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Structural neuroimaging biomarkers for
obsessive-compulsive disorder in the ENIGMA-OCD
consortium: medication matters
Willem B. Bruin 1, Luke Taylor2, Rajat M. Thomas1, Jonathan P. Shock 3, Paul Zhutovsky 1, Yoshinari Abe 4,
Pino Alonso5,6,7, Stephanie H. Ameis8,9, Alan Anticevic10, Paul D. Arnold 11,12, Francesca Assogna13, Francesco Benedetti 14,
Jan C. Beucke15,16, Premika S. W. Boedhoe17,18, Irene Bollettini14, Anushree Bose19, Silvia Brem20,21, Brian P. Brennan22,
Jan K. Buitelaar 23,24, Rosa Calvo 25,26,27, Yuqi Cheng28, Kang Ik K. Cho29, Sara Dallaspezia14, Damiaan Denys 1,30,
Benjamin A. Ely 31, Jamie D. Feusner32, Kate D. Fitzgerald33, Jean-Paul Fouche34, Egill A. Fridgeirsson1, Patricia Gruner10,
Deniz A. Gürsel35,36, Tobias U. Hauser 20,37,38, Yoshiyuki Hirano 39, Marcelo Q. Hoexter40, Hao Hu41, Chaim Huyser 42,43,
Iliyan Ivanov44, Anthony James 45, Fern Jaspers-Fayer46, Norbert Kathmann15, Christian Kaufmann15, Kathrin Koch35,36,
Masaru Kuno39, Gerd Kvale47,48, Jun Soo Kwon 49,50, Yanni Liu33, Christine Lochner51, Luisa Lázaro25,26,27,52,
Paulo Marques53,54,55, Rachel Marsh56,57, Ignacio Martínez-Zalacaín5,7, David Mataix-Cols58, José M. Menchón 5,6,7,
Luciano Minuzzi59, Pedro S. Moreira53,54,55, Astrid Morer25,26,27,52, Pedro Morgado 53,54,55, Akiko Nakagawa39,
Takashi Nakamae 4, Tomohiro Nakao60, Janardhanan C. Narayanaswamy19, Erika L. Nurmi32, Joseph O’Neill61,
Jose C. Pariente62, Chris Perriello22,63, John Piacentini 32, Fabrizio Piras 13, Federica Piras13, Y. C. Janardhan Reddy19,
Oana G. Rus-Oswald 64,65, Yuki Sakai 4,66, João R. Sato67, Lianne Schmaal 68,69, Eiji Shimizu39,70, H. Blair Simpson56,71,
Noam Soreni72,73, Carles Soriano-Mas 5,6,74, Gianfranco Spalletta13,75, Emily R. Stern76,77, Michael C. Stevens 78,79,
S. Evelyn Stewart46,80,81, Philip R. Szeszko82,83, David F. Tolin84,85, Ganesan Venkatasubramanian 19, Zhen Wang 41,86,
Je-Yeon Yun 87,88, Daan van Rooij89, ENIGMA-OCD Working Group, Paul M. Thompson90, Odile A. van den Heuvel17,18,
Dan J. Stein 91 and Guido A. van Wingen 1

Abstract
No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic
resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls
from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness,
surface area and subcortical volume and tested classification performance using cross-validation. Classification
performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies
was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In
contrast, fair classification performance was achieved when patients were grouped according to their medication
status. These results indicate that medication use is associated with substantial differences in brain anatomy that are
widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a
disease marker.

Introduction
Obsessive-compulsive disorder (OCD) is a severe and

debilitating condition that occurs in 2–3% of the
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population1. It is characterized by recurrent, intrusive,
irrational and distressing thoughts (obsessions) and
repetitive behaviors or mental acts (compulsions)2. So far,
no biomarkers that aid differential diagnosis are available,
and diagnosis relies entirely on recognition of character-
istic symptoms assessed by clinical interview3. Many
neuroimaging studies have provided evidence for
abnormalities in cortico-striato-thalamo-cortical (CSTC)
circuits, as well as distributed changes in limbic, parietal
and cerebellar regions4,5. These findings have recently
been confirmed by different meta-analyses and mega-
analyses of neuroimaging studies, based on results that
were reported in the literature or by using original data
within different consortia6–10. However, inference has
been at the group-level, and the small effect sizes reported
preclude clinical application.
Analytic tools such as multivariate pattern analysis

