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Abstract 

Modeling and Prediction of Single-Cell Galvanotaxis Dynamics Using Machine 

Learning 

by 

Brett Sargent 

It has long been known that many types of cells migrate in response to 

naturally-generated electric fields, and it has been suggested that the external 

application of an electric field may be used to intervene in and optimize natural 

processes such as wound healing. Precise cell guidance suitable for such optimization 

may rely on predictive models of cell migration, which are yet to be developed. Here, 

we present a deep learning model that can make predictions about the future 

directedness of cells given a timeseries of previous directedness and electric field 

values. This model can accept arbitrary electric field values, and we demonstrate that 

it can be used to perform in silico studies by simulating cell migration lines. 

Additionally, we show that our modeling approach can be used for a variety of cell 

types and experimental conditions with very limited training data using transfer 

learning methods. This predictive approach provides accurate models of cell 

migration which are suitable for use in control mechanisms with applications in 

precision medicine. 
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INTRODUCTION 

A great number cell types, which have various functions, have been shown to 

migrate directionally in response to an electric field (EF) in a process known as 

galvanotaxis (also known as electrotaxis) (Mehta et al., 2021; Robinson, 1985; Sun et 

al., 2013; Yang et al., 2013; Zhu et al., 2020). Galvanotaxis may play a key role in 

many biological phenomena which are of significant medical interest, including 

wound healing (Reid & Zhao, 2014; Tai et al., 2009), embryo development (Erickson 

& Nuccitelli, 1984; Weijer, 2009), and cancer metastasis (Pu et al., 2007; Zhu et al., 

2020). It has been suggested that electric fields can be manipulated to guide these 

biological processes for purposes such as accelerating would healing (Ojingwa & 

Isseroff, 2003; Kai et al., 2017; Ashrafi et al., 2017) and suppressing metastasis 

(Stuelten et al., 2018). For these approaches, galvanotaxis is favorable to other modes 

of motility because electric fields are very easy to apply and control precisely 

compared to alternatives such as chemoattractants (Prescott et al., 2021).  

Direct observation of cell migration in vivo is difficult, so, while there are 

some promising studies of galvanotaxis in vivo (Feng et al., 2017; Lin et al., 2008), 

these studies are uncommon and most galvanotaxis studies are done in vitro (Ryan et 

al., 2021). There has been a call for a standardization and automation of galvanotaxis 

experiments to allow for deeper investigation into galvanotactic processes (Ryan et 

al., 2021). In addition to standardization of experimental design, it would be 

advantageous to standardize and automate the modeling of the effects of galvanotaxis. 

The development of general data-driven galvanotaxis modeling techniques would 
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allow for automated analysis of arbitrary galvanotaxis experiments using standard cell 

tracking data. Such automated modeling could open the door to deeper understanding 

of the dynamics of galvanotaxis and be used in the development of bioelectric 

medicine applications.  

 Towards guiding cellular migration through the application of a synthetic 

electric field, it may be advantageous to use a time-varying electric field driven by an 

intelligent automatic controller rather than applying a constant electric field. 

Extended applications of electric fields can be detrimental to tissues, meaning that 

attempts to guide cells via external EFs would require designing dynamic EF signals 

to maximize the ratio of responsiveness to current. To this end, the development of 

accurate and robust predictive models of galvanotaxis is of paramount importance to 

efforts towards optimizing galvanotactic responses in order to control biological 

processes. While there have been many models of galvanotaxis (Akiyama et al., 

2017; Ogawa et al., 2006, 2005; Vanegas-Acosta et al., 2012), there have been very 

few efforts to develop predictive models of single-cell galvanotactic dynamics 

(Prescott et al., 2021).   

 Cell migration is notoriously difficult to model because cells have complex 

nonlinear responses to numerous environmental cues (Lara Rodriguez & Schneider, 

2013). In general, there are two standard modeling approaches which include 

mechanistic models and data-driven models. Mechanistic models of single-cell 

galvanotaxis are more informative about the driving processes behind motility 

induced by an EF, but they lack predictive ability. The current predictive models are 
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capable of replicating ground truth cellular behavior as well as revealing the 

contributions of various means by which EFs induce migration, but they are unable to 

adapt predictions to different EF values without retraining (Prescott et al., 2021). Our 

proposed neural network-based model does not itself provide insight into means and 

mechanisms of galvanotaxis, but allows for prediction of migration directedness in a 

wide variety of experimental conditions, making it suitable for application to 

intelligent automatic controllers for use in influencing complex biological processes. 

