where they manifest as
a result of changes in maximum water temperature and streamflow.
The global increase in CTI of 0.003 °C·y−1 is substantially lower
than the rates documented for marine fishes based on commercial
catch (0.02 °C·y−1) (31), but higher than for other freshwater
organisms such as invertebrates (0.001 °C·y−1) (13). This may
reflect the dual effects of stronger physical constraints on species
(re)distribution in riverine than marine systems and the existence
of resistance strategies in many aquatic invertebrates (i.e., desiccation-
resistant forms) (36). However, when analyzed separately for different
ecoregions of the world, we found that only Australasia displays
an overall significant trend toward thermophilization, similar to
the rates observed for marine fish communities (31). In addition,
no clear spatial structuring was evident along the longitudinal
stream network. This indicates a high degree of context dependency
in fish community responses to changes in thermal conditions owing
to opposing longitudinal gradients in extrinsic environmental drivers
and intrinsic community sensitivity and resilience capacity. Specifically,

the distribution of the extrinsic and intrinsic drivers of change
along the longitudinal gradient suggests that whereas fish com-
munities located in low order headwater streams show a greater
scope for composition changes because they display the lowest
thermal bias (higher sensitivity) and species richness (lower resil-
ience capacity), the highest degree of exposure to warming and
land-use changes have so far occurred in higher order streams (SI
Appendix, Fig. S10). Given the observed relationship between
community reorganization and the direction and magnitude of
climate exposure, we therefore expect a higher proportion of
communities to shift toward warm-water dominance as water
temperatures warm into the future (4, 5).
We also found an overall tendency for communities to become

more limnophilic (0.07%·y−1). The direction and magnitude of
the changes again exhibit considerable geographic variation,
both among and within ecoregions, mirroring the complex pat-
terns of positive (e.g., northern high-latitude rivers, northeastern
United States) and negative (e.g., lower and midlatitudes,
southern and western United States) climate-induced trends in
streamflow previously reported among river basins (e.g., refs. 11,
37). Notably, these community changes also display spatial
structuring along the longitudinal stream gradient (within river
basins), with the highest rates of limnophilization observed in
communities located in medium to large stream orders, that also
display the highest degree of exposure to altered streamflow and
community sensitivity (SI Appendix, Fig. S10). This is congruent
with the predicted upstream shift of species distributions along
riverine networks from the most downstream habitats (38), but
also calls for a better understanding of the effects of river frag-
mentation on species expansions to smaller order tributaries
(39). Taken together, our findings indicate that climate-induced
alteration in water temperature and streamflow (and subsequent
impacts on riverine biota) can be largely decoupled at a variety of
local to regional scales. A better integration of these two es-
sential facets of climate-induced change would enhance the re-
alism of ecological forecasts into the future.
Most importantly, our results demonstrate synergies among

climate- and land-use–related drivers of change, adding to the
growing body of evidence that an emphasis on climate only—through
temperature change—could impede our ability to anticipate
biodiversity trends in the future (9, 39, 40). Notably, we show
that the effects of climate exposure on CTI are exacerbated in
systems with high levels of land use. This can be explained by
three nonmutually exclusive factors: 1) water temperature in-
creases due to removal of riparian vegetation and stormwater
runoff from impervious surfaces not captured by the water
temperature simulation model used (see ref. 10 for details), 2)
reduced community resilience beyond changes in species rich-
ness and composition (e.g., intraspecific phenotypic and genetic
diversity) (21), and 3) trait-based community filtering toward
human-affiliated species tolerant of greater climatic variation
(19, 20).
By contrast, our study shows the dominant effects of recent

changes in streamflow on community composition, regardless of
the land-use context. This result may be partially explained by
the fact that human-induced hydrological changes such as dams,
water withdrawals, and irrigation are already accounted for in
the hydrological model (see ref. 41 for details). Nonetheless, this
confirms that climate signals are not likely to be obscured by direct
human influences on flow regimes (11, 37). Although methods have
been proposed to control for the effects of different drivers of
change on community trajectories (42), we argue that quantifying
their potential synergies (or lack thereof) in nature allows for more
realistic, though potentially more concerning, assessments of future
threats to riverine fish biodiversity.
Beyond changes in water temperature, streamflow, and land

use, the effects of climate exposure on community composition
are mediated by the interplay with community intrinsic sensitivity

