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Functional genomics is a powerful tool for identifying genes that function in the 

same pathway in an organism. Environmental sensing mechanisms, and G protein 

signaling in particular, are important for relaying information from outside the cell to 

allow it to generate the proper response in eukaryotes. The main objectives of this 

dissertation are to 1. Generate and utilize phenotypic data that may reveal potential gene 

pathways in N. crassa, 2. Decipher the ways in which G-protein signaling is regulated 

and 3. Determine the role G-protein signaling has in regulating metabolism. 

In Chapter 2, N. crassa transcription factors were annotated and characterized for 

growth and development phenotypes. Publicly available RNAseq datasets were mined to 

determine possible correlations between transcription factor phenotype and transcript 

abundance during sexual development. We identified a total of 312 transcription factors 

in N. crassa. Complete phenotypic data were obtained for 242 strains using a 

combination of publicly available data and new analysis of gene deletion mutants 
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generated during the study. Of the 242 transcription factor gene deletion strains, 64% had 

at least one defect in growth and development. The combination of RNAseq analysis with 

phenotypic data revealed several transcription factor genes with sexual development 

phenotypes that correlated with transcript abundance in wild type. 

In Chapter 3, I took all available phenotypic data that has been generated for gene 

deletion mutants in N. crassa (data for nearly 1,300 strains) and tested the ability of 

several statistical clustering methods to group mutants based on their growth and 

development phenotypes, with the goal of identifying potential pathways. Analysis of 

several clustering methods showed that using a weighted partitioning around medoids 

approach generated the most biologically relevant grouping of mutants. Publicly 

available RNAseq datasets were used to determine if there is any correlation between 

gene expression and phenotype. Most phenotypic clusters contained multiple expression 

profiles, suggesting that co-expression is not generally observed for genes with shared 

phenotypes. Yeast ortholog data for genes that co-clustered with MAPK signaling 

cascade genes were mined and revealed potential networks of interacting proteins in N. 

crassa.   

In Chapter 4, we investigated genetic interactions between the Receptor for 

Activated C Kinase-1 (RACK1) homolog cpc-2, the Gβ subunit gnb-1 and other G 

protein signaling components in N. crassa. We showed that CPC-2 is a cytosolic protein 

via cell fractionation and fluorescent microscopy. We observed genetic epistasis between 

cpc-2 and gna-2 for basal hyphae growth rate and aerial hyphae height. Mutational 

activation of gna-3 alleviated the submerged conidiation defect observed in the Δcpc-2 
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mutant. cpc-2 and gnb-1 exhibited a largely synergistic relationship, with mutants lacking 

both genes showing more severe defects for all phenotypic traits.   

In Chapter 5, I used a combination of RNAseq and liquid chromatography-mass 

spectrometry to profiles the transcriptomes and metabolomes of wild type, Δgna-1, Δgna-

3 and Δric8 N. crassa strains. We observed large transcriptional differences between 

mutants and wild type. Many of the differentially expressed genes encode metabolic 

enzymes, and the electron transport chain was impacted some strains. Metabolome 

analysis revealed changes in levels of several primary metabolites for all mutants. 

Comparing the RNAseq and metabolomics data provided evidence for both 

transcriptional and post-transcriptional regulation of certain metabolic proteins in the 

various mutants. 
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Neurospora crassa as a model organism 

Neurospora crassa is a multicellular eukaryote, filamentous fungus in the phylum 

Ascomycota. The ease of obtaining mutants led to its use as an early model organism for 

molecular genetics and biology and had profound effects on biochemistry (1). N. crassa 

was the organism used to generate some of the foundational theories in modern genetics, 

such as the one-gene-one-enzyme hypothesis (2). N. crassa was also used to study the 

first conditional mutants (3), compartmentation of metabolic pools and pathways within 

vacuoles (4) and connecting biochemical defects to altered vegetative morphologies (5). 

Later, Neurospora became a well-known model for the analysis of the molecular basis for 

the eukaryotic circadian oscillatory system (6) and is now potentially a new model for 

study of mycoviruses (7).  

The long history of laboratory studies that use N. crassa means that there is a vast 

amount of biochemical/genetic information available which leads to many biological and 

bioinformatics tools being available for N. crassa. The complete genome was released in 

2003 and the latest assembly is publicly available at FungiDB 

(http://fungidb.org/fungidb/ (8,9)). Methods to quickly create knock-out mutants and 

tagged strains are well defined. With these tools, targeted DNA insertions, deletions and 

replacements in the genome can be quickly created and studied (10). With the 

combination of available gene deletion mutants and the wide array of phenotypic assays 

for which protocols have been developed for high-throughput analysis, many gene 

deletion mutants have now been characterized in N. crassa (11). 
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Life cycle of N. crassa 

 N. crassa is a heterothallic (self-sterile) fungus, which grows vegetatively by 

apical extension of basal hyphae (12). Hyphae are tube-like structures that increase 

surface area and perform specialized functions during growth. Hyphae have chitinous cell 

walls, and undergo fusion, branching and linear growth by addition of material at the 

hyphal tip to make up the hyphal network (12-14). There are six specialized hyphal types: 

leading hyphae, trunk hyphae, aerial hyphae, enveloping hyphae, trichogynes and 

ascogenous hyphae (13, 15-23). 

Environmental cues, such as carbon deprivation and exposure to oxygen can 

stimulate formation of aerial hyphae that grow perpendicular to the trunk hyphae (12, 

24). Repeated apical budding on the aerial hyphae results in formation of conidiophores, 

eventually giving rise to the mature spores or macroconidia (12). Macroconidia are 

spread throughout the environment via wind dispersal or mechanical agitation (25). Upon 

acquisition of appropriate nutrient conditions, conidia can establish a new colony, thereby 

completing the asexual phase of the life cycle (25).  

N. crassa has two different mating types (mat a and mat A) that are encoded by 

one locus (14). When starved for nitrogen, N. crassa enters sexual development, which 

starts with the formation of female reproductive structures known as protoperithecia (17). 

Next, female hyphae (trichogynes) of one mating type (e.g., mat a) will grow 

chemotropically from a protoperithecium towards a male cell (conidium) of opposite 

mating type (e.g., mat A) resulting in cell and nuclear fusion. Thereafter, meiosis occurs 

and the protoperithecium matures into a perithecium (26). During the process of 
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maturation from a protoperithecium to perithecium, asci develop and undergo a pair of 

meiotic divisions followed by single mitotic division, forming eight sexual spores termed 

ascospores (17). Ascospores are dormant until exposed to heat, after which they will 

germinate to produce hyphae (20). 

Phenomics  

N. crassa has a rich history of forward genetics, with more than 1000 loci 

identified using classical genetics approaches (27). The Neurospora Genome project 

sought to mutate all genes in the N. crassa genome using reverse genetics (28,29). With 

the nearly 9000 gene deletion mutants in N. crassa being available to the community, 

another goal of the Neurospora Genome Project was to perform phenotypic 

characterization of all knockout mutants. An undergraduate research program at the 

University of California, Los Angeles, pioneered methods for phenotyping mutants, with 

~1000 mutants analyzed (11). The first large group of mutants analyzed were 103 

transcription factors, out of a total of 182 genes annotated at the time (28,30). With only 

44 of the 103 (43%) of the TFs exhibiting at least one phenotype (28). 

The Borkovich laboratory has used the phenotypic methods developed in 

collaboration with UCLA to analyze additional groups of mutants lacking 

serine/threonine protein kinases, serine/threonine/tyrosine protein phosphatases and G 

protein coupled receptors (31-33). These studies analyzed 10 phenotypes across 

vegetative growth, asexual, and sexual development for large groups of gene deletion 

mutants (11). Serine/Threonine (S/T) kinases are important enzymes in signaling in 

eukaryotes (34). There are 86 serine/threonine(S/T) protein kinases in N. crassa, with 77 
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viable gene deletion mutants. When analyzed for the 10 phenotypes, 57% exhibited at 

least one growth or development defect, with 40% of all mutants possessing a defect in 

more than one trait (31). Another integral part of signaling pathways are the protein 

phosphatases. In N. crassa there are 30 protein phosphatases, with 24 viable gene 

deletion mutants. The protein phosphatases have 91% of the gene deletion mutants 

exhibiting at least one phenotype, and 29% overall having at least one defect in growth, 

asexual and sexual development (32). The third group of genes analyzed were the G-

protein coupled receptors (GPCRs). There are 45 predicted GPCRs, with 36 available 

gene deletion mutants. The GPCRs had fewer phenotypes as compared to the previous 

two groups, with only 47% possessing at least one defect in growth or development (33).  

 With a large number of mutants and several traits measured for each mutant, 

organizing the data into relevant groups can become unwieldy. One method of organizing 

large amounts of data is through clustering (35). Clustering is the process of grouping 

items so that those in the same cluster are as similar as possible, while at the same time 

items in different clusters are divergent from those in other clusters (36). Clustering, as 

applied to phenotypes, groups mutants with similar defects, revealing genes that possibly 

act in the same or related pathways. To accomplish this, there are several different 

methods and programs. Broadly, there are two categories of clustering: partitioning and 

hierarchy, with several subcategories therein (37). The most common methods of 

clustering are K-means, Partitioning Around Medoids (PAM), complete linkage 

hierarchical clustering, and Pearson’s Correlation (37).  



6 

 

 Large-scale phenomics clustering analysis using Pearson’s Correlation has 

previously been performed in several other fungal organisms: Saccharomyces cerevisiae, 

Fusarium graminearum, and Cryptococcus neoformans (38-40). In S. cerevisiae, 

individual homozygous deletion mutants lacking nonessential genes were exposed to a 

broad range of cytotoxic and cytostatic agents, generating a quantitative sensitivity 

profile for 4756 strains. The data for these strains was then clustered using Pearson’s 

correlation (38). In F. graminearum, 17 different phenotypes were generated from 

analysis of vegetative growth, asexual development, sexual development, virulence, and 

stress. A total of 657 transcription factor mutants were analyzed, leading to ~11,000 

different data points. The available data were both categorical and quantitative, and for 

this study they converted both the categorical and quantitative data to a single numerical 

scale and used Pearson’s correlation to generate clusters (39). In C. neoformans, 30 

different quantitative and categorical phenotypes were determined for 129 kinase 

mutants. As with the study in F. graminearum, the phenotypes were converted to the 

same numeric scale and Pearson’s correlation was applied to generate phenotypic clusters 

(40). 

 

Heterotrimeric G protein signaling 

 General background.  Heterotrimeric G proteins play a critical role in 

transmitting extracellular stimuli into changes in gene expression (41). Chemical and 

sensory stimuli are recognized by specialized cell-surface proteins called G Protein 

Coupled Receptors (GPCRs). GPCRs are seven-helix membrane proteins that when 
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bound to a ligand act as Guanine nucleotide Exchange Factors (GEFs) for Gα proteins 

(Figure 1.1) (42). Thus, the receptors transduce information from environmental stimuli 

to intracellular signaling pathways via heterotrimeric G proteins. (41). The heterotrimer 

consists of a Gα, a Gβ and a Gγ subunit. The Gα subunit can be bound to either 

guanosine di-phosphate (GDP) or guanosine triphosphate (GTP) (Figure 1.1). When 

bound to GTP, the Gα dissociates from the βγ dimer, and both may regulate downstream 

signaling (41, 43). When the Gα is in its GDP-bound state, it is inactive and sequestered 

at the membrane with the tightly bound Gβγ heterodimer with some GPCR/G-protein 

complexes preassembled in the absence of any ligand (41, 42). The Gα protein has native 

GTPase activity and eventually hydrolyzes a phosphate, converting its GTP to GDP, and 

then returns to the membrane where it re-associates with the Gβγ dimer (44). In addition, 

Regulators of G Protein Signaling (RGS) proteins stimulate the native GTPase activity of 

the Gα subunit, accelerating its return to the inactive GDP bound form by more than 2000 

times (Figure 1.1) (45).   

G proteins in N. crassa. N. crassa possesses three Gα subunits, termed GNA-1, 

GNA-2, and GNA-3, one Gβ subunit (GNB-1), another possible Gβ subunit (CPC-2), one 

Gγ subunit (GNG-1), 45 putative GPCR proteins, and a non-GPCR guanine nucleotide 

exchange factor (RIC8) (30, 33, 46). Considering the Gα subunits, deletion of gna-1 or 

gna-3 results in defects in growth and development. Female sterility and slow hyphal 

growth rate were observed in Δgna-1 mutants (47, 48). The Δgna-3 mutant has defects in 

asexual development, with shorter aerial hyphae and premature conidiation on solid 

medium and inappropriate conidiation in submerged cultures (49). The Δgna-2 mutation, 
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when paired with deletions of either gna-1 or gna-3, leads to phenotypes more severe 

than observed in the individual gene deletion mutants (48, 50). One of the few known 

phenotypes for the Δgna-2 single mutant is reduced growth rate when grown with 

glycerol as the sole carbon source. (51). Finally, both Δgna-1 Δgna-3 double mutants or a 

mutant that lacks all three Gα genes have severe defects in hyphal growth, asexual (short 

aerial hyphae) and sexual (female-sterile) development (48). 

The Gβ subunit GNB-1 is an import regulator of Gα subunit stability, as deletion 

of gnb-1 results in reduced levels of all three Gα subunits (52). The Δgnb-1 mutant also 

has defects during asexual and sexual differentiation, exhibiting inappropriate conidiation 

in submerged cultures and female sterility (52, 53). However, Δgnb-1 mutants do not 

have significant hyphal growth rate defects (53). 

 CPC-2, a possible alternative Gβ subunit. Receptor for Activated C Kinase 1 

(RACK1) is a scaffolding protein that binds soluble, and membrane bound proteins and is 

known to shuttle activated Protein Kinase C (PKC) (54, 55). RACK1 is comprised of 

seven WD40 repeats that assemble into a seven-blade-β-propeller structure that facilitates 

interaction with other proteins (56). RACK1 has been shown to be involved in many 

roles during cellular function, from development, to cell migration, apoptosis, and 

circadian rhythms, as well as brain functions (56, 57). The homolog of RACK1in S. 

cerevisiae, Acs1p, has been implicated as alternative Gβ subunit through direct 

interaction with Gα subunits (58). Asc1p acts on the Gα Gpa2p, functioning as a Guanine 

nucleotide Dissociation Inhibitor (GDI) inhibiting the spontaneous exchange of GTP for 

GDP that is intrinsic to the Gα. Additionally, Asc1p is involved in regulating glucose 
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responsiveness through its binding to the effector enzyme adenylyl cyclase and lowering 

the amount of cAMP in response to glucose stimulation (58). In Cryptococcus 

neoformans, there is evidence for a physical interaction between the RACK1 homolog 

Gib2 and the protein kinase C homolog Pkc1 (59). In Magnaporthe oryzae, the RACK1 

ortholog, MoMip11 interacts with both the Gα protein MoMagA and RGS protein 

MoRgs7 to regulate pathogenicity (60, 61). In N. crassa, the RACK1 homolog Cross 

Pathway Control-2 (CPC-2) regulates global derepression of amino acid biosynthetic 

genes during amino acid starvation under amino acid limited conditions (62). Possible 

interactions between CPC-2 and Gα subunits have not been studied. 

 RIC8, a non-GPCR GEF. RIC8 has been implicated as a positive regulator of 

Gα proteins in several animal species, including C. elegans, Drosophila melanogaster 

and mammalian cells (44). RIC8 is required for both asymmetric cell division in zygotes 

and priming of synaptic vesicles in Caenorhabditis elegans (44). Invertebrates such as C. 

elegans and Drosophila have one RIC8 protein, while vertebrates have two homologs, 

Ric-8A and Ric-8B (63). In Drosophila, RIC8 is essential for responses to extracellular 

ligands, for maintenance of polarity during asymmetric cell division in embryogenesis 

and for the stability of Gα and Gβ proteins (64). In mice, attempts were made to make 

Ric8-A or Ric8-B knockouts; however, these efforts failed, as the knockout mice died 

early during embryogenesis (65). Additionally, RIC8 is not conserved throughout all 

eukaryotes. RIC8 is found in several filamentous fungi, but there are no homologs in 

baker’s yeast or plants (46).  
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 In N. crassa there is one predicted RIC8 protein (46). Unlike in mice, ric8 knock 

out mutants are viable in N. crassa (46). The Δric8 strain displays severe defects during 

sexual and asexual development, as well as during basal growth. The phenotypes 

observed in Δric8 are similar to those observed in Δgna-1, Δgna-3 double gene deletion 

strain (46). Protein levels for the three Gα proteins (GNA-1, GNA-2, and GNA-3) and the 

Gβ GNB-1 are all decreased in the Δric8 mutant (46). The defects were partially rescued 

by introduction of predicted constitutively activated (no intrinsic GTPase activity) and 

GTP-bound gna-1Q204L and gna-3Q208L alleles into the Δric8 background (46). In vitro 

GTPγS-binding assays showed that in the presence of RIC8, both GNA-1 and GNA-3 

had increased binding of GTPγS, demonstrating that RIC8 acts as a GEF towards GNA-1 

and GNA-3 (46). This evidence taken together indicates that RIC8 may play a role in the 

regulation of Gα subunits, specifically GNA-1 and GNA-3. These results support the 

hypothesis that RIC8 regulates G protein signaling similarly in N. crassa and higher 

eukaryotes, and that discoveries in N. crassa will be relevant for progressing work on 

RIC8 in animal systems. 

 

Metabolomics 

One way we can understand the impact of G-protein signaling is to explore the 

effects of G protein mutations on the metabolite profile using metabolomics. 

Metabolomics is the process of determining the metabolites present in cells, tissues, and 

biofluids using advanced analytical chemistry techniques with modern statistical methods 
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(66, 67). Metabolites are substrates and products of metabolism that drive essential 

cellular functions, such as energy production, signal transduction and apoptosis (66). 

Metabolites have varied and important roles beyond just energy production; compounds 

such as ATP, NAD+, and S-adenosyl methionine have been shown to act as co-substrates, 

regulating post-translational modification (68, 69). Generally, the collection of all small 

molecule chemicals in an organism is referred to as the metabolome (67, 70). Metabolite 

profiling encompasses two different areas: intracellular metabolites (endometabolome – 

metabolic fingerprinting) and extracellular metabolites (exometabolome – metabolic 

footprinting) (71). 

Metabolite profiling strategies involve scanning for detectable metabolites using 

any of several techniques: Gas-chromatography-mass-spectrometry (GC-MS), gas-

chromatography-time-of-flight-mass-spectrometry (GC-TOF-MS), liquid-

chromatography-mass-spectrometry (LC-MS) and nuclear magnetic resonance (NMR). 

These are the principle analytical methods used for metabolite profiling due to their high 

sensitivity and/or resolution (71-73). One method of metabolite profiling is untargeted, 

global investigations, which uses wide polarity gradients aiming to cover as much of the 

chromatographic “space” available as possible, combined with full scan MS and 

generation of peak tables using peak-picking algorithms (74). The other general method 

used in metabolomics is targeted analysis, in which quantification and unambiguous 

detection of predefined metabolites is accomplished (71).  
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Several metabolomics studies have been performed in fungi. For example, in S. 

cerevisiae, GC-MS was used to determine the metabolic profiles of three different yeast 

strains involved in alcohol production and a laboratory reference strain at two different 

time points in the fermentation process. The laboratory reference strain was the most 

different metabolically as it did not produce as much acetate, ethyl esters and alcohols 

(75). In Phialemonium curvatum the metabolomes of the fungus cultivated on crude palm 

oil versus glucose were compared using targeted metabolomics for metabolites in the 

tricarboxylic acid cycle (76). On glucose, all metabolites in the TCA cycle were detected, 

while metabolites such as α-ketoglutarate and fumaric acid were undetectable on palm 

oil. Additionally, higher abundance of glyoxylic acid was detected, suggesting the 

glyoxylate cycle is the key metabolic pathway on palm oil (76). RNA-seq analysis was 

combined with metabolomics in Fusarium graminearum to assign metabolites to genes in 

a strain lacking the H3K27 methyltransferase. A total of 22 fungal metabolites were 

identified, with 10 compounds having not been previously reported in F. graminearum 

(77). In N. crassa, NMR was used to characterize the metabolome in mutant lacking the 

heterotrimeric Ga subunit gna-3 (78). A difference was observed between Δgna-3 and 

wild type in response to low carbon conditions, with the Δgna-3 appearing to possess a 

carbon-sensing defect (78). 
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Hypothesis and Objectives 

Signaling pathways are the mechanism by which cells receive outside information 

and induce biochemical changes inside the cell. Determining all of the proteins involved 

in a signaling cascade as either a regulator or a part of the cascade is important to having 

a complete understanding of the pathway. One way of determining the members of a 

pathway is by using reverse genetics to identify genes that have similar functions (79). 

Beyond signaling, understanding the relationship between gene expression and protein 

feature with phenotype can inform on the mechanics of how these genes influence 

phenotype. The first hypothesis of this thesis is that clustering the available mutant 

phenotypic data from N. crassa gene deletion mutants will reveal new potential members 

of known cellular pathways and uncover relationships between gene expression, protein 

feature and phenotype. I utilize phenotypic screening and statistical clustering to 

determine the influence of genotype and protein features on phenotype. 

One important cellular pathway is G-protein signaling, playing a critical role in 

growth and development in all eukaryotic organisms. An important regulator of G-protein 

signaling is the non-GPCR GEF RIC8. The roles that the Gα subunits and RIC8 play in 

metabolism are not well-characterized. The second hypothesis of this thesis is RIC8 

affects metabolism through its regulation of GNA-1 and GNA-3, with some possible Gα-

independent regulation of metabolism. To determine the effects on metabolism, I utilized 

the latest techniques in metabolomics and RNA sequencing to analyze strains lacking 

gna-1, gna-3 and ric8. 
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Aim 1: Identify and perform phenotypic analysis on all available transcription 

factor mutants in Neurospora crassa 

Transcription factors are the proteins that are directly responsible for activating 

and deactivating gene expression. They typically function at the end of complex signaling 

pathways that respond to environmental cues. The Colot et al. study described above 

included less that 50% of the transcription factor genes in N. crassa. In order to provide 

more complete information for an important group of regulatory genes, the phenotypes of 

all 212 available transcription factor mutants were investigated in N. crassa. In this study, 

the complete set of transcription factors were catalogued, and the corresponding available 

mutants were analyzed for phenotypes using methods developed in (11).  

Aim 2: Apply clustering algorithms to all available phenotypic data to sort genes 

into clusters and to identify potential pathways 

 With phenotypic data available for ~1200 gene N. crassa gene deletion mutants, 

large scale clustering of phenotypes could potentially reveal new members of cellular 

pathways. Using statistical analysis, genes that yield similar phenotypes can be grouped 

together in an unbiased way. The clusters could also reveal some correlations between 

phenotype and protein features. Several different clustering algorithms were compared to 

determine the method that would best produce phenotypically similar groups. The 

clustered data was then used to investigate correlations between phenotypes and protein 

features, protein phosphorylation data and RNA expression data. A novel correlation 

between aerial hyphae height and membrane-associated proteins was found. It was also 

determined that gene expression does not necessarily correlate with phenotype. Yeast 
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ortholog data for the N. crassa genes that co-clustered MAPK signaling cascades were 

analyzed, revealing additional potential networks of interacting proteins in N. crassa. 

Aim 3: Determine the effects on gene expression and metabolism in Δgna-1, Δgna-3 

and Δric8 mutants 

As mentioned above, there is evidence that Gα subunits influence N. crassa 

metabolism (78). In addition, preliminary RNA-seq analysis of a Δric8 mutant showed 

that >100 metabolic genes are mis-regulated (Arit Ghosh and Katherine Borkovich, 

unpublished). To obtain more understanding of the role of G-protein signaling in 

metabolite regulation, state-of-the-art mass spectrometry equipment for targeted polar 

metabolomics at the UCR Metabolomics Core Facility was utilized to analyze the 

metabolomes of Δgna-1, Δgna-3 and Δric8 mutants. A total of 120 metabolites were 

detected. All three gene deletion mutants have mis-regulated metabolites, with Δric8 

having the most abnormal metabolome. To determine whether control over metabolism is 

at the transcriptional level, RNA samples from Δric8 and the two Gα mutants were 

submitted for RNA-seq analysis. Comparison of the results from the metabolomics and 

transcriptomics experiments will allow us to determine whether any mis-regulated 

metabolites are being controlled at a transcriptional or post-transcriptional level.  
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Figure legends 

Figure 1.1 Heterotrimeric G protein cycle in N. crassa.  

An extracellular ligand binds to the G protein coupled receptor (GPCR), facilitating 

exchange of GDP for GTP on the Gα subunit. The Gα bound to GTP then dissociates 

from the Gβγ dimer and both act on downstream effectors. Gα subunits have intrinsic 

GTPase activity which with hydrolyze the GTP to GDP or an RGS can stimulate the 

GTPase activity increasing hydrolyzation by up to 2000 times. The GDP-bound Gα will 

then reassociate with the Gβγ dimer and the GPCR 
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Chapter 2  
 

Functional Profiling of Transcription Factor Genes in Neurospora 

crassa 
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Abstract 

Regulation of gene expression by DNA-binding transcription factors is essential for 

proper control of growth and development in all organisms. In this study, we annotate 

and characterize growth and developmental phenotypes for transcription factor genes in 

the model filamentous fungus Neurospora crassa We identified 312 transcription factor 

genes, corresponding to 3.2% of the protein coding genes in the genome. The largest 

class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, 

followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable 

knockout mutants were produced for 273 genes, and complete growth and developmental 

phenotypic data are available for 242 strains, with 64% possessing at least one defect. 

The most prominent defect observed was in growth of basal hyphae (43% of mutants 

analyzed), followed by asexual sporulation (38%), and the various stages of sexual 

development (19%). Two growth or developmental defects were observed for 21% of the 

mutants, while 8% were defective in all three major phenotypes tested. Analysis of 

available mRNA expression data for a time course of sexual development revealed 

mutants with sexual phenotypes that correlate with transcription factor transcript 

abundance in wild type. Inspection of this data also implicated cryptic roles in sexual 

development for several co-transcribed transcription factor genes that do not produce a 

phenotype when mutated. 
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Introduction 

Transcriptional control by sequence-specific DNA-binding proteins is a major regulatory 

mechanism in all organism (1). It has been estimated that there are >90 types of 

transcription factors in eukaryotes (1). Major structural classes of eukaryotic transcription 

factors include zinc coordinating (C2H2 and C4 zinc fingers and Zn2Cys6/C6 zinc 

clusters), helix-turn-helix (HTH), β-scaffold, and proteins with basic domains (basic 

leucine zipper/bZIP and basic helix-loop-helix/bHLH) (1). Although zinc finger proteins 

predominate in eukaryotic genomes, the HTH group is the most widely conserved 

transcription factor group across evolution, as it comprises the majority of transcription 

factors in bacterial and archaeal genomes (1,2). 

Early studies proposed that transcription factors were 0.5–8% of the gene content in the 

genome, and that the number of genes was roughly proportional to the size of the genome 

(3). In recent years, the widespread availability of genome sequences has made it possible 

to annotate the actual number of transcription factor genes from numerous eukaryotic 

species. There are estimated to be ∼19,000 protein-coding genes in humans (4). Various 

groups have annotated DNA-binding transcription factor genes over the years and 

identified >1300, with most discrepancies resulting from transcript variants for some 

genes (5,6). For example, Vaquerizas et al., 2009 annotated 1391 transcription factors, 

comprising 7.3% of total protein coding genes in the human genome. They found that 

three classes of transcription factor genes predominate in humans: C2H2 zinc finger (675 

genes), homeodomain (257 genes), and bHLH (87 genes). A later study identified 1558 

transcription factor genes in the human genome (8.2% of protein-coding genes), 
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comprising 111 families in 40 classes and 10 superclasses (6). C2H2 transcription factors 

were reported as the largest structural class at 53%, followed by HTH at 26%, and basic 

domain transcription factors at 11%. In the fruit fly Drosophila melanogaster, there are 

708 genes out of 13,929 protein-coding genes (5%) that encode predicted transcription 

factors (7,8). C2H2 zinc fingers comprise the largest group with 255 members, followed 

by homeobox (101 genes), and HLH (58 genes) proteins. The model plant Arabidopsis 

thaliana has 1717 predicted transcription factors out of the 27,029 protein-coding genes 

in the genome (6.4% of genes) (9,10). These genes are organized in 58 families, with the 

largest classes being HLH (225 genes), MYB (168 genes), AP2/ERF (139 genes), the 

plant-specific NAC family (138 genes), bZIP (127 genes), and C2H2 zinc fingers (116 

genes). 

Fungi contain several types of transcription factors not found in animals or plants, 

including the Zn2Cys6 (C6) zinc cluster, APSES (Neurospora crassa ASM1, 

Saccharomyces cerevisiae Phd1p, Aspergillus nidulans StuA, Candida albicans Efg1, 

and S. cerevisiae Sok2p), copper fist, STE (sterile) and Velvet classes (11–14). In the 

model yeast S. cerevisiae, there are currently 301 predicted transcription factors out of 

the 6604 protein-coding genes in the genome [4.6% of genes; (14–16)]. The largest class 

of transcription factors in the yeast genome is the C6 zinc cluster (57 genes), followed by 

C2H2 zinc fingers (41 proteins), bZIP (15 proteins), homeodomain (12 proteins), GATA 

factors (10 proteins), and bHLH (eight proteins) (14). 

N. crassa is multicellular fungus and eukaryotic model system that has been 

studied for >75 yr (17,18). A genome-wide project has resulted in a nearly complete gene 
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knockout mutant collection for the almost 10,000 genes in the genome (19–21). We had 

previously annotated 182 transcription factor genes in the N. crassa genome (17), and 

attempted mutation of 103 of these genes (19). We were able to isolate viable knockout 

mutants for 99 genes, and these were analyzed for growth and developmental phenotypes 

(19). The results demonstrated that 43% of the transcription factor mutants had at least 

one phenotype, with greater than half of these possessing multiple defects (19). 

  In this study, we have cataloged functions for the majority of transcription factors 

in a filamentous fungus. We annotate 130 more transcription factor genes in the genome, 

bringing the total number in N. crassa to 312. We combine the data from our earlier study 

Colot et al., 2006 with that for the additional genes, presenting phenotypes for a total of 

242 available viable knockout mutants. We mine an RNAseq dataset for expression of the 

312 genes during different phases of sexual development. Our results demonstrate that 

the majority of genes yield at least one phenotype, and that multiple transcription factors 

are required to control different aspects of growth and development in N. crassa. 

Materials and Methods 

Transcription factor gene annotation: Data from the 182 predicted transcription 

factor genes identified previously (17,19) were included in this study. This list was 

augmented with additional genes obtained through searches at the FungiDB or Broad 

Institute Neurospora Genome databases (Neurospora crassa Genome Project 2015; (22)), 

the CIS-BP database at http://cisbp.ccbr.utoronto.ca (23), and from a list that was 

generously shared with us by Luis Larrondo (Pontificia Catholic University of Chile, 

Santiago, Chile). All entries were evaluated in our laboratory using BLAST homology 
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searches (24), followed by analysis of PFAM domains using Interpro (25). Genes 

encoding domain(s) established to be DNA binding transcription factors, and with E-

values <10−5, were included in our final list. An exception to the DNA binding 

requirement was made for WD40 domain-containing transcriptional adapters, in light of 

their importance to growth, development, and environmental sensing in fungi. 

Media and mutant construction: Vogel’s minimal medium (VM) (26) was used to support 

asexual growth and development, while synthetic crossing medium (SCM) (27) was 

utilized to assess sexual development. Formation of tight colonies on plates was 

facilitated by growth on sorbose-containing medium plates (28). Hygromycin B 

(Calbiochem, San Diego, CA) was used at a concentration of 200 μg/ml in media where 

indicated. Inoculations were performed using macroconidia harvested from VM agar 

slants (28). 