(MVPA) enable inference at the individual-level, which
may result in better discrimination3,11. MVPA techniques
can be used to develop predictive models that extract
common patterns from neuroimaging data to classify
individuals based on their diagnosis. A major advantage of
MVPA compared to traditional methods of analysis is its
ability to use inter-regional correlations to detect subtle
and spatially distributed effects4. Therefore, MVPA seems
particularly well suited for neuroimaging analyses in
OCD, as abnormalities are typically distributed across the
brain12,13. Previous MVPA studies have been able to dis-
tinguish OCD patients from controls with accuracies
ranging from 66–100%14. Although these results are
promising, sample sizes have typically been small, limiting
model performance optimization and leading to high
variance in estimated accuracy, which may result in
reporting optimistic or pessimistic classification rates15. In
addition, most studies have been performed using data
from one research center to minimize technical (e.g.,
scanner hardware, protocols, and diagnostic assessment)
and clinical (e.g., age, medication status, disease chroni-
city, and severity) heterogeneity. It is therefore not clear
whether the MVPA results obtained from these mono-
center studies generalize well to other centers, which
would be required for clinical application16–18. Interest-
ingly, whereas classification accuracies of monocenter
studies only tend to increase with larger samples19,20,
accuracies for multicenter studies in other psychiatric
disorders such as schizophrenia and autism tend to be
lower with increasing sample size12,15–17. This paradoxical
effect of lower classification accuracy with larger samples
has been attributed to larger sample heterogeneity21,
which inevitably increases when combining data from
different centers. Here, we used data from the Enhancing
Neuro-Imaging and Genetics through Meta-Analysis
(ENIGMA) OCD consortium, including 4372 partici-
pants recruited at 36 research institutes around the world,

with a full range of technical and clinical heterogeneity.
We assessed the ability of MVPA to distinguish OCD
patients from healthy controls using structural neuroi-
maging data at the individual subject level. We investi-
gated machine learning classification performance in both
single-site and multi-site samples using different valida-
tion strategies to assess generalizability. Furthermore, the
large sample size enables investigation of the influence of
clinical heterogeneity by stratification and subsampling, in
order to assess the influence of clinical variability on
classification accuracy.

Materials and methods
Study population
The ENIGMA-OCD working group includes 46 data

sets from 36 international research institutes, with neu-
roimaging and clinical data from adult (≥18 years) and
pediatric (<18 years) samples. In total, we analyzed data
from 4372 participants, including 2304 OCD patients (n
= 1801 adult, n= 503 child) and 2068 healthy controls
(HC; i.e., free of psychopathology; n= 1629 adult, n= 439
child), with 38 of 46 datasets identical to those described
in previous mega-analyses by this working group6,7,22. All
participating sites obtained permission from their local
institutional review boards or ethics committees to pro-
vide anonymized data for analysis, and all study partici-
pants provided written informed consent. Demographic
and clinical characteristics of each site are detailed in
supplementary Table S1. A complete overview of instru-
ments used to obtain diagnosis and clinical information
can be found elsewhere (Data Supplement 1, Supple-
mentary Section S1)7. Diagnosis was determined in
accordance with DSM2; MINI and SCID were used for
adult samples and K-SADS, MINI-KIDS and ADIS were
used for pediatric samples23–27.

MRI processing
Structural T1-weighted brain MRI scans were acquired

and processed locally at each site. Image acquisition
parameters are listed elsewhere7. Parcellations were per-
formed using FreeSurfer software version 5.3 (http://
surfer.nmr.mgh.harvard.edu), following standardized
ENIGMA protocols to harmonize analyses and quality
control procedures across multiple sites (see http://
enigma.usc.edu/protocols/imaging-protocols/). Mean
values of parcellations of 34 cortical (Desikan-Killiany
atlas-based28) and 7 subcortical gray matter structures per
hemisphere, lateral ventricle volumes, two whole-
hemisphere measures and total intracranial volume were
extracted, visually inspected and statistically evaluated for
outliers (quality assurance is reported elsewhere7). Brain
regions (features) used for classification included cortical
thickness (CT), surface area (SA) and subcortical volumes
of ROIs, two lateral ventricular and intra-cranial volumes
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(ICV), and two whole-hemisphere measures for SA
and CT.

