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Abstract

This paper examines order effects and frequency learning in
belief updating. We present an experiment that tests for the
existence of order effects for actual decisions during fre-
quency learning and for belief evaluations after frequency
learning in a realistic tactical decision making task. The
experiment revealed that (a) subjects showed order effects
for actual decisions during frequency learning—an effect
not reported previously and (b) subjects still showed order
effects for belief evaluations even after having correctly
learned most of the frequency information. We also present
a simulation for the frequency learning behavior and some
preliminary results of a simulation for the order effect, and
suggest networks for potential combinations of the order
effect and frequency learning.

Introduction

A number of experiments indicate that the order in which
evidence is presented can affect the strength of a person’s
belief in hypothesized causes. Different experiments have
found that order of evidence can produce no effect, a recency
effect, or a primacy effect. Hogarth and Einhorn (1992) pro-
posed an anchoring and adjustment model of belief updating
that predicts when these effects will occur based on features
of the belief updating task. For example, step-by-step
evaluation of beliefs for mixed positive and negative evi-
dence items produces a recency effect: the final evaluation of
belief is mainly determined by the last evidence item. How-
ever, step-by-step evaluation of beliefs for consistent evi-
dence (all positive or all negative) produces no effect.

A different set of studies and models are concerned with
the learning and use of frequency information. When condi-
tional probability and base rates of occurrence are presented
explicitly in terms of numeric values, they are very difficult
to leamm and utilize (see Kahneman, Slovic & Tversky,
1982). However, when they are presented in terms of real
events and occurrences, they can often be learned implicitly
and used correctly (e.g., Christensen-Szalanski, & Bushy-
head, 1981; Medin & Edelson, 1988; for a review, see
Hasher & Zacks, 1984). As a result of using real events to
present frequency information, many of the well-known bi-
ases in human probabilistic reasoning (see Kahneman,
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Slovic & Tversky, 1982) disappear. However, one important
bias that has yet to be studied in this area is the order effect
on belief updating described above.

The studies and models of the order effect are usually sepa-
rated from those on frequency learning and use. As a result,
models of belief updating based on frequency acquisition
research cannot account for the complete spectrum of order
effects. In fact, one of the most well-known examples, the
Rescorla-Wagner model (Rescorla & Wagner, 1972), com-
pletely ignores the temporal sequence of information. Since
many frequency acquisition tasks involve temporal sequences
of information, it is important to consider the joint implica-
tions of these two research areas. This paper examines order
effects and frequency learning in a common task environ-
ment. We present an experiment that tests for the existence
of order effects during and after the acquisition of frequency
information in a natural setting. The experiment revealed
that (a) subjects showed order effects for actual decisions
during frequency learning—an effect not reported previously
and (b) subjects still showed order effects for belief evalua-
tions even after having correctly leamed most of the fre-
quency information. We also present a simulation for the
frequency learning behavior and some preliminary results of
a simulation for the order effect, and suggest networks for
potential combinations of the order effect and frequency
learning.

Experiment

The experimental task was implemented on the CIC
(Combat Information Center) simulator developed by Towne
(1995) for the US Navy. Figure | shows a simplified radar
display of the CIC simulator. It shows an unknown airplane
heading toward the Naval ship which is at the center of the
radar display. The captain of the ship can check whether the
target is on or off a commercial air route by clicking the
route button to display all available routes. He can also send
a radio verbal warning to request the target to identify itself
by clicking the warning button. The target may or may not
respond to the warning. In this experiment, when it responds
to the warning, it always identifies itself as a commercial
airplane. The target can be either friendly or hostile. The
task 1s to use the information about the air route and the
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information about the identity (ID) obtained from the radio
warning to identify whether the target is friendly or hostile.
The constraint of the task is that the two evidence items
(route and ID) can only be obtained sequentially, one at a
time. The order can be either route followed by ID or ID
followed by route.