−0.02 −0.01 0.00 0.01 0.02

Trend Tmax × Species richness

Trend Tmax × Thermal bias

Trend Tmax × Land use

Species richness

Thermal bias

Land use

Trend Tmax

−0.2 −0.1 0.0 0.1 0.2

Trend Qmax × Species richness

Trend Qmax × Flow bias

Trend Qmax × Land use

Species richness

Flow bias

Land use

Trend Qmax

Effect sizes

A

B

Fig. 4. Drivers of fish community trajectories. Direction and magnitude of
the effect of climate exposure (trends in maximum average monthly tem-
perature [Tmax] or streamflow [Qmax]), land use, community sensitivity
(thermal bias or flow bias), community resilience capacity (species richness),
and their interaction (effect sizes) on (A) CTI and (B) CFI trajectories. Error
bars show the 95% confidence intervals where darker dots indicate confi-
dence intervals that do not cross zero.
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and resilience capacity. As expected, we find that the match
between species niches and experienced environmental regimes
(community thermal or flow bias) is a fundamental determinant
of biodiversity responses to climate change (25, 27), where the
most sensitive communities also display the highest rates of
species reorganization. Interestingly, among the most thermally
sensitive communities, the rate of thermophilization is high,
irrespective of warming trends. This result is intuitive because
communities at sites that are experiencing water temperatures
that are already close to (or higher than) those preferred by
species are also expected to experience declines in abundance
and/or a turnover toward species adapted to warmer waters. As a
result, changes in fish community are more likely to reflect re-
cent climate exposure when the initial community is less ther-
mally sensitive. Contrastingly, changes in streamflow have the
greatest effect on limnophilization in the most flow-sensitive
communities. In less flow-sensitive communities, trends in
streamflow result in little to moderate change in the community
with respect to its flow preference. Together, these results sug-
gest that effects of recent warming are more profound and
present a greater threat to riverine fish communities than recent
flow alterations because all communities regardless of their
temperature sensitivity were greatly reorganized at the highest
levels of water temperature increase. This lends support to the
forecast that the vulnerability of riverine fishes will be increas-
ingly determined by climate warming exposure in the future (43).
We also provide evidence of the buffering effect of species

diversity on the rate of community reorganization, confirming
that the initial state of communities can effectively increase

community resilience to environmental change (28). Although
more sophisticated community properties such as temporal sta-
bility (32), functional redundancy (29), or thermal diversity (27)
would undoubtedly provide more mechanistic explanations of
the observed patterns, species richness as used in our analysis
offers a simple tool for measuring climatic susceptibility that is
easily transferable across systems and taxonomic groups. In turn,
our findings suggest that the general expectation that climate
change favors warm-water species may be too simplistic in riv-
erine systems. Freshwater fish faunas are uniquely susceptible to
environmental change because of the same factors that gave rise
to their extremely high degree of endemism and biodiversity—
the fact that their movement is constrained by the branching
structure of stream networks and isolation within river basins.
This results in limited redistribution opportunities but also
strong longitudinal and regional variation in community intrinsic
properties such as warming tolerance and species richness
(44, 45).
The global assessment of community compositional trends in