Multivariate classification and validation
Participants with >10% missing entries were excluded

(n= 276), and median imputation was used for missing
MRI data on the training set. Continuous features were
centered around median zero and scaled according to
their interquartile range. FreeSurfer variables were com-
bined with covariates age, sex, and site by concatenating
individual feature vectors. Categorical covariates were
one-hot encoded prior to classification. All analyses were
performed separately for pediatric and adult patients, and
both groups combined. Common MVPA classifiers were
applied: support vector machine (SVM) with linear and
non-linear (radial-basis-function (RBF)) kernels, logistic
regression (LR) with L1 and L2 regularization, Gaussian
processes classification (GPC) with a linear kernel, and
two decision-tree based ensemble methods, namely the
random forest classifier (RFC) and the XGBoost (XGB)
algorithm29–32. A neural network was also implemented
(fully connected; 3 hidden layers with 60, 40, and 20 nodes
respectively). SVM and LR classifiers were combined with
and without automatic dimensionality reduction via
principal component analysis (PCA), using the minimal
number of components explaining 90% of the variance.
Hyper-parameters for SVM (linear and non-linear), LR
and XGB were optimized using nested cross-validation;
RFC and GPC were tuned following recommendations.
Details on handling missing data, model implementation
and hyper-parametrization can be found in Supplemen-
tary Methods (and supplementary Fig. S1 for assessment
of different imputation strategies). The primary perfor-
mance metric was the area under the receiver operator
curve (AUC) and reported metrics are averaged across CV
folds33. Balanced accuracy, sensitivity and specificity are
reported in the supplement.
Multi-site classification of OCD patients versus HC was

assessed using different cross-validation (CV) approaches.
First, we assessed multi-site classification using 10-fold
site-stratified CV to obtain maximally homogeneous
train-test splits, with approximately the same number of
subjects in each fold and the same proportion of samples
coming from each site (also referred to as ‘internal vali-
dation’). Next, we addressed leave-one-site-out (LOSO)
CV, in which all but one site were used to train the models
while the left out site was used to assess model perfor-
mance (external validation). This procedure is then
repeated so that each site is used once as a test set. LOSO-
CV may result in large between-sample heterogeneity of
training and test sets, resulting in lower classification
performance34. Because LOSO-CV has different fold sizes,
we additionally performed site-stratified CV with varying
fold sizes, in which the number of CV folds and respective

test-fold sizes are set to match those of LOSO-CV. This
was done to evaluate whether differences between site-
stratified and LOSO-CV performance were due to dif-
ferences in heterogeneity or test-fold size variance. Finally,
we also performed single-site predictions using repeated
5-fold CV (with 10 repeats) to assess classification per-
formance for individual sites with reduced heterogeneity.
For a schematic representation of LOSO and site-
stratified CV see supplementary Fig. S2. Statistical sig-
nificance of model performance and 95% confidence
intervals were assessed through the obtained AUC scores
using the Mann–Whitney-U statistic for non-parametric
testing (see Supplement for details)33,35,36. The
Bonferroni-corrected level of significance was set at alpha
= 0.05 for the number of classifiers and comparisons (3
CV types × 10 classifiers for multi-site classifications;
alpha= 0.05/30). As previous work from ENIGMA-OCD
has identified distinct alterations in pediatric and adult
patients, we performed all multi-site classification ana-
lyses for pediatric (<=18 years of age) and adult (>18 years
of age) data separately, as well as both age groups
combined6,7.

Clinical variables and sensitivity analysis
To explore the effects of clinical heterogeneity on

classification performance, we selected subgroups with
particular demographic and clinical characteristics: med-
ication use, OCD severity, age of onset (AO) and duration
of illness. Classifications performed were HC vs. low
(YBOCS <= 24; mild-moderate37) and high severity
(YBOCS > 24; moderate-severe) OCD; HC vs. early
(<18 yrs) and late AO (>= 18 yrs) OCD; HC vs. short
(<=7 yrs) and long duration (>7 yrs) OCD; and HC vs.
unmedicated and medicated OCD. For disease duration
and severity, median splits were used to define groups; the
18 year threshold for AO was chosen in line with prior
ENIGMA-OCD mega-analyses6,7. Finally, as particular
clinical variables can co-occur, we performed a post-hoc
sensitivity analysis to investigate the effects of potential
clinical covariance for results with AUC ≥ 0.8. First, cor-
relations between all clinical features were computed
using point-biserial correlations between dichotomous
and continuous variables, phi correlation for dichotomous
variables and Pearson correlation for continuous vari-
ables. Only those clinical features that were significantly
correlated (Bonferroni-corrected) were investigated fur-
ther by rerunning previously described classifications, but
now using samples further split according to their cor-
related features (e.g., HC vs. unmedicated, short duration
OCD patients; etc.). The use of more homogenous sub-
samples is expected to improve classification perfor-
mance, while reducing sample size itself is expected to
decrease performance. If classifications are relatively
unaffected by further splitting, the correlated clinical
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variable did not have a large influence on the classification
results.

