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ARTICLE

Comprehensive characterization of 536 patient-
derived xenograft models prioritizes candidates
for targeted treatment
Hua Sun 1,2,27, Song Cao1,2,27, R. Jay Mashl1,2,27, Chia-Kuei Mo1,2,27, Simone Zaccaria 3,4,27,

Michael C. Wendl2,5,6, Sherri R. Davies 1, Matthew H. Bailey7, Tina M. Primeau1, Jeremy Hoog1,

Jacqueline L. Mudd1, Dennis A. Dean II8, Rajesh Patidar9, Li Chen9, Matthew A. Wyczalkowski 1,2,

Reyka G. Jayasinghe1,2, Fernanda Martins Rodrigues1,2, Nadezhda V. Terekhanova1,2, Yize Li 1,2,

Kian-Huat Lim 1,10, Andrea Wang-Gillam1,10, Brian A. Van Tine 1,10, Cynthia X. Ma 1,10, Rebecca Aft10,

Katherine C. Fuh1,10, Julie K. Schwarz 10,11, Jose P. Zevallos10,12, Sidharth V. Puram10,12, John F. Dipersio 1,10,

The NCI PDXNet Consortium*, Brandi Davis-Dusenbery8, Matthew J. Ellis13, Michael T. Lewis13,

Michael A. Davies 14, Meenhard Herlyn 15, Bingliang Fang14, Jack A. Roth 14, Alana L. Welm 7,

Bryan E. Welm7, Funda Meric-Bernstam 14, Feng Chen1, Ryan C. Fields10, Shunqiang Li1,10,

Ramaswamy Govindan1,10, James H. Doroshow16, Jeffrey A. Moscow17, Yvonne A. Evrard 9,

Jeffrey H. Chuang 18, Benjamin J. Raphael 3 & Li Ding 1,2,6,10✉

Development of candidate cancer treatments is a resource-intensive process, with the

research community continuing to investigate options beyond static genomic characteriza-

tion. Toward this goal, we have established the genomic landscapes of 536 patient-derived

xenograft (PDX) models across 25 cancer types, together with mutation, copy number,

fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs

typically have higher purity and fit to investigate dynamic driver events and molecular

properties via multiple time points from same case PDXs. Here, we report on dynamic

genomic landscapes and pharmacogenomic associations, including associations between

activating oncogenic events and drugs, correlations between whole-genome duplications and

subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a

web portal having comprehensive pan-cancer PDX genomic profiles and source code to

facilitate identification of more druggable events and further insights into PDXs’ recapitula-

tion of human tumors.
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Patient-derived disease models have emerged as important
platforms for cancer research1–3. In particular, patient-
derived xenograft models (PDXs), which are composed of

immunodeficient mice engrafted with patients’ cancerous mate-
rial, generally offer more faithful representations than cancer cell-
lines, which tend to diverge over time4. Uses of PDXs in cancer
research are myriad, ranging from investigating basic biology, to
discovering biomarkers for therapy response and resistance,
to conducting translational cancer research5. Their application to
drug discovery6 enables pre-clinical evaluation of therapeutic
agents and furnishes a platform for exploring novel drug
combinations7. The possibility of guiding treatment for rapidly
proliferating cancers8 is suggested by their short timeframes.
Likewise, their application to co-clinical trials in which the model
is treated with the same regimens as the originating patient tumor
may allow for further assessment of the accuracy of the PDX
response.

Development of candidate cancer treatments is a resource-
intensive process and the research community continues to
investigate options beyond static genomic characterization. One
promising option is seeking actionable molecular alterations
without particular regard for the underlying cancer type. This
approach is a centerpiece of The National Cancer Institute (NCI)
Molecular Analysis for Therapy Choice (NCI-MATCH or
EAY131) trial9,10, in which cancer patients are assigned to sub-
protocols according to aberrations in putatively relevant genes or
pathways11. The rapid growth of PDX resources has resulted in
major efforts to catalog PDX models, harmonize metadata, and
organize repositories, including the NIH-NCI PDX Development
and Trial Centers Research Network (PDXNet, pdxnetwork.org),
the NIH-NCI Patient-Derived Models Repository (PDMR, pdmr.
cancer.gov), and EurOPDX (europdx.eu). These PDX resources
are supported bioinformatically by the PDX Finder web portal
(pdxfinder.org)12 and by the PDX Minimal Information standard
guidelines13 for describing essential aspects of PDX model
derivation.

In the spirit of this grand effort, we obtained 2,028 human and
PDX tumor samples representing 536 PDX model lines (511
patients) across 25 cancer types to perform systematic PDX
genomic characterization. The heterogeneities characteristic of
human progenitor tumors (primary, metastatic, or recurrent)
make obtaining the mutational landscapes of PDXs essential for
assessing model fidelity, identifying the types and subtypes of
cancers that can effectively be captured, and determining whether
druggable driver mutations are being recovered. Comprehensive
PDX characterization is also crucial for identifying where greater
representation is needed to bolster statistical power and for
revealing cancer types and subtypes for which PDX models may
be more difficult to establish, thereby steering efforts toward
alternative platforms like organoids. Analysis of PDX tumors
presents challenges beyond those of human matched tumor/
normal samples, including lack of germline samples and presence
of mouse reads, necessitating additional sample quality control
pipelines, tumor-only pipelines, and filtering. Through the use of
several bioinformatic pipelines, we identified mutational land-
scapes, copy number (CN) alterations, cis/trans mutation sta-
tuses, gene fusions, and pan-cancer groups, and compared the
results to data from The Cancer Genome Atlas (TCGA). We then
investigated dynamic tumor evolution via copy number alteration
and whole-genome duplication in PDX models with multiple
PDX passages. Lastly, we identified PDX models that meet NCI-
MATCH study arm criteria and provide the list of genomic
alterations. In summary, these analyses comprehensively char-
acterize the genomic features of PDX models and serve as a rich
resource for identifying potential models for use in conjunction
with clinical trials or for testing experimental drug combinations.

Results
Xenografts and clinicopathological summary of sequenced
samples. The samples used in this study included tumors from
human patients, their derivative PDX models and subsequent
passages of PDX models (Fig. 1). We collected whole-exome
sequencing (WES) and RNA-seq data for human and PDX
samples (Fig. 1a) from PDXNet centers and the PDMR, retaining
those samples having good coverage and consistent pedigrees
among human and PDX samples per our quality-control (QC)
assessment (see Methods). The resulting 3,705 WES and RNA-
seq data (n= 2,321 unique tissue samples) represent 511 patients
and 536 PDX models across 25 cancer types (Fig. 1b, c and
Supplementary Data 1), with over 85% of the samples associated
with breast (BRCA), colorectal (COAD, READ), sarcoma
(SARC), lung (LUAD, LUSC, SCLC), pancreatic (PAAD), skin
(SKCM), head and neck (HNSC), bladder (BLCA), and kidney
(KIRC) cancers (Fig. 1d). We grouped the cases into classes: those
with matched human tumor/normal samples (n= 186), with
either human tumor (n= 72) or normal (n= 107) but not both,
and those with no human samples (n= 146). The purpose of
these classifications is to identify cases having tumor and PDX
samples but lacking a normal, thereby relegating these cases to a
pooled tumor approach for somatic variant calling (see Methods).

Around 55% of cases admit two or more unique PDX passages
(Fig. 1c), making them suitable for dynamic tumor evolution
analysis. Patient samples contributed relatively few RNA-seq data
sets, whereas PDX samples contributed comparable numbers of
WES and RNA-seq data sets, together representing over 80% of
all samples analyzed. Clinical annotations (Fig. 1e) indicate that
of the 536 PDX models, 329 were derived from primary, 159 from
metastatic, 28 from recurrent, and 20 from other/unknown tumor
types. Prior treatment can have a substantial impact on in vivo
drug response. Here, 48% of patients are reported to have had
drug treatment prior to specimen collection for PDX engraft-
ment, while 44% were reported not to have received any. Further,
our human cases represent a wide range of age groups,
approximately equal numbers of males and females, and at least
three ethnicities. Regarding distribution of cases by center
(Fig. 1e), half came from PDMR, a quarter from Washington
University, and a quarter from PDXNet Patient Development and
Trial Centers (PDTCs) at the University of Texas M.D. Anderson
Cancer Center (MDACC), Baylor College of Medicine (BCM),
Huntsman Cancer Institute (HCI), and the Wistar Institute (WI).

The landscape of genetic alterations in 268 human tumors and
536 PDX models. We performed a comprehensive analysis of
somatic mutations, copy-number alterations (CNAs), and fusion
events on tumors from 511 cancer patients yielding 536 PDX
models across multiple cancer types to identify key genetic
alterations in the xenografts and compare them to the human
tumors (Fig. 1d). These models are summarized on the “PDX
Variant Viewer” web portal (https://pdx.wustl.edu/pdx), which
organizes cancer types, models, corresponding clinical informa-
tion (patient age range, self-reported race, and gender, and PDX
specimen treatment status), the derived PDX samples, and the
type of variant calling pipeline used (tumor-normal or tumor-
only). Somatic variants (fusions, CNVs, and mutations) collated
by gene can be viewed by navigating the hyperlinks.