riverine fishes presented here is based on the most comprehen-
sive compilation of fish abundance time series to date. This
unique dataset allows us to draw crucial conclusions concerning
the recent fingerprint of climate change on an ecologically,
commercially, and culturally important vertebrate group world-
wide. Despite the global scope of our study, we note clear dis-
parities in terms of geographic coverage of available data, with
relatively few data points in tropical river basins (e.g., no sites in
the Amazon or Mekong basins). Because these basins harbor
exceptional diversity in fish (44) that live closer to their thermal
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limits (43, 46), the underrepresentation of tropical areas cur-
rently preclude a complete understanding of climate-induced
community reshuffling in flowing water ecosystems. Given that
different regions of the world may also display distinct patterns
of overlap among anthropogenic drivers (47), with some of the
fastest changes in land cover on the planet recorded in the tro-
pics (48), these spatial biases may limit a fuller understanding of
biodiversity change drivers (including the potential for interac-
tive effects), and thus our ability to implement appropriate
climate-change adaptive management strategies (49). Conse-
quently, further research in these comparatively understudied
biodiversity hotspots is urgently required (46, 48). Acknowledg-
ing the inherent limits of broad-scale biodiversity analyses such
as ours (e.g., distribution-based estimates of thermal affinities,
variation in the timing of surveys over time, resolution of envi-
ronmental time series), we hope this study will stimulate future
research, ideally examining other facets of community dynamics
(e.g., taxonomic and trait diversity) (50), as well as assessing the
consequences of changes in variability (instead of average) in
temperature and flow regimes (51, 52).

Materials and Methods
Fish Abundance Data. Time series of fish abundance estimates were obtained
from a global database of riverine fish community time series (RivFishTIME)
(53), completed by additional national, state, and regional monitoring
programs (see SI Appendix, Table S3 for a full list of the datasets used).
Following RivFishTIME, time series were included if 1) the sampling methods
were reported and consistent through time, 2) the sampling protocol was
designed to target the entire fish community (i.e., as opposed to species-
specific surveys), 3) the precise location (i.e., geographical coordinates) was
available, 4) the time span was at least 10 y, and 5) two or more census years
were available. We further excluded time series with null abundances, re-
moved records involving non–ray-finned fishes (e.g., lampreys) or unidenti-
fied species from time series, and harmonized the taxonomy at the species
level according to Fishbase (54). The geographical coordinates of the sites
were used to assign each time series to an ecoregion (Afrotropic, Australasia,
Nearctic, Neotropic, and Palearctic) and hydrographic basin (HydroSHEDS)
(55), as well as to extract environmental data (see below). We also assigned a
Strahler stream order to each time series by spatially snapping the sites to
the RiverATLAS network (56) using a 500-m buffer (i.e., sites located within
500 m of the river network were assigned the stream order of the closest
stream segment; 23% of the sites located farther away were assigned
missing values). Time series collected at the same sites but using different
sampling methods were considered separately in the analyses. Although
limited in extent (i.e., fewer than 14% of the time series include multiple
sampling events within a given year), we included only one sampling event
per year to avoid temporal pseudoreplication in our analysis. To reduce
potential sampling biases, we favored surveys performed in the same
quarter of the year (1: January–March; 2: April–June; 3: July–September; and
4: October–December), and when this information was available in the
same month within the same quarter. To test for potential directional trend
in the temporal characteristics of the surveys, we used linear mixed models
specifying either the sampling quarter or sampling month as response
variable, year as a fixed effect, and time series identifier (ID) as a random
effect on the intercept.

Environmental Data. We obtained water temperature (57) and streamflow
(58) monthly time series for the period 1979 to 2014 at a 5-arc minute (∼10
km) resolution at the global scale. Briefly, these datasets were simulated
using the dynamical one-dimensional (1-D) water energy routing model
(DynWat), that solves both the energy and water balance at the daily
timestep. Although location-specific water temperature and streamflow
time series were not available for most of the sampled sites, the DynWat
model accounts for various anthropogenic (e.g., water abstraction, reservoir
operations) and natural (e.g., ice breakup, flooding) processes, enabling a
realistic representation of water temperature and flow regimes at a fine
spatiotemporal scale (see refs. 10, 41 for more details). Despite being able to
produce accurate estimates of daily discharge and temperature, it is im-
portant to note that the hydrologic model includes human–water interac-
tions, whereas the water temperature simulations do not account for direct
human impacts on temperature regimes (e.g., anthropogenic heat effluent
or increase incoming radiation due to removal of riparian vegetation).