Feature importance
To assess which brain regions and clinical variables

contributed most to classification we used feature
importance extracted from RFC combined with a per-
mutation testing framework (see Supplementary
Methods)38.

Results
Multi-site classification
Three different CV approaches were used to assess the

influence of sample heterogeneity. Results using various
classification algorithms are summarized in Fig. 1. Clas-
sification performance (AUC) using site-stratified CV
(with training on combined samples and equal fold sizes)
ranged between 0.57 (95% confidence intervals (CI)=
0.51–0.63; pcorrected= 0.19) and 0.62 (95% CI= 0.56–0.67;
pcorrected < 0.001) across different classifiers. All models
had statistically significant performance after multiple
comparison corrections except for PCA+ LR, PCA+
SVM and NN classifiers. LOSO-CV led to lower classifi-
cation performance; 0.51 (95% CI= 0.4–0.62; pcorrected=
1) to 0.54 (95% CI= 0.42–0.65; pcorrected= 1) AUC with
relatively high variance across folds (SD= 0.07–0.11) and
no classifiers surviving multiple comparison corrections.
AUC values obtained through site-stratified CV with
varying fold sizes were similar to site-stratified CV results
with equal fold sizes, ranging between 0.56 (95% CI=
0.45–0.67; pcorrected > 0.99) and 0.62 (95% CI=
(0.51–0.73); pcorrected= 0.55). However, variance across
CV-folds was higher and comparable to that from LOSO-

CV (SD; site-stratified fixed: 0.02–0.04; site-stratified
variable: 0.05–0.08; LOSO: 0.07–0.11). A complete over-
view of classification results is provided in supplementary
Table S2. Multi-site classification with site-stratified CV
(with equal fold sizes), performed separately on pediatric
and adult samples yielded similar results, ranging from
0.55 (95% CI= 0.43–0.67; pcorrected= 1) to 0.62 (95% CI
= 0.51–0.74; pcorrected= 0.71) and 0.56 (95% CI=
0.5–0.62; pcorrected= 0.69) to 0.61 (95% CI= 0.55–0.67;
pcorrected= 0.008) AUC, respectively (see supplementary
Tables S3-4). As site-stratified CV with equal fold-sizes
resulted in the best performances, we used this strategy
for further evaluation of intra-site performance and the
influence of clinical variables. RFC classification perfor-
mance is reported here by default, as differences between
classifiers were minimal and this model was also used to
extract feature importance.

Single-site classification
Single-site classification performance with 10-fold CV

varied greatly, with AUCs ranging between 0.30–0.89
across different sites and classifiers (see supplementary
Table S5). Figure 2 summarizes RFC performances for
each individual site. We assessed the correlation between
the number of participants in each site and its obtained
classification performance (AUC averaged over CV folds),
which was significant (rS= 0.37, p= 0.014). In addition, we
investigated the relationship between single-site classifi-
cation performance and the following clinical variables of
interest: mean and standard deviation of AO, duration,
severity and the proportion of medicated patients and its
standard deviation. None of these clinical variables showed
a significant correlation with classification performance.

Fig. 1 Performance for multi-site classification using different algorithms and cross-validation schemes. Boxplots summarize AUC scores
obtained across CV-folds; dashed line represents chance-level performance and asterisks indicate scores significantly different from chance
(Mann–Whitney-U statistic; p < 0.05 Bonferroni corrected (10 classifiers × 3 CV types), see Supplement for details). SVM Support Vector Machine, PCA
Principal Component Analysis, RBF Radial Basis Function, LR Logistic Regression, GPC Gaussian Processes Classification, RFC Random Forest Classifier,
XGB XGBoost, NN Neural Network.
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Clinical variables and sensitivity analysis
To assess the influence of different clinical variables on

