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Abstract
Fragile X–associated tremor/ataxia syndrome (FXTAS) primarily affects

older adults who carry the FMR1 gene premutation. This conditions
include severe symptoms such as cognitive deterioration, intention tremors,

neuropathy, and progressive ataxia. Despite its profound impact on
individuals and their families, there is currently no dependable method for
predicting the onset or progression of FXTAS. Our research aims to fill this

critical gap by introducing a predictive method based on a thorough
analysis of clinical, genetics and behavioral factors. We utilized a dataset
comprising longitudinal records from 103 patients over three to five visits.

Employing advanced feature selection techniques and Random Forest
probabilistic models, we developed a highly accurate risk prediction model
for FXTAS. Our study has three primary objectives: first, to find an ideal

combination of Machine Learning (ML) models and feature selection
techniques that perform better across different performance

metrics—accuracy, recall, precision, sensitivity, specificity; second, to
determine whether undersampling or oversampling provides better results

across all performance metrics; and third, to quantify the risk by
determining precise risk scores. Our analysis includes four feature selection
methods—Random Forest, Lasso, Recursive Feature Elimination (RFE),

and Statistical Feature Selection (SFS)—and four classification algorithms:
Logistic Regression (LR), Support Vector Machine (SVM), Gradient
Boosting (XGBoost), and Random Forest (RF). The combination of

XGBoost and Recursive Feature Elimination (RFE) and the combination of
Random Forest and RFE both performed exceptionally well, achieving the
highest accuracy of 86.67, precision of 0.83, and recall of 0.67 compared to
other models. However, Random Forest with RFE performed slightly better
in measuring AUROC, indicating a superior ability to distinguish between
classes. The feature selection methods results showed consistent features:
Stop Signal Task (SST) Median Score and Full IQ Score which are both
used to evaluate cognitive functions. Another consistent features shown
were five-choice Movement Reaction Time and Purdue Pegboard Scores
(right-hand and left-hand) measure which are different aspects of motor

skills. These findings provide significant advancements in clinical
decision-making and personalized treatment strategies for diagnosing

FXTAS.
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1 Introduction
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,

vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pellentesque habitant morbi

tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.

Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget
sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla.
Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend,

sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi

auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae,
ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat

ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl
hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a
nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper

vestibulum turpis. Pellentesque cursus luctus mauris.
The field of healthcare is in a constant state of evolution,driven by a strong

dedication to improving patient outcomes through innovation and
technology. Over the past decade, better understanding of disease

mechanisms has improved the ability to prevent, diagnose, and treat
common afflictions. The innovation underlying such progress continues to

advance and accelerate change, with new technologies and medical
interventions providing new options for care and treatment.Previous

research have shown traditional approaches to healthcare, while effective in
many respects, often fall short when it comes to personalized and precise

interventions .
Machine learning has the potential to transform healthcare by using patient
data for early prediction of diseases, which can help in preventing the need
for more serious care, and to tailor treatments to individual patients. It has

successfully predicted individual disease trajectories and responses to
treatment by analyzing large datasets of patient information [26]. This

allows healthcare providers to tailor interventions more precisely, leading to
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improved outcomes and a better quality of life for patients. For example,
researchers have used machine learning algorithms to predict the

progression of Alzheimer’s disease in individual patients based on factors
such as brain imaging data, genetic markers, and cognitive assessments [5].
By identifying patterns and correlations in these data, machine learning
models can provide more accurate predictions of disease progression than
traditional methods. One of the key challenges in using machine learning

for disease prediction is the availability of high-quality, comprehensive data.
Much health data come from different sources such as interviews, surveys,

and unstructured clinical notes. These data are often incomplete, biased, or
noisy, which can affect the performance of machine learning models. To
overcome these challenges, researchers have employed a range of machine

learning algorithms, including decision trees, random forests, support vector
machines, and deep learning networks [1]. These algorithms have been

applied to a variety of datasets, including electronic health records, genomic
data, and social media posts [19] [1]. In general, the results of these studies

have shown that machine learning algorithms can accurately predict the
onset of diseases, with performance comparable to or better than

traditional statistical methods [19] [1].

1.1 Fragile X–associated tremor/ataxia syndrome
(FXTAS)

Fragile X-associated tremor/ataxia syndrome (FXTAS) was identified just
over a decade ago.It is a complex condition with difficulties in movement

and thinking ability (cognition) [11].It is seen in a subgroup of older adults
who are carriers of premutation alleles of the fragile X mental retardation 1
(FMR1) gene [15] [4]. This condition primarily affects males over the age of
50 with the Fragile X premutation [22]. It includes intention tremor, which
is shaking during movements like reaching for an object, and issues with
coordination and balance, known as ataxia. Typically, intention tremors

appear first, followed by ataxia years later, but not everyone with FXTAS
has both symptoms [15].Individuals with FXTAS also experience cognitive

impairments, such as short-term memory loss and decreased executive
function.These symptoms could affect their ability to plan, control

impulses, solve problems, monitor themselves, and maintain cognitive
flexibility. They might also get anxiety, depression, mood swings, or

2



irritability [4]. FXTAS is often misdiagnosed and goes unrecognized.
Although neurologists are becoming more knowledgeable about FXTAS,

primary care physicians see and treat about half of the affected individuals
[4][10][14]. Diagnosis would be enhanced by better medical education for

doctors and more precise, comprehensive diagnostic criteria .

Risk Factors

FXTAS is influenced by various risk factors. In selecting variables for the
dataset, we specifically targeted those associated with the following risk

factors, guided by expert input.
Age Age is a significant factor in FXTAS, with older carriers being more

susceptible to cognitive deficits, including dementia [14]. Male carriers with
FXTAS over the age of 50 have also been found to have significant

reductions in general intelligence scores and marginally significant deficits
in logical memory compared to their non-carrier male siblings [15].

CGG repeat size Individuals with FXTAS have a mutation in which a
DNA segment, known as a CGG triplet repeat, is expanded within the

FMR1 gene. Normally, this DNA segment is repeated from 5 to 40 times.
In people with FXTAS, the CGG segment is repeated 55 to 200 times. This
mutation is known as an FMR1 gene premutation. An expansion of more
than 200 repeats, a full mutation, causes a more serious condition called

fragile X syndrome[[15][16]. The size of the CGG repeat has been found
to be inversely related to the onset age of tremor and ataxia, as well as the

age of death in FXTAS patients. In a study, men with over 70 CGG
repeats had six times higher risk of severe cognitive impairment compared

to those with 45-70 repeats [16].Furthermore, larger CGG repeats and
increased FMR1 mRNA have been related to volume loss and decreased
activation in brain regions linked to working memory, respectively[16].