In this paper, we propose a predictive deep learning-based approach to 

modeling EF-guided migration at the single-cell level. Our models utilize a long 

short-term memory (LSTM) recurrent neural network architecture, which have been 

shown to have great success in capturing temporal patterns for time series prediction 

tasks (Gers et al., 1999; Hochreiter & Schmidhuber, 1997; Hua et al., 2019). Our 

approach has several advantages over existing methods. First, our model accepts 

arbitrary EF strengths, and the predictive accuracy remains high when making 

predictions on EF values not encountered in training. Furthermore, our model accepts 

EF values which vary in time, allowing for predictions to be made in settings where 

EFs may not remain constant such as those where the EF is regulated by a feedback 

controller for directing cellular response. Next, our model is capable of using transfer 

learning methods to make accurate predictions on different cell types using limited 

training data. Finally, our model is capable of performing in silico galvanotaxis 

experiments with any choice of time-varying EF values through the generation of 
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synthetic directedness data. These simulations can be used to minimize and guide 

experiments.  

 

Figure 1: The image processing and cell directedness prediction pipeline. Time-lapse 
microscope images are used to manually track a number of cells. The tracking data is used to 
create timeseries of our two features, which are used as inputs to our blackbox LSTM model 
to make predictions about the next directedness value. 

 

 

RESULTS 

Recurrent NNs  

We use a long short-term memory (LSTM) recurrent neural network to predict 

the future directedness (defined as the cosine of the angle between the electric field 

and the straight line which connects the start point of a cell and its current location) of 

a cell given its previous directedness and the current strength of the electric field. 

This is also referred to as a one-step ahead prediction. LSTM models have feedback 



5 
 

connections and are designed to explicitly avoid the vanishing gradient problem, 

meaning that they can process entire sequences of timeseries data (Hochreiter, 1998). 

LSTM networks are advantageous over other recurrent networks since they are 

relatively insensitive to the duration of time delays (Tian et al., 2021). These 

advantages make LSTM models desirable for understanding complex systems, and 

LSTM models have had success capturing the behavior of noisy dynamical systems 

(Yeo, 2019; Yeo & Melnyk, 2019).  

 

Recurrent neural networks can predict the directedness of EF-induced cell migration 

at the single cell level 

 We first train and test the model on a collection of time-series data tracking 

single cell migration under a set of EFs: 0mV/mm, 15mV/mm, 30mV/mm, 

50mV/mm, 75mV/mm, 100mV/mm, and 200mV/mm. To understand the 

generalizability of the model with respect to the EF strength, we then use the model to 

both interpolate and extrapolate to EF strengths that were not seen in the training set. 

For interpolation, we remove all instances of cells in an intermediate EF, 30mV/mm, 

from the training set and train a new model with identical architecture as before. For 

extrapolation, we follow a similar approach except we remove all instances of cells in 

an extreme EF, 200mV/mm from the training set. These models are then tested on the 

entire range of EFs.  We also highlight the performance exclusively on cell 

trajectories under EFs omitted during training.   
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To evaluate the model’s accuracy, we consider the distribution of root mean 

squared error (RMSE) values for single cell trajectories over a population of cells. In 

particular, we consider the median value and the inter-quartile range (IQR), which are 

0.029 and 0.035, respectively, for the base model on the test set. 

Figure 2 shows the results of predicting single-cell behavior for all EFs. The 

median RMSE values when predicting on the training and the test sets are 0.031 and 

0.029, respectively. The IQR of RMSE distributions on the training and test sets are 

0.033 and 0.035, respectively. The center and spread of the RMSE distributions for 

the training and test sets are comparable, showing that the model is not overfit. This is 

further supported by model simulations in a later section. The distributions of RMSE 

values when predicting on the training, validation, and test sets are shown in the 

following figure. 
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For extrapolation, we compare the base model to a model trained without any 