Wild-type strains ORS-SL6a (FGSC 4200; mat a) and 74-OR23-IVA (FGSC 

2489; mat A) were obtained from the Fungal Genetics Stock Center (FGSC; Kansas State 

University, Manhattan, KS). Available transcription factor mutants (homokaryons or 

heterokaryons) were obtained from the FGSC, or produced in our laboratory. All N. 

crassa gene numbers are preceded by the prefix “NCU.” We attempted purification of 

homokaryons from 28 heterokaryotic transformants that were available from the FGSC or 

our laboratory stocks using sexual crosses (as described in Colot et al., 2006) or streaking 

of macroconidia in the vegetative phase (28). All putative homokaryons were checked for 

the presence of the knockout cassette using hph and gene flank-specific primers by 

polymerase chain reaction as described (29). Those strains purified through streaking of 
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macroconidia were also screened for the absence of the wild-type open reading frame 

using gene-specific primers. This step was not needed for the cross progeny, since the 

ascospore meiotic products are homokaryons. We were able to successfully purify 15 

mutants using this approach. Two additional mutants (NCU07430 /mad-

1 and NCU09496) were purified using this method, but were inviable after storage. 

Another seven mutants were removed due to the observation in another study that the 

strains carry a secondary mutation that results in female sterility (30). In summary, a total 

of 70 mutants were not available for analysis at the time of this study, either due to 

failures in construction of knockout cassettes; changes in gene annotation that made the 

knockout mutant unusable, or resulted in the knockout mutant not being made; incorrect 

insertion of knockout cassettes in the genome; the inability to purify homokaryotic 

mutants from transformants, secondary mutations; or because the original purified 

knockout mutant was inviable after storage. This left us with 242 viable homokaryotic 

mutants for study. 

Phenotypic analysis: The 242 viable mutants were analyzed for phenotypes using 

methods described in (31–34). Data were obtained from the Broad 

Institute Neurospora website (Neurospora crassa Genome Project 2015) or from 

experiments performed for this study. Some of the data at the Broad Institute website was 

previously published (35). We have omitted measurements of pigmentation and aerial 

hyphae height on yeast extract-containing medium from our analysis (31). Near-isogenic 

wild type strains FGSC4200 and/or FGSC2489 were used as a control for all 

determinations. Race tubes made of glass or prepared from disposable plastic pipets were 
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used for quantitative analysis of hyphal growth rates (36,37). Multiple race tubes were 

analyzed for each mutant, with a minimum of four independent replicates with R2 > 0.95 

used to obtain the average growth rate. The wild-type growth rate range for data obtained 

from Colot et al., 2006 and the Broad Institute Neurospora Database was 70–85 mm/d, 

while that from this study was 75–85 mm/d. Binned data from Colot et al., 2006 and/or 

the Broad Database were averaged to allow comparison to actual growth rate 

measurements. 

Aerial hyphae height was assessed after incubation of 2-ml VM standing liquid 

cultures for 3 d in the dark at room temperature, with at least six replicates/strain. 

Mutants that displayed a growth rate <70 or >85 mm/d, or an aerial hyphae height 

measurement <30 or >45 mm (over 3 d), were considered significantly different than 

wild type. Macroconidia production was qualitatively assessed by visual inspection of 

VM agar slants incubated for 3 d in the dark at 25°, followed by 4 d in light at room 

temperature, with at least four replicates/strain. Three stages of sexual development were 

qualitatively analyzed using SCM agar slants cultured in constant light at room 

temperature: formation of protoperithecia after 7 d; development of perithecia from 

protoperithecia 7 d after fertilization with opposite mating type wild-type conidia; and 

ascospore shooting from mature perithecia 14 d after fertilization. The quantity and size 

of protoperithecia, perithecia, and ascospores were observed using a S8APO 

stereomicroscope with a DFC280 digital camera (Leica Microsystems, Buffalo Grove, 

IL), or an Olympus SZX9 stereomicroscope with a C-4040 digital camera (Olympus, 

Lake Success, NY). At least four replicates were analyzed for each strain. 



33 

 

Clustering of transcription factor gene expression data and heatmap generation: A sexual 

development time course RNAseq dataset (38) was mined for expression of the 284 

transcription factor genes essentially as described (31). To allow visualization of the 

expression data, heat maps were produced using pheatmap (V1.0.2) (39) in R V3.1.1; (R 

Development Core Team 2014). The scaling function in pheatmap was used to normalize 

expression data, with the reads per kilobase of transcript per million mapped reads 

(RPKM) values at each time point for a given gene normalized to the RPKM at the time 

point with lowest expression for that gene. 

Naming of transcription factor genes: In keeping with the N. crassa convention, 

and the naming used in our previous study (35), unnamed transcription factor genes 

whose mutations revealed phenotypes received names that reflected the defects. Strains 

showing abnormalities in all three phenotypes, basal hyphal extension during vegetative 

growth, asexual development, and sexual development are known as all development 

altered (ada). Strains showing altered hyphal growth and asexual development are named 

as vegetative asexual development (vad). Mutants with normal hyphal growth but altered 

sexual and vegetative development are referred to as sexual and vegetative 

development (svd), while those with defects in vegetative hyphal growth and sexual 

development are called vegetative and sexual development (vsd). Strains showing slower 

basal hyphal extension, but normal asexual and sexual development are known 

as colonial (col) or slower growth rate (sgr), while mutants with hyphal growth rates 

greater than wild type are named faster growth rate (fgr). Mutants with longer aerial 

hyphae than wild type are named long aerial hyphae (lah), while those with shorter aerial 
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hyphae are called short aerial hyphae (sah). Genes whose loss results in a block in 

female fertility are designated female fertility (ff), while those with more subtle sexual 

cycle defects are known as defective sexual development (dsd). Mutants that produce 

submerged perithecia are named as sub, while those with defective beaks are referred to 

as bek. 

 

Results 

Annotation of additional transcription factor genes in the N. crassa genome. In this 

study, we annotated an additional 130 transcription factor genes in N. crassa, bringing the 

total number to 312 (Table 2.1). This corresponds to 3.2% of the 9760 protein-coding 

genes in the genome (22), a proportion that is comparable to S. cerevisiae. We identified 

25 classes of transcription factors with a single domain, and seven groupings with two 

distinct domains (Figure 2.1 and Table 2.1). The largest group of transcription factors is 

the C6 binuclear cluster, with 130 genes having this as the only domain (42% of the 

transcription factors), and another five genes possessing this domain in combination with 

a second motif (135 genes total; 43% of the transcription factors) (Table 2.1). This is 

more than twice the number identified in S. cerevisiae (57), despite both organisms 

having a similar total number of transcription factors (14). 

The second largest group in N. crassa is the C2H2 zinc finger, with 54 genes 

possessing only C2H2, and seven also containing a second domain, for a total of 61 genes 

(20% of transcription factors)—a number greater than observed for S. cerevisiae [41 

genes; (14)]. The third, fourth, and fifth largest groups of transcription factors in N. 



35 

 

crassa are the bZIP (23 genes; 7.4% of total), MYB (16 genes with single domain; one 

gene with two domains; 5.4% of total), and bHLH (13 genes; 4.2% of total) (Figure 

2.1 and Table 2.1). N. crassa has significantly more single domain bZIP (23 vs. 15), 

bHLH (13 vs. 8), and MYB factors (16 vs. 6) (14). Finally, we identified a total of nine 

genes with two distinct domains, corresponding to 2.9% of the annotated transcription 

factors (Table 2.1). As noted above, the most common domain in the genes with two 

domains was the C2H2 zinc finger, with seven genes (Table 2.1). 

 

Mutant production and analysis of hyphal growth phenotypes. All mutants used in 

this study were produced during the Neurospora Genome Project (20), which included a 

high throughput gene knockout project (20,40–42). Each mutant carries a gene 

replacement mutation, with insertion of a hygromycin resistance gene cassette in place of 

the open reading frame (19). There were instances where gene annotation changes or 

issues with primer, knockout cassette or strain construction rendered some mutants 

unusable, or unable to be produced (see Materials and Methods for details). In the end, 

we were able to assemble a group of 242 viable mutants for phenotypic analysis (78% of 

the total genes; Table 2.1). The mutants included homokaryons for the four putative 

essential genes described in our earlier study (19), which were isolated by streak-

purifying in vegetative phase or by screening many ascospores: NCU00340/pp-1, asl-

1/NCU01345, ts (formerly asl-2; NCU01459), and cpc-1/NCU04050. 

We analyzed the 242 viable mutants for an array of growth and developmental 

phenotypes, beginning with the linear growth rate on minimal medium (19,43). N. 
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crassa grows by polar extension, branching, and anastomosis (fusion) of tube-like 

structures called hyphae to form the web-like multicellular structure termed the mycelium 

(reviewed in 1–4). Hyphae contain incomplete crosswalls (septa) that separate cellular 

compartments, but allow distribution of metabolites and organelles throughout the 

mycelium (45). 

We assessed the hyphal growth rate of the mutants on minimal medium using race 

tubes (37,46). The results demonstrated that 105 mutants had growth rates significantly 

different from wild type (43% of viable mutants), and altered growth rate was the 

predominant phenotype in the transcription factor mutants (Figure 2.2 and Table 2.1). 

Consistent with its size, the transcription factor class (present alone or with a second 

domain) with the largest absolute number of mutants with hyphal growth defects was the 

C6 family (31/103 viable mutants; 30%; Table 2.1). The C2H2 group had a slightly 

higher proportion of mutants with hyphal growth phenotypes (19/51 mutants; 37%; Table 

2.1). However, there were several transcription factor classes with 65–100% of the 

mutants exhibiting a hyphal growth phenotype. For example, 100% of the mutants with 

CP2, HSF, and WD40 domains had a hyphal growth defect. Similarly, 10/12 BHLH 

genes yielded phenotypic data, and nine of these had a growth rate phenotype (75% of 

viable mutants). For genes with the MYB domain, 13/17 were represented as viable 

mutants, and 8/13 (62%) had a hyphal growth defect (Table 2.1). 

Less than half of the mutants possessed a growth rate significantly slower than 

wild type (range of 70–84 mm/d; Figure 2.3A). Several mutants displayed a growth rate 

within the 60–64 and 65–69 mm/d increments, while far fewer were found in the groups 
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with the slowest growth rates (Figure 2.3A). The <59 mm/d groups contained 

representation from several transcription factor classes, with loss of the WD40 gene, rco-

1/NCU06205 (47), resulting in the slowest growth rate observed in our study (Figure 

2.3A). Only two mutants grew faster than wild type; one lacking the C6 zinc finger 

gene fgr-1/NCU10597, and one deleted for the APSES gene vsd-5/NCU07587 (Figure 

2.3A). 

 

Asexual development defects. N. crassa produces two types of asexual spores, 

microconidia, and macroconidia (44,48,49). Microconidia are small, uninucleate, and 

relatively nonabundant, and are difficult to observe under laboratory conditions (44,49). 

In contrast, the multinucleated macroconidia are produced profusely in wild-type cultures 

(48). The macroconidiation (hereafter referred to as conidiation) pathway is regulated by 

oxygen/reactive oxygen species, carbon and nitrogen availability, high temperatures, blue 

light, and the circadian rhythm (44,48,50–52). Due to these multiple layers of regulation, 

wild type does not form conidia in submerged liquid cultures unless subjected to heat 

shock, carbon stress, or nitrogen stress (53–57). The conidiation pathway begins with 

adhesion of basal hyphae, followed by growth of aerial hyphae that rise perpendicular to 

the growth surface (48,50,44). Aerial hyphae form branches, with some transitioning 

from hyphal growth to apical budding as constrictions form between cellular 

compartments at the hyphal tip (48). With time, the constrictions tighten to separate the 

mature multinucleated conidia. 
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Several transcriptional regulatory proteins have been identified that regulate 

aspects of conidiation in N. crassa. For example, mutants lacking the transcription 

factor fluffy [fl/NCU08726; (58)] and the transcriptional adapter rco-1/NCU06205 (47)) 

are blocked at distinct points in the process. Other work has demonstrated transcription 

factors that influence conidiation under different environmental conditions or the extent 

of conidiation, including vad-5/NCU06799 (59), chc-1/NCU00749 (60) and hsf-

2/NCU08480 (61). The white collar complex (WCC) containing the transcription 

factors wc-1/NCU02356 and wc-2/NCU00902 has been demonstrated to directly control 

expression of 24 transcription factor genes under blue light regulation (62,63). 

In this study, we identified 92 transcription factor mutants (38% of total mutants) with a 

defect in aerial hyphae height and/or conidia production (Figure 2.2 and Table 2.1). Of 

these 92 strains, the majority (87; 95%) displayed an aerial hyphae phenotype, either 

singly (69 mutants; 75%) or in combination with a conidiation defect (18 mutants; 20%). 

A total of five mutants (5%) had a conidiation defect with normal aerial hyphae height. 

Similar to what was observed for hyphal growth rate, and in keeping with the large 

number of genes in this family, the C6 transcription factor class had the largest number of 

mutants with a phenotype (37; 36% of all mutants with C6 domain; Table 2.1). However, 

other domain classes had a larger proportion of viable mutants with an asexual 

development defect, including HSF (2/2; 100%), GATA (5/7; 71%), WD40 (2/3; 67%), 

HMG-box (2/3; 67%), and MYB (7/13; 54%) (Table 2.1). 

Of the mutants with an aerial hyphae height defect, the majority had shorter aerial 

hyphae (60 mutants; 65%; Figure 2.3B). However, in comparison to the hyphal growth 
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rate analysis described above, there were more mutants with aerial hyphae height greater 

than wild type (27 mutants; 29%; Figure 2.3, A and B). The large C6 family dominated 

the mutants at both ends of the aerial hyphae height spectrum, while other groups 

appeared in only one section. For example, the Far1 (tah-9/NCU06551 ) and CP2 (csp-

2/NCU06095 ) class transcription factor mutants were all taller than wild type, with 

the csp-2 mutant the tallest in our study. The other end of the spectrum includes mutants 

lacking genes with two transcription factor domains: the C2H2 + STE mutant pp-

1/NCU00340 , the ARID + MYB mutant svd-1/NCU04079 and the ARID + APSES 

mutant ada-9/NCU01238, which were all shorter than wild type. Similar to observations 

for hyphal growth rate, the WD40 mutant rco-1/NCU06205 had the shortest aerial 

hyphae overall. 

Inspection of the qualitative data for conidia production in agar slants showed that 

a total of 23 mutants was affected. Three mutants were increased (lacking the C2H2 cre-

1/NCU08807, C2H2+STE pp-1/NCU00340, and MYB ada-22/NCU08003), and 16 

reduced, relative to wild type. Three mutants (lacking the C6 gene fl/NCU08726, the 

BZIP ada-1/NCU00499, and the ARID/BRIGHT ada-20/NCU05891) did not form any 

conidia, and the kal-1/NCU03593 homeodomain mutant had an abnormal conidiation 

pattern (Colot et al. 2006). The mutant lacking the MYB gene rcn-1/NCU07834 had a 

conidiation defect as its only phenotype. 

 

Sexual development phenotypes. N. crassa is a hermaphrodite, in that a single colony 

produces female and male gametes. However, N. crassa is not self-fertile, requiring that 
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the female and male cells be of opposite mating type [mat A and mat a; (64)]. Nitrogen 

starvation induces differentiation of female reproductive structures (protoperithecia) (64) 

from the basal hyphae of the mycelium (see wild-type image in Figure 2.4B). 

Protoperithecial development begins with coiling, extension, adhesion, and then septation 

and branching of hyphae to form a coil (65). Enveloping hyphae encircle the coil, and 

then grow and branch to form the protoperithecium. Mating occurs when male-receptive 

hyphae (trichogynes) from the mature female structure grows toward a male (typically an 

asexual spore; macro- or microconidium) of opposite mating type in a process involving 

a pheromone response (66). After fusion of the trichogyne and conidium, the nuclei from 

the male and female divide synchronously to form the ascogenous hyphae within the 

developing perithecium (64) (see wild-type image in Figure 2.4B). Nuclear fusion and 

meiosis takes place in a specialized cell type (crozier). The perithecium enlarges, 

melanizes, and forms a beak at the tip as the meiotic progeny (ascospores) mature within. 

Ascospores are then forcibly ejected from a hole (ostiole) in the tip of the beak (64). The 

entire sexual cycle can be completed within 2.5 wk (28). Blue light is an important 

environmental cue for sexual development, regulating the abundance of protoperithecia. 

In the budding yeast S. cerevisiae, only a few genes necessary for sexual 

development and meiosis are transcription factors (67–71). Our earlier study revealed 15 

transcription factor genes that regulate aspects of sexual development in N. crassa, and 

mutation of 13 of these genes resulted in a complete block in ascospore production (19). 

Work from other laboratories has identified genes encoding the transcription factors asm-
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1/NCU01414 (72), asd-4/NCU15829 (73), pp-1/NCU00340 (74), and tan 

spore [ts/NCU01459; (75)] all of which influence sexual development. 

The collection of 242 viable transcription factor mutants was screened for the 

number, size, and other properties of protoperithecia (Figure 2.4A). For perithecia, the 

mutants were assayed for abundance, relative size, and the presence of beaks. Ascospore 

ejection was scored by visual inspection of spores on the sides of the glass culture tube. 

We identified 47 mutants with at least one type of sexual cycle phenotype, corresponding 

to 19% of the viable mutants (Figure 2.1, Figure 2.4A, and Table 2.1). The C2H2 class 

had the largest number of genes with a sexual cycle phenotype (12 mutants; Table 2.1). 

Other transcription factor classes with a large proportion of mutants possessing a sexual 

development defect include WD40 (2/3 with phenotypes; 67%) and MYB (8/13 with 

phenotypes; 62%; Table 2.1). 

Of the 47 mutants with a defect, 26 exhibited a complete block at a step in sexual 

development, with no development of ascospores (Figure 2.4A). A total of nine mutants 

were completely blocked in protoperithecial development (Figure 2.4A). Another 10 

mutants produced protoperithecia, but no perithecia or ascospores, for a total of 19 

mutants that did not form perithecia (Figure 2.4A). An example of a mutant that produces 

protoperithecia, but no perithecia, is fmf-1/NCU09387 (Figure 2.4B). Seven mutants 

elaborated protoperithecia and perithecia, but no ascospores (Figure 2.4A). In addition to 

those with a complete block at a step in sexual development, we identified numerous 

mutants with a reduction in the relative quantity of sexual structures (Figure 2.4A). There 

were 16 mutants affected in the number of protoperithecia, 12 in perithecial production, 
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and 15 with fewer ascospores (Figure 2.4A). A majority of ARID (2/3; 67%), WD40 

(2/3; 67%), and MYB (8/13; 62%) class mutants are affected in sexual development 

(Table 2.1). 

Several mutants displayed more unique defects during the sexual cycle. Similar to 

previous results, the ts/NCU01459 mutant (75) produced tan ascospores. The GATA 

mutant sub-1/NCU01154 produced protoperithecia that were submerged in the agar. Six 

different transcription factor families contribute to proper perithecial beak development; 

the homeodomain mutant bek-1/NCU00097 (76), the C6 mutant bek-2/NCU07139 , the 

BHLH mutant vsd-3/NCU08999 and the BZIP mutant ada-1/NCU00499 completely 

lacked perithecial beaks, while another four mutants had a reduced number of perithecial 

beaks (C2H2 genes cre-1/NCU08807 and vsd-9/NCU07952, BHLH dsd-3/NCU05970, 

and APSES vsd-5/NCU07587). The beak defect of vsd-5 is presented in Figure 2.4B. 

 

Correlation between phenotypes and gene expression during sexual development. 

We took advantage of a publicly available dataset for a time course during perithecial and 

ascospore development (38) to investigate expression of transcription factor genes. This 

dataset includes eight time points (0, 2, 24, 48, 72, 96, 120, and 144 hr) after fertilization 

with opposite mating type wild type. Time = 0 corresponds to nitrogen-starved vegetative 

hyphae and unfertilized protoperithecia just before application of wild type conidia. 

Perithecia are obvious at the 24 hr time point, while croziers (evidence of meiosis) appear 

at 48–72 hr. Asci containing the meiotic progeny are formed after 96 hr, and perithecial 

beaks at 120–144 hr. 
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We first interrogated the data for transcription factor genes that yielded a sexual cycle 

phenotype (Figure 2.4C). There were several genes for which phenotypes and gene 

expression showed a correlation (Figure 2.4C). For example, Group 1 genes, with 

expression peaking early from 0 to 2 hr, included 6/9 mutants with defects in 

protoperithecial development, and 100% with perithecial phenotypes. The expression 

pattern and high proportion of perithecial defects suggests roles in fertilization for this 

group. Group 3 genes peak at 48 hr (time of meiosis), with 100% of the mutants 

possessing an ascospore defect. Group 4 genes are highly expressed from 72 to 144 hr 

and 4/5 of the corresponding mutants have a defect in perithecial formation and 

ascospore development/shooting. The large Group 6 is generally highly expressed late 

(120–144 hr), with 11/14 and 12/14 of the mutants exhibiting defects in perithecial and 

ascospore development, respectively. The more heterogeneously expressed Group 2 and 

5 genes did not follow strict expression patterns, but all but one gene yielded a 

protoperithecial phenotype. 

We next mined the expression data to identify co-transcribed genes in the same 

class of transcription factors (Figure 2.5). This analysis revealed several instances of 

similarly expressed genes where one produced a moderate (nonblocking) sexual cycle 

phenotype, and the second a nonblocking defect or no phenotype, suggesting possible 

redundancy. The MYB genes rca-1/NCU01312 (no sexual phenotype) and svd-

4/NCU09329 (severely reduced ascospores) are expressed at lower levels from 0 to 48 hr, 

with steady, elevated expression from 72 to 144 hr (Figure 2.5A), suggesting redundant 

roles late during sexual development. The C2H2 genes svd-3/NCU06487 (reduced 
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number of ascospores) and vad-12/NCU05035 (no sexual phenotype) are highly 

expressed at 120–144 hr (Figure 2.5B), the time of ascospore production. The C2H2 

genes NCU02487 (no sexual phenotype) and svd-3/NCU06487 (reduced number of 

ascospores) are highly expressed in unfertilized protoperithecia (t = 0), and from 120 to 

144 hr, when ascospores are produced (Figure 2.5B). The C2H2 genes vsd-

9/NCU07952 (reduced ascospores) and NCU03699 (no sexual phenotype) are 

coordinately expressed, with a dip at 48 hr (time of meiosis) and 144 hr (ascospore 

maturation) (Figure 2.5B). The C6 class genes vsd-4/NCU01243 (reduced number 

ascosopores) and acu-15/NCU06656 (normal sexual development) are both highly 

expressed in protoperithecia, and then peak again from 24 to 48 hr, at the time of meiosis 

(Figure 2.5C). 

 

Associations between phenotypes during different phases of the lifecycle. We 

identified a total of 154 mutants with at least one phenotype during growth or 

development (64% of viable mutants; Table 2.1). Inspection of mutants with two defects 

revealed 34 with growth and asexual development phenotypes, 12 with growth and 

sexual development defects, and six with phenotypes in asexual and sexual development, 

totaling 21% of the viable mutants (Figure 2.2 and Table 2.1). There were 19 strains with 

defects in all three stages assayed (growth, asexual development, and sexual 

development), comprising 4.1% of the mutants (Figure 2.2 and Table 2.1). Of interest, 

the majority of mutants with a conidiation defect also exhibited reduced hyphal growth 

rate (27/92 mutants; 82%). A lesser proportion also possessed sexual cycle defects (17/28 
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mutants; 61%). These observations suggest a possible linkage between the ability to 

produce conidia and growth rate and/or sexual development. 

As our quantitative data for growth rate and aerial hyphae height were both 

obtained using vegetative (asexual) cultures, we investigated a possible relationship 

between these two phenotypes in our entire population of mutants (Figure 2.3C). Visual 

inspection of the plot did not reveal a clear correlation, and regression analysis of a line 

drawn through the global data had an R2 value of only 0.165, not supporting a linear 

relationship between growth rate and aerial hyphae height. When we restricted the data to 

mutants with a defect in at least one trait, the R2 value dropped to 0.144 (data not shown). 

Therefore, the growth rate of basal hyphae and aerial hyphae height appear to be 

independent traits in our group of transcription factor mutants. 

We also investigated phenotypes for the group of 24 WCC-regulated transcription 

factor genes (62). We were most interested in whether two major phenotypes that are 

known to be light regulated—asexual and sexual development—were prevalent in this 

group of genes. Three of the genes did not pass our requirements to be classified as 

transcription factors (NCU00275, NCU06534, and NCU07846). Of the remaining 21 

genes, we have complete phenotypic data for 18 mutants, while phenotypes for another 

mutant (ve-1/NCU05964) have been published (77). Nine of these 19 mutants have 

defects in asexual sporulation, two have both asexual and sexual sporulation phenotypes, 

and three mutants have only sexual cycle defects, for a total of 14 mutants (74%) with a 

sporulation phenotype (Figure 2.6A). Of interest, two of the mutants that lack phenotypes 

in asexual or sexual sporulation (NCU07705 /clr-1 and NCU08000) are similarly 
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expressed during sexual development (Figure 2.6B), suggesting possible redundancy 

during this process. Taken together, our results mesh well with the findings of the earlier 

study (62), and support these transcription factors as potential second-level regulators in 

the blue light gene expression hierarchy that regulates asexual and sexual development 

in N. crassa. 

Discussion 

We have analyzed phenotypes in available mutants for annotated transcription 

factor genes in N. crassa. Overall, 64% of the mutants analyzed possessed at least one 

growth or developmental phenotype. The largest proportion of mutants exhibited defects 

in hyphal growth rate, either alone or in combination with another defect. This result 

underscores the importance of transcriptional regulation to the various steps of hyphal 

growth, including spore germination, hyphal growth and polarity, branching, and 

anastomosis. The latter two phenomena are often accentuated in slow-growing mutants 

(so-called colonials; (78,79)) and this may contribute to the slow growth rate of some of 

the mutants in our study. 

Inspection of data for individual transcription factor classes revealed several with 

a large number of genes with defects and/or skewing toward specific defects. For 

transcription factor classes represented by more than two mutants, 100% of the 

ARID/BRIGHT, NDT80 and WD40 mutants possessed phenotypes. The majority (83%) 

of GATA factor mutants possessed defects in asexual development, while 75% of the 

BHLH and 62% of the MYB domain mutants had a growth rate phenotype. There was 
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less concentration of sexual development defects in certain classes, with WD40 (67%) 

and MYB (58%) having the largest proportion of mutants with sexual cycle phenotypes. 

Comparison of our current data with our original analysis of 99 viable 

transcription factor mutants revealed several phenotypes that were greatly under-

represented in the earlier study. For example, there has been a fivefold increase in 

mutants with only a basal hyphae growth rate phenotype, and a fourfold increase in 

mutants with defects in both growth rate and asexual development. There were zero and 

one mutants with hyphal growth/sexual development and asexual development/sexual 

development phenotypes, respectively (19); there are now 12 mutants in the first group 

and six mutants in the second (Figure 2.2). In general, the more than doubling of the 

number of mutants analyzed has resulted in discovery of more genes that affect basal 

hyphae growth and asexual development. This difference also contributes to the increase 

in the relative number of genes that yield phenotypes, from 40% (19) to 64% (this study). 

We have previously applied our phenotypic screening platform to other large gene 

families in N. crassa, including serine-threonine protein kinases [77 mutants; (33)], 

serine-threonine protein phosphatases [24 mutants; (29)] and G protein coupled receptors 

[GPCRs; 36 mutants; (31)]. The percentage of transcription factor mutants with at least 

one growth/developmental phenotype (64%) is less than that for the protein phosphatases 

(91%), but greater than that observed for GPCRs (47%) and protein kinases (57%). 

Comparison between these groups reveals that the proportion of mutants with hyphal 

growth rate defects is relatively low for GPCRs (14%), but similar for the protein kinase 

(42%), transcription factor (43%), and protein phosphatase (50%) genes. In the case of 
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asexual sporulation, the fraction of affected mutants was identical/near identical for 

transcription factors (38%), GPCRs (39%) and protein kinases (40%), but significantly 

higher for protein phosphatases (58%). For sexual development, GPCRs and transcription 

factors had a much lower proportion of genes with phenotypes (17 and 19%, 

respectively) than the protein kinases (42%) and protein phosphatases (63%). There were 

also striking differences in the percentage of mutants with defects in all three categories 

among the four groups, from GPCRs with no such mutants, to 8% of transcription factor, 

26% of protein kinase, and 29% of protein phosphatase mutants. The lower number of 

transcription factor and GPCR mutants with sexual development defects or phenotypes in 

all three categories analyzed may reflect greater gene redundancy in transcription factors 

and GPCRs. We hypothesize that there may be greater functional redundancy in genes at 

the opposite ends of the environmental sensing spectrum (receptors and transcription 

factors), than with those more involved in signal transduction and integration (kinases 

and phosphatases). This may be more obvious during sexual development due to the large 

number of cell types involved (49), and the need to coordinate cell morphogenesis with 

meiosis. Alternatively, the greater apparent redundancy may reflect functions for 

receptors and transcription factors that are not currently being analyzed in our phenotypic 

assays. Testing of these and other alternative hypotheses will require further 

investigation. 

Transcription factor genes have been annotated in several other filamentous 

fungal species. In the genus Trichoderma, the biological control agents and 

mycoparasites Trichoderma virens and Trichoderma atroviride, and the efficient 
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cellulose degrader and industrial species T. reesei have 641, 592, and 448 transcription 

factor genes, respectively (80) (5.1, 5.0, and 4.9% of the genes in each genome). The two 

mycoparasitic species exhibited a large expansion in the C6 zinc cluster transcription 

factor family, with 382 genes for T. atroviride and 422 for T. virens, compared to 258 

in T. reesei. In Aspergillus nidulans, there are 490 annotated transcription factors, 

corresponding to 4.6% of the predicted genes (81). Similar to Trichoderma species, A. 

nidulans has significantly more C6 genes than N. crassa [330 genes; (81)]. A more recent 

study reported the number of C6 zinc cluster transcription factor genes in three Aspergilli 

species, with 180 in A. clavatus, 276 in A. nidulans, and 306 in A. flavus (82). In contrast 

to C6 proteins, the number of C2H2 proteins reported for other species is similar to, or 

even less than in, N. crassa, with 60 in A. nidulans (81), 61 in T. virens, 53 in T. 

atroviride, and 49 in T. reesei (80). Thus, the larger number of C6 proteins in these other 

fungi is not due to a proportional increase in all transcription factor families. Rather, it 

appears that the expansion of the fungal-specific C6 class is a major contributor to the 

greater number of transcription factors overall in Trichoderma species and A. 

nidulans relative to N. crassa. The reduced size of the C6 class in N. crassa may result, at 

least in part, from Repeat-Induced Point Mutation (RIP), a mechanism that mutates 

duplicated DNA sequences during the sexual cycle and that has been hypothesized to 

limit the size of gene families in the N. crassa genome (83,84). 

In this study, we investigated functions for 242 predicted transcription factor 

genes during growth and asexual and sexual development in N. crassa. Considering the 

significant sample size and the accompanying penchant for gene redundancy, our results 
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revealed a surprisingly large proportion of mutants with at least one phenotype. We 

identified numerous genes that lack sexual cycle phenotypes that are coordinately 

expressed with other genes with nonblocking phenotypes during sexual development. 

This suggests that these genes possess overlapping functions during sexual 

differentiation, a hypothesis that can be addressed in future experiments through 

construction of mutants lacking multiple transcription factor genes. This work has 

augmented our knowledge of the functions of transcription factors during growth and 

development in filamentous fungi. 
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Figure legends 

Figure 2.1: Relative distribution of N. crassa transcription factor genes into major 

classes.  

Each “slice” of the pie represents the fraction of mutants with the indicated domain. The 

number of mutants with each domain is indicated. The MISC (Miscellaneous) group 

includes the 20 domain classes with four or fewer members (see Table 1). 
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Figure 2.2: Venn diagram summary of mutants with growth and developmental 

phenotypes.  

The total number of mutants with the indicated phenotype or combination of phenotypes 

is shown in each lobe of the Venn diagram. 
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Figure 2.3: Basal hyphae growth rate and aerial hyphae height phenotypes for 

mutants in different transcription factor classes.  

(A) Basal hyphae growth rate. Race tubes containing VM agar medium were inoculated 

with transcription factor mutants and incubated in the dark at 25°. The growth front was 

marked after overnight growth (t = 0), and then marked twice/day over the course of 2–3 

d. Growth rate was determined using linear regression analysis (see Materials and 

Methods for details). Mutants were grouped in bins, as shown. The range of 

measurements for wild type is indicated on the x-axis. (B) Aerial hyphae height. Standing 

liquid VM tube cultures were inoculated with mutants and incubated statically for 3 d in 

the dark at 25°, after which the height of aerial hyphae was measured. Values were 

obtained using at least six replicates and are presented as described in (A). (C) 

Comparison between aerial hyphae height and basal hyphae growth rate for all mutants. 

