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ABSTRACT
We investigate how well the redshift distribution of a population of extragalactic ob-
jects can be reconstructed using angular cross-correlations with a sample whose red-
shifts are known. We derive the minimum variance quadratic estimator, which has
simple analytic representations in very applicable limits and is significantly more sen-
sitive than earlier proposed estimation procedures. This estimator is straightforward
to apply to observations, it robustly finds the likelihood maximum, and it conveniently
selects angular scales at which fluctuations are well approximated as independent be-
tween redshift bins and at which linear theory applies. We find that the linear bias
times number of objects in a redshift bin generally can be constrained with cross-

correlations to fractional error ≈
√

102Nbin/N , where N is the total number of spec-
tra per dz and Nbin is the number of redshift bins spanned by the bulk of the unknown
population. The error is often independent of the sky area and sampling fraction. Fur-
thermore, we find that sub-percent measurements of the angular source density per
unit redshift, dN/dz, are in principle possible, although cosmic magnification needs to
be accounted for at fractional errors of . 10 per cent. We discuss how the sensitivity
to dN/dz changes as a function of photometric and spectroscopic depth and how to
optimize the survey strategy to constrain dN/dz. We also quantify how well cross-
correlations of photometric redshift bins can be used to self-calibrate a photometric
redshift sample. Simple formulae that can be quickly applied to gauge the utility of
cross correlating different samples are given.

Key words: cosmology: theory – large-scale structure of the Universe – dark energy
– galaxies: evolution

1 INTRODUCTION

In many spectral bands, the redshift distribution of a
source population is difficult to determine (e.g., the ra-
dio, microwave, infrared, and X-ray). Even in the optical,
where photometric techniques are widely applied to estimate
source redshifts, these techniques work better for certain
galaxy types than for others. However, extragalactic objects
that are close together on the sky are also likely to be close
in redshift. Thus, angular cross-correlations between popu-
lations with poorly known redshifts and those with better
known redshifts can be used to improve the determination
of the former’s redshift distribution. Such reconstruction has
a wide range of applications, from ascertaining the redshift
distribution of diffuse backgrounds to calibrating photomet-
ric redshifts for the next generation of large-scale structure
surveys.

Several previous studies have attempted to measure a
population’s redshift distribution, dN/dz, by using its con-

stituents’ proximity on the sky to sources with known red-
shifts, i.e., by computing angular cross correlation statis-
tics between the two populations (Seldner & Peebles 1979;
Phillipps & Shanks 1987; Ho et al. 2008; Erben et al. 2009).
Similar techniques have been used to search for contamina-
tion in photometrically selected redshift slices or to bound
the median redshift of a sample (Padmanabhan et al. 2007;
Erben et al. 2009; Benjamin et al. 2010, 2013). Different
dN/dz cross-correlation estimators have also been studied
theoretically (Phillipps 1985; Newman 2008; Matthews &
Newman 2010; Schulz 2010; Matthews & Newman 2012).
However, it is unknown how close any of these estimators
are to being optimal. It is also unclear which survey spec-
ifications (depth, area, sampling fraction, etc.) are best for
reconstructing the redshift distribution of an unknown pop-
ulation.

This paper attempts to answer these questions. We
write down the optimal dN/dz estimator and show that
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2 M. McQuinn and M. White

in very applicable limits, intuitive formulae describe how
well the redshifts of a given source population can be con-
strained from a population whose redshift distribution is
better known. In the limit of a dense spectroscopic survey,
we show that the fractional error in the number of galaxies
in the unknown population that fall in spectroscopic redshift
bin z can be estimated to the precision

δN(z)

N(z)
∼ 0.1

(
β(z)

0.1

fsky
10−3

)−1/2 (
ℓ0
103

)−1

, (1)

where fsky is the sky coverage of the survey, ℓ0 is the multi-
pole at which shot noise becomes equal to intrinsic cluster-
ing in either sample, and β(z) is the fraction of the unknown
auto-power (at multipoles less than ℓ0) that arises from red-
shift bin z. However, the result is even simpler in the limit of
a sparse spectroscopic sample, having fewer than a thousand
objects per sq. deg. per ∆z:

δN(z)

N(z)
∼
(N (s)

103

)−1/2 (
β(z)

0.1

)−1/2

, (2)

where N (s) is the total number of spectra per unit redshift.
In this ‘rare spectroscopic sample’ limit, the fractional error
on N(z) depends on the total number of spectra but not

separately on the density of spectra, the sky area, or the
fraction of objects with spectra.

Angular cross-correlations to determine redshifts have
applications beyond estimating dN/dz. For example, they
could be used to measure the redshifts of unresolved cosmic
infrared background anisotropies (as was done in Kashlinsky
et al. 2007) or to isolate foregrounds in cosmic microwave
background (CMB) and high-redshift 21 cm maps. Angular
cross-correlations can additionally be used to reconstruct
three-dimensional correlations from angular clustering mea-
surements (Seljak 1998; Padmanabhan et al. 2007). Further-
more, such cross-correlations are able to calibrate photomet-
ric redshift errors even when the spectroscopic population is
not intrinsically identical to the unknown population. Ap-
plications that are not in the vein of precision cosmology
likely need no better than a 10 per cent fractional constraint
on dN/dz. However, percent-level or even better calibration
of photometric redshifts is required to prevent redshift er-
rors from being the limiting factor for cosmological param-
eter estimates with the next generation of weak lensing sur-
veys (Huterer et al. 2006; Schneider et al. 2006; Bernstein
& Huterer 2010; Zhang et al. 2010; Cunha et al. 2012).1

There are a wide range of surveys to which cross-
correlation techniques could be applied. Recent spectro-
scopic surveys have gone wide over hundreds (Driver et al.
2011) or thousands of square degrees (Eisenstein et al. 2001;
Colless et al. 2001; Drinkwater et al. 2010; SDSS-III Col-
laboration et al. 2012) or deep over ∼ 1 sq. deg. patches
(Le Fèvre et al. 2005; Newman et al. 2012). Some are com-
plete to a magnitude limit, whereas others more sparsely
sample the sources (Lawrence et al. 1999; Eisenstein et al.

1 While photometric redshifts are object-specific, in practice
weak lensing studies will likely use the statistical distribution from
photometric redshifts owing to catastrophic errors (Cunha et al.
2009; Mandelbaum et al. 2008). In contrast, cross-correlations are
not able to measure the redshifts of individual objects, but they
are another way to measure this statistical distribution.

2001; Kochanek et al. 2012). The large spectroscopic data
sets that should be available in the next decade include:2

• the Baryon Oscillation Spectroscopic Survey (BOSS)
galaxy sample, covering 10, 000 deg2 with 1.5 million red-
shifts of massive galaxies extending to z ≃ 0.7 (Dawson
et al. 2013), and the WiggleZ survey with 240, 000 redshifts
over 0.2 < z < 1 (Drinkwater et al. 2010),

• the Sloan Digital Sky Survey (SDSS)+BOSS quasar
sample, covering 10, 000 deg2 with 2× 105 redshifts (Schnei-
der et al. 2010; Shen et al. 2011; SDSS-III Collaboration
et al. 2012),

• the Galaxy and Mass Assembly (GAMA) survey, cover-
ing 310 deg2 with redshifts for 3.4×105 galaxies to a z-band
magnitude limit of 19.8 (Driver et al. 2011),

• DEEP2 (Newman et al. 2012), the VIMOS-Very Large
Telescope Deep Survey (VDSS; Le Fèvre et al. 2005), the z-
Cosmology Evolution Survey (zCOSMOS; Lilly et al. 2007)
and, while not technically spectroscopic, COMBO-17; (Wolf
et al. 2003), each with ∼ 104 − 105 redshifts in ∼ 1 deg2

fields.
• the HETDEX survey gathering 106 Lyα emitting galax-

ies over 200 deg2 at 1.8 < z < 3.8 (Hill et al. 2008),
• 21cm emission line surveys over wide fields with e.g.,

the Australian Square Kilometer Array Pathfinder (ASKAP;
Johnston et al. 2008), which aims for ∼ 106 galaxies to z .

0.43 (Duffy et al. 2012).

The proposed projects eBOSS and BigBOSS would in-
crease the number of spectroscopically identified galaxies
and quasars by an order of magnitude over the existing
SDSS + BOSS samples (Schlegel et al. 2011).3 Ultimately
the Square Kilometer Array (projected for 2020) aims to
capture a billion galaxies over half of the sky (Rawlings et al.
2004).

In addition, we are entering a new age of optical
photometric surveys, with the Kilo Degree Survey (KIDS;
1, 500 deg2 reaching an i-band magnitude limit of i = 23),
the Dark Energy Survey (DES; 5, 000 deg2 to i = 25) and the
HyperSuprimeCam Project (HSC; 2, 000 deg2 to i = 26.2) all
currently gathering data. These surveys4 will be followed in
the next decade by Large Synoptic Sky Telescope (LSST),
which aims to constrain the cosmological model using a
“gold sample” of galaxies with i < 25.3 over half of the
sky, and Euclid, which will provide high-resolution images
of galaxies out to z ∼ 2 over 15, 000 deg2. While we do not
model in detail any particular survey, we use the above to
guide our discussion.

Fig. 1 shows characteristic number densities with red-
shift for some of the aforementioned spectroscopic surveys
as well as for complete surveys to the specified i-band limit-
ing magnitude. For these and ensuing calculations, we have

2 http://www.sdss.org, http://www.gama-survey.org, http:

//deep.ps.uci.edu, http://cesam.oamp.fr/vvdsproject/,
http://archive.eso.org/archive/adp/zCOSMOS/VIMOS_

spectroscopy_v1.0/
3 http://www.sdss3.org/future/eboss.php, http://bigboss.

lbl.gov
4 http://kids.strw.leidenuniv.nl/, http://www.

darkenergysurvey.org, http://www.naoj.org/Projects/

HSC/HSCProject.html, http://www.lsst.org/lsst/,
http://sci.esa.int/euclid.
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On using angular cross-correlations to determine source redshift distributions 3

Figure 1. Shown are the dN/dz of different galaxy populations.
The dashed curves are for surveys complete to i-band magnitude
limits of 21, 23, and 25.3, calculated via Eq. (3). Also shown are
the density of SDSS+BOSS spectroscopic quasars and estimates
for the future combined density of luminous red galaxies, emis-
sion line galaxies, and quasars with BigBOSS. The solid curves
represent the critical densities for whether a sample is in the rare
galaxy limit (Section 3.4).

parametrized the galaxy redshift probability distribution for
an i-band magnitude limited sample as

p(z| i) =
1

2 z0

(
z

z0

)2

exp

[
− z

z0

]
, (3)

z0 = 0.0417 i− 0.74,

with a total angular number density of 1.7 ×
105+0.31(i−25) deg−2 (LSST Science Collaboration et al.
2009; Coil et al. 2004; Hoekstra et al. 2006, “calibrated”
over the range 20.5 < i < 25.5, although the deepest data
can only constrain i < 23 and the behavior above this
threshold is inferred from mocks from semi-analytic galaxy-
formation models applied to the Millennium simulation; see
also Efstathiou et al. 1991; Brainerd et al. 1996; Benjamin
et al. 2010; Hildebrandt et al. 2012).

Cross-correlation techniques can also be applied to
maps in the X-ray such as those made with the X-ray Multi-
Mirror Mission (XMM-Newton), in the ultraviolet such as
with the Galaxy Evolution Explorer (GALEX), and in the
infrared such as with the Wide field Infrared Survey Ex-
plorer (WISE) and the Herschel Space Observatory, the mi-
crowave such as with Atacama Cosmology Telescope (ACT)
and the South Pole Telescope (SPT), and the radio such
as with ASKAP.5 In many of these surveys, their angular

5 http://xmm.esac.esa.int, http://www.galex.caltech.edu,
http://wise.ssl.berkeley.edu, sci.esa.int/herschel/,
http://www.princeton.edu/act/, http://pole.uchicago.edu,
http://www.atnf.csiro.au/projects/mira/

resolution or depth makes redshift identification using over-
lapping optical surveys difficult. Cross-correlations offer an
independent means to gauge redshifts.

This paper is organized as follows. Section 2 sets up
the formalism used in this paper and applies it to an ide-
alized dN/dz problem for illustration. Section 3 provides
intuition into the mechanics of the optimal estimator and
discusses what scales contain the bulk of the information,
setting the ground for the relevant examples discussed in
Section 4. Section 5 generalizes our Fourier space results to
configuration space and compares our estimator to the more
familiar Newman (2008) estimator. Section 6 quantifies the
estimator biases that result from common simplifying ap-
proximations. Penultimately, Section 7 shows how the re-
sults of the previous sections apply to photometric redshift
calibrations. Finally, Section 8 demonstrates our estimator
on mock surveys and is followed by our conclusions. We
defer some technical details and derivations to a series of
appendices, which are referenced in the text. The numerical
calculations in this study take a flat ΛCDM cosmological
model with Ωm = 0.27, ΩΛ = 0.73, h = 0.71, σ8 = 0.82,
ns = 0.96, and Ωb = 0.046, consistent with recent mea-
surements (Larson et al. 2011). We treat the background
cosmology as perfectly known in all calculations. Roman in-
dices {i, j, k} run from 1 to some maximum integer whilst
Greek indices start from 0, and repeated indices that do not
appear in the same quantity are summed. Table 1 provides
definitions of some commonly appearing symbols.

2 BASIC FORMALISM

We begin by introducing our notation and physical model,
before deriving the most general form for our dN/dz estima-
tor and applying it to idealized, illustrative examples. Useful
limits of our expressions are taken in Section 3, where we
also build intuition for the mechanics of the estimator.

2.1 Model and notation

Initially we will discuss galaxy clustering in the spherical
harmonic basis as our covariance matrix is maximally sparse
in this space. We shall write expressions as if the galaxy
samples cover the full sky, but often finite sky coverage can
be included by simply multiplying by the sky covering frac-
tion (fsky). Section 5.1 generalizes our estimation methods
to configuration space, while Section 5.3 discusses the gen-
eralization to finite sky coverage.

We denote the multipole moments of a ‘photometric’
population of objects with unknown redshifts and a ‘spec-
troscopic’ sample in which the redshifts are perfectly known
as

p(ℓ,m) = N (p) δ(p)(ℓ,m) =

Nbin∑

i=1

N
(p)
i δ

(p)
i (ℓ,m), (4)

si(ℓ,m) = N
(s)
i δ

(s)
i (ℓ,m), (5)

respectively. Here, 1 6 i 6 Nbin labels the redshift bin span-
ning the range zi−1 − zi, where the zi are ordered in in-
creasing redshift, and δ(x) ≡ x/〈x〉 − 1 is the overdensity
in population x, where x denotes an angular source den-
sity field with 〈x〉 = N (x), the mean density per unit area.

c© 2013 RAS, MNRAS 000, 1



4 M. McQuinn and M. White

symbol description

α
(x)
i the faint-end power-law index of the cumulative source number counts of population x

A(ℓ,m) covariance matrix of p(ℓ) with s(ℓ) with index 0 referring to p

b
(x)
i linear bias of population x in redshift bin i
βi(ℓ) fraction of the total angular power contributed by redshift bin i (Eq. 43)
Cij(ℓ) matter density angular cross power spectrum between redshift bins i and j
χ the conformal distance; dχ = c (1 + z) dt

δ(x)(ℓ,m) overdensity in population x
δKij Kronecker delta

D(z) growth factor such that D(0) = 1; Di ≡ D(zi)

dN
(x)
i /dz equal to N

(x)
i /∆zi, where the subscript i is dropped if redshift-independent

i(x) i-band limiting magnitude of sample x (assumed complete unless otherwise specified)
F Fisher matrix; generally [F−1]ii gives error in z-bin i

FS Fisher matrix in Schur-Limber limit (Section 3.2)
n local power-law index of the density power spectrum such that P (k) ∼ kn

Nbin number of redshift bins used in analysis

N
(x)
i average sky density in population x in redshift bin i; N(x) =

∑Nbin
i=1 N

(x)
i

N (s)
i total number of spectroscopic galaxies per unit redshift in redshift bin i

ℓ0 multipole where shot noise is equal to cosmic variance
ℓNL multipole at which linear theory errors at a factor of 2 (Eq. 34)
ℓPkX multiple where the logarithmic slope of P (k) has n = X
p(ℓ,m) multipole moment of photometric population
P (k) the z = 0 linear-theory matter overdensity power spectrum
s(ℓ,m) vector of multipole moments of spectroscopic z-bins (si is component in redshift bin i)
S(ℓ) the ‘Schur parameter’ (Eq. 29); S > 1, with equality holding in the rare limit

w
(xy)
i stochastic component of the cross power between samples x and y in bin i; w(x) ≡ w(xx)

wpsi (θ) the angular cross correlation function between p and si
Wi(χ) the window function for redshift bin i; typically assumed to be a top hat

Table 1. Definitions of commonly appearing symbols. The arguments are often dropped in the text, and hats on any symbol indicate
an estimated value.

Our calculations are more general than the case of a spec-
troscopic and photometric galaxy sample: the photometric
sample can be thought of as any sample for which the red-
shifts are unknown and the spectroscopic as one for which
they are known to precision ∆z/2. Our ultimate aim is to
use a survey’s estimates for the left-hand-side of Eqs. (4)

and (5), p̂(ℓ,m) and ŝi(ℓ,m), to estimate the N
(p)
i .

Our discussion will be couched in terms of constrain-
ing the N

(p)
i for which the ∆zi need to be chosen to be

sufficiently narrow in order that there are not significant
gradients in dN (p)/dz across the bin. However, in many
cases, particularly when the sensitivity to cross correlations
is marginal, a smoother parametrization of dN (p)/dz may be
desirable. Our error estimates can be easily translated into
the errors on other parameterizations of dN (p)/dz (like its
mean and variance or the empirically motivated parameter-
ization of a power-law times an exponential; see Appendix
A3 for more details).

We model the si(ℓ,m) as Gaussian random variables
with auto power spectrum

〈sisj〉(ℓ) = N
(s)
i N

(s)
j b

(s)
i b

(s)
j Cij(ℓ) + w

(s)
i δKij , (6)

where we have dropped them dependence as different modes
are orthogonal by statistical isotropy but have the same
auto-power. We denote by Cij the cross power between the

matter overdensity in the i and j slices, and by b
(x)
i the linear

bias of population x in redshift bin i. The expression for the
shot noise piece w

(s)
i in the halo model results from taking

the large-scale limit of the one-halo term (see e.g. Cooray &

Sheth 2002, for a review):

w
(xy)
i =

∫ χi

χi−1

dχ

∫
dmh nh(mh) 〈n(x)

g n(y)
g |mh〉, (7)

where nh(mh) is the halo mass function and 〈n(x)
g n

(y)
g |mh〉 is

the number of galaxies of type x in a halo of mass mh times
that in type y and averaged over all haloes at fixed mass.6

This large-scale limit is a good approximation at the angular
scales we consider. We will also adopt the simplifying nota-
tion w

(x)
i ≡ w

(xx)
i . We note that a measurement of the N

(p)
i

is not limited by sample variance, and it can be perfectly
measured in the limit that the stochastic component is zero.