Regarding non-synonymous mutations, overall, we found high
variant allele fractions (VAFs) in PDXs compared to both human
tumors from the current study and from TCGA, with two peaks
at ~0.5 and 1 (Fig. 2a, left). For human tumors, the right panels
show calculated VAFs for the top 10 frequently mutated hotspots
found in the PDX cohort versus TCGA results, where hotspot
mutations were limited to 299 cancer genes14. We found
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consistently higher VAFs in PDXs for these 10 hotspot mutations
(p < 10–4, Wilcoxon test), suggesting the PDXs have a high tumor
purity. Interestingly, we found that important hotspots R175H,
R248Q, R248W, and R273H in TP53 are homozygous with VAFs
close to 1, whereas oncogenic hotspots in BRAF, KRAS, and
PIK3CA are heterozygous with VAFs close to 0.5 in PDXs. These
trends are not apparent from VAFs of human tumors due to
lower purities (Fig. 2a), suggesting the importance of using PDXs
to characterize genomic alteration events in tumors more
effectively.

We investigated mutations between PDXs and primary human
tumors in SKCM, LUSC, SARC, PAAD, LUAD, COADREAD, and
BRCA, which each encompass at least 20 patients having mutational
data in both PDX and human tumors (Fig. 2b, left). We calculated
the mutational similarity (percentage of overlapping mutations) for
all mutations and driver-only mutations (Fig. 2b, right), observing
that the majority is conserved between PDXs and the corresponding
human tumors with a median value of 0.75 across cancer types.
However, 27 models (13 from LUAD) showed much lower
mutational similarity scores (< 0.2) between human tumor and

Human

Tumor A
Sample

Tumor B
Sample

Normal
Sample

Passage 0

Model A

Model B

Passage 1 Passage 2 Passage N...

Specimen
Sequenced

73

1311

293

181

296

14

153

0 500 1000 1500
Numbers of samples (n)

RNA-Seq onlyWES onlyWES+RNA-Seq

Human Normal
(n=293)

Human Tumor
(n=268)

PDX
(n=1,760)

536
Models

511
Patients

Total samples
n=2,321

50

0

100

150

200

1 2 3 4 5 6

C
as

e 
C

ou
nt

50

0

100

150

200

1 2 3 4 5 6 7 8 9 11 23 24

50

0

100

150

200

250

1 2 3 4 5 6

50

0

100

150

200

1 2 3 4 5 6 7 8 9

M
od

el
 C

ou
nt

PDX per Case

PDX per Model

Unique PDX Passage Count PDX Sample Count

Unique PDX Passage Count PDX Sample Count

BR
C

A
C

O
AD

SA
R

C
SK

C
M

PA
AD

LU
AD

H
N

SC
BL

C
A

O
th

er

LU
SC

KI
R

C
SC

LC
R

EA
D

U
C

S
M

C
C

U
C

EC
ST

AD O
V

G
IA

D
C

ES
C

M
ES

O
G

BM
C

SC
C

PR
AD

LU
AS

G
IS

T

Cancer Types

0

20

40

60

80

100

H
um

an
 C

as
es

PDMR
(258)

WUSTL
(127)

MDACC (56)

BCM (38)

HCI (17)
WI (15)

Cases Treatment Prior to 
PDX Collection

Yes No

Tumor StatusRaceGender

Female
(n=262)

Male
(n=249)

Age at Diagnosis
Unknown (n=13)

90s

80s

70s

60s 50s

40s

30s

20s
10s

(n=4)

(n=27)

(n=86)

(n=142) (n=117)

(n=76)

(n=32)

(n=11)
(n=3)

Yes
(n=273)

No
Unknown

(n=246)
(n=17)

African-American

Asian

White

Unknown

(n=39)

(n=6)

(n=319)

(n=147)
Primary

Recurrence

Unknown

(n=331)

(n=179)
Metastasis

(n=7)

(n=19)

98

31

65

49
37 37 37 36 34

27
14

7 7 4 4 3 3 3 3 3 2 2 2 1 1 1

232

89

130

52

7 1

248

94

134

52

7 1

214

25
11

64
42

134

12 3 3 1 1 1

235

27
6

66
44

142

12 2 2

a

b

d

e

c

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25177-3 ARTICLE

NATURE COMMUNICATIONS | (2021)12:5086 | https://doi.org/10.1038/s41467-021-25177-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


PDXs (Supplementary Fig. 1a). As a result, we saw an over-
representation of EGFRmutations in these samples. QC via germline
variants did not reveal any sample mismatches between PDXs and
primary tumors that would explain this low similarity (Supplemen-
tary Data 2). Further investigation showed the cause in the majority
of models to be that several mutations in human samples had
disappeared in PDX models. Subclone selection and purity were
important underlying factors. For instance, in model 193523_008_R,
human primary tumor had 703 mutations while PDX models only
had around 30 mutations. More than 90% of PDX mutations were
in the human primary tumor and driver TP53 missense mutation
(G245S) was conserved in both the human primary tumor and
PDXs, suggesting that PDXs are indeed from the human primary
tumors, which is consistent with germline QC. However, only a
small subset of mutations appears to be selected during the
passaging from human tumor to PDXs, evidently contributing to the
loss of mutations in PDX. Another factor is purity, as seen in model
MDACC_TC286, in which the PDX has a low purity of 0.28. Here,
we only detected 5 mutations, an enormously lower number than
that detected in the human tumor (1552). Driver mutations found in
human tumors were more conserved between PDXs and human
tumors compared to all mutations’ results, as demonstrated by a
median similarity score of 1 across cancer types (Fig. 2b).

We further examined the mutational similarity for cases with
multiple models by calculating both intra- and inter-mutational
similarities among different models from the same patient case,
where intra cases compare two PDXs derived from the same original
patient tumor fragment (i.e., same model) and inter cases compare
PDXs derived from different tumor fragments from the same patient
(i.e., different models). Figure 2c shows the comparison between
inter- and intra-mutational similarities. In general, they are
correlated, with intra mutational similarity being higher. Since
PDXs from different models originate from different tumor material
of the same patient, the low inter mutational similarity suggests
intrinsic tumor heterogeneity among tumor segments15. Figure 2c
shows one example (PDMR-616732) from PAAD, in which the
average inter- and intra-mutational similarities are 0.56 and 0.84,
respectively. The two models originate from two different metastatic
human specimens, collected from liver (R2) and pleura (R3). Both
R2 and R3 contain key driver mutations KRAS G12V and TP53
Y235C16, which are also conserved in their derived PDX passages.
The similarity matrix in the right clearly shows a high intra-
mutational similarity and a low inter-mutational similarity. We also
found high mutational similarity for two samples which are close
neighbors in the tree plot. For instance, two PDX passages (PR0 and
AK5) from the same parental PDX root (N46) show a highest
similarity 0.91.

Most of the patient cases, 98 and 72, were from breast (BRCA)
and colorectal (COADREAD) cancer, respectively (Fig. 1d).

Regarding the latter, we combined the colon adenocarcinoma
(COAD) and rectum adenocarcinoma (READ) groups to increase
statistical power, consistent with TCGA17. We then examined
genetic alterations in significantly mutated genes (SMGs)
established by a large TCGA pan-can study14 for these cancer
types (Supplementary Fig. 1b, c). For BRCA, TP53 and PIK3CA
are the two highest mutated genes, again consistent with TCGA
(Supplementary Fig. 1b)18. We found a higher frequency of TP53
mutations, which is related to the higher number of basal
subtypes included here. In addition to driver mutations, we
observed several copy number (CN) deletions in tumor
suppressors, such as TP53, PTEN, RB1, and NF1 in BRCA and
CN amplifications in oncogenes (PIK3CA, GATA3, and FOXA1).
A few fusions were observed in PIK3CA and MAP3K1. We found
that driver mutations in PDXs appeared to be stable across
multiple passages and similar to those in matched primary
human tumors (Supplementary Fig. 1b). This finding supports
the view that PDXs are representative of their original human
tumors at the mutation level. We also found that six patients had
pathogenic germline variants in BRCA1 and BRCA2, two genes
highly relevant in breast cancer19. Our analysis of genetic
alterations in COADREAD (Supplementary Fig. 1c) found APC
was the highest mutated gene in accordance with the TCGA
study17. Copy number deletions and amplifications were observed
in tumor suppressors TP53 and SMAD4 and oncogenes KRAS,
PIK3CA, and EDNRB, respectively, consistent with their respec-
tive deleterious and activating roles. We also observed the stable
evolution of driver mutations with human tumors and across
PDX passages, supporting the feasibility of utilizing PDXs to
mimic their respective primary human tumors for evaluating
drug responses.