The experiment tests three hypotheses. The first hypothe-
sis is about frequency learning. In a given geopolitical envi-
ronment, there are certain conditional probabilities about
whether the target is friendly or hostile given the two evi-
dence items. When subjects are trained on the task many
times with a fixed base rate and conditional probabilities,
they can implicitly and accurately acquire most of the fre-
quency information. The second hypothesis is about the
order effect for belief evaluations. Previous studies show that
when frequency information is accurately and implicitly
learned in actual events, certain biases such as the base rate
fallacy can be eliminated. We test the hypothesis that even if
most of the frequency information is acquired implicitly and
accurately, the order effect for belief evaulations, a special
type of bias, still exists. That is, when the two evidence
items are presented one by one in different temporal orders,
the final evaluations of hypotheses about the friendliness of
the target are different. The third hypothesis is about the
order effect for actual decisions. Previous studies showed
order effects only for belief evaluations, not for actual deci-
sions. We test the hypothesis that subjects show order ef-
fects for actual decisions during frequency learning.

check commercial
air route

send radio
warming

Figure 1. A simplified radar display on the CIC simulator.
See text for details.

Method

Subjects. The subjects were 40 undergraduate students
in introductory psychology courses at The Ohio State Uni-
versity who participated in the experiment for course credit.

Design & Procedure. There were two evidence items:
route and ID. Route indicates whether the target is on or off
a commercial air route. ID indicates whether there is any
response from the unknown target to a radio warning issued
from the ship. The two evidence items were presented in two
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different orders: Route-ID order in which route information
was collected first, followed by ID information; /D-Route
order in which ID information was collected first, followed
by Route information. After having collected both evidence
items, subjects made a forced-choice response indicating
whether the unknown target was friendly or hostile. After
each response, subjects were given feedback indicating
whether the response was correct or incorrect. Each subject
performed 50 trials. The conditional probabilities of hostil-
ity and friendliness for a given set of evident items are
shown in Table 1. For half of the 40 subjects, the two evi-
dence items were always presented in the Route-ID order for
all 50 trials; for the other half, in the ID-Route order for all
50 trails. The 50 trials for each subject constituted the learn-
ing phase for the acquisition of frequency information.

After 50 trials, each subject was given a written question-
naire requesting belief evaluations about the hostility and
friendliness of the unknown target after the presentation of a
baseline fact and each of the two evidence items. In the ques-
tionnaire, Route was always negative (the plane was not on
a commercial route) and ID was always positive (the plane
indicated that it was a commercial plane). For half of the 20
subjects receiving each of the two training orders (Route-ID
and ID-Route) of the 50 trials, the evaluation order of the
evidence items was Route-ID; and for the other half, the
evaluation order was ID-Route. For example, an evaluation
order of Route-ID is shown in Figure 2. The written ques-
tionnaire constituted the evaluation phase for belief evalua-
tions.

Thus, this experiment was a 2x2 between-subject design,
with the two learning orders as one factor and the two
evaluation orders as another factor.

1. You see a plane which is getting closer to your ship.
On a scale from 0 to 100 (with 0 being total disbelief
and 100 total belief) please rate your belief in the fol-
lowing hypotheses:

1. How likely do you think the plane is hostile?
2. How likely do you think the plane is friendly?

2. After consulting commercial air routes, you discover
that the plane is not on a commercial air route. Given
this new information, please answer the following
questions. Again, express your answer on a scale of 0
to 100 with 0 being total disbelief and 100 being to-
tal belief.

1. How likely do you think the plane is friendly?
2. How likely do you think the plane is hostile?

3. When you asked the plane to identify itself, the plane
identifies itself as a commercial airplane. Given this
new information, please answer the following ques-
tions. Again, express your answer on a scale of 0 to
100 with 0 being rotal disbelief and 100 being to1al
belief.

1. How likely do you think the plane is friendly?
2. How likely do you think the plane is hostile?

Figure 2. The questionnaire for the Route-ID evaluation
order.



Table 1. Probability Distribution of Learning Trials
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Figure 3. Conditional probabilities from theoretical calculation (Bayes rule), the experiment, and the simulation using the

Rescorla-Wagner rule.

Results & Discussion

Frequency Learning. The responses of the 50 trials by
each subject were transformed into conditional probabilities,
which were then averaged across the 20 subjects for the
Route-ID learning order and across the 20 subjects for the
ID-Route learning order. The results are shown in Figure 3
under Route-ID and ID-Route.