The cross power spectrum of si(ℓ) and p(ℓ) is

〈p si〉(ℓ) = N
(s)
i b

(s)
i

Nbin∑

j=1

N
(p)
j b

(p)
j Cij(ℓ) +w

(ps)
i . (8)

Finally,7

〈p2〉(ℓ) =
Nbin∑

i=1

Nbin∑

j=1

[
N

(p)
i b

(p)
i N

(p)
j b

(p)
j Cij(ℓ) + w

(p)
i δKij

]
.

(9)

6 The normalization of the stochastic component can potentially
be reduced for dense samples by differently weighting sources (Sel-
jak et al. 2009; Hamaus et al. 2010) instead of the galaxy number
weighting used here.
7 The total linear bias of the photometric sample is b(p) =∑Nbin

i=1 N
(p)
i b

(p)
i /N(p).

c© 2013 RAS, MNRAS 000, 1



On using angular cross-correlations to determine source redshift distributions 5

We will add to Eqs. (6), (8) and (9) the generally smaller
terms that owe to cosmic magnification later.

While our formalism is completely general, subsequent
calculations (and the figures we present) assume

b
(x)
i = D(zi)

−1, (10)

where D(z) is the linear growth factor normalized so that
D(0) = 1, and we will interchangeably use χ and z for its
argument. This choice leads to redshift-independent cluster-
ing, appropriate for several cosmological populations, espe-
cially if they are rare objects. In many instances this assump-
tion will be benign, and our results can be simply rescaled
by fixing N

(x)
i b

(x)
i . We also assume

w
(x)
i =

(
1 + 3 f

(x)
sat

1 + f
(x)
sat

)
N

(x)
i , (11)

w
(ps)
i = fover min[w

(s)
i , w

(p)
i ], (12)

for the stochastic component of the power. We take the
‘overlap fraction’ to be fover = 1 unless stated otherwise
(which means that the rarest min[N

(s)
i , N

(p)
i ] sources are

the same in both samples). In addition, we take a satellite

fraction of f
(x)
sat = 0. Increasing f

(x)
sat to 25 per cent – the

largest fraction found for the relevant galaxies in Wetzel &
White (2010, see their figs. 8 & 12) – does not change our
results appreciably.8

The cross power in the matter overdensity is

Cij(ℓ) =

∫ ∞

0

2 k2dk

π
αℓ(k, zi)αℓ(k, zj)P (k), (13)

αℓ(k, zi) =

∫ ∞

0

dχ D(χ) Wi(χ) jℓ(kχ), (14)

where, in our top hat N
(p)
i bias, Wi = ∆χ−1

i for redshifts
that fall in the range zi−1 − zi and zero otherwise. (For a
discussion of how to evaluate jℓ and these highly-oscillatory
integrals over jℓ numerically see Appendix D.) While not
required, we have assumed linear theory such that P (k) is
the z = 0 linear-theory matter overdensity power spectrum.
Eq. (13) ignores redshift space distortions (RSDs). RSDs
contribute a small fraction to the angular fluctuations on
relevant angular scales, with a larger impact on the fluctu-
ations in the spectroscopic sample compared to the photo-
metric (Appendix B).

We note that linear scales can only be used to recon-
struct the product of the large-scale bias, b

(p)
i , and the num-

ber density, N
(p)
i , at any redshift (Newman 2008; Bernstein

& Huterer 2010; Schulz 2010) as they always appear in com-
bination. This product is sometimes the desired quantity
(e.g., when cleaning a map of diffuse backgrounds), but for

many applications it is N
(p)
i itself that is desired. We dis-

cuss methods for breaking this degeneracy in Section 9. We

will often write our constraints as on N
(p)
i for notational

simplicity, but please note that the constraints we quote are

always on the combination b
(p)
i N

(p)
i .

Recently, Ménard et al. (2013) advocated using nonlin-

ear scales (< 1 proper Mpc) to constrain the N
(p)
i . In fact,

8 In the case of fover = 1 and equal numbers in both the s and
p samples, both populations trace the same large-scale cosmolog-

ical plus stochastic perturbations and the N
(p)
i can be perfectly

estimated.

most of the constraint from the Ménard et al. (2013) method
appears to derive from < 300 proper kpc (Schmidt et al.
2013), scales that are likely to reside within halos. While
small-scale measurements have the advantage that they can
be applied to data sets even if there are significant calibra-
tion problems (Ménard et al. 2013), on nonlinear scales it is
less clear how to map cross-correlation amplitude to the red-
shift distribution of a population. This is especially true on
intra-halo scales, as the correlations depend on how the two
samples inhabit the same halos9. We shall not use nonlinear
scales for our estimator.

2.2 Estimator

To simplify notation, we define the combined covariance ma-
trix of the photometric survey and the redshift slices of the
spectroscopic survey:

A(ℓ,m) ≡
〈(

p̂(ℓ,m)∗

ŝ(ℓ,m)∗

)
(p̂(ℓ,m) ŝ(ℓ,m))

〉
, (15)

where ŝ
T = (ŝ1, · · · , ŝn) and note that A = 〈Â〉. The ar-

gument (ℓ,m) will typically be dropped in subsequent ex-

pressions. The minimum variance estimator for N
(p)
i that

maximizes the likelihood function if it is Gaussian in this
parameter near the maximum (as is likely if many modes
are included in the estimate) is

N̂
(p)
i = [N̂

(p)
i ]last +

1

2
[F−1]ij

∑

ℓ,m

[ (
p̂ ŝ

)
Qj

(
p̂
ŝ

)

− Tr[A−1
A,j ]

]
, (16)

Qj ≡
∑

ℓ,m

A
−1

A,jA
−1, (17)

(e.g. Bond et al. 1998; Tegmark et al. 1998; Dodelson 2003),
where all repeated indices are summed and subscript ‘, i’ in-
dicates a derivative with respect to the ith parameter, which
for most of our discussion is the parameter N

(p)
i . The param-

eter [N̂
(p)
i ]last is initially a guess and, for subsequent itera-

tions, the previous estimate. In addition, the [N̂
(p)
i ]last ap-

pear in the A in the next iteration. Despite this we do not in-
clude hats on the A (a slight notational inconsistency). One
can also trivially recast the estimated quantity in Eq. (16)

to be b
(p)
i N

(p)
i rather than N

(p)
i , since b

(p)
i N

(p)
i is what is

truly constrained. Appendix A2 derives Eqs. (16) and (17)
and shows how they generalize to the case with priors on
the N

(p)
i .

In the limit that many modes are included in the esti-
mate (which is appropriate; Appendix A1),

Fij =
1

2

∑

ℓ,m

Tr
[
A

−1
A,i A

−1
A,j

]
, (18)

and F is the Fisher matrix. The estimator in this limit is the

9 If there is significant evolution in the overlap of the samples
with redshift (or the size of halos), this method will lead to artifi-

cial trends in the N
(p)
i inferences. There also may be pathological

cases where two populations do not significantly overlap (such as
in the early and late type galaxies models considered in Ross &
Brunner 2009), which would greatly impact small scale measure-
ments while having minimal impact on large scales.
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6 M. McQuinn and M. White

minimum variance quadratic estimator, and the variance of
this estimator is [F−1]ii (e.g., Tegmark et al. 1997). We will
use Eq. (18) in our subsequent calculations.

Schulz (2010) and Matthews & Newman (2012) consid-
ered a maximum likelihood estimator approach to constrain
theN

(p)
i , at least for their most general expressions. This ap-

proach should yield similar estimates to ours as the Fisher
matrix, which sets our variance, saturates the Rao-Cramer
bound (and so is optimal). In fact, quadratic estimators are
prone to find local extrema and so a Markov Chain Monte
Carlo approach to find the maximum likelihood may yield
more robust estimates (e.g., Christensen et al. 2001). How-
ever, the linearity of our estimator reduces the severity of
this problem, and we show in Section 8 that it robustly finds
the true minimum even when the initial guess for the N

(p)
i

is off by orders of magnitude.
It is worth noting two subtleties in our approach: First,

we do not consider estimators for the N
(p)
i that simulta-

neously estimate the w
(ps)
i , although this would be a small

generalization of Eq. (16). Instead, we assume that the w
(ps)
i

can be measured independently from the N
(p)
i , which should

hold because of the much different scaling of the cosmolog-
ical and stochastic components in the 〈p si〉. Larger ℓ can

also be utilized for the w
(ps)
i estimate than are useful for

constraining the N
(p)
i . Secondly, our expressions do not con-

sider the case in which the true value for N
(s)
i differs from

the measured number density owing to large-scale modes on
the scale of the survey. Such an error will be most impor-
tant in narrow fields. One can take this effect into account
by using the measured number in a prior on the field to field
fluctuations and then marginalizing over theN

(s)
i (Appendix

A2).

2.3 Idealized application

Eq. (18) allows us to estimate the sensitivity of a hypotheti-
cal survey. The solid curves in Fig. 2 show these estimates for
an idealized case in which the N

(x)
i are equal, have redshift-

independent clustering (see Eq. 10), and span the redshift
range 0− 1 with 10 redshift bins. The curves represent con-
tours of constant sensitivity on the parameter b

(p)
i N

(p)
i where

i = Nbin/2 (i.e., the fractional error on the bias times the
angular number density of photometric objects in the fifth
redshift bin) as a function of the dN (p)/dz and dN (s)/dz
used in the cross correlations. The labels on the black solid
curves are log10 of the fractional error. The solid curves in
the right panel of Fig. 3 are the same except assuming a
survey in which z = 0− 1 is spanned with 100 redshift bins,
which approximately results in

√
10 larger errors. The other

contours in both figures show different approximations that
are developed in Section 3. All of the curves are computed
for a fractional sky coverage of fsky = 0.01, but the errors

scale as f
−1/2
sky for surveys with areas ≫ 1 deg2 (Section 5.3).

While the contours in Figs. 2 and 3 are for the simplis-
tic case of constant dN (p)/dz and dN (s)/dz, they illustrate

a few of our results. First, the sensitivity to the N
(p)
i sat-

urates once either the photometric or spectroscopic dN/dz
becomes larger than the other. Secondly, the contours show
that percent-level constraints for ∆z = 0.1 are possible for
number densities of dN (s)/dz ∼ dN (p)/dz ∼ 103 deg−2 if 10
per cent of the sky is utilized.
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Figure 2. The fractional error on the photometric number den-
sity for different spectroscopic and photometric samples. The

contours represent log10 of the fractional error on N
(p)
i with

i = Nbin/2. They consider an idealized survey in which the N
(x)
i

are equal and span z = 0 − 1 with 10 redshift bins of the same
width, covering 1 per cent of the sky (400 deg2). Contours are la-
belled for the solid curves, and the corresponding contour for the
other curves is the adjacent curve at higher number densities. The
calculations assume our fiducial parameters except fover = 0. (For
fover = 1, the curves buckle outwards when the number densities
become equal.) The black solid curves are the sensitivity of the
optimal estimator. The purple dotted curves show the approxi-
mation that sets to zero terms in F in which the derivatives hit
A00. The short dashed green is the diagonal approximation to the

remaining Fisher matrix, a limit that also works excellently. The
long dashed blue is the error on the estimator in the Schur-Limber
limit (Section 3.2 and Eq. 35).

We find that the calculations in Figs. 2 and 3 can
be crudely applied beyond the assumption of constant
dN (p)/dz, of constant dN (s)/dz, or of the redshift at which
they were computed. For example, if these calculations are
used to estimate the sensitivity of the LSST gold sam-
ple, which will have dN (p)/dz ∼ 105 deg−2 over a quar-
ter of the sky (LSST Science Collaboration et al. 2009),

one finds that percent-level determinations of the N
(p)
i are

possible in ∆z ∼ 0.1 bins with spectroscopic follow up of
dN (s)/dz ∼ 103 deg−2 (comparable to the sky density of
BigBOSS emission line galaxies). This estimate is consistent
with the conclusions of more detailed calculations in Sec-
tion 4. Also, the LEGACY plus the ongoing BOSS quasar
samples on SDSS provide a spectroscopic number density of
dN (s)/dz ∼ 10 deg−2 out to z ≈ 2.7 over ∼ 104 deg−2 (with
double this number density at z ∼ 2.3; SDSS-III Collabo-
ration et al. 2012). Fig. 2 suggests that cross-correlations
with denser photometric surveys should provide ∼ 10 per
cent errors on their N

(p)
i in ∆z = 0.1 for fsky ∼ 0.1, again

consistent with what we find later on.
We now turn to building intuition for the estimator pre-

sented in Section 2.2.
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Figure 3. Contours showing log10 of the fractional error in b
(p)
i N

(p)
i , where i = Nbin/2 in the Limber approximation (black solid curves)

and the full calculation without this approximation (blue dashed curves; which for the same fractional error fall immediately upwards of
the solid curves). The contours are calculated for a survey that spans z = 0− 1 with 10 (left panel) and 100 (right panel) redshift bins of
equal width over 1 per cent of the sky. Roughly, the errors are

√
10 larger in the right panel than in the left panel. This figure illustrates

that the Limber approximation works well for the ∆z = 0.1 case, but is starting to break down at ∆z = 0.01. While making the Limber

approximation leads to errors in the uncertainty estimate, we find in Section 6 that the bias on N
(p)
i is always quite small.

3 APPROXIMATIONS AND SPECIAL CASES

In this section, we provide an understanding of the shape
of the contours in Figs. 2 and 3, we discuss which scales
contribute the N

(p)
i estimate, and we provide intuitive for-

mulae that can be quickly applied to gauge the utility of
cross correlating different samples.

3.1 The Limber approximation

If the theoretical power spectrum is smooth and our signal
is coming primarily from scales which are small compared
to the width of each redshift shell, then the Limber approx-
imation applies (Limber 1953, 1954) and our expressions
simplify significantly. The Limber approximation assumes
that P (k⊥, k‖) varies slowly as a function of k‖ compared to
jℓ(k‖χ) – which should hold when ℓ ≫ χ/∆χi. Making use
of the identity

∫
k2dk jℓ(kχ)jℓ(kχ

′) =
π

2χ2
δD(χ− χ′), (19)

where δD is the Dirac delta function, and the Limber ap-
proximation, Cij(ℓ) – Eq. (13) – becomes diagonal (Kaiser
1992; White & Hu 2000)

Cij(ℓ) = δKij

∫ ∞

0

dχD2(χ)W 2
i (χ)

P (ℓ/χ)

χ2
, (20)

≈ δKij D
2(zi)

P (ℓ/χ)

χ2 ∆χi
, (21)

where δKij is the Kronecker delta. We discuss how the Lim-
ber limit is approached and compute the corrections owing
to RSDs in Appendix B (where we show that RSDs enter
at O([ℓ∆χ/χ]−2) in the photometric sample, which means
they contribute negligibly on scales where the Limber ap-
proximation applies).

The majority of past studies (Newman 2008; Matthews
& Newman 2010; Schneider et al. 2006) have used the Lim-
ber approximation. Fig. 3 shows that this approximation
provides a good estimate for the variance of our N

(p)
i es-

timator, with only a small error in the case of ∆z = 0.1
(left panel) and the error starting to become significant for
∆z = 0.01 (right panel). In both panels, compare the solid
contours, which assume Limber, with the dashed contours,
which do not. The Limber approximation is accurate be-
cause, as we will show, much of the estimator’s constraint
derives from ℓ where it should hold. (The percent-level bias
introduced by this approximation is quantified in Section 6.)

The covariance matrix of the photometric and spectro-
scopic surveys simplifies considerably in the Limber approx-
imation, with only the A0α terms and the diagonal compo-
nents of Aij being nonzero, namely

A00 =

Nbin∑

i=1

(
b
(p)
i N

(p)
i

)2
Cii + w

(p)
i , (22)

A0i = b
(p)
i N

(p)
i b

(s)
i N

(s)
i Cii +w

(ps)
i , (23)

Aij = δKij

[(
b
(s)
i N

(s)
i

)2
Cii +w

(s)
i

]
, (24)

[A0i],i = b
(p)
i b

(s)
i N

(s)
i Cii. (25)

Furthermore, this A(ℓ,m) can be inverted analytically, yield-
ing

[A−1]00 =
S

A00
, (26)

[A−1]0i = − S

A00

A0i

Aii
= −S r2i

A0i
, (27)

[A−1]ij =
δKij
Aii

+
S

A00

A0iA0j

AiiAjj
=

δKij
Aii

+ S

√
r2i r

2
j

AiiAjj
, (28)

c© 2013 RAS, MNRAS 000, 1



8 M. McQuinn and M. White

with

S = A00

(
A00 −

Nbin∑

i=1

A2
0i

Aii

)−1

=

(
1−

Nbin∑

i=1

r2i

)−1

, (29)

where ri(ℓ) ≡ A0i/(A00 Aii)
1/2 is the cross correlation coef-

ficient between p and si, and again we are using the conven-
tion i, j ∈ 1−Nbin. The above inverse can be derived using
the Schur complement matrix identity and the Woodbury
formula (e.g., Petersen & Pedersen 2008).

The ‘Schur parameter’, S, is greater than or equal to
unity and quantifies the extent of correlation between the
spectroscopic and photometric samples. In the case of com-
plete redshift overlap of the spectroscopic sample and in the
absence of shot-noise, S → ∞ and the N

(p)
i are perfectly

constrained. If the unknown sample is limited by shot-noise,
or if the two samples cover different redshift ranges, S → 1+.
The implication is that even a small amount of noise dimin-
ishes considerably the constraining power of a mode.

In the analytic derivations that follow, we ignore deriva-
tives that hit the A00 in Eqs. (16) and (18), as this element

provides only an integral-like constraint on the N
(p)
i . For

all relevant limits, the approximation of ignoring the A00-
derivatives is excellent: Fig. 2 compares the solid black error
contours, which include the A00-derivatives, with the nearly-
overlapping dotted purple contours, which do not. With this
additional simplification, the Limber-approximation Fisher
matrix (Eq. 18) is

Fij ≈
∑

ℓ, m

(
[A−1]ij [A

−1]00 + [A−1]0i[A
−1]0j

)
[A0i],i[A0j ],j ,

=
∑

ℓ,m

S

A00



 δKij
Aii

+ 2S

√
r2i r

2
j

Aii Ajj



 [A0i],i [A0j ],j . (30)

Furthermore, the minimum variance quadratic estimator be-
comes10

N̂
(p)
k = [N̂

(p)
k ]last + [F−1]ki

×
∑

ℓ,m

S[A0i],i
A00Aii

{(
δKij + 2S

A0i A0j

A00 Ajj

)
(p̂ ŝj −A0j)

−A0d

Add

(
δKij +

SA0iA0j

A00Ajj

) (
ŝd ŝj − Ajjδ

K
dj

)

−S A0i

A00

(
p̂ 2 − A00

)
}
, (31)

where repeated indices that do not appear in the same quan-
tity are summed. Note that since we have dropped the terms
that include derivatives of A00, the trace term in equa-
tion (17) must be slightly altered to recover the unbiased
estimator given by equation (31). However, it is trivial to
make the estimator unbiased by imposing that the estima-
tor averages to N̂

(p)
k when A = Â.