Oncogenic events affected by driver mutations. We performed
an extensive cis and trans study on RNA expression by incor-
porating TCGA and PDX data to identify biological and clinical
relevance of driver mutations in SMGs. We focused on cancer
types having over 20 patient PDX models, namely BRCA,
COADREAD, SARC, SKCM, PAAD, LUAD, HNSC, BLCA, and
LUSC. Figure 3a–c show three selected cancer types with sub-
stantial numbers of cis and trans events observed in PDXs.
Overall, we found concordance between TCGA and PDX data for
key cis and trans events. However, TCGA data encompass many
unique events due to a larger sample size, with other factors like
sampling also contributing to the difference (Methods). Identifi-
cation of key oncogenic events from PDXs and the resemblance
to human TCGA data suggest candidates for clinical drug trials,
as detailed below.

For tumor suppressor genes, we observed a general trend of
down-regulated expression in mutated tumors. For instance,

Fig. 1 Data summary. a Project schematic, showing a human image to represent multiple patients with different cancer diagnoses (pan-cancer). Tumor
samples, implanted in mice to form PDX models, are propagated through a sequence of hosts, some of which provide specimens for next-generation
sequencing and genomic analysis. b Sample types (left) and sequence data by assay (top) and associated counts of human cases and PDX models (right).
c Distributions of cases according to the number of PDX passage indices (upper left) and PDX samples (upper right) in the lineage. Analogous distributions
for PDX models (lower set) are also shown. d Distribution of cases by cancer type, following TCGA study abbreviations where possible. e Clinical features
of cases (age at diagnosis, gender, self-reported race) and specimens (tumor status, treatment status), and PDTC source of sequence data. Key: PDTC,
PDX Development and Trial Center; PDX, patient-derived xenograft; RNA-seq, RNA sequencing; TCGA, The Cancer Genome Atlas; WES, whole exome
sequencing. Cancer type definitions in this work: BLCA, Bladder/urothelial carcinoma; BRCA, breast carcinoma; CESC, cervical carcinoma; COAD, colon
adenocarcinoma; CSCC, cutaneous squamous cell carcinoma; GBM, glioblastoma multiforme; GIAD, gastrointestinal carcinoma, NOS; GIST,
gastrointestinal stromal tumor; HNSC, head-and-neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma;
LUAS, lung adenosquamous carcinoma; LUSC, lung squamous cell carcinoma; MCC, Merkel cell tumor; MESO, mesothelioma; OV, ovarian carcinoma
(epithelial or NOS); PAAD, pancreatic adenocarcinoma; PRAD, prostate carcinoma, NOS; READ, rectal adenocarcinoma; SARC, sarcoma; SCLC, small cell
lung carcinoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine
carcinosarcoma. Source data are provided as a Source Data file.
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the adenomatous polyposis coli (APC) gene, which is the most
frequently mutated gene in COADREAD, displays down-
regulated expression in APC-mutated samples in both TCGA
and PDX data (Fig. 3b, d). A similar trend was also found in
phosphatase and tensin homolog (PTEN) in COADREAD and

Stromal Antigen 2 (STAG2) in BLCA. We found a large number
of down-regulated cis and trans events in TP53-mutated samples
in COADREAD, BLCA, and SKCM. A majority of these genes fall
into the generic transcription pathway, including DDB2, MDM2,
and CDKN1A, which is consistent with the widespread regulation
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Fig. 3 Cis and trans effect of driver mutations on gene expression. a–c Cis and trans effect of driver mutations on RNA expression from TCGA tumors
and PDXs on three different cancer types: bladder (BLCA), colorectal (COADREAD), and skin cutaneous melanoma (SKCM). Boxplots for the cis effect (d)
and trans effect (e, f) of key driver genes on gene expression. Number of samples (n) for each group is shown in the figure. The box boundary of each box
plot indicates third quartile and first quartile respectively from the top to bottom. The whisker on top were drawn out from the third quartile to the largest
data point or up to 1.5 × IQR. Similarly, the bottom whisker extends from the first quartile down to 1.5 × IQR or the lowest data point. The red dot at the
center indicates medium. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25177-3

6 NATURE COMMUNICATIONS | (2021)12:5086 | https://doi.org/10.1038/s41467-021-25177-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications
www.nature.com/naturecommunications


network by p53 transcription factor20. In addition, we found that
Retinoblastoma (RB1) was frequently mutated in multiple cancer
types, such as BLCA and SKCM (Fig. 3). Based on TCGA data,
we observed the down-regulation of RB1 expression, accompa-
nied by increased expression of its interacting partners, such as
Cyclin-dependent kinases (CDK), Cyclin E (CCNE), and mini-
chromosome maintenance protein complex (MCM) genes
(Supplementary Fig. 2). RB1 inhibits MCM2-7 activity through
negative feedback21, with lack thereof in RB1-mutated samples
resulting in a high MCM2, MCM4, and MCM6 expression, which
is associated with high cell proliferation22. Although upregula-
tions of MCM2, MCM4, and MCM6 expression did not attain
FDR significance in RB1-mutated xenografts due to small sample
size, we indeed observed a trend of increased MCM2 and MCM4
expression in RB1-mutated samples (Supplementary Fig. 2). In
addition, we observed high CDK4 expression in both RB1-
mutated TCGA and PDX tumors (Fig. 3b,f), suggesting PDX drug
trials by CDK inhibitors, like palbociclib.

Driver mutations in BRAF are frequently observed in colorectal
and skin cancers17,23, with a majority falling in the category of
V600 hotspot. Figure 3c, d shows high expression in BRAF
mutants in both PDX and TCGA tumors, indicating activation
events in both cancer types. The observation of high BRAF
expression in PDXs suggests drug treatment by FDA-approved
BRAF inhibitors, such as Trametinib, Vemurafenib, and Encor-
afenib. We also observed high MAP2K1 (or MEK1) expression in
both PDXs and TCGA tumors in COADREAD, suggesting
studying response to a combination of BRAF and MEK inhibitors
in BRAF mutated colorectal PDXs24. Such has shown favorable
outcomes in treating BRAF-mutated melanomas and colorectal
cancers, although drug resistance can eventually develop25,26. We
observed a high Ras homolog enriched in brain (RHEB)
expression in BRAF-mutated SKCM (Fig. 3c, f). RHEB is involved
in the mTOR pathway via its production of the Rheb protein
which binds and regulates mTOR kinase27. A recent study has
shown that small-molecule NR1 binds and inhibits RHEB28. Note
that we did not observe up-regulation of RHEB in COADREAD
in BRAF-mutated samples in either TCGA or PDX data,
suggesting that RHEB upregulation is specific to BRAF-mutated
SKCM rather than COADREAD. PDX sample (ID: WM3936-1)
with BRAF hotspot mutation p.V600E has also shown good
response to BET and MEK inhibitors (OTX+PD901)29.

We also observed high expression of other oncogenes,
including FGFR3 and KRAS in both TCGA and PDX samples
(Fig. 3a, b, d), suggesting trials of FGFR or KRAS inhibitors
(Erdafitinib or MRTX849) in xenografts with these mutants.
Erdafitinib is an FDA approved drug for treating BLCA with
FGFR3 mutation and an early clinical study showed that AMG
510 is a potential candidate for treating tumors with KRAS
mutations30. Good drug response to FGFR or KRAS inhibitors to
samples with FGFR or KRAS alteration has been observed in
NCI-MATCH study arms (Supplementary Data 5). Driver
mutations in oncogene PIK3CA, which encodes the p110α
catalytic subunit of PI3 kinase (PI3K), can promote tumor
progression by activating the PI3K pathway31. Figure 3b shows
that PIK3R1, the complex partner of PIK3CA, and not PIK3CA
itself, is upregulated in PIK3CA mutated COADREAD tumors
from TCGA and PDX data. Drugs specifically targeting the PI3K
pathway have shown promising clinical response in PDX models
(HCI-003, HCI-013, WHIM12, and WHIM20) with PIK3CA
mutations32–34. In addition to the PIK3CA and PIK3R1 complex,
the other notable interaction network we observed is for genes
involved in the NFE2L2 (NRF2) antioxidant signal pathway,
which is frequently mutated in LUSC35. Driver mutations in
NFE2L2 are located in the DLG and ETGE domains, which
disrupt the interaction between KEAP1 and NFE2L2, resulting in

the activation of NFE2L236. In LUSC, we observed that genes
involved in the NRF2 pathway (GCLC and NQO1) are up-
regulated in NFE2L2 mutated samples in both TCGA and PDX
data (Fig. 3e), suggesting PDXs recapitulate the key signaling
pathway found in human tumors and can serve as an important
model system for testing responses to drugs that target a specific
signaling pathway. Recent PDX treatment shows good response
for GLUT inhibitors for lung cancer PDX models (IDs: TC333,
TC453, and TC494) carrying KEAP1 or NFE2L2 mutations37.
GLUTs play an important role in antioxidant defense38.