The data from (A) and (B) were plotted. Mutants that fall within the range of wild type 

values are enclosed by the dashed-line rectangle. 
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Figure 2.4: Transcription factor mutants with defects in sexual development. 

(A) Summary of sexual cycle phenotypes. The total number of mutants with the indicated 

sexual cycle phenotype is shown in each lobe of the Venn diagram. Mutants with reduced 

number or abnormal phenotypes (red font) or complete block (black font) are scored 

according to the stage of their earliest defect. (B) Examples of mutants with different 

sexual cycle phenotypes. All strains were cultured on synthetic crossing medium plates in 

constant light at room temperature for 7 d to facilitate development of protoperithecia 

(top panels). Cultures were then fertilized using macroconidia from a wild-type strain of 

opposite mating type. Plates were then incubated under the same conditions for a further 

7 d to allow production of fertilized perithecia and beak development (bottom panels). 

Images of protoperithecia were captured using an Olympus SZX9 stereomicroscope with 

a C-4040 digital camera, while perithecia were photographed using a S8APO 

stereomicroscope with a DFC280 digital camera. White arrows indicate unfertilized 

protoperithecia (top panels), while black arrows show protoperithecia (fmf-1) or 

perithecia (wild type and vsd-5 mutant) 7 d after fertilization (bottom panels). The beak 

at the tip of a perithecium can be seen as the darkened circular area above the black arrow 

in wild type (bottom left panel), while vsd-5 mutant perithecia lack this structure (bottom 

right panel). (C) Clustering of mRNA expression data for N. crassa transcription factors 

during a time course of sexual development. Left side of figure: RNAseq data were 

obtained from Wang et al. (2014). Expression data for 43 of the 47 transcription factor 

genes with a sexual cycle phenotype were contained in the data set. Clustering analysis 

and heatmap generation were performed as described in the Materials and Methods. Red 
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shading denotes greater levels of expression, while blue indicates lower expression. The 

numbers along the left side of the figure indicate groupings (1–6) based on similar 

patterns of expression during sexual development. The table on the right side of the 

figure is a phenotype summary for the mutants lacking each transcription factor. The 

open circles denote that the indicated structure is abnormal or that a reduced number is 

formed, while closed circles show that the indicated structure is not formed. The absence 

of a circle indicates there was no defect observed. PP, Protoperithecia; P, Perithecia; A, 

Ascospores. 
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Figure 2.5. Sexual development time course heat maps for MYB, C2H2 and 

Zn2Cys6 transcription factor classes. The clustering and heatmap analysis presented in 

Figure 2.4 was performed on all mutants in each of the displayed transcription factor 

classes, whether or not they had a sexual development phenotype. Boxed groups of genes 

include one gene with a non-blocking sexual development phenotype and another gene 

with no phenotype or a nonblocking defect that is similarly expressed during sexual 

development. The values for each gene are normalized to the RPKM at the time point 

with lowest expression for that gene. 
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Figure 2.6. Asexual/sexual sporulation phenotypes and sexual development 

expression data analysis for transcription factors regulated by the White Collar 

Complex (WCC). 

A. Asexual and sexual development phenotype summary. Asexual sporulation (aerial 

hyphae height and/or conidia production) and sexual development (protoperithecia, 

perithecia and ascospore production) defects for available mutants lacking 18 

transcription factors that are regulated by the WCC (see (Smith et al. 2010)). *Data 

supporting an asexual sporulation defect for ve-1 mutant taken from 

(Bayram et al. 2008).  

B. Sexual development time course heat map. Available RNAseq data for 17/21 

transcription factor genes regulated by the WCC were subjected to clustering and 

heatmap analysis as described in Figure 2.4C. NCU0775/clr-1 and NCU08000 (boxed) 

lack sexual cycle phenotypes, but are coordinately expressed during sexual development. 
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Table 2.1: Phenotype summary 

TF Class Total 

Genes with 

complete 

data 

Genes 

with 

complete 

data (%) 

Genes with 

data with 

phenotype 

Genes with 

data with 

phenotype 

(%) 

Growth Asexual Sexual 
Growth + 

Asexual 

Growth + 

Sexual 

Asexual 

+ Sexual 
All 

APSES 9 7 78 3 43 1   1 1   

ARID/BRIGHT 2 2 100 2 100 1      1 

AT hook 2 0 0 0         

BHLH 13 12 92 10 83 5  1 2 1  1 

BZIP 23 20 87 13 65 3 1  5 3  1 

C2H2 54 48 89 30 63 9 7 2 4 2 2 4 

CAAT box/CBF 4 3 75 2 67 1      1 

Copper fist 2 0 0 0         

CP2 1 1 100 1 100    1    

Far1 3 1 33 1 100  1      

Forkhead 3 3 100 2 67 1    1   

GATA 7 6 86 6 100  2  3 1   

HMG box 11 3 27 2 67      1 1 

Homeodomain 7 7 100 5 71 1 1 2 1    

HSF 3 2 67 2 100    2    

MADS-box 2 0 0          

MATalpha1 1 0 0          

MBF 1 0 0          

MYB 16 12 75 11 92 2 1 1 1 2 1 3 

NDT80 3 3 100 3 100 1  1 1    

NFX 1 0 0          

RFX 1 1 100 0 0        

Velvet 1 0 0          

WD40 3 3 100 3 100 1      2 

Zn2Cys6 130 101 78 53 52 14 19 2 13 1 1 3 

ARID + APSES 1 1 100 1 100       1 

ARID + MYB 1 1 100 1 100      1  

C2H2 + APSES 1 1 100 0         

C2H2 + STE-like 1 1 100 1 100       1 

C2H2 + Zn2Cys6 5 3 60 2 67  1 1     

Total 312 242 77.56 154 63.64 40 33 10 34 12 6 19 
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Chapter 3 
Clustering analysis of large-scale phenotypic data in the model 

filamentous fungus Neurospora crassa 
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Abstract 

With 9,730 protein-coding genes and a nearly complete gene knockout strain collection, 

Neurospora crassa is a major model organism for filamentous fungi. Phenotypic data for 10 

different growth or developmental attributes have been obtained for nearly 1300 mutants in 

N. crassa. Of the 1168 mutants with complete phenotypic data (12% of genome), 386 (33%) 

are in the normal range, while 782 (67%) possess at least one phenotype. With the exception 

of unclassified functions, the distribution of functional categories for genes in the mutant 

dataset mirrors that of the entire N. crassa genome. In contrast, the majority of genes do not 

possess a yeast ortholog, suggesting that our analysis will reveal functions for genes that are 

not conserved in Saccharomyces cerevisiae. In order to leverage the phenotypic data to 

identify pathways, we tested the ability of several statistical clustering approaches to group 

mutants based on their growth and developmental phenotypes. Our analysis showed that a 

weighted Partitioning Around Medoids (PAM) approach with 40 clusters provided the most 

biologically relevant grouping of mutants. We found that genes encoding metabolic, 

transmembrane and protein phosphorylation-related genes are concentrated in subsets of 

clusters. Results from K-Means clustering of publicly available transcriptomic datasets for 

wild type N. crassa showed that most phenotypic clusters contain multiple expression 

profiles, suggesting that co-expression is not generally observed for genes with shared 

phenotypes. Analysis of yeast orthologs of genes that co-clustered in MAPK signaling 

cascades revealed potential networks of interacting proteins in N. crassa. Taken together, our 

results demonstrate that clustering analysis of phenotypes is a promising tool for generating 

new hypotheses regarding involvement of genes in cellular pathways in N. crassa.  

 



 

75 

 

Introduction 

Neurospora crassa is a model organism for studies of cellular biology and genetics 

in filamentous fungi (1, 2). Filamentous fungi can be pathogens of plants and animals, 

but also form beneficial endophytic associations with plants (reviewed in 3-5). Many 

filamentous fungi are crucial players during carbon cycling in the environment and serve 

as commercial sources of food, drink, biofuels and other products (6-8). The 

contributions of N. crassa to many areas of cell and molecular biology include the one-

gene, one-polypeptide hypothesis, genetic recombination, gene silencing by small RNAs, 

epigenetic phenomena, photobiology, circadian rhythms, cell signaling, plant cell wall 

decomposition, and self-nonself interactions during vegetative growth and sexual 

development (reviewed in 1 and 2).  

N. crassa has a rich history of forward genetics, with more than 1000 loci 

identified (http://www.fgsc.net/2000compendium/2000compend.html) (9). N. crassa was 

the first filamentous fungus with a complete genome sequence (10). The ~ 40 Mb genome 

contains ~ 10,000 protein-coding genes distributed among seven linkage groups (10). 

One goal of the Neurospora Genome project was to delete all of the genes in the N. 

crassa genome using reverse genetics (11, 12). The project produced knockout mutant 

strains for nearly 9000 genes and these mutants are currently available at the Fungal 

Genetics Stock Center (13). In all knockout mutants, a gene open reading frame has been 

replaced with an hph selectable marker (conferring resistance to the antibiotic 

hygromycin) (11, 14). Another goal of the Neurospora Genome Project was to perform 

phenotypic characterization of these knockout mutants. An undergraduate research 
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program at the University of California, Los Angeles, pioneered methods for phenotyping 

mutants, with ~ 1000 mutants analyzed (15). In our laboratory, we have used the 

phenotypic methods developed by the UCLA project to analyze additional mutants, 

focusing on those lacking serine/threonine protein kinases, serine/threonine and tyrosine 

protein phosphatases, G protein coupled receptors and transcription factors (16-19). The 

above projects have generated phenotypic data for nearly 1300 N. crassa knockout 

mutants. However, these data have not been otherwise analyzed or interpreted using 

hierarchical/partitional statistical methods. Such approaches have been used in some 

fungal species, where phenomics was used to predict relationships between genes (20-

22). All of these studies utilized either only quantitative data or converted categorical 

phenotypes to a numeric scale followed by generation of a distance matrix and 

application of Pearson’s correlation (23) to perform further analysis and interpretation. 

However, there are no published reports of analysis of gene deletion mutants in fungi 

where phenotypes were clustered without conversion of categorical data to an arbitrary 

numerical value, nor studies that include purely categorical data in clustering analyses. 

In this study, we curated phenotypic data for 10 categorical or 

quantitative/continuous traits for 1168 N. crassa knockout mutants obtained from the 

above projects. We then clustered the data without conversion to arbitrary values 

using Partitioning Around Medoids (PAM) (24). Further, transcriptomics data from three 

publicly available datasets were clustered using K-means and the resulting expression 

profiles compared to the phenotypic clusters to determine whether gene expression 

correlated with phenotype. Our results reveal previously unknown relationships between 



 

77 

 

phenotypes and genes encoding proteins with particular domains and between phenotypes 

and gene expression trends. These results have led to new hypotheses regarding cellular 

pathways that can be the subject of follow-up studies. 

 

Materials and Methods 

Data sources and curation. Knockout mutants were produced during the Neurospora 

Genome Project (https://geiselmed.dartmouth.edu/dunlaploros/genome/) in the Dunlap or 

Borkovich laboratories (12) and deposited at the Fungal Genetics Stock Center (13). 

Most phenotypic data for the mutants were obtained by undergraduate students in 

summer research programs or during courses at the University of California, Los 

Angeles, the University of California, Riverside (UCR), Texas A&M University and the 

University of Manchester, UK. Phenotypic data for kinase, phosphatase, GPCR and 

transcription factor mutants have been previously published (16-19). Data were initially 

deposited at the Broad Institute-MIT (https://www.broadinstitute.org). After downloading 

and curation, the data were then migrated to FungiDB (fungidb.org) (74, 75). All mutants 

with complete data for the 10 chosen traits (see below) were included in our analysis. 

The methods used for phenotypic analysis were as previously described (11, 15-

19) and will be briefly summarized here. Similar to recent publications, we have omitted 

measurements of pigmentation and aerial hyphae height on yeast extract-containing 

medium from our analysis (16, 17). Knockout mutants were either obtained from the 

Fungal Genetics Stock Center (FGSC; Kansas State University, Manhattan, 

KS; http://www.fgsc.net) or produced in the Borkovich laboratory using methods 
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described in (11). Near-isogenic wild-type strains FGSC4200 and/or FGSC2489 

(obtained from the FGSC) were used as controls. 

 

Hyphal growth rate. The apical extension rate of basal hyphae was measured using 

glass or disposable race tubes (76, 77) containing Vogel’s minimal agar medium (VM 

(78). Tubes were inoculated at one end and were incubated at 25 °C under ambient light 

conditions (15) or in the dark (11, 18-19). Before marking the growth front, tubes were 

grown overnight to eliminate effects on growth rate due to the age of the culture or 

germination defects. The total growth in mm was measured for each time point and a plot 

of mm vs. time used to determine growth rate. A minimum of four replicates with growth 

rates with R squared values greater than 0.95 were used to obtain the average growth rate 

for each strain. Binned data from (11) and/or the Broad Database were averaged to allow 

comparison to actual growth rate measurements obtained for some mutants. The wild-

type growth rate range was 75–85 mm/day. 

 

Asexual development. The height of aerial hyphae was measured in liquid standing 

cultures containing VM. Tubes were incubated statically (typically in the dark) at 25 °C 

for 3–4 days. Total height (in mm) was recorded. A minimum of four replicates was 

analyzed for each strain. The average value in mm was reported. As for growth rate, 

binned data were averaged. The wild-type range was 30–45 mm. For semi-quantitative 

analysis of conidia number and morphology, slant tubes (13x100mm) containing 3 ml of 

VM agar medium were inoculated with strains and grown at room temperature for 6 to 
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8 days under ambient light conditions (15) or for 3 days in the dark at 30 °C and 4 days in 

the light at room temperature (11, 18-19). Production of conidia was scored visually, for 

amount and morphology. A minimum of four replicates was analyzed for each strain. 

 

Sexual Development. Synthetic crossing medium (SCM) (78) agar slant tubes were 

inoculated with the various strains. After 7–8 days of incubation at room temperature in 

constant light, cultures were scored for the number and morphology of protoperithecia by 

inspection using a stereomicroscope. At least four replicates were scored for each strain. 

The 7–8 day old SCM cultures from the protoperithecial scoring were fertilized using a 

suspension of wild-type conidia of the opposite mating type. Cultures were returned to 

the same conditions used for protoperithecial development. After seven more days 

(~ 2 weeks total), cultures were scored for the number and morphology of perithecia 

using a stereomicroscope. The 2-week-old SCM cultures from the perithecial scoring 

were returned to the same culture conditions. After seven more days of incubation 

(~ 3 weeks total), cultures were scored for the number and morphology of ascospores 

using a stereomicroscope. Perithecial beak morphology was also scored at this point. 

 

Clustering approaches. To uncover new biological pathways, we grouped mutants with 

similar phenotypes into clusters using several algorithms for hierarchical and partitioning 

clustering: Pearson’s Correlation Coefficient (23), K-means (27), Factor Analysis 

of Mixed Data (FAMD) (28), Ward’s minimum variance (Ward’s) (29) 

and Partitioning Around Medoids (PAM) (24). Initial clustering was performed with 
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algorithms and distance matrices that cannot utilize non-numeric data. Data was initially 

transformed with the semi-quantitative categorical variables (ordinal categories) being 

converted to a value between 0 and 1.5 based on severity of the phenotype. The scale was 

chosen based on increments of 0.25 with 6 categories, from not formed [0], severely 

reduced [0.25], reduced [0.5], slightly reduced [0.75], normal [1.0], and increased [1.5]. 

These values are based on the approximate quantitation applied during the scoring. A one 

minus Pearson’s Correlation Coefficient distance matrix (23) was created using the 

Factoextra package in R (79). The Pearson’s distance matrix was used as the input 

for Hierarchical Agglomerative Clustering (HAC) with complete linkage (22). K-means 

clustering (27) was performed using base R (https://www.r-project.org/) with the 

converted dataset as the input. 

Further clustering was performed with algorithms and distance matrices that can 

handle mixed categorical and numeric data. Factorial Analysis of Mixed Data (FAMD) 

(28) was performed using the FactoMineR package in R (80). The non-converted dataset 

with categorical data left as-is (including both ordinal and categorical data) was used as 

the input. (30)A Gower’s distance matrix metric (30) was created using the clustering 

package in R (29). The Gower’s matrix was used as input for Ward’s minimum variance 

clustering algorithm (27) and Partitioning Around Medoids (PAM) clustering algorithm 

(24). Both algorithms were run in R using the clustering package (29). All packages and 

information needed to run this algorithm are available or easily added to R (https://r-

project.com). 
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In order to judge the biological relevance of the clusters, we determined the average 

relative standard deviation for the two continuous traits (basal hyphae growth rate and 

aerial hyphae height) and the average percent consensus for the categorical traits (all 

other phenotypes). To determine the relative standard deviation for the two continuous 

phenotypes we first calculated the standard deviation for each cluster and then divided 

that standard deviation by the cluster mean to determine the relative standard deviation. 

In order to create a composite relative standard deviation for the “run” (e.g., 21 total 

clusters and 22 total clusters are two different “runs”), we calculated the average relative 

standard deviation for all clusters in that run. For categorical phenotypes, we first 

calculated the percentage of each category/phenotype for the cluster and then identified 

the most prevalent category (category with the highest percent representation). For 

example, if a cluster contained 10 genes/mutants, with six having reduced conidial 

abundance, then that cluster would have a value of 60% for conidial abundance. This was 

repeated for all clusters in the run. We then determined an average percent consensus by 

calculating the average representation (%) of the most prevalent category for all clusters 

in the run. The relative standard deviations and the average percent consensus were then 

averaged across the two continuous phenotypes and the eight categorical phenotypes to 

arrive at two composite values for each run utilizing each clustering approach. 

 

Analysis of specific classes of cluster genes. Functional catalogue (Funcat) analysis was 

performed on N. crassa genes using FungiFun (https://sbi.hki-jena.de/fungifun/) to test 

for enrichment of specific functions among the gene clusters. A list of 5781 genes that are 
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annotated with functional categories was obtained from the FungiFun website. Duplicates 

were removed, yielding a final list of 5082 genes. All genes not in the list were 

categorized as “Unclassified”. The p-value significance level was set to 1 to capture all 

possible associations of genes with functional categories. The annotation type was set to 

“Use also indirectly annotated top categories” to simplify the functional categories to 

their top-level category. 

N. crassa genes with orthologs in other fungi were identified using the 

“Transform by Orthology” tool at FungiDB (FungiDB.org). Genetic and physical 

interactions between orthologs and other genes/gene products in baker’s yeast were 

identified using the “interactions” tab at the Saccharomyces Genome Database 

(yeastgenome.org) (81). N. crassa metabolic genes were obtained from (31). Genes 

encoding proteins with secretion signals and/or transmembrane domains were retrieved 

using the “Protein targeting and localization” tool at FungiDB. Predicted proteins that are 

phosphorylated in N. crassa were obtained from (37). 

Targets of the two Extracellular-signal Regulated Kinase (ERK) class Mitogen-Activated 

Protein Kinase (MAPK) cascades were identified in publicly available phosphoproteomic 

or transcriptomic datasets for N. crassa (whenever possible) or other fungi. For the 

MAK-1 MAPK pathway, clusters were checked for misregulated genes using microarray 

data for a Δmak-1 knockout mutant (44). For the MAK-2 MAPK cascade, microarray 

data from a Δmak-2 mutant (41) or a strain expressing a mak-2 inhibitable allele (mak-

2Q100G) in the presence of inhibitor (45), as well as phosphoproteomics data from two 

additional studies using the mak-2Q100G strain in the presence of inhibitor (46, 47) were 
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utilized. Because there currently is no transcript profiling data available for mutants 

lacking genes in the p38 MAPK OS-2 pathway in N. crassa, RNA-seq or microarray 

datasets were analyzed for genes controlled by the os-

2 orthologs sakA or hog1 in Aspergillus fumigatus or Cryptococcus neoformans, 

respectively (48, 49). 

Publicly available transcriptomics datasets for wild-type N. crassa were used to compare 

gene expression trends to phenotypes in clusters. These included two microarray datasets, 

corresponding to time courses of macroconidiation (54) and colony growth (55), as well 

as two RNA-seq datasets for time courses during the sexual cycle (52) and conidial 

germination (53). Expression data was scaled to values between − 2 and 2 to give 

comparable relative expression per gene. K-means clustering (25) was then performed to 

produce expression profiles. Comparisons between the phenotypic clusters and the 

expression profiles were made to check for relationships between mRNA expression and 

phenotype. 

 

Results 

N. crassa mutant defects are distributed across broad growth and developmental 

phenotypes. This dataset contains phenotypes for 379 mutants previously reported in five 

publications (11, 16-19), corresponding to 242 transcription factor, 36 GPCR, 24 serine-

threonine-tyrosine protein phosphatase and 77 serine-threonine protein kinase gene 

mutants. The dataset also includes phenotypes for 789 mutants that were not previously 
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published. Phenotypic data for all mutants is available at the FungiDB database on the 

specific gene’s page. 

During curation, we settled on 10 traits that were easiest for students to score and were 

therefore the most reliable. These include hyphal growth rate on solid medium, aerial 

hyphae height, conidia amount and morphology, abundance and appearance of 

unfertilized and fertilized female reproductive structures (protoperithecia and perithecia) 

and sexual spores (ascospores). Since the last eight phenotypes were scored using visual 

screens, amount/abundance is semi-quantitative (see Methods). In all, 1286 knockout 

mutants had phenotypic data for at least one trait (13% of genome) and 1168 (12% of 

genome) had complete data for the 10 traits included in our analysis (Figure 3.1a). Of the 

1168 mutants with complete data, 903 mutants (77%) possessed at least one defect. We 

grouped the phenotypes for the 903 mutants with at least one defect into three global 

phenotypic classes: growth rate, asexual development (conidiation or aerial hyphae) and 

sexual development (protoperithecia, perithecia and ascospores; Figure 3.1b). This 

yielded 1539 total global phenotypes for the 903 mutants. A total of 742 mutants (48.2%) 

had growth rate defects, 553 (35.9%) possessed an asexual developmental defect and 244 

(15.8%) had a phenotype during sexual development. The lower overall incidence of 

sexual cycle phenotypes was previously noted in published results for GPCRs and 

transcription factors and may reflect the large number of mutants in these two classes (36 

and 242 mutants, respectively) in our combined dataset. 

The genes in the phenotypic dataset broadly mirror those of the N. crassa genome. 

We next explored the similarity between our dataset and the N. crassa protein-coding 
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genome at a global scale, for representation of genes on each of the seven chromosomes 

and in gene functional categories. We used a chi-square test to determine whether the 

distribution of genes in our dataset across all chromosomes is similar to that of the entire 

genome. The low p-value (0.0000038) formally rejects goodness of fit of the data in 

Figure 3.2 a, and, therefore, there is no strong correlation between the dataset genes and 

the genome. This is corroborated by the observation that our dataset is overrepresented by 

approximately 5–10% on chromosomes 1 and 3, and underrepresented by 2–3% on 

chromosomes 2 and 4, while the distribution on the other three chromosomes was within 

1% of the genome (Figure 3.2a). 

We investigated the distribution of functions of the mutated genes in our dataset 

vs. all genes in the genome using Functional Catalogue (FunCat) analysis with data from 

FungiFun2 (Figure 3.2b). With the exception of protein synthesis and unclassified 

proteins, our dataset was overrepresented in each category by 2–10%, with the average 

overrepresentation approximately 6.2%. Taking into account all categories over- and 

underrepresented, the average difference from the genome is +/− 3.7%. Thus, the findings 

from analyzing the distribution of genes on chromosomes and their functional categories 

indicate that our phenotypic dataset is broadly representative of the N. crassa genome. 

 

Analysis using Partitioning Around Medoids (PAM) yielded the most biologically 

relevant phenotypic clusters. As there are many challenges associated with clustering 

mixed data (Floss et al. 2018), we initially tested several algorithms for hierarchical and 

partitioning clustering in order to uncover new biological pathways, including Pearson’s 
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Correlation Coefficient (23), K-means (27), Factor Analysis of Mixed Data (FAMD) 

(28), Ward’s minimum variance (Ward’s) (29), Partitioning Around Medoids (PAM) 

(24) and K-prototypes (30).  

We created guidelines that we could use to compare each method against each 

other to determine the most biologically relevant clustering. We first set a lower limit of 

three genes per cluster with a maximum of 40 clusters. We next calculated the average 

relative standard deviation for basal hyphae growth rate and aerial hyphae height for each 

cluster and then averaged across all clusters. For the categorical traits, we determined the 

most prevalent category for each cluster and determined an average across all clusters. 

These metrics allowed us to set guidelines for these continuous variables. We set a limit 

of less than 15% relative standard deviation and no less than 95% average consensus for 

the clustering. 

We first tried methods that required a conversion of categorical data into 

numerical values. The two methods, Pearson’s Correlation Coefficient (23) and K-means 

(27), provided relative standard deviations for basal hyphae growth rate and aerial hyphae 

height above the 15% cutoff. Based on the unsatisfactory results using the converted 

dataset, we turned to methods that would require little or no pre-processing of our data 

and that would retain the categorical data. One algorithm that can handle such mixed data 

is FAMD (28). However, this approach quickly failed our criteria, as the run with three 

total clusters contained one cluster with a single gene. Additionally, K-Prototypes (27) 

was found to be unstable and multiple runs would not converge on similar numbers of 

clusters. We next utilized the Daisy function (32) and Gower’s metric (33) from the 
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“cluster” R package to create a dissimilarity matrix (r-project.org). We then used Ward’s 

(24) or PAM (29) algorithms to generate clusters. Both methods did not initially meet our 

criteria (Table 1). However, with unequal weighting of each variable we found that these 

two methods could meet our criteria (Table 3.1). Overall, we found that PAM weight six 

with 40 clusters had the best combination of lowest relative standard error and highest 

percent consensus (Table 3.1).  

The weighted PAM 40 method effectively separated mutants into distinct clusters, 

without formation of different clusters with identical phenotypes (Table 3.2). The average 

number of genes in each cluster was 29.2, and the median size was 14, with a range from 

5 (Cluster 39) to 171 (Cluster 3) genes (Figure 3.3a). Most clusters contained 6–15 genes 

(Figure 3.3b). We subsequently analyzed the Weighted PAM 40 clusters for the presence 

of different classes of genes or other attributes, as described in the following sections. 

 

The majority of cluster genes lack Saccharomyces cerevisiae orthologs. We next 

determined the percentage of N. crassa genes in each of the 40 clusters that have yeast 

orthologs (Figure 3.4). The range was 16% (13 genes out of 81 total) in Cluster 4 to 89% 

in Cluster 38 (8 genes out of 9 total) (Figure 3.4). In most clusters, a majority of genes 

lacked a yeast ortholog and in 21 clusters less than 50% of the genes possess yeast 

orthologs. Of note, the clusters with the highest proportion of yeast orthologs have 

reduced growth rates relative to wild type (Clusters 13, 30, 34, 38, and 40; Table 3.2), 

while those with the fewest yeast orthologs typically have normal or variable growth rate 



 

88 

 

phenotypes (Clusters 1, 4, 16 and 36; Table 3.2). The relative lack of shared phenotypes 

among clusters with a low percentage of orthologous yeast genes may reflect specialized 

functions that evolved within filamentous fungi and since the divergence from a common 

ancestor at the origin of the ascomycetes. 

Two of the clusters containing the highest proportion of genes with yeast orthologs are 

Clusters 34 (9 genes of 12 total; 75%) and 40 (15 genes of 21 total; 71%). Cluster 34 

contains the three genes for the p38 MAPK pathway, while Cluster 40 includes the three 

genes in each of the two ERK-class MAPK pathways. These are ancient and conserved 

pathways with central roles in the cellular biology of many eukaryotic organisms, 

including baker’s yeast (34). The co-clustering of mutants in the two ERK pathways was 

expected, as they have similar growth and morphological defects. Overall, because genes 

lacking yeast orthologs predominate in our dataset, our analysis should reveal functions 

for genes found in N. crassa and other filamentous fungi that are not present in S. 

cerevisiae. 

Enzymes and transmembrane proteins in clusters. 

 Enzymes. We used the list of genes compiled in previous work (31) to identify metabolic 

genes in the 40 clusters. Out of the 833 identified metabolic genes in the N. 

crassa genome, 88 were present in our dataset (11%). It should be noted that mutation of 

many metabolic genes results in auxotrophy in N. crassa, and since the knockout mutants 

were not cultured under conditions that would supplement all auxotrophs (11), those 

genes are not represented in our dataset. Therefore, it is likely that these 88 genes are 
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either essential under other nutritional conditions not used in our experiments and/or are 

functionally redundant with another gene(s). 

A total of six clusters (2, 8, 11, 14, 29 and 35) consisted of at least 15% metabolic genes, 

as compared to a global average of 6.9%. All of these clusters except for Cluster 14 have 

reduced growth rates relative to wild type and, with the exception of Cluster 8, do not 

form ascospores (Table 2). These phenotypes may indicate diverse metabolic needs 

during hyphal growth and formation of the meiotic products, ascospores. 

 ...................... Predicted transmembrane proteins. We next identified proteins in the N. 

crassa genome and in clusters in our dataset that possess predicted transmembrane 

domains and/or are predicted G protein coupled receptors (GPCRs) (Figure 3.5a). The 

outcome of the analysis showed that 1796 N. crassa genes (18.5% of the total) encode a 

protein with at least one transmembrane domain. Of the genes represented by the 

knockout mutants in this study, 228 (19.5%) encode proteins with predicted 

transmembrane domains. A total of 15 clusters have 20% or more genes encoding 

predicted proteins with transmembrane domains, with five clusters exceeding 30% 

(Clusters 1, 5, 11, 19 and 36; Figure 3.5a). Within the transmembrane proteins, we also 

identified those that were predicted GPCRs (16). Cluster 1 contained the largest 

percentage of GPCR mutants (17 genes of 28 total or nearly 61% of the cluster), followed 

by Cluster 36, with 18.2% (6 genes of 33 total) GPCR mutants (Figure 3.5a). 

There was no unifying group of phenotypes across the five clusters with the highest 

proportion of genes encoding transmembrane proteins (Table 3.2). However, 100% of the 

mutants in Clusters 19 and 36 possess tall aerial hyphae and 11 of 25 genes (44%) in 
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Cluster 19 encode a protein with a predicted transmembrane domain (Figure 3.5a). The 

11 Cluster 19 genes encode either a transporter or an enzyme implicated in oxidative 

stress (Figure 3.5b). ROS stress and a hyperoxidant state have previously been shown to 

be important signals for tissue differentiation at three different stages of aerial hyphae 

development (33, 34). Oxidative stress releases repression by conidial separation-1 (csp-

1; a transcription factor), allowing ergosterol gene expression, a condition associated with 

aerial hyphae development (35). The CSP-1 and CSP-2 transcription factors are both 

required for the formation of double-doublets during septation of conidiophores prior to 

production of the mature conidia (36). However, csp-2 (NCU06095), not csp-

1 (NCU02713), clusters with the mutants with tallest aerial hyphae, suggesting different 

molecular functions for these two transcription factors during asexual development. 

Other genes within the cluster may have regulatory roles in pathways involved with aerial 

hyphae development. One such gene is the predicted 5′ to 3′ exonuclease exr-

1 (NCU01643), which may negatively regulate some mRNAs that promote aerial hyphae 

development. 

 

Protein phosphorylation 

Distribution of phosphorylated proteins. We used an available N. 

crassa phosphoproteome dataset (37) to ascertain whether the encoded proteins in the 40 

clusters are phosphorylated when N. crassa is grown in liquid medium with glucose as 

the carbon source. Out of the 1168 genes in our study, 375 (32%) encode proteins that are 

phosphorylated, similar to the % in the entire genome (31%). Every cluster has at least 
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two phosphorylated proteins and 14% or more of the proteins in each cluster are 

phosphoproteins (Figure 3.6a). Clusters 10, 17, 27, 29, 30, 39 and 40 have 60% or more 

of their predicted proteins phosphorylated (Figure 3.6a). Growth rate defects were 

observed for six of these clusters, five clusters have a conidiation defect and ascospores 

were either reduced or not formed in four clusters. Clusters 30 and 39 have more than 

80% phosphorylated targets. These two clusters share reduced/severely reduced growth 

rates and reduced/severely reduced conidial abundance (Table 3.2). 