Figs. 4, 5 and 6 motivate why the approximations of
Limber and linear theory are justified. Fig. 4 shows the scales
that contribute to the estimator for several different cases,
plotting d[1/F−1

ii ]/d log ℓ. The areas under these curves are

10 We thank Andrew Johnson and Chris Blake for pointing out
an error in an earlier version of this expression. See also Johnson
et al. (2016).
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Figure 4. An illustration of the scales that contribute to the con-

straint on N
(p)
i in different limits. The areas under these curves,

which are of d[1/F−1
ii ]/d log ℓ, are proportional to the informa-

tion that contributes to the estimate in the i = 6 bin for a

measurement in 10 redshift bins with ∆z = 0.1 and spanning
0 < z < 1. For illustrative purposes, we have assumed constant
dN(p)/dz and dN(s)/dz. The first adjective for each curve’s la-
bel in the key describes the spectroscopic sample (rare=10 deg−2

and many=105 deg−2), and the second describes the photomet-
ric sample (rare=100 deg−2 and many=106 deg−2). However, the
curves are not significantly impacted at linear scales by the as-
sumed densities as long as ‘many’ equates to & 104 deg−2 and
‘rare’ to . 103 deg−2, with the exception being the many-many
case. In the text we describe why these limits select the scales
that they do. The vertical lines denote significant scales discussed
in the text. The thin red dot-dashed curve does not assume the
Limber approximation whereas the corresponding thick curve as-
sumes it.

proportional to the information that contributes to the es-
timate in the i = 6 bin for a measurement in 10 redshift
bins with ∆z = 0.1 spanning 0 < z < 1. The first adjec-
tive for each curve’s label in the key describes the spectro-
scopic sample (rare=10 deg−2 per dz and many=105 deg−2

per dz) and the second describes the photometric sample
(rare=100 deg−2 per dz and many=106 deg−2 per dz), where
these number densities are assumed constant with redshift
for illustration. This figure indicates that (at least for these
extremities of the parameter space) the bulk of the infor-
mation derives from modes around where the density power
spectrum has power-law index −2 and −1, ℓPk−2 and ℓPk−1,
respectively. As we shall discuss further, correlations be-
tween two rare samples (where rare is defined as having

ℓ0 . ℓPk−1) constrain N
(p)
i primarily from multipoles with

ℓ ∼ ℓPk−1. Rare and abundant samples use multiples with
ℓ ∼ ℓPk−2, which also holds in the case in which both sam-
ples are extremely abundant. It is also possible in less ex-
treme examples (in which both samples are relatively abun-
dant) for the information to derive primarily from the scale
ℓ0.

To orient the reader, Fig. 5 shows estimates for the Cii

c© 2013 RAS, MNRAS 000, 1



On using angular cross-correlations to determine source redshift distributions 9

Figure 5. The source clustering angular power spectrum under
different approximations and for different source number densi-
ties. Shown is the clustered component of the power, Cii, for
zi = 1, ∆zi = 0.1, and our fiducial bias model. The Cii are
calculated under various approximations – linear theory (dashed
curve) and the Limber approximation (solid curves) – and for the

full Peacock & Dodds (1996) nonlinear power spectrum (dotted
curve). Also depicted are the stochastic component of the power
for two characteristic number densities and fsat = 0 (horizontal
dashed lines). The auto-power of spectroscopic bin i, 〈s2i 〉, equals
Cii plus the stochastic component. The optimal quadratic esti-
mator selects information that roughly falls in the range of the
two vertical dotted lines (Section 3), between where P (k) roughly
scales as k−1 and k−2. Conveniently, both linear theory and the
Limber approximation apply around these scales.

at z = 1 and for ∆z = 0.1 that use linear theory, the Limber
approximation, and the Peacock & Dodds (1996) nonlinear
power spectrum. The vertical lines show ℓPk−2 and ℓPk−1.
ℓ0 is the scale at which the (horizontal) stochastic power
becomes equal to the Cii, i.e. where the red dotted lines
intersect the black solid curve. We show the stochastic terms
for two illustrative number densities. In particular, the upper
horizontal line in Fig. 5 is the lowest number density at
which w

(s)
i > [b

(s)
i N

(s)
i ]2 Cii is satisfied at all ℓ, which we

denote as
[
dN
dz

]crit
0

, where

[
dN

dz

]crit

0

≃ 300 b−2

(
1 + z

2

)1.8

deg−2. (32)

Eq. 32 uses the Limber approximation, takes f
(s)
sat = 0, and

approximates the redshift dependence as a power-law eval-
uated at z = 1. In addition, the lower horizontal line is the
number density at which w

(s)
i = [b

(s)
i N

(s)
i ]2 Cii(ℓPk−2), or

[
dN

dz

]crit

−2

≃ 8000 b−2

(
1 + z

2

)1.8

deg−2. (33)

Both critical number densities are shown in Fig. 5 for our
fiducial bias model. We return to the significance of these
numbers in future sections.

Figure 6. Shown are characteristic ℓ values for cross-correlation
analyses as a function of z. The lower (red) shaded region delin-
eates ℓ 6 2χ(z)/∆χ for ∆z = 0.05, approximately where the Lim-
ber approximation errors at ∼ 10% (Appendix B; Eq. B7). The
upper (blue) shaded region is where deviations from linear pertur-
bation theory are a factor of > 2. The other curves show character-

istic scales at which dN(p)/dz estimates receive the bulk of their
information. The dashed curves show the multipole where the
Poisson term is equal to the clustering term, which we denote as
ℓ0, for surveys with number densities of b2 dN/dz = 102, 103, 104,
and 105 deg−2. The magenta curves are the scales where the den-
sity power spectrum has power-law index −2 and −1, ℓPk−2 and
ℓPk−1, respectively. The optimal estimator applied to two rare
samples (where rare is defined as having ℓ0 . ℓPk−1) utilizes
modes with ℓ ∼ ℓPk−1 to constrain dN(p)/dz. However, rare and
abundant samples use modes with ℓ ∼ ℓPk−2, whereas if both
samples are abundant the estimate comes from ℓ ∼ ℓ0 in certain
cases (unless windows are applied to e.g. downweight nonlinear
scales).

We often will approximate the scale at which linear the-
ory no longer holds as

kNL ≃ 0.25 (1 + z) Mpc−1, (34)

which we find is close to the scale in which the Peacock &
Dodds (1996) nonlinear density power spectrum overshoots
linear theory by a factor of 2 for the redshifts of interest. We
define ℓNL ≡ χ kNL, which is plotted in Figs. 4 and 6 and
throughout as the limit of validity of our assumptions. Fig.
6 shows that ℓ0 falls in the range in which both linear theory
and the Limber approximation more or less apply across all
relevant redshifts and number densities. Linear theory also
applies for ℓPk−1 and (more approximately) ℓPk−2. We note
that ℓPk−1 [ℓPk−2] corresponds to a transverse physical scale
of k ≃ 0.03Mpc−1 [k = 0.2Mpc−1] (Table 2).

3.2 The Schur-Limber limit

We now investigate the above Limber-approximation esti-
mator in the limit S(ℓ) → 1+ and show that a small tweak
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k neff k neff k neff

0.01 0.05 0.1 -1.7 1 -2.4
0.02 -0.7 0.2 -2.0 2 -2.5
0.05 -1.3 0.5 -2.3 5 -2.7

Table 2. The instantaneous power-law slope of the ΛCDM lin-
ear theory power spectrum as a function of wavenumber, k, in
Mpc−1 (neff ≡ d logP/d log k). The values were computed us-
ing the Eisenstein & Hu (1998) matter transfer function without
baryon acoustic features and for the fiducial cosmological param-
eters.

to this limit captures almost all of the information in the
general case. We refer to the S → 1+ limit as the ‘Schur
limit’ henceforth. In this limit the information originates
from modes where

∑
i r

2
i ≪ 1, either because of incomplete

overlap of the spectroscopic survey or because shot noise
is important. In many interesting cases this limit at least
marginally holds. Importantly, both A and F are diagonal
in the Schur limit, viz

FS
ij ≈

∑

ℓ,m

[A0i]
2
,i

A00 Aii
δKij , (35)

where the superscript S denotes the Schur limit. Further-
more, the estimator becomes

N̂
(p)
i = [N̂

(p)
i ]last +

1

FS
ii

∑

ℓ,m

[A0i],i
A00 Aii

{p̂ ŝi − A0i} , (36)

such that the number density in each bin is now estimated
independently and is proportional to the cross-power, p̂ ŝi,
minus a constant. The Schur-Limit approximation yields the
long-dashed blue curves for the errors on the N

(p)
i shown

in Fig. 2. These trace the contours in the full calculation
(compare with the solid contours) at dN/dz . 103 deg−2,
but deviate if both samples have higher number densities,
as is expected.

Three notes in passing: (1) The structure of FS is rem-
iniscent of the optimal weight in the Feldman et al. (1994)
definition of the effective volume. While our expression is in
harmonic space, the structure has the form [n̄P/(1 + n̄P )]2

just as in Feldman et al. (1994). This is not surprising
as our estimator is asking a similar question to “What is
the significance that the cross power can be detected?”
(2) It is simple to show that the Schur-Limber estimator
has the same error as fitting the amplitude of the cross
power as done in Ho et al. (2008) to constrain the redshift
distribution of the NVSS catalogue. (3) The Schur-Limber
estimator is exact in the limits where Limber holds and
S = 1, and does not require dropping certain derivative
terms as was required to derive Eq. (31).

To see how the Schur-Limber estimator works, we take
the case in which a single ℓ,m mode contributes to the esti-
mate such that

N̂ (p) = [N̂
(p)
i ]last +

p̂ ŝi − A0i

b
(p)
i N

(s)
i b

(s)
i Cii

. (37)

If the true N
(p)
i differs from the fiducial model, [N

(p)
i ]last, by

δN
(p)
i , we have the relations

p̂ ŝi =
(
[N

(p)
i ]last + δN

(p)
i

)
N

(s)
i b

(s)
i b

(p)
i Cdata

ii + w
(ps)
i , (38)

where Cdata
ii is the actual density power in this harmonic,

and

A0i = [N
(p)
i ]last ×N

(s)
i b

(s)
i b

(p)
i Cii +w

(ps)
i . (39)

Plugging these into Eq. (37) yields
〈
N̂

(p)
i

〉
= [N

(p)
i ]last + δN

(p)
i = N

(p)
i , (40)

noting that 〈Cdata
ii (ℓ,m)〉 = Cii. Thus, the iteration con-

verges in a single step, and the estimate is unchanged with
subsequent iterations. The former is no longer the case
when multiple ℓ are used in the estimate, but we show in
Section 8 that the estimator still converges in just a few
iterations.

The structure of the formula for the Fisher matrix in
this Schur limit (Eq. 35) is also quite simple, and is most
easily brought out by considering the case where the under-
lying power spectrum is a power-law, Cii = ciℓ

n:

F
S
ij = [N

(p)
i ]−2

∑

ℓ,m

c
(p)
i c

(s)
i ℓ2n δKij

(c(p) ℓn + w(p)) (c
(s)
i ℓn + w

(s)
i )

, (41)

where we have written c
(x)
i = [N

(x)
i b

(x)
i ]2 ci and c(p) =∑

i c
(p)
i . The CDM case can often locally be thought of a

power-law where the spectrum has a power-law index which
becomes increasingly negative towards smaller scales (see
Table 2). Eq. (41) – which we remind the reader is valid in
the Schur-Limber limit – provides intuition into the shape of
the contours in Fig. 2. In particular, we now focus on three
sub-limits that bracket different regimes for the densities of
galaxies being correlated.

3.3 Abundant galaxy limit

At ℓ where neither the photometric nor the spectroscopic
survey is limited by shot noise, all ℓ contribute equally and
the argument in the sum in Eq. (41) is roughly constant in
ℓ. However, once shot noise becomes appreciable for either
survey (ℓ > ℓ0), the argument in the sum scales as ℓn. At
scales where n < −2, which becomes increasingly satisfied at
smaller scales with CDM spectra (see Table 2), this scaling
cuts off the sum as shells of increasing ℓ contribute progres-
sively less to F. If n > −2, this is not true, and there is
information until scales where both surveys are limited by
shot noise (or n has steepened). This explanation is reflected
by the contours in Fig. 2. For number densities where ℓ0 oc-
curs at scales at which n < −2 (dN/dz > 8000 b−2 deg−2),
information is gained all the way until ℓ ∼ ℓ0. In this case,
the contours are very boxy and Eq. (35) can be approxi-
mated as being clustering dominated at ℓ < ℓ0 and being 0
at ℓ > ℓ0:

δN
(p)
i

N
(p)
i

≡

√
[FS −1]ii

N
(p)
i

∼
(
〈βi〉 fsky [ℓ20 − ℓ2min]

)−1/2
, (42)

where ℓmin is the minimum wavenumber used, and 〈βi〉 is the
ℓ-averaged fraction of the angular power in the photometric
sample that comes from z-bin i:

βi ≡ [N
(p)
i b

(p)
i ]2 Cii(ℓ,m)

∑Nbin
j=1 [N

(p)
j b

(p)
j ]2 Cjj(ℓ,m)

. (43)
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On using angular cross-correlations to determine source redshift distributions 11

For the simple case of slices of fixed number and distant ob-
servers (i.e., χ not changing appreciably across the sample),
〈β〉 ∼ N−1

bin. The left panel in Fig. 7 shows how the sensitivity
is increased with increasing dN (p)/dz, fixing the photomet-
ric population (here a survey complete to i = 23) and the
survey area. It shows that the prediction of Eq. (43) of a
number density–independent error comes into full effect at
dN (s)/dz > 105 deg−2, which is on par with the maximum
number densities that for medium-future experiments (see
Fig. 1). Values of the Schur parameter greater than unity
(Eq. 42 sets S = 1) result in some number density depen-
dence even at high dN (s)/dz.11 Also, evaluating Eq. (42) for
parameters that match the case given in the left panel of
Fig. 7 – ℓ0 = 2000 (see Fig. 6), β = 0.1, and 100 deg2 –
yields δN/N = 0.03, which is comparable to the values for
the largest dN (s)/dz in this plot.

We have used linear theory in our computations, but
scales with ℓ > ℓNL should not be used in our formalism.
Hence, a large enough patch of sky must be chosen to sample
ℓ < ℓNL such that cross correlations are fruitful. Evaluating
Eq. (42) with ℓ0 → ℓNL ∼ 103 implies that a square degree is
required for cross-correlations to provide an O(1) constraint
on dN (p)/dz with our method.

3.4 Rare spectroscopic sample

Another relevant limit of the Schur-Limber estimator is
when the spectroscopic sample is sparse enough that it is
dominated by shot noise. In this limit, the Schur approxima-
tion (S ≈ 1) is always justified, and our equations simplify
further so that the Fisher matrix becomes

Fij = N
(s)
i

∑

ℓ,m

[b
(p)
i b

(s)
i Cii]

2 δKij∑
k(b

(p)
k N

(p)
k )2Ckk + w

(p)
k

∝ N
(s)
i fsky (44)

for f
(x)
sat = 0. Thus, in this limit the error on the N

(p)
i scales

as the total number of spectra – it does not depend on the
density of spectroscopic sources. It turns out that in many
relevant cases cross-correlations will be in this regime (as
discussed in Section 4).

What dN (s)/dz are required to be in the rare limit?

If dN (s)/dz <
[
dN
dz

]crit
0

, or roughly a hundred per square
degree (Eq. 32), the sparse tracer limit certainly holds as
the shot component always dominates. However, for even
much larger number densities, we find that the rare spec-
troscopic limit is a good approximation. The Fisher infor-
mation at each ℓ for a rare spectroscopic sample (but an
abundant photometric sample) keeps increasing until ℓPk−2

11 In fact, Eq. (42) should be regarded as an upper bound on
the error since we set S = 1. When S is large (and here we take

w
(s)
i > w

(p)
i and w

(s)
i > w

(sp)
i , although similar conclusions apply

regardless), S ∝ ∑Nbin
i=1 Cii/w

(s)
i . Including S in the summation

in Eq. (41) makes the kernel peak at ℓPk−2 for high number den-
sities rather than ℓ0. This results in the many-many case peaking
at ℓPk−2 in Fig. 4. However, the constraint on dN(p)/dz only
improves by a factor of ∼ 2 for physically realizable number den-
sities when accounting for S 6= 1 (as can be gleaned by comparing
the Schur estimator’s error – the long-dashed blue curve – to the
full estimator’s error – the solid black curve – at high densities in
Fig. 2).

(as dFS
ii/d log ℓ ∝ ℓn+2 so that the contribution to FS

ii de-
creases in bins of log ℓ once n < −2). Thus, to be in the rare
limit, it is less important that shot noise dominate at all
ℓ and more important that shot noise dominates by ℓPk−2.
Therefore, once dN (s)/dz < [dN/dz]crit−2 (see Eq. 33) the rare

limit applies, and the constraint on the N
(p)
i only depends

on the total number of galaxies.
The middle panel in Fig. 7 tests this argument. It plots

the constraints on b
(p)
i N

(p)
i for a photometric sample down

to a limiting magnitude of i = 23, assuming ∆z = 0.05. The
three curves each take a spectroscopic sample comprised of
105 galaxies and differing dN (s)/dz, where dN (s)/dz is taken
to be constant up to z = 2 as specified in the figure key.
Thus, the three curves represent surveys with the same num-
ber of spectroscopic galaxies. The sensitivity changes neg-
ligibly with increasing number until 104 deg−2 (or roughly
[dN/dz]crit−2 ), in agreement with the argument that the con-
straint depends only on the total number of spectroscopic
galaxies at low densities.