Oncogenic fusion driver events in PDXs. Oncogenic kinase
fusions with elevated kinase expression could be therapeutic
targets for kinase inhibitors33. Consistent with a recent TCGA
study39, we observed elevated numbers of 5′ in-frame kinase
fusions in PDX models (Supplementary Fig. 3a). Despite a dif-
ference in distributions of 5′ and 3′ kinases, we observed higher
combined percentages of 5′ kinases and “both-kinases”, i.e. both
5′ and 3′ are kinases, in most cancer types (Fig. 4a). This
observation accords with the hypothesis that 5′-kinases are more
likely to be functional, since the promoter and other upstream
regulation complexes are intact. To further evaluate the expres-
sion statuses of in-frame kinases, we compared kinase fusions
shared between TCGA and our cohort. Most of the samples with
in-frame fusion kinases have higher kinase expression compared
to those without fusions in both cohorts (Fig. 4b).

We also assessed the overall landscape of gene expression
involving fusion events across all PDX samples (Supplementary
Fig. 3b), focusing on those oncogenes and tumor suppressors
identified by TCGA in specific cancer driver contexts40. Fusion
events involving oncogenes are uniformly upregulated compared
to wildtype samples. For instance, EGFR is strongly up-regulated
in BLCA, HNSC, and STAD PDX models, and ERBB2 in HNSC,
making them good candidates for treatment studies. To provide
deeper insight on the effects of fusion events on downstream
pathways, 2 fusions, SS18-SSX1 in SARC and FGFR3-TACC3 in
HNSC, and their effects on downstream pathways are illustrated
in detail. For dots in the violin plots (Fig. 4c, d), each color
indicates samples from a given PDX model and the diagram
below these panels depicts the regulatory mechanisms with
potential routes for treatment intervention. SS18-SSX is an
important oncogenic event in synovial sarcoma41. SS18, SSX1,
and another SWI/SNF complex member TLE142 are elevated in 3
PDX models (16 samples) by SS18-SSX1 fusions in SARC, as key
target genes AXIN2, MYC, and CCND1 in the Wnt pathway43

and IGFB2 and IGF244 for IGF driven tumor genesis (Fig. 4c,
right panel). Histone deacetylase (HDAC) inhibitors have shown
promising tumor suppressing effects in synovial sarcomas with
SS18-SSX both in vitro45,46 and in vivo46. In addition, the HDAC
inhibitor quisinostat rescues early growth response 1 (EGR1) and
CDKN2A expression by disrupting the SS18-SSX driven protein
complex47, while the former was also found to be rescued by the
HDAC inhibitor romidepsin in vitro45. Both genes were found to
be suppressed in most SS18-SSX1 fusion PDX models (Fig. 4c,
right panel) and therefore could also be downstream reporters of
the treatment efficacy.

Another well-known fusion, FGFR3-TACC3, activates the RAS,
MAPK, and PI3K pathways48 and is upregulated in HNSC PDX
samples (Fig. 4d). We also observed upregulation of several key genes
in FGFR downstream pathways, including RAS-MAPK, JAK/STAT,
and PI3K-ATK, which promote cellular proliferation, migration,
angiogenesis, and anti-apoptosis49 and could therefore confer survival
advantages for affected cells. PIN4, an intermediate of the FGFR3
downstream pathway to mitochondrial metabolism50, is similarly
affected. These observations point to FGFR inhibitors, such as
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pemigatinib, futibatinib, and infiigratinib for testing treatment
efficacy. These HNSC PDX models are also eligible for NCI-
MATCH trial arm K2 testing the FGFR inhibitor erdafitnib. These
examples showcase PDX models suitable for further treatment
studies and how downstream pathways could be used as reporters for
evaluating treatment efficacy.

Pan-cancer transcriptional groups in PDX. Similar molecular
features can characterize more than one cancer type, suggesting
the use of PDX models to extend drugs beyond current approved
single cancer type treatments and the possibility of grouping to
increase statistical power. We classified PDX models according to
the top 1000 most variable genes from cancer types with more
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than 20 samples using ConsensusClusterPlus51 and showcase the
positive significant differentially expressed genes (FDR > 0.05,
fold change > 1) from each transcriptional group (Fig. 5a). From
the pan-cancer clustering analysis, we identified 4 major tran-
scriptional groups that cluster cancer types according to cell-of-
origin or organ system. This finding is consistent with TCGA
results52. Here, groups 1 through 3 are enriched respectively with
squamous cancer types, BLCA, HNSC, and LUSC, cancers of
connective tissues, SARC and SKCM, and digestive system can-
cers, COAD, READ, and PAAD (Fig. 5a, b). Group 4 is a mixture
of types (Fig. 5a, bottom right pie chart) having relatively low
gene expressions overall. Very few positive differentially expres-
sed genes (DEGs) were found for these cases (Fig. 5a) and it
locates essentially at the intersection of groups 1 through 3
(Fig. 5b, system panel). Clustering depends less on PDX passage,
treatment status, or racial group, and rather more on cancer types
with similar organ systems (Fig. 5b, cancer group and system
panel, and Supplementary Fig. 5), as described above.

We also analyzed driver oncogenic pathways, finding that Wnt
is enriched in pan-cancer transcriptional group 3 (Fig. 5c). This
observation accords with previous findings53 since group 3 is
enriched with COAD and roughly 80% of COAD cases are driven
by Wnt activation. Another important aspect is the similarity of
the expression profiles from the same PDX model. Here, we
defined the cluster shift score as the percentage of PDX samples
that have different cluster assignments from the same PDX model
and use it as a metric for PDX similarity. Higher score indicates
higher similarity. The majority of PDX models have high score
close or equal to 1 (Fig. 5d, first panel), indicating that gene
expression profiles remain consistent for most models. These
models tend to cluster closely in UMAP plots (Fig. 5d, right
panel). However, a few PDX models have samples with higher
expression diversity, one example being PDMR-521955 having 4
different PDX models: R2, R3, R4, and R6 (Fig. 5d second and the
third panel). All 4 models are metastatic PAAD tumors from a
Caucasian female in her early 60 s. Each model comprises
multiple passages of PDX samples from different passing paths
(Fig. 5d second panel). Collectively, these 4 models formed 2
major UMAP clusters with 1 sample (G26) deviating the most.
We found that samples with lower overall expression level move
toward transcriptional group 4 on the UMAP. Indeed, the G26
outlier has the lowest overall gene expression profile of all
samples from case PDMR-521955 (Supplementary Fig. 4). This
observation implies some PDX models experience transcriptional
alterations resulting in an overall lower expression level that
deviates from the original tumor sample. Upon further
investigation, we did not identify any statistically significant
correlations of cluster shift scores with either tumor purity
(Wilcoxon test, p > 0.5), mutation count (Wilcoxon test, p > 0.1),
or any specific mutations. Therefore, identification of cluster
shifts at the pan-cancer level might guide the selection of PDX
model and aid in interpreting further treatment testing results.

Overall, using gene expression from PDX and human samples for
clustering, we were able to recapitulate the coalesce of cancer
types with similar organ systems (transcriptional group 2 and 3)
or cell-of-origin (transcriptional group 1), while identifying a
group of samples with overall low gene expression (transcrip-
tional group 4). These clustering results could help elucidate
cancer types with similar pathway activations and guide selection
of PDX samples for treatment testing according to their similarity
in gene expression profiles.

Whole-genome duplications (WGDs) in multiple PDX pas-
sages and subclonal evolution. CNAs can independently alter
copy numbers of each of the two alleles, resulting in different
somatic events whose identification requires allele-specific
information54. An example is WGD, which is frequent in can-
cer and associated with poor prognosis55,56. We used
HATCHet57 to search for allele-specific CNAs and WGDs in 270
PDX samples from 54 cases having available matched-normal
samples. HATCHet jointly analyzes changes in read-depth and
germline SNP frequency across samples from the same case to
identify allele-specific CNAs (Fig. 6a). Its results quantified levels
of WGDs and loss-of-heterozygosity (LOH) events and char-
acterized tumor clonal compositions (Fig. 6b).

We found WGDs in 128 human and PDX samples from 27 cases,
with a frequency of 50%. WGD presence is well supported by
sequencing data in each sample by clusters of genomic regions with
distinct values of read depth and levels of allelic imbalance, which
are absent in samples without WGD (Fig. 6c). Such clusters are a
hallmark of WGDs57, but we further correlated WGDs with two
other somatic events associated with WGDs56,58, namely accumula-
tion of deleterious events and LOH of TP53. WGD was correlated
with abundance of deletions (p= 2.85 × 10–23, chi-square test), the
latter determined by counting samples in which the fraction of the
genome affected by deletions was higher than that affected by
amplifications. Results are consistent with the findings of Lopez
et al.58 for non-small-cell lung cancer patients, in which it was
suggested that such correlation is explained by a selective pressure
for WGDs to mitigate the effects of deleterious alterations.

TP53 LOH events prevent genome-doubled cells from re-
entering the cell cycle and proliferating59. We found these to be
correlated with WGDs (p= 1.39 × 10–10, chi-square test) and
strongly supported by sequencing data, since most samples with a
WGD exhibit clear shifts of allelic frequencies for germline SNPs
genomically close to TP53 in chr17 indicating the presence of a
single allele. In contrast, we observed several samples, both with
and without such shifts, across samples without a WGD (Fig. 6d).
Notably, we also found that abundance of deletions and TP53 are
significantly correlated (p= 1.73 × 10–8, chi-square test), suggest-
ing an important interplay among these phenomena.