classification performance, we repeated the analysis for
specific subgroups split according to medication use, AO,
disease duration, and severity. A complete overview is
provided in supplementary Tables S6(a–d), and results
using RFC on combined data with age, sex and site as
covariates are reported below. Medicated OCD vs. HC
classification resulted in 0.69 AUC (95% CI= 0.63–0.75;
pcorrected < 0.001), unmedicated OCD vs. HC in 0.60 (95%
CI= 0.54–0.67; pcorrected= 0.03), and medicated vs.
unmedicated OCD in 0.78 (95% CI= 0.72–0.85; pcorrected
< 0.001) (see Fig. 3). XGB performance was notably higher
for medicated vs. unmedicated OCD classification with an
AUC of 0.86 (95% CI= 0.78–0.9; pcorrected < 0.001). Early
AO OCD vs. HC classification resulted in 0.68 AUC (95%
CI= 0.62–0.75; pcorrected < 0.001), late AO OCD vs. HC in
0.73 (95% CI= 0.67–0.79; pcorrected < 0.001), and early vs.
late AO in 0.81 (95% CI= 0.74–0.88; pcorrected < 0.001). As
no late AO patients were present in pediatric samples,
classifications were re-run on adult samples only, result-
ing in 0.65 AUC (95% CI= 0.57–0.72;pcorrected= 0.01) for
early AO vs. HC, 0.70 (95% CI= 0.63–0.76; pcorrected <
0.001) for late AO vs. HC, and 0.73 (95% CI= 0.64–0.82;
pcorrected < 0.001) for early vs. late AO. Classification of
short disease duration OCD vs. HC resulted in 0.68 AUC
(95% CI= 0.61–0.75;pcorrected < 0.001), long disease dura-
tion vs. HC in 0.71 (95% CI= 0.65–0.78; pcorrected <
0.001), and short vs. long duration in 0.78 (95% CI=
0.7–0.85; pcorrected < 0.001). Finally, low severity OCD vs.
HC classification resulted in 0.60 AUC (95% CI=
0.53–0.67; pcorrected= 0.15), high severity OCD vs. HC in
0.61 (95% CI= 0.54–0.68; pcorrected= 0.04), and low vs.

high severity OCD in 0.58 (95% CI= 0.49–0.66;
pcorrected= 1).
Correlation analysis between medication status and

other clinical variables only showed a significant associa-
tion with disease duration (r=−0.094; pcorrected < 10

−05;
Bonferroni-corrected). We therefore performed addi-
tional medication status classifications after splitting
patients for disease duration (e.g., HC vs. medicated+
short duration OCD; HC vs. unmedicated+ short dura-
tion OCD, etc.). Classifications with or without splitting
patients for disease duration were comparable (see sup-
plementary Tables S7(a–c) for full overview).

Influence of covariates
As seen in supplementary Table S1, several sites inclu-

ded only medicated patients whereas other sites only
included non-medicated patients. To assess whether the
high performance reported above for classifying medica-
tion status could be explained by site-differences in the
covariates (e.g., site ID) rather than neuroimaging data, we
performed the following control experiments. We reran
both medication and main diagnosis classifications with-
out using covariates (using only brain data), using cov-
ariates only, and by using neuroimaging data after
removing the effect of the covariates using multiple linear
regression. To maintain independence between the
training and test sets, regression coefficients were esti-
mated on the training data and applied to the test data.
Results for the main classifications between OCD

patients and HC using neuroimaging data only resulted in
AUC of 0.61 (95% CI= 0.55–0.66; pcorrected= 0.001),
while use of covariates only resulted in AUC of 0.58 (95%
CI= 0.52–0.64; pcorrected= 0.04), and using neuroimaging
data following correction for covariates resulted in AUC

Fig. 2 Scatterplot illustrating relationship between number of
participants and classification performance across sites. Only RFC
classifier performance averaged across CV-folds and repeats are
plotted (Spearman correlation; rS= 0.37, p= 0.014).

Fig. 3 Performance for classification between subgroups of
patients based on medication status. Only RFC classifier
performance for combined (pediatric and adult) data is shown here;
Boxplots summarize AUC scores obtained across CV-folds; dashed line
represents chance-level performance and asterisks indicate scores
significantly different from chance (Mann–Whitney-U statistic; p < 0.05
Bonferroni corrected (10 classifiers × 3 CV types), see Supplement for
details). unmed unmedicated, med medicated.
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of 0.58 (95% CI= 0.52–0.64; pcorrected= 0.02). These
results show that the covariates contain sufficient infor-
mation to distinguish patients from HC, but the results
were otherwise comparable to the AUCs reported above
for classifications using the covariates as features.
Classification for medicated patients vs. HC using