FXTAS stage The stages of FXTAS correspond to the length of illness
and the severity of the symptoms There are six stages based on the

progression of motor deficits :

1. Stage 1: Subtle or questionable tremor and/or balance problems.

2. Stage 2: Minor tremor and/or balance problems, with minimal inter-
ference in activities of daily living (ADLs).

3



3. Stage 3: Moderate tremor and/or balance problems with significant
interference in ADLs.

4. Stage 4: Severe tremor and/or balance problems, requiring the use of
a cane or walker.

5. Stage 5: Daily use of a wheelchair.

6. Stage 6: Patients are bedridden [11].

Gender While both males and females can be affected, males are generally
more severely affected due to having only one X chromosome, since they

don’t have a second X chromosome to balance the mutation.Women likely
have fewer symptoms because their second X chromosome has a normal

allele.Although the symptoms of FXTAS in most women can differ from the
original diagnostic criteria, they can be just as severe as those in men [12].
Previous research have also shown that in Magnetic Resonance Imaging
(MRI) women typically show less brain atrophy, white matter disease,

tremor, and ataxia compared to men with FXTAS [12]. Other than MRI
imaging, women with and without FXTAS have more medical commodities
than premutation men. A research also showed that women with FXTAS
have a higher incidence of fibromyalgia and hypothyroidism compated to

both women without FXTAS and men with FXTAS. It has also been shown
that females with FXTAS experience peripheral neuropathy, seizures, and
hypertension more frequently. It has also been been reported that some
women carriers also have reeported of having multiple sclerosis and other

(neurological) disorders [11] [12].
Lifetime depression Patients with FXTAS have a 65% lifetime chance of

developing mood disorders, such as Major Depressive Disorder (MDD),
which is much higher than in the general population of the same

age.Therefore, it is important to assess the potential impact of lifetime
depression on cognitive status in FXTAS [11].

Other medical illness Female carriers of the FMR1 premutation may
experience a range of health issues including primary ovarian insufficiency,

thyroid disorders, peripheral neuropathy, hypertension, fibromyalgia,
autoimmune diseases, and migraines. Male carriers often present with type

II diabetes, hypertension, sleep apnea, migraines, and cardiovascular
disease.Studies have shown that around 31.4% of premutation carriers with
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Figure 1: Associated risk with variation in demographic and other factors
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FXTAS suffer from sleep apnea, which contributes to the development of
metabolic syndrome and cognitive disorders [11] [9].

Substance use Alcohol and other central nervous system (CNS)
depressants, such as benzodiazepines and opioids, can contribute to

cognitive impairment. A review of medical records for 184 premutation
carriers, both with and without FXTAS, revealed that 24% had a history of

dependance on substance where alcohol was the most commonly abused
substance, particularly among men [11] [9].

Surgeries with general anesthesia Pervious studies suggest that general
anesthesia during surgeries might aggravate premutation-related symptoms.

Individuals over 60 years old have occasionally experienced the onset of
tremor or ataxia within a few weeks after undergoing surgery with general

anesthesia [11].

1.2 Clinical Rating Scales

In the study, we included scales and measures that provide a comprehensive
assessment of participants’ memory and mental health, as outlined in the

previously mentioned risk factors.
Behavior Dimensions Scale (BDS-2) score: The BDS-2 is a tool used
to assess the severity of behavioral problems in individuals with intellectual
disabilities. It covers various dimensions such as disruptive, self-absorbed,

and asocial behaviors[Hawthorne Educational Services, Inc. (n.d.).
Behavior Rating Scale.

Global severity score: This score provides an overall assessment of the
severity of the psychological symptoms of the individual. It is often used in
clinical settings to gauge the overall impact of a condition and assess the
effect on the functionality of an individual. This could be an important
factor that reflects the overall impact of the FXTAS on the individual’s

psychological functionality and quality of life.
Spatial working memory (SWM) error: SWM error refers to the

number of errors made in a spatial working memory task. This type of task
assesses an individual’s ability to remember and manipulate spatial

information. Errors in this test are defined as instances where participants
incorrectly select boxes they have previously determined to be empty or
revisit boxes already found to contain a token. This evaluation not only
measures memory accuracy but also the strategy used by participants,

reflecting their executive function capabilities. Such assessments are crucial
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for understanding cognitive function in various neurological and
psychological conditions.

Stop signal task (SST) Median: The stop signal task is a measure of
response inhibition, which is the ability to stop a planned or ongoing

response. The median stop signal reaction time(SSRT) is a key metric in
this task.The median SSRT provides a measure of the central tendency of
stopping latencies across trials or sessions, reflecting the typical response
inhibition capability of a participant under the tested conditions. This

median value helps in understanding the participant’s inhibitory control by
indicating how quickly they can typically stop their responses once a stop

signal is presented.
One Touch Stockings (OTS) problem: It is a test of executive

function that assesses planning and problem-solving abilities. It involves
predicting the outcome of moving disks in a stockings-like configuration.
Full Scale IQ: It is a measure of overall intellectual functioning derived

from standardized IQ tests. It provides an estimate of an individual’s
intellectual abilities compared to others of the same age.

Metacognition Index (MI) T-Score: The Metacognition Index is a
measure of metacognitive abilities, which refer to the awareness and control
of one’s own cognitive processes. The T-score indicates how an individual’s

score compares to the normative population.
Behavioral Regulation Index (BRI) Score: The Behavioral
Regulation Index is a measure of executive function related to

self-regulation, including the ability to inhibit responses and shift between
tasks.The BRI specifically measures an individual’s ability to modulate and

control behaviors effectively, which includes: the capacity to control
impulsive responses and the ability to move freely from one situation or

aspect of a problem to another in response to changing rules or demands.
Patients with FXTAS often exhibit impairments in executive functions,
including difficulties with task switching, problem-solving, planning, and

inhibiting inappropriate actions. The BRI can help quantify these deficits,
providing a clearer picture of how FXTAS is impacting an individual’s

cognitive control and behavioral regulation.Changes in BRI scores over time
can provide valuable information about the progression of executive

dysfunction.Understanding the specific areas of executive function that are
most affected in an individual with FXTAS can help healthcare providers

tailor cognitive rehabilitation strategies.
SCID : The Structured Clinical Interview for DSM-IV (SCID) is a

7



diagnostic tool used to assess various psychiatric disorders, including
anxiety disorders. It provides a structured format for clinicians to evaluate

symptoms and make a diagnosis.Individuals with FXTAS may also
experience psychiatric symptoms or disorders. Common comorbid

conditions include mood disorders, anxiety, and cognitive impairment,
which could be systematically assessed using the SCID. In research studies
involving individuals with FXTAS,it can be used to screen for and exclude
other psychiatric disorders that might confound .It helps in delineating the
psychological symptom profile that is directly related to FXTAS from other

psychiatric conditions. For a comprehensive evaluation of a patient’s
mental health, the SCID can be part of the broader assessment toolkit used

by clinicians treating patients with FXTAS, especially when psychiatric
symptoms are present and may impact the patient’s quality of life or the

management of FXTAS.
Rapid Visual Information Processing (RVP): RVP is a test of

sustained attention and vigilance. It involves detecting target sequences of
digits presented rapidly and requires continuous monitoring over a period of

time. FXTAS is associated with cognitive decline in some individuals,
especially in areas related to executive function, memory, and processing
speed. RVP can help in quantifying the extent of cognitive impairment
related to these domains.Regular administration of the RVP test can

provide insights into the progression of cognitive symptoms in patients with
FXTAS. This is crucial for managing the disease effectively and adjusting

treatment plans as needed.