Finally, we investigated clonal structure using CNAs inferred by
HATCHet in distinct subpopulations of cells, finding subclonal
CNAs present in 96 samples. We also found significant correlation

Fig. 4 Fusion events in pan-cancer. a Distribution of kinase fusion type based on kinase location (5′, 3′ and both kinases fusion) per cancer type (Fusion
count: kinase fusion events detected in each PDX model. Kinase fusion percentage: kinase fusion count/total detected fusions). b Median normalized
expression of fusion involving kinase per cancer type. Fusion in greater than 2 PDX samples while overlap with TCGA events are shown (Sample count:
independent PDX sample). c, d Expression of genes in fusions and those significantly altered (Wilcoxon test, p < 0.05) in the downstream pathways for
respectively (c) SS18-SSX1 in sarcoma (SARC) and (d) FGFR3-TACC3 in head and neck squamous cell carcinoma (HNSC). The diagram below illustrates the
simplified mechanism and pathway for given fusion. Potential treatment intervention labeled in blue texts. Dot color indicates samples from the same
patient case. The diagram below illustrates the simplified mechanism and pathway for given fusion. Potential treatment intervention labeled in blue texts.
The box boundary of each box plot indicates third quartile and first quartile respectively from the top to bottom. The whisker on top were drawn out from
the third quartile to the largest data point or up to 1.5 × IQR. Similarly, the bottom whisker extends from the first quartile down to 1.5 × IQR or the lowest
data point. The red dot at the center indicates medium. P-values were calculated using two-sided Wilcoxon rank-sum tests. Source data are provided as a
Source Data file.
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(p= 2.05 × 10–7, chi-square test) between subclonal CNAs and LOH
events in TP53, supporting the view that TP53 mutations lead to
higher genomic instability. Using HATCHet, we also searched for
samples with CNAs that are not present in other samples from the
same case (inter-sample subclonality), finding 75 instances.
Subclonal CNAs and different CNAs across samples from the same
case suggest ongoing clonal dynamics between multiple samples

from the same PDX. For example, we found different tumor clones
for colon cancer case PDMR-519858 between samples from the
primary tumor and different PDX passages (Fig. 6e).

Prediction of candidate PDX models by NCI-MATCH treat-
ment arms. We compared variants identified in human and PDX
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tumors with those being studied in the National Cancer Institute
Molecular Analysis for Therapy Choice (NCI MATCH)
program9,10, a phase II clinical trial that seeks to determine
treatment effectiveness based on genomic alterations, regardless
of the cancer type. We first discerned somatic alterations in PDX
models that satisfied study arm specifications and then applied
disease exclusion conditions (we also considered clinical bio-
markers such as HER2 status). Among the 38 study arms, we
found 25 target genes that have non-silent mutations across 22
cancer types (Fig. 7a). We also found 22 recurrent mutations
across 13 cancer types (>1 PDX model) in 10 druggable target
genes: PIK3CA, FGFR (FGFR1, FGFR3), AKT1, BRAF, PTEN,
BRCA2, ERBB2, KIT, and NF1, which, respectively, matched NCI-
MATCH drugs copanlisib, erdafitinib, capivasertib, dabrafenib
with trametinib (or ulixertinib), GSK2636771, adavosertib, afati-
nib, sunitinib malate, and trametinib (Fig. 7b).

PIK3CA was enriched with non-silent mutations in BRCA and
COAD PDX models (Fig. 7a) and is the most commonly mutated
gene, with 8 recurrent point mutations (Fig. 7b). In particular,
E545K appeared in 16 PDX models and was frequently detected
in COAD PDX models. In addition, H1047R and E542K hotspot
mutations frequently occurred in BRCA (Fig. 7b). These three
mutations, E542K, E545K, and H1047R, are PIK3CA hotspot
members60. H1047R is associated with a lower pathological
complete response rate in triple-negative BRCA patients treated
with anthracycline-taxane-based neoadjuvant chemotherapy61.
Regarding structural variations, BRCA-derived PDX models had
clear, frequent amplifications and deletions in FGFR1 and PTEN,
respectively, as compared to other cancer types. Furthermore,
FGFR1, CCND1, and PIK3CA genes are frequently amplified in
the HNSC- and LUSC-derived PDX models, and PTEN is
frequently deleted in BRCA-derived PDX models (Fig. 7a). As
expected, these patterns are consistent with previous
observations62,63. There were also several fusion PDX models
observed across cancer types (Fig. 7a). Overall, 258 unique PDX
models across 23 cancer types and the mixed cancer type (Other)
were identified as potential candidates for clinical trials (Fig. 7a
and Supplementary Data 3).

We then sought to determine the number of relevant study
arms for every PDX model. From 258 candidate models (Fig. 7c),
approximately 62% matched a single study arm (“single-arm”
event) while 38% (n= 98) matched multiple arms. In addition,
among the 897 PDX samples generated from these 258 PDX
model lines, around 83% matched the current target arms with
over 200 distinct genetic alterations. Databases such as DEPO64

and CIViC65, where druggable alterations are generally associated
with specific cancers rather than with pan-cancer, reveal that
nearly 35% of these alterations are reported with high confidence,
leaving up to about 65% as potentially novel. A further
comparison reveals that 76% (n= 120) of this 65% are listed in

either of the TCGA or COSMIC (v90) human cancer databases,
leaving 24% (n= 38) as yet uncharacterized (Fig. 7c, Supple-
mentary Fig. 6a, and Supplementary Data 4). Additional drug
databases would be expected to inform these percentages further.

To identify PDX samples that match well with arm targets for
drug trials, we searched for somatic alterations associated with
gene expression across druggable target genes (Wilcoxon test, p <
0.05), finding 30 such alterations among 18 genes and 15 cancer
types that are significantly different from their wild types
(Supplementary Data 5). The mutation events were found across
14 mutated genes and were associated with gene expression level
changes. The three most statistically significant oncogene
mutations among diverse arms were FGFR3 S249C, BRAF
V600E, and PIK3CA D1017N in BLCA, PAAD, and STAD,
respectively. These alterations matched, respectively, with the
drugs erdafitinib, dabrafenib with trametinib, and copanlisib
(Fig. 7d). Fusion events were detected in BRAF and FGFR3 in
SKCM and HNSC cancer types, respectively, with high expression
as compared with wild types. These alterations matched with
trametinib and erdafitinib, respectively (Supplementary Data 5).
Copy number amplification events in CCND1, CCND3, CDK6,
ERBB2, FGFR1,MET, and PIK3CA also showed higher expression
compared to wild types across various cancer types. These
alterations matched with palbociclib, trastuzumab with pertuzu-
mab, erdafitinib, and crizotinib (Fig. 7e). These PDX models, with
their drug-targeting recurrent alterations and gene expression
validation, are strong candidates for in vivo drug tests.
Interestingly, some alteration arms have already been supported
by recent literature of clinical trial, cell line and PDX study
(Supplementary Data 5).

Discussion
TCGA studies examined driver events in various human cancers
and provided druggable candidates for clinical drug trials40,66,67.
PDXs have been designed as in vivo models for studying drug
response by virtue of capturing the principal genomic features of
human tumors6,68. Understanding the true nature of PDX
genomic features through quantification of their similarity to
human tumors is vital for studying drug response trials using
PDXs. Here, we characterized the genomic features of 536 PDX
models and 268 human parental tumors across 25 cancer types.

By comparison to primary human tumors, variant allele frac-
tions (VAFs) in PDXs were found to be higher overall, which
reflects high tumor purity and the selection of sub-tumor clones
in PDXs. For instance, VAFs of TP53 hotspots (R175H, R248Q,
R248W, and R273H) were close to 1 in PDXs, while being close to
0.5 in human primary tumors, suggesting a loss of heterozygosity
(LOH) in PDX. We generally found high concordance of key
driver mutations in PDXs and their corresponding human
tumors, though a small fraction ~10% were discordant, suggesting

Fig. 5 Pan-cancer transcriptional groups. a Top panel is four major pan-cancer transcriptional groups (limegreen, skyblue, oceanblue, and light olive)
identified from the expression of significant positive differentially expressed genes (FDR > 0.05, fold change > 1) of each transcriptional group in cancer
types with sample size greater than 20. Those include Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Colon adenocarcinoma
(COAD), Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Lung adenocarcinoma (LUAD), Lung squamous cell
carcinoma (LUSC), Pancreatic adenocarcinoma (PAAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Small cell lung cancer (SCLC), Skin
Cutaneous Melanoma (SKCM), Uterine Carcinosarcoma (UCS). The heatmap shows differentially expressed genes (DEGs) from each group. Bottom panel
is the ratio of each cancer type in each transcriptional group. b Dimension reduction UMAP 2D-plots using 1000 most variable genes. Each point
represents one sample. Colors in each panel indicate respectively cancer type, transcriptional group, system, cluster shift score, passage, and sample type
of each sample. c Normalized medium expression of genes in major oncogenic pathways. d First panel is the distribution of cluster shift score. Second and
third panel are the pedigree tree and the 2D distribution of case PMDR-521955. Each color (light coral, yellow green, purple, and light teal) indicates one
PDX model originated from the same hurman tumor sample. In the second panel, filled circles are human samples with RNA-Seq data. Hollow circle and
dot are human and PDX sample without data. Fourth panel is an example of PDX models without cluster shift. Each color (red, blue, and green) indicates
samples from one PDX model. Source data are provided as a Source Data file.
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the existence of tumor clonal evolution. Analysis of cases with
multiple PDX models shows a higher intra-mutational similarity
compared to inter-mutational similarity, suggesting intrinsic
tumor heterogeneity among different tumor segments. In contrast
to these mutational features, we observed a rapid CNV evolution
in several PDX models, consistent with a previous study69.