Serine/threonine protein kinases and serine/threonine or tyrosine protein 

phosphatases. There are 86 genes encoding Serine/Threonine Protein Kinases (S/T 

Kinases) in N. crassa, with 77 mutants represented in our study (19). Six clusters (14, 25, 

30, 34, 39 and 40) have 20% or more S/T Kinase genes, with Clusters 30, 34 and 40 

exceeding 40% (Figure 3.6b). It is known that mutants lacking the mitogen-activated 

protein kinase (MAPK), MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK) for 

the same signaling pathway possess similar phenotypes in N. crassa (38-42). Thus, we 

expected to observe co-clustering of mutants for each of the three MAPK pathways. We 

noted that Cluster 34 contains the three kinases (os-2, NCU07024; os-4, NCU03071 

and os-5, NCU00587) in the p38 MAPK osmosensing pathway (38, 39). Similarly, five 

of the six kinases (mak-1, NCU09842; mek-1, NCU06419 mak-2, NCU02393 mek-2, 

NCU04612 and nrc-1, NCU06182) that comprise the two Extracellular Signal-Regulated 

Kinase (ERK) MAPK pathways in N. crassa are in Cluster 40 (40-42). The MAPKKK 

for the cell integrity ERK pathway (mik-1, NCU02234) is in another cluster (Cluster 18), 

as the mutant has slightly taller aerial hyphae than the other two mutants in the same 
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pathway. Of note, Clusters 34 and 40 are among those with the highest proportion of 

kinase mutants (Figure 3.6b), suggesting possible regulatory interactions between 

MAPKs and the other kinases in the cluster. 

The N. crassa genome contains 30 genes encoding serine-threonine or tyrosine protein 

phosphatases, and 24 of these are available knockout mutants and were included in our 

analysis (18). Protein phosphatases were not uniformly distributed throughout the 

clusters. There were numerous clusters (26 total) that lacked protein phosphatase genes 

(Figure 3.6b). In contrast, 40% (4 genes of 10 total) of the genes in Cluster 35 were 

protein phosphatases, and this cluster had reduced growth rate and reduced numbers of 

protoperithecia and perithecia. 

Identification of cluster genes regulated by MAPKs in N. crassa and related fungi. 

As mentioned above, we noted that with one exception, all three genes for each of the 

three MAPK cascades clustered together. Considering the importance of these three 

evolutionarily conserved MAPK pathways in fungi (43), we mined for potential targets in 

the clusters using a variety of publicly available datasets. 

In order to identify genes regulated by the MAK-1 ERK MAPK, we first analyzed 

results from microarray analysis of the Δmak-1 mutant in N. crassa (44). Of the 424 

genes down-regulated in the Δmak-1 mutant, 57 were included in our study (Figure 3.7). 

Cluster 40, which contains the three MAK-1 MAPK pathway kinases, has a relatively 

low percentage of genes that are targets (< 5%; Figure 3.7). In contrast, there were three 

clusters with > 15% MAK-1 target genes: Clusters 13 (2 genes of 12 total), 33 (1 gene of 

6 total) and 39 (1 gene of 5 total). These three clusters share reduced/severely reduced 
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growth rates and varying degrees of sexual cycle defects (Table 4.2). These phenotypes 

are less severe examples of the phenotypes possessed by Δmak-1 mutants. 

To determine putative targets of the ERK MAPK, MAK-2, we took advantage of 

two transcriptomic datasets, one for a Δmak-2 mutant (41) and the second for a strain 

expressing a mak-2 inhibitable allele (mak-2Q100G) grown in the presence of inhibitor (45). 

We also queried two phosphoproteomics datasets, both obtained after treatment of 

the mak-2Q100G strain with inhibitor (46, 47). There were 39 genes in common between our 

phenotypic dataset and these four combined datasets (Figure 3.7). Clusters 8 and 3 

contained more than 15% of the target genes. The only phenotype in common for these 

two clusters is reduced growth rate (Table 2). Cluster 40, containing the three kinases of 

the MAK-2 pathway, had 10% of its members as predicted targets. 

There is currently no publicly available transcriptomic data for a Δos-2 or other 

p38 MAPK pathway mutant in N. crassa. Therefore, we turned to gene expression studies 

of the orthologous Δos-2 mutant in two filamentous fungi: microarray analysis of a 

Δhog1 mutant in Cryptococcus neoformans (48) and an RNA-seq experiment using 

an Aspergillus fumigatus ΔsakA mutant (49). Of the 401 genes regulated by hog1 in C. 

neoformans, 296 had orthologs in N. crassa and 37 were represented in our phenotype 

dataset (Figure 3.7). The A. fumigatus RNA-seq analysis produced more hits, with 654 

genes regulated by sakA, 574 of which have an ortholog in N. crassa and 96 that were 

included in our study (Figure 3.7). Analysis of these two combined datasets revealed that 

Cluster 19 had the highest percentage of p38 MAPK targets (7 genes of 25 total; 28%). 

This cluster also has the tallest aerial hyphae of any cluster. Other clusters with a 
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relatively high proportion of target genes (> 15%) were 6 (4 genes of 23 total), 21 (8 

genes of 42 total), 26 (3 genes of 15 total) and 37 (2 genes of 13 total). These clusters all 

have reduced or severely reduced growth rates and reduced aerial hyphae height. 

Osmotic Sensitive (OS) pathway mutants have reduced growth rates, but normal 

aerial hyphae height and do not produce female sexual structures. The lack of 

concentration of possible OS-2 pathway targets in Cluster 34 (containing the three OS-2 

pathway kinases) supports a mechanism in which the diverse functions of the p38 MAPK 

pathway are carried out by different groups of genes. The observation of slower growth 

rate in mutants lacking p38 MAPK target genes is consistent N. crassa os-2 pathway 

mutant defects (Table 2). It is of interest that of the clusters with a significant percentage 

of targets, only Cluster 37 has a sexual cycle phenotype, reduced ascospore production. 

We also interrogated our dataset to identify genes that are targets of multiple MAPK 

pathways. A total of 188 genes encoded targets of at least one MAPK pathway. Of these, 

18 are targets of two different MAPK pathways and one is a target of three pathways 

(Figure 3.7). The triple target is in Cluster 3, NCU03753, clock-controlled gene-1 (ccg-

1 (50, 51);. Cluster 3, which has wild type characteristics, also has the largest number of 

single MAPK targets (26 genes; Figure 3.7). The clusters with the greatest number of 

genes that are targets of two different MAPK pathways are 7 and 15 with three targets 

each (Figure 3.7). These last two clusters have similar phenotypes, with reduced growth 

rates (Table 3.2). 

Transcriptional regulation 



 

95 

 

Distribution of transcription factors across phenotype clusters. N. crassa has 314 

genes encoding transcription factors (17), with 242 (77% of the total) represented in our 

dataset. Transcription factors represent ~ 20.7% of the genes in our dataset and the 

average percentage of genes in a cluster that are transcription factors is 19.9%. Cluster 10 

had the highest percentage of transcription factors, with 75% (Figure3.8) and mutants in 

this cluster have a severe reduction in hyphal growth rate (Table 3.2). Interestingly, none 

of the Cluster 10 genes are targets of the MAK-1, MAK-2 or OS-2 MAPKs (Figure 3.7). 

Co-expression of genes in clusters.  We utilized publicly available RNA-seq and 

microarray data sets for wild-type N. crassa to determine whether genes in the same 

phenotypic cluster are co-expressed. The two RNA-seq datasets are time courses during 

sexual development (52) or conidial germination (53), while the two microarray datasets 

are time courses during conidiation (54) or colony development (55). Expression data is 

available for ~ 99% of the cluster genes in the two RNA-seq datasets, but only 46.3% 

(54) and 49.7% (55) of the cluster genes were represented in the two microarray datasets. 

We did not analyze phenotypic clusters in which less than three genes had expression 

data. 

Initial visual inspection of expression trends in each cluster using line plots 

showed few examples of co-expression. However, in clusters with more than five genes, 

it becomes difficult to visually determine expression patterns. Therefore, we attempted to 

fit linear, polynomial and sinusoidal models to the expression data for each phenotypic 

cluster. However, no model fit the data beyond an r-squared value of 0.2, supporting 

more than one expression pattern per cluster. 
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We next turned to K-means clustering to separate genes into discrete expression 

profiles for each mRNA time course and then compared the genes in these profiles to 

those in the 40 phenotypic clusters (See Methods). Using Within sum of squares (56), 

Gap statistic (57) and Davies-Bouldin index (58) as measures of cluster quality, we 

determined that 6–8 expression profiles provided sufficient quality clusters, depending on 

the dataset. We then determined the number of expression profiles that were present in 

each phenotypic cluster. We focused on phenotypic clusters in which one expression 

profile could be assigned to 40% or more of the genes in that cluster. 

The genes for the sexual development (52), conidial germination (53), conidiation 

(54) and colony development time courses (55) were divided into seven, eight, seven and 

six different expression profiles, respectively (Figure 3.9a-d). The average number of 

expression profiles per cluster ranged from 4.1 to 6.1, revealing high diversity in 

expression profiles per cluster (Figure 3.10). When we focused on those clusters with a 

phenotype related to their respective datasets, the average number of profiles per cluster 

only decreased slightly, to a range of 3.9 to 5.9. In addition, there were no expression 

profiles that were exclusively correlated with a specific phenotype. 

While the average number of expression profiles per cluster was high, there were 

clusters where more than 40% of genes shared the same expression profile. We 

investigated whether any of these dominant expression profiles were present in more than 

50% of the phenotypic clusters. For sexual development and conidiation, no one 

expression profile was represented in more than 50% of clusters with a dominant 

expression profile (Figure 3.10). However, for conidial germination and colony 
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development there were expression profiles representing 77 and 86%, respectively, of the 

dominant expression profiles in the clusters (Figure 3.10). The two dominant expression 

profiles were expression profile 3 during conidial germination (peak expression early) 

and expression profile 6 during colony development (peak expression at the hyphal tip) 

(Figure 3.9a,c). Whereas there was little correlation between any expression profile and 

phenotype for sexual development and conidiation, there was some correlation between 

defects in growth rate and elevated expression at the hyphal tip or early during conidial 

germination, as those phenotypes and expression profiles most often grouped together. 

 ..... Cluster genes co-expressed across multiple datasets Interestingly, three phenotypic 

clusters (14, 30 and 33) contain several genes that are consistently co-regulated across 

multiple datasets. In Cluster 14, the transcription factors bek-1 (NCU00097) (59) 

and bek-2 (NCU07139), the guanosine diphosphatase gda-1 (NCU03713), hypothetical 

protein NCU06390 and the S/T kinase stk-53 (NCU09064) share the same expression 

profile during conidial germination and sexual development. In Cluster 30, the 

transcription factors vel (NCU00406) and ada-19 (NCU04459) are co-expressed during 

conidiation and conidial germination. In Cluster 33, four genes are co-expressed during 

sexual development and conidial germination: two signaling genes (the 

phosphatase tng (NCU0436) and kinase div-4 (NCU04426), a chromatin remodeling 

factor crf4–1 (NCU03875) and a gene implicated in mRNA stability (NCU07874). With 

regards to MAPK signaling, the p38 MAPKK os-5 and MAPKKK os-4 are co-expressed 

during colony development and conidiation. mak-1 and mak-2 are co-expressed in every 

time course and os-2 is co-expressed with mak-1 and mak-2 during colony development. 
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Taken together, the results from our analysis of transcriptional data indicate that in 

general, no single expression profile correlates with a given phenotype. These results 

support earlier observations that elevated expression of a gene during a developmental 

time course does not necessarily correlate with an observable phenotype for the 

corresponding mutant in N. crassa (60, 61). 

.  

Pathway prediction utilizing yeast ortholog interaction data 

In order to determine possible targets and interactors in the three MAPK 

pathways, we identified genetic and physical interactions between all yeast orthologs of 

genes in the two clusters. Of the genes that co-clustered with the two ERK MAPK 

pathways, 11 of 16 had a yeast ortholog. All but one yeast ortholog has evidence of either 

genetic and/or physical interactions with the other genes in the cluster. Based on known 

genetic and physical interactions in yeast, we predict that there may be two pathways 

associated with the two ERK MAPK signaling cascades (Figure 3.11). One possible 

pathway runs from MAK-2 to NGF-1 through a negative genetic interaction. NGF-1 then 

has various genetic and physical interactions with CAMK-1, RCO-1 and ADA-20 

(Figure 3.11). The other pathway flows from MAK-1 to PRK-2 and MDK-2 through 

negative genetic interactions (Figure 3.11). There are five cluster genes that do not have a 

yeast ortholog, including two serine/threonine kinases (stk-31 and stk-36), an 

endothiapepsin (apr-10), a non-anchored cell wall protein (ncw-3) and a protein with a 

tropomyosin domain (ro-11). These genes may represent additional pathways and/or 

interactors downstream of the ERK MAPKs that are not found in S. cerevisiae. 
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Nine of the 12 genes in Cluster 34, which contains the genes in the p38 MAPK 

cascade, have a yeast ortholog. There is substantial evidence for interaction between the 

yeast orthologs in this cluster. The data also suggests a large amount of crosstalk between 

the MAPK pathway and three genes that co-clustered (Figure 3.12); orthologs of hda-

2, div-59, and stk-47 each exhibit a genetic relationship with at least two out of three of 

the genes in the p38 MAPK cascade (Figure 3.12). Interestingly, there was one gene with 

a yeast homolog (amyc) that does not interact with any orthologs of Cluster 24 genes in 

yeast. There are three genes with no yeast ortholog in the cluster; a serine/threonine 

kinase (stk-46), a transcription factor (ff-7) and a mago nashi protein (mrs-4). These last 

four genes may be unique targets of the p38 MAPK pathway in N. crassa. 

 

Discussion 

In this study, we took advantage of a large dataset of phenotypic data for 10 traits 

obtained from 1168 knock out mutants in N. crassa. The distribution of genes across 

linkage groups and functional categories was representative of the entire genome. We 

found that the majority of genes lack an orthologous gene in yeast and, therefore, many 

relationships and genes explored in this study cannot be studied in S. cerevisiae. With this 

broadly representative dataset, we tested several algorithms and two distance measures to 

determine the optimal way to cluster our phenotypic data. We developed a novel 

approach to measure cluster quality, using relative standard deviation for each 

quantitative trait and the average percent consensus (the average percent of the most 
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prevalent category per categorical trait), in order to determine biological relevance of the 

clusters. 

Previous studies have focused on using a single hierarchical clustering method for 

analyzing phenotypic data. For example, in S. cerevisiae, data was collected for 4281 

gene deletion mutants subjected to 51 different environmental stressors (20). All 

phenotypes were quantitative and were clustered using two-way unsupervised, un-

centered hierarchical agglomerative clustering, with a distance matrix generated using 

Pearson’s correlation (20). In Fusarium graminearum, 17 different phenotypes were 

collected for 657 transcription factor knockout mutants (21). Continuous and categorical 

phenotypes were converted to a number scale and correlations between phenotypes were 

calculated using Pearson’s correlation coefficient. In Cryptococcus neoformans, a study 

analyzed 30 different phenotypes for 129 kinase mutants (22). Categorical and 

continuous phenotypes were converted to a numeric value. A distance matrix was 

generated with Pearson’s correlation minus one and a hierarchical agglomerative 

clustering algorithm was applied to generate clusters (22). 

Our initial attempts to cluster relied on conversion of ordinal traits to a numerical 

scale. However, only four of the eight categorical phenotypes in our dataset were 

amenable to this conversion. Using the converted dataset, both a hierarchical method 

(Hierarchical Agglomerative Clustering (22)) and a partitional approach (K-means) (25) 

were tested for their ability to cluster genes, with unsatisfactory results in terms of large 

standard deviations. Therefore, we turned to distance matrices and algorithms that can 

utilize categorical data. Of these, the algorithm that performed the best according to our 
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criteria was Partitioning Around Medoids (PAM). For optimal clustering, we weighted 

the data in the distance matrix before applying PAM. To our knowledge, PAM has not 

previously been used to cluster phenotypic data in fungi. 

We identified two clusters in which more than 40% of the genes in the cluster 

encode proteins with predicted transmembrane domains. One of the clusters, Cluster 1, is 

comprised mostly of G-protein coupled receptors, which have been previously shown to 

regulate aerial hyphae height (16). In the other cluster (Cluster 19), a majority of genes 

are involved in oxidative stress regulation or ion transport. ROS stress and a hyperoxidant 

state are important signals during aerial hyphae development (33, 34). Additionally, 

turgor pressure has been shown to be vital for hyphal extension (62). Indeed, the same 

forces must be applied to grow vertically as well, with a combination of turgor pressure 

and secretion of hydrophobins (eas, NCU08457) (63). Thus, Cluster 19 genes highlight 

an interesting correlation between membrane-associated proteins and aerial hyphae 

height in N. crassa. 

We investigated whether gene expression was correlated with some or all of the 

phenotypes we observed. There was some correlation between expression at hyphal tips 

and defects in hyphal growth rate. However, results using most of the gene expression 

datasets did not reveal a strong correlation between an expression profile and a 

phenotype. The lack of correlation is not particularly surprising, as it has been observed 

that mutation of several genes that are highly expressed during conidiation did not lead to 

a phenotype during conidiation (60, 61). However, the lack of correlation could also be 

explained by differences in experimental conditions between our phenotypic analysis and 
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those used to isolate RNA for transcriptional profiling. There are a limited number of 

time-course expression datasets that are publicly available for N. crassa, and there was no 

dataset with conditions or developmental processes that perfectly matched those in our 

study. 

Mitogen-activated protein kinase (MAPK) pathways are conserved in eukaryotes, 

from unicellular organisms such as yeast, to metazoans, including humans (64, 65). In 

animals, MAPKs regulate gene expression, mitosis, movement, metabolism, and 

programmed cell death (64). In plants, MAPK cascades control cell division, growth and 

development, and regulate resistance to pathogens, insect herbivores, and abiotic stress 

(66). In fungi, including saprobes and pathogens, MAPKs have been found to be involved 

in control of morphogenesis, development, virulence, cell wall biogenesis and stress 

responses (43, 67). In N. crassa, mutation of any of the three genes for each of the three 

MAPK cascades leads to severe defects in growth rate, asexual development, sexual 

development and failure to form conidial anastomosis tubes (19, 68). In addition, the 

MAK-1 and MAK-2 pathways are both involved in cell wall integrity, with the MAK-1 

pathway more important for this process (42). Mutants lacking any of the three genes in 

the OS-2 MAPK pathway have near-normal growth rates, but possess defects in 

conidiation and sexual development (19). 

Analysis of transcriptional and proteomic targets of the three MAPK signaling 

pathways revealed that targets are distributed throughout the clusters, supporting the idea 

that the functions of these pathways are carried out by different groups of genes. We also 

determined that several MAPK targets are actually genes/proteins in a different MAPK 
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cascade. This is not surprising, as MAPK pathways are not necessarily linear and 

independent, and there is evidence showing significant amounts of crosstalk in 

mammalian cell lines (69, 70). In S. cerevisiae, crosstalk has been shown between the 

osmosensing (HOG1) and the cell wall integrity MAPK pathways during heat stress and 

mating in specific mutant backgrounds (71, 72). Crosstalk has also been reported 

in Aspergillus fumigatus between the cell wall integrity and spore development pathways 

(73). Interestingly, we found that across all four RNA expression datasets, two of the 

three terminal MAPKs in N. crassa (mak-1 and mak-2) were always co-expressed, 

implying some amount of co-regulation. To our knowledge, no other study has reported 

transcriptional co-expression of these genes. 

We took advantage of the extensive interaction data available for S. cerevisiae to build 

predicted pathways for the genes that co-clustered with the ERK and p38 MAPKs. We 

discovered that all genes with a yeast homolog in the cluster containing the two ERK 

MAPK cascades showed an interaction with at least one other gene in the cluster. For the 

genes that co-clustered with the p38 MAPK cascade, all but one interacted with at least 

one other gene in the cluster. Interestingly, there was linear flow through the ERK MAPK 

signaling cascades, with the MAPKKK and MAPKKs only interacting with the MAPKK 

or MAPK from the same or the second pathway. The rest of the interacting genes formed 

a network that emanated from one of the terminal MAPKS (MAK-1 or MAK-2) 

(Figure 3.). In contrast to the interactions observed in the ERK MAPK cluster, there were 

three genes (hda-2, div-59 and stk-47) that interacted with at least two of the three core 

kinase genes in the p38 MAPK cascade and also exhibited many interactions with each 
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other (Figure 3.12). Further work is needed to confirm these models, including probing 

physical interactions through the yeast two-hybrid assay or pull-down approaches, as well 

as tests of genetic epistasis. 
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Figure legends 

Figure 3.1: Summary of results from phenotypic analysis of 1286 N. crassa gene 

replacement mutants.  

A. Flow chart for phenotypic analysis. The number and features of mutants analyzed at 

each step of the process are noted. The percentage of “No phenotype” and “With 

phenotype(s)” mutants refers to strains with complete data. B. Major phenotypic classes 

of mutants. The distribution of mutants with phenotypes in at least one of the three major 

categories (growth rate, asexual development and sexual development) is shown in the 

lobes of the Venn diagram. The intersection of lobes indicates mutants with defects in 

more than one major category 
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Figure 3.2: Distribution of genes by linkage group and functional catalogue 

assignments.  

A. Genes on different linkage groups. The distribution of all N. crassa genes on different 

linkage groups and the genes in each linkage group deleted in knockout mutants with 

complete phenotypic data are shown. B. Genes by functional catalogue (FunCat) 

assignment. The distribution of FunCat assignments for all genes in the N. crassa genome 

and the genes deleted in knockout mutants with complete phenotypic data is shown. 

Functional category data are available at https://elbe.hki-jena.de/fungifun/fungifun 
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Figure 3.3: Grouping of mutants in clusters.  

A. Number of genes per cluster. The number of mutants in each cluster is shown. The 

clustering algorithm was a weighted PAM. See Methods for details. The numbers above 

the bars indicate the number of genes per cluster. B. Number of clusters in different size 

ranges. Clusters were sorted into bins according to the number of genes in the cluster. 

The number of clusters corresponding to each size range (bin) is shown. The numbers 

above the bars indicates the number of clusters in each size range.  
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Figure 3.4: Placement of genes with yeast orthologs in clusters.  

The genes deleted in the mutants were analyzed for S. cerevisiae orthologs using the 

“Transform by Orthology” tool at the FungiDB database. The percentage of genes with 

orthologs in each cluster (blue bars), and in the entire dataset (orange bar), are shown. 

The numbers above the bars indicate the percent of genes in a cluster with a yeast 

ortholog.  
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Figure 3.5: Genes encoding proteins with predicted transmembrane domain(s) 

and/or G protein coupled receptors (GPCRs).  

A. Transmembrane domains and GPCRs. The percentage of genes in each cluster 

encoding a protein with at least one predicted transmembrane domain is shown. The 

orange portion of each bar denotes the percent of genes in each cluster encoding 

transmembrane proteins that are also predicted G protein coupled receptors (GPCRs). 

Genes were retrieved using the “Protein targeting and localization - #TM Domains” tool 

at FungiDB. The numbers on the orange portion of the bars indicate the percent of 

proteins in a cluster that are GPCRs. The numbers on the blue portion of the bars 

indicates the percent of proteins in a cluster that have a predicted transmembrane domain. 

B. Functional categories of proteins with transmembrane domains in Cluster 19. Each 

“slice” of the pie represents the percentage of genes encoding proteins with 

transmembrane domains in the indicated functional category. Functional category data 

are available at https://elbe.hki-jena.de/fungifun/fungifun.php 
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Figure 3.6: Protein phosphorylation-related genes. a. Assortment of phosphorylated 

proteins into clusters.  

Proteins that are phosphorylated during growth in submerged cultures with glucose as the 

carbon source were obtained from Ref. (37). The number of phosphorylated proteins in 

each cluster (blue bars; actual number on top of bars), along with the % representation in 

each cluster (orange bars; % noted on top of bars) is shown. The number above the blue 

bars represents the number of phosphorylated proteins in each cluster. The number above 

the orange bars indicates the percent of phosphorylated protein that make up each cluster. 

b. Distribution of serine-threonine protein kinases and serine-threonine or tyrosine 

protein phosphatases. The percentage of genes in each cluster encoding a serine-threonine 

protein kinase (STKinase) or serine-threonine or tyrosine protein kinase (Protein Pase) is 

shown. The numbers above the blue bars indicates the percent of genes in each cluster 

that are serine/threonine protein kinases. The numbers above the orange bars represents 

the percent of genes in each cluster that are protein phosphatases. 
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Figure 3.7: Cluster genes dependent on the three MAPKs: MAK-1, MAK-2 and OS-

2. 

Data for identification of genes with down-regulated expression in a N. crassa Δmak-1 

mutant were obtained from Ref. (44). For mining cluster genes encoding transcriptional 

or phosphorylation targets of MAK-2 in N. crassa, targets were compiled from four 

datasets, including microarray analysis of genes down-regulated in a Δmak-2 mutant (41) 

or downregulated in a strain expressing the mak-2Q100G strain in the presence of inhibitor 

(45), and MAK-2 phosphorylation targets identified during phosphoproteomics studies 

with the mak-2Q100G strain with inhibitor [46, 47]. Cluster genes encoding N. crassa 

orthologs of transcriptional targets of the p38 MAPK (os-2) in Cryptococcus neoformans 

and Aspergillus fumigatus were obtained using data from Ref. (48, 49). N. crassa 

orthologs in the combined dataset were retrieved using the “Transform by Orthology” 

tool at FungiDB. The numbers above the blue, orange and green bars indicate the percent 

of genes in each cluster that are either regulated by MAK-1, MAK-2 and the p38 MAPK 

(OS-2), respectively.  
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Figure 3.8: Distribution of transcription factors in clusters. 

The number of genes encoding a transcription factor in each cluster, along with the 

percent representation in each cluster is shown (actual number on top of bars).  
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Figure 3.9: K-means clustering of transcriptomic data from wild type for genes in 

the phenotype dataset.  

The expression values for each gene in the phenotype dataset were standardized to have a 

mean of 0 and a standard deviation of 2. Genes were partitioned into the indicated 

number of expression profiles using K-means clustering. A. RNA-seq data from a sexual 

cycle time course. RNA-seq data for eight time points were obtained from Ref. (52). 

Genes were partitioned into seven expression profiles. B. RNA-seq data from a time 

course of conidial germination. RNA-seq data for four time points were obtained from 

Ref. (53). Genes were partitioned into eight expression clusters. C. Microarray data from 

a time course of conidiation. Microarray data for 10 time points were obtained from Ref. 

(54). Genes were partitioned into seven expression clusters. D. Microarray data during a 

colony development time course. Microarray data for six time points were obtained from 

Ref. (55). Genes were partitioned into six expression clusters.  
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Figure 3.10: Distribution of expression profiles in each cluster.  

The expression value of each gene was standardized to have a mean of 0 and a standard 

deviation of 2 across the samples Genes were partitioned into clusters using K-means 

clustering. Each colored portion of each bar denotes the percent of genes in that cluster 

that belong to the corresponding expression profile. A. Distribution of expression 

profiles during sexual development. RNAseq data were obtained from [52]. Genes 

were partitioned into seven expression clusters B. Distribution of expression profiles 

during conidial germination. RNAseq data were obtained from [53]. Genes were 

partitioned into eight expression clusters. C. Distribution of expression profiles during 

conidiation. Microarray data were obtained from [54]. Genes were partitioned into seven 

expression clusters. D. Distribution of expression profiles during colony development. 

Microarray data were obtained from [55]. Genes were partitioned into six expression 

clusters.   
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Figure 3.11: Model showing predicted pathway(s) for genes that co-cluster with the 

ERK MAPK genes in Cluster 40.  

The MAK-1 and MAK-2 ERK MAPK cascade genes are represented by green and red 

shading, respectively. S. cerevisiae interaction data for genes in Cluster 40 were obtained 

from www.yeastgenome.org. Physical interactions, genetic interactions, or physical and 

genetic interactions between the indicated genes/gene products in yeast are shown by 

yellow, blue, or green lines, respectively. Genes with known interactions in N. crassa are 

connected by black lines. Genes that interact with the MAK-1 cascade kinases are shaded 

in yellow, while those that interact with components of the MAK-2 pathway are indicated 

with blue shading. Genes with no ortholog in yeast and no known interaction in N. crassa 

are represented by the white rectangles.  
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Figure 3.12: Model for predicted pathway(s) including genes that co-cluster with the 

p38 MAPK genes in Cluster 34.  

The OS-2 MAPK cascade genes are represented by red rectangles. S. cerevisiae 

interaction data for genes in Cluster 34 were obtained from www.yeastgenome.org. 

Physical interactions, genetic interactions, or physical and genetic interactions between 

the indicated genes/gene products in yeast are indicated by yellow, blue, or green lines, 

respectively. Genes with known interactions in N. crassa are connected by black lines. 

Genes that interact with the OS-2 cascade kinases are represented by blue rectangles. 

Genes with no known interaction in N. crassa or S. cerevisiae are represented by the 

white rectangles. 
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Table 3.1: Comparison of results using iterations of Partitioning around Medoids (PAM) 

Weightc Number 

of 

clusters 

Average % consensusa 
Average relative standard 

deviation (RST)b 

C # 
C 

morph. 
PP # 

PP 
morph. 

P # 
P 

morph. 
A # 

A 

morph. 

Average % 

consensus 

overall 

Basal 

hyphae 

growth 

rate 

Aerial 

hyphae 

height 

Average 

RST 

overall 

0 18 91.72 94.20 93.74 94.23 95.27 93.34 96.35 98.32 95.06 26.76 34.12 13.20 

0 19 92.16 94.50 94.05 94.51 95.45 93.66 96.48 98.39 95.29 25.33 32.54 12.76 

0 20 92.50 94.78 94.35 94.79 95.68 93.92 96.66 98.47 95.52 24.62 30.43 12.36 

0 21 93.02 95.19 94.61 95.05 95.88 94.21 96.81 97.03 95.54 28.30 31.30 13.09 

1 31 95.92 96.57 93.46 94.99 95.70 95.39 97.32 98.73 96.06 19.80 24.13 11.02 

1 32 95.22 96.66 94.40 95.98 95.84 95.53 97.40 98.80 96.37 20.18 24.55 10.474 

1 33 95.67 97.05 94.57 96.11 95.97 95.67 97.47 97.95 96.40 22.57 25.24 10.92 

2 32 96.23 94.89 94.05 95.04 94.22 95.51 98.76 98.82 95.90 17.52 26.50 10.88 

2 33 96.35 95.05 94.20 95.19 94.31 95.64 98.79 98.86 96.01 16.91 25.83 10.67 

2 34 95.45 95.24 94.99 96.82 94.47 95.77 98.82 98.89 96.43 17.55 26.30 10.22 

2 35 95.15 94.62 95.00 96.91 93.95 94.98 98.03 98.09 95.94 18.98 25.30 11.19 

3 29 96.20 96.09 93.25 94.20 92.63 95.26 95.53 97.62 94.94 13.77 27.67 10.82 

3 30 96.37 96.22 93.47 94.39 92.88 95.3 95.67 97.70 95.10 13.43 26.61 10.60 

3 31 97.45 97.64 91.71 94.52 94.39 94.5 95.14 96.63 94.87 15.60 27.08 10.98 

3 32 97.45 97.29 92.26 94.54 93.62 93.38 95.46 96.91 94.78 15.45 27.69 11.41 

3 33 96.92 96.53 92.41 94.65 93.28 92.81 95.29 96.69 94.52 17.58 26.11 12.14 

4 32 90.89 94.99 93.99 95.11 94.39 94.23 94.57 97.20 94.93 14.23 18.81 11.42 

4 33 90.50 94.98 93.99 94.80 94.13 93.80 94.40 97.37 94.78 14.21 19.08 11.96 

4 34 90.78 94.78 94.10 94.83 94.76 94.13 94.97 97.46 95.01 14.10 20.18 11.75 

4 35 90.82 94.93 94.27 94.98 94.91 94.23 95.11 97.53 95.14 13.78 19.68 11.57 

5 36 85.84 95.66 94.14 95.40 95.38 93.87 94.33 97.42 95.17 14.09 13.44 11.26 

5 37 85.28 95.45 94.18 95.41 95.51 94.04 94.48 97.49 95.22 13.99 12.45 11.22 

5 38 85.18 95.55 94.88 95.63 94.53 94.15 94.03 97.55 95.19 13.90 12.05 11.20 

5 39 84.56 95.62 95.24 96.70 94.67 94.30 94.18 97.61 95.48 13.93 12.46 11.00 

5 40 84.36 95.37 96.40 96.26 94.37 94.01 94.33 97.67 95.49 13.80 12.71 10.96 

6 39 89.07 95.73 94.33 94.58 93.57 93.70 93.89 97.39 94.03 14.11 11.64 11.03 

6 40 89.64 95.83 94.22 94.71 93.73 93.86 94.04 97.45 94.19 13.94 11.86 10.98 
aAverage percent consensus - For each cluster the category that was most prevalent was determined and represented as a percent. Then each cluster’s most prevalent category was used to 

create a trait average  
bAverage relative standard deviation - For continuous variables, the standard deviation for each cluster was calculated and then divided by the cluster mean to determine the relative standard 

deviation cWeight - Each phenotype was assigned a specific weight relative to the other traits when creating the Gower’s distance matrix. The phenotypes are in the order as shown in Table 1 

No weight = (1,1,1,1,1,1,1,1,1,1); Weight 1 = (1,1,1,1,1,1,1,1,2,2); Weight 2 = (1,0.5,1,0.5,1,0.5,1,0.5,2,2); Weight 3 = (2,2,1,1,1,1,1,1,6,2); Weight 4 = (0.5,0.5,1,1,1,1,1,1,6,5); Weight 5 = 

(1,1,1,1,1,1,1,1,6,4); Weight 6 = (1,1,1,1,1,1,1,1,6,6).  