The middle panel in Fig. 7, combined with our argu-
ment that δN

(p)
i ∝ [N (s)

i ]−1/2, where N (s)
i is the total num-

ber of spectroscopic galaxies per unit redshift, suggests that
a minimum of ∼ 103 spectroscopic galaxies are needed to
have an order unity constraint on b

(p)
i N

(p)
i (and somewhat

fewer if the population is more localized in redshift than in
our example or if they are more strongly clustered than in
our fiducial model). That ∼ 103 spectroscopic galaxies are
required is also apparent from evaluating Eq. (44) in the
limits of an abundant photometric and rare spectroscopic
survey, which yields

δN
(p)
i

N (p)
≈ 0.6

b
(s)
i Di

(
N (s)

i

103
〈βi〉C
0.1

)−1/2 (
1 + z

2

)−0.5

, (45)

where we have assumed bins of fixed ∆z, 〈βi〉C is defined
analogously to 〈βi〉 but weighted by Cii, and the redshift
factor owes to how lengths map to angles and redshift inter-
vals with z (which we evaluated at z = 1, but this formula
holds to 20 per cent for 0.1 < z < 3).

3.5 Rare-rare limit

The final limit we consider is when the fluctuations in
both samples are dominated by shot noise. In this limit,
dFS

ii/d log ℓ ∝ ℓ2n+2 such that the contribution to FS
ii

decreases in bins of log ℓ once n < −1. As with the
abundant–rare limit previously considered, we can also eval-
uate Eq. (35) in the rare-rare limit, which yields

δN
(p)
i

N (p)
≈ 1.7

b
(s)
i b

(p)
i D2

i

(
N (s)

i

103
dN

(p)
i /dz

102 deg−2

fi
0.1

)−1/2(
1 + z

2

)0.4

,

(46)
where fi is the fraction of the photometric galaxies in red-
shift bin i (and equals the distant observer βi in the case of
redshift independent clustering). This expression shows that
at a minimum

N (s)
i × dN

(p)
i /dz & 106 deg−2 (47)

is required for cross-correlations to be fruitful. The right
panel in Fig. 7 shows the constraints on the N

(p)
i , again

with the specifications i(p) = 23 and 105 total spectroscopic
galaxies, but taking dN (s)/dz = 10 deg−2 for all the curves
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Figure 7. Illustration of how the fractional constraints from cross correlations on the photometric sample’s bias times number, b
(p)
i N

(p)
i ,

depend on area, total number, and densities of the samples. All panels take ∆z = 0.05, a photometric sample down to a limiting magnitude
of i(p) = 23 (and 100 per cent complete except in the right panel), and a spectroscopic sample for which dN(s)/dz is a constant out to
z = 2. The p(z|i) of the photometric sample is given by the thick solid curve. Left panel: The curves assume a 100 deg2 survey and the
specified dN(s)/dz. At lower dN(s)/dz the sensitivity improves as the square root of dN(s)/dz, as anticipated in the rare-spectra limit,
but at high densities the sensitivity does not depend on depth, as anticipated by our abundant limit. Middle panel: The three curves
show a spectroscopic sample with fixed total of 105 galaxies and the specified sky densities. The similarity of the sensitivity between
these much different densities demonstrates our analytic result that in the rare tracer limit the fractional error scales as the total number
of spectroscopic galaxies. Right panel: Varying the fraction, f , of photometric galaxies that are used with a spectroscopic sample with
angular density 10 deg−2, and 105 spectroscopic galaxies. In the limit in which both the photometric and spectroscopic samples are rare,
the fractional sensitivity scales as f−1/2.

and assuming that only a fraction, f , of photometric galax-
ies are used in the cross correlations. When both the pho-
tometric and spectroscopic galaxies are in the rare limit,
Eq. (46) shows that the sensitivity scales as f−1/2. We note
that the peak of dN/dz for a survey complete to i = 23
equals 5 × 104 deg−2, so the f . 0.01 curves should be in
this limit, and we indeed find this scaling in this regime.
This panel illustrates that cross-correlations can be used to
constrain the redshift distribution of peculiar objects, com-
prising a part in 103 of the photometric sample in the case
shown, and not just of the full sample.

The derivations that led to Eq. (46) implicitly assumed
that the bias of the spectroscopic sample is known from
auto-correlation function measurements. However, in the
limit of a rare spectroscopic sample, the auto correlations
can be much noisier than the cross correlations, calling into
question this assumption. We show in Appendix A2 that
in this case the fractional variance on the N (p)

i is simply
the fractional variance quoted in this section added to the
fractional variance in the bias measurement.

Because the two limits given by Eqs. (45) and (46)
yield similar δN(z)/N(z) at the transition between the two
regimes (at dN (p)/dz ∼ 0.1 [dN (p)/dz]crit−2 ), the sensitivity of
an arbitrary photometric survey can be estimated by inter-
polating between them.

3.6 Generalizing the Schur Limit

We showed that in the Schur-Limber limit the Fisher matrix
is diagonal. However, empirically we find that the inverse of
the full Fisher matrix of the minimum variance quadratic
estimator is quite diagonal and is well approximated by the
inverse of

∑
ℓ,m S F

S(ℓ) (i.e., to ignoring the off diagonal
elements in F). This is illustrated by the dashed green con-

tours in Fig. 2, which show the variance calculated with this
expression for F−1.

The approximation of ignoring off diagonals when com-
puting the estimator variance from F is equivalent to not
marginalizing over parameters other than N

(p)
i . That F−1 is

approximately diagonal thus means that one does not have
to simultaneously estimate each of the [N̂

(p)
i ] and rather can

estimate each parameter independently for [N̂
(p)
i ]last near

the peak of the likelihood.

4 APPLICATIONS

The previous section built intuition for the behavior of the
estimator. To bring out the appropriate limits we consid-
ered simple dN/dz distributions, such as constants. This
section considers more physically motivated parameteriza-
tions for the extragalactic populations. Fig. 8 is analogous
to Fig. 4 but quantifies the scales that contribute to the
constraint on the N

(p)
i for realistic source models, plotting

d[1/F−1
ii ]/d log ℓ. In particular, Fig. 8 considers the following

models:

top panel: i(s) = 23 over 40 deg2, and i(p) = 25.3 – charac-
teristic of the LSST gold sample,
bottom panel: dN (s)/dz = 10deg−2 over 104 deg2 and 0 <

z < 2.5 – characteristic of SDSS quasars – , and again i(p) =
25.3.

In the model in the bottom panel, the kernel peaks near the
scale ℓPk−2, which corresponds to ℓ = 400, 700 and 900 at
z = 0.5, 1, and 1.5. This is as expected when at least one
sample is abundant. In the model in the top panel, the in-
formation has a broad peak that falls between ℓPk−2 and ℓ0,
where ℓ0 = 800, 2000, and 3000 for the three redshifts con-
sidered. This is consistent with our arguments for the case
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Figure 8. Similar to Fig. 4, but for physically motivated galaxy
samples. Plotted is the information as a function of ℓ that con-

tributes to the dN
(p)
i /dz estimate, d[1/F−1

ii ]/d log ℓ. The variance

in N
(p)
i is the inverse of the area under these curves. The filled

circles show ℓNL ≡ χ kNL (c.f., Eq. 34). The top (bottom) panel
considers a 40 deg2 ( 104 deg2) survey and takes bins of ∆z = 0.05
spanning 0 < z < 2.5.

of two abundant samples. In both of the models considered
in Fig. 8, the majority of the information arises from linear
scales (scales which fall leftward of the filled dot on each
curve, representing ℓNL (z)). We find similar conclusions ap-
ply for a range of models.

Fig. 9 investigates the tradeoffs of depth versus area
for attempts to constrain the N

(p)
i in 50 redshift bins with

∆z = 0.05 and spanning 0 < z < 2.5. The top panel shows
the fractional error on b

(p)
i N

(p)
i for a photometric sample

with the specifications of the LSST gold sample (which has
dN (p)/dz > 104 deg−2 over the entire redshift range) and for
three spectroscopic samples that could be obtained with the
same total time on a telescope. (More correctly, the limiting
flux squared divided by the survey area is held constant.)
We assume that the spectroscopic followup covers 40 deg2

at i(s) = 23. Hence, it covers 1, 600 deg2 at i(s) = 21 and
1.0 deg2 at i(s) = 25. This panel illustrates that deeper is
not necessarily better (compare only the solid curves for
the time being). This conclusion arises because the spectro-
scopic galaxies are more or less in the abundant limit (par-
ticularly near their peak in dN (s)/dz) where the fractional

error does not depend on depth and instead scales as f
1/2
sky .

However, the scaling f
1/2
sky – a factor of 6 between the three
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Figure 9. Shown are estimates for the fractional sensitivity to
reconstruct the redshift distribution of the photometric sample’s
bias times number in redshift bins of ∆z = 0.05 and spanning
0 < z < 2.5. The top panel is for a photometric sample with
the specifications of the LSST gold sample (i(p) = 25.3; see text)
and for different spectroscopic samples that could be obtained for
the same total telescope time: The spectroscopic followup covers
1 deg2 to i(s) = 25, 40 deg2 to i(s) = 23, or 1, 600 deg2 to i(s) = 21.
The middle panel is similar to the top panel but assumes that fs
of galaxies to i(s) = 23 are observed over a region of 40 f−1

s deg2.
The bottom panel is for a spectroscopic sample with the specifi-
cations of BigBOSS and the specified limiting photometric mag-
nitudes. This panel assumes that the surveys’ overlap is 104 deg2,
but the quoted error scales as the square root of the survey area.
In both panels, the dashed curves use all ℓ values, whereas the
solid exclude information from ℓ > ℓNL. The dot-dashed curves
(shown only for the i = 23 case) in the top and bottom panels
are the variance of the Newman-analogue estimator discussed in
Section 5.2 without any cutoff at nonlinear scales.

cases considered in the top panel – over predicts the differ-
ences between the curves in this panel. This arises because
these samples are only marginally in the rare dN/dz regime
where we find that this scaling holds (Fig. 7). The i(s) = 21
sample is in the rare sample limit at the highest redshifts
shown, and hence its errors blow up there. By contrast, while
the i(s) = 25 sample is the least sensitive to dN (p)/dz at in-
termediate redshifts (owing to its small fsky), it is the most
able to determine the distribution at the highest redshifts.

c© 2013 RAS, MNRAS 000, 1



14 M. McQuinn and M. White

The middle panel in Fig. 9 is similar to the top panel
but assumes that a random fraction, fs, of all galaxies with
i(s) = 23 are observed over a region of 40 f−1

s deg2 such that
the total number of galaxies is fixed. This panel reinforces
our result that the constraint on the N

(p)
i depends primarily

on the total number of spectroscopic galaxies and not their
angular density, even though the case with fs = 1 is in our
abundant limit in which we no longer expect this scaling
to hold exactly. We still find that this result approximately

holds.
The bottom panel in Fig. 9 shows the case of a spec-

troscopic sample with the specifications of BigBOSS (whose
dN/dz is shown in Fig. 1) and the specified limiting photo-
metric magnitudes.12 This panel assumes that the surveys’
overlap is 104 deg2, but the error scales as the square root
of the overlapping area. Despite the lower number densities
of galaxies in the BigBOSS case compared to those in the
top panel, BigBOSS has a total number of galaxies that ex-
ceeds the other cases by more than an order of magnitude
and, thus, is the most sensitive of all the cross-correlation
examples considered in Fig. 9. We note that to reach the
10−2 sensitivity quoted here, BigBOSS would likely need to
correct for magnification bias (which is discussed in Section
6).

Omitting nonlinear scales or introducing a redshift cut-
off in the spectroscopic coverage has little impact on our re-
sults. The dashed curves in Fig. 9 include information from
ℓ > ℓNL, whereas the solid curves do not. Excluding nonlin-
ear modes in the analysis has only a modest impact on the
estimator, except in the i(s) = 25 case in the top panel, where
the constraint is reduced by a factor of 3. This case is most
impacted because (1) its ℓ0 falls at the most nonlinear scales
of the cases plotted and (2) the small 1 deg field assumed in
this case has already limited the scales that can contribute.
Similar losses for each of the plotted cases also occur for a
factor of 2 smaller ℓNL. In addition, we have assumed that
the spectroscopic sample spans the entire redshift range of
the photometric sample. A cutoff in the coverage of a spec-
troscopic sample, as could occur if an emission line falls out
of the spectroscopic band of a survey, has little impact on
our results below that cutoff. It has no impact to the extent
that S = 1. When the additional condition dN (s)/dz = 0
was imposed for z > 1.5, which forces S to be small, we
found no change to the i(s) = 21 case in the top panel of
Fig. 9, but a factor of 2.5 shift upward for i(s) = 25 in that
panel.

The photometric sample can often be divided into mag-
nitude bins or into photometric redshift bins. For magnitude
cuts, extra sensitivity is often gained by dividing the primary
photometric sample because galaxies in different magnitude
bins are more likely to also be at different redshifts. In par-
ticular, in the rare spectroscopic galaxy limit but where the
photometric galaxies are more abundant than [dN/dz]crit−2 ,
the signal scales inversely with the redshift extent of the
photometric sample and does not depend on the amplitude
of dN (p)/dz (Eq. 45). Thus, the sensitivity is not improved

12 BigBOSS aims for a combined dN/dz that we crudely
parametrize as 30 × 102.1 zdeg2 for z < 1.0 and 4000 ×
10−1.1 (z−1)deg2, to approximate what is quoted at http://

bigboss.lbl.gov.

by going deeper. The redshift distribution of galaxies given
by our parameterization for P (z|i) (Eq. 3) has mean 3 z0 and
variance 3 z20 . Because the variance of P (z|i) increases with
depth, deeper surveys will be somewhat less sensitive at the
peak of P (z|i) unless the sample is partitioned.13 A parti-
tioned sample can be easily accommodated in the quadratic
estimator formalism. In Section 7, we discuss the gains from
dividing by photometric redshift.

5 CONFIGURATION SPACE

The previous derivations were done in spherical harmonic
space as this is the simplest basis for calculating the mini-
mum variance estimator. However, when dealing with actual
data it can be more difficult to work with spherical harmon-
ics as the survey window function enters nontrivially in con-
volution. Hence many galaxy clustering analyses are done in
configuration space. In this section we show that the min-
imum variance estimator can be easily applied in this dual
space (Section 5.1), we compare with previous configuration
space dN/dz estimators (Section 5.2), and finally discuss the
impact of finite sky coverage (Section 5.3)

5.1 Configuration space estimator

The harmonic space quadratic estimator can be written in
the form

∑

ℓ,m

vi(ℓ) p̂(ℓ,m)⋆ŝi(ℓ,m), (48)

for some vi(ℓ), plus analogous terms proportional to the
auto correlations. Writing p̂ ŝi(ℓ,m) =

∫
dn̂ p̂ ŝi(n̂)Y

m
ℓ (n̂),

Eq. (48) becomes
∫

dn̂ dn̂′ p̂(n̂′) vi(n̂ · n̂′) ŝi(n̂), (49)

where we have used the addition theorem for spherical har-
monics (Abramowitz & Stegun 1972), Pℓ is the Legendre
polynomial of order ℓ, and

vi(x) =
∑

ℓ

2ℓ+ 1

4π
vi(ℓ)Pℓ(x). (50)

If we define ω̂psi(x) ≡ 〈p̂ ŝi〉x, as the correlation function
estimate where x = n̂ · n̂′ and 〈. . .〉x represents an average
over all separation angles x in the survey, Eq. (49) can be
re-expressed as

8π2

∫
dx vi(x) ω̂psi(x). (51)

Thus, the configuration space estimator in the Schur-
Limber limit is

[N̂
(p)
i ] = [N̂

(p)
i ]last +

8π2

Fii

∑

α

∆xα vi(xα)

×
{
ω̂psi(xα)− ωpsi(xα)

}
, (52)

13 This statement holds as long as dN(p)/dz > [dN/dz]crit−2 . This
inequality is satisfied near the peak of P (z|i) down to the lowest
magnitudes for which Eq. (3) is calibrated, i = 20.5 (see Fig. 1).
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where α runs over the bins in (cosine of the) angle. A simi-
lar configuration space estimator can be written for the full
minimum variance quadratic estimator (Eq. 16).

For θ ≪ 1 radian (the scales that we will show are of pri-
mary interest), the result can be further simplified by mak-
ing the flat sky approximation. Then, the Parseval identity,∫
d2ℓ v⋆i (ℓ) p̂ ŝ(ℓ)/(2π)

2 =
∫
d2θ v(θ) p̂ ŝ(θ), can be directly

applied to Eq. (48) to yield Eq. (52) with ∆xα → θα ∆θα
and

vi(θ) =

∫ ∞

0

ℓ dℓ

2π
vi(ℓ)J0(ℓ θ) . (53)

The same expression can be derived from Eq. (50) by writing
the small-angle limit of Pℓ in terms of J0 (Abramowitz &
Stegun 1972).

We note that in the Schur-Limber limit

vi(ℓ) =
b
(p)
i b

(s)
i N

(s)
i Cii[∑

i

(
b
(p)
i N

(p)
i

)2
Cii + w

(p)
i

] [(
b
(s)
i N

(s)
i

)2
Cii + w

(s)
i

] .

(54)
The thick curves in the top panel in Fig. 10 show the

flat sky weighting kernel for the same example surveys as in
Fig. 4, down weighting nonlinear modes by multiplying vi(ℓ)
by the factor exp[−ℓ2/ℓ2NL]. These calculations show that if
any sample is in the abundant limit, the window peaks at
θ ∼ 0.1 deg separations, whereas if both surveys are in the
rare limit the peak occurs at θ ∼ 1 deg. Both cases have
non-negligible weight at super-degree scales.

The bottom panel in Fig. 10 shows θ vi(θ)×ωpsi , which
better represents the θ that contribute to the final estimate.
Since measured correlations are weaker on large scales than
small, the θ > 1 deg behavior of vi(θ) is down-weighted and
really only sub-degree scales contribute significantly.

In practice, whether weights are applied during or after
the computation of the correlation function depends on the
survey to which cross-correlations are applied. In the case
where the survey’s contiguous area is much larger than the
kernel of vi(x) (≫ 0.1−1 deg), the exact details of the survey
window are irrelevant. The ωpsi(θ) can be estimated with
standard techniques (e.g. Landy & Szalay 1993; Hamilton
1993; Bernstein 1994) and then multiplied by the approx-
imate vi. This is the regime most large-scale photometric
and spectroscopic surveys, such as SDSS, WiggleZ, BOSS,
GAMA, DES, and LSST. The second regime, where the sur-
vey area is comparable to or smaller than the weighting ker-
nel (e.g. with DEEP or HST fields) is more complex. Section
5.3 discusses this case.

5.2 Comparison to earlier work

Using cross-correlations to estimate redshift distributions
has been championed by Newman (2008). The configura-
tion space expression for the optimal quadratic estimator
(c.f., Eq. 52) allows us to compare explicitly with the New-
man (2008) method. Though the Newman (2008) method is
neither optimal nor unbiased, it has some similarities to our
estimator as we shall see.