In accordance with recent pan-cancer studies55,56, we observed
that whole-genome duplications (WGDs) are relatively frequent
(~50%) across human and PDX samples. Notably, we also con-
firmed a significant correlation between WGDs and both abun-
dance of deletions and LOH of TP5356,58. Moreover, our study
shows that the LOH of TP53 is also significantly correlated with
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the presence of multiple tumor clones in the same sample (intra-
sample subclonality).

Strong cis and trans mutational effects of several key driver
genes were identified in PDXs, in accordance with human tumors
from TCGA studies. Specifically, we found down-regulated
expressions in PDX samples harboring mutations in tumor sup-
pressor genes, such as APC, RB1, KMD6, and STAG253. For
oncogenes, such as BRAF, FGFR3, HRAS, and KRAS, we observed
high expression in mutated samples, which suggests these
mutations may be activation events. Interestingly, we also found
in both PDX and TCGA human tumors with mutations in
melanoma (SKCM) a high expression of CDKN2A, which has not
typically been classified as an oncogene. In terms of trans effect,
we found high MYC and PLK2 expression in APC and FBXW7
mutated PDX samples in COADREAD, respectively. Notably,
high RHEB expression was observed in BRAF-mutated PDXs in
SKCM, suggesting a target for PDX drug response trials beyond
the known BRAF and MEK inhibitors. Also, we observed the
activation of the NRE2 pathway in NFE2L2-mutated PDX sam-
ples in squamous cell lung cancer (LUSC), suggesting that PDXs
may be suitable for studying key oncogenic pathways and cor-
responding drug responses. In addition, we identified many PDX
models carrying CNV amplification events in CCND1/3, CDK6,
ERBB2, FGFR1, MET, and PIK3CA, which correspond to NCI-
MATCH clinical trial drugs (palbociclib, trastuzumab with per-
tuzumab, erdafitinib, AZD4547, crizotinib, and taselisib). For
instance, CCND1 amplifications were observed in sarcoma
(SARC) PDXs, which match the trial drug palbociclib. In addi-
tion, we identified four distinct pan-cancer groups in the current
PDX cohorts representing the different origins for these tumors,
namely squamous cells, connective tissues, the digestive system,
and a mixture. The Wnt oncogenic pathway is upregulated in the
digestive system group, suggesting intriguing group-specific tar-
gets for PDX drug clinical trials.

Although our study is primarily computational, independent
pharmacological experiments involving the same PDX models
used here have indirectly validated some of our drug target
results. For instance, PDX model WM3936-1 having BRAF hot-
spot mutation p.V600E shows good response to BET and MEK
inhibitors29. Drugs targeting the PI3K pathway show promising
clinical response in PDX models HCI-003, HCI-013, WHIM12,
and WHIM20 having PIK3CA mutations32–34. Finally, recent
treatment studies show good response for GLUT inhibitors in
lung cancer PDX models TC333, TC453, and TC494 carrying
KEAP1 or NFE2L2 mutations37.

In summary, the present study represents the largest-scale
comprehensive genomic characterization of PDX models,
including driver mutations, fusions, and CNVs. The observed
identities and differences between PDX genomic features and
their corresponding human primary tumors will be an important
resource for future PDX studies. The key driver events we
observed and the corresponding cis and trans effects on gene

expression provide therapeutic targets for future PDX drug
response trials. A limitation of the current study is the relatively
low PDX model counts for certain cancer types, including GBM,
KIRC, STAD, and OV, despite the pooled contributions of our
consortium members, each with its own cancer type specialties,
which can depend on geographical location, medical and scien-
tific expertise, and other factors. Numbers are also a reflection of
these cancer types’ relatively lower incidence rates (seer.cancer.
gov/statfacts), at 60 to 260 new cases per million annually, as
compared to other common cancer types, such as breast and
certain lung cancers with over 1,000 new cases per million
annually. The PDX models for these low-incidence cancers are
therefore all the more valuable. As the PDX community continues
to grow and engage with cancer centers worldwide, the repre-
sentation of cancer types will become wider and deeper, allowing
for the identification of more druggable events and the discovery
of further insights into PDXs’ recapitulation of human tumors.

Methods
Sample collection and dataset. Experimental details for PDX model sources
appear in Supplementary Methods. Sequence files consisted typically of patient
tumor/normal matched samples and of PDX samples from one or multiple pas-
sages. The available whole-exome sequence (WES) and RNA-sequence (RNA-seq)
data for human and PDX samples were downloaded from various sources (see Data
availability) for local processing. Various QC metrics, including overall coverage
and lineage consistency (see below) were computed and used to validate the
samples. To support pan-cancer analysis, diagnoses from the Cancer Therapy
Evaluation Program (CTEP) were mapped to The Cancer Genome Atlas (TCGA)
study codes or designated as cancer type “other.” The resulting sample set consists
of 511 patient cases across 25 cancer types and 536 PDX models. These selected
cases usually consist of one or more PDX passages and a variable number of
human samples, the availability of which determines the particular variant calling
pipeline to use. The clinical data included patient demographics, patient tumor
status (i.e., primary or metastasis), and whether patients received any treatment
prior to PDX collection.

Precision medicine NCI-MATCH trials. Genetic eligibility criteria were compiled
from resources at the NIH NCI-MATCH trial website (www.cancer.gov/about-
cancer/treatment/clinical-trials/nci-supported/nci-match; accessed 29 April 2020),
the ECOG-ACRIN Cancer Research Group website (ecog-acrin.org/trials/ nci-
match-eay131, along with downloadable Excel spreadsheet versioned 26 April
2020; accessed 29 April 2020), and the NIH clinical trials website (ClinicalTrials.
gov identifier NCT02465060; accessed 1 May 2020). Disease exclusions were taken
into account in reporting our results.

Raw reads filtering and mouse reads filtering. All WES and RNA-Seq data
underwent initial processing to trim adaptors and filter poor quality reads using Trim
Galore (v0.5.0) (www.bioinformatics.babraham.ac.uk/projects/trim_galore). For PDX
model sequence data, Disambiguate (v1.0)70 was used to filter mouse-derived reads in
WES and RNA-Seq data using mouse (GRCm38, GENCODE vM19, https://www.
gencodegenes.org/mouse/releases.html) and human (GRCh38, GENCODE v29,
https://www.gencodegenes.org/human/releases.html) reference genomes. The result-
ing WES reads were then deduplicated and converted to bam format using Samtools
(v1.5, https://www.htslib.org), Picard (v2.20.1, https://broadinstitute.github.io/picard),
and BWA-MEM (v0.7.17, https://github.com/lh3/bwa) for use in downstream
analysis.

Fig. 6 Extensive presence of WGDs and subclonality correlates with abundance of deletions and TP53 LOH. a Allele-specific CNAs of major tumor
clones and presence/absence of WGD are inferred for 270 human and PDX samples from 54 cases of different cancer types. b Presence of WGD, deletion
abundance, LOH of gene TP53, intra- and inter-sample subclonality are indicated (black) across all samples and significant correlations between pairs of
these features are reported on the right side (p-values are computed from Pearson’s chi-squared statistic). c The absence/presence of a WGD (top/
bottom) are supported by the presence of low/high numbers of distinct clusters of genomic regions (each point corresponds to a 250 kb genomic bin and
is colored according to the corresponding allele-specific CNAs using the same color legend as in a) with different values of allelic balance and read depth in
two PDX samples from two HNSC and COAD patients. d A kernel density estimate of the allelic balance is computed for all samples without (top) or with
(bottom) a WGD across 250 kb bins of chromosome 17 (whole-chromosome density is shown on the right side) and in a 6Mb genomic region surrounding
gene TP53 (dashed red lines). e For a colon cancer (COAD) patient, a tree represents the relationships between the corresponding human and PDX
samples (nodes), which contain four major tumor clones (violet, green, magenta, and dark orange) with different CNAs (bottom with allele-specific CNAs
colored as in a). Source data are provided as a Source Data file.
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Sample quality estimate. To check for consistency across sample lineages, we
developed a sequence data quality control algorithm named SeqQEst (Beta version,
github.com/ding-lab/SeqQEst) to detect potentially mislabeled, swapped, and
tissue-contaminated samples that occasionally appear, especially in large cohorts of
sequencing data. SeqQEst has two main pipelines: (1) Sequence QC (SeqQC): to
estimate bam file status (total reads, mapping percentage, average read length,
mean mapping quality, insert size, and coding region coverage) and to provide a
FastQC summary report; (2) Sample germline QC (GermlineQC): to detect sample

swap/mismatch/contamination across a collection of samples by correlating variant
allele frequencies of a target set of germline SNPs. The target SNP markers were
selected from ~5 million common missense SNPs (dbNSFP v3.5a; https://sites.
google.com/site/jpopgen/dbNSFP and Pengelly et al., 201371) across chromosomes
1–22 in the human genome based on WES and RNA-Seq data testing. Filtering out
contaminated or swapped samples using GermlineQC resulted in good agreement
with short tandem repeat (STR) polymorphism data. For samples remaining
ambiguous after GermlineQC, we applied HLA-QC. HLA-QC uses major
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histocompatibility complex (MHC) class Ia loci (HLA-A, -B, and -C) to assess data
contamination or swap. Samples passing the GermlineQC analysis and having
sufficient coverage (> 20x coding region coverage in WES or > 25Mb mapped
depth in RNA-Seq data) were passed to downstream analysis.