1.3 Motivation

The diagnosis of FXTAS is frequently overlooked for two main reasons:
Lack of Awareness and Knowledge: FXTAS is a relatively recently
identified condition, first described in 2001. It is not widely known even
among medical professionals, which can lead to misdiagnosis or delayed
diagnosis. The symptoms of FXTAS can vary widely in severity and
presentation, and because it shares similarities with more common

disorders such as Parkinson’s disease or Alzheimer’s disease, it can be
mistaken for these other conditions [4][10][14].

Subtle Early Symptoms: The onset of FXTAS symptoms typically
occurs in individuals over 50 years of age, often starting subtly and

gradually worsening. Early symptoms can include minor tremors and

8



Figure 2: Variables that capture information pertinent to Neuropsychological
Functional Domain
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balance issues, which are easy to dismiss as normal aging or misattribute to
other neurological conditions [15]. As the disease progresses, symptoms

become more pronounced, including significant problems with movement,
memory, and mood, which might then prompt more specific investigations
leading to a correct diagnosis. Because FXTAS is linked to a premutation
in the FMR1 gene, it often requires specific genetic testing to confirm the
diagnosis [11]. This testing is not routinely performed unless FXTAS is
specifically suspected, which further complicates timely diagnosis. The
identification of the FMR1 premutation can be pivotal, not only for

diagnosing FXTAS but also because it has implications for family members
who may also be carriers of the mutation [11] [10].

In our study, we are building machine learning models that can be used to
create an efficient prediction model and determine the important features

[1].
Early Detection and Diagnosis: Machine learning models can help in

the early detection of FXTAS by analyzing genetic data and clinical
symptoms more efficiently. Early detection can be helpful in managing the
progression of FXTAS and initiating appropriate interventions sooner.It can

accelerate research by identifying potential biomarkers for FXTAS and
predicting the efficacy of proposed treatments based on historical data.
This could lead to faster clinical trials and more effective treatments

reaching patients sooner.
Personalized Treatment Plans: AI and machine learning can analyze

vast amounts of data from patient histories, genetic information, and
treatment outcomes to tailor personalized treatment strategies. This could
be especially beneficial for FXTAS patients, as the disease manifests with

varying symptoms and progression rates.
Educational Tools: This is especially useful in regions where access to
specialized healthcare providers who are familiar with FXTAS is limited.
The integration of machine learning models, once validated, introduces a

transformative opportunity for deployment across diverse healthcare
settings, especially those with limited access to specialized medical

professionals. This innovation has the capacity to extend the reach of
healthcare services, offering substantial benefits to individuals in

underserved or remote regions. Once these models are proven to work well,
we can use them in places where there aren’t many specialized doctors.

10



1.4 Research Questions

Our study is driven by three key questions:
1. What are the most significant predictors in the diagnosis of FXTAS?

2. Which feature selection and classifier combinations leverage clinical and
demographic data to accurately predict FXTAS diagnosis?

3. Generate risk scores that quantify the likelihood of developing FXTAS :
It is a significant step towards personalized medicine. These scores can be
derived from machine learning models that use demographic, genetic, and
clinical data to assess risk levels. By integrating predictors such as age,
family history, and specific genetic markers from the FMR1 gene, these
models can provide healthcare providers with tools to identify high-risk

individuals early.

2 Methods Description
Considering the research objectives and the characteristics of our dataset,

this paper selects the following four machine learning techniques: Random
forest, Support Vector Machine (SVM), Logistic Regression,and

XGBoost.
Random Forest Health data especially the FXTAS data is intricate
interactions and non-linear relationships . Studies have shown Random

Forests are well-equipped to manage Random such data [1] as this method
levarages from its foundational structure of decision trees, enhancing it by

introducing randomness in attribute and dataset selection during the
training phase. This randomness enhances its ability to capture intricate

patterns, making it a powerful tool for applications such as disease
prediction and gene selection. [22].TBy combining multiple decision trees,
Random Forests form an ensemble that mitigates the bias typically seen in
individual decision trees. This aggregation not only improves the model’s
accuracy but also its generalizability across different types of datas. FThis

ensemble approach not only boosts model accuracy but also improves
generalizability across various data types. Furthermore, Random Forests
are resilient to noise and outliers, common challenges in medical datasets,
and can effectively handle both categorical and numerical features without

extensive preprocessing [22] [11]. In the training phase, Random Forest
builds several decision trees using random subsets of the data. During the

11



testing phase, these trees work together to classify or predict outcomes
based on input data. [5] [2].The ensemble is represented as a forest F

={f 1,...,f n}, with each F being a decision tree. Predictions are made by
averaging the outputs (for continuous variables) or using majority voting

(for categorical variables), which reduces overfitting and enhances the
model’s generalization capability[2].

SVM SVM is a powerful classifier chosen for its ability to handle different
feature scales and its effectiveness in high-dimensional spaces [11]. It excels

in solving high-dimensional, nonlinear, small-sample pattern recognition
problems, offering several unique advantages. SVM’s strong theoretical

foundation ensures that its extremum solution is the global optimal
solution, rather than a local minimum, which contributes to its excellent

generalization ability for unknown samples. These attributes make SVM a
valuable tool for various applications, including regression estimation, time

series prediction, and pattern recognition[1].
Logistic Regression Logistic regression is favored for binary classification

tasks due to its simplicity and effectiveness as a linear model with good
interpretability. This model is particularly useful in understanding the
impact of each feature on the prediction outcome, making it valuable in

medical studies where feature influence is crucial[11]. Its low computational
requirements make it suitable for baseline modeling and quick iterations.

[1] [11].Given that FXTAS diagnosis is a binary outcome (YES/NO),
logistic regression is an ideal choice for this type of classification task[13].
XGBoost XGBoost [7] is a gradient-boosted decision tree designed for

speed and efficiency, developed by Tianqi Chen and implemented in C++.
It offers high efficiency, flexibility, and portability, utilizing the gradient

boosting framework to implement machine learning algorithms [3].
XGBoost effectively handles sparse data, which is common in medical

datasets due to missing values or zero entries. It is also well-known for its
excellent model performance and rapid execution speed, making it suitable

for large and complex datasets [1][3].
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Figure 3: Age distribution of participants, most of the participants are above
60 years of age
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3 Data description

3.1 Curating the Dataset

The focal dataset for our study includes data from 103 male patients, aged
between 40 and above, assessing the presence of Fragile X-associated

Tremor/Ataxia Syndrome (FXTAS). Of these, 31 have been diagnosed with
FXTAS while 72 have not (Figure 4). This dataset encapsulates a rich array
of 42 variables covering psychological well-being metrics like mood, anxiety,

and depression scores; demographic details including race, ethnicity, and
age; as well as behavioral, cognitive, and motor skills assessments. It
provides a holistic view of the diverse symptoms and characteristics
associated with FXTAS, with patients averaging three visits each.

The primary target for prediction in this dataset is the FXTAS diagnosis,
encoded as ’YES’ or ’NO’. The dataset is structured as

(X, y) ∈ {(Xi}N×T×K
i=1 , yi), where X encompasses psychological,

physiological, behavioral, and cognitive data. Here, N represents the
number of samples, K denotes the number of features per sample, and T,
ranging from 1 to 5, indicates the number of patient visits. The binary
label y indicates the FXTAS status of each patient, coded as 0 or 1.