Column labels are as follows: conidial number (C #), conidial morphology (C morph.), protoperithecial number (PP #), protoperitheicial morphology (PP morph.), perithecial number (P #), 

perithecial morphology (P morph.), ascospore number (A #), ascospore morphology (A moprh.).
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Table 3.2: Phenotype summary for 40 PAM clusters 

Cluster # 
# of genes in 

cluster 

% Mutants with same phenotypea 

Basal hyphae 

growth rate 

Aerial hyphae 

height 
C # C morph. PP # PP morph. P # P morph. A # A morph. 

1 28 75% N-A 57% N-H 93% N 100% N 100% N 100% N 100% N 100% N 100% N 100% N 

2 10 90% R 80% R 100% N 100% N 100% NF 100% NF 100% NF 100% NF 100% NF 100% NF 

3 171 94% N-L 95% N-A 99% N 100% N 100% N 100% N 100% N 99% N 100% N 100% N 

4 82 88% N-A 85% N-A 98% N 100% N 100% N 100% N 100% N 100% N 100% N 100% N 

5 73 100% SL-R 93% R 100% N 100% N 99% N 100% N 100% N 100% N 100% N 100% N 

6 23 100% R 96% R 100% N 100% N 96% N 100% N 100% N 100% N 100% N 100% N 

7 130 100% SL-R 96% N-A 99% N 100% N 100% N 100% N 100% N 99% N 99% N 100% N 

8 38 100% R 100% R 97% N 97% N 97% N 100% N 97% N 100% N 100% N 100% N 

9 82 80% N-L 95% R 100% N 100% N 100% N 99% N 99% N 100% N 95% N 100% N 

10 8 62% SR 75% N-A 75% N 100% N 88% N 100 % N 62% N 88% N 75% N 100% N 

11 8 50% SL-R 88% R 100% N 100% N 100% N 75% N 88% NF 88% NF 100% NF 100% NF 

12 8 88% R 88% R 100% R 88% N 62% N 50% N 88% NF 88% NF 100% NF 100% NF 

13 12 50% R 58% R 75% R 92% N 92% R 100% N 92% R 92% N 83% R 83% N 

14 9 V 89% N-A 89% N 100% N 89% N 100% N 67% N 78% N 100% NF 100% NF 

15 77 100% SL-R 96% N-A 100% N 100% N 100% N 100% N 97% N 100% N 99% N 100% N 

16 21 Varied 67% N-A 95% N 95% N 86% N 90% N 100% NF 100% NF 100% NF 100% NF 

17 12 100% SR 92% R 92% N 83% N 92% N 100% N 100% N 92% N 92% N 92% N 

18 8 100% SR 88% R 75% N 88% N 88% NF 88% NF 100% NF 100% NF 100% NF 100% NF 

19 25 52% R 100% I 96% N 100% N 100% N 100% N 100% N 100% N 96% N 100% N 

20 19 74% SR 100% R 84% N 95% N 95% N 95% N 100% N 100% N 89% N 100% N 

21 42 100% SL-R 100% R 100% N 100% N 100% N 98% N 100% N 100% N 100% N 100% N 

22 32 100% R 84% N-A 97% N 100% N 97% N 100% N 100% NF 100% NF 100% NF 100% NF 

23 11 82% R 91% R 91% N 100% N 100% NF 100% NF 100% NF 100% NF 100% NF 100% NF 

24 13 85% R 85% R 92% N 92% N 92% N 63% N 100% NF 100% NF 100% NF 100% NF 

25 11 91% R 100% SR 55% R 100% N 100% NF 100% NF 100% NF 100% NF 100% NF 100% NF 

26 15 67% SL-R 100% SR 100% N 100% N 100% N 100% N 100% N 100% N 97% N 100% N 

27 15 Varied 60% N-A 100% N 100% N 80% N 100% N 87% N 87% N 93% R 100% N 

28 15 67% R 100% I 80% N 100% N 93% N 93% N 100% N 93% N 87% N 100% N 

29 9 67% SL-R 78% R 89% N 100% N 89% N 89% N 78% R 89% N 100% NF 100% NF 

30 7 100% SR 100% SR Varied 71% N 100% N 100% N 57% N 86% N V V 

31 36 100% R 92% N-A 97% N 100% N 100% N 97% N 94% N 100% N 94% N 100% N 

32 9 56% SL-R 89% R 100% R 100% N 89% N 100% N 100% N 100% N 100% N 100% N 

33 6 50% R, 50% SR 67% N-A 67% N 67% N 83% R 100% N 83% R 67% Abn B 83% NF 83% NF 

34 12 67% R 83% N-A 83% N 75% N 92% NF 92% NF 100% NF 100% NF 100% NF 100% NF 

35 10 60% SL-R 50% N-A 100% N 100% N 100% R 90% N 90% N 100% N 60% N 100% N 

36 33 V 100% I 88% N 100% N 100% N 100% N 100% N 94% N 100% N 100% N 

37 13 69% R 85% R 92% N 100% N 92% N 92% N 85% N 77% N 100% R 100% N 

38 9 67% R 100% SR 89% N 100% N 89% N 89% N 89% N 100% N 89% N 100% N 

39 5 80% R 60% R 80% N 100% N 100% N 100% N 100% N Varied 100% NF 100% NF 

40 21 100% SR 100% SR 76% R 90% N 90% NF 90% NF 100% NF 100% NF 100% NF 100% NF 

a The value in the cell is the percentage of mutants with the indicated majority phenotype. Varied(V) indicates that no one phenotype was present in more than 50% of the mutants. Normal 

range for growth rate is 75–85 mm/day. 75–77.5 = Normal Low(N-L); 77.6–82.5 = Normal Average(N-A); 82.6–85 = Normal High(N-H); 65–74.9 = Slightly Reduced(SL-R); 40–64.9 = 

Reduced(R); < 40 = Severely Reduced(SR); > 85 = Increased(I). Normal range for aerial hyphae height is 30-45 mm. 35.1–39.9 = Normal Average(N-A); 30–35 = Normal Low(N-L); 40–45 

= Normal High(N-H); 25–29 = Slightly Reduced(SL-R); 15–24.9 = Reduced(R); < 15 = Severely Reduced(SR); > 45 = Increased(I). Sexual cycle phenotypes are as follows: Normal(N), 

Reduced(R), Not Formed(NF),  variable(V), and Abnormal beaks(Abn B). 
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Chapter 4 

Genetic Relationships Between the RACK1 Homolog cpc-2 and 

Heterotrimeric G Protein Subunit Genes in Neurospora Crassa 
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Contributions to this chapter 

I contributed to this study by helping develop and test the CPC-2 polyclonal antibody. I 

performed the cell fractionation assay that is figure 4.2. I performed the western blot with 

the CPC-2 antibody in figure 3. I captured all images in figure 4.8. I verified the 

genotypes of Δgna-1, Δgna-2, Δgna-3, Δgnb-1, and Δcpc-2. 
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Abstract 

Receptor for Activated C Kinase-1 (RACK1) is a multifunctional eukaryotic 

scaffolding protein with a seven WD repeat structure. Among their many cellular roles, 

RACK1 homologs have been shown to serve as alternative Gβ subunits during 

heterotrimeric G protein signaling in many systems. We investigated genetic interactions 

between the RACK1 homolog cpc-2, the previously characterized Gβ subunit gnb-1 and 

other G protein signaling components in the multicellular filamentous fungus Neurospora 

crassa. Results from cell fractionation studies and from fluorescent microscopy of a strain 

expressing a CPC-2-GFP fusion protein revealed that CPC-2 is a cytoplasmic protein. 

Genetic epistasis experiments between cpc-2, the three Gα genes (gna-1, gna-2 and gna-

3) and gnb-1 demonstrated that cpc-2 is epistatic to gna-2 with regards to basal hyphae 

growth rate and aerial hyphae height, while deletion of cpc-2 mitigates the increased 

macroconidiation on solid medium observed in Δgnb-1 mutants. Δcpc-2 mutants 

inappropriately produce conidiophores during growth in submerged culture and 

mutational activation of gna-3 alleviates this defect. Δcpc-2 mutants are female-sterile 

and fertility could not be restored by mutational activation of any of the three Gα genes. 

With the exception of macroconidiation on solid medium, double mutants lacking cpc-2 

and gnb-1 exhibited more severe defects for all phenotypic traits, supporting a largely 

synergistic relationship between GNB-1 and CPC-2 in N. crassa. 
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Introduction  

Heterotrimeric G protein signaling cascades consist of seven-helix transmembrane 

G Protein Coupled Receptors (GPCRs) and the three G protein subunits—Gα, Gβ and Gγ 

(1–3). In the inactive state, the Gαβγ heterotrimer is associated with the GPCR. Ligand 

stimulation causes exchange of GDP for GTP on the Gα, leading to dissociation of Gα-

GTP from the Gβγ heterodimer. The Gα-GTP and the Gβγ dimer can then regulate 

downstream effectors, leading to changes in cellular physiology (3). The Gα-GTP has 

native GTPase activity that causes release of the inorganic phosphate from the GTP. The 

Gα-GDP then reassociates with the Gβ subunit and GPCR, leading to signal termination 

and completion of the cycle.  

Neurospora crassa is a multicellular ascomycete fungus that has emerged as a 

model system to study G protein signaling, and comparisons with N. crassa have driven 

discoveries in pathogenic fungi and higher eukaryotes (4, 5). In N. crassa, there are 43 

predicted GPCRs, three Gα subunits (GNA-1, GNA-2 and GNA-3), one characterized Gβ 

subunit (GNB-1) and one Gγ subunit (GNG-1) (6, 7). Major processes such as hyphal 

growth, macroconidiation, conidial germination, mating, nutrient sensing and temperature 

and oxidative stress resistance are regulated by G protein signaling pathways in N. crassa 

(8–14).  

Receptor for Activated C Kinase-1 (RACK1) is a major scaffolding protein in 

many eukaryotic systems. Similar to G protein β subunits, RACK1 has a seven WD 

repeat structure, and is one of the best-studied proteins in the WD-repeat family (15). 

Initially identified as a protein that binds to the active conformation of protein kinase C 
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(PKC) βII, RACK1 is now known to be multifunctional (16, 17). For example, RACK1 

allows cross talk between the PKC and Mitogen Activated Kinase (MAP) pathways by 

acting as a scaffold for the Jun N-terminal Kinase (JNK) upon stimulation, leading to 

PKC-mediated phosphorylation and activation of JNK (18). It has been observed that 

RACK1 binds to the Gβγ dimer in HEK293 cells and also regulates a subset of its 

functions, including promoting its dislocation from the cytosol to the membrane (19). 

Additionally, RACK1 is known to associate with the 40S subunit of the ribosome, near 

the mRNA exit channel (20). Due to its conformation when bound to the ribosome, 

RACK1 is believed to serve as an adaptor, bringing together proteins at the ribosome 

during translation (reviewed in (15)).  

Homologs of RACK1 have been implicated as alternative Gβ subunits in the 

fungal kingdom, through direct interaction with Gα subunits (21, 22). In Saccharomyces 

cerevisiae, Asc1p functions as a Guanine nucleotide Dissociation Inhibitor (GDI) for the 

Gα Gpa2, and is involved in regulating glucose responsiveness through its binding to 

adenylyl cyclase (Cyr1) (23). gib2, an essential gene in Crytpococcus neoformans, 

encodes a protein that binds to the Gα Gpa1 and two Gγ subunits, Gpg1 and Gpg2. It also 

associates with Smg1, a downstream target of cAMP signaling, and to the protein kinase 

C homolog Pkc1 (24). In Magnaporthe oryzae, the RACK1 ortholog MoMip11 interacts 

with the Gα protein MoMagA and the Regulator of G protein Signaling (RGS) protein 

MoRgs7 to regulate pathogenicity (25, 26).  

Additional RACK1 orthologs have been shown to regulate various aspects of 

growth and development in several fungal systems, but without demonstration of a 
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physical interaction with heterotrimeric Gα proteins. S. pombe Cpc2 plays a role in cell 

cycle regulation and stress responses through ribosomal association (27) and translational 

control of the stress response transcriptional factor Atf1 (27). RACK1 orthologs from 

Aspergillus nidulans and Aspergillus fumigatus have been demonstrated to regulate 

sexual differentiation and asexual growth and development, respectively (28, 29). In 

Ustilago maydis, Rak1 is essential for the transcription of rop1, which is a direct positive 

regulator of the pheromone response factor (prf1), making it essential for mating (30). 

Strains lacking RAK1 also have attenuated filamentation and virulence, and abnormal 

cell morphology (30).  

The N. crassa RACK1 homolog CPC-2 was the first reported RACK1 protein in 

fungi, initially identified as a component of the general amino acid regulation network 

(31). In N. crassa, starvation for a single amino acid leads to an overall derepression of 

all amino acid biosynthetic genes at the level of transcription (32). Loss of the cpc-2 gene 

blocks derepression of amino acid biosynthetic genes during amino acid limiting 

conditions (31). Under non-starved conditions, loss of the cpc-2 gene decreases growth 

by 50% (33). During the sexual cycle, the Δcpc-2 mutant lacks protoperithecia, and is 

female-sterile (33). Other components of this cross pathway control network are cpc-1, 

homologous to GCN4 (34), and cpc-3, the N. crassa equivalent of GCN2 (35). Analysis 

of Δcpc-2 Δcpc-3 and Δcpc-2 Δcpc-1 double mutants showed that they possessed Δcpc-2 

phenotypes, such as reduced growth and female sterility. These findings suggested that 

cpc-2 has broader functions operating outside of amino acid control (35).  
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To-date, no one has explored a possible function for CPC-2 in G protein signaling 

in N. crassa. In this study, we use strains carrying single and double gene deletions or 

expressing constitutively activated Gα alleles to analyze genetic epistasis between 

components of the G protein pathway and the cpc-2 gene. We produce a polyclonal 

antibody against CPC-2 and use western analysis to determine protein levels in the 

mutants lacking the other G protein subunits. Our results reveal that N. crassa mutants 

lacking both predicted Gβ subunits are viable, but possess major defects in growth and 

development. We also provide evidence for G protein dependent and independent 

functions for CPC-2 in N. crassa. 

 

Materials and Methods 

Strains and media. N. crassa strains were either obtained from the Fungal Genetics 

Stock Center (FGSC; Kansas State University, Manhattan, KS) (36) or created during this 

work (Table 1). Strains that are not deposited in the FGSC collection are available upon 

request. Strains were cultured in Vogel’s minimal medium (VM) (37) to propagate 

vegetative hyphae or asexual spores (macroconidia; conidia). Synthetic Crossing Medium 

(SCM) plates containing 1% agar were used to induce development of female sexual 

reproductive structures (38). Sorbose-containing medium (FGS) was used to facilitate 

colony formation on plates (39). Media was supplemented with 100 μg/ml of histidine, 

10 μg/ml pantothenate, 200 μg/ml hygromycin (Calbiochem, San Diego, CA), 200 μg/ml 

nourseothricin (Werner BioAgents, Germany) or 400 μg/ml phosphinothricin (purified 
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from Finale, Farnam Companies, Inc., Phoenix, AZ), where indicated. Conidia were 

propagated in VM agar flasks as described previously (39). Liquid cultures were brought 

to a concentration of 1x106 conidia/ml and incubated with shaking at 200 RPM at 30˚C 

for 16 hr. Escherichia coli strain DH5α was used to maintain all plasmids.  

 

Phylogenetic analysis. Protein sequences orthologous to N. crassa CPC-2 (NCU05810) 

and GNB-1 (NCU00440) from 18 fungal species chosen to represent a diversity of fungi 

(40) were obtained from the FungiDB database (fungidb.org) (41). Sequences for the Gβ 

and RACK1 proteins from the plant Arabidopsis thaliana were retrieved from the 

National Center for Biotechnology Information (NCBI). The “One-Click Workflow” tool 

at NGPhylogeny.fr (42) was implemented for the phylogenetic analysis. This pipeline 

uses FASTA files to generate a multiple alignment using MAFFT (Multiple Alignment 

using Fast Fourier Transform) (43). Alignments were inspected and proteins from the 18 

species resulted in good alignments for both the Gβ and RACK1. The MAFFT 

alignments were curated using BMGE (Block Mapping and Gathering with Entropy) (44) 

and FastME (Fast Minimum Evolution) (45) was used to produce the tree file. FastME 

uses distance algorithms to infer phylogenies. The final trees were drawn using tools at 

the Interactive Tree of Life (iTOL; itol.embl.de) (46). Species and gene accession 

numbers are in the legend to Fig 1. 

N. crassa strain construction. The Δcpc-2::hphR knockout mutant was deposited at the 

FGSC as a heterokaryon (FGSC13695). Homokaryotic mutants were obtained from the 
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heterokaryon after a sexual cross to wild type strain 74-OR23-1VA and plating 

ascospores on medium containing hygromycin. Progeny were checked using diagnostic 

PCR (47) with cpc-2 (Primer 1 or Primer 2) and hph (Primer 13 or Primer 14) primers 

(Table 4.2), and then spot-tested on phosphinothricin to check for the presence of the 

mus-51 mutation, which is marked with bar (48, 49). Double mutants Δcpc-2, Δgna-1; 

Δcpc-2, Δgna-2 and Δcpc-2, Δgna-3 were made using genetic crosses between single 

mutants (39) (Table 1). In cases where both single mutants in the cross were female-

sterile (Δcpc-2 and Δgna-1), the strain used as the female was a heterokaryon with the 

am1 helper strain (50). The presence of the mutations in the progeny was verified by 

diagnostic PCR using pairs of gene-specific and hph cassette-specific primers (Primers 

1–14 in Table 4.2). 

Repeated attempts to generate a Δcpc-2 Δgnb-1 double mutant through a sexual 

cross were unsuccessful. Therefore, the double mutant was created by electroporation of 

the Δcpc2#6 strain using a knockout cassette for gnb-1, marked with nourseothricin 

resistance (natR) (51). The Δgnb-1 knockout cassette was created using yeast 

recombinational cloning in vector pRS426 (52), with methods previously described (53). 

Primers used to amplify fragments for the construct are listed in Table 2. Primer pairs 15–

16 and 17–18 were used to amplify the 1 kb 5’ and 3’ flanks of gnb-1, respectively, from 

genomic DNA. Primers 19 and 20 were used to amplify the nourseothricin resistance 

marker from plasmid pD-NAT-1 (51). The three purified PCR products plus pRS426 

digested with XhoI and EcoRI were transformed into yeast strain FY834 (54). 

Transformants were selected on FGS plates containing nourseothricin and then checked 
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for the presence of the Δgnb-1::natR mutation using diagnostic PCR with genes specific 

primers (Primers 21 and 22; Table 2). Positive strains were then purified to homokaryons 

using serial streaking of macroconidia (47) and checked again using diagnostic PCR.  

Vectors containing predicted GTPase-deficient, constitutively activating 

mutations gna-1Q204L (pSVK51), gna-2Q205L (pSVK52), and gna-3Q208L (pSVK53) were 

previously made using site-directed mutagenesis (55). Electroporation of N. crassa with 

1–2 μg of pSVK51, pSVK52 or pSVK53 was as previously described (56), using the 

Δcpc2his3A strain as the recipient, with selection on FGS plates without histidine. 

Genomic DNA was extracted from transformants and subjected to Southern analysis for 

gna-1, gna-2 and gna-3 as described (55). Transformants determined to have a single 

integration event of the transforming DNA at the his-3 locus were purified to 

homokaryons using microconidiation (57) or serial streaking of macroconidia (47) on 

FGS plates lacking histidine. Genomic DNA was extracted from these strains and 

analyzed using diagnostic PCR to confirm genotypes. 

 A vector was produced to allow expression of a GFP-tagged version of cpc-2 in 

trans to the wild-type copy. The vector backbone (pRS426PVG) (58) was assembled in 

plasmid pRS426 using yeast recombinational cloning (53). The fragments included a 

region 1kb 5’ of the pan-2 ORF, the ccg-1 promoter amplified from pMF272 (59), a 

multiple cloning sequence, a 5xGlycine linker, a V5-tag, GFP sequence amplified from 

pMF272 (59), the bar gene, amplified from vector pTJK1 (60) and a 1 kb fragment 3’ of 

the pan-2 ORF (58). All fragments were amplified using Phusion High-Fidelity DNA 

Polymerase (New England Biolabs, Ipswich, MA). The pan-2 flanking sequences allow 
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targeting to, and deletion of, the pan-2 ORF, resulting in pantothenate auxotrophy. The 

final expression construct for CPC-2 was produced by insertion of the cpc-2 ORF 

(amplified using Primers 27 and 28; Table 4.2) into vector pRS426PVG (linearized using 

PacI) using yeast recombinational cloning (53). Vector pRS426PVG-CPC2 was 

transformed using electroporation into N. crassa strain 51-IV-4 (Table 4.1) (58). 

Transformants were selected on medium containing phosphinothricin and pantothenate 

(58) and screened for the presence of the inserted DNA at the pan-2 locus using PCR. 

Positive strains were crossed to wild-type strain 74-OR23-1VA, and ascospores were 

plated on medium containing phosphinothricin and pantothenate. Progeny were screened 

for panthothenate auxotrophy by spot testing and for the presence of the integrated DNA 

using diagnostic PCR. Strain CPC2-GFP-9-10 was selected for further study (Table 4.1).  

A cpc-2 complemented strain was obtained by crossing the transformants 

expressing GFP-tagged cpc-2 described above to Δcpc-2 mutant strain Δcpc2#11 (Table 

4.1). Ascospores were plated on FGS plates containing hygromycin and pantothenate to 

select strains carrying the Δcpc-2 mutation. Progeny were spot-tested on medium 

containing phosphinothricin and panthothenate, followed by diagnostic PCR, to 

determine those that also carried the cpc-2 GFP trans gene construct at the pan-2 locus. 

Positive strains were tested for the presence of the CPC-2 GFP fusion protein using 

western analysis with CPC-2 antiserum as described below. Strain CPC-2-GFP-13.2 was 

selected for further analysis (Table 4.1). 

Purification of a CPC-2 fusion protein for production of a polyclonal antiserum in 

rabbits. CPC-2 was expressed as an in-frame, N-terminal Maltose Binding Protein 
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(MBP) fusion protein in E. coli and then purified and used as an antigen for antibody 

generation in rabbits. The cpc-2 ORF was cloned as an EcoRI-PstI fragment in E. coli 

vector pMAL-c2X (New England Biolabs). The MBP-CPC-2 fusion protein was 

expressed in E. coli strain K12 ER2508 (New England Biolabs) with induction using 300 

μM IPTG (isopropyl β-D-1-thiogalactopyranoside; Sigma) and the fusion protein purified 

using an amylose resin according to the manufacturer’s recommendations. A polyclonal 

antiserum specific for the MBP-CPC-2 protein was raised in rabbits by Cocalico 

Biologicals, Inc. (Stevens, PA, USA). 

 

Western analysis to confirm genotypes and check protein levels in mutants. Western 

analysis was used to check strains for expression of CPC-2 and the G protein subunits 

GNA-1, GNA-2, GNA-3 and GNB-1. For confirming genotypes, submerged cultures 

were grown, frozen in liquid nitrogen and then pulverized in 2-ml tubes with metal beads 

using a TissueLyser (Qiagen Retsch GbmH, Hannover, Germany) as previously 

described (47). Subsequently, 500–800 μl of extraction buffer (10mM TrisCl pH 7.5, 0.5 

mM EDTA, 0.1% Fungal Protease Inhibitor Cocktail (FPIC), 1 mM PMSF and 1mM 

DTT) was added to the tube, the solution was mixed and then centrifuged at 5000 x g for 

10 min at 4˚C. Protein concentration was determined using the Bradford Protein Reagent 

Concentrate (Bio-Rad, Hercules, CA). Approximately 50 μg of supernatant protein 

(whole cell extract) was loaded onto a 10% SDS-PAGE gel and then transferred to a 

nitrocellulose membrane (GE Water and Process Technologies) (61). For checking G 

protein levels in the Δcpc-2 mutant, cultures were grown and the protein fraction 
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enriched in plasma membranes was isolated as previously described (62). For 

determining CPC-2 protein amount in the G protein mutants, whole cell extracts were 

isolated as previously described (62). The protein concentration in the preparations was 

determined using the Bradford Protein Reagent Concentrate. Aliquots containing equal 

amounts of protein were subjected to SDS-PAGE, and a western blot was prepared as 

described above for confirming genotypes of G protein subunit mutants.  

Western blot membranes were reacted with the CPC-2 antibody at a dilution of 

1:1000 or antiserum raised against GNA-1, GNA-2, GNA-3 or GNB-1 at dilutions of 

1:2000 (55, 56, 63, 64). Blots were then incubated with a goat anti-rabbit antibody 

horseradish peroxidase conjugate (Bio-Rad; 1:10,000 dilution). Chemiluminescent 

detection was performed as previously described (61) using the Super Signal West Pico 

Plus kit (Thermo Fisher, Rockford, IL). Western blots presented in figures are 

representative of three biological replicates. 

 

Phenotypic analysis. Quantitative assays for aerial hyphae height and growth rates of 

basal hyphae and qualitative analysis of female fertility were performed as described 

previously (6, 65). Twelve biological replicates were obtained for aerial hyphae height 

and four were used for basal hyphae growth rate calculations. Investigation of hyphal 

morphology and conidiation in submerged cultures and conidial germination on solid 

medium were conducted as described previously (55, 66) and the results shown are 

representative of 2–3 biological replicates. Because the Δcpc-2 gna3Q208L strain 
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KAB3210 does not produce appreciable macroconidia, 200 microliters of packed aerial 

hyphae were used to inoculate submerged cultures for this strain. For quantifying 

macroconidia, strains were inoculated in 13x100mm glass slant tubes containing 3 ml of 

VM agar medium and incubated for 4 days in the dark at 30˚C and 3 days in light at room 

temperature. Macroconidia were collected from tubes by adding 2 ml water, mixing 

vigorously using a vortex mixer and filtering through Handiwipes into a 15 ml conical 

tube using a small funnel. This step was repeated twice, once using a wooden stick to 

dislodge residual macroconidia from the glass tube prior to vortexing and filtering. 

Macroconidia were pelleted by centrifugation and the water aspirated. Water was added 

to an appropriate volume and the absorbance read at 600nm using a spectrophotometer. 

The readings for different strains were all normalized to the same volume (1 ml) to yield 

a macroconidial concentration expressed as OD600/ml. Eight biological replicates were 

obtained.  

GraphPad Prism 6.0 (GraphPad Software Inc., La Jolla, CA) was used to analyze 

quantitative traits (hyphal growth rate, aerial hyphae height and conidia abundance). 

Grubb’s Q test was utilized to detect and eliminate outliers and then the Ordinary One-

Way ANOVA test was used for detecting statistical significance. The p-value cutoff was 

set to 0.05, confidence intervals were 95% and pair-wise comparisons were made. Graphs 

were created using Microsoft Excel (Microsoft, Redmond, WA).  
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CPC-2 localization experiments. Two approaches were undertaken to determine the 

intracellular localization of the CPC-2 protein: cell fractionation studies using 

centrifugation with a wild-type strain and live-cell microscopic imaging of a strain that 

produces GFP-tagged CPC-2. Cell fractionation of a whole cell extract of strain 74-

OR23-IVA (Table 4.1) was performed as described (55). Fractions containing whole cell 

extract, cytosol, and the particulate fraction (membranous organelles and large 

macromolecular structures) were isolated. The volumes of the cytosol and particulate 

fractions were adjusted to the same total volume as the original whole cell extract to 

allow comparison. The protein concentration of the whole cell extract was determined 

using the Bradford Protein Reagent Concentrate (Bio-Rad). Aliquots containing a volume 

identical to that containing 50 μg of protein from the whole cell extract were subjected to 

SDS-PAGE and gels were blotted onto nitrocellulose membranes. Antibody to 

arginase/AGA (cytosolic marker) (67) was used at a dilution of 1:10,000 and the plasma 

membrane ATPase/PMA-1 (plasma membrane marker; gift from Kenneth Allen and 

Clifford Slayman) (68) was used at a dilution of 1:3000. Westerns shown in figures are 

representative of four biological replicates. Fluorescence microscopy of the CPC-2-GFP-

9-10 strain was conducted essentially as described (66). The germinating conidia were 

visualized using differential interference microscopy on an Olympus IX71 inverted 

microscope (Olympus America) with a 60X oil immersion objective. For visualization of 

GFP fluorescence, the GFP laser was used for excitation at 400 nm. Images were 

captured using a QIClickTM digital CCD camera (QImaging Surrey, British Columbia, 

Canada). 
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Results  

N. crassa CPC-2 is homologous to predicted RACK1 proteins from other fungi. N. 

crassa CPC-2 is 316 amino acids in length and was previously reported to have 70% 

percent identity with RACK1 proteins (33). N. crassa CPC-2 and GNB-1 each possess 

seven WD-40 repeats and share 39% similarity and 24% identity at the protein level. In 

order to investigate the relationships between CPC-2, GNB-1 and RACK1 and Gβ 

subunit proteins from other fungi, we subjected orthologous sequences from 18 fungal 

species to multiple sequence alignment and tree rendering (See Materials and methods for 

details). Gβ and RACK1 orthologs from the plant Arabidopsis thaliana were included as 

outgroups for the analysis. The fungal species include representatives from the 

Ascomycota (nine species), Basidiomycota (four species), Chytridiomycota (two species) 

and Mucoromycota (three species) (40). Two of the species from the Mucoromycotina 

possessed multiple orthologs of both GNB-1 and CPC-2, and all proteins were included 

in our analysis.  

The results for the Gβ group showed that the proteins from N. crassa and the 

other Ascomycete filamentous fungi (Sordaria macrospora, Fusarium graminearum, 

Botrytis cinerea, Magnaporthe oryzae and Aspergillus nidulans) cluster together and are 

more closely related to proteins from Basidiomycetes (Ustilago maydis, Cryptococcus 

neoformans, Sporisorium reilianum and Puccinia graminis f. sp. tritici), 

Chytridiomycetes (Batrachochytrium dendrobatidis and Spizellomyces punctatus) and 

Mucoromycetes (Phycomyces blakesleeanus and Mucor circinelloides f. lusitanicus) than 

to the three Ascomycete yeasts (Saccharomyces cerevisiae, Candida albicans and 
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Schizosaccharomyces pombe) (Figure 4.1A). These relationships are in keeping with our 

previous observations that a heterotrimeric Gα subunit from N. crassa (GNA-3) is more 

closely related to proteins from filamentous Ascomycetes and Basidiomycetes than to 

those from S. cerevisiae or S. pombe (69). We also noted that each of the GNB-1 

orthologs from M. circinelloides f. lusitanicus cluster with 1–2 orthologs from P. 

blakesleeanus, consistent with an ancient duplication event in an ancestor of these two 

species and later divergence (Figure 4.1A). Evidence supporting genome duplication in 

these species has been previously published (70).  