Using these environmental time series, we estimated climate exposure
using the temporal trends in maximum average monthly water temperature
(trend Tmax; °C·y

−1) and streamflow (trend Qmax; %·y−1). These were quan-
tified independently for each time series based on the fitted slope of a GLS
model based on the yearly values in Tmax or (ln transformed) Qmax with year
as a predictor variable. The models were fit on the period covered by each
time series minus the last census year, but including the 4 y prior to the first
census year to account for long-term antecedent effects on fish recruitment
success (59, 60). When the first and last census years were prior to 1983 and
after 2015, respectively, the time window used to compute the temporal
trends in water temperature and streamflow was dictated by data avail-
ability in the time series (median number of missing years across all time
series = 1). To ensure temporal representativeness of climate exposure and
convergence of the models, we kept only time series with at least 8 y of data.

To assess the ability of these coarse-resolution environmental time series
to capture local environmental changes, we compared the metrics of climate
exposure to trends estimated from in situ measurements of water temper-
ature and streamflow. Observed water temperature trends were estimated
based on water temperature measurements recorded during the fish com-
munity surveys for a subset of sites for which this information was available
for at least 8 y within the same quarter of the year (Tfield; Nsites = 84). Ob-
served streamflow trends were estimated using maximum monthly average
values based on daily gauge measurements accessed through the Global
Runoff Data Center (available at https://www.bafg.de/GRDC/EN/Home/
homepage_node.html). To do so, we selected gauges that were located
within 200 m of the studied sites and for which measurements covered at
least 8 y within the same temporal window, after discarding years with more
than 75% of missing daily measurements (Qfield; Nsites = 48). Similar to
modeled environmental time series, these trends were estimated indepen-
dently for each observed time series based on the fitted slope of a GLS
model based on the yearly values in Tfield or (ln transformed) Qfield with year
as a predictor variable. We then compared modeled to observed environ-
mental trends using linear regressions.

Land cover data were obtained through the GlobCover2009 database that
provides land cover classes values at a 300-m resolution for the year 2009 (61).
Land use was then estimated as the percentage of cells within a 25-km
buffer classified as croplands, artificial surfaces, and associated urban areas
(i.e., corresponding to classes #11, #14, #20, #190, and #200). For practical
purposes, we used a snapshot instead of dynamic land-use changes as most
of the changes from natural to human land uses likely occurred before the
last decades (our study period) and that no historical land cover dataset was
available (or reliable) at a fine spatiotemporal scale (62). Nonetheless, we
recognize that land cover is not truly static, and that land conversion un-
doubtedly occurred, which might have affected our results.

Trajectories in Community Temperature and Streamflow Affinities. Community
temporal trajectories were estimated in terms of 1) species temperature (a
gradient of cold to warm water) and 2) streamflow (a gradient from rheo-
philic to limnophilic) affinities using the CTI and CFI, respectively (30, 32). CTI
and CFI summarize the average temperature and flow preferences of all
species present at a given year at each site (i.e., community).

We estimated the STI and SFI indices for each of the 951 species recorded in
the time series. We used long-term (1981 to 2010) mean annual water
temperature (°C) and streamflow (m3·s−1) aggregated at a 2.5-arc minute
(∼25 km) resolution and species occurrences gathered from the Global Bio-
diversity Information Facility (63). We removed fossil specimen records, re-
cords of unknown origin, literature-based records with no specimens,
records of specimens collected before 1975, and we removed duplicates. We
also identified erroneous coordinates (based on the match between the
recorded country and the country extracted from the geographical coordi-
nates) and removed records that did not overlap with the presence of water
(based on the GloRiC database) (64). To limit the influence of spatial biases
in the biodiversity records (i.e., patchiness of collection effort), occurrence
records were aggregated to a 2.5-arc minute (∼25 km) resolution. Indeed,
even for well-sampled species, occurrences are often clustered around areas
of high accessibility or areas of management interest, making it difficult to
distinguish between locations where the species is absent from sampling
gaps across its distribution. As such, increasing the spatial grain reduces the
number of cells with little-to-no sampling, and thus the potential for false
absences (65). The STI and SFI were then computed as the median temper-
ature and streamflow value within a species range (median among all 2.5-
arc minute grid cells occupied by the species) (e.g., refs. 18, 30).