neuroimaging data only resulted in AUC of 0.66 (95%
CI= 0.60–0.73; pcorrected < 0.001) and AUC of 0.70 (95%
CI= 0.64–0.76; pcorrected < 0.001) for SVM-RBF. Using
covariates only resulted in AUC of 0.71 (95% CI=
0.65–0.77; pcorrected < 0.001), and neuroimaging data fol-
lowing correction for covariates resulted in AUC of 0.59
(95% CI= 0.52–0.66; pcorrected= 0.053), and higher AUC
of 0.62 (95% CI= 0.55–0.69; pcorrected= 0.007) for XGB.
Next, classification of unmedicated patients vs. HC using
neuroimaging data only resulted in an AUC of 0.58 (95%
CI= 0.51–0.68; pcorrected= 0.12) with significant classifier
performance for PCA+ SVM-RBF with AUC of 0.61 (95%
CI= 0.55–0.68; pcorrected= 0.007). Using covariates only
resulted in AUC of 0.64 (95% CI= 0.58–0.73; pcorrected <
0.001), and using neuroimaging data following correction
for covariates resulted in AUC of 0.52 (95% CI=
0.45–0.59; pcorrected= 1). Finally, classification of medi-
cated vs. unmedicated patients using neuroimaging data
only resulted in AUC of 0.74 (95% CI= 0.67–0.81;
pcorrected < 0.001), using covariates only in AUC of 0.84
(95% CI= 0.78–0.92; pcorrected < 0.001), and using neu-
roimaging data after correction for covariates resulted in
AUC of 0.59 (95% CI= 0.50–0.67; pcorrected= 0.2). A full
overview of these control experiment results can be found
in supplementary Tables S8–9. These results show that
the covariates contained sufficient information to classify
these subgroups, and especially to distinguish between
medicated vs. unmedicated patients, as subgroups were
already partially defined by site. Nevertheless, the classi-
fications using neuroimaging data only were comparable
to the classifications reported above when covariates were
added as features. However, correcting the neuroimaging
data for covariates lowered the performance substantially
compared to adding the covariates as features, suggesting
that neuroimaging data were partially related to the cov-
ariates (e.g., different scanners at different sites).

Feature importance
We investigated which brain regions (features) con-

tributed most to OCD vs. HC classifications for site-
stratified CV only, using the feature importance values
from RFC and permutation testing, and as we were
interested in brain regions rather than the influence of the
covariates, we focused on classifications using brain data
only following multiple linear regression of confounding
factors. No features were selected consistently (survived
false discovery rate (FDR) correction in >50% CV-folds)
for the main analyses (OCD patients vs. HC classification)

in either pediatric, adult or combined samples. However,
for medicated vs. unmedicated OCD classification in
combined samples, 24 significant and consistently selec-
ted features were found. In addition, 12 features were
found for early vs. late AO patients classifications in
combined samples. A complete overview of these findings
(including features importance for medication classifica-
tion in adult samples) can be found in supplementary
Tables S10–11.

Discussion
We found that MVPA of parcellated structural neu-

roimaging data is unable to provide accurate distinction
between OCD cases and HC. Classification of the com-
plete sample using site-stratified CV ranged between an
AUC of 0.57 and 0.61, which is not sufficient for clinical
application. Differences in performance between classi-
fiers were minimal. Similar results were obtained for
classifications performed separately on pediatric and adult
samples. When validated on completely new data from
other sites using LOSO-CV, model performance hardly
exceeded chance-level (0.5 AUC).
Our findings highlight the impact of validation schemes

on classification performance and suggest poor dis-
crimination between OCD patients and HC when com-
bining data from multiple sites. In contrast,
discrimination between subgroups of patients based on
medication status enabled fair individual subject classifi-
cation. However, our control experiments indicated that
non-brain covariates such as age, sex and site can heavily
affect classification performance, dependent on the rela-
tion between the structural neuroimaging data and those
covariates. Yet, even after removal of the covariate effects,
the results still indicated that medication use is associated
with substantial differences in brain anatomy that are
widely distributed, whereas gross gray matter anatomy of
patients with OCD was comparable to that of healthy
controls. At the same time, this also suggests that clinical
heterogeneity contributes to the poor performance of
structural MRI as a disease biomarker.
Few diagnostic classifiers have been applied to OCD

across multiple scanners and sites. Prior studies using
structural MRI data to classify OCD using single-site
samples yielded accuracies ranging from 0.72 to 0.9314.
The wide range of performances observed in our indivi-
dual site classification is in agreement with the published
literature. Such a wide range may in part be explained by
sample size, as larger samples tended to have higher AUC
values16,19,34. However, this relationship does not neces-
sarily hold true for large-scale multicenter studies, due to
heterogeneity that arises from pooling samples with dif-
ferent scanning parameters, processing pipelines, inclu-
sion criteria, demographic and clinical characteristics14,21.
All these factors can impact the data and obscure a
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pattern of abnormalities shared by all patients. Mono-
center studies that minimize heterogeneity may therefore
yield higher classification performances, but limit the
generalizability to new, unseen data and its use in clinical
practice16,17. Thus, whereas small monocenter studies
focus on answering a specific question about their patient
population, large multicenter studies assume that a fun-
damental pattern of the disorder of interest can be
detected despite the presence of heterogeneity, and both
are geared toward answering complementary questions
about a particular disorder18,39. Our LOSO-CV results
demonstrated that structural MRI features do not provide
a biomarker that enables generalization to new sites.
Multi-site classification within subgroups, split accord-