The estimator in Newman (2008) (and also Matthews
& Newman 2010) involves nonlinear, power-law fits to cor-
relation functions over a specified range of scales and with
specified, diagonal (i.e. ignoring bin-to-bin correlations in
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Figure 10. The top panel shows θ × vi(θ) for the illustrative
cases considered in Fig. 4, again for the i = 6 redshift bin. The
θ× vi(θ) are the optimal estimator weights of the logarithmically
binned cross-correlation function, ωpsi(θ). The bottom panel is
θ× vi(θ)× ωpsi , which shows explicitly which angular scales the
information derives. The thin solid green curve in each panel is
the weighting scheme used in our analogue of the Newman (2008)
estimator, with rmax = 10h−1Mpc. All of the curves, aside from
the Newman-analogue ones, have down weighted nonlinear modes
by the factor exp[−ℓ2/ℓ2NL]. The curves in both panels are com-
puted in the Limber and flat sky approximations.

θ and z) weights. The estimator is thus a nonlinear func-
tional of the measured two-point functions. However since
the power-law fit is used mainly to divide out trends and fit
for an amplitude, we can write an analogous estimator to
Newman (2008) that contains essentially the same informa-
tion. Our analogue-estimator becomes very similar to that
of Newman (2008) for power-law models.

Our analogue of the Newman (2008) estimator is14

N̂
(p)
i = η−1

i

∑
vNew
i

(
p̂ ŝi −w

(ps)
i

)
, (55)

where

ηi =
(∑

vNew
i b

(p)
i b

(s)
i N

(s)
i Cii

)
. (56)

This estimator returns N
(p)
i if the Limber approximation

14 While Newman (2008) does not explicitly subtract a shot-noise

term, we have subtracted w
(ps)
i so that the estimator is well-

defined in both configuration and harmonic space.
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holds and the underlying power spectra and biases are cor-
rectly guessed. When the sum in Eq. (55) is over configura-
tion space pixels (as in Newman 2008), the weighting is

vNew
i (r) =

{
1 rmin < r < rmax

0 otherwise
(57)

where Newman (2008) chooses rmin = 0 and rmax =
10 h−1Mpc. Fig. 10 compares the weights of our optimal
estimator to that of our Newman-analogue estimator. The
thin green solid curve in the top panel is θ vNew

i (θ), and this
curve in the bottom panel corresponds to θ vNew

i (θ)×ωpsi(θ).
The thick curves are the same quantity for the optimal esti-
mator for the same four extreme cases as considered earlier.
The Newman-analogue estimator uses similar scales to those
selected by the optimal estimator, especially in the rare-rare
case.

While the weights for the optimal quadratic and
Newman-analogue estimators are superficially similar, it be-
comes apparent that the estimators behave differently when
examining the weights in more detail. The optimal estima-
tor in the shot noise-limited regime has configuration-space
weights given by the density correlation function. However,
the Newman-analogue weights are simply a constant. The
structure of the Newman-analogue estimator is also much
different in the signal-dominated regime. The optimal esti-
mator has weight vi(θ) ∝

∫
ℓ dℓ C−1

ii J0(ℓθ), in the Schur-
Limber approximation, in contrast to the constant configu-
ration space weights in our Newman analogue estimator.

The variance of these estimators also differs. The co-
variance of the minimum variance estimator is F−1, whereas
the covariance of the Newman-analogue estimator (in the
Limber approximation) is

cov[N̂
(p)
i , N̂

(p)
j ] = η−1

i η−1
j

∑

ℓ,m

vNew
i (ℓ) vNew

j (ℓ) (58)

×
[
A0i(ℓ)A0j(ℓ) + A00(ℓ)Aii(ℓ) δ

K
ij

]
,

where the Fourier space (flat sky) Newman weights are the
Hankle transform of Eq. (57):

vNew
i (ℓ) =

χi

ℓ

(
J1(ℓ rmax/χi)

rmax
− J1(ℓ rmin/χi)

rmin

)
. (59)

The rapid oscillations at higher ℓ damp the contribution of
these modes. The dot-dashed curves in Fig. 9 (shown only for
the i = 23 case) in the top and bottom panels are the vari-
ance of the Newman-analogue estimator without any non-
linear cutoff in ℓ. The Newman-analogue estimator performs
substantially worse than the optimal estimator: a factor of
3−10, with the factor of 10 applying to the abundant galaxy
case (which is most similar to the cases investigated in New-
man 2008 and Matthews & Newman 2010).

5.3 Finite sky coverage

Until now many of our expressions have implicitly assumed
that the surveys cover the full sky, which is unlikely to be
the case in practice. For surveys whose narrowest dimension
is much larger than the scales where our estimator peaks,
the correction for finite sky coverage is benign: we simply
have a factor of fsky to correct the number of modes in
our Fisher matrix (e.g. Scott et al. 1994; Jungman et al.

1996; Tegmark 1996; Knox 1997), as we have assumed in our
prior example calculations. The effects of finite sky coverage
have been studied extensively in the CMB (e.g. Hivon et al.
2002; Hansen et al. 2002; Efstathiou 2004) and large-scale
structure literature (e.g. Feldman et al. 1994; Peacock &
Nicholson 1991; Park et al. 1994; Tegmark et al. 1998).

The case of a general survey window function can be
complex, but, if the width and height of the window are
comparable, the effects of windowing are easily understood.
Due to the convolution with the window function, ℓ-modes
which are separated by less than 2π/Θ (where Θ is the an-
gular extent of the window function and for simplicity we
are working in the flat sky approximation) are almost com-
pletely correlated and, thus, contain largely redundant in-
formation. In contrast, for modes separated by much more
than 2π/Θ, the effects of the window function can be largely
ignored.

Thus the effects of finite sky coverage can be taken into
account by replacing our sums over ℓ with sums over L values
which are integer multiples of 2π/Θ and defining the CL as
bin-averages of the Cℓ. A simpler approximation, valid if the
theoretical spectra are smooth, is to simply integrate from
2π/Θ to infinity rather than zero to infinity in Eq. (53).
If in computing the correlation function or power spectrum
we estimate the mean density from the survey itself, then
the power is suppressed on large scales (often known as the
integral constraint; Peebles 1980). An approximation to this
suppression is to multiply Cℓ by |1−W (ℓ)|2 where W (ℓ) is
the window function normalized so that W → 1 as ℓ → 0.

6 BIAS OF APPROXIMATE ESTIMATORS

The minimum variance quadratic estimator under the
approximation that off-diagonal terms in the Fisher matrix
are zero is unbiased as long as the diagonal entries are
appropriately calculated. In addition, dropping derivative
terms in the quadratic estimator is unbiased since each
derivative explores separate dependences. However, there
are a few approximations that could incur bias: the Limber
approximation, ignoring RSDs, including nonlinear scales,
cosmic magnification, and assuming the incorrect cosmol-
ogy. We do not consider the latter because it should be
reduced to the per cent–level with the coming generation of
cosmological probes, but we consider the others.15 We can
compute the bias of these approximations by substituting
the full 〈(p̂ ŝ)† × (p̂ ŝ)〉 that includes the ignored terms into
the approximate estimator and evaluating both near the in-
putN

(p)
i . Using this formalism, we address these biases here.

Limber approximation and RSDs:

In the Limber approximation, which has been assumed
by most previous investigations of dN/dz estimation from
cross-correlations, the diagonals are accurately estimated in
the limit ℓ∆χ ≫ χ (although, in practice this condition has
to be just weakly satisfied). Fig. 6 suggests that most scales
that contribute to our estimate are safely in the Limber
regime for ∆z ∼ 0.1. This will be less true for smaller ∆z. On

15 If dN/dz is being estimated as part of a program aimed at
constraining the cosmology, e.g. with gravitational lensing, the
cosmology and dN/dz will have to be simultaneously varied.
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On using angular cross-correlations to determine source redshift distributions 17

angular scales favored by our estimator, at which the matter
power spectrum is decreasing with increasing k, the Lim-
ber approximation results in an over-prediction of the Cii.
Hence, our Schur-Limber estimator will result in an under-
prediction. However, setting to zero the 〈pisj〉 for i 6= j in
the Limber approximation has the opposite effect. We find
that the former effect is larger such that Limber results in an
under-prediction, with a fractional error of −(2− 3)× 10−3

for ∆z = 0.01 and 0 < z < 1 for the cases where most of
the information derives from ℓPk−2 (i.e., where one of the
populations is abundant) and −(0.3 − 1) × 10−2 for cases
where most of the information derives from ℓPk−1.

16 For
∆z = 0.1, the biases are of course significantly smaller than
for ∆z = 0.01. Thus, the Limber approximation will likely
result in a bias that is smaller than the estimator’s variance
even for applications with very large source populations.

The fact that the Limber approximation is as successful
as it is suggests that redshift space distortions (RSDs) will
also induce a small bias (as RSDs are negligible on scales at
which the Limber approximation holds; Appendix B). How-
ever, for reasons discussed in Appendix B, including RSDs is
difficult in our current formalism as it requires a basis switch
from our choice of top hat redshift bins, which spuriously
magnify the impact of RSDs. Thus, we do not quantify the
magnitude of their small bias on the estimator. RSDs could
be more important for calculating the 〈s2i 〉, terms that
do not appear in the Schur-Limber estimator (Appendix B).

Nonlinear scales and the one halo term:

Using scales that are nonlinear can bias the estimator.
The Schur-Limber estimator for N

(p)
i is biased by nonlin-

ear effects that occur at the redshift of the estimate, zi, and
(fortunately) not by nonlinearities at other redshifts. This is
not the case for the minimum variance quadratic estimator
(a fact that we have ignored). In our estimates in Section
4 and Fig. 9, we masked nonlinear wavenumbers at zi that
met the criterion k > kNL(zi) (defined in Eq. 34), and found
that this operation does not have a large impact on the sen-
sitivity, except for the densest samples that were considered.
This result owes to the broad range in ℓ that contributes the
information, which generally peaks at ℓ < ℓNL (Fig. 4). We
find that if we reduce kNL by an additional factor of 2, which
corresponds to a wavenumber where the nonlinear density
power spectrum deviates from linear theory by just 10 per
cent, the constraints are additionally degraded by a similarly
small factor.

As long as they are modeled properly, nonlineari-
ties that trace the density field do not necessarily bias
a measurement of N

(p)
i as the galaxies still trace the

same large-scale density fluctuations. A bias will arise
if intra-halo correlations contribute at scales where they
are not in the white noise regime (as we have assumed).
Fortunately, deviations from the large-scale limit generally
occur at wavenumbers that are larger than kNL, especially
if clusters and large, low-redshift groups are excluded from
the cross-correlation analysis (see plots in Cooray & Sheth

16 We speculate that the surprising smallness of the biases in
Limber results because of a near cancellation of the two competing
effects.
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Figure 11. The estimator bias arising from cosmic magnification
for estimators that ignore this effect. The curves assume that the
photometric sample consists of all galaxies with limiting magni-
tude i(p) = 25.3 and 0 < z < 2.5 (the bias will be smaller in
lower redshift samples) and different spectroscopic samples. The
thick blue curves are the full quadratic estimator for BigBOSS
and an overlap area of 104 deg2, the black curves are for a spec-
troscopic sample with dN(s)/dz = 10deg−2 covering 0 < z < 2.5
and over 104 deg2, and the red curves are an example survey with
i(s) = 23 and 40 deg2. The solid (dashed) curves indicate that the
bias results in an overestimate (underestimate). The top panel

shows the bias relative to N
(p)
i , and the bottom panel shows this

relative to the fractional error. All curves simplistically assume
that the flux number counts of both populations have the rather

steep power-law index of α(x) = −2, to emphasize the effect. The
labelled thin blue curve in the top panel is the BigBOSS case with
just the diagonal Schur-Limber estimator.

2002).

Magnification bias:

Magnification bias is the most significant of the biases
we considered. Cosmic magnification results in additional
off-diagonal terms in C that were zero in the Limber approx-
imation. These terms are suppressed relative to the j − j,
diagonal Limber term (Eq. 21) by the factor

R
(x)
ij ≡ −α

(x)
i + 1

b
(x)
j

[
(1 + zj) χj ∆χj

2× 107 Mpc2

](
1− χj

χi

)
(60)

for i > j, where α
(x)
i is the power-law index of the cu-

mulative in decreasing flux source number counts in bin
i above a certain flux threshold (see Appendix C). Eq. (60)
ignores magnification-magnification correlations, which are
smaller except perhaps for surveys at z ≫ 1 (e.g., Heavens
& Joachimi 2011).

For our simple Schur-Limber estimator, it is easy to
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compute the N
(p)
i estimator bias, being

frac. bias from mag. =
∑

k, k>i

N
(p)
k

N
(p)
i

R
(p)
ki +

∑

k, k<i

N
(p)
k Ckk

N
(p)
i Cii

R
(s)
ik ,

(61)
where Cii is defined in Eq. (21). Thus, this estimator results
in an overestimate when −α(x) − 1 > 0. Evaluating this for
our toy case of constant dN/dz from 0 < z < 1, one finds an
≈ −0.05 (α+ 1) per cent bias that is roughly constant with

zi. In addition, Eq. (61) shows that if N
(p)
i is well below the

peak in i, this bias can be particularly severe.

Fig. 11 illustrates the importance of magnification bias
for a case in which the photometric sample consists of all
galaxies with i(p) < 25.3 and different spectroscopic sam-
ples, all covering 0 < z < 2.5. (Lower redshift samples
would be less biased by magnification.) For simplicity, we

take α
(x)
i = −2 for all populations, which emphasizes the ef-

fect (being characteristic of the bright end of quasar counts;
fainter quasars have a slope α ∼ −0.5; Bartelmann & Schnei-
der 2001; Scranton et al. 2005, and the faint-end slope for
galaxies is −(0.5− 1); Bouwens et al. 2012). The thick blue
curves represent BigBOSS and 104 deg2, the black curves a
survey with dN (s)/dz = 10deg−2 over 104 deg2, and the red
curves a survey with i(s) = 23 and 40 deg2. Solid (dashed)
curves indicate that the bias results in an overestimate (un-

derestimate). The top panel is the bias relative to N
(p)
i , and

the bottom panel is this relative to the fractional error. At
z < 1.5, the bias is ∼ 1 standard deviation for two of the
cases. However, for BigBOSS (which has fractional errors of
∼ 10−2), the bias is 10 σ over many of the redshift bins of
interest. For all the cases, the biases are largest at z < 0.5
and z > 1.5, redshifts at which there is a significant fall off in
the photometric population. The fact that these curves can
become negative contrasts with the Schur-Limber estimator,
which would always be biased high. The thin blue curves are
the Schur-Limber estimator for the case with BigBOSS. We
find that the bias of the Schur-Limber estimator (Eq. 61) is
typically larger than the bias of the full minimum variance
quadratic estimator (that ignores magnification).

In all cases, magnification bias can be computed given
an estimate for the α

(x)
i and removed. The main issue is

uncertainty in the α
(x)
i . It should be reasonably straightfor-

ward to remove the bias at redshifts greater than the peak
in dN (p)/dz (where it is most severe) as the spectroscopic

galaxies act as the sources and their α
(s)
i is easily measured.

However, uncertainty in α
(x)
i could be the limiting factor in

N
(p)
i constraints at redshifts where the photometric galax-

ies act as the source, particularly in surveys that can place
percent-level errors on the N

(p)
i and that extend to high red-

shifts. In such cases, the error will be approximately set by
the fractional bias of N

(p)
i owing to magnification (what is

plotted in Fig. 11) times the fractional uncertainty in α(x).
Knowledge of α(x) to 10 |α(x) + 1| per cent precision is re-
quired for this not to be the limiting factor for the Big-
BOSS case considered above. Since magnification only de-
pends on the sources’ Ni and not their bi, the significant
bias of BigBOSS also suggests that it can use magnification
to break this degeneracy and separately estimate the b

(p)
i

to 10 |α(x) + 1| per cent precision. We revisit the impact of
magnification in Section 7, showing that it is less onerous in

the cases of (1) photo-z calibration and (2) estimating the
redshift distribution of diffuse backgrounds.

Analogous to magnification, intervening dust can also
correlate background galaxies with foreground ones for sur-
veys in the optical and bluer wavelengths (Ménard et al.
2010). At linear scales, this effect will induce correlations
that are a biased tracer of the projected density. The mag-
nitude of this effect with redshift could be determined with
multi-band photometry using a population with uniform
spectra, e.g. quasars, and this information would allow it
to be corrected for in cross correlation studies again to the
extent that the α

(x)
i are known.

7 CALIBRATING PHOTOMETRIC
REDSHIFTS AND CLEANING
CORRELATED ANISOTROPIES FROM
MAPS

Our previous results can be generalized to spectroscopically
calibrate the dN/dz of a photometric population that is par-
titioned by photometric redshift, an application which is rel-
evant for large-scale clustering and weak lensing analyses on
photometric populations. When the catastrophic failure rate
of the photometric redshift estimate is small, then it may
be fruitful to self-calibrate by internal cross-correlations be-
tween different photometric redshift bins. However, if the
catastrophic failure rate is large, there can be degeneracies
in the reconstruction from self calibrations, and it may be
more robust to calibrate photometric redshifts with a spec-
troscopic sample. In Section 7.1, we discuss the latter, and
Section 7.2 discusses the former. This section also addresses
the more general problem of estimating the redshift distribu-
tion of a photometric sample in which other constraints exist
for the sample’s redshift distribution. Finally, in Section 7.3
we discuss how our results can be used to statistically clean
diffuse background maps.

7.1 Spectroscopic calibration

Consider binning the photometric sample by some property
that we refer to as its “photo-z”, and we denote the sample
in photometric redshift bin ‘m’ as ‘pm’. One can think of m
as, for example, indexing a probability distribution of the
sample’s redshift as estimated from photometry. The goal is
to use cross-correlations with a spectroscopic sample to con-
strain this probability distribution. The primary difference
with the calculations in prior sections and this calculation
is that the fluctuations from each photometric redshift bin
are more likely localized in redshift than the full photometric
sample. (We defer discussion of internal correlations between
different photo-z bins to Section 7.2.)

If this is the case, our approximate formulae for the
sensitivities in different limits (Eqs. 44, 45, and 46) are al-

tered so that fi ≈ N
(pm)
i /N

(pm)
tot and βi ≈ [T

(pm)
i ]2/[T

(pm)
tot ]2,

where

T
(pm)
i ≡ Di b

(pm)
i N

(pm)
i , (62)

andN
(pm)
i [b

(pm)
i ] is the sky density [linear bias] of the photo-

metric galaxies in redshift bin m that are actually at redshift
i. Also, N

(pm)
tot ≡ ∑

i N
(pm)
i , and T

(pm)
tot ≡ (

∑
i[T

(pm)
i ]2)1/2.
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These relations for fi and βi are exact in the distant observer
approximation. With these replacements, we can recast our
formulae in the rare and abundant limits for the case of
photo-z calibration.