Because these indices could be estimated using slightly different formulas
(e.g., ref. 32), we compared alternative STI estimates (i.e., using the 95th
percentile value of mean annual temperature instead of the median or using
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the maximum monthly instead of mean temperature) with temperature
preferences derived from physiological experiments (43) for more than half
of the number of species included in our study (i.e., those species with data
from physiological experiments; Nspecies = 581). We also assessed the influ-
ence of these methodological choices on the final community trajectories
based on the percentage of variance explained by the type of biological data
(abundances versus occurrences), distributional parameter (median versus
95th percentile), and environmental variables (mean annual versus maxi-
mum average monthly) with respect to the total variance estimated using
linear regressions.

To assess the representativeness of the occurrence datasets with respect to
species distributions, we also estimated the percentage of range coverage
using the IUCN range maps as reference (66). To be able to compare the IUCN
range maps—based on river catchments—with point occurrences, we cal-
culated the ratio between the total area covered by the IUCN range maps
(i.e., sum of the areas covered by all river catchments), and the area of the
river catchments covered by the occurrence datasets (i.e., sum of the areas of
all the river catchments where at least one occurrence was selected in the
final dataset), which we further expressed in percentage (range coverage,
%). Due to limited availability of IUCN range maps for the species included in
our study, this analysis was restricted to 586 fish species (of the 951 species in
our community time series dataset). We further assessed whether the de-
gree of range coverage introduced potential biases in the estimations of the
distribution-based temperature affinities. To do so, we calculated the ratio
between the STIs and the physiology-based temperature affinities (CTmax)
for the species for which this information was available (Nspecies = 484), and
tested the association between this ratio and range coverage using a linear
regression.

Next, we computed the CTI and CFI for each time series-by-year combi-
nation as the mean STI and SFI across all the recorded species in each com-
munity in each year, weighted by their (log transformed) abundances. We
used log-transformed abundances to reduce the influence of stochastic
fluctuations and sample errors in the counts of high-abundant species (67).
We also excluded CTI or CFI estimates of a given community from our
analyses when more than 25% of the species in that community were
missing STI or SFI due to a lack of occurrence data.

Last, we estimated temporal trajectories in CTI and CFI using GLS models,
including CTI or CFI as response variables (CFI was ln transformed to reduce
skewness) and year as a predictor. The temporal trajectories in CTI and CFI
for each time series were then estimated using the slope coefficient
(β-coefficient) expressed in °C·y−1 and ln[m3·s−1] ·y−1, respectively. Note, how-
ever, that to facilitate interpretability of the β-coefficients from the ln-linear
models, we expressed the trajectories in CFI in %·y−1 using the back trans-
formation (eβ − 1) ×100 (untransformed values are presented in SI Appendix).
Whereas an increase in CTI indicates an increase in the representation of
warm-water species (high STI) at the expense of cold-water species (low STI),
an increase in CFI indicates an increase in the dominance of limnophilic
species (downstream species with high SFI) at the expense of rheophilic
species (upstream species with low SFI).

Community Characteristics. We estimated community intrinsic sensitivity to
climate exposure through community thermal bias (25) or flow bias, which
quantifies the difference between the community thermal or streamflow
affinity and the thermal and flow conditions experienced by the community
at the start of the time series. To do so, we calculated for the first census year
of each time series the difference between STI or SFI and the long-term
(1981 to 2010) mean annual water temperature (°C) and streamflow
(m3·s−1) aggregated at a 2.5-arc minute (∼25 km) resolution, averaged across
species and weighted by the species (log transformed) abundances. Com-
munities with negative or low positive thermal bias or flow bias values are
likely more affected (i.e., sensitive) by temperature or flow increases because
they are experiencing temperatures or flows that already exceed or are about
to exceed conditions preferred by their constituent species. Conversely, a large
positive thermal bias or flow bias value indicates that species in the community
on average prefer temperature or flow that is much higher than conditions
they are experiencing; therefore, the community is likely less sensitive to al-
terations in temperature or flow conditions. We also estimated community
resilience capacity through species richness, using the number of species
recorded during the first census year.