ing to medication status, resulted in fair performance even
after accounting for correlated clinical variables (i.e., dis-
ease duration) through additional splits. Evidence from
rodent studies suggests that serotonin reuptake inhibitors
(SRIs) mediate neuroplasticity in various cortical and
subcortical structures through glio-genesis and neuro-
genesis40–42. However, little is known about how these
findings might translate to humans and what the effects of
long-term medication use are43. The few longitudinal
studies with small samples suggest that SRI treatment
normalizes brain volumes. One study reported sig-
nificantly larger thalamic volumes in twenty-one treat-
ment-naïve pediatric patients compared to HC and that
these differences decreased following paroxetine treat-
ment44. Another study reported that smaller putamen
volume in treatment-naïve patients was no longer
detectable in the thirteen patients that were treated with
fluoxetine45. Nonetheless, it remains unclear whether
these structural changes are related to medication use or
to symptom improvement. In contrast to these normal-
izing effects of SRIs, the previous univariate meta-analyses
and mega-analyses of the ENIGMA-OCD study found
significantly thinner cortices in medicated adult OCD
patients and smaller cortical surface area in medicated
pediatric OCD patients, but could not detect significant
differences in cortical and subcortical gray matter
between unmedicated OCD patients and HC, with the
exception of larger thalamic volumes in unmedicated
pediatric OCD patients6,7. Together, these cross-sectional
studies suggest that medication use alters brain structure
rather than necessarily normalizing it to the level of
healthy individuals, an hypothesis which needs to be
assessed in appropriately powered longitudinal studies.
The identification of which brain regions contributed

most to the classification resulted from a multivariate
analysis, and the localization of these regions should
therefore be interpreted with caution. MVPA techniques
typically result in better discriminative ability between
groups compared to standard univariate analyses by taking
the distributed nature of effects into account, but they do

not provide inherent localization information (i.e., attri-
buting effect sizes to individual ROIs) as all features used
for prediction are considered as a whole. We derived
individual feature importance from the RFC classifier
using permutation-based inference to find brain features
that contributed both significantly and consistently (across
CV folds) to classification performance. Feature impor-
tance was derived from classifications using neuroimaging
data after regression of covariates to avoid any undesirable
effects on the interpretation of weights caused by non-
imaging features. No feature importance obtained for the
main classifications (OCD patients vs. HC) in either
pediatric, adult or combined samples was statistically sig-
nificant. This is likely due to the low classification per-
formances obtained, suggesting that the features used are
either too noisy or non-informative for main diagnosis
predictions and unable to achieve statistical significance
and consistency across folds. Similarly, no significant fea-
tures were found for medicated OCD vs. HC and unme-
dicated OCD vs. HC classifications. On the other hand,
significant features were found that enabled multivariate
classifications for medicated vs. unmedicated OCD in
adult and combined samples. These included widespread
cortical thickness in frontal and temporal regions,
including the left inferior temporal gyrus, medial orbital
frontal and bilateral transverse temporal cortex, left insula,
and bilateral anterior cingulate cortex, as well as surface
area of the right entorhinal, left paracentral and bilateral
temporal cortex, and left thalamus, pallidum, and ventricle
volumes. A full overview of these significant features, as
well as those found for early vs. late onset OCD classifi-
cation, can be found in supplementary Tables S10-11.
The brain regions that were detected in the multivariate