If the spectroscopic sample is in the rare limit, the po-
tential constraint on the population in photo-z bin m that
is actually in redshift bin i follows from Eq. (45) and is

δT
(pm)
i

T
(pm)
tot

≈ 0.06

b
(s)
i Di

(
N (s)

i

104

)−1/2(
1 + z

2

)−0.5

. (63)

Note that δT
(pm)
i /T

(pm)
tot equals the outlier fraction for bin

i 6= m in the limit that pm primarily falls in redshift bin m
and that the clustering is redshift independent. For pm to be
in the dense galaxy limit (as Eq. 63 assumes) requires that
the redshift span of the photo-z bin is sufficiently concen-
trated that

∑
i[Di b

(pm)
i ]2Cii > [N

(pm)
tot ]−1, which roughly

should hold if dN (pm)/dz at the full width half-maximum is
greater than [dN (p)/dz]crit−2 .

In the contrasting case of a dense spectroscopic and
photometric sample, it follows from Eq. (42) that

δT
(pm)
i

T
(pm)
tot

≈ 0.03

(
fsky
0.001

)−1/2 (
ℓ0
103

)−1

. (64)

Eqs. (63) and (64) demonstrate that cross-correlations can
be used to constrain the fractional number (times bias) from
pm in bin i at the part in a hundred level with 105 − 106

spectra per unit redshift (for rare spectra) or fsky = 10−3

(for high spectral densities).
Fig. 12 presents estimates for how well the redshift dis-

tribution of a photo-z bin can be reconstructed in bins of
size ∆z = 0.05 with cross-correlations for the zm = 1.45
photo-z bin, assuming that the “outlier” photo-z’s that are
not actually at the redshift zm are distributed uniformly in
the range 0 < z < 2.5. The solid curves assume that half
of the galaxies in this photo-z bin reside outside of it, uni-
formly distributed so that N

(pm)
i /N

(pm)
tot = 10−2 for i 6= m.

The dashed curves are the same but for an outlier fraction
of N

(pm)
i /N

(pm)
tot = 10−3 so that only 5 per cent of galax-

ies reside outside the photo-z bin zm. Despite these rather
artificial outlier distributions, their comparison is useful for
diagnosing how sensitive our results are to the details of the
true outlier distribution.

The top panel in Fig. 12 shows the constraints from
different spectroscopic samples with the specified dN (s)/dz,
which is held constant over 0 < z < 2.5 and for fixed to-
tal number of spectra. This panel shows that Eq. (63) is in
qualitative agreement with these estimates, noting that here
N (s) = 4 × 104. (We discuss the dip at zm = 1.45 below.)
Especially for the two lower number densities, the constraint
depends weakly on the density of spectra as Eq. (63) pre-
dicts. The cases in this panel appear to depend modestly on
the outlier fraction (compare the dashed and corresponding,
and slightly more sensitive, solid curves).

The middle panel in Fig. 12 is for a photometric sample
with the specifications of the LSST gold sample (i(p) = 25.3)
and for different spectroscopic samples that could be ob-
tained for the same total telescope time (with the same
specifications as in the top panel in Fig. 9). In this case,
both the photometric and spectroscopic galaxies are at least
marginally in the dense limit such that Eq. (64) applies, and

10-3

10-2

10-1

100

δT
(p
m
)

i
/
T

(p
m
)

to
t

LSST+FIXED FOLLOWUP TIME

i(s) =21

i(s) =23

i(s) =25

10-2

10-1

δT
(p
m
)

i
/
T

(p
m
)

to
t

105  spectroscopic sources

101 deg−2

102 deg−2

103 deg−2

0.0 0.5 1.0 1.5 2.0 2.5
redshift

10-3

10-2
δT

(p
m
)

i
/
T

(p
m
)

to
t

BIGBOSS over 104 deg2

i(p) =23

i(p) =25

Figure 12. Estimates for how well the redshift distribution of
sources (times their bias) in the photo-z bin pm can be recon-
structed with cross-correlations. Shown is the error in redshift
bin i divided by the total number of galaxies in bin photo-z

pm (i.e., δT
(pm)
i /T

(pm)
tot , Eq. 62), assuming redshift bins of size

∆z = 0.05. Our calculations assume that much of pm resides
in the zm = 1.45 bin, with “outlier” galaxies distributed uni-
formly in the range 0 < z < 2.5, and that the number density
at zm is that of a survey complete to i(p) = 25.3 unless speci-
fied otherwise. The solid curves take half of the galaxies in this
photo-z bin to reside outside of zm, uniformly distributed so that

N
(pm)
i /N

(pm)
tot = 10−2 for i 6= m. The dashed curves are the

same but for N
(pm)
i /N

(pm)
tot = 10−3 (so that most galaxies re-

side at zm). The top panel shows the constraints from different
spectroscopic samples with the specified constant dN(s)/dz over
0 < z < 2.5 and with fsky adjusted so that there are 105 to-
tal spectra. The middle panel shows three different spectroscopic
samples that could be obtained for the same total telescope time
(with the same specifications as in the top panel in Fig. 9). The
bottom panel is for a spectroscopic sample with the specifications
of BigBOSS and the specified limiting photometric magnitudes.
All curves truncate the summation over ℓ at ℓNL.

the sensitivity scales roughly as f
1/2
sky . In the three cases plot-

ted, fsky equals 2.5 × 10−4, 10−3, and 4× 10−2. The pre-
dictions in this panel depend weakly on the outlier fraction
(compare the solid and dashed curves, which in two of the
cases lie on top of each other). The sensitivity of followup to
i(s) = 21 also falls off substantially with increasing redshift,
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which reflects that the spectroscopic galaxies are entering
the rare regime.

The bottom panel shows the cases of a spectroscopic
sample with the specifications of BigBOSS, the specified
limiting photometric magnitudes, and where the surveys’
overlap is 104 deg2. These cases depends negligibly on the
outlier fraction. The BigBOSS sample is on the borderline
of the rare limit (especially at the lowest and highest z) such
that this panel is most difficult to relate to our predictions.
The rare-abundant limit given by Eq. (63) appears to be
most applicable for the case of i(pm) = 25 – BigBOSS has
N (s)

i ∼ 107 at z ∼ 1. However, this limit does not appear
to describe the error for the i(pm) = 23 case as this case is
considerably less sensitive: i(pm) = 23 is on the borderline
of being in the rare limit with dN (pm)/dz = 5, 000 deg−2 at
zm.

Auto-correlations (which were dropped in the deriva-
tions that led to Eqs. 63 and 64) add additional information.
We find that auto correlation estimates do not improve the
sensitivity for redshift bins that contain only a small frac-
tion of pm galaxies. However, for the redshifts that con-
tain the bulk of pm, they can improve the constraint on
δT

(pm)
i /T

(pm)
tot by an order of magnitude. This can be seen

by focusing in on the dip at zm = 1.45 in Fig. 12, which
corresponds to the redshift that contains half or more of the
galaxies. Eqs. (63) and (64) do not predict a dip. Especially
with a rare spectroscopic sample as investigated in the top
panel (where the cross-correlations can be quite noisy) and
a low outlier fraction, much of the constraint on the number
at zm owes to the large value of p̂m2, which indicates many
galaxies are concentrated in a narrow range in redshift.

Bernstein & Huterer (2010) found that 0.0015 error on
the fractional number on ‘all outlying peaks’ in the photo-z
distribution is required for uncertainty in the redshift dis-
tribution of the lenses to not to be the limiting factor for
the next generation of photometric weak lensing surveys.
Eqs. (63) and (64) [and Fig. 12] show that such an error
in the true redshift distribution of pm would be difficult to
achieve with spectroscopic cross-correlations (even ignoring

that the b
(p)
i also need to be constrained to O(10−3 f−1

c ),
where fc is the contamination fraction). The case of Big-
BOSS cross-correlations with a photometric sample com-
plete to i(p) = 25 over 104 deg2 (green curves in bottom
panel of Fig. 12) achieves the smallest error of the cases

considered. However, its error on δT
(pm)
i /T

(pm)
tot in redshift

bin i with ∆z = 0.05 is still only ∼ 0.003. If, for exam-
ple, an outlying peak in the photo-z distribution spanned a
redshift range of 0.2, this would require four redshift bins
and make the fractional error on the total number ∼ 0.006.
While this does not appear sufficient to satisfy the Bern-
stein & Huterer (2010) requirement, it is possible that the
calibration requirements are less severe owing to canceling
effects (Cunha et al. 2012, who found than an ∼ 0.01 out-
lier fraction may be tolerable). Quantitatively answering the
question of whether a BigBOSS-like survey is sufficient for
futuristic weak lensing surveys requires an analysis of the
bias on cosmological parameters induced by the pattern of
uncertainties we find.

Thus far we have ignored prior information on the red-
shift distribution of the photo-z subsample pm. Often it is
the case that we have prior information on the distribution

of N
(pm)
i , e.g. from the photometric redshift PDF per galaxy

(Lima et al. 2008; Freeman et al. 2009; Sheth & Rossi 2010).
In this case our formalism has only minor modifications.
Appendix A2 reviews how the quadratic estimator formal-
ism generalizes to include prior information. For a Gaussian
prior on the Ni (dropping pm superscripts for simplicity),
the estimator with a prior becomes

N̂i = [N̂i]last + [F+ FP]
−1
ij

{
∑

ℓ, m

[ (
p̂ ŝ

)
Qj

(
p̂
ŝ

)

− Tr[A−1
A,j ]

]
+ [FP]jk

(
NP,k − [N̂k]last

)}
, (65)

where FP and NP,i are respectively the inverse covariance
matrix and mean of the prior. The prior pulls the estimated
quantity towards NP,k, and this pull dominates if the prior
is more peaked than the likelihood of the data.

The final subtlety we address with regard to photo-z
calibration is cosmic magnification. Section 6 showed that
cosmic magnification can be a significant bias if unaccounted
for redshift estimation of the entire photometric sample.
Magnification may be less onerous for photo-z calibration
to the extent that the redshifts of the photo-z samples are
well localized because the locations of sources and lenses are
more constrained. However, it is also true that the αx

i may
be less constrained in fine photo-z bins than less restricted
populations. Appendix C1 addresses how magnification can
be accounted for in the case of photo-z’s.

7.2 Self calibration of photometric sample

Self-calibration of redshifts by cross correlating different
photo-z bins within a photometric sample has the potential
to achieve a tighter constraint on the N

(pm)
i than calibration

using correlations with spectroscopically identified galaxies,
since spectroscopic samples are likely to be either sparser in
number or distributed over narrower fields than photomet-
ric ones. Self-calibration of a photometric survey with cross-
correlations has been investigated in several studies (Huterer
et al. 2006; Schneider et al. 2006; Benjamin et al. 2010). Here
we show that the maximum sensitivity to dN (pm)/dz that
can be achieved with photometric self-calibrations is strik-
ingly similar to the previously considered case of abundant
spectroscopic and photometric samples.

For self-calibration to be successful, the redshift distri-
bution of the photometric sample pm needs to be much bet-
ter known than in the case of calibration with spectroscopic
cross-correlations. This is because the redshift of pn for all n
is the only knowledge one has to measure the redshift of pm:
If pn is not centered around a single redshift, it is unclear
how finite 〈p̂m p̂n〉 translates into the redshift distribution of
sample pm. To avoid this difficulty, we assume that most of
sample pm falls into redshift bin zm. This assumption is the
best case scenario, and will allow us to put a lower bound on
the constraint from self calibrations.17 Thus, the covariance

17 This assumption requires a highly artificial top hat photo-z
distribution at zm for consistency. However, we expect that our
result is more general than this choice.
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matrix of the different photo-z bins is

Bmn ≡ 〈p(m)p(n)〉 =
∑

ij

T
(pm)
i T

(pn)
j Cij + w

(pmpn)
ii δKij ,

≈
∑

i=m,n

T
(pm)
i T

(pn)
i Cii + w

(pmpn)
ii , (66)

and we have assumed the same discretization in redshift
to specify both the photometric and actual redshift bins.
In the second line, the sum is evaluated at only one value
of i if m = n (i.e. the auto-correlation). The approximate
equality in the last line follows from assuming that Cij

is diagonal (as holds in the Limber approximation), that

T
(pm)
m ≡ Dmb

(pm)
m N

(pm)
m ≫ ∑

i6=m T
(pm)
i , and from keeping

terms that are O(T
(pm)
i /T

(pm)
m ) or larger. This is the limit

in which the fraction of catastrophic photo-z’s is small and
where the covariance matrix Bmn is diagonally dominated.
In this limit, and to lowest order in αm,i ≡ T

(pm)
i /T

(pm)
m ,

the Fisher matrix with respect to the T (pm) is

F
T

(pm)
n T

(pn)
m

≈
∑

ℓ,m

(
T

(pn)
n Cnn T

(pm)
m Cmm

Bmm Bnn

)
, (67)

where Bnn ≈ [T
(pn)
n ]2Cnn + w

(pnpn)
nn , and the matrix is zero

between other combinations of parameters. The quadratic
estimator for T

(pm)
n in this limit can also easily be writ-

ten as it only involves correlations between the photometric
samples m and n. Thus, in the diagonally dominated limit,
the parameter T

(pm)
n only correlates with T

(pn)
m , and there

is a perfect degeneracy that must be broken by adding a
prior (often catastrophic errors occur in one redshift direc-
tion) or going to higher order terms that are suppressed by
another factor of αm,i. (Including cosmic shear would also
break this degeneracy; Zhang et al. 2010.) In the case of the

prior that constraints T
(pn)
m to be zero, many of our previ-

ous results hold as Eq. (67) is the same as Eq. (35) [and its
subsequent incarnation in Eq. (42)] with the replacement
β(z) = 1 and a slightly different number dependence. (In
fact, we do not need the additional approximation of S = 1,
as was made there.) Thus, if T

(pn)
n ≫ 104 b−2 ∆z deg−2, so

that the abundant limit holds,

δT
(pm)
n

T
(pm)
m

≈ 10−3 f
−1/2
sky

(
ℓ0
103

)−1

. (68)

Photometric self-calibration over a significant fraction of
the sky is capable of part in 103 accuracy required by the
next generation of weak lensing surveys (e.g., Bernstein &
Huterer 2010), but with the same caveats as noted in the
previous subsection that (1) this method does not break
the degeneracy between number and linear bias, and (2) we
have not calculated the bias on cosmological parameters as
is necessary to truly quantify the potential of this method.
In addition, this error only applies to the case of a single
catastrophic error direction. If the latter does not hold, the
constraint is likely to be weakened by the factor

√
αm,i.

More generally, the full covariance matrix of the photo-
z bins, Bmn, (plus overlapping spectroscopic populations)
can be used as the covariance matrix in the minimum vari-
ance quadratic estimator. This self-calibration estimator is
likely to be more sensitive than the algorithm discussed in
Benjamin et al. (2010), the only self-calibration method that
we are aware of, as that algorithm uses linear combinations

of the Aαβ that encapsulate a subset of the full covariance
and does not weight scales optimally.

7.3 Cleaning correlated anisotropies from a map

Our estimator is optimal for statistically estimating the
level of (and, hence, cleaning) correlated anisotropies
from angular cross-correlations between diffuse back-
ground/foreground maps and spectroscopic galaxies. The
fractional errors we quote on number are equivalent to
the error with which anisotropies can be statistically re-
moved. Thus, the survey optimizations for this application
are equivalent to those discussed forN

(p)
i estimates. Our pre-

vious calculations suggest that correlating anisotropies can
be cleaned statistically to the 1 per cent level. For wide field
observations of diffuse redshifted 21cm emission, this factor
of 100 could be helpful if extragalactic sources are found to
be a limiting factor. For CMB analyses, cross-correlations
could also be interesting for studying the redshift distribu-
tion and for expunging foregrounds. For example, it could
better enable the separation of the cosmic infrared back-
ground (CIB) from CMB anisotropies generated at higher
redshift. (CIB contamination is currently the limiting factor
in measurements of kinetic Sunyaev-Zeldovich effect, which
conveniently does not correlate with the si; Reichardt et al.
2012). Kashlinsky et al. (2007) investigated correlations on
∼ 10′ scales between diffuse anisotropies in Spitzer and HST
deep fields. Our results suggest the sensitivity to the cluster-
ing component would be increased with wider fields (perhaps
using shallower ground based observations rather than HST,
since we found that the extremely high number density in
the HST fields is not useful).

For diffuse anisotropies, gravitational lensing enters
at second order because lensing preserves surface bright-
ness. Thus, at large scales its impact on correlating the
anisotropies in a map with the spectroscopic sample is small.
If the “spectroscopic” sample is measured at sufficiently
high redshifts that the magnification-magnification term be-
comes important, only then can magnification result in a lin-
ear order diffuse foreground–spectroscopic population cross-
correlation signal. Magnification also has the effect of cor-
relating the ŝi, which can bias the estimate. However, both
magnification effects are correctable as the α

(s)
i can be mea-

sured.

Finally, the goal is sometimes to invert a measured
2D clustering signal to 3D clustering of a population us-
ing knowledge of dN/dz. In the cases where the accuracy
requirements are not stringent, knowledge of the mean red-
shift and the redshift width suffices to make this conver-
sion. These quantities are typically easier to constrain than
the full dN/dz, and so far fewer spectra are required for
the cross-correlation. Assuming a z-independent, power-law
power spectrum and dN/dz that can be parameterized by a
power of distance times an exponential of a power of dis-
tance, we found knowing just the mean and variance of
dN/dz sufficed to invert the 2D clustering to 3D at the ten
per cent level.
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Figure 13. Test of our estimator’s convergence, showing the dis-
tribution of the estimated value in units of the Fisher error for
1, 000 mocks. The thick solid curve is the expected distribution
of estimates. For each mock, we start off with initial values for

the N
(p)
i that are each an order of magnitude smaller than their

actual value. The top panel shows the case of a 10× 10 deg2 field
with the specified populations and 10 bins spanning 0 < z < 1
(resulting in ∼ 10 per cent errors). The bottom is a 30× 30 deg2

field with a photometric sample complete to i(p) = 25.3 and 50
bins spanning 0 < z < 2.5 (resulting in ∼ 1 per cent errors). We
find that the estimator robustly converges to its minimum, even
when it starts far from it, and that in both cases there are zero
outliers at > 5 σ in the 1, 000 mocks.

8 MOCK SURVEYS

We are interested in understanding the robustness with
which the proposed estimator converges to the input N

(p)
i .