The conditional probabilities from the experiment were
compared with their corresponding theoretical values. For
the Route-ID learning order , p(FIID+), p(FIID-), and p(FIR-
ID-) were significantly different from the theoretical values
(smallest t(19) = 2.82, p < 0.05); p(FIR+), p(FIR-),
p(FIR+ID-), p(FIR-ID+), and p(FIR+ID+) were not signifi-
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cantly different from the theoretical values (largest t(19) =
2.0, p > 0.05). For the ID-Route order, p(FIID+), p(FIID-),
p(FIR-ID-), p(FIR+ID-), and p(FIR-ID+) were significantly
different from their theoretical values (smallest t(19) = 2.26,
p < 0.05); p(FIR+), p(FIR-), and p(FIR+ID+) were not sig-
nificantly different from the theoretical values (largest t(19)
= 1.31, p > 0.20). These results indicate two findings. First,
subjects correctly learned some of the conditional probabili-
ties but not all, and more for the Route-ID order than for the
ID-Route order. Second, ID was a less objective evidence
item than Route: p(FIID+) was smaller than its theoretical
value but p(FIR+) was not different from its theoretical
value. This might be because Route was always objectively
observed from the radar display whereas ID was obtained
from possibly deceptive radio communication.



The conditional probabilities from the two different learn-
ing orders were also compared with each other. The only
significant difference was p(FIR-ID+) (F(1, 38) = 4.52, p <
0.05). This is clearly a recency order effect: p(FIR-ID+) for
the Route-ID order was larger than p(FIR-ID+) for the ID-
Route order because the last evidence item in the Route-ID
order was positive (ID+) whereas that in the ID-Route order
was negative (R-). A similar order effect was also observed
for p(FIR+ID-) although the difference between the two
learning orders was not statistically significant. This result
is an indication that subjects showed order effects for actual
decisions during frequency learning.

Belief Evaluation. The results of belief evaluations af-
ter the learning phase are shown in Figure 4. For both learn-
ing orders, there was a clear order effect: when the two evi-
dence items (positive ID, negative Route) were presented in
different temporal orders, the final friendliness evaluations of
the unknown target were different. An ANOVA for the final
evaluations of friendliness was conducted for the two learn-
ing orders and two evaluation orders. The main effect for the
two learning orders was significant (F(1, 38) = 4.32, p <
0.05), indicating that the learning order Route-ID produced a
more hostile evaluation than the learning order ID-Route.
The main effect for the two evaluation orders was also sig-
nificant (F(1, 38) = 13.41, p < 0.001), indicating that the
evaluation order Route-ID produced a more friendly evalua-
tion than the evaluation order ID-Route. This order effect for
evaluations was a recency effect, as predicted by Hogarth and
Einhorn’s model: the final evaluation of friendliness was
determined by the last evidence item. For the Route-ID
evaluation order, the last evidence ID was positive, produc-
ing a more friendly evaluation. In contrast, for the ID-Route
evaluation order, the last evidence Route was negative, pro-
ducing a more hostile evaluation. The interaction between
learning order and evaluation was not significant (F(1, 38) =
0.53, p = 0.47).

Evaluation Order
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(A) Learning Order: Route-ID

Simulation: Frequency Learning

The experiment shows that subjects could learn most of the
frequency information implicitly and accurately. This section
describes a connectionist simulation of frequency learning
based on the Rescorla-Wagner rule (Rescorla & Wagner,
1972).

The Rescorla-Wagner rule was initially proposed for clas-
sical conditioning in animal associative learning and later
extended for human learning (e.g., Gluck & Bower, 1988). It
is sensitive to frequencies of observations and conditional
probabilities. Let w,, denote the strength of association be-
tween observation o; and hypothesis hj. If h; is a correct
hypothesis for observation o;, then the weight change is
Aw; = no,-(max—Zw,-j). where M is the learning rate, o;

i€o
reflects the reliability of the observation, max is the maxi-
mum possible level of associative strength that can be asso-
ciated with each hypothesis unit h; and Zw,-j is the total
ico

associative strength for the hypothesis hj that connects all
observations present on that trial. If the hypothesis 4; is an
incorrect hypothesis for observation o;, then the associative
strength between o; and h; decreases. The weight change is
Aw, = —no,Zw,-,. After a series of trials, wj; will reflect

(€0
the conditional probability of the hypothesis hj given the
observation o,.