200mV/mm instances (see Figure 5). The median RMSE of this extrapolation model, 

when evaluated on the full test set, is 0.031, which is 6.51% higher than the model 

trained on the full training set. When evaluating this model specifically on the 

200mV/mm the median RMSE is 0.022. The median RMSE for the base model is 

0.018 on the 200mV/mm instances, so the median error on the 200mV/mm test 

instances is 17.40% higher than that of the base model. The performance of our 

model on this extrapolation evaluation appears worse than on the interpolation task, 

though we see an overall performance decrease caused by a reduction in the richness 

of the training set, much like we saw with the interpolation task. Thus, some of the 

difference in 200mV/mm instance median RMSE between the base model and the 

extrapolation model may be attributed to the error increase across the full test set 

caused by the limited training set.   
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the missing values demonstrates the ability of our model to interpolate and 

extrapolate with respect to EF values, though our model seems to have relatively 

better performance on the interpolation task than on the extrapolation task. 

 

Transfer learning allows for high prediction accuracy when minimal data is available 

 Transfer learning is the method of using a model’s knowledge about one 

learning problem (called the source domain) to improve the performance on a second, 

related learning problem (called the target domain) (Bozinovski, 2020; Pan & Yang, 

2010; Rosenstein et al., 2005; Torrey & Shavlik, 2010; Weiss et al., 2016). Transfer 

learning allows for target domain instances to be in a different feature space and have 

a different distribution than the instances in the source domain, which allows for 

relatively high performance when target domain data is too limited to allow for such 

performance were the model to be trained from scratch (Pan & Yang, 2010; Weiss et 

al., 2016). Because galvanotaxis experiments and manual cell tracking can be both 

expensive and time-consuming, galvanotaxis tracking datasets for some cell types 

may be limited in both the number of cells tracked and the variety of EF conditions in 

which experiments are conducted. Thus, transfer learning may be a pivotal tool in 

developing accurate models for cell types and experimental conditions for which data 

is limited. Here, we evaluate the effects of transfer learning on extending our constant 

EF CNCC model to different cell types and to a time-varying EF. 

First, we consider transfer learning methods for making predictions on cells in 

time-varying EFs using the model which we trained on constant EFs. We evaluate the 
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ability of the model to capture CNCC galvanotaxis dynamics in an experiment in 

which the polarity of the EF is reversed halfway through the experiment (see Figure 

6). We compare the performance of a “reversal model”, trained only on the polarity 

reversal data, and a “transfer learning model”, which retrains the base model on the 

polarity reversal data. We use the base model predictions on the constant-EF test set 

as a performance benchmark. 

The median RMSE of the reversal model is 0.046, which is 57.20% higher 

than the benchmark performance of the base model on the original test set. The 

transfer learning model has a test set median RMSE of 0.038, which is an 

improvement of 18.09% over the reversal model. The transfer learning model’s 

median test set RMSE is 28.77% higher than the benchmark model’s median RMSE, 

which can likely be attributed to both the limited polarity reversal training data, as 

well as the increased complexity of dynamics in the time-varying EF setting. Despite 

the inability of the model to reach benchmark performance on this task, we have 

demonstrated that transfer learning methods are effective at improving model 

performance for cells in time-varying EFs over models trained only in those settings. 
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200mV/mm, and 400mV/mm electric fields. All keratinocyte cells are tracked in 

100mV/mm EFs. The keratocyte training set contains tracking data for two cells from 

each available EF strength and the three keratinocyte training sets each contain 

tracking data for two cells total. For keratocytes, images are taken and cell positions 

are recorded every minute. The first two keratinocyte datasets also record positions at 

one-minute intervals, while the third keratinocyte dataset has positions recorded at 

ten-minute intervals. Thus, this task evaluates not only the ability of the model to 

transfer knowledge to other cell types, but also the ability of the model to adjust to 

different time delays.  

 Our keratocyte model, trained only on the keratocyte data, has a median 

RMSE of 0.055 on the test set, which is 89.73% higher than the median RMSE of the 

benchmark model performance on the CNCC test set. For transfer learning, we take 

the CNCC model and retrain the weights on the keratocyte training set, resulting in a 

median RMSE of 0.026 on the keratocyte test set, which is 53.07% lower than the 

keratocyte model which did not use transfer learning and 10.96% lower than the 

benchmark performance on the CNCC dataset. So, the model trained only on our 

limited keratocyte data has much higher median RMSE than the benchmark, while 

the transfer learning model achieves lower median error than the benchmark (see 

Figure 7). 
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NN-based models can be used for in silico studies 