Somatic mutation calling. Somatic mutations were determined using our in-house
pipeline SomaticWrapper (v1.5, github.com/ding-lab/somaticwrapper), which is
anchored by four somatic variant calling tools: Strelka (v2.9.2)72, Mutect (v1.1.7)73,
VarScan (v2.3.8)74, and Pindel (v0.2.5)75. For candidate somatic mutations, low
quality instances were filtered by bam-readcount (github.com/genome/bam-read-
count) using parameters –q 10 –b 20. To generate high confidence mutation calls,
we only kept the mutations that were supported by at least 2 callers and satisfied
cutoffs of at least 14 total reads in the tumor and at least 8 in the normal. The
mutations were further filtered by discarding observed variant alleles in fewer than
4 reads and those having variant allele fractions (VAF) less than 0.05 in tumor or
higher than 0.01 in normal.

Tumor-only somatic mutation calling. Tumor-only somatic variants were called
using Mutect2 (v4.1.2.0) best-practice pipeline (In-house scripts: github.com/ding-lab/
PDX-PanCanAtlas/tree/master/data_process/somatic.Mutect2_tumorOnly) with the
GDC Panel of Normal (PON) data (gdc.cancer.gov/about-data/gdc-data-processing/
gdc-reference-files; gatk4_mutect2_4136_pon.vcf.tar). To reduce false positives fur-
ther, we used only those mutation sites having ≥ 20× coverage and > 3 reads sup-
porting mutations with≥ 0.1 tumor VAF, which were supported by bam-readcount
evidence.

Extra false-positives filtering in somatic mutations. Potential false-positive calls
can arise from sequencing or alignment errors in low mappability regions76. In
general, PDX samples have higher false-positive mutation sites than human sam-
ples due to mouse homologous reads, even after removing contaminating mouse
reads. To increase the overall confidence level of human somatic variant calls, we
applied the following steps. Somatic mutations of PDX samples that were retained
if they were reported in COSMIC (v90, https://cancer.sanger.ac.uk/cosmic) or
TCGA Cohort (https://gdc.cancer.gov/about-data/publications/mc3-2017). Fur-
thermore, calls in PDXs that had a matched human tumor were retained if the
variant was present in both the PDX sample and in the human tumor, regardless of
whether it was in the COSMIC database. Finally, we removed point mutations
located near indel regions (window size, 20 bp).

Germline mutations calling. Germline mutations were determined using our in-
house pipeline GermlineWrapper (v1.1, github.com/ding-lab/germlinewrapper),
which applies several germline variant calling tools, including GATK (gatk.
broadinstitute.org), VarScan (v2.3.8)74, and Pindel (v0.2.5)75. To generate high
confidence mutation callings, we used the SNPs and INDELs supported by both
VarScan and GATK, as well as INDELs reported by Pindel.

Variants called were filtered based on coding regions of full-length transcripts
from Ensembl release 95 plus additional two base pairs bordering each exon in
order to cover splice sites. We also required variants to have Allelic Depth (AD) ≥ 5
for the alternative allele. After filters, a total of 7,331,296 variants (~24,851 per
sample) and 5,350,478 variants (~23,262 per sample) were kept for cases with
matched tumor-normal samples and tumor-only samples, respectively.

The quality of variants passing all filters was assessed by calculating
concordance with dbSNP (release 151, https://ftp.ncbi.nih.gov/snp/organisms/
human_9606_b151_GRCh38p7/VCF) and the average transition-transversion
(TiTv) ratio using GATK’s VariantEval tool (v3.8 with default parameters). We
obtained 98.95% overall concordance and 2.85 TiTv ratio for cases with matched
tumor-normal samples and 95.44% overall concordance and 2.83 TiTv ratio for
tumor-only samples.

Pathogenicity assessment. Annotation of germline variants that passed filters
was performed using Ensembl Variant Effect Predictor (VEP) (v95 using default
parameters, except where–everything)77. These variants were then assessed for
pathogenicity using CharGer (v0.5.4)78, which prioritizes germline variants
according to published AMP-ACMG guidelines79. CharGer pulls information from
ClinVar (release as of 08/15/2019 processed using github.com/macarthur-lab/
clinvar), gnomAD (release 2.1.1, https://gnomad.broadinstitute.org), as well mar-
shalling SIFT (v5.2.2)80 and PolyPhen (v2.2.2)81 in the implementation of 12
pathogenic and 4 benign modules for variant classification. We used the default
CharGer scores for each evidence level (https://github.com/ding-lab/CharGer/tree/
v0.5.4). The detailed implementation and parameters used here are at: https://
github.com/ding-lab/PDX-PanCanAtlas/tree/master/analysis/CharGer. Variants
were labeled, as follows: pathogenic if they were known pathogenic variants in
ClinVar, likely pathogenic for CharGer score > 8, and prioritized VUS for CharGer
score > 4.

Variants classified as Pathogenic or Likely Pathogenic were filtered for rare
variants with ≤0.05% allele frequency in gnomAD (release 2.1.1). Cancer-relevant
Pathogenic and Likely Pathogenic variants were selected based on whether they
were found in the curated list of 152 cancer predisposition genes from Huang et al.
(2018)19. Additionally, read count analysis using bam-readcount (v0.8 with
parameters -q 10, -b 15) was performed in both normal and tumor samples in
order to evaluate the number of reference and alternative alleles for each variant.
Variants were required to have at least 5 counts of the alternative allele and a
variant allele frequency (VAF) of at least 20%. Furthermore, variants common in
our cohort (cohort MAF > 1%) were not considered.

Additional filtering steps were applied to variants from cases without matching
normal samples available (i.e. tumor-only cases). First, we filtered all somatic
mutations for each case from the list of obtained germline variants. Next, we
filtered all variants that were present in the COSMIC database (v.86)82. Finally, we
retained only variants present in the gnomAD database (release 2.1.1) that have a
MAF ≤ 0.05% in order to concentrate our analysis on rare germline variants.

Focal copy number alteration. The somatic copy number alterations (CNAs) were
predicted using CNVkit (v0.9.6)83. Matched tumor-normal samples, with the
matched normal as reference determined CNAs of tumor. For tumor-only samples,
we create a pooled reference from several blood normal samples that were collected
from matched tumor-normal samples (≥50× mean coverage in coding region and
average read length ≥ 100 bp). We then used this pooled normal reference to
predict CNAs for tumor-only samples. Low-quality CNAs were filtered based on
coverage (< 20), the number of probes (< 10), and length (< 5 kb). To define
absolute copy numbers from CNVkit, the threshold is as follows: -t −1.3, −0.4, 0.3,
0.9. Deletion, loss, neutral, gain, and amplification of segment or gene-level defined
as 0, 1, 2, 3, > 5 in absolute copy number. Gistic2.084 was used to predict chro-
mosome arm copy numbers to compare to TCGA results. TCGA copy number
results were downloaded from Firehose (gdac.broadinstitute.org).

WGD prediction and clonal evolution. We used HATCHet (v0.1)57 to identify
allele-specific CNAs and WGDs for multiple tumor clones jointly from multiple
human and PDX samples from the same case. HATCHet requires three sources of
information: a BAM file for each tumor sample, a BAM file for a matched-normal
sample, and the reference genome used for the alignment of sequencing reads.
Thus, we applied HATCHet to 270 human and PDX samples from 54 cases for
which the required matched-normal sample was also available. Specifically, we
applied HATCHet jointly on all samples from the same case and using the default
values for all parameters, but increasing the minimum clone proportion to 10% due
to the higher variability of whole-exome sequencing data than whole-genome
sequencing data.

Gene expression. Kallisto (v0.44.0, default parameters)85 was used to estimate
transcript abundance with a GENCODE transcript reference (release 29, GRCh38).