To investigate its convergence, mock surveys are generated
by decomposing the covariance matrix A into its eigenvec-
tors eα and eigenvalues λα for α ∈ [0, Nbin]. Then, a real-
ization of the galaxy field that at multipole ℓ that has this
covariance matrix is given by

gβ(ℓ,m) =

Nbin∑

α=0

rαλα(ℓ)
1/2[eα(ℓ)]β , (69)

where rα is a Gaussian deviate with unit variance. Here, gi
corresponds to the overdensity in redshift bin i of the spec-
troscopic survey, and g0 is the overdensity in the photometric
sample. Our mocks assume that we are operating in a small
enough patch such that there is a one-to-one mapping be-
tween wavevectors and spherical harmonics. In addition, our
mocks assume linear theory and the Limber approximation.
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Figure 14. Walk of the estimated N
(p)
i for i = Nbin/2 as a

function of iteration number for the two cross-correlation ex-
amples described in Fig. 13 and the text. The solid curves are
the full minimum variance estimator, and the dashed curves are
the Schur-Limber estimator (which converges more quickly). The
curves terminate after the last iteration changed the estimated

N̂
(p)
i by less than a part in 105 when averaged over all i. The

initial guesses for the N̂
(p)
i are taken to be an order of magnitude

too small. The asymptotic value of each N̂
(p)
i shown in this figure

is within 2σ of the input N
(p)
i .

These approximations should not impact the conclusions per
our previous results.18

We generate 1, 000 mocks for two contrasting cases to
illustrate the estimator’s performance:

• 10 × 10 deg2 field with dN (s)/dz = 103 deg−2,
dN (p)/dz = 104 deg−2, and 10 redshift bins spanning 0 <
z < 1, each with 1, 0002 angular pixels, specifications which
result in ∼ 10 per cent errors on the N̂

(p)
i ,

• 30× 30 deg2 field with dN (s)/dz = 104 deg−2 and pho-
tometry up to i(p) = 25.3, spanning 0 < z < 2.5 with 50
bins and 3002 angular pixels, which result in ∼ 1 per cent
errors on the N̂

(p)
i .

The resolution of each mock is sufficient to resolve the scales
that contain the bulk of the information (Section 5.3).

Next, we apply the estimator to the harmonic space re-
alization of these mocks. (It would be equivalent to apply
our estimator in real space using the results of Section 5.)
Fig. 13 demonstrates that the minimum variance quadratic

18 These mocks have one significant advantage over a real survey:
they are periodic. Hence, we do not have to worry about the
survey window functions, and different modes on the lattice are
truly independent. We discussed how to deal with these real-world
complications in Section 5.3.
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estimator converges to the expected Gaussian distribution
of errors. This holds despite starting with initial estimates
for the N̂

(p)
i that are an order of magnitude smaller than the

true values used in the mocks. There are no outliers from
the 5σ regions plotted in this figure for the cases shown.
Thus, our estimator does not tend to find local extrema. We
find that only when the Fisher errors become O(1) does the
estimator no longer converge properly in all cases. However,
the Schur-Limber estimator in all cases we investigated suc-
cessfully converged to the expected distribution of estimates.
This result is not surprising as the Schur-Limber estimator
always minimizes

∑
ℓ,m vi(A0i− p̂ŝi), with the vi being weak

functions of the other N
(p)
j . Thus, it is advisable to first use

the Schur-Limber estimator ( or a Markov chain to map the

likelihood surface) in cases where the N̂
(p)
i are poorly con-

strained (and often in this limit the Schur-Limber estimator
will in fact be optimal).

Fig. 14 shows the walk of the N̂
(p)
Nbin/2

estimate as a
function of iteration number for the middle redshift bin
in the two cross-correlation cases. The solid curves are the
full minimum variance estimator, and the dashed curves are
the Schur-Limber estimator (which converges more quickly).
The curves terminate when the next successive iteration
changes the estimated N̂

(p)
i by less than a part in 105 when

averaged over all i. The Schur-Limber estimator converges
rapidly in both examples (after 3−4 iterations). This similar
convergence rate is despite the two cross-correlation cases
being considerably different in terms of their sensitivity,
their dN (p)/dz, and their Nbin. For the minimum variance
quadratic estimator, convergence requires additional steps –
as many as 20 iterations for the case in the bottom panel.

9 BREAKING THE BIAS – NUMBER
DEGENERACY

Much of our discussion has ignored that cross-correlations do
not constrain number alone but instead bias times number.
The bias often can be parametrized as a smoothly and slowly
varying function with redshift. An exception is samples with
hard color cuts, where the underlying galaxy population,
and hence the large-scale bias, can change relatively quickly
with z at points where spectral features transition in and
out of filters. In such cases, knowledge of b

(p)
i N

(p)
i is more

difficult to translate into knowledge about N
(p)
i .

For many applications, bias times number is in fact the
quantity of interest, including attempts to measure 3D cor-
relations with angular correlations or attempts to subtract
correlated anisotropies from a map of diffuse backgrounds.
However, knowing the bias is particularly important to the
application of calibrating the lens redshifts for weak lens-
ing surveys. RSDs as well as lensing magnification formally
provide terms that break the bias–number degeneracy. How-
ever, we argued that breaking this degeneracy is unlikely
with RSDs. Cosmic magnification is more promising: We
argued that surveys capable of percent-level N

(p)
i determi-

nations may be able to constrain the bias to 10 per cent.
Other possibilities for breaking this degeneracy require

using additional scales or constraints not included in our
earlier estimates. Such methods to break this degeneracy
include modeling of the one-halo term in 〈psi〉; abundance

matching or other modeling methods to map galaxy number
to bias (e.g. Conroy et al. 2006, as b

(p)
i is a weak function

of mass for abundant halos); galaxy-galaxy lensing with the
photometric galaxies as both sources and lenses (using the

b
(p)
i N

(p)
i from cross-correlation measurements – the quantity

needed for the lenses – to constrain dN (p)/dz of the sources);
breaking up the photometric sample into subsamples and us-
ing that the auto-correlation of each subsample provides an
integral constraint on its bias; and measurements of the 2nd

order bias, either in the two point function or higher order
statistics. While several of these avenues appear promising,
we shall not pursue them here.

10 CONCLUSIONS

Determining the redshift distribution of a particular popu-
lation of astronomical objects is often quite difficult. How-
ever, since most cosmological objects are clustered (i.e., they
trace the same matter field on large scales), objects that are
close together on the sky are also likely to be close together
in redshift. Thus, the redshift distribution of a population
of objects can be determined by cross-correlating it in an-
gle with a population whose redshift distribution is better
known. This paper presented a new, optimal estimator for
the redshift distribution of a given population in terms of
cross-correlations. We found that this estimator (1) is quite
intuitive in a number of limits, (2) is straightforward to ap-
ply to observations, (3) robustly finds the posterior maxi-
mum, and (4) conveniently selects angular scales at which
the fluctuations are well approximated as independent be-
tween redshift bins and at which linear theory applies. In
addition, we provided analytic formulae that can be used
to quickly estimate the sensitivity of cross-correlations be-
tween overlapping surveys to b dN/dz – the linear bias times
angular number density per redshift. We compared our es-
timator to others suggested in the literature, showing that
it produces considerably smaller errors than the familiar es-
timator of Newman (2008).

The optimal estimator’s fractional error on the num-
ber of objects (times their bias) in a redshift bin is ≈√

102N ′
bin/N (s) if the spectroscopic sample has a mean an-

gular density of less than a few thousand and the unknown
sample has a mean density larger than this value. Here, N (s)

is the total number of spectra per unit redshift, and N ′
bin is

the number of redshift bins spanned by the bulk of the un-
known population.19 Thus, it is not necessarily better to
use a narrow, deep spectroscopic survey covering tens of de-
grees than a wide, shallow one. Once the spectroscopic and
unknown populations have dN/dz ≫ 104 b−2 deg−2, the sen-
sitivity scales simply with the fraction of sky covered (again
with an intuitive formula) and no longer depends on just
the total number of spectra. We found that upcoming spec-
troscopic surveys that aim for millions of spectra can po-

19 This formula is analogous to the sensitivity of direct spectro-
scopic followup to dN/dz, where the fractional error is the square
root of the number of spectra in a redshift bin. It indicates that
cross correlations have an order of magnitude larger error at fixed
number of spectra. However, cross correlations have the signifi-
cant advantage of not requiring the spectra to be of the same
objects for which the redshift distribution is desired.
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tentially achieve percent-level constraints on the b dN/dz of
an unconstrained population. Furthermore, we showed that
our estimates for the constraints on b dN/dz also apply to
spectroscopically calibrating samples binned by their pho-
tometric redshift, and we also commented on the sensitivity
of photometric self-calibration.

We investigated a number of approximations and how
they bias the estimator. In the Limber approximation –
which we found to be excellent for relevant redshift slice
widths – the covariance matrix for this problem can be
analytically inverted, allowing simple expressions for the
estimator. We showed that the nearly optimal, Limber-
approximation estimator can be expressed as an iteration
of

N̂i = [N̂i]last +
∑

vi (p̂ ŝi − 〈p̂ ŝi〉) /
∑

vi
d〈p̂ ŝi〉
dNi

, (70)

where the vi are weights comprised of intuitive combina-
tions of the covariance matrix (Eq. 54) and p̂ ŝi is the cross-
correlation between the unknown sample and the spectro-
scopic sample in bin zi. The summations are either evalu-
ated over bins in angular separation or spherical harmonic
indices depending on whether p̂ ŝi is measured in configu-
ration or harmonic space. In many limits, this estimator
has the same error as the maximum likelihood estimate for
the cross-power amplitude. Furthermore, we found that the
bias from assuming the Limber approximation was minute
and also argued that the same holds for redshift space dis-
tortions. We found that cosmic magnification can be a sig-
nificant source of estimator bias, becoming important once
surveys achieve . 10 per cent statistical errors (especially if
the surveys extend to z & 2 or if dN/dz of the unknown sam-
ple falls off quickly). We discussed strategies for correcting
this bias.

The techniques developed in this paper can be applied
to a wide range of existing and upcoming surveys from
DES, GAMA and WISE, to LSST, Euclid and the SKA.
We intend to apply this estimator to observational data in
a future paper.
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Corbató F. J., Uretsky J. L., 1959, J. ACM, 6, 366
Cunha C. E., Huterer D., Lin H., Busha M. T., Wechsler
R. H., 2012, ArXiv:1207.3347

Cunha C. E., Lima M., Oyaizu H., Frieman J., Lin H., 2009,
MNRAS, 396, 2379

Dawson K. S., et al., 2013, AJ, 145, 10
Dodelson S., 2003, Modern Cosmology
Drinkwater M. J., Jurek R. J., Blake C., Woods D., Pimb-
blet K. A., Glazebrook K., Sharp R., Small T., Wisnioski
E., Wyder T., Yee H. K. C., 2010, MNRAS, 401, 1429

Driver S. P., Hill D. T., Kelvin L. S., Robotham A. S. G.,
Liske J., Norberg P., Baldry I. K., Bamford S. P., Hop-
kins A. M., Loveday J., Peacock J. A., Andrae E., 2011,
MNRAS, 413, 971

Duffy A. R., Meyer M. J., Staveley-Smith L., Bernyk M.,
Croton D. J., Koribalski B. S., Gerstmann D., Westerlund
S., 2012, MNRAS, 426, 3385

Efstathiou G., 2004, MNRAS, 349, 603
Efstathiou G., Bernstein G., Tyson J. A., Katz N.,
Guhathakurta P., 1991, ApJL, 380, L47

Eisenstein D. J., et al., 2001, AJ, 122, 2267
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Erben T., Hildebrandt H., Lerchster M., Hudelot P., Ben-
jamin J., van Waerbeke L., Schrabback T., Brimioulle
F., Cordes O., Dietrich J. P., Holhjem K., Schirmer M.,
Schneider P., 2009, A.&A, 493, 1197

Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426,
23

Freeman P. E., Newman J. A., Lee A. B., Richards J. W.,
Schafer C. M., 2009, MNRAS, 398, 2012

Fugmann W., 1988, A.&A, 204, 73
Gillman E., Fiebig H. R., 1988, Comput. Phys., 2, 62
Hamaus N., Seljak U., Desjacques V., Smith R. E., Baldauf
T., 2010, PRD, 82, 043515

Hamilton A. J. S., 1992, ApJL, 385, L5
Hamilton A. J. S., 1993, ApJ, 417, 19
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APPENDIX A: ESTIMATOR DETAILS

This appendix gives two generalizations of the minimum
variance quadratic estimator (Appendix A1), then shows
how a prior would impact the estimator (Appendix A2),
and finally considers how the estimator and variance change
with different basis choices to represent dN (p)/dz (Appendix
A3).
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A1 Full Estimator

Here we write two more complete expressions for the esti-
mator than were given in the text.

First, the estimator given by Eq. (16) is biased by dif-
ferent cosmic realizations except in the limit in which a large
number of modes are used with comparable weight. The full,
unbiased estimator replaces Eq. (16) with (Bond et al. 1998,
for more on derivation see ensuing appendix)

F full
ij = Fij +

∑

ℓ,m

Tr

[{(
p̂
ŝ

)(
p̂ ŝ

)
− A

}

×
(
A

−1
A,i A

−1
A,jA

−1 − 1

2
A

−1
A,ijA

−1

)]
. (A1)

This expression shows that the estimator is biased by using
Fij rather than F full

ij at the level of N
−1/2
ℓ , where Nℓ is the

number of modes that contribute. There are Nℓ = ℓ2−2 ∼
106fsky total modes that generally contribute to the esti-
mator (at least when one sample is abundant). Thus, this

error will impact the estimator at the 10−3f
−1/2
sky level. This

additional sample variance noise should typically be below
the statistical error. We saw no evidence for this bias in the
estimates from mock surveys in Section 8.

All of our estimators can be written as sums over θ or
ℓ and do not require keeping angular information. This may
come as a surprise because each individual ℓ, m mode con-
tributes independent information and so it may seem subop-
timal to combine them in annuli. However, one can note that
this is also a symmetry of the likelihood function as L can
be written so that the argument in the exponent is propor-
tional to

∑
ℓ, m Tr[Â(ℓ)A−1(ℓ)], where Â(ℓ) is the estimated

covariance matrix (e.g., Â00(ℓ) ≡ (2ℓ+ 1)−1∑
m |p(ℓ,m)|2).

A2 Impact of Prior

The estimator given in Eq.s (16) and (A3) follows from using
the multidimensional Newton’s method to find the zeros of
the derivative of the log of the data likelihood function, logL
(Bond et al. 1998):20

N̂i = [N̂i]last − ([logL],,)−1
ij [logL],j , (A2)

where [logL],, is the Hessian of logL, which upon ensemble
average is the negative of the Fisher matrix. For a Gaus-
sian likelihood with covariance matrix C and data vector ∆,
[logL],i = ∆T

C
−1

C,iC
−1∆/2.

With this derivation in mind, it is straightforward to
generalize Eq. A2 to include a prior:

N̂i = [N̂i]last−([logL],, + [logLP],,)
−1
ij ([logL],j + [logLP],j) ,

(A3)
where LP is the prior likelihood function. The case of a Gaus-
sian prior on the Ni is given by Eq. (65).

As an application of the above, let us consider the case
of ourN

(p)
i estimator in which the b

(s)
i are imperfectly known

20 Newton’s method is applied to the log of the likelihood rather
than the likelihood itself because Newton’s method provides exact
estimates for the extrema of a quadratic function.

and instead are constrained by prior information. Remem-
ber that since the N

(p)
i are estimated from large-scale cross-

correlations, they are degenerate (ignoring e.g. magnifica-

tion) with b
(s)
i and can only be separated with a prior from

the auto-correlation measurements. In this case, the Fisher
matrix of the parameters N

(p)
i and b

(s)
i plus a prior on b

(s)
i

yields the new error matrix:

F
bs =

FS
ii

[N
(p)
i ]2

(
[N

(p)
i ]2 N

(p)
i b

(s)
i

N
(p)
i b

(s)
i [b

(s)
i ]2

)
+

(
0 0
0 σ−2

bs

)
,

(A4)
where σbs is the standard deviation of the Gaussian prior on
b
(s)
i centered on [b

(s)
i ]prior. Our previous results correspond

to σbs → 0. (We are ignoring redshift-bin correlations in
the prior for simplicity, but such correlations can be easily
incorporated.) The fractional variance on a measurement of

N
(p)
i is thus
(
δN

(p)
i

N
(p)
i

)2

≡ [Fbs]−1
ii = [FS

ii ]
−1

(
1 +

[
N

(p)
i σbs

b
(s)
i

]2
FS
ii

)
.

(A5)

Therefore, the fractional variance in the estimated b
(s)
i is the

limiting factor when it is larger than the fractional variance
in the estimate of N

(p)
i for the case that b

(s)
i is held fixed.

The estimator in this limit is

N̂
(p)
i = [N̂

(p)
i ]last +

1

FS
ii

∑

ℓ,m

[A0i],i
A00 Aii

{p̂ ŝi − A0i}

+ N
(p)
i

(
[b

(s)
i ]prior/[̂b

(s)
i ]last − 1

)
, (A6)

with the complementary estimator for the bias being triv-
ially b̂

(s)
i = [b

(s)
i ]prior.

For the case of SDSS or BOSS quasars (where N (s) ∼
105), the variance in the measured bias is σbs ∼ 0.1 (Ross
et al. 2009; White et al. 2012), which is comparable to the
redshift error expected from cross-correlations (Fig. 7). How-
ever, for rare samples with fewer spectra than SDSS quasars,
the uncertainty in b

(s)
i will dominate the error in the N

(p)
i

that ignores the bias uncertainty.

A3 Estimator and constraints in other bases

We have chosen a top hat basis set for convenience, which
also leads to an estimator that converges robustly to the
likelihood peak. Other choices are clearly possible, and they
may be preferred in some situations. For example, instead of
N

(p)
i we could estimate the parameters of a particular func-

tional form. Or we could expand dN (p)/dz as a sum of over-
lapping Gaussians or (orthogonal) polynomials times basis
functions (e.g. a power law times an exponential). While
the quadratic estimator formalism is completely general, it
is not trivial to recast the estimator in terms of an arbitrary
basis set as A needs to be recast in terms of the new param-
eter set. In many cases, this is not analytically expressible
(with an exception being the linear case discussed below).
However, it is trivial to translate our results for the error on
a parameter into another basis set. The new Fisher matrix
is given by the chain rule:

F
′ = W

T
F W, (A7)

where W is the Jacobian matrix between the N
(p)
i and the

new parameter set λi. We showed that the Fisher matrix is
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Figure A1. Improvement in constraints from a constrained
parametrization of dN(p)/dz rather than the case considered in

the text in which the top-hat basis N
(p)
i are free. Shown are

surveys with the parameters i(p) = 23, dN(s)/dz = 10 deg−2,
and ∆z = 0.05 over 1, 000 deg2 and 0 < z < 2.5. The frac-

tional errors for the unconstrained case – the case investigated
in the body of this paper – are given by the green dashed curve,
and the case where b(p)dN(p)/dz is constrained by the functional
form N0 (z/z0)α exp[−(z/z0)β ], marginalizing over the parame-
ters specified in the key, is given by the dot-dashed blue and
dotted red curves. This constraining functional is evaluated at
the fiducial parameters given by Eq. (3) for these two cases. The
black solid curve shows dN(p)/dz, arbitrarily normalized.

often well approximated as diagonal, such as in the Schur-
Limber limit. In this case

F ′
ij ≈

Nbin∑

k=1

1

FS
kk

dN
(p)
k

dλi

dN
(p)
k

dλj
. (A8)

Once the N
(p)
i are estimated with our technique, they can

be combined to estimate the λi with error given by F
′.