Spatial Patterns in Community Trajectories. Spatial patterns in CTI and CFI
trajectories were assessed at the global, ecoregion, and site (along the
longitudinal stream gradient) scales. To do so, we first built a linear mixed
effects model (68) with CTI or CFI trajectory as the response variable (β-co-
efficient in CTI or CFI) without any covariate to estimate the direction and

magnitude of the global trend in CTI or CFI (effect size). We then fit the
same models but adding ecoregion as a fixed effect and removed the global
intercept to obtain one estimate per ecoregion. Lastly, we examined the
longitudinal gradient patterns in CTI or CFI using stream order as a fixed
effect in the models. We included both linear and quadratic terms to ac-
count for potential nonlinear community responses along the longitudinal
stream gradient. To account for spatial autocorrelation among the time
series due to shared environmental conditions and species dispersal among
sites, we specified the hydrographic basin ID as a random effect on the in-
tercept in all the models. We also included the number of census years as
weight (sampling weights) to control for the effect of unequal sample size
among the time series (i.e., the fact that the precision of the estimates in-
creases with sample size; SI Appendix, Fig. S8 B–D).

Drivers of Community Trajectories. To test whether community temporal
dynamics reflect climate exposure, we modeled CTI or CFI trajectories
(β-coefficients) separately as a function of the trends in water temperature
(trend Tmax) or streamflow (trend Qmax), respectively. To test for the dual
forces of climate and land-use change (14, 19), we included an interaction
term with the degree of land use. To test whether the sensitivity of com-
munities to climate exposure mediates community responses, we also in-
cluded an interaction term with community thermal bias or flow bias.
Finally, to test whether diverse communities are more resilient to climate
exposure, we included an interaction term with species richness. As with the
models developed to assess spatial patterns in CTI and CFI trajectories (see
Spatial Patterns in Community Trajectories above), we used linear mixed
models with a random effect structure accounting for spatial (hydrographic
basin ID) dependencies on the estimated temporal trajectories and using
sampling weights (number of census years) to control for different sampling
schemes. Note that due to the above-mentioned constraints on data avail-
ability of water temperature and streamflow time series, the models were
ultimately fitted using slightly reduced datasets (12,435 and 12,261 for CTI
and CFI trajectories, respectively). The predictors were standardized to z
scores (mean = 0, variance = 1) prior to model fitting to allow comparison of
the coefficients between predictors that were measured on different scales
(69). We fitted all possible models using different combinations of predictors
and ranked the models according to their AICc. To account for model se-
lection uncertainty, the direction and magnitude of the effect of the dif-
ferent drivers (effect sizes) and associated 95% confidence intervals were
estimated using a model averaging procedure (70). This was performed us-
ing a subset of models with ΔAICc ≤ 4 from the model with the lowest AICc.

All the analyses were performed using the computing environment R (71)
using the packages Epi, lattice, lme4, lmerTest, MuMIn, RColorBrewer, rgbif,
raster, rgdal, and scales.

Data Availability. The fish abundance time series data are available from the
RivFishTIME database (53) deposited in iDiv Data Repository (https://doi.org/
10.25829/idiv.1873-10-4000; the full list of datasets used in our analyses are
presented in SI Appendix, Table S3). The water temperature time series data
are available from https://doi.org/10.5281/zenodo.3337659 (57), and the
streamflow time series data are available from https://doi.org/10.5281/zenodo.
1468428 (58). Land cover data are available from the GlobCover2009 database
(http://due.esrin.esa.int/page_globcover.php) (61).
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