In contrast to the Gβ orthologs, the RACK1 proteins distribute into two major 

clades, with one corresponding to all of the Ascomycetes (including N. crassa) and the 

other containing the Basdiomycetes, Mucoromycetes and Chytridiomycetes (Figure 

4.1B). In the case of the two Mucoromycete species, the RACK1 proteins from each 

species have the other protein from the same species are their closest neighbor on the tree 

(Figure 4.1B). This suggests a more recent gene duplication event for the RACK1 

orthologs that occurred after divergence of these two species. 

 

CPC-2 is a cytoplasmic protein. We utilized two independent methods to assess 

subcellular localization of CPC-2. First, differential centrifugation was performed on 

protein extracts from wild type and the fractions subjected to western analysis using 

antibodies to marker proteins and CPC-2. Since there was no antibody for CPC-2 

available prior to our study, we first expressed and purified an MBP-CPC2 fusion protein 
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from E. coli and used the protein to produce polyclonal antisera in rabbits (see Materials 

and methods for details). Tests of the serum showed that it recognized a protein of the 

predicted molecular mass of CPC-2 (~35 kDa) in whole cell extracts from wild type.  

For the differential centrifugation approach, we generated whole cell extracts, and 

samples enriched for cytosol and the particulate fraction (membranous organelles and 

large macromolecular assemblies). Western analysis was performed using antibodies 

directed against arginase/AGA (cytosolic marker) (67) and the plasma membrane 

ATPase/PMA-1 (plasma membrane marker) (68), with the results showing good 

separation of the fractions (Figure 4.2A). Some contamination of the cytosolic fraction 

with plasma membranes (but not vice-versa) is evident from the presence of trace 

amounts of PMA-1 in the cytosol and the absence of the AGA from the particulate 

fraction. Western analysis using the CPC-2 antibody demonstrated that the great majority 

of CPC-2 was localized to the cytoplasm, with a small amount in the particulate fraction.  

As an alternative method, we implemented fluorescence microscopy to determine 

the subcellular localization of CPC-2 in a strain expressing a GFP-tagged version of the 

protein (Figure 4.2B). The CPC-2-GFP signal was localized in the cytoplasm and 

excluded from the nucleus (as represented by DAPI staining) in both macroconidia and 6 

h germlings (Figure 4.2B). Thus, both subcellular fractionation and live-cell imaging 

approaches support a cytoplasmic localization for CPC-2 in N. crassa.  
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Creation of mutants lacking cpc-2 and G protein subunit genes and analysis of G 

protein levels in Δcpc-2 strains. We have previously demonstrated that components of 

the G protein signaling pathway are crucial for hyphal growth and asexual and sexual 

development of N. crassa (8, 11, 61, 71–73). In order to explore a possible role for cpc-2 

as a heterotrimeric Gβ gene in N. crassa, we created strains that could be used for genetic 

epistasis analysis. We previously employed a similar approach for analysis of genetic 

relationships between the Gβ gnb-1 and the three Gα subunit genes (55). We first purified 

Δcpc-2 homokaryotic knockout mutants from a transformant created during the 

Neurospora Genome Project (53, 74) (see Materials and methods). We constructed 

complemented strains carrying the Δcpc-2 mutation and a pan-2 targeted, GFP tagged 

version of the cpc-2+ gene in trans (see Materials and methods and Table 4.1). The 

complemented strains exhibited significant complementation of several phenotypes, 

including hyphal growth rate (Figure 4.3) and partial complementation of aerial hyphae 

height (Figure 4.3). We used sexual crosses or transformation to generate deletion 

mutants lacking cpc-2 alone or in combination with mutations in the three Gα genes or 

the Gβ, gnb-1. We also constructed Δcpc-2 strains expressing GTPase-deficient, 

constitutively activated Gα alleles (gna-1Q204L, gna-2Q205L or gna-3Q208L; see Materials 

and methods and Table 4.1).  

We have previously shown that, depending on the growth conditions, loss of the 

Gβ subunit gnb-1 leads to lower levels of one or all three Gα proteins in N. crassa (55, 

61, 64). The exact mechanism underlying this regulation is unknown, but appears to be 

post-transcriptional, as Gα mRNA levels are normal in Δgnb-1 mutants (61, 64). 
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Therefore, prior to initiating genetic epistasis experiments with cpc-2, we utilized western 

blot analysis with protein-specific antisera to check levels of G protein subunits in the 

Δcpc-2 mutant (Figure 4.4). The results demonstrate that in contrast to gnb-1, loss of cpc-

2 does not greatly influence levels of the three Gα proteins or GNB-1 (Figure 4.4; 

compare wild type and Δcpc-2 lanes). However, Gα protein levels are still reduced when 

gnb-1 is mutated in the Δcpc-2 background (Figure 4.4). We also consistently noted an 

increased level of GNA-3 in the Δcpc-2 Δgnb-1 double mutant vs. the Δgnb-1 single 

mutant, suggesting that loss of cpc-2 partially reverses the effect of the Δgnb-1 mutation. 

The observation that the Δcpc-2 single mutant has normal levels of G protein subunits 

greatly streamlines interpretation of genetic epistasis experiments using cpc-2.  

We next wanted to determine whether loss of any of the G protein subunits affects 

CPC-2 protein levels. Because CPC-2 is a cytoplasmic protein (Figure 4.2), we used 

protein from whole cell extracts for western analysis using the CPC-2 antiserum (Figure 

4.4). The results demonstrated that CPC-2 protein levels were relatively normal in the G 

protein single mutants (Fig 3). Thus, similar to the situation with GNB-1 levels in the 

Δcpc-2 strain, CPC-2 levels are not affected by loss of gnb-1; the two predicted Gβ 

proteins are independent of one another in this regard. Our findings suggest that if CPC-2 

does operate as a Gβ subunit, it does not share all functions with GNB-1 in N. crassa.  

cpc-2 is epistatic to gna-2 during regulation of basal hyphal growth rate. N. crassa 

grows by elongation, branching and fusion of hyphae, eventually forming a network 

structure called the mycelium (rev. in (75). From this mycelium, aerial hyphae grow 

upward and spore-forming structures (macroconidiophores) are elaborated from their tips. 
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Formation of cross-walls and constriction of macroconidiophores leads to formation of 

the mature multinucleated asexual spores, macroconidia. Macroconidia are disseminated 

in nature by wind currents, enabling the fungus to colonize new areas. When in the 

presence of water and suitable nutrients, macroconidia germinate to form a hyphal tube, 

which then begins the growth program described above (75).  

We began our genetic epistasis analysis by investigating the set of mutants for 

defects in basal hyphae extension rate, using macroconidia to inoculate race tubes (see 

Materials and methods). The results from genetic epistasis analysis were interpreted as 

reported previously (55): If the phenotype of the Δcpc-2, ΔGα double mutant resembles 

the phenotype of the ΔGα mutant, and if the mutationally activated Gα allele bypasses the 

phenotype of Δcpc-2, then the Gα gene is epistatic to (implied downstream) to cpc-2. If 

the opposite is true, then cpc-2 is epistatic to the Gα gene. If contradicting results are 

seen, this is interpreted as the two genes being partially or completely independent in 

regulation of the phenotype being assessed.  

All of the single gene mutants had a basal hyphal growth rate phenotype (Fig 4.5). 

In Δcpc-2 mutants, the growth rate was 61% of wild type (Figure 4.5). The findings from 

ANOVA of the characterized strains revealed several relationships. First, cpc-2 may 

operate downstream of gna-2. Both mutants are significantly different than wild type, the 

double mutant grows slower than Δgna-2, but slightly faster than Δcpc-2, and mutational 

activation of gna-2 (gna-2Q205L allele) does not lead to an increase in growth rate in the 

Δcpc-2 background. Second, the Δgna-1 and Δcpc-2 knockout mutations are synergistic 

with regards to reduction in growth rate, and mutational activation of gna-1 does not 
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rescue the Δcpc-2 phenotype; in fact, the growth rate is further reduced in the Δcpc-2 

gna-1Q204L strain. The same relationships hold between gna-3 and cpc-2. These results 

suggest that cpc-2 regulates growth rate using a different pathway than gna-1 or gna-3. 

Finally, Δcpc-2 and Δgnb-1 are also synergistic, with the double mutant having a 

significantly slower growth rate than either single mutant (Figure 4.5). This suggests that 

these two Gβ-like genes have some independent functions during regulation of hyphal 

growth in N. crassa.  

We have previously demonstrated that strains lacking either of the G protein 

subunit genes gna-1 and gna-3, but not gna-2 or gnb-1, have a defect in germination of 

macroconidia, an essential step prior to hyphal growth and formation of a colony (66). 

Therefore, we explored this phenotype in Δcpc-2 mutants, using wild type as a control 

(Figure 4.6). Similar to Δgnb-1 mutants, strains lacking cpc-2 are normal with respect to 

germination of macroconidia (Figure 4.6). Thus, overall colony size of Δcpc-2 mutants is 

compromised by slower extension of basal hyphae, and not by a defect in germination of 

macroconidia.  

cpc-2 is epistatic to gna-2 with regards to aerial hyphae height and Δcpc-2 mitigates 

the increased macroconidia production of Δgnb-1 mutants on solid medium. We next 

explored epistatic relationships between cpc-2 and the other genes for two quantitative 

traits relevant to macroconidiation: aerial hyphae height and macroconidia abundance. 

Similar to the case for basal hyphae growth rate, all of the single gene deletion mutants 

had an aerial hyphae height defect (Figure 4.7A). For Δcpc-2, aerial hyphae heights were 

69% of wild type (Figure 4.7A).  
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ANOVA of the strain set produced results similar to those noted for basal hyphae, 

above. The aerial hyphae height of the Δcpc-2 and Δcpc-2 Δgna-2 double mutants is 

significantly less than that of the Δgna-2 single mutant and the Δcpc-2 gna-2Q205L strain 

is similar to the Δcpc-2 single mutant (Figure 4.7A). This result is consistent with cpc-2 

functioning downstream of gna-2 to control aerial hyphae height. In contrast, gna-1 and 

cpc-2 appear to be independent; the double mutant has shorter aerial hyphae than either 

single mutant and introduction of gna-1Q204L does not rescue the aerial hyphae defect of 

Δcpc-2 (Figure 4.7A). Δgna-3 mutants are shorter than Δcpc-2 and the double mutant is 

similar to Δgna-3 (Figure 4.7A). However, the finding that aerial hyphae height is not 

rescued by the gna-3Q208L allele in the Δcpc-2 background supports independent 

regulation by these two subunits. Δcpc-2 and Δgnb-1 mutants have similar aerial hyphae 

height and the double mutant is shorter (Figure 4.7A). As observed for regulation of basal 

hyphal growth, this finding supports independent signaling by cpc-2 and gnb-1 during 

control of aerial hyphae height in N. crassa.  

Quantitative analysis of macroconidia production in agar slants did not reveal a 

phenotype for Δcpc-2 mutants (Figure 4.7B). In fact, of the single mutants analyzed, only 

Δgnb-1 possessed a phenotype (greater conidia production; Figure 4.7B) and the 

phenotype of the Δcpc-2 Δgnb-1 double mutant was similar to that of Δcpc-2 (like wild 

type). This suggests that loss of cpc-2 mitigates the overproduction of conidia observed in 

the Δgnb-1 mutant, and that cpc-2 is epistatic to gnb-1. For the Gα subunit double 

mutants, Δcpc-2 Δgna-3 produces fewer conidia than either single mutant and 

differentiation of macroconidia is nearly halted in the Δcpc-2 gna-3Q208L strain (Figure 
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4.7B). These results support independence of cpc-2 and gna-3 during regulation of 

macroconidiation. A similar situation exists for gna-2, as the Δcpc-2 Δgna-2 double 

mutant and the Δcpc-2 gna-2Q205L strain produce fewer conidia than either single mutant 

(Figure 4.7B). With gna-1, the double mutant is similar to the single mutants, but the 

Δcpc-2 gna-1Q204L mutant produces less macroconidia, consistent with independence 

(Figure 4.7B). The results from analysis of strains carrying the three mutationally 

activated Gα alleles suggest that all three Gα proteins inhibit macroconidiation when 

locked in the GTP-bound form.  

Δcpc-2 mutants produce macroconidia in submerged cultures. Wild-type N. crassa 

strains do not differentiate macroconidia while growing in shaken submerged culture 

unless subjected to heat shock, nitrogen or carbon starvation (76–80). We have 

previously demonstrated that loss of the G protein subunits gna-3, gnb-1 and gng-1 leads 

to macroconidiation in submerged culture under all conditions (61, 64, 69), while Δgna-1 

mutants only form macroconidia at high inoculation cell density (>=3x106 /ml) in liquid 

culture (81). Based on the precedent that the Gβ gene gnb-1 is a negative regulator of 

macroconidiation in submerged cultures, we analyzed our group of strains for phenotypes 

at a low inoculation density (1x106 /ml). Similar to previous findings, wild type and 

Δgna-2 mutants do not produce macroconidiophores in submerged culture, while single 

mutants lacking gna-3, gnb-1 and gng-1 all produce abundant macroconidiophores 

(Figure 4.8). Rare macroconidiophores could also be observed in the Δgna-1 strain. We 

also noted that Δcpc-2 knockout mutants produce macroconidiophores in submerged 

culture (Figure 4.8). Double mutants Δcpc-2 Δgna-1, Δcpc-2 Δgna-2, Δcpc-2 Δgna-3 and 
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Δcpc-2 Δgnb-1 all produce conidia in submerged culture. In all four cases, loss of cpc-2 

either leads to submerged conidiation or intensifies the conidiation phenotype of the G 

protein subunit mutants and the Δgna-3 Δcpc-2 double mutant cultures are mostly 

conidia (Figure 4.8). Interestingly, introduction of mutationally activated gna-3 corrects 

the submerged conidiation phenotype of Δcpc-2, while the corresponding activated 

alleles of gna-1 or gna-2 do not (Figure 4.8). This result suggests that GNA-3 may 

operate downstream of CPC-2, but also has a CPC-2 independent function in controlling 

submerged conidiation. 

Constitutive activation of Gα subunits does not restore female fertility to the Δcpc-2 

mutant. N. crassa is a heterothallic organism, meaning that a given strain has one of two 

different mating type genes present at a single genomic locus (idiomorphs; mat A or mat 

a) (82, 83). Upon nitrogen limitation, N. crassa forms protoperithecia (the female 

reproductive structures) (75, 84). In the presence of a male cell (usually conidia) of the 

opposite mating type, pheromone detection results in chemotropic growth of specialized 

hyphae called trichogynes from the protoperithecium. The fruiting body, or perithecium, 

is then formed and contains asci, each with eight haploid spores (ascospores). Upon 

maturation, ascospores are ejected from the tips (beaks) of perithecia, in the direction of 

light. Under laboratory conditions, protoperithecial development can be induced using 

Synthetic Crossing Medium (SCM), and progeny are obtained from sexual crosses 

approximately 2–3 weeks post-fertilization (75, 84).  

Our previous work showed that the mutationally activated gna-1Q204L, gna-2Q205L 

and gna3Q208L alleles were not able to restore fertility to the Δgnb-1 mutant. In fact, 
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introduction of gna-3Q208L resulted in complete inhibition of protoperithecial 

development, a phenotype that was more severe than that of the Δgnb-1 mutant (55). 

Δgnb-1 ΔGα double mutant strains resemble the Δgnb-1 mutant, in that they form 

protoperithecia, but no perithecia after fertilization (55).  

Muller et al. (33) previously reported that cpc-2 point mutants do not produce 

protoperithecia and are thus female-sterile. In contrast, our results with the Δcpc-2 

knockout mutant indicate some protoperithecia are present, as the cultures produce rare 

perithecia after fertilization that are mostly submerged in the agar (Figure 4.9). This 

phenotype is distinct from that of Δgna-2 and Δgna-3 strains that produce perithecia 

similar to wild type and from Δgna-1 and Δgnb-1 mutants that do not form perithecia 

after fertilization (Fig 4.9).  

Inspection of double mutants revealed that Δcpc-2 Δgna-1 strains do not produce 

visible protoperithecia, perithecia or ascospores (Figure 4.9), a more severe phenotype 

than either single mutant. In contrast, Δcpc-2 Δgna-2 mutants resemble Δcpc-2 single 

mutants. Δcpc-2 Δgna-3 strains exhibit a variable phenotype, with either small, 

submerged perithecia or no visible perithecia (Figure 4.9), and no ascospores. Mutational 

activation of either gna-1 or gna-3 in the Δcpc-2 background leads to no visible 

protoperithecia, perithecia or ascospores, while activation of gna-2 results in the Δcpc-2 

phenotype (Figure 4.9). These results are consistent with synergy between cpc-2 and gna-

1 and gna-3. The phenotype of Δcpc-2 gna-3Q208L and Δgnb-1 gna3Q208L strains are 

similar (55), suggesting a common mode of action for gna-3Q208L and/or interaction 

between GNA-3 and the two candidate Gβ proteins. In contrast, the different results 
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observed after introduction of gna-1Q204L into the two mutants hints at a different role for 

CPC-2 vs. GNB-1 during regulation of female fertility.  

As noted previously, the Δgnb-1 strain forms small, aberrant protoperithecia, but 

no perithecia, upon fertilization (61) (Figure 4.9). In contrast, similar to Δgnb-1 single 

mutants, Δcpc-2 Δgnb-1 double mutants do not produce perithecia (Figure 4.9). This 

result suggests that gnb-1 is epistatic to cpc-2 during sexual development. 

Discussion  

The N. crassa cpc-2 gene is not essential and the encoded protein is similar to 

other RACK1 homologs in fungi. Genetic epistasis between cpc-2 and components of the 

G protein pathway was performed using double deletion mutants and strains containing 

Gα activated alleles (see model in Figure 4.10). The results revealed genetic relationships 

between cpc-2 and gna-2 during growth of basal and aerial hyphae, cpc-2 and gna-3 

during growth in submerged cultures and cpc-2 and gnb-1 in regulation of sexual 

development. In the cases of basal and aerial hyphae growth, the epistatic relationships 

suggest that CPC-2 operates downstream of the Gα protein, implying a tethering function 

for the Gα in regulation of CPC-2. However, the GNA-3 Gα acts downstream of CPC-2 

during submerged culture conidiation, suggesting that the RACK1 protein is holding 

GNA-3 inactive. CPC-2 appears to operate upstream of the Gβ GNB-1 during sexual 

development and to act in an antagonistic function during production of macroconidia in 

agar cultures.  
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Our investigation of epistasis between the three Gα genes and gnb-1 and cpc-2 

revealed some interesting parallels. As mentioned above, the results from the current 

study suggest that gna-3 is at least partially epistatic to cpc-2 during control of 

appropriate conidiation in submerged cultures. This is similar to the earlier relationship 

observed for gnb-1 and gna-3 for this same phenotype, with gna-3 epistatic to gnb-1 (55). 

The other two Gα subunits are independent of both cpc-2 (this study) and gnb-1 (55) 

during the regulation of this trait. This indicates that cpc-2, like gnb-1, is a negative 

regulator of conidiation in submerged culture, and that only activation of gna-3 offers a 

genetic bypass mechanism to restore normal hyphal growth. Our previous results from 

epistasis studies of aerial hyphae height demonstrated that gnb-1 is epistatic to both gna-2 

and gna-3 and independent of gna-1 (55). Together with the current study, the findings 

are consistent with a model in which the Gβ gene lies downstream of the Gα gene(s) and 

that gna-1 is independent of both gnb-1 and cpc-2 during aerial hyphae elongation. 

However, any conclusions based on Δcpc-2 Δgnb-1 double mutants need to be tempered, 

as loss of gnb-1 leads to decreased levels of the three Gα proteins in all genetic 

backgrounds tested.  

It is intriguing that the Δcpc-2 Δgnb-1 double mutants have higher levels of GNA-

3 protein than Δgnb-1 single mutants (but still less than in wild type; Fig 3A). This 

finding suggests that loss of cpc-2 partially mitigates the effects of the Δgnb-1 mutation. 

In a canonical model for G protein signaling, GNB-1 would function as a GDI for GNA-3 

and loss of GNB-1 might lead to misfolding and/or proteolysis of GNA-3. Mutation of 

cpc-2 partially counteracts this effect, suggesting that CPC-2 participates in the pathway 
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leading to decreased levels of GNA-3 protein. Furthermore, the finding that Gα single 

mutants have slower basal hyphae growth rates than wild type and that loss of gnb-1 

leads to lower levels of Gα proteins supports a possible tethering function for GNB-1 

during hyphal growth. Loss of one Gα protein could free more GNB-1 to bind the other 

Gα subunits, potentially inhibiting them from serving as positive regulators of basal 

hyphae growth rate. Along these lines, it has been demonstrated in S. cerevisiae that 

levels of the Gα protein Gpa1p are regulated by ubiquitin-mediated proteolysis, and it has 

been proposed that this is a mechanism used to modulate levels of the active, free Gβγ 

dimer during mating (85, 86).  

Analysis of the sexual cycle demonstrated that the Δcpc-2 forms rare 

protoperithecia and perithecia and is therefore female sterile. In contrast, mutants lacking 

other components of the cross pathway control network (cpc-1 and cpc-3) have normal 

sexual cycles (87, 88). This indicates that the sexual cycle defect of Δcpc-2 mutants is not 

solely due to a defect in the response to amino acid limitation. However, there is a 

possibility that the two processes may be linked. It has been reported in A. nidulans that 

amino acid limitation arrests sexual development (28). Furthermore, loss of the 

RACK1/cpc-2 homolog cpcB or overexpression of the cpc-1 homolog cpcA also block 

sexual development, supporting a link between the sexual cycle program and the network 

that regulates amino acid biosynthesis (28).  

Attempts to detect an interaction between CPC-2 and other G protein subunits in 

N. crassa using the yeast two-hybrid assay were unsuccessful. Presumably due to the 

large number of binding partners, the difficulty in solubilizing peripheral membrane 
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proteins such as Gα subunits, and protein folding concerns with heterologously expressed 

proteins, we were also unable to achieve co-immunoprecipitation between CPC-2 and 

GNB-1 or any of the three Gα proteins using cell extracts or proteins expressed and 

purified from E. coli. A similar result has been reported for the RACK1 homolog RAK1 

in U. maydis (30). Knowledge of the interactions between RACK1 and G protein 

subunits is important for full understanding of the biology of G protein signaling. 

Therefore, experiments such as these and others that investigate the detailed mechanistic 

wiring that connects CPC-2 to heterotrimeric G protein signaling will be the focus of 

future work. 
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Figure Legends 

 

Figure 4.1: Phylogenetic analysis of Gβ and RACK1 proteins from 10 fungal species. 

Amino acid sequences were obtained from FungiDB or NCBI and phylogenetic analysis 

conducted using the “One-Click Workflow” tool at NGPhylogeny.fr. The final trees were 

drawn using tools at itol.embl.de (see Materials and methods for details). A. Gβ proteins. 

Organisms and protein names/accession numbers for the Gβ orthologs are Neurospora 

crassa NcGNB-1/NCU00440; Sordaria macrospora SmGbeta/SMAC01876; Fusarium 

graminearum GzGPB1/FGRAMPH101G14499; Magnaporthe oryzae 

MoMgb1/MGG05201; Aspergillus nidulans AnSfaD/AN0081; Ustilago maydis 

UmBpp1/UMAG00703; Cryptococcus neoformans CnGpb1/CNAG01262; Candida 

albicans CaSte4/C204210WA; Schizosaccharomyces pombe SpGit5/SPBC32H8.07 and 

Saccharomyces cerevisiae ScSte4/YOR212W; Batrachochytrium 

dendrobatidis/BDEG_08231; Botrytis cinerea/Bcin08g01420; Puccinia graminis f. sp. 

tritici/PGTG_03727; Sporisorium reilianum/sr11991; Spizellomyces 

punctatus/SPPG_02467; Phycomyces blakesleeanus/PHYBL_104565; Phycomyces 

blakesleeanus/PHYBL_139838; Phycomyces blakesleeanus/PHYBL_14376; 

Phycomyces blakesleeanus/PHYBL_153895; Phycomyces 

blakesleeanus/PHYBL_79980; Mucor circinelloides f. lusitanicus/QYA_112430; Mucor 

circinelloides f. lusitanicus/QYA_167321; Mucor circinelloides f. 

lusitanicus/QYA_177085; Rhizophagus irregularis/GLOIN_2v1532112; Arabidopsis 

thaliana/AEE86382.1 B. RACK1 proteins. Organisms and protein names or accession 

numbers for the RACK1 orthologs are Neurospora crassa NcCPC-2/NCU05810; 
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Sordaria macrospora SmRACK1/SMAC07639; Fusarium graminearum 

FgRACK1/FGRAMPH101G06721; Magnaporthe oryzae MoRACK1/MGG04719; 

Aspergillus nidulans AnCpcB/AN4163; Ustilago maydis UmRACK1/UMAG10146; 

Cryptococcus neoformans CnGib2/CNAG05465; Candida albicans 

CaAsc1/C701250WA; Schizosaccharomyces pombe SpCpc2/SPAC6B12.15; 

Saccharomyces cerevisiae ScAsc1/YMR116C; Batrachochytrium 

dendrobatidis/BDEG_04723; Botrytis cinerea/Bcin14g03010; Sporisorium 

reilianum/sr10817; Puccinia graminis f. sp. tritici/PGTG_14970; Phycomyces 

blakesleeanus/PHYBL_133989; Phycomyces blakesleeanus/PHYBL_160317; Mucor 

circinelloides f. lusitanicus/QYA_155892; Mucor circinelloides f. 

lusitanicus/QYA_156660; Rhizophagus irregularis/GLOIN_2v1592318; Arabidopsis 

thaliana/AT OAP14939.1. 
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Figure 4.2: Subcellular localization of CPC-2. A. Fractionation of CPC-2 during 

differential centrifugation of cell extracts.  

Cytosolic and particulate fractions were isolated from a cell extract of wild-type strain 

74-OR23-1VA as described in the Materials and methods. Samples corresponding to the 

same volume of original cell extract were subjected to SDS-PAGE and western analysis 

using CPC-2, arginase (AGA; cytosol), and plasma membrane ATPase (PMA-1; plasma 

membrane) antibodies. The results shown are representative of four biological replicates. 

B. Localization of GFP-tagged CPC-2 protein in vivo. An aliquot containing 8 x 106 

macroconidia from the CPC-2-GFP-9-10 strain was inoculated on VM agarose plates and 

incubated at 30°C for 0 h and 6 h. Images for the GFP channel were obtained via 

fluorescence microscopy and also stained with DAPI to visualize the nucleus (see 

Materials and methods for details). Images for GFP and DAPI were merged using ImageJ 

(National Institutes of Health, Bethesda, MD). Differential interference contrast (DIC) 

images were taken to show overall morphology of macroconidia and hyphae. Scale bar = 

10 microns. 
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Figure 4.3 Analysis of growth rate and asexual development in a complemented 

strain. 

Δcpc-2 complemented strain CPC-2-GFP-13.2 was compared to wild type (WT matA) 

and Δcpc-2 strain Δcpc2#11 with respect to growth rate of basal hyphae (top; four 

replicates) and aerial hyphae height (bottom; 12 replicates) on VM medium 

supplemented with 10 μg/ml pantothenate. Error is indicated as the standard error of the 

mean. *** p value <0.001 relative to wild type. 
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Figure 4.4: Levels of CPC-2 and other G protein subunits in different strain 

backgrounds. 

For detection of GNA-1, GNA-2, GNA-3 and GNB-1, differential centrifugation was 

used to isolate the particulate fraction from whole cell protein extracts of the indicated 

strains. Samples were subjected to SDS-PAGE and western blots prepared. Blots were 

reacted with antiserum for GNA-1, GNA-2, GNA-3 or GNB-1. For detection of CPC-2, 

protein from whole cell extracts was used to prepare western blots. Blots were reacted 

with polyclonal antiserum raised against a MBP-CPC-2 fusion protein purified 

from E. coli. The results shown are representative of three biological replicates. The 

migration position of each protein is shown along the right side of the panel. 
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Figure 4.5: Growth rate of basal hyphae.  

VM agar race tubes were inoculated with the indicated genotypes, incubated at 25°C and 

marked at various times as previously described [65]. Linear growth rates were 

determined with values (expressed as mm/day) taken from four biological replicates. 

Strains used were 74-OR23-1VA, ORS-SL6a, 3B10, Δgna2-2476, 3lc2, 42-8-3, 

Δcpc2#11, C2B1#2-1-1, C2G1#39, C2G2#37, C2G3#1–6, C2G1*#44, C2G2*#4 and 

C2G3*#1–8 (See Table 4.1 for genotypes). Error was calculated as the standard error of 

the mean. ANOVA was performed to identify strains that were significantly different 

from one another. 
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Figure 4.6: Germination of macroconidia. 

Macroconidia were harvested as described in [59]. An aliquot containing 

8×106 macroconidia was spread on a VM agar plate (100mm plate containing 10 ml agar 

medium) and spore germination monitored microscopically at 30°C over the indicated 

times. DIC (differential interference contrast) micrograph images were obtained using an 

Olympus IX71 microscope with a QIClick digital CCD camera and analyzed using 

Metamorph software. Strains used were wild type, Δcpc-2 and Δgnb-1. 
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Figure 4.7: Quantitative phenotypes during asexual development.  

Strains, error calculations and ANOVA were as in Figure 4.5. A. Aerial hyphae height. 

Culture tubes containing liquid VM medium were inoculated with the indicated strains 

and incubated statically in the dark for three days at room temperature. The distance 

grown by the aerial hyphae above the medium interface was then measured. Values (mm) 

were taken from 12 biological replicates. B. Macroconidia production. Macroconidia 

from the indicated strains were propagated by growth in VM agar culture tubes in the 

dark at 30°C for four days followed by three days in light at room temperature. 

Macroconidia were harvested from the cultures and quantitated as described in 

the Materials and methods. Values represent eight biological replicates. 
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Figure 4.8: Morphology in submerged culture.  

Macroconidia isolated from the strains used in Figure 4.5 were inoculated at a 

concentration of 1x106 macroconidia/ml and cultured in VM liquid medium for 16 h with 

shaking at 200 rpm in the dark at 30°C. In the case of strain C2G3*#1–8 (Δcpc-2 gna-

3Q208L), a small volume of aerial hyphae was used to inoculate cultures, as this strain does 

not produce a significant amount of macroconidia. A sample of each culture was imaged 

at 40x magnification using DIC (see Materials and methods). Examples of conidiophores 

and/or free macroconidia are indicated by the white arrows. 
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Figure 4.9: Phenotypes during the sexual cycle.  

Strains were ORS-SL6a, 3B10, Δgna2-2476, 3lc2, 42-8-3, Δcpc2#11, C2B1#2-1-1, 

C2G1#39, C2G2#37, C2G3#1–6, C2G1*#44, C2G2*#4 and C2G3*#1–8 (See Table 1 for 

genotypes). Macroconidia or hyphae from strains were inoculated onto SCM plates and 

incubated in constant light at room temperature for 7 days. At that time, half of each plate 

was inoculated with either macroconidia (males) of opposite mating type or water 

(control). Males were from wild-type strains 74-OR23-1VA (mat A) or ORS-SL6a (mat 

a). Incubation was continued under the same conditions for an additional 7 days. The 

fertilized side of each plate was then photographed using a Leica S8APO 

stereomicroscope with a DFC280 camera (Leica Microsystems, Buffalo Grove, IL USA). 

Examples of protoperithecia or submerged, aberrant perithecia are indicated by the black 

arrowheads, while mature perithecia are shown by the black arrows. 
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Figure 4.10: Models for interactions between CPC-2 and G protein subunits in N. 

crassa. 