Figure 4: Ratio of participants with and without diagnosis

In addition, SCID data like Anxiety, Mood Disorder Substance Abuse are
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recorded in binary format, and the dataset incorporates comprehensive
demographic data and FMR1 genetic profiles. We’ve applied stringent data

cleaning protocols to enhance the dataset’s reliability, notably removing
variables with over 50% missing data, such as Erectile Dysfunction, Sleep
Disturbances, surgery ,Cancer and Diabetes, to prevent skewed results and

maintain the accuracy of our analysis. To address discrepancies in the
labeling of anxiety and mood disorders, I standardized these variables into
a uniform binary format, merging them into a single column to increase
data usability and consistency. This adjustment not only streamlined the

dataset but also ensured a more comprehensive analysis of the
interrelations between genetic markers, psychological conditions, and

demographic factors, making each participant’s profile as complete and
informative as possible for our research objectives. I also converted survey
data into a structured tabular format. For instance, questions related to
diet, alcohol consumption, and coffee intake were originally in free-text

format. Responses varied widely, with some participants answering "1 cup"
while others specified quantities like "3-4 ounces" for their daily coffee

consumption. To simplify the analysis and standardize the data, I
transformed these responses into a binary format. Specifically, I changed
the question format to "Do you drink coffee?" with possible answers of
"yes" or "no." This adjustment allowed for more straightforward and

consistent data analysis, enabling clearer comparisons and trend
identification across the dataset.

4 Literature Review
Many studies have been conducted on FXTAS, and even more on using
machine learning to predict various diseases. However, not many studies

have specifically combined machine learning approaches to predict FXTAS,
particularly a comparative study. I chose to do a comparative study instead
of just selecting a single model is due to the lack of related or prior research

in this area. My goal is to find the best method that is a perfect fit to
analyze the complex FXTAS data. Although some researchers, like [25],

have explored molecular correlations, and conducted traditional statistical
analyses, machine learning has not been utilized. The results from [15], also

demonstrated an 83% accuracy in predicting Alzheimer’s disease using
various machine learning algorithms such as voting ,SVM,Random Forest
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Figure 5: Distribution of CGG repeat size, in presence and absence of a
FXTAS Diagnosis shows considerable overlap

ad XGBoost, inspired us to include a range of models. The inspiration
behind us incorporating logistic regression is the study by [17] that

showcased the outstanding performance of Gradient Boosting Tree (GBT)
models, achieving AUC scores as high as 0.939. The combined insights from

these studies have been very helpful in developing our approach. They
emphasize the significance of using multiple models, tackling data-specific

issues like class imbalance, and highlight the importance of feature selection
and model interoperability. Study such as [20] highlighted the difficulties in

obtaining sufficiently large and accurate labels for supervised learning,
emphasizing the need for a robust dataset for our study. In summary, [20]

study provided us with critical insights into the nuances of applying
machine learning in neurodegenerative disease research. It guided us in
dataset preparation, algorithm selection, and the overall design of our

machine learning approach, emphasizing the importance of accurate data
labeling, the potential of different learning paradigms, and the careful
selection of algorithms based on the nature of our data. Study by [24]

showed how tree based model such as Random Forest is used in prediction
of neurodegenerative conditions such as Alzheimer’s Disease (AD). The
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result showed high accuracy of 93%. Thee study also motivated us to
implement comparable techniques in our research, particularly using a

random forest classifier and balanced sampling approach to address class
bias. The study [2] focused on the importance of using explainable machine

learning methods to analyze AD. This led us to utilize Grid Search for
hyperparameter tuning of our Random Forest and XGBoost models,
ensuring that our model’s results are both interpretable and clinically

valuable. The paper also focused on the importance of the proper selection
of machine learning algorithms based on data type and volume aligns with
our methodology. We meticulously evaluated these aspects to choose the
most suitable algorithms for our FXTAS dataset. The insightful literature
review and careful consideration were crucial due to the heterogeneous and

complex nature of data commonly found in neurodegenerative disease
research.

5 Proposed Method

5.1 Exploratory Data Analysis (EDA)

Prior to developing the model, an exploratory data analysis (EDA) was
carried out. The first step in data cleaning addressed inconsistencies,

managed outliers, and standardized data formats. To assist with subsequent
modeling decisions, a thorough analysis of variable characteristics was

performed, focusing on identifying binary and linear attributes.
A key aspect of the EDA was the evaluation of missing values. By

computing the number of missing entries per subject per feature, we
determined the percentage of patients lacking data for each feature at any
point during their visits. The usability of each feature was then assessed

based on the percentage of missing values. Features with a high percentage
of missing values per column per patient were excluded from the analysis
due to insufficient information. Conversely, features with a low proportion
of missing values were deemed useful. Medical professionals at the UCD

Mind Institute, with their expertise and insights, identified clinically
recognized normal values for FXTAS patients, which were then used to
impute the missing data. To preserve the integrity of critical data for

subsequent analyses, it was decided to use these expert-informed normal
values.
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Figure 6: Distribution of cognitive abilities, in presence and absence of a FX-
TAS Diagnosis [ NO=GREEN,YES=RED] shows no clear linearly separable
boundary
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Figure 7: Distribution of RTI Five choice movement, BDS-Score and Global
Sevrity Scores in presence and absence of a FXTAS Diagnosis shows no clear
linearly separable boundary

In the process of diagnosing FXTAS, we are analyzing the temporal
dynamics of relevant variables. To achieve this, we calculated the mean,

median, minimum, maximum, standard deviation, and slope for each
feature across all time points for each patient. This analysis is essential to
observe temporal changes. The resulting dataset is structured with one row

per time series, including columns for each of the calculated statistics.
Feature columns with missing values for the slope or standard deviation

were specifically imputed with 0, as this indicated that the patient had only
one recorded visit for those features. Similarly, the mean, minimum,

median, and maximum values were imputed with clinically recognized
normal values to maintain consistency across the dataset. The

comprehensive EDA not only prepared the dataset for subsequent modeling
but also uncovered valuable patterns and trends, providing a deeper
understanding of the predictive factors associated with FXTAS. The
strategic decisions regarding missing values, including the specific

imputation criteria, enhanced the dataset’s robustness for further analyses.
The histogram in Figure 5 illustrates the distribution of CGG repeat sizes

among individuals tested for FXTAS, categorized by their diagnostic
status. The data is represented in two distinct groups: individuals

diagnosed with FXTAS (red) and those without a diagnosis (blue). CGG
repeat sizes are plotted along the x-axis, ranging from approximately 20 to

over 140, with frequency displayed on the y-axis.
The kernel density estimate (KDE) for the non-diagnosed group peaks at
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around 40 CGG repeats, indicating a higher frequency of lower CGG repeat
sizes in this group. In contrast, the diagnosed group’s KDE shows a broader
distribution with a peak at around 80 CGG repeats, suggesting a significant
prevalence of higher repeat sizes among individuals diagnosed with FXTAS.