 In recent years, the massive increase in the quantity of available data has led 

to much attention being paid to in silico biological studies, which are studies 

performed on computers using mathematical modeling and simulations (Di Ventura et 

al., 2006; Palsson, 2000, 2002; Terstappen & Reggiani, 2001). The advantages of in 

silico studies include estimating hidden system parameters that are experimentally 

inaccessible (Kollmann & Sourjik, 2007), optimizing the timeline of experimental 

procedures and product development (Mancini et al., 2018; Silva et al., 2019), 

reducing the need for animal and human trials (Mancini et al., 2018), and lowering 

experimental costs (Jean-Quartier et al., 2018; Mancini et al., 2018; Silva et al., 

2019). In this section, we demonstrate that the recurrent neural network-based model 

that we have developed can be used for in silico galvanotaxis assays with arbitrary 

and potentially time-varying EFs. 

We simulate cell migration experiments by designing an EF timeseries and 

using some initial ground truth data to begin making predictions. In this way, we can 

generate timeseries of synthetic galvanotaxis tracking data using arbitrary EF values, 

which may vary in time. We compare the distributions of synthetic directedness 

values with those from the ground truth data to evaluate the ability of the model to 

capture the long-term effects of EFs on CNCC.  

The specific comparison we consider is between the distributions of the 

directedness values at the end of the experiments. Our simulations use 20 timesteps of 

initial ground truth data to begin making predictions and each CNCC is tracked in a 
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constant EF for 36 timesteps after the initial image. Thus, we are comparing how the 

ground truth directedness distribution evolves in the final 17 timesteps with the 

evolution predicted by the simulation in the same time period. The ground truth data 

we consider are the 350 cells in the test set. These cells are used for the initial 

lookback to begin the simulations and for the comparison with ground truth final 

directedness values. 

To determine the ability of our model to replicate the effects of an EF on cell 

motility in silico, we compare the distribution of final directedness values of the in 

silico synthetic data against the ground truth data across all of the EF values in the 

CNCC dataset (see Figure 11 and Table 1). We compare the directedness values by 

EF to evaluate whether the model has learned the effects of various EF values on the 

cells. If the distributions of EF-level predicted directedness values are similar to those 

of the EF-level ground truth directedness values, we can conclude that the in silico 

studies capture the general migration behaviors of the CNCCs. 

The means and medians of final directedness values computed by the 

simulations are closely correlated with the ground truth. The correlation coefficient 

between the means is R=0.991 and the between the medians is R=0.972. In general, 

the distributions of simulated and ground truth final directedness values get closer as 

EF strength increases and cell behavior becomes more predictable.  

Specifically, there is a significant drop in the differences between both means 

and medians at 30mV/mm and higher, compared to 0mV/mm and 15mV/mm 

simulations. The threshold of response of CNCC to electric fields has been identified 
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 0 

mV/mm 

15 

mV/mm 

30 

mV/mm 

50 

mV/mm 

75 

mV/mm 

100 

mV/mm 

200 

mV/mm 

Real Mean -0.0071 -0.1114 -0.3266 -0.4520 -0.5210 -0.8416 -0.8718 

Simulation 

Mean 

-0.1455 -0.2531 -0.3462 -0.4333 -0.5617 -0.8260 -0.8683 

Real 

Median 

-0.1138 -0.0852 -0.5113 -0.7071 -0.7606 -0.9349 -0.9465 

Simulation 

Median 

-0.2381 -0.3920 -0.5317 -0.7298 -0.8511 -0.9531 -0.9463 

Table 1: Means and medians of final directedness values for both ground truth and synthetic 
data. For simulations, these distributions are over 50 trained models to ensure that these 
results are not dependent on the random initialization of any one model; see Methods 
subsection Recurrent Model Architecture for more details. 

 

 

DISCUSSION 

 Galvanotaxis has been observed in many cell types and plays key roles in 

processes such as wound healing and cancer metastasis. Here, we have presented a 

recurrent deep learning model which can capture the single-cell directedness 

dynamics of cranial neural crest cells. We have demonstrated that our deep learning 

model can make accurate predictions in constant-strength electric field settings even 

in EF strengths that were not seen by the model during the training stage, and that the 

model can simulate the effects of a time-varying EF. In addition, we have shown that 

the use of transfer learning methods can apply this model to different cell types, 

whose galvanotactic behavior is very different from the CNCC, to make predictions 

even when the data for the target cell type is scarce. There have been some previous 
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models of galvanotaxis (Vanegas-Acosta et al., 2012), and recently mathematical 

modeling has been used to quantify motility at a single-cell level (Prescott et al., 

2021). However, to our knowledge, this work is the first to present a predictive deep 

learning model of single-cell motility, and the first model of any type to capture the 

response of cells to arbitrary EF strengths. Further, we are aware of no other work 

which has used the learned parameters from one cell type to aid in the modeling of 

other cell types. 