Figure 5 shows a simple network used to simulate the ex-
perimental task described previously. The four observation
units represent the four possible outcomes of the two evi-
dence items: Route positive (R+), Route negative (R-), ID
positive (ID+), and ID negative (ID-). The two hypothesis
units represent the two possible outcomes of the evaluation:
Friendly (F) and Hostile (H).

100 1
90 T
80
70
60
50 1
40
30
20 -
10:7

0 v T "

Base Datum Datum
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(B) Learning Order: ID-Route

ID+

ID+

Route-
Route-

Figure 4. The evaluations of friendliness for the two different evaluation orders under the two different learning orders.
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Table 2. The Estimation of Conditional Probabilities for One Evidence Item

input patterns prob of patterns output activation p X output x 100

R+ R- ID+ ID- p o(F) o(H) Friendly Hostile
1010 0.34 0.924 0.072 31.42 2.45
1001 0.16 0.519 0.467 8.30 7.47
0110 0.16 0.487 0.515 1.79 8.24
010 1 0.34 0.082 0.910 2.79 30.94

Figure 5. A simple network used to simulate the experi-
mental task. The Rescorla-Wagner learning rule was used.
The weights are the average of the weights learmed by the
network across 20 simulated subjects with 50 trials for each
simulated subject.

Method

Subjects. 20 simulated subjects were trained on the
network.

Materials. The 50 trials used in the experiment were the
50 trials for the simulated subjects. The presentations of the
50 trials were randomized for each simulated subject. The
conditional probabilities of outcomes given conditions of
the two evidence items were identical to those in the ex-
periment, which are shown in Table 1.

Design & Procedure. The order effect of the presenta-
tion of the evidence items was not considered in this simula-
tion because Rescorla-Wagner rule cannot deal with temporal
orders. The two evidence items for each trial were encoded as
four observation units (R+, R-, ID+, ID-). For example,
positive Route and negative ID were encoded as (1, 0, 0, 1).
The outcome for each trial was encoded as two competing
hypothesis units (F, H). For example, friendly was encoded
as (1, 0).

The parameters of Rescorla-Wagner rule were as follows:
N = 0.1; max = 1; initial weights = 0. For each simulated
subject, the 50 trials were only presented once, same as in
the experiment. The weights were updated after each trial.

Result

The final weights of the 20 simulated subjects were aver-
aged, which are shown in Figure 5. These weights were used
to estimate the conditional probabilities of friendliness and
hostility for different combinations of the two evidence
items.
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The calculation of p(F | R, ID) is straightforward. For ex-
ample, if we use o(F) and o(H) to indicate the activation
values of the friendly and hostile units, then

p(F | R+, ID+)

= o(F)/(o(F)+o(H))

- (wFHf+wFDr)"((wFR++wFDr)+(wHRt+anJ+D

= (0.47040.454)/((0.470+0.454)+(0.024+0.048))
=093

Similarly, we can get p(F | R+, ID-) = 0.53; p(F | R-,
ID+) = 0.49; p(F | R-, ID-) = 0.08. These p values are
shown in Figure 3.

To estimate p(F | R) and p(F | ID), we need a different
procedure because we cannot use the ratio of activation val-
ues or the ratio of weights directly for the following reason.
Suppose we have an input vector (R+, R-, ID+, ID-). In an
actual input pattern, one of the two Rs is 1 and the other is
0 and one of the two IDs is 1 and the other is 0, e.g., (1, 0,
1, 0). To estimate p(F IR+), for example, we need an input
pattern (1, 0, 0, 0), which is a pattern never presented in the
training set. Thus, in order to estimate p(F | R) and p(F |
ID), we need to consider the distribution of the 50 training
patterns, as shown in Table 2. For example, to calculate p(F
IR+), we need to consider all the patterns in the 50 training
patterns that contain the pattern (1, 0, 0, 0), which are (1, 0,
1, 0) and (1, 0, 0, 1). Given the input (1, 0, 1, 0), the out-
put activation of F is 0.924, which is then weighted by the
probability of this pattern (0.34) across the 50 training pat-
terns, producing a product 0.3142. Similarly, we can get the
weighted output activation for H (0.0245) for the same pat-
tern and those for F and H for pattern (1, 0, 0, 1): 0.083 and
0.0747. From these values, we get

p(F I R+)