Fig. 7 NCI-MATCH trial related druggable genes and recurrent alterations. a Genomic alterations of 258 candidate PDX models, which satisfied the
study arm specifications across 23 cancer types, include the 25 target genes of non-silent mutations, 13 copy number alteration genes, and 3 fusion genes.
b Distribution of 22 recurrent point mutations (> 1 PDX models) in the 10 druggable target genes with 9 drugs across 12 cancer types. The information in
parentheses is a matched study arm. c Distribution of target arms per PDX model and positive signal arms in PDX samples. The left pie chart presents the
distribution of PDX models in single-arm and multiple-arm (>1 arms). The right chart shows the percentage of PDX models between wild type and arm-
event. d, e Target drugs and target gene alterations that are associated with gene expression (N, number of independent PDX models; n, number of
independent PDX samples). d The point mutations of target arms that relate to upregulation of gene expression in cancer. e The amplification-related
target arms match with upregulation of gene expression in different cancer types (n, number of PDX samples). And gene expressions are significantly
different (absolute value of log2-fold-change > 0.585 and p < 0.05) between wild-type (WT) and amplification. In d and e data are presented as box plots
where the middle line is the median, the largest value at the end of the upper whisker is the maximum, and the smallest value at the end of the lower
whisker is the minimum. The black dot with error bar is mean ± SEM in box plots. The p-values are calculated by a two-sided Wilcoxon rank sum test in R.
Source data are provided as a Source Data file.
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We used the R package ‘tximport’ (v1.12.0)86 to measure gene expression at the
transcript level.

Tumor purity prediction. Tumor purity was assessed computationally in all paired
samples using estimates derived from WES data and from RNA-seq data inde-
pendently using ABSOLUTE (v1.0.6)55 and ESTIMATE (v2.0)87.

Fusion. For gene fusion detection, we used STAR-Fusion v.1.6.0 (github.com/
STAR-Fusion), which identifies fusion transcripts from RNA-seq data and outputs
all supporting data discovered during alignment. To remove false positive fusions,
we used FusionInspector results that assists in fusion transcript discovery by
performing a supervised analysis of fusion predictions, attempting to recover and
re-score evidence for such predictions. To detect tumor fusions, we filtered non-
cancer fusions via fusion annotation (e.g. GTEx_recurrent_StarF2019, BodyMap,
DGD_PARALOGS, HGNC_GENEFAM, Greger_Normal, Babiceanu_Normal,
ConjoinG), and previously reported normal fusions88. We further filtered fusions
by FFPM (FFPM ≤ 0.1).

MSI. MSIsensor (v0.6)89 and MSIsensor2 (v0.1, github.com/niu-lab/msisensor2)
were used to distinguish microsatellite unstable (MSI) tumors from microsatellite
stable (MSS) samples based on tumor/normal and tumor-only sequence data. The
“msi” command was run with the default options and with the minimal homo-
polymer size set to 1 and minimal microsatellite size set to 140.

Cis and Trans effect. We examined cis- and trans-effects of significantly mutated
genes (SMGs) of nine cancer types (BRCA, COADREAD, SARC, SKCM, PAAD,
LUAD, HNSC, BLCA, and LUSC) based on previous large-scale TCGA pan-can
study14 on the RNA expression. After excluding silent mutations, samples were
separated into mutated and WT groups. We used the Wilcoxon rank-sum test to
report differentially expressed genes between the two groups and FDR correction is
applied through standard R function “fdr”. We use an FDR < 0.1 cutoffs for
reporting differentially enriched genes. We further studied how the number of
unique cis and trans events are affected by sample size by using BLCA as an
example (Supplementary Fig. 2a). TCGA has more samples than our PDX cohort
(406 vs 141) in BLCA. We performed the cis and trans analysis by subsampling
TCGA data to 100, 200, 300, and 400 samples. Supplementary Fig. 2a shows the
dependence of the number of unique cis and trans events from TCGA on sample
size. We found the number of unique cis and trans events are highly correlated to
sample size (Pearson’s correlation R~0.999, P-value < 0.001), indicating that sample
size has a major impact on the number of cis and trans events. However, when the
sample size is close to the PDX sample, we still see unique events from TCGA,
which may reflect the representation of different mutations in different sample sets
even with the same sample size.

Pan-cancer transcriptional grouping. To highlight the most represented cancer
types, those with sample sizes greater than 20 were selected for pan-cancer tran-
scriptional grouping analysis. The expression data were first processed with the
ComBat function in the R sva package (bioconductor.org/packages/release/bioc/
html/sva.html) to remove batch effects between collection centers. The top 1000
most variable genes (defined by genes with the highest median absolute deviations)
with less than 30% NA count were selected for unsupervised clustering using the
Consensus Cluster Plus package51. Gene expressions were scaled across samples
and clustered using default parameters for 1000 iterations. Optimum k= 4 value
was determined using the elbow method and manual inspection of clusters with
extremely low sample size. Differentially expressed genes for each cluster were used
to plot the heatmap. Cluster shift score is a metric to measure the similarity of
group assignment for PDX samples from the sample model. The score is defined by
dividing sample count per group by the total sample count, then taking the
maximum ratio as the score for that PDX model.

Define a study arm match score for detecting positive signals. To characterize
the ability of PDX models to a satisfy study arm target criteria throughout their
passages, we define a study arm match score, Sarm, as the fraction of unique
passages across the cohort that displays a positive signal for the target. Here, the
unique passages are determined by binning the cohort’s PDX samples into passages
according to the passage number and counting the number of bins, Npb. This
“collapse” of passages is designed to avoid a type of overrepresenation that would
result from model expansion. A score of Sarm= 1 indicates that for each passage
bin Npb, there is a PDX sample (possibly more than 1) with the represented passage
number that is a positive match for the study arm target. For Sarm < 1, there will be
a passage number across all of the cohort’s PDX model lines for which no samples
match the study arm target. Sarm and Npb together provide a measure of the depth
of targetable passages in a PDX model cohort. The significance of this combination
is to indicate which cohorts may be more amenable to drug studies across multiple
passage numbers (Sarm ~ 1, especially with large Npb) versus those that may not
(Sarm≪ 1 or small Npb). We calculated the percentage of unique passages that
display positive signals for the target arms and show 19 arms with Sarm= 1
(Supplementary Fig. 6b) that may be conducive to drug trials.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Clinical and sequence data were obtained from the NIH-NCI PDX Development and
Trial Centers Research Network (PDXNet) Consortium (https://www.pdxnetwork.org)
and from the National Cancer Institute (NCI) Patient-Derived Models Repository
(PDMR) public site (https://pdmr.cancer.gov). The PDXNet PDX Data Commons and
Coordinating Center (PDCCC) curated data from the Washington University PDX
Development and Trials Center (WU-PDTC), the University of Texas MD Anderson
Cancer Center (MDACC), Huntsman Cancer Institute (HCI), The Wistar Institute (WI),
and Baylor College of Medicine (BCM) and made them available on Seven Bridges’
Cancer Genomics Cloud (The Cancer Genomics Cloud90, https://cgc.sbgenomics.com)
under the PDXNet Data Sharing agreement (i.e. the current policy mechanism for data
release and sharing instituted by the PDXNet Data Coordination Center). Hyperlinks to
these PDX centers and model descriptions are listed in Supplementary Data 6. Sequence
data from PDXNet are being shared as part of the NCI Cancer Moonshot Initiative
through the NCI Cancer Data Service (https://datacommons.cancer.gov/repository/
cancer-data-service), under the mechanism used by a recent study of copy number
profiles in PDXs91. Data from individual models can also be accessed publicly via https://
portal.pdxnetwork.org. For materials that are subject to dbGaP restrictions, such as raw
sequence data, information is provided on the portal site for how to access it. Omics
results, which include somatic mutations, copy number segment-level and gene-level,
copy number chromosome arm-level, fusion, and gene expression data, have been
deposited as compressed, tabular plain-text files at Figshare (https://doi.org/10.6084/m9.
figshare.14390408) and have been reformatted for viewing through the PDX Variant
Viewer web portal (https://pdx.wustl.edu/pdx). Published datasets used in our analysis
and their web sites are as follows: GENCODE (https://www.gencodegenes.org); COSMIC
(https://cancer.sanger.ac.uk/cosmic); TCGA-MC3 (https://gdc.cancer.gov/about-data/
publications/mc3-2017); GDC panel-of-normals (PON) (https://gdc.cancer.gov/about-
data/gdc-data-processing/gdc-reference-files); gnomAD (https://gnomad.broadinstitute.
org); dbSNP (https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7);
dbNSFP (https://sites.google.com/site/jpopgen/dbNSFP); CIViC (https://civicdb.org);
DEPO (https://github.com/ding-lab/publicDEPO); NCI-MATCH/EAY131 Precision
Medicine Trial (https://ecog-acrin.org/trials/nci-match-eay131). Source data are provided
with this paper.

Code availability
The code for data processing that support these findings is available from the GitHub
repository https://github.com/ding-lab/PDX-PanCanAtlas (Zenodo https://doi.org/
10.5281/zenodo.4676237), and the SeqQEst codes are available on GitHub (https://
github.com/ding-lab/SeqQEst).
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