 An important advantage of the model we have presented is its ability to 

predict dynamics in a wide variety of experimental conditions due to its acceptance of 

arbitrary EF values, which may even vary in time. One of the potential applications of 

galvanotaxis models is informing controller-based intervention in wound healing and 

metastasis processes, and it is necessary for such models to be able to adapt to 

changing EFs without retraining, as external controllers may create significant 

fluctuations in EF strength. The ability of the model to both interpolate and 

extrapolate to new EF strengths and its performance the polarity switch experiment, 

along with the generation of qualitatively reasonable synthetic data, suggest that our 

model can make informative predictions about the behavioral response of cells to a 

wide variety of conditions. 

 Another key strength of this approach is the ability of our trained model to 

make reasonable predictions on other cell types after retraining on a very limited 

sample of the target cell data, even when the target cells exhibit vastly different 

electrotactic behavior from the original cell type. By training our model on a single 
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rich dataset, we can extend the model to a variety of cell types for which similarly 

rich datasets are unavailable. As galvanotaxis experiments and tracking procedures 

can be costly and time-consuming, the ability of our model to converge in the 

retraining stage for small datasets may allow for predictive models to be created with 

low experimental costs. 

 We have shown that our model is capable of driving simulations of cells 

which have similar galvanotactic behavior to those we see in our ground truth 

datasets. The value of these simulations is twofold. First, the similarities between the 

synthetic data generated by our model and the ground truth tracking data from real 

experiments illustrate that the predictions made by our model in response to various 

EF strengths are in line with how we expect real cells to behave given our dataset and 

literature on galvanotaxis tracking data. Second, these simulations demonstrate the 

potential for our recurrent models to perform in silico galvanotaxis migration 

experiments. Such experiments may be used in place of physical experiments, which 

would allow for reducing experimental costs and rapidly designing and implementing 

new experimental setups. 

 

 

METHODS 

Galvanotaxis Assay 

 The CNCC were isolated and cultured from the frontal and nasal bones of the 

cranial vault of neonatal wildtype C57BL/6 J mouse following established protocol 
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(Chen et al., 2020; Mehta et al., 2021; Wong & Cohn, 1975). Passage 3-5 of primary 

cells were used. The cells were loaded into the electrotactic chamber (pre-coated with 

1:50 diluted Matrigel) and incubated for 4 hours to allow for attachment. Agar/saline 

bridges were placed into the chamber channels for application of DC electric field 

(Mehta et al., 2021).  

 For the keratocyte assay, scales were removed from the flanks of black skirt 

tetra and allowed to adhere to the bottom of a culture dish, where they were cultured 

at room temperature. Sheets of keratocytes that migrate off the scale after 24-48 hours 

were dissociated, seeded in tissue culture dish, and incubated at room temperature for 

1-3 hours to allow for attachment. The galvanotaxis experiments were performed 

using custom-made electrotaxis chambers built over the tissue culture treated dishes 

(Sun et al., 2013). 

 The neonatal human keratinocytes (NHK) were isolated and cultured from 

foreskin, collected from elective circumcision surgeries under an IRB protocol 

approved by the UC Davis Institutional Review Board (IRB) Administration.  NHK 

between passage 2-5 were plated on collagen coated galvanotaxis chambers at 6–

8×104 cell/ml for 2 hours to allow the cells to attach and migrate. A 100 mV/mm DC 

electric field (EF), comparable to the physiological range at the wound field, was 

applied to the chambers for galvanotaxis (Yang et al., 2013). 
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Microscopic Imaging and Cell Tracking 

 For the CNCC, images were taken at 5-minute intervals for 180 minutes using 

an inverted microscope. The cells were tracked manually using ImageJ (National 

Institutes of Health) software (Mehta et al., 2021). 