= (31.42+8.30)/((31.42+8.30)+(2.45+7.47))

=10.80

Similarly, we can get p(F | R-) = 0.20; p(F | ID+) = 0.79;
p(F | ID-) = 0.21). These p values are also shown in Fig-
ure 3.

From Figure 3 we can see that the conditional probabili-
ties learned by the Rescorla-Wagner rule are identical to the
theoretical values. This indicates that the Rescorla-Wagner
rule accurately learned conditional probabilities.

Discussion and Conclusion

The experimental results supported our three hypotheses: (a)
most of the frequency information was learned implicitly and
accurately, (b) there was an order effect for belief evaluation
after frequency learning, and (c) there was also an order effect
for actual decisions during frequency learning. The first
unique contribution of the present experiment is that it



shows that the order effect could not be eliminated even if
most of the frequency information was learned implicitly and
accurately. This is in contrast with previous studies which
show that when frequency information is leamed implicitly
and accurately, certain biases such as the base rate fallacy can
be eliminated. The second unique contribution of the present
experiment is the demonstration of order effects for actual
decisions, which have not been reported previously in the
literature.

The simulation results on frequency learning with the
Rescorla-Wagner rule were identical to the theoretical values
and very close to the values leammed by human subjects. It
indicates that the Rescorla-Wagner rule can account for both
theoretical and empirical data on frequency learning. In addi-
tion to the Rescorla-Wagner rule, we also tried a simple
recurrent net (Elman, 1993) and a reinforcement net (Sutton,
1988) to simulate the order effect. The simulation results
show that both types of networks could produce order effects
for the order used for training but they could not be general-
ized to a new order not present in the training. Other types
of networks are being examined for the order effect. The
high-level objective of our simulation studies is to find a
single architecture that can not only learn frequency informa-
tion but also produce the full range of order effects.

Acknowledgments

This research was supported by Office of Naval Research
Grant No. N00O14-95-1-0241 and a summer fellowship
from the Center for Cognitive Science at The Ohio State
University.

References

Christensen-Szalanski, J. J. J., & Bushyhead, J. B. (1981).
Physicians’ use of probabilistic information in a real
clinical setting. Jourmal of Experimental Psychology:
Human Perception and Performance, 7 (4), 928-935.

Elman, J. (1990). Finding structures in time. Cognitive
Science, 14, 179.

Gluck, M. A., & Bower, G. H. (1988). From conditioning
to category learning: An adaptive network model. Journal
of Experimental Psychology: General, 117 (3), 227-247.

Hasher, L., & Zacks, R. T. (1984). Automatic processing of
fundamental information: The case of frequency of occur-
rence. American Psychologist, 39(12), 1372-1388.

Hogarth, R. M. & Einhorn, H. J. (1992). Order effects in
belief updating: The belief-adjustment model. Cognitive
Psychology, 24, 1-55.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment
under uncertainty: Heuristics and biases. New York: Cam-
bridge University Press.

Medin, D. L., & Edelson, S. M. (1988). Problem structure
and the use of base-rate information form experience.
Journal of Experimental Psychology: General, 117 (1),
68-85.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effectiveness of
reinforcement and non-reinforcement. In A. H. Black &
W. F. Prokasy (Eds.), Classical Conditioning II: Current

713

Research and Theory. New York: Appleton-Century-
Crofts.

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, 3, 9-44.

Towne, D. (1995). CIC: Tactical Decision Making (Version
2.0). Behavioral Technology Laboratories, University of
Southern California.



	cogsci_1996_708-713