This distribution pattern highlights a critical trend: higher CGG repeat
sizes are markedly more common in individuals with FXTAS, underlining
the potential genetic underpinnings of the syndrome. This visualization

supports the analysis of CGG repeat size correlation with FXTAS diagnosis.
In Figure 6, the Scatter Plot Analysis of Behavioral and Cognitive Metrics

shows :
RTI Five-choice Movement Time: This plot displays a wide

distribution of reaction times across individuals, with no clear distinction
between those diagnosed with FXTAS (red) and those without (blue). It

uggests a varied impact of FXTAS on motor response times.
BDS-2 Total Score: The scores, indicative of cognitive function related

to decision speed and problem-solving, show overlap between the two
groups. Individuals with FXTAS do not consistently exhibit lower scores,

indicating that cognitive decline specific to these abilities may not be
pronounced in all FXTAS cases.

Global Severity Index (T-score, Nonpatient): Global seeverity score
also shows a similar pattern, with considerable overlap between diagnosed
and non-diagnosed individuals. This can suggest that FXTAS’s impact on

general psychological health may vary widely among patients.
MI T-Score Mean and Full-Scale IQ Scores : These plots further
evaluate cognitive capacities, with T-scores spanning from normal to

below-average ranges across both groups. The Full-Scale IQ scores are
similarly distributed, highlighting that while some individuals with FXTAS
show lower cognitive performance, it is not universally characteristic of all

diagnosed individuals.
BI T-Score Mean and 1st Trial Total, R+L+B : Both plots explore

different cognitive and memory retention metrics. The scores reflect a
broad spectrum of cognitive abilities, with no definitive pattern segregating

individuals based on their FXTAS diagnosis status.
This plot in figure 3 reveals that age distribution among the participants
does not show a clear correlation with FXTAS diagnosis, indicating that

age alone is not a predictor of the syndrome in this sample. The correlation
coefficient calculated for the relationship between Substance Abuse

Disorder and Anxiety Mood Disorder means is approximately 0.021. This
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value suggests that there is a negligible positive correlation. The changes in
the Substance Abuse Disorder are very weakly associated with changes in
the Anxiety and Mood Disorders. The low magnitude of this correlation

coefficient indicates that, within this dataset, as Substance Abuse Disorder
scores increase, there is only a slight and statistically insignificant increase

in the Anxiety and Mood Disorder scores.T
he correlation coefficient between is approximately age and the Global

Severity Index T-scores -0.241, which indicates a weak negative correlation
between age and the Global Severity Index T-scores. This suggests that as
age increases, there is a slight tendency for the Global Severity Index scores

to decrease. However, the correlation is not strong.

5.2 Description of Algorithm

Our study employs a standard plug-and-play deep-learning pipeline Figure
8 .Each component of this pipeline is examined through extensive

experimentation and is refined based on the results obtained. The pipeline
consists of the following sub-components.

1. Derivation of the Feature Set: The dataset contains physiological,
behavioral, and cognitive feature values for patients. Clinically, it has been

noted that changes in these values are often more crucial for diagnosing
FXTAS than the absolute values themselves. Therefore, learning these
derived features can improve a model’s ability to distinguish between

patients who have experienced significant declines and those with
preexisting conditions. This is similar to correctly identifying a patient who
has recently experienced a cognitive decline versus misidentifying a patient
who already has lower cognitive abilities. We calculated the mean, median,
minimum, maximum, standard deviation, and slope for each feature across

all time points for each patient using [Algorithm 1] in order to
incorporate the knowledge of these trends in our learning problem.

2. Undersampling, Oversampling and Dataset prevalence ratios:
We first randomly split the entire data into training and testing sets with

the following distribution: 80% for training and 20% for testing. The
dataset originally had only 30% of the samples as positive. [27] showed that

imbalanced ratios in small data settings train very unstabilized models,
therefore we chose to balance our training datasets by - 1. Undersampling
and 2. Oversampling. We undersampled the dataset to balance the class
labels. For oversampling, SMOTE [6] was used to make the class ratios
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Figure 8: Predictive model construction process
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Algorithm 1 Summarization of Feature Values
Input: (X, y) ∈ {(Xi}N×T×K

i=1 , yi)
For Each ith of the N samples

Step 1: For Xi
T ×K Group data from all the T visit observations.

Step 2 Make Xi,j,T for j in K features

Step 2.1 Calculate Summary Xi,j =
[µ(Xi,j,T ),min((Xi,j,T )),max((Xi,j,T )), stddev((Xi,j,T )), slope((Xi,j,T ))]

Step 2.2 Replace Xi,j = SummaryXi,j ∈ K ′

Output: (X, y) ∈ {(Xi}N×K′

i=1 , yi)

balanced. We train the models on both of these balanced settings and then
test them on the original imbalanced test set to check for usability in real

world. Our findings found the Oversampling models outperformed the
undersampled models. Hence, in the main section of the paper we will
discuss only the oversampled model results; leaving the undersampled

results in Appendix 1.
3. Feature Selection: This dataset is characterized by high

dimensionality relative to the sample size. Additionally, redundant
information and noise can obscure meaningful data interpretation[21].
Feeding such a large number of features into the model could lead to
overfitting. To address these challenges, we adopted a hybrid feature

selection methodology, combining domain expert knowledge and
algorithmic techniques [23]. Initially, experts manually selected features
based on their comprehensive knowledge of FXTAS, ensuring clinical
relevance. Following this, we applied algorithmic feature selection to

identify the most effective subset of features for the learning problem, thus
validating our hypothesis. [Algorithm 2]

To arrive at the most optimal feature set we do a comparative study
between four feature selection methods.

A. Statistical Feature Selection (SFS) [Algorithm 3] We utilized
Sequential Feature Selection (SFS) combined with the Kolmogorov-Smirnov
2 (KS2) test and correlation reduction techniques. This strategy enabled us

to gradually include features based on their statistical relevance while
minimizing redundancy. This method was chosen for its ability to harness
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Algorithm 2 Feature Selection method description
Input: FXTAS data (X, y) ∈ {(Xi, yi)}N×(K+M)

i=1

Available methods: FeatureSelectionMethods = SFS, RFE, RandomFor-
est, Lasso
For FeatSelection in FeatureSelectionMethods :

Selected_Features = FeatSelection(All_features ∈ K +M)
Output : Selected_Features ∈ K

the statistical discriminative properties present in the data.