The three Gα proteins are colored red, while the two predicted Gβ proteins are blue in the 

various panels. A. Basal hyphae growth and aerial hyphae height. GNA-2 operates 

upstream of CPC-2 to positively modulate basal hyphae growth rate and aerial hyphae 

height. GNA-1, GNA-3 and GNB-1 act independently of CPC-2 to regulate this trait. B. 

Aerial macroconidia abundance. GNB-1 is a negative regulator of macroconidia 

abundance in agar cultures and loss of cpc-2 suppresses this effect. The asterisk indicates 

that GNA-3 only influences macroconidiation when mutationally activated. C. 

Submerged culture conidiation. CPC-2, GNA-1, GNA-3 and GNB-1 are negative 

regulators of conidiation in liquid submerged cultures. The asterisk on the GNA-1 arrow 

denotes the cell density dependence of the GNA-1 effect. The asterisk on the GNA-3 

arrow indicates that GNA-3 may function with CPC-2 or independently, as Δgna-3 Δcpc-

2 mutants have a more severe phenotype than the single mutants, but mutational 

activation of gna-3 corrects the phenotype of the Δcpc-2 mutant. D. Perithecial 

development. GNB-1 functions downstream of CPC-2 to regulate perithecial 

development. The action of GNA-1 to control perithecial development is independent of 

CPC-2. 
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Table 4.1: N. crassa strains used in this study 

Strain name Relevant genotype Comments Source or Reference 
74-OR23-1VA Wild type, mat A  FGSC 2489 
ORS-SL6a Wild type, mat a  FGSC4200 

74A-OR23-1A Wild type, mat A  FGSC987 

am1 cyh-1, ad3B, am1  FGSC4564 

Y234M723 his-3, mat A  FGSC6103 

his-3a#14 his-3, mat a  Ref. (61) 

3B10 Δgna-1::hph+, mat a  Ref. (81) 

Δgna-2-2477 Δgna-2::hph+, mat a  FGSC12377 

Δgna-2-2476 Δgna-2::hph+, mat A  FGSC12376 
31c2 Δgna-3::hph+, mat A  Ref. (14) 

42-8-3 Δgnb-1::hph+, mat A  Ref. (64) 

Δcpc2Het Δcpc-2::hph+, Δmus-51::bar, mat a (heterokaryon)  FGSC13695 

Δcpc2#1 Δcpc-2::hph+, Δmus-51::bar, mat a Progeny from cross of Δcpc2Het to 74-OR23-1A This Study 

Δcpc2#6 Δcpc-2::hph+, Δmus-51::bar, mat a Progeny from cross of Δcpc2Het to 74-OR23-1A This Study 

Δcpc2#11 Δcpc-2::hph+, mat A Progeny from cross of Δcpc2Het to 74-OR23-1A This Study 

Δcpc2his3A Δcpc-2::hph+, his-3, mat A Progeny from cross of Δcpc2Het to Y234M723 This Study 
cpc2+am1 Δcpc-2::hph+, his-3, mat A + am1, cyh-1, ad3B, mat A 

(heterokaryon)  
Heterokaryon of Δcpc2his3A and am1 This Study 

C2G1*#44 Δcpc-2::hph+, his-3+::gna-1Q204L, mat A Δcpc2his3A purified transformant This Study 

C2G2*#4 Δcpc-2::hph+, his-3+::gna-2Q205L, mat A Δcpc2his3A purified transformant This Study 

C2G3*#1-8 Δcpc-2::hph+, his-3+::gna-3Q208L, mat A Δcpc2his3A purified transformant This Study 

C2G1#39 Δcpc-2::hph+, Δgna-1::hph+, mat a Progeny from cross of cpc2+am1 to 3b10 This Study 
C2G2#37 Δcpc-2::hph+, Δgna-2::hph+, mat a Progeny from cross of cpc2+am1 to Δgna-2-2477 This Study 

C2G3#1-6 Δcpc-2::hph+, Δgna-3::hph+, mat A Progeny from cross of 31c to Δcpc2#6 This Study 

C2B1#2-1-1 Δgnb-1::nat+, Δcpc-2::hph+, mus-51::bar+, mat a Δcpc2#6 purified transformant This Study 

51-4 Δrid::nat+, Δmus-52::nat+, mat a  This Study 

CPC-2-GFP-9 Δpan-2::pccg-1::cpc-2-V5-GFP::bar+, mat a 51-4-1 transformant This Study 

CPC-2-GFP-9-10 Δpan-2::pccg-1::cpc-2-V5-GFP::bar+, mat a Progeny of CPC-2-GFP-9 crossed to 74-OR23-
1VA 

This Study 

pccg-1_GFP Δpan-2::pccg-1::V5-GFP::bar+, mat a Empty vector control for CPC-2-GFP-9-10 Ref (58) 

CPC-2-GFP-13 Δpan-2::pccg-1::cpc-2-V5-GFP::bar+, mat a 51-4-1 transformant This Study 

CPC-2-GFP-13.2 Δcpc-2::hph+, Δpan-2::pccg-1::cpc-2-V5-GFP::bar+, mat a Progeny of CPC-2-GFP-13 crossed to 74-OR23-
1VA 

This Study 
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Table 4.2: Oligonucleotides used in this study 

Primer # Primer name Sequence 5’ to 3’ 

1 CPC2FORDIAG AGCAGGGCCGGGTGGAGATT 

2 CPC2REVDIAG CGAAGGTCCCACCCTAACAGCC 

3 GNA1FORDIAG-1 CTTGGAGAGTGCGCGGTGGG 

4 GNA1FORDIAG-2 GTCGGGTGGGCGATGGATCAA 

5 GNA1REVDIAG GTGTCGGGTGCTTTCTGCCA 
6 GNA2FORDIAG-1 GCCCTGGGCACTACCGAAACG 

7 GNA2FORDIAG-2 GGGCCAGAAATGGAACCTACC 

8 GNA2REVDIAG TTCCGGCCGAGTGAAACGCT 

9 GNA3FORDIAG GCGGCCTGCCCTAGCAATTCA 

10 GNA3REVDIAG GGAGTAGCGAGGTGTATGAGTGGT 

11 GNB1FORDIAG GTGCCTTCGGCCAGGCTTGT 

12 GNB1REVDIAG TTGGTTACGTATGCTGAGCAAGGG 

13 HPHREV TGCTCCTTCAATATCATCTTCTGTC 

14 HPHFOR TGTGTAGAAGTACTCGCCGATAGTG 

15 GNB1NAT5’FLANK-FWD GTAACGCCAGGGTTTTCCCAGTCACGACGGTTCCATCGGGGGTGCGGTGC 

16 GNB1NAT5’FLANK-REV CTACATGAGCATGCCCTGCCCCTGATCGCTTCTGCGAGTGGGCGGGCGGC 

17 GNB1NAT3’FLANK-FWD CTCCTTCAATATCATCTTCTGTCGAGCTCTCGCTTGTATGCATCAGGTCT 

18 GNB1NAT3’FLANK-REV GCGGATAACAATTTCACACAGGAAACAGCAAGGGCACTGGCCCACTGGAC 

19 PTRPC5’GNB1 AGACCTGATGCATACAAGCGAGAGCTCGACAGAAGATGATATTGAAGGAG 

20 NAT3’GNB1 GCCGCCCGCCCACTCGCAGAAGCGATCAGGGGCAGGGCATGCTCATGTAG 

21 GNB1NAT-REV-DIAG TCACGTAGACCTGATGCATA 

22 NAT5’ REV DIAG CAAAAAGTGCTCCTTCAATA 

23 pCCG1 FWD CCATCATCAGCCAACAAAGC 
24 GNA1ORF REV GGGAATTCTCAAATCAAACCGCAG 

25 GNA2ORF REV GGGAATTCCTACAGGATAAGTTGT 

26 GNA3ORF REV GGGAATTCTCATAGAATACCGGAG 

27 F-C2 CCACTTTCACAACCCCTCACATCAACCAAAATGGCTGAGCAACTCATCCTCAAG 

28 R-C2-V5G GTTAGGGATAGGCTTTCCGCCGCCTCCGCCAGCGCGGGACATGACACCCCAGGC 

29 P-CPC-2-REV TATGCTAGTTATGCGGCCGCTGCAGTTAAGCGCGGGACATGACACCCCAG 
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Chapter 5 

The role of G protein signaling on metabolism in Neurospora crassa 
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Abstract 

G protein signaling is important for sensing the external environment and for modulating 

growth. Heterotrimeric G proteins consist of Gα, Gβ, and Gγ subunits, with GDP/GTP 

exchange by the Gα subunit regulated by guanine nucleotide exchange factors (GEFs). 

GEFs include membrane-bound G protein coupled receptors and cytoplasmic proteins 

such as RIC8. In this study, we used a combination of RNA-seq and Liquid 

Chromatography-Mass Spectrometry (LC-MS) to profile the transcriptomes and 

metabolomes of wild type N. crassa, two mutants lacking Gα subunits (Δgna-1 and 

Δgna-3) and the Δric8 mutant. We analyzed the transcriptomes to determine the role of G 

proteins in transcriptional control of gene expression and compared the transcriptome 

data to metabolomic data to determine whether there was evidence for transcriptional 

and/or post-transcriptional control of metabolism. The results showed that there are large 

transcriptional differences between the mutants and wild type, with Δgna-1 mutants 

possessing more than 150 differentially regulated genes, and Δgna-3 and Δric8 strains 

each having more than 1000 differentially regulated genes. Many of these differentially 

regulated genes encode metabolic enzymes, with mis-regulated genes in Δric8 and Δgna-

1 mutants being enriched for oxidoreductases. LC-MS analysis of these mutants 

demonstrated that there were changes in levels of primary metabolites, with Δgna-1, 

Δgna-3, and Δric8 strains having 21, 27 and 68 mis-regulated metabolites out of the 120 

detected.  Comparison of the RNAseq and metabolomics data revealed evidence for both 

transcriptional and post-transcriptional control of certain metabolic proteins in the various 

genotypes.  



 

202 

 

Introduction 

All organisms depend on cellular signaling to sense their external environment 

and modulate growth (1). In eukaryotes, specialized cell surface proteins called G protein 

coupled receptors (GPCRs) recognize external stimuli (2). GPCRs transduce the external 

signal (ligand) to intracellular signaling pathways via heterotrimeric G-proteins (2). The 

heterotrimeric G-protein is made up of three subunits: alpha (α), beta (β), and gamma (γ). 

The Gα subunit can be bound to GDP or GTP. When bound to GDP, the Gα is inactive 

and is in a complex with the Gβγ dimer and a GPCR (2,3). When bound to GTP, the Gα 

disassociates from the Gβγ dimer and both can regulate downstream signaling (1, 3-4).  

Resistance to Cholinesterase 8 (RIC8) has been implicated as an important 

positive regulator of G-proteins in several species, including mammals, Caenorhabditis 

elegans, Drosophila melanogaster and N. crassa (5,6). RIC8 is not found in plants (5). 

First discovered in C. elegans, RIC8 was identified in screens for mutants that were 

resistant to inhibitors of cholinesterase and defective in synaptic vesicle priming (7). 

RIC8 is predicted to be comprised of 10 armadillo fold repeats, which is of interest, as 

armadillo repeat proteins are known to interact with multiple proteins and be involved in 

diverse functions (8). 

In addition to its role in priming of synaptic vesicles, RIC8 is required for 

asymmetric cell division in C. elegans zygotes (9,10,11). In D. melanogaster, RIC8 has 

been found to be critical for polarity during asymmetric cell division during 

embryogenesis and for the stability of Gα and Gβ proteins (12). In mice, RIC8 activates 

Gα subunits and is essential for embryogenesis, making study of RIC8 functions difficult 
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in mammals (13). In another mice model study, it was shown that deletion of Ric-8A in 

melanocytes suppressed tumorigenesis by the uveal melanoma oncogene human 

GNAQQ209L by depleting levels of the oncogene below the cancer-driving level (14).  

RIC8 functions have also been studied in fungi. Interestingly there is no RIC8 

homolog in Saccharomyces cerevisiae (6). In N. crassa, deletion of ric8 leads to severe 

developmental defects, with severely reduced growth rate, limited development of sexual 

structures and defects in asexual structure development (6). In vitro guanine nucleotide 

exchange factor (GEF) activity assays showed that RIC8 acts as a GEF towards GNA-1 

and GNA-3 in N. crassa (6). Loss of ric8 leads to reduced levels of all three Gα proteins, 

as well as the Gβ and Gγ subunits (6).  In Aspergillus nidulans and Aspergillus fumigatus, 

the ric8 homolog is important for growth and asexual development (15). It has also been 

shown that RIC8 is required for pathogenicity in the rice blast fungus Magnaporthe 

oryzae and in the wheat head blight fungus Fusarium graminearum (16,17).  

Gα12/ Gα13 proteins have been shown to have roles in regulating metabolism and 

energy homeostasis in mice (18). The Gα13 subunit affects glucose metabolism, with loss 

of Gα13 via a gene deletion mutant leading to systemic glucose intolerance (insulin 

resistance). The loss of Gα13 leads to differential secretion of 67 proteins from mice liver 

cells, including inter-α-trypsin heavy chain 1 (ITIH1), which at increased levels is 

correlated with glucose intolerance and diabetes (19). Gα12/ Gα13 proteins have also been 

shown to play a role in the regulation of mitochondrial morphology, motility and 

respiration (20,21). Absence of the Gα12 subunit increases mitochondrial motility by 

either actin polymerization via the Rho pathway or Rho-independent activation of JNK, 



 

204 

 

which phosphorylates kinesin-1. Morphology is affected when the Gα12 is uncoupled 

from the RhoGEF, which causes the mitochondrial tubular network to completely 

fragment (20). The Sirtuin 1 (SIRT1)/ Peroxisome proliferator-activated receptor 

(PPARα) network regulates fatty acid beta oxidation and with the loss of specific Gα 

subunits, the levels of SIRT1and the transcription factor PPARα target gene transcripts 

are lower, leading to reduced oxygen consumption rates in mitochondria (21). Mis-

regulation of mitochondrial respiration leads to liver steatosis (retention of fats) and liver 

metabolic dysfunction (21).  

Possible effects on metabolism due to loss of a G protein subunit have also been 

investigated in N. crassa. For example, the metabolites of wild type and a Δgna-3 mutant 

have been profiled using 1H Nuclear Magnetic Resonance (NMR) (22). This study 

showed that wild type and Δgna-3 have similar global metabolomes under high carbon 

conditions, but that the Δgna-3 mutant appears to possess a carbon-sensing defect under 

low carbon conditions (22). However, to-date, metabolomics studies have not been 

performed with any other mutants implicated in G protein signaling in N. crassa, 

including Δric8. 

In submerged liquid cultures, wild type N. crassa maintains hyphal development, 

unless subjected to stresses such as heat or carbon/nitrogen starvation (23-27). Δgna-1 

mutants produce hyphae in submerged liquid cultures unless inoculated at high cell 

densities (28). In the Δgna-3 mutant, inappropriate conidiation is observed in submerged 

cultures even when inoculated at lower cell densities (30). Further, when gna-1 is deleted 

in addition to gna-3 there is an increase in production of conidiophores in submerged 
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cultures (29,30). The Δric8 strain produces conidiophores and conidia in submerged 

cultures at levels similar to a Δgna-1, Δgna-3 double mutant (6).   

In this study, RNA sequencing was used to determine gene expression profiles in 

wild type and three G protein signaling mutants cultured with glucose as the carbon 

source. We analyzed two strains that produce only hyphae in submerged liquid cultures 

(wild type and the Δgna-1 mutant) and two strains that produce hyphae and conidia 

(Δgna-3 and Δric-8), with the Δric8 strain being more severe than the Δgna-3 mutant. 

Substantial mis-regulation of metabolic genes was observed in the three mutants in 

comparison to wild type. To understand possible downstream effects on metabolism, 

Liquid Chromatography-Mass Spectrometry was used to profile and compare the 

metabolomes of the same four strains. Levels of each detected metabolite were then 

compared across all samples. The results revealed considerable differences as compared 

to wild type in the levels of specific metabolites in the Δgna-1, Δgna-3 and Δric-8 

mutants. In additional, the results provide evidence for both transcriptional and post-

transcriptional regulation of metabolic protein levels by G protein signaling in N. crassa. 

 

Methods and Materials  

Strains and media. The N. crassa strains used in this study were wild-type OR23-1VA 

(74A, mat A, Fungal Genetics Stock Center #2489; Fungal Genetics Stock Center, 

Kansas City, MO), Δgna-1 strain 3B10 (28), Δgna-3 strain 31c2 (29), and Δric8 strain 

ric8 1-5a (6). Conidia were propagated in Vogel’s Minimal Medium (VM; (31)) agar 

flasks as described previously (32). 
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Glass Erlenmeyer flasks (125-ml total volume) used for growth of liquid cultures 

were treated with dichlorodimethylsilane (5% [vol/vol] in chloroform; Alfa Aesar, Ward 

Hill, MA) in order to prevent hyphae from adhering to the inside walls of the flasks. Each 

strain was grown in 50 mL of liquid VM, substituting sucrose with 100 mM Glucose as 

the carbon source (VM-Glucose). Liquid cultures were brought to a concentration of 

1x106 conidia/ml and incubated shaking at 200 RPM at 30°C for 16 hrs. Cultures were 

collected by vacuum filtration using filter paper (Whatman #405), transferred to 1.5 ml 

centrifuge tubes and stored at -80°C until extraction. Tissue was collected from five 

biological replicates.  

 

Tissue collection, RNA extraction and RNAseq. Conidia collected from 5-day-old 

cultures were used to inoculate 50 ml of VM-Glucose at a final concentration of 1x106 

conidia/ml. Cultures were incubated with shaking at 200 RPM for 16 hrs at 30°C. Tissue 

was collected via vacuum filtration using filter paper (Whatman #405) and then ground 

into a fine powder with a mortar and pestle (CoorsTek, Golden, CO).  

RNA was extracted from ground tissue using TRIzol (Invitrogen, Waltham, MA) 

and chloroform (Fisher, Hampton, NH). A sample containing 0.5 ml of ground tissue was 

added to 1 ml TRIzol in a 2-ml snap cap centrifuge tube. The mixture was incubated for 5 

minutes at room temperature. A volume containing 200 µl of chloroform was added to 

the mixture, the tube was briefly vortexed and left to incubate for 3 minutes at room 

temperature (RT). The mixture was then centrifuged at 12,000xg for 15 minutes at 4°C 

for phase separation. Subsequently, 500 µl of the aqueous phase from each sample was 
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combined with 500 µl isopropanol and incubated at RT for 10 minutes. Samples were 

then centrifuged at 12,000xg for 10 minutes at 4°C. The supernatant was removed and 

the RNA pellets were washed with 75% ethanol and centrifuged at 7,500xg for 5 minutes 

at 4°C. Ethanol was aspirated using a P200 pipette tip and the RNA pellets were allowed 

to dry for 10 minutes at RT with the caps open. The RNA pellets were then resuspended 

in 50-100 µl of RNase-free water. Samples were then quantified using nanodrop 2000 

(Thermo fisher, Waltham, MA).  

Samples containing 20 µg of RNA were treated with 2 µl of DNaseI (New 

England Biolabs, Ipswich, MA) in a 30 µl reaction. Samples were incubated at 37°C for 

30 minutes and then cleaned up using either Zymo RNA clean & concentrator kit (Zymo, 

Irvine, CA) or NEB Monarch RNA cleanup kit (New England Biolabs, Ipswich, MA). 

RNA was tested for quality using agarose gel electrophoresis and by running a sample on 

the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). Three biological replicates 

were obtained for every strain. 

 RNA samples were sent to the University of California, Davis DNA Technologies 

and Expression Analysis Core Laboratory for Illumina library preparation and 

sequencing. Paired-end sequencing (2x150 bp) was performed using a NovaSeq 6000 

with an S4 flow cell (Illumina, San Diego, CA). Raw reads were mapped against a 

generated index file via Kallisto version 0.46.1 (33) to generate raw counts and 

transcripts per million. Differential expression analysis was performed on raw counts 

using DEseq2 version 1.26.0 (34). Genes with p-values greater than 0.05 were not 
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considered differentially expressed. Differential genes were then filtered to exclude genes 

with less than 10 transcripts per million. 

 

Metabolite extraction. Tissue was lyophilized for 2 days at -80°C (Labconco, Kansas 

City, MO). Dried samples were transferred to 1.5 mL screw cap tubes. Four to five 

ceramic beads were added to the dried tissue and the sample was bead-beat in a bead mill 

homogenizer (Thermo fisher, Waltham, MA) at -80°C for one minute. Approximately 8.5 

to 9.8 mg of each sample was weighed and 100 µL of extraction buffer (methanol: water) 

was added per 1 mg of tissue. The samples were then briefly vortexed and placed in a 

4°C ice-water bath and sonicated for 30 minutes. The samples were vortexed at 4°C for 

30 minutes and then centrifuged at 16,000xg for 15 minutes. The supernatant was 

transferred to a new tube and stored at -80°C.    

 

LC-MS. Targeted analysis of polar, primary metabolites was performed at the UC 

Riverside Metabolomics Core Facility as previously described (35).  Briefly, analysis was 

performed on a TQ-XS triple quadrupole mass spectrometer (Waters) coupled to an I-

class UPLC system (Waters).  Separations were carried out on a ZIC-pHILIC column 

(2.1 x 150 mm, 5 µM) (EMD Millipore).  The mobile phases were (A) water with 15 mM 

ammonium bicarbonate adjusted to pH 9.6 with ammonium hydroxide and (B) 

acetonitrile.  The flow rate was 200 µL/min and the column was held at 50° C. The 

injection volume was 1 µL.  The gradient was as follows: 0 min, 90% B; 1.5 min, 90% B; 

16 min, 20% B; 18 min, 20% B; 20 min, 90% B; 28 min, 90% B.  
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The mass spectrometer was operated in selected reaction monitoring mode.  

Source and desolvation temperatures were 150° C and 500° C, respectively.  Desolvation 

gas was set to 1,000 L/hr and cone gas to 150 L/hr.  Collision gas was set to 0.15 

mL/min.  All gases were nitrogen, except the collision gas, which was argon.  Capillary 

voltage was 1 kV in positive ion mode and 2 kV in negative ion mode.  A quality control 

sample, generated by pooling equal aliquots of each sample, was analyzed every 3-5 

injections to monitor system stability and performance.  Samples were analyzed in 

random order.   

 

Identification of metabolites. Data were processed with Skyline software (36). There 

were ~210 different potential molecules detected. Individual molecular peaks were 

manually checked for peak intensity, peak height above background, and retention time 

accuracy, and consistent peak boundaries were assigned for each molecule between 

samples. Peaks were then integrated using Skyline to analyze peak ratios. Experimental 

data was compared to preexisting standard LC-MS readings of metabolites to identify 

peaks to their corresponding small molecule.  

 Metabolite levels were compared between samples using relative abundance 

values. In R Studio, unpaired t-tests were used to calculate statistically significantly 

differences in abundance levels of metabolites between strains and to provide standard 

error for the five replicates for each strain. Significant differences were determined and 

labeled for different degrees of significance according to p-values of p<0.05, p<0.001, 

and p<0.0001. All mutants were compared to wild type, and relative abundance 
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percentages were calculated by dividing the mutant value by the wild type value for each 

metabolite. Principal component analysis was performed using R (37), using integrated 

peaks from the spectral analysis with mean centering and scaling of data. 

 

Results 

Differentially expressed genes in the three mutants.  To identify mis-regulated genes 

in the gene deletion mutants, the transcriptomes of Δgna-1, Δgna-3 and Δric8 were 

determined using RNA-seq. Variable transcriptional differences were observed, with 

Δgna-1 having a relatively modest 159 differentially expressed genes, while Δgna-3 and 

Δric8 mutants exhibited larger differences relative to wild type, with 1138 and 1395 

differentially expressed genes, respectively (Figure 5.1).   

 To investigate the extent to which RIC8 might control transcription through 

GNA-1 and/or GNA-3, the unique and shared differentially expressed genes in the 

different genotypes were determined. Similar to the trend noted in the total number of 

differentially expressed genes in the three genotypes, it was observed that 601 genes were 

uniquely mis-regulated in the Δric8 mutant and 322 and 37 in the Δgna-3 and Δgna-1 

strains, respectively (Figure 5.1). The pair of genotypes with the smallest overlap in mis-

regulated genes is Δgna-1 and Δric8, sharing only five differentially expressed genes 

(Figure 5.1). Of the five genes: one is of unknown function (NCU16741), one is involved 

in steroid synthesis (NCU02042), another is a glucanase (NCU01353; gh16-1) and the 

other two are transporters (NCU01968 and NCU08397). The two strains that had the 

most overlap are Δgna-3 and Δric8, with 699 shared differentially expressed genes 
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(Figure 5.1). Included in the 699 genes are 27 transcription factors (TFs), 10 of which are 

down-regulated and the other 17 up-regulated. The four most up-regulated TFs are 

NCU02142, NCU08307, csp-1 (NCU02713) and csp-2 (NCU06095). The first two TFs 

have been studied for their growth and development phenotypes with both NCU02142 

and NCU08307 exhibiting no phenotypes (38). The second two TFs are involved in 

conidiation, which is of note, as Δgna-3 and Δric8 mutants inappropriately produce 

conidia in submerged cultures (6,29).  Another interesting TF (and the most down-

regulated) is vsd-8 (NCU06140), which is required for normal growth and sexual 

development; these are functions shared by gna-3 and ric8 (38). 

 All three mutants share 90 mis-regulated genes (Figure 5.1). Interestingly there 

are three GPCRs (NCU02903 [gpr-16], NCU03253 [gpr-8] and NCU06312 [gpr-4]) in 

this group. NCU06312 (gpr-4) which is up-regulated at least 4.6-fold over wild type in all 

three mutants, is of particular interest because of its importance for growth on poor 

carbon sources (39). Another interesting up-regulated gene is NCU05046 (ena-1), a Ca2+-

ATPase (40). There are six transcription factors (NCU00090 [pacc-1], NCU01312 [rca-

1], NCU02787 [sah-12], NCU03552, NCU04866 [ada-6], NCU08726 [fl]) that are up-

regulated in all three mutants. One TF is of unknown function (NCU03552), ada-6 

regulates all aspects of growth and development, while sah-12 and fl regulate asexual 

development and rca-1 has a more subtle or redundant role. (38,41).  
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Expression of genes involved in energy metabolism. Many metabolic reactions include 

ATP/ADP and/or NADH/NAD+ as substrates or products. In the electron transport chain 

there are five main complexes (42).  Complex I transfers electrons from NADH to 

ubiquinone; this is coupled to the translocation of protons across the inner mitochondrial 

membrane to set up the gradient to drive ATP formation (see below; 42). Complex II 

transfers electrons from succinate to ubiquinone, with no coupling to proton 

translocation. Complex III (cytochrome C) and complex IV (cytochrome C oxidase) 

transfer electrons from ubiquinone to oxygen producing water. Proton pumping results in 

a proton gradient that is used by the FoF1-ATP synthase (complex V) to generate ATP 

(42). There is another type of ATPase, the V-type, which instead of generating ATP uses 

ATP to pump protons through membranes (43). There is a third type of ATPase, P-type 

ATPases, which utilize ATP, but in contrast to V-type ATPases, translocate ions to 

maintain ion gradients (44). 

 Complex I in N. crassa is comprised of 35 nuclear-encoded proteins and 8 

mitochondrially encoded proteins (45). In Complex I, 20 of the 35 (95%) protein-coding 

genes have transcripts that are significantly down-regulated in the Δgna-3 and Δric8 

mutants. On average, gene expression for Δgna-3 was 74% of wild type and gene 

expression in Δric8 was 48% of wild type (Figure 5.2a). Complexes II, III, IV are mostly 

similar to wild type for all mutants, with the exception of NCU01808 (cyc-1) which is up-

regulated 2.5-fold in the Δric8 mutant (Figure 5.2b). CYC-1 or Cytochrome C is the 

electron carrier in complex IV and becomes a signal for apoptosis when released from the 

mitochondria (46).  
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Many differentially expressed genes have predicted metabolic functions. FunCat 

analysis revealed that many of the mis-regulated genes in the three mutants were 

implicated in metabolic pathways (Figure 5.3). Of the 38 uniquely regulated genes in the 

Δgna-1 mutant, 17 (44.7%) are predicted metabolic genes. The encoded proteins range 

from alcohol dehydrogenases, NADPH dehydrogenase, to siderophore transport genes. 

We analyzed assigned EC numbers to determine whether there was an enrichment in any 

enzyme class(s). Of the 17 metabolic genes in Δgna-1, 14 (82.3%) have an assigned EC 

number (computation and/or curated). The most prevalent class is EC class 1 

(oxidoreductases; 7 of 17 genes (50%). EC class 3 (hydrolases) and EC class 2 

(transferases) are the next most abundant, with 4 (28.6%) and 3 (21.4%) of 17 genes, 

respectively. There were no other classes represented. 

 In the Δgna-3 mutant, 89 of 322 (27.6%) of the uniquely genes were identified by 

FunCat as metabolic genes (Figure 5.3). Of the 89 genes, EC numbers were available for 

58 (65.1%). The most common class was EC class 2 (transferases) with 21 genes 

(36.2%), followed by EC class 1 (oxidoreductases) with 17 genes (29.3%), EC class 3 

(hydrolases) with 13 genes (22.4%) and EC classes 4-6 (lyases, isomerases, and ligases) 

with 7 genes (12.1%).  

The Δric8 mutant has 186 of 601 (30.9%) uniquely differentially expressed genes 

that are implicated in metabolism (Figure 5.3). EC numbers were available for 140 of the 

186 (75.2%) metabolic genes. The most common EC number class was 1 

(oxidoreductases) with 53 genes (37.9%). This class is of note as many of these enzymes 
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require NAD for their reactions. The next largest class was EC class 3 (hydrolases) with 

40 genes (28.6%), then EC class 2 (transferases) with 30 genes (21.4%) and EC classes 4-

7 making up the last 17 genes (12.1%).  

 Targeted Metabolite profiling. Having observed that many of the differentially 

expressed genes in the three mutants were implicated in metabolism, we implemented 

targeted metabolite profiling using LC-MS to determine whether there was any difference 

in the levels of specific metabolites in the three mutants. Targeted metabolite profiling 

involves comparing observed spectra to a known standard. In our study, a total of 201 

standards were used to detect a maximum of 201 metabolites (Table 5.1). Out of the 201 

metabolites, 120 were unambiguously detected in wild type and the three mutants (Table 

5.1). There were no examples of metabolites that could be detected in one strain, but not 

the others. Four metabolites (proline, glutamine, phenylalanine and 

glycerophosphocholine) were present at levels higher than the threshold error and 

threshold concentrations, but were distinct spectra and therefore were detectable, but not 

quantifiable. The detected metabolites were grouped into 10 categories: acetyl amino 

acids, amino acids, electron carriers, organic acids, oxidative stress-related, purines, 

pyrimidines, TCA cycle-related, urea cycle-related and miscellaneous (Figure 5.4). 

 Principal component analysis was conducted to represent metabolite differences 

between the different genotypes (47). We used PCA with three dimensions (accounting 

for 58.9% of the variance), with results showing that the three mutant strains are in 

groups distinct from wild type (Figure 5.5).   
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The metabolome of the Δgna-1 mutant is most similar to wild type.  The Δgna-1 

mutant had the greatest number of metabolites with relative levels similar to wild type: 99 

out of 120 metabolites (83%). Of the 20 metabolites that differed, only 5 (25%) were 

uniquely mis-regulated in the Δgna-1 strain (Figure 5.6). The five metabolites fell into 

four categories: acetyl amino acids (2 of 5; N-acetylglutamic acid and N-acetylproline), 

amino acids (1; 2-aminobutyric acid), organic acids (1; gluconic acid), and urea cycle-

related (1; urea). Following the same pattern as the RNA-seq, the mutant with the next 

highest number of non-shared metabolites was Δgna-3, with 19 (Figure 5.5). The most 

represented category among these metabolites was amino acids, (8; 42.1%), with no other 

class having more than two metabolites in a category. Finally, Δric8 had the most 

metabolites that differed from wild type, with 46 metabolites (Figure 5.6). The category 

with the most mis-regulated metabolites was amino acids, with 13 (28.2%), followed by 

purines with 7 metabolites (15.2%), and the next three categories each with three 

members (oxidative stress related, TCA cycle and urea cycle) for 9 total (19.6%). 