analysis are partially consistent with the results from
previous univariate ENIGMA-OCD meta-analyses and
mega-analyses6,7. Medicated adult OCD patients showed
thinner frontal, temporal and parietal cortices, and
smaller hippocampal and larger pallidum volumes com-
pared to HC, whereas no differences were found for
unmedicated adult patients. Although we were unable to
detect significant features for medicated patients and
unmedicated patients vs. HC classifications, these earlier
results fit with the finding that classification performance
for medicated patients vs. HC was better than for
unmedicated patients vs. HC, as differences in brain
anatomy of unmedicated patients appear to be minimal.
Interestingly, the classification between medicated vs.
unmedicated patients was even better, which suggests that
this results from the minimization of heterogeneity in
stratified patient groups as opposed to the larger hetero-
geneity seen in case-control comparisons. Finally, as the
medication used for treating OCD is also used for treat-
ment of many other psychiatric disorders, we anticipate
that these results are not specific to OCD.
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Another point that deserves emphasis concerns the
different ways of dealing with confounding non-imaging
variables (e.g., age and sex) when using neuroimaging data
for MVPA classification. Although recent studies were
unable to detect differences in predictive performance
when comparing different approaches for dealing with
confounds in MVPA studies (nor differences in the
weights assigned by the models46,47), results from our
confound control experiments suggest otherwise. We
chose to add the covariates age, sex and data collection
site ID directly as features to our model as our initial
approach. The underlying principle of this approach is
that all relevant variables should be included in the model
and that their relative contribution to the final predictive
model will be recovered during model training, without
the need for manual confound adjustment procedures47.
This approach resulted in high classification performance
for medication classifications (>0.8 AUC). However, sev-
eral sites included only medicated patients while in others
no patients had received medication, which could suggest
that this high performance was achieved through classi-
fiers detecting site-effects directly from covariates (e.g.,
site ID) rather than brain data. The latter is supported by
the finding that classifications using covariates only (age,
sex, and site) also resulted in high AUC (>0.8 AUC),
whereas regressing these covariates out from brain data
resulted in lower performance, with only classifications
for medicated vs. control classification remaining sig-
nificant (supplementary Tables S9). Our control experi-
ments also show that the FreeSurfer data itself is likely to
be confounded by site-effects as well, as classifications
using brain data only (without regressing out covariates)
resulted in relatively high classification performance for
medicated OCD vs. HC and medicated vs. unmedicated
OCD classifications (with 0.70 and 0.75 AUC, respec-
tively). This could be explained by classifiers being able to
identify sites through specific sample characteristics
(demography and inclusions criteria used) resulting in
different brain anatomy, and methodical differences such
as types of scanner and imaging protocols used. Inter-
estingly, control experiments for main diagnosis classifi-
cations showed that these were relatively unaffected by
different ways of dealing with confounds (supplementary
Table S8). This is likely due to the fact that the classes for
diagnosis classifications (i.e., number of OCD patients and
HC) are more balanced across samples.
A number of limitations deserve emphasis. First, we

used a sample pooled from existing data across the world,
without harmonized protocols for scanning, inclusion
criteria or demographic and clinical characteristics. These
sources of heterogeneity may limit classification perfor-
mance, but this also provides an opportunity for model
development using independent data sets and the dis-
covery of biomarkers that are reproducible across study

sites. Second, standardized FreeSurfer protocols were
used for MR data processing to ensure reproducibility
across sites. It has been shown that FreeSurfer tends to
overestimate subcortical volumes in children48, and that
MR field strength can affect regional cortical estima-
tions49. However, these nonsystematic effects are expec-
ted to affect patients and HC equally and are therefore not
expected to influence our results. Third, limited infor-
mation on medication use was available. We were there-
fore only able to distinguish patients on antidepressants
with or without adjuvant antipsychotics vs. those who had
not received any medication. Medication history, medi-
cation dosage, and duration of use were unknown.
Nonetheless, these coarsely defined medication groups
enabled better case-control discrimination and good
classification of medicated vs. unmedicated cases. Fourth,
there is a lack of information on OCD subtypes in our
dataset. Particular OCD subtypes may have different
neural correlates, and this might limit the ability of MVPA
models to find generalizable patterns in brain struc-
ture14,50. Fifth, it should be noted that the age cut-off used
to split the data in pediatric (age below 18) and adult (age
18 and older) samples may not be optimal with respect to
the development of the brain, but this was done in
accordance with the initial collection of pediatric and
adult samples and previous ENIGMA work51,52. Finally, it
is possible that the brain features used for classification
led to sub-optimal performance. OCD is thought to derive
from abnormalities distributed at the network-level rather
than focused on a single brain area, and FreeSurfer fea-
tures might not be sufficiently sensitive to detect subtle
alterations associated with OCD.
Taken together, this study provides a realistic estimate

of the classification performance that can be achieved in a
large, ecologically valid, multi-site sample of OCD parti-
cipants using data on regional brain structure. Our find-
ings show that parcellated structural MRI data do not
enable a good overall distinction between patients with
OCD and HC. However, classifying subgroups of patients
based on medication status enables fair identification at
the individual subject level, which implies that medication
use is associated with substantial distributed differences in
brain anatomy. This underlines the need for longitudinal
studies on the short-term and long-term effects of psy-
chiatric medication on brain structure.
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