Algorithm 3 SFS
Input: FXTAS data (X, y) ∈ {(Xi, yi)}N×(K+M)

i=1

SFS
Step 1: Initialize Accepted_features, Selected_Features
Step 2: For each Feature i in K:

Step 2.1 : Divide XN,i to XN,i,0 and XN,i,0 as per labels 0 and 1
Step 2.2 : ACCEPT = two-sample Kolmogorov-Smirnov test (XN,i,0 ,

XN,i,0)
Step 2.2.1 IF ACCEPT is TRUE : ADD i to Accepted_features
Step 2.2.2 ELSE : Discard i

Step 2.3 Selected_Features = Correla-
tion_reduction(Accepted_features)
Output : Selected_Features ∈ K

B. Recursive Feature Elimination (RFE) [Algorithm 4] This
algorithm identifies the most important features by repeatedly training the
model with a subset of selected features. The most irrelevant features are
gradually eliminated, allowing the most relevant features to be ranked at
the top. This method effectively accounts for the non-linear relationships

between features.
C. Random Forest Feature Selection [Algorithm 5] We rely on the
random forest model’s method to decide which features are important by
selecting the top 25 % of features. This method is effective at taking the

non-linear relationships between the features into account.
D. Lasso Regression Feature Selection [Algorithm 6]

This method is used for sparsity-based feature selection, forcing features to
have either 0 or non-zero weights. It essentially fits a linear model with an
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Algorithm 4 RFE
Input: FXTAS data (X, y) ∈ {(Xi, yi)}N×(K+M)

i=1

RFE
Step 1: Initialize Accepted_features, Selected_Features
Step 2: Repeat until LEN(Accepted_features) is 10:

Step 2.1 : Train RF1 - RandomForestModel((X, y))
Step 2.2 : Remove Features having low RF1.featureimportancescores
Step 2.3 : Add remaining features to Accepted_features

Step 3 : Selected_Features =Accepted_features
Output : Selected_Features ∈ K

Algorithm 5 Random Forest Feature Selection
Input: FXTAS data (X, y) ∈ {(Xi, yi)}N×(K+M)

i=1

Random Forest Feature Selection
Step 1: Initialize Selected_Features
Step 2: Train RF1 - RandomForestModel((X, y))
Step 3: Sort Features according to RF1.featureimportancescores
Step 4: Add First 25 % to Selected_Features

Output : Selected_Features ∈ K

L-1 penalty in its loss function. Features with non-zero weights are deemed
important by the algorithm.

Each of these feature selection methods gave an optimal subset of features
that it considered the most relevant. Machine Learning models are then
trained using these respective sets and all features. The performance of

each combination of feature set and Model was then recorded to arrive at
the most optimal feature selection method and subset.

3. Model Training, Testing, and Hyperparameter Optimization
By using a thorough Grid Search process, we fine-tuned the parameters of

each model to find the best one. This careful evaluation ensured we selected
the most effective model for our dataset.

We also performed extensive hyperparameter tuning using Grid Search
Cross-Validation. By testing a wide range of possible settings, we identified
the best hyperparameters that maximized model performance, measured by
the highest Cross-Validation AUC-ROC. This approach also helped prevent
overfitting during training. Detailed steps of this process are described in
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Algorithm 6 Lasso Feature Selection
Input: FXTAS data (X, y) ∈ {(Xi, yi)}N×(K+M)

i=1

Lasso Selection
Step 1: Initialize Selected_Features
Step 2 : Train LR1 - LinearModel((X, y)) with L1 penalty
Step 3 : Access LR1.coefficients of each feature
Step 4 : For each feature i:

Step 5 : If LR1.coefficient for i is 0: Drop i
Step 6 : Else Add i to Selected_Features

Output : Selected_Features ∈ K

[Algorithm 7].
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Algorithm 7 Grid Search Cross Validation Hyperparameter finetuning
Input: FXTAS data {(Xi, yi)}N×(K+M)

i=1

Initialization: Data set (X, y) = {(Xi, yi)}N×K
i=1 Number of Selected K Fea-

tures ; Z Classifiers {SVM,LR,RF,XGBoost} having H hyper parameter com-
bination each
Repeat for other ’Z’ ML Algorithms classifiers:

Step 1: Divide (Xs, ys) into 5 equal random folds
Step 2: Define Grid - ’H’ models
Step 3: For each test folds (5 combinations)
Step 3.1 Train the model on 4 folds and test on one fold.
Step 3.2 Record Accuracy, AUROC, Precision, Recall
Step 4: Calculate average AUROC – KCV AUROC
Step 5: Select and Save the Model with the highest average KCV AUROC.

Inference:
1. Retrieve the selected model with maximum KCV AUROC.
2. Do inference and testing on holdout test set.

Output: Inference labels yt = {ŷj}Mj=1

6 Results

6.1 Feature selection

Figure 9 illustrates that the feature selection methods proposed in this
paper significantly reduce the number of redundant features, improving

computational efficiency and predictive accuracy. Specifically, SFS found 7
features, RFE identified 10, Lasso found 26, and Random Forest discovered

44 features .
Consistent features across all methods include:

1. CGG Repeat size (The number of times a particular DNA sequence
(cytosine-guanine-guanine) is repeated in the FMR1).

2. Memory and reaction time movement-based features

• ’RTI Five-choice movement time’

• ’1st Trial Total, ,R+L+B median’

3. Global Severity Index (T-Score)
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Additionally, these methods emphasized the importance of slopes in
predicting outcomes. Notable slope-related selected features are:

• Stop signal task median score

• ’Calculated Age for Current Visit

• Purdue pegboard right-hand, left-hand score

• Five-choice movement reaction time

• ’Body Mass Index

• Full IQ score

Figure 9: Comparison of number of features selected between Lasso, RFE,
SFS, and RandomForest

In all plots in figure 10 individuals without FXTAS (green curve) show less
variability and are more centered around zero for the selected features

(change in BMI, Full Scale IQ,Stop signal task and 1st trial total slope)
analyzed, indicating less change over time. In contrast, individuals with
FXTAS (blue curve) show greater variability and a broader spread, this
means there is more significant changes in these features over time. The
results suggest that FXTAS is associated with greater variability and

changes in BMI over time compared to individuals without FXTAS. This
might suggest that FXTAS may be associated with metabolic or lifestyle
factors leading to greater fluctuations in body weight. The slopes of Full
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Figure 10: Density plots that compare various features for individuals with
and without a diagnosis of FXTAS
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Scale IQ scores with FXTAS are more variable compared to those without
FXTAS indicating that cognitive decline in FXTAS patients can be highly

variable, with some patients experiencing significant changes in their
cognitive abilities over time. The reaction times for GO trials in the stop

signal task (SST) also shows greater variability for individuals with
FXTAS. FXTAS may impair motor response times and cognitive processing

speed. The variability in motor task performance (combined scores for
right, left, and both hands) also suggests that FXTAS affects fine motor

skills and coordination, leading to more pronounced changes over time. To
further visualize how these selected features are correlated to each other, we

generated a correlation matrix of selected features in figure 11, which
displays the correlation coefficients between pairs of variables. The

strongest correlation observed is between CGG Repeat Size and RTI
Five-choice movement time (0.36). This suggests a moderate relationship

between these two variables, meaning that as the CGG Repeat Size
increases, the RTI Five-choice movement time tends to increase as well.