 In contrast to the results from the RNAseq data, the pair of mutants with the 

largest overlap in mis-regulated metabolites was Δgna-1 and Δric8, with 13 (Figure 5.6). 

Of these 13 metabolites, the two categories with the greatest representation are purines 

and amino acids, with four metabolites in each category (8 total; 61.5%). The category 

with the highest percent of members represented was electron carriers with 2 of 4 (50%) 

in lower abundance in the two mutants relative to wild type. The two electron carriers are 

NADP and nicotinamide mononucleotide.  
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 The pair of mutants with the next highest number of shared mis-regulated 

metabolites was Δric8 and Δgna-3, with seven metabolites. In the group of seven, there 

were no enriched categories. Interestingly, of these seven shared metabolites, five are 

more abundant and two are lower. The two metabolites that are less abundant are NAD+ 

and hydroxypyruvic acid.  

 

Evidence for transcriptional and post-transcriptional regulation of metabolites. We 

next investigated whether any of the enzyme-encoding genes associated with 

differentially regulated metabolites exhibit evidence for regulation at the transcriptional 

or post-transcriptional level. In Δgna-1 mutants, N-acetylglutamic acid (234% of wild 

type) and urea (40% of wild type) are the two most mis-regulated metabolites. These 

metabolites are involved in arginine biosynthesis (N-acetylglutamic acid) or catabolism 

(urea). When comparing the precursor and product enzyme genes, it was noted that none 

were differentially expressed, suggesting that GNA-1 may regulate these enzymes post-

transcriptionally (Table 5.2). In Δgna-3 strains, there was evidence for some 

transcriptional regulation of tryptophan biosynthesis (Table 5.2). Tryptophan was 

detected at elevated levels and the gene that encodes the tryptophan 2,3-dioxygenase 

(forms N-formylkynurenine from tryptophan) was expressed at a level 4-fold lower than 

wild type, suggesting that lower levels of the enzyme might lead to accumulation of 

tryptophan (Table 5.2). In the Δric8 mutant, there is evidence for both transcriptional and 

post-transcriptional regulation. Aspartate was detected at increased levels in Δric8 

(327%). The enzyme that initiates the process of converting aspartate into homoserine is 
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aspartate-semialdehyde dehydrogenase (NCU00554; hom-1(48)). hom-1 is down-

regulated 2.2-fold in the Δric8 mutant (Table 5.2). Other metabolites, such as ornithine, 

have evidence for being regulated at the post-transcriptional level. Ornithine levels are 

28% of wild type in the Δric8 strain, however both the precursor and product enzyme 

genes are not differentially expressed (Table 5.2). 

 

Discussion 

We began our study with the goal of identifying genes that are differentially 

regulated in Δric8 mutants and strains lacking two Gα subunits regulated by RIC8: gna-1 

and gna-3. We discovered that metabolic genes made up a large portion of the 

significantly differentially expressed genes. Having determined that metabolism was a 

major target of RIC8, GNA-1 and GNA-3, we implemented LC-MS targeted 

metabolomics to identify mis-regulated metabolites in the three mutants. The 

combination of a transcriptional and metabolite “snapshots” allows for investigations into 

whether the metabolites are regulated transcriptionally or post-transcriptionally.  

As mentioned above, two of the strains in our study produced only hyphae in 

submerged cultures (wild type and Δgna-1), while Δgna-3 and Δric8 strains consist of 

hyphae and conidia. Two previous metabolic studies have been performed in N. crassa to 

measure levels of amino acids and other compounds in hyphae and conidia, one using 

column chromatography and the other study using H-NMR (22,49). While our data 

generally agreed with the previous two studies, there were differences noted. Proline, 
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methionine and cysteine could not be detected in conidia using column chromatography 

in (49) and were not detected in any tissue using NMR in (22). In our study, we were able 

to detect two of these three metabolites in the hyphae of wild type/Δgna-1 and the 

hyphae/conidia of Δgna-3/Δric8 with LC-MS. Proline was detected, but not quantifiable 

due to saturation. Methionine was detected in all strains, including Δgna-3 and Δric8, 

which are predominantly composed of conidia. Cysteine was not one of the targeted 

metabolites in our study.  

Levels of several metabolites differ between conidia and hyphae, with glutamate, 

glutamine and alanine all found at higher levels in conidia (49). In our study, we 

observed that the Δgna-3 mutant had increased levels of glutamate relative to wild type, 

which correlates with the increase in levels seen in conidia relative to hyphae in (49). 

Interestingly, the Δric8 mutant had lower levels of glutamate, suggesting that the 

differences from wild type are not just due to inappropriate conidiation in submerged 

cultures, but due to a defect in glutamate metabolism in this mutant.  

In this study, we observed down regulation of complex 1 of the electron transport 

chain in both Δgna-3 and Δric8 mutants. The loss of this complex may explain the lower 

levels of NAD+ that were observed. NAD+ serves as a crucial co-enzyme for redox 

reactions and co-substrates for NAD+-dependent enzymes (50). Thus, NAD+ and its co-

enzymes control a broad range of physiological processes, including redox homeostasis, 

genomic stability, gene expression, RNA processing, energy metabolism and circadian 

clock (50). When acting as a co-enzyme, NAD+ plays important roles in energy 

metabolism pathways, such as glycolysis, the TCA cycle and alcohol metabolism (51). 
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The wide range of metabolic roles for NAD+ may explain why so many diverse 

metabolites are mis-regulated in Δgna-3 and Δric8 mutants. Another interesting 

observation is that the most common mis-regulated enzymes in Δgna-1 and Δric8 

mutants are in EC class 1 (oxidoreductases). Many enzymes in this class require NAD+ or 

NADP+ as an electron acceptor. 

In the Δric8 mutant the arginine biosynthesis pathway exhibits many differences 

from wild type including misregulation of both arginine and ornithine. In N. crassa the 

majority of the ornithine and arginine are stored in vacuoles, along with several other 

amino acids (52-55). The pools of ornithine and arginine are relatively inert metabolically 

and exchange slowly with the more dynamic cytosolic pools (53, 56, 57). Therefore, the 

expression of amino acid permeases may affect the levels of available arginine and 

ornithine and their downstream metabolites. We investigated the transcript levels of 

amino acid permeases and found that out of 20 detectable amino acid permeases, only 

one is upregulated in Δgna-1, six (three up and three down-regulated) in Δgna-3, and in 

Δric8 seven are differentially regulated permeases, with four down and three up-

regulated. The one permease that is differentially regulated in Δgna-1 (NCU10276, [aap-

11]) is not shared in Δgna-3 and Δric8. In Δgna-3 and Δric8 the three permeases that are 

upregulated (NCU08880, [aap-18]; NCU04435, [aap-22]; NCU03784 [aap-4]) are the 

same, however, the two mutants only share one down-regulated permease (NCU00721; 

aap-24). With several amino acid permeases having lower expression as compared to 

wild type, it is possible that there may be an issue with transport of arginine and ornithine 
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into the vacuole in the Δric8 mutant. This could reduce the amount of stored arginine and 

ornithine, leading to reduction in abundance of those metabolites. 

 Loss of Gα subunits leads to changes in carbon metabolism in both mammalian 

systems and in N. crassa. We observed changes in expression of important carbon 

metabolism genes, such as gpr-4 (NCU06312) and acu-6 (NCU09873). gpr-4 is 

important for growth on poor carbon sources and is upregulated on glucose in all three 

mutants. acu-6 encodes phosphoenolpyruvate carboxykinase, an important enzyme in 

gluconeogenesis and is transcriptionally down-regulated in all three mutants. Inspection 

of levels of phosphoenolpyruvate revealed that amounts were lower in all three mutants 

as compared to wild type. Additionally, in mammals the loss of Gα subunits lead to 

changes in mitochondrial respiration. In the Δric8 mutant, down-regulation of electron 

transport chain complex I was observed, suggesting effects on mitochondrial respiration. 

As Complex I is involved in NAD+/NADH recycling, we analyzed levels of NAD+ and 

observed that NAD+ was reduced in the Δric8 mutant. Overall, similarly to in mammals, 

Gα subunits may play an important role in carbon metabolism and mitochondrial 

respiration in N. crassa. 

In this study we used RNAseq and targeted LC-MS analysis to determine the role 

of gna-1, gna-3 and ric8 on metabolism in N. crassa. We observed that Δgna-1, Δgna-3 

and Δric8 have differentially expressed genes as compared to wild type. In Δgna-3 and 

Δric8 mutants more than half of the differentially expressed in both mutants are mis-

regulated in the same way. Additionally, many of the genes that are differentially 
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expressed are metabolic genes. To determine if effects on transcription lead to changes in 

metabolite levels targeted LC-MS analysis was performed against 201 different 

metabolites standards. Of the 201 potential metabolites 120 were unambiguously 

detected. LC-MS analysis revealed that all three mutants have significant differences 

from wild type in metabolite levels. Unlike the RNAseq results, the two mutants with the 

highest shared metabolite changes are Δgna-1 and Δric8. Combining the both the 

RNAseq and metabolomics datasets revealed evidence for both transcriptional and post-

transcriptional regulation of metabolism by G protein signaling in N. crassa.  
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Figure legends 

Figure 5.2: Venn diagram for differentially expressed genes.  

Only genes with more than 10 TPMs present in at least one strain and that differed 

significantly from wild type in the indicated mutant (with p<0.05) with a fold change of 

>2 were included. The numbers represent the number of shared differentially regulated 

genes that are either up or down regulated in one, both or all three mutants as compared 

to wild type. The white circle contains the 159 differentially regulated genes in the Δgna-

1 mutant, the blue circle contains the 1138 differentially regulated genes in the Δgna-3 

mutant, and the orange circle contains the 1395 differentially regulated genes in the Δric8 

mutant.  
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Figure 5.3. Expression levels of genes.  

The relative RNA abundance for each gene transcript is expressed as a percent of wild 

type. Error bars indicate the standard error. A. The 32 nuclear genes that encode proteins 

that form electron transport chain complex 1. B. The nuclear genes that encode electron 

transport chain complex 3.  
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Figure 5.4: Differentially expressed genes grouped by functional catalogue (FunCat) 

assignment.  

The distribution of FunCat assignments for all differentially expressed genes in the three 

mutants. Functional category data were obtained from https://elbe.hki-

jena.de/fungifun/fungifun.php A. The 159 differentially expressed genes in the Δgna-1 

mutant. B. The 1138 differentially expressed genes in the Δgna-3. C. The 1395 

differentially expressed genes in the Δric8.  
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Figure 5.5: Principal component analysis (PCA) score plot of metabolite 

abundances.  

PCA analysis of the relative abundances from LC-MS spectra measured for replicate 

samples. The x y and z axis 58.9% of the variance.  
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Figure 5.6. Distribution of metabolites into categories.  

Each “slice” of the pie represents a fraction of the metabolites within the indicated 

category. The number of metabolites in each category is indicated. The MISC 

(Miscellaneous) group includes 18 categories with three or fewer members. 
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Figure 5.7: Venn diagram of regulated metabolites.  

All metabolites that differed significantly from wild type at p<0.05 or lower were 

included. The numbers represent the number of shared differentially regulated 

metabolites that are either up or down regulated in one, both or all three strain as 

compared to wild type. The white circle contains the 25 differentially regulated 

metabolites in the Δgna-1 mutant, the blue circle contains the 27 differentially regulated 

genes in the Δgna-3 mutant, and the orange circle contains the 67 differentially regulated 

gene in the Δric8 mutant. 
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Table 5.1: List of the 201 metabolites 

 Relative abundance 

Metabolite Category Detected 
Wild 
type 

Δgna-1 Δgna-3 Δric8 

N-Acetylglutamic 
acid 

Acetyl amino acid Yes 804423174.4 1874725027 1381451446 357840230.4 

N-Acetylglycine Acetyl amino acid Yes 6077851 5547780.2 6283351.8 5163450.2 

N-Acetyllysine Acetyl amino acid Yes 17602755.6 13830016.6 26805270.2 9194723.2 

N-Acetylproline Acetyl amino acid Yes 3208229.6 3957286.8 3504768.2 820115.8 

Trimethylamine N-
oxide 

Amine oxide Yes 816068.8 827896.6 941896 1098750.6 

Malylglutamic acid Amino acid Yes 86391 77094.8 106340.6 52122.8 

Taurine Amino acid Yes 4085936.2 3350510.8 2975296.2 3202095 

Asparagine Amino acid Yes 28759554.8 27030504 42531856 19411269.6 

4-Guanidinobutyric 
acid 

Amino acid Yes 9882528 7558653.8 9659564 3564059.8 

Lysine Amino acid Yes 2447184090 1540166234 3744693350 903047574.4 

Threonine Amino acid Yes 5031059021 5008972723 5900597965 4054736947 

Arginine Amino acid Yes 12035400000 1.0177E+10 1.3327E+10 7134725427 

Pipecolic acid Amino acid Yes 1657635536 780397596 1403411859 277348538.6 

Urocanic acid Amino acid Yes 7932659.6 8908988 9233369.4 5695056.8 

O-
Succinylhomoserine 

Amino acid Yes 49931719.6 60868025.2 54584128 29378632.6 

Tyrosine Amino acid Yes 617278921.6 634527958 901281434 603893510.4 

4-Hydroxyproline Amino acid Yes 5242315.8 6605211 7371032.4 5185722.2 

Methionine Amino acid Yes 1250119194 1967972762 1159612269 1071230618 

5-Aminovaleric acid Amino acid Yes 2616463.4 2367335.8 2454350.4 2210013.4 

Kynurenine Amino acid Yes 13190760.8 12423597.6 7169262.6 3425097.2 

Aspartic acid Amino acid Yes 106592710.2 202180558 144099326 348678693.6 

2-Aminobutyric acid Amino acid Yes 1565105582 1943769554 1733052380 1208856732 

Glutamic acid Amino acid Yes 6473990630 7418981709 8016131072 4749030733 

Leucine Amino acid Yes 2342585736 2102346511 2889521535 1996885224 

Serine Amino acid Yes 801819670.4 851924661 879636880 889101735.2 

beta-Alanine Amino acid Yes 20751088.6 25221569.6 51335827.4 96899233 

Tryptophan Amino acid Yes 559313363.2 520647654 735311450 446527238.4 

Cystathionine Amino acid Yes 1322052371 1361020410 1064071213 589062592 

5-
Hydroxytryptophan 

Amino acid Yes 703184.6 565267.4 768612.4 510446.2 

5-Hydroxylysine Amino acid Yes 120755.6 179299.2 186508.4 180068.8 

3-Methylhistidine Amino acid Yes 8985459.4 8459811.6 10149332.4 12335678 

Isoleucine Amino acid Yes 2787517811 2391660563 3068951034 2158040243 

gamma-
Aminobutyric acid 

Amino acid Yes 768131513.6 288431134 230423190 550345673.6 

Valine Amino acid Yes 9077268774 8234958259 1.053E+10 7604706675 

Nicotinic acid B vitamin Yes 86922949.4 109026286 129659992 96473358.6 

Thiamine B vitamin Yes 1037183.6 1762497 1593788.4 1522453.2 

Thiamine 
pyrophosphate 

B vitamin Yes 1616591 1778911.2 2028167 1766651.6 

Acetylcarnitine Carnitine Yes 975878408 1086483152 816644040 2025107306 

Carnitine Carnitine Yes 700071766.4 753682067 530765968 822869945.6 

3-Hydroxy-3-
methylglutaryl CoA 

Cholesterol 
synthesis 

Yes 892591 665962.8 624432.4 315721.8 

Choline Choline Yes 432136805.6 476602021 839255936 1099937874 

Nicotinamide 
mononucleotide 

Electron carrier Yes 

55211208.8 43909111.4 46620782.4 31770487.4 

NADP Electron carrier Yes 2932658.4 1697653.8 2629792.6 1767760.6 

FAD Electron carrier Yes 68149258.4 57792462.8 78556238 56410395.2 
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 Relative abundance 

Metabolite Category Detected Wild 
type 

Δgna-1 Δgna-3 Δric8 

NAD Electron carrier Yes 399571827.2 265300355 164557075 194221268 

Creatinine Energy Yes 1267209.8 1518927.2 1231988.8 1076607.6 

Phosphoenolpyruvic 
acid 

Glycolysis Yes 

1415128.6 664429.8 577628 579081 

Glycerol-3-
phosphate 

Glycolysis Yes 

77073672.2 106352681 122699285 67647353.4 

DXP MEP pathway Yes 1531574.2 1407418.8 1260402.8 1059072.8 

MEcPP MEP pathway Yes 189661.6 210229.8 263831.4 255096.2 

MEP MEP pathway Yes 381652.4 371285.2 194328.6 405182.2 

Dimethylarginine Methyl amino acid Yes 90496210.8 82636093.2 84663672.4 83949140 

Trimethyllysine Methyl amino acid Yes 91155176.8 132195616 81167447.8 170242969.6 

S-
Adenosylhomocystei

ne 

Methylation Yes 

449918276.8 503896859 649931213 409576972.8 

S-
Adenosylmethionine 

Methylation Yes 

127305286 166009341 231356122 125294153.6 

Betaine Methylation Yes 3698346.8 2239783.6 3202210.2 5494687.4 
Glutaric acid Organic acid Yes 521466 522756.2 631369.2 349648.4 

Glycolic acid Organic acid Yes 38407.8 40879 36205.6 69762.8 

Hydroxypyruvic acid Organic acid Yes 574416 557234.6 412516.4 193542.2 

Glyceric acid Organic acid Yes 11789837 9539455.2 17745094.4 10001828.2 

Tartaric acid Organic acid Yes 550818 1164373 724571 634391.2 

Gluconic acid Organic acid Yes 22179911.8 35801170.2 35528539 25613323.4 

Malonic acid Organic acid Yes 3532659.4 2512602.6 2690254.2 1697035.4 

3-Nitrotyrosine Oxidative stress Yes 658985.4 1225139.4 2179309.4 4691829.2 

Methionine sulfoxide Oxidative stress Yes 8495892.2 12491986 8127119.2 8215304.6 

GSH Oxidative stress Yes 6135951821 5688457882 6138252800 4391524710 

Ophthalmic acid Oxidative stress Yes 965971328 1182925958 842538659 778847840 

GSSG Oxidative stress Yes 364845384 414797726 628193760 163535826 

Glu-asp-OH Peptide Yes 370258 278665.8 505771.8 242901.4 

4-Hydroxybenzoic 
acid 

Phenolic Yes 

965192 922553.4 973287.8 785598.4 

O-
Phosphoethanolamin

e 

Phospholipid 
turnover 

Yes 

1328813.2 753533.2 1391642.2 1133192.2 

CDP-choline Phospholipid 
turnover 

Yes 

129077839.6 109852908 114800153 174514207.2 

CDP-ethanolamine Phospholipid 
turnover 

Yes 

12049321.2 10469646 14646774.6 13163793 

N-Acetylputrescine Polyamine Yes 29910702 31799724.2 26664312.4 39466931.4 

Allantoin Purine Yes 2426115.4 2245541.2 3319139.4 3900691.2 

ATP Purine Yes 17815358.4 13007334.6 14368358.6 11402566.6 

dGDP Purine Yes 1594564.6 747578.2 1550340.4 821913.6 

dGMP Purine Yes 996313 816241 1429007.2 1163560.4 

GMP Purine Yes 94653966.8 45680523 114773245 55200473.4 

IDP Purine Yes 320326.8 184143.4 279992.4 185916.4 

IMP Purine Yes 18440255.6 13917519 20812771.4 8499128 

Xanthine Purine Yes 10156516.8 13340781 13479628.4 24706388.8 

Hypoxanthine Purine Yes 66717186.6 76368234.2 58984941.8 126410800 

Guanosine Purine Yes 566344730.8 542548254 852683907 680802638.4 

Adenosine Purine Yes 6947113808 4475693037 1.4052E+10 4537293350 

ADP ribose Purine Yes 169009950.4 222537298 347991024 250739089.6 

Deoxyguanosine Purine Yes 280438.8 489629.4 435579.2 1416997 

dATP Purine Yes 125222.2 101892.4 162664.6 69585.4 

Inosine Purine Yes 12688850.2 9974863 33127967.4 9171751.4 

Deoxyadenosine Purine Yes 12284975 13787389.8 13071813.6 15130858.2 
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 Relative abundance 

Metabolite Category Detected Wild 
type 

Δgna-1 Δgna-3 Δric8 

AMP Purine Yes 1817265144 1245737782 2522675048 1115987533 

Guanine Purine Yes 183998027.2 184666163 218751677 241963917.6 

ADP Purine Yes 169381795.6 98286174.6 174575004 82241284.2 

Adenine Purine Yes 649385059.2 630426659 838229187 702915960 

cyclic GMP Purine Yes 10071199 11068704.6 11268721.6 10877077.4 

cyclic CMP Pyrimidine Yes 5282117.6 5653426.8 5698412.8 5479867.8 

dCMP Pyrimidine Yes 315962 337195.4 410782.2 377997 

Cytidine Pyrimidine Yes 62045298.4 65297237.8 111546770 74786831.6 

UMP Pyrimidine Yes 74099687 44038460 128661564 32360066.2 

Uridine Pyrimidine Yes 18245779.2 11307836.4 38206699 21224671.4 

Orotic acid Pyrimidine Yes 10214773.4 12032009.4 7435913.4 5192563.6 

UDP-glucose Pyrimidine Yes 1257600486 1369101117 1289922518 1015519878 

dUMP Pyrimidine Yes 581243.6 456568.8 483636.4 507757.2 

Disaccharide C12 Sugar Yes 1609492994 1442484102 1393950638 1843140218 

Hexose Sugar Yes 10970080 13998258.6 11605565 16911705 

Adonitol Sugar alcohol Yes 3467781.8 2787769.6 2482418.4 1050189 

myo-Inositol Sugar alcohol Yes 2913462 3273221.6 5963872.8 6898317.4 

Sorbitol Sugar alcohol Yes 1342009645 1723219904 1438724326 2076658445 

Hexose phosphate Sugar phosphate Yes 50889373 59430529.4 61582997.4 48750599.6 

Pentose phosphate Sugar phosphate Yes 32046598.4 47123766.6 55673935.6 26654367.2 

Trehalose-6-P Sugar phosphate Yes 2717141 5146657.8 4435833.4 5008377.4 

Iso/Citric acid TCA cycle Yes 558448116.8 367809565 361230334 1040661866 

Malic acid TCA cycle Yes 867270688 1153769811 1058139549 1348390970 

alpha-Ketoglutaric 
acid 

TCA cycle Yes 

91056367.6 78315643.8 77059516.8 34737375.8 

Succinic acid TCA cycle Yes 75510886.6 83866707.6 89068558.4 185174162.4 

Urea Urea cycle Yes 112095595.2 44426901.6 110536042 88369873.6 
Citrulline Urea cycle Yes 3159413197 2664412826 3709102234 869167756.8 
Ornithine Urea cycle Yes 4844321485 3758314906 5951520154 1336966118 

Argininosuccinic acid Urea cycle Yes 835141760 983371629 1107404733 1127033408 

UDP-N-
acetylglucosamine 

 
Yes 

1007863283 1107408742 1042321158 897369088 

Proline Amino acid Yes N/A N/A N/A N/A 

Phenylalanine Amino acid Yes N/A N/A N/A N/A 

Glutamine Amino acid Yes N/A N/A N/A N/A 

Glycerophosphocholi
ne 

Choline Yes 

N/A N/A N/A N/A 

O-Acetylserine Acetyl amino acid No     

N-Acetylserine Acetyl amino acid No     

Trigonelline Alkaloid No     

N-Methyltryptamine Alkaloid No     

Cysteinesulfinic acid Amino acid No     

Tryptophanamide Amino acid No     

Tyramine Amino acid No     

3-methoxytyramine Amino acid No     

Homocystine Amino acid No     

Aminoadipic acid Amino acid No     

Methionine 
sulfoximine 

Amino acid No 

    

S-
Carboxymethylcystei

ne 

Amino acid No 

    

Selenomethionine Amino acid No     

Xanthurenic acid Amino acid No     

2,6-Diaminopimelic 
acid 

Amino acid No 
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 Relative abundance 

Metabolite Category Detected Wild 
type 

Δgna-1 Δgna-3 Δric8 

Cystine Amino acid No     

Cysteic acid Amino acid No     

N-Acetylneuraminic 
acid 

Amino sugar No 

    

Glucosaminic acid Amino sugar No     

Hexoseamine Amino sugar No     

N-
Acetylhexoseamine 

Amino sugar No 

    

Folic acid B vitamin No     

Thiamine 
monophosphate 

B vitamin No 

    

Glutarylcarnitine Carnitine No     

Acetylcholine Choline No     

3-dephospho-CoA CoA No     

L-DOPA Dopamine 
pathway 

No 

    

NADPH Electron carrier No     

NADH Electron carrier No     

Phosphocreatine Energy No     

Creatine Energy No     

Naringenin-7-O-
glucoside 

Flavonoid 
glycoside 

No 

    

2/3-Phosphoglyceric 
acid 

Glycolysis No 

    

CDP-ME MEP pathway No     

N-Methylglutamate Methyl amino acid No     

1-Methylhistidine Methyl amino acid No     

Sarcosine Methylation No     

N,N-dimethylglycine Methylation No     

Methylmalonic acid Organic acid No     

3-Methylglutaric acid Organic acid No     

Adipic acid Organic acid No     

2-Methylglutaric acid Organic acid No     

Azelaic acid Organic acid No     

Guanidinosuccinic 
acid 

Oxidative stress No 

    

Anserine Peptide No     

Thyrotropin releasing 
hormone 

Peptide No 

    

Epi/catechin Phenolic No     

p-Coumaric acid Phenolic No     

3,4-
Dihydroxycinnamic 

acid 

Phenolic No 

    

Syringic acid Phenolic No     

Vanillic acid Phenolic No     

Gallic acid Phenolic No     

Phosphocholine Phospholipid 
turnover 

No 

    

2-phosphoglycolate Photosynthesis No     

6-Phosphogluconic 
acid 

PP pathway No 

    

GTP Purine No     

dAMP Purine No     

GDP Purine No     

ITP Purine No     
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 Relative abundance 

Metabolite Category Detected Wild 
type 

Δgna-1 Δgna-3 Δric8 

Xanthosine Purine No     

ADP glucose Purine No     

8-OH-
deoxyguanosine 

Purine No 

    

XMP Purine No     

3-Methylxanthine Purine No     

CTP Pyrimidine No     

UDP-glucuronic acid Pyrimidine No     

Thymidine Pyrimidine No     

dCDP Pyrimidine No     

Deoxyuridine Pyrimidine No     

Deoxycytidine Pyrimidine No     

Dihydroortic acid Pyrimidine No     

3-Ureidopropionic 
acid 

Pyrimidine No 

    

Tetrasaccharide C24 Sugar No     

Trisaccharide C18 Sugar No     

Glucosamine-6-
phosphate 

Sugar phosphate No 

    

Glucosamine-6-
sulfate 

Sugar sulfate No 

    

3,5-Diiodotyrosine Thyroid hormone 
pathway 

No 
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Table 5.2: Misregulated metabolites and genes encoding possible associated enzymes 

 
Metabolite abundance            

(% wild type) 
Precursor 
enzyme 

Precursor differentially 
regulated 

Product 
enzyme 

Product differentially 
regulated 

Compound Δgna-1 Δgna-3 Δric8  Δgna-1 Δgna-3 Δ ic   Δgna-1 Δgna-3 Δ ic  

N acetyl-
glutamic 

acid 
233%** 172% 44%** 

Arginino-
succinate lyase 

(NCU08162) 
Arg-10 

No No No 
Arginase 

(NCU02333) 
Aga-1 

No Yes No 

Urea 40%* 99% 79% 
Arginase 

(NCU02333) 
aga-1 

No Yes No 
Urease 

(NCU01246) 
ure-1 

No No No 

Ornithine 78% 123% 28%* 

Acetylornithin
e-glutamate 

transacetylase 
(NCU05622) 

arg-15 

No No No 

Ornithine 
carbamoyl 
transferase 
(NCU01667) 

arg-12 

No No No 

Tryptophan 93% 131%* 80% -    

Tryptophan 2,3-
dioxygenase 
(NCU05752) 

nt 

Yes Yes Yes 

Aspartate 190% 135% 327%*** -    

Aspartate-
semialdehyde 

dehydrogenase 
(NCU00554) 

Hom-1 

No No Yes 
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Chapter 6 

Conclusions and future directions 
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The main objective of this thesis has been to generate and utilize phenotypic data 

to reveal potential gene pathways in N. crassa and to determine the ways in which G 

protein signaling regulates transcription and metabolite levels. 

In Chapter 2, 312 transcription factors were annotated and 242 had phenotypes 

determined for 10 traits in N. crassa. Of the 242 mutants analyzed 64% had at least one 

phenotype, 21% had at least two phenotypes in growth and development and 8% 

exhibited phenotypes in all aspects of growth and development. Combining the 

phenotypic data with mRNA expression data revealed that some transcription factors are 

co-transcribed and yet do not individually exhibit phenotypes, suggesting redundancy. 

Creating and analyzing double gene deletion mutants of the co-transcribed genes may 

reveal redundant transcriptions factors and implicate them as acting in the same 

pathways. 

In Chapter 3, ~1200 gene deletion mutants had phenotypic data available for 10 

different traits in growth and development. To utilize this data, we clustered the mutants 

into groups by phenotypes using a weighted partitioning around medoids approach. We 

then looked for correlations between phenotypes, protein features and mRNA expression. 

We observed that mutants with substantially taller aerial hyphae height correlated with 

genes that encoded proteins with transmembrane domains. The genes that encoded 

proteins with transmembrane domains were predicted as being related to oxidative stress 

or as transporters, revealing that these genes may work together to regulate aerial hyphae 

height. The induction of aerial hyphae requires a hyperoxidant state and we could 
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measure the strains sensitivity to oxidative stress to see if these genes play a large role in 

the oxidative stress response. 

We also found that all genes with a yeast homolog had evidence in yeast of 

interaction with the at least one of the other co-clustered genes revealing a potential 

MAPK network of genes.  In the future, this work could be followed up on by exploring 

epistatic relationships and effects on MAPK phosphorylation in the N. crassa mutants in 

the cluster. 

With this clustering method, as phenotypic data becomes available for additional 

mutants, the clustering analysis can be re-run and the new pathways may be revealed. 

Additionally, this clustering method could be applied to phenotypic data in different 

conditions looking at other aspects of growth and development such as stress and drug 

resistance. 

In Chapter 4, we investigated the role of Receptor for Activated C Kinase-1 

(RACK1) homolog cpc-2 in regulation and interaction with G protein signaling. RACK1 

has been shown to act as alternative Gβ protein in many systems. Genetic epistasis 

experiment between cpc-2 and the G proteins (Δgna-1, Δgna-2, Δgna-3, and Δgnb-1) 

revealed that cpc-2 is epistatic to Δgna-2 for basal hyphae growth rate, and mutational 

activation of gna-3 suppressed an inappropriate conidiation defect present in Δcpc-2. 

Follow-up studies could explore epistasis between cpc-2 and G protein subunit genes for 

additional traits, such as utilization of cellulose or hemicellulose as a carbon source. 
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Finally, in Chapter 5, we used transcriptomics to determine the role of G proteins 

in transcriptional control of gene expression. We found that all mutant strains had 

differentially expressed genes. Many of the differentially expressed genes were 

categorized by FunCat analysis as metabolic genes. We employed LC-MS analysis to 

determine levels of primary metabolites in the strains, with all strains exhibiting mis-

regulated metabolites. Comparing the RNAseq data to the metabolomics data revealed 

evidence for both transcriptional and post-transcriptional regulation of metabolites. It also 

showed mis-regulation in both energy-carrying metabolites and in energy metabolite 

recycling genes, suggesting a general mis-regulation of energy metabolism. The next 

steps would be to assay several of these energy metabolites directly using 

spectrophotometric or colorimetric tests to determine the pools of these metabolites in 

each mutant.  In addition, the activities or protein levels for the various ATPases could be 

determined using available assays and antibodies in N. crassa. 

 

 