 Keratocyte migration was recorded with a Zeiss Axiovert 40 with a 

Hamamtsu C4742-95 CCD digital camera attached. Images were taken at 1-minute 

intervals for up to two hours (Sun et al., 2013).  

For the keratinocyte data, time-lapse Images (time interval of 1 minute for 60 

minutes for the first two keratinocyte experiments and time interval of 10 minutes for 

410 minutes for the third dataset) were acquired on a Nikon TE-2000 microscope 

with a motorized stage, an environmental chamber to maintain at 37°C, a 20× Nikon 

Plan Fluo objective, a Retiga EX camera (Qimaging, Canada), and the Volocity 

imaging software (PerkinElmer, Waltham, MA).  Cell tracking was manually 

performed with OpenLab software and the cell migration rate and directionality of 

galvanotaxis were calculated (Yang et al., 2013). 

 

Dataset Creation 

 Training and testing datasets were constructed using the cell position time 

series. For each cell position, the directedness is measured as the cosine of the angle 

between the EF and the straight line connecting the cell’s current position with its 

starting position. While we typically discuss EF strengths as mV/mm because that is 

the SI unit for electric fields, the EF strength input to the model is in V/mm to put the 
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order of EF inputs on a similar order as the directedness values. At each timestep, our 

model uses the directedness and the EF strength. Because the LSTM has a 20 

timestep lookback, each instance contains the 20 previous directedness values, the 19 

previous EF values, and the next EF value (as features) along with the next 

directedness value (as the prediction target).  

 

Recurrent Model Architecture 

 Our model was constructed and trained using Keras running on a TensorFlow 

backend. The model has a lookback of 20 timesteps and the data contains the 

directedness and EF strength at each timestep, so the input layer accepts matrices of 

shape (20,2).  

Our primary model contains a single LSTM layer with 80 units which uses a 

hyperbolic tangent activation function and a sigmoid activation function for the 

recurrent step. The LSTM layer is densely connected to a single output unit using the 

hyperbolic tangent activation function. 

 The loss was measured as the square of the error and backpropagated through 

the network for each instance; that is, the batch size is 1 and the loss function is the 

squared error. To minimize prediction error, the loss was backpropagated through the 

network and weights were updated using the Adam optimizer with a learning rate of 

0.001. 

 To ensure that the performance of our model is not an artifact of the random 

initialization of the weights, we train 50 versions of the model with identical 
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architecture and training procedure. The weights of each model are initialized 

randomly, and we consider the distributions of predictions over all 50 models, thus 

avoiding a reliance of our results on any particular initialization. When presenting 

results in the form of distributions of cell-level RMSE values, we calculate the RMSE 

for all predictions on a single cell for an individual model, and report all RMSE 

values from all models over all cells in the test set.  

 

Implementation of Transfer Learning Methods 

 For the weight initialization transfer learning method which we use for 

predicting both, we begin by training the model on the CNCC training set (the source 

domain) and we then retrain the model on either the keratocyte dataset or the 

keratinocyte dataset (the target domains). The transfer learning method involves 

initializing the network weights as the optimal weights for the source domain before 

retraining all weights on the target domain. This method relies on the assumption that 

our time series forecasting task shares some similarities, despite the differences in 

galvanotaxis dynamics between different cell types. Thus, the weight configuration of 

the source domain model is assumed to be a better starting point for the learning 

process on the target domain data than a random initialization, allowing for the 

network to converge to an accurate predictive model in less time and with fewer 

training instances. 
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Generation of Synthetic Data 

 Because our model uses directedness and EF strength as input and predicts 

directedness, we can combine predicted directedness values with our choice of EF 

strength values to create synthetic input data which can in turn be fed back into the 

model to produce more directedness values. By using some initial lookback of ground 

truth experimental data to begin making predictions and some timeseries of EF values 

to combine with the predicted directedness values, we use our predictive model to 

simulate cell migration experiments of any length we wish. In this way, we can 

generate sequences of synthetic tracking data in which EF values are arbitrary and 

may vary in time.  

 

Figure 12: Diagram of simulation pipeline. An initial ground truth lookback is used to make a prediction, 
and that prediction is paired with an EF value from a designed timeseries. That predicted value is 
appended to the ground truth lookback and used as input to make another prediction. This process is 
repeated to generate more directedness values until the simulation is completed. 
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