This correlation may indicate that larger CGG repeat sizes could be
associated with slower movement times in the RTI five-choice task, which
might reflect an impact on motor function or cognitive processing speed.
The remaining correlations are very weak, close to zero, which suggests

little to no linear relationship between those pairs of variables.
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Figure 11: Correlation Matrix of Selected Features: This matrix illustrates
the pairwise correlation coefficients between consistent selected features all
models. The strength and direction of the correlations are indicated by the
color scale, with red representing stronger positive correlations and blue rep-
resenting negative correlations.
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6.2 Evaluation Metrics

Comparative Analysis of Predictive Models for FXTAS In this
study, we evaluated several predictive models across different metrics to
identify the most effective approach for diagnosing Fragile X-associated

Tremor/Ataxia Syndrome (FXTAS). The performance metrics in Table 1
are based on accuracy, precision, recall, sensitivity, specificity, Positive
Predictive Value , Negative Predictive Value and AUROC values. The

combination of XGBoost and Recursive Feature Elimination (RFE) and the
combination of Random Forest and RFE both performed exceptionally

well, achieving the highest accuracy of 86.67% , precision 0.86 and AUROC
0.90. It is very important to chose a model with good AUCROC

particularly in medical diagnostics, where the cost of misclassification can
be high [8]. Additionally, the use of RFE appears to be a common factor in

enhancing model performance, as it consistently improved precision and
recall across both XGBoost and Random Forest models. This combination
is ideal for medical diagnostics situations where both false positives and
false negatives need to be minimized such as in patient screening where
both false negatives and false positives carry significant consequences.

Feature Selection Impact: The impact of feature selection techniques on
model performance was notably significant. Using all features without
selection generally result in poorer performance. This result shows the

importance of proper feature selection in optimizing model accuracy and
predictive power.
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Table 1: Balanced oversampling trained but tested on imbalanced Perfor-
mance
Model Feature Selection Accuracy AUROC Precision Recall Sensitivity Specificity AUPRC PPV NPV

Model (SVM) SFS 76.67 0.73 0.62 0.56 0.56 0.86 0.55 0.62 0.820
Model (SVM) Lasso 66.67 0.78 0.45 0.56 0.56 0.71 0.47 0.45 0.79
Model (SVM) RFE 83.33 0.74 0.75 0.67 0.67 0.90 0.71 0.75 0.86
Model (SVM) RF 66.67 0.61 0.33 0.11 0.11 0.90 0.33 0.33 0.70
Model (SVM) All features 63.33 0.76 0.43 0.67 0.67 0.62 0.58 0.43 0.81

Model (Random Forest) SFS 83.67 0.9 0.78 0.78 0.78 0.90 0.82 0.78 0.90
Model (Random Forest) Lasso 76.67 0.87 0.60 0.67 0.67 0.81 0.77 0.60 0.85
Model (Random Forest) RFE 86.67 0.90 0.86 0.67 0.67 0.95 0.85 0.86 0.87
Model (Random Forest) RF 76.67 0.87 0.60 0.67 0.67 0.81 0.77 0.60 0.85
Model (Random Forest) All features 76.67 0.88 0.62 0.56 0.56 0.86 0.74 0.62 0.82

Model (XGB) SFS 83.33 0.9 0.75 0.67 0.67 0.90 0.78 0.75 0.86
Model (XGB) Lasso 83.67 0.9 0.86 0.67 0.67 0.95 0.84 0.86 0.87
Model (XGB) RFE 86.67 0.88 0.86 0.67 0.67 0.95 0.80 0.86 0.87
Model (XGB) RF 76.67 0.88 0.62 0.56 0.56 0.86 0.76 0.62 0.82
Model (XGB) All features 83.33 0.88 0.83 0.56 0.56 0.95 0.78 0.83 0.83

Model (Logistic Regression) SFS 66.67 0.78 0.46 0.67 0.67 0.67 0.62 0.46 0.82
Model (Logistic Regression) Lasso 56.67 0.48 0.17 0.11 0.11 0.76 0.27 0.17 0.66
Model (Logistic Regression) RFE 70.00 0.77 0.50 0.44 0.44 0.81 0.56 0.50 0.77
Model (Logistic Regression) RF 66.67 0.70 0.43 0.33 0.33 0.81 0.46 0.43 0.73
Model (Logistic Regression) All features 60 0.61 0 0 0 0.86 0.35 N/A .667
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Figure 12: Comparison of Accuracy scores

6.3 Risk Scores

The risk scores represents a composite measure or index of an individual’s
risk for developing FXTAS. These scores are scaled to a standard range,

making them comparable across individuals. In figure 16 demonstrates the
correlation between RTI Five-choice movement times and scaled risk

scores,. Since, RTI Five-choice movement time is a consistent feature across
all model, we wanted too further visualize and see the correlation between
the features and scaled risk scores. The positive correlation suggests that
individuals with higher RTI Five-choice movement times are at a greater

risk of developing FXTAS. This relationship highlights the predictive value
of RTI Five-choice movement time as a biomarker for FXTAS risk.

Figure 15 illustrates that there is a positive correlation between CGG
repeat size and the scaled risk scores for FXTAS. Higher CGG repeat sizes
appear to be associated with higher risk scores. This trend supports the
hypothesis that larger CGG repeat sizes could be indicative of increased

severity or likelihood of developing FXTAS. The scatter in the lower range
of CGG repeat sizes suggests variable risk, potentially influenced by other
genetic or environmental factors not captured solely by CGG repeat size.

In figure 14, the red trend line indicates a negative correlation between risk
socres and the Rapid Visual Processing (RVP) score and the Purdue

Pegboard trial (PPT) (Right and left hand) which means as the RVP and
PPT decreases, the risk score increases. This implies that better
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Figure 13: Comparison of AUCROC between Lasso, RFE, SFS, and Ran-
domForest

performance on the RVP test (higher scores, indicating better visual
attention and signal detection) is associated with lower risk scores for

FXTAS. Similarly, as the 1st trial total increases, the risk score decreases.
This suggests that higher scores in the 1st trial total (indicating better

manual dexterity and coordination) are associated with lower risk scores. In
the context of FXTAS, better manual dexterity might be linked to a lower

severity or risk of the condition.

35



Figure 14: Risk Score vs 1st Trial movement and Risk Score vs New RVP:This
scatter plot displays the relationship between the risk score and the new
RVP (Rapid Visual Processing) A’ min score from the CANTAB (Cambridge
Neuropsychological Test Automated Battery)

7 Observation

7.1 Methodological Observation

One of the keys observation from this study is the importance of using the
feature selection model. In evaluating diverse machine learning algorithms

using complex health medical data and limited samples, the choice of
feature selection methods significantly influenced model performance.

When we ran the algorithms without the feature selection, it gave us lower
accuracy compared the models with feature selection method underscoring
the necessity of feature selection and proving our hypothesis. Out of all
four feature selections , RFE consistently demonstrated competitive or
superior results across algorithms. RFE iteratively trains a tree based

model and looks at its feature importance scores to decide which features
are relevant. It then repeats the cycle with this new feature set and trains
the model again to arrive at a new feature set. This helps it to arrive at an

optimal feature set that reduces most multicolinearity and removes
redundant features. The optimal feature set helps the model to focus only

on the important features. Studies have shown that RFE often outperforms
other methods in terms of accuracy, especially in fields like bioinformatics,
where selecting the most relevant genes or biomarkers is crucial for disease
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Figure 15: Risk Score vs. CGG Repeat Size - Shows the correlation between
CGG repeat size and scaled risk scores
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Figure 16: Risk Score vs. RTI Five-choice movement time - Demonstrates the
correlation between RTI Five-choice movement times and scaled risk scores,
indicating movement time as a predictive factor for FXTAS risk
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diagnosis and prognosis [18]. Our analysis revealed that both XGBoost and
Random Forest, especially when coupled with RFE, stands out as the most

effective model for predicting FXTAS diagnosis within our complex yet
limited dataset. XGBoost is robust to noise in the dataset due to its

ensemble nature and it utilizes the limited available data very efficiently
through its iterative process of boosting, where each subsequent model

attempts to correct the errors of the previous one. This iterative approach
maximizes the information gained from a limited dataset. Infact, the

iterative nature of both XGBoost and RFE could have contributed to their
effectiveness. XGBoost iteratively refines its predictions by correcting errors
from previous iterations, while RFE iteratively removes the least important

features to enhance model performance.This combined iterative process
could ensure that the most relevant features are selected and that the

model is robust and well-tuned for prediction. XGBoost’s iterative boosting
process maximizes the information gained from limited datasets by focusing

on areas of error correction, while RFE systematically eliminates less
important features, streamlining the model and reducing noise.

A key observation here is both XGBoost and Random Forest are tree-based
algorithms that build models using decision trees as their base learners.
They are also both emsemble methods as Random Forest uses a bagging

(Bootstrap Aggregating) approach to create multiple decision trees
independently on random subsets of the data and features, and then

aggregates their predictions where as XGboost uses a boosting approach to
sequentially build trees, where each new tree attempts to correct the errors

made by the previous trees.

7.2 Clinical Observation

The feature selection methods results showed consistent features: Stop
Signal Task (SST) Median Score and Full IQ Score which are both used to
evaluate cognitive functions.The SST assesses response inhibition, a critical

aspect of executive function, while the Full IQ Score provides a
comprehensive measure of overall intellectual ability. The feature selection

result and figure 10 both shows the impact of FXTAS on the cognitive
function. Another consistent feature shown was the five-choice Movement
Reaction Time and Purdue Pegboard Scores (right-hand and left-hand)

measure, which are different aspects of motor skills. The reaction time test
assesses the speed and accuracy of motor responses, while the Purdue
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Pegboard Test evaluates fine motor dexterity and coordination. Both of
these assessments are used for quantifying the motor impairments

characteristic of FXTAS. The results also suggest the impact of FXTAS on
motor skills, especially manual movement speed and dexterity. These

results highlight the significant cognitive and motor impairments in FXTAS
patients. The SST median score, reflecting response inhibition, suggests

that FXTAS patients have difficulties controlling impulsive actions, which
is consistent with observed deficits in executive functioning. Similarly, the
prolonged reaction times in the five-choice movement test indicate slower
motor responses, aligning with the tremor and ataxia symptoms typical of
FXTAS. Another key observation is the importance of changes in age and

BMI as important features.

8 Conclusion
Our research made numerous pioneering contributions through extensive

data analysis and modeling. It highlighted that genetic factors, age,
obesity, motor function, episodic memory, and working memory are
significant and sufficient predictors of FXTAS. Comparative studies
revealed that iterative filtering of features combined with tree-based
ensemble modeling methods can predict FXTAS with high accuracy,

providing valuable insights into methodologies for determining the risk of
developing FXTAS. The XGBoost model and Random Forest models both

consistently outperformed expectations in both the downsampled and
oversampled settings. The success of this combination was evinced by the

high accuracy scores of 86.67 % in the oversampling setting. An exceptional
precision score of 0.86 also highlights the capability of the best-performing
model to identify FXTAS correctly. Clinical Application of the model was

also demonstrated by identifying key trends in risk scores concerning
important clinical variables. This is a helpful indicator for clinicians to
know which patients are more susceptible to developing the syndrome.

Using these insights and highly accurate predictive models, patients being
investigated for other syndromes can also be simultaneously screened and

flagged for FXTAS in areas without clinical expertise. Moreover, the
number of assessments can be reduced, saving time and resources for
doctors, patients, and the healthcare system. If the predictive model

identifies certain factors as significant, clinicians can prioritize these factors
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in their evaluations. Additionally, patient education and clinical decision
support systems can be significantly enhanced based on these findings.
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1 Appendix
Table 2 contains details about the performance of different models when

they were trained on the Undersampled/Downsampled version of the
training data. The training data consisted of 22 positive and 22 negative
samples in a class-balanced ratio. And the models were trained according
to Algorithm 7 described before. After training, the model were evaluated
on test sets that are in an imbalanced ratio of 0.3 for positive to negative

samples.

Table 2: Balanced Downsampled Trained Model tested on imbalanced test
set
Model Feature Selection Accuracy AUROC Precision Recall Sensitivity Specificity AUPRC PPV NPV

Model (SVM) SFS 76.67 0.78 0.60 0.67 0.67 0.81 0.64 0.60 0.71
Model (SVM) Lasso 30.00 0.50 0.30 1.00 1.00 0.00 0.65 0.30 N/A
Model (SVM) RFE 80.00 0.82 0.64 0.78 0.78 0.81 0.61 0.64 0.78
Model (SVM) RF 30.00 0.50 0.30 1.00 1.00 0.00 0.65 0.30 N/A
Model (SVM) All features 30.00 0.50 0.30 1.00 1.00 0.00 0.65 0.30 N/A

Model (Random Forest) SFS 73.33 0.89 0.54 0.78 0.78 0.71 0.80 0.54 0.76
Model (Random Forest) Lasso 76.67 0.86 0.62 0.67 0.67 0.76 0.77 0.62 0.70
Model (Random Forest) RF 77.67 0.89 0.58 0.78 0.78 0.76 0.8 0.58 0.89
Model (Random Forest) RFE 80.00 0.92 0.64 0.78 0.78 0.81 0.85 0.64 0.89
Model (Random Forest) All features 76.67 0.83 0.58 0.78 0.78 0.76 0.70 0.58 0.89

Model (XGB) SFS 83.33 0.91 0.70 0.78 0.78 0.86 0.79 0.70 0.79
Model (XGB) Lasso 73.33 0.83 0.56 0.56 0.56 0.81 0.56 0.56 0.65
Model (XGB) RF 73.33 0.76 0.57 0.44 0.44 0.86 0.67 0.57 0.61
Model (XGB) RFE 83.33 0.87 0.67 0.85 0.85 0.81 0.68 0.67 0.88
Model (XGB) All features 73.33 0.84 0.54 0.78 0.78 0.71 0.70 0.54 0.76

Model (Logistic Regression) SFS 73.33 0.77 0.56 0.56 0.56 0.81 0.57 0.56 0.65
Model (Logistic Regression) Lasso 66.67 0.63 0.45 0.56 0.56 0.71 0.34 0.45 0.62
Model (Logistic Regression) RF 66.67 0.57 0.46 0.67 0.67 0.67 0.32 0.46 0.67
Model (Logistic Regression) RFE 73.33 0.74 0.55 0.67 0.67 0.76 0.46 0.55 0.70
Model (Logistic Regression) All features 66.67 0.58 0.46 0.67 0.67 0.67 0.32 0.46 0.67
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