Fig. A1 shows an example using Eq. A7 in which we
changed basis to one in which dN (p)/dz is constrained to
have the smooth functional form specified in the key (a gen-
eralization of our Eq. (3) for P (z, i)). This figure investigates
the case of a photometric population with i(p) = 23 and with
a low density of spectroscopic objects given by dN (s)/dz =
10 deg−2, overlapping over a sky area of 1, 000 deg2 (al-
though, the total number of spectra, here 104, is the essen-
tial quantity). It shows that the constraints are substantially
improved even if a fairly general functional form is assumed
(varying two parameters for the dotted curves and four for
the dot dashed). One advantage of parametrizing dN (p)/dz
with a smooth functional form is that the constraints do not
depend on the choice of ∆z.

Finally, we note that the formalism this paper devel-
oped for estimating the N

(p)
i can be trivially recast for mod-

els in which one instead aims to constrain some set of basis
functions φi for which dN (p)/dz =

∑
i ciφi(z), where ci are

a set of coefficients. In this case, the primarily difference is
that for the αℓ(k, zi) that went into calculating C(ℓ), the in-
dex i no longer indices the redshift bin but rather the basis
function.

APPENDIX B: EXTENDED LIMBER
APPROXIMATION

The Limber approximation is most applicable on small angu-
lar scales, where we may approximate the sky as flat and the
spherical harmonic transform as a Fourier transform (e.g.
White et al. 1999; Pápai & Szapudi 2008). With these ap-
proximations, the angular correlation function can be writ-
ten as

w(θ) =

∫
dχ1 dχ2 W (χ1)W (χ2)

×
∫

d3k

(2π)3
P (k)eik·(x1−x2), (B1)

≈
∫

d3k

(2π)3
P (k⊥, k‖)

∫
dχ̄ W 2(χ̄)eik⊥·x⊥

×
∫

dZ eik‖Z , (B2)

=

∫
K⊥ dK⊥

2π
P (k⊥, k‖ = 0)

×
∫

dχ̄ W 2(χ̄)J0(k⊥χ̄θ), (B3)

where in the second line we have changed variables from χi

to center-of-mass and relative coordinates, χ̄ = (χ1 + χ2)/2
and Z = χ1 − χ2, and assumed that W is so broad that
W (χ̄±Z/2) ≈ W (χ̄) (which is not always the case for the W
considered in the text). Writing ℓ = k⊥χ̄ and using J0(ℓθ) ≃
Pℓ(cos θ) for θ ≪ 1 and ℓ ≫ 1, the angular power spectrum,
Cℓ, is thus

Cℓ =

∫
dχ

W 2(χ)

χ2
P (k⊥ = ℓ/χ, k‖ = 0). (B4)

The Limber approximation further results in correlations
between non-overlapping redshift slices being zero.

One can compare the Limber approximation to the an-
alytic solution for certain cases to see when and how well
these approximations work. Let us assume W (χ) is a top-
hat in χ in slices of width ∆χ (as in the main body of this
paper). Then, the cross-spectrum is

ℓ2Cij = k2
⊥

∫
dk‖
2π

eik‖(χi−χj )sinc

[
k‖∆χ

2

]2
P (k⊥, k‖).

(B5)
Using the method of steepest descents (or approximating the
power spectrum as a power-law and using the asymptotic
behavior of the resulting Bessel functions), it can be shown
that for k⊥|χi − χj | ≫ 1

ℓ2Cij → ℓ2Casymp
ij ≡ k⊥

∆χ2
P (k⊥)e

−k⊥|χi−χj |, (B6)

We can make further progress by assuming that P (k) is a
power-law. In particular, if P (k) is a power-law with index
−2, roughly the index on galaxy scales in our Universe, the
integral in Eq. B5 has simple poles that make the evaluation
trivial:

ℓ2Cij = ℓ2Casymp
ij

{
k⊥∆χ+ exp[−k⊥∆χ]− 1 i = j;

cosh[k⊥∆χ]− 1 i 6= j.

(B7)
Note that when i = j and k⊥∆χ ≫ 1 we recover the Lim-
ber result ℓ2Cii ≃ (k2

⊥/∆χ)P (k⊥). In addition, at k⊥∆χ = 2
(the boundary of applicability used in Fig. 6), Eq. B7 under-
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shoots Limber by 40 per cent with this percentage decreas-
ing roughly linearly with increasing k⊥∆χ. The errors from
Limber will be smaller when P (k) has a flatter power-law, as
is the case at k⊥∆χ ∼ 1 for the ∆χ considered in the text.
That the Limber approximation works so well once k⊥∆χ
moderately exceeds unity helps explain why in the text we
find it to be such a good approximation for our problem.

Next, consider the impact of redshift-space distortions
(RSDs) in the Limber approximation, which have been ne-
glected in all of our prior discussion. RSDs could be interest-
ing for our purposes because they break the b

(x)
i –N

(x)
i degen-

eracy. On linear scales the lowest-order correction owing to
RSDs is to multiply the power spectrum by 1+2βi µ

2, where
µ = k‖/k and βi ≃ Ω0.6

m /b
(x)
i , with the redefinition of χ and

k to be the analogous redshift-space quantities (Kaiser 1987;
Hamilton 1992). In the Limber approximation, |k‖| . ∆χ−1

and so we expect |µ| ≪ 1 and the correction to be small.
However, how quickly this falls off depends on W (χ). In the
case of our top hat window function and with the replace-
ment P (k⊥, k‖) → P (k⊥)(1 + 2βi µ

2) – which is analogous
to the Limber approximation –, Eq. B5 can be integrated
analytically yielding

ℓ2Cii =
k2
⊥

∆χ
P (k⊥)

(
1 +

2βi

k⊥∆χ

)
, (B8)

with the off-diagonals being zero. Thus, the RSD correction
falls off slowly as (k⊥∆χ)−1 in the case of top hat W . A
curiosity is that if we had approximated µ as k‖/k⊥, the
integral would have diverged. Thus, in the case of a top hat
W , the RSD term arises from modes with µ ∼ 1.

However, smoother W (χ) result in RSDs having a
weaker scaling in the Limber regime. Consider the case in
which W (χ) is a Gaussian with standard deviation σ. The
analogous equation to Eq. B5 for this case is

ℓ2Cij = k2
⊥

∫
dk‖
2π

eik‖(χi−χj )exp
[
−k2

‖ σ
2]P (k⊥, k‖). (B9)

For large σ the integral is dominated by small k‖, and we can
Taylor series expand about k‖ = 0 as above. In this case, the
correction due to redshift-space distortions enters at order
O([k⊥σ]

−2). The RSD term is similar (merely increasing by
a factor of 2) if one of the two window functions were much
narrower than σ. In addition, exponential or triangle window
functions also have RSDs entering at O([k⊥σ]−2).21

It is important for our calculations if the RSDs in Lim-
ber – an approximation that we showed holds excellently
at angles that contribute to the estimator – contribute at
O([k⊥σ]

−1) rather than O([k⊥σ]
−2), where σ is the width

of our window function. RSDs would be a promising sig-
nal to break the b

(x)
i –N

(x)
i degeneracy if the former scaling

holds, but are not in the case of the latter. It may appear
with the formalism in the text, which uses top hat Wi, that
the O([k⊥σ]

−1) scaling would apply. However, for the case
of interest where the dN (p)/dz is a smooth function that is
not known, we posit that one is always in the regime where

21 This result that RSDs depend on the smoothness of W (χ) is
analogous to the finding in Nock et al. (2010). There, the impact
of RSDs on the correlation function measured in a top hat projec-
tion over ∼ 100 Mpc was shown to be much more significant than
when the effective window was smoothed with a pair-averaging
scheme.

the RSD term falls off as O([k⊥σ]
−2). Basis functions can

always be chosen that have smooth W (χ) and where the
RSD terms contribute at O([k⊥σ]−2). That they contribute
at O([k⊥σ]−1) for top hat windows is a pathological result
of our basis choice that implicitly assumes that the distribu-
tion of dN (p)/dz is a histogram with sharp breaks between
redshift steps.

To include RSDs properly requires a smoother basis set
for the Wi than we take in the text. Because of this added
complication, we do not consider RSDs in our formulae in
the text. For the reasons espoused above and because the
modes that contribute to our estimate are generally safely
in the Limber regime, the bias from ignoring their impact
on correlation functions with the photometric sample should
be small. RSDs are a more important consideration for the
spectroscopic–spectroscopic elements in A. (However, these
elements do not impact our estimator in the Schur-Limber
limit.)

APPENDIX C: MAGNIFICATION BIAS

The spatial density of observed galaxies is modulated by an
additional factor that we have ignored so far of (1+δµ) owing
to lensing magnification (Turner et al. 1984; Fugmann 1988;
Narayan 1989; Hui et al. 2007, 2008). In the weak lensing
regime,

δµ(n̂, zi) ≡ 2 (−α
(x)
i −1)

∫ χi

0

dχ
χi − χ

χi
χ∇2

⊥φ(χ, n̂), (C1)

where ∇2
⊥ is the comoving Laplacian in the plane perpen-

dicular to the radial direction and α
(x)
i is the power-law

slope of the cumulative number of sources at the survey flux
threshold and redshift zi. (Note that α

(x)
i is defined to be

a negative number as long as the cumulative number de-
creases with increasing flux.) Thus, magnification generates
additional correlations such that

Cij → Cij + Cδµ
ij +Cδµ

ji , (C2)

where Cδµ
ji is the cross-correlation function between the

galaxy overdensity field in redshift slice j and δµ,i, and we
are dropping the smaller Cµµ

ij term. In the Limber regime,
the expression for the new terms in Eq. C2 is (Bartelmann
& Schneider 2001, their Eq. 7.9)

Cδµ
ij = −

(
α
(x)
i + 1

b
(x)
i

)
3H2

0Ω0

c2

∫
dχ

χa
Wj(χ)Yi(χ)D

2(χ)P (
ℓ

χ
),

(C3)
for i > j. Otherwise, Cδµ

ij = 0 (we ignore the contribution
of magnification to the i = j elements), and we denote the
source population in question by x and lens by y as it could
be either the photometric or spectroscopic sample. Here,

Yi(χ) =

∫ ∞

χ

dχ′ Wi(χ
′)
χ′ − χ

χ′
. (C4)

Magnification depends only on the bias of the lens and not
the source and so can break the degeneracy between bias and
number. (This dependence may be opaque in our notation
as the Cδµ

ij enter A multiplied by factors of the bias.)

Noting that c2/(3H2
0Ωm) = 2 × 107 Mpc2, a back-of-
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the-envelope estimate for Cδµ
ij is

Cδµ
ij ≈ −

(
α
(x)
i + 1

b
(x)
i

)
(1 + zj)D

2(zj)P
(

ℓ
χj

)

(2× 107 Mpc2)

(
1

χj
− 1

χi

)

(C5)
when i > j, and we have approximated Wi and Wj as
sharply peaked around their respective redshifts. This is sim-
ilar to the Cjj term without lensing (Eq. 21), differing most
importantly by the factor [(1 + zj)χj ∆χj ]/2 × 107 Mpc2.
This factor is O(10−2) for populations at z ∼ 1 and Nbin ∼
50, but can be larger for higher redshift populations. Thus,
magnification will add off-diagonal terms that are O(10−2)
of the diagonal terms in C that were zero in much of our
treatment in the text. The new magnification terms have a
larger impact on the components in A involving p, as these
terms sum over i and j in Cij

C1 Photo-z calibration with magnification

Here we discuss how magnification could potentially be cor-
rected in the application of photo-z calibration investigated
in Section 7.1 (and we use the same notation as introduced
there). We consider a simplified problem in which most of
the pm photo-z sample is concentrated at redshift zm. Then,
there is a significant bias if the error on T

(pm)
i /T

(pm)
m is com-

parable to Cδµ
mi/Cii, which we just showed is O([Nbin]

−1) for
zi ∼ 1.

The minimum variance estimator with a prior on the
α
(x)
i (which enters analogously to the number prior in

Eq. 65) can also be written for this simplified problem: First,
the covariance matrix at some ℓ and in the Limber approx-
imation is

D00 ≈ [T (pm)
m ]2Cmm + w(pm) +M, (C6)

D01 ≈ T
(pm)
j T

(s)
j Cjj + T (pm)

m T
(s)
j Cδµ

mj + w
(pms)
j , (C7)

D11 ≈ [T
(s)
j ]2Cjj + w

(s)
j , (C8)

where M encompasses the impact of photometric self-
magnification, and we have dropped terms that do not con-
tain T

(pm)
m except the off-diagonal T

(pm)
i terms for which the

estimator’s sensitivity to T
(pm)
i derives. For the specified D

and a prior on α(x) with variance σα, the minimum variance
quadratic estimator is

̂
T

(pm)
i = [

̂
T

(pm)
i ]last + [F−1]11

∑

ℓ,m

S′ T
(s)
j Cij

D00D11
(p̂m ŝi −D01) , (C9)

where S′ = D00D11(D00D11 + D2
01)/det[D]2, α(x) is set by

the prior, we have assumed that T
(pm)
m is well constrained

by other cross (and auto) correlations (which is quite likely),
and F also has a simple analytic representation. This esti-
mator is quite analogous to our previous estimator.

It is instructive to look at the variance on a measure-
ment of T

(pm)
i in a single mode:

[F−1]11 =
D00D11 + S′[T

(pm)
m T

(s)
j Cδµ

mj/(α+ 1)]2σ2
α

(S′T
(s)
j Cij)2

. (C10)

This equation shows that error on the magnification bias
times S′ (the latter term in the numerator) has to be com-
parable to the auto power terms (the former term) in order
to change our previously quoted errors in Section 7.1. It also

suggests that it may be desirable to down weight large-angle
modes where S′ is largest (that have the smallest noise) and,
hence, where the fog from lensing is most disruptive.

APPENDIX D: RECURRENCE RELATIONS
FOR (AND THE EVALUATION OF INTEGRALS
OVER) SPHERICAL BESSEL FUNCTIONS

Our most general expressions for the auto and cross power
spectra, Eqs. 13 and14, involved integrals over spherical
Bessel functions. Numerical methods for evaluating spher-
ical Bessel functions and integrating over them are well
advanced, but do not seem to be widely known. This ap-
pendix gives the details of the algorithms used in this
study. Further details can be found in (Miller 1952; Cor-
bató & Uretsky 1959; Gillman & Fiebig 1988; Poularikas
2000) or at http://www.utdallas.edu/~cantrell/ee6481/
lectures/bessres1.pdf.

First we address the evaluation of the jℓ. For small val-
ues of the argument, we use a series expansion of jℓ(x). For
larger values, we evaluate the jℓ using a downwardly stable
recurrence relation for rℓ ≡ jℓ/jℓ−1. Specifically we first ini-
tialize rL by setting jL(x) = 0 for L much larger than any ℓ
of interest (and x). Then the relation

rℓ−1 =
1

(2ℓ− 1)/x − rℓ
(D1)

is downwardly stable and can be used to find rℓ for 0 < ℓ <
L. The jℓ can then be evaluated by moving up the hierarchy
after initializing j0(x) = sin(x)/x.

Eqs. (13) and (14) are difficult integrals to evaluate ow-
ing to the oscillatory nature of the jℓ. We experimented with
using the scheme suggested in Lucas (1995) of decomposing
the product of jℓ into a sum of functions that each have a
single oscillatory period at large arguments and then using
the transformations discussed therein on a series where the
nth member is our k-integral evaluated from 0 out to the
nth zero. This operation removes oscillatory behavior in this
slowly converging series so that it converges more quickly
to the n → ∞ limit, and the integral converges for n ∼ 10
(Lucas 1995). Experiments with some of the integral terms
indicated that the Lucas (1995) method was much faster
than a brute-force integration, but we were able to find a
simpler implementation which was sufficiently fast and ac-
curate. In particular, we ended up evaluating these integrals
by brute force, integrating typically out to the 1, 000th zero
of the αℓ(k, zi) (which were pre-computed and stored in a
table). A slight improvement in the convergence of the in-
tegral was obtained by applying a Gaussian damping to the
integrand – based on the fact that k‖ ≫ ℓ/χ should not
contribute much to the integral. The details of this damping
did not affect our results.

APPENDIX E: THE POWER-LAW CASE

The main body of this paper used power-law approxima-
tions to the power-spectrum and correlation function to un-
derstand the mechanics of the Schur-Limber estimator. To
aid this discussion, here we work through expressions for the
angular power spectrum and correlation function (and their
relation) under these approximations.
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Recall that within the Limber approximation (Section
3.1)

Cℓ =

∫
dχP (k)

W 2(χ)

χ2
, (E1)

where W (χ) is the projection kernel that defines the 2D
(projected) overdensity in terms of the 3D, and it integrates
to unity against d χ. We shall assume that W (χ) is peaked
at χ0 and of width ∆χ such that kχ0 ≫ k∆χ ≫ 1 for scales,
k, which contribute significantly.

Assuming a power-law power spectrum of the form
∆2(k) ≡ k3P (k)/2π2 = (k/k⋆)

3+n, with −2 < n < −1,
the real-space 3D correlation function is

ξ(r) =
(r0
r

)γ
=

∫
dk

k
∆2(k) j0(kr) = Bn (k⋆r)

−3−n , (E2)

where Bn ≡ − sin(nπ/2) Γ(2 + n, 0), which respectively
equals 1.25 and 1 for n = −3/2 and n = −1 (Bn diverges
as n → −3+). It follows from Eq. E2 that γ = n + 3 and

r0 = B
1/γ
n /k⋆.

In the Limber approximation,

Cℓ =
2π2

k3
⋆V

(
ℓ

k⋆χ0

)n

, (E3)

where V = χ2
0 ∆χ is the volume per steradian. Using anal-

ogous relations to Eq. E2, the 2D or projected correlation
function is

w(θ) =

(
θ⋆
θ

)n+2

=
πAn

k3
⋆V

(k⋆χ0)
−n θ−n−2, (E4)

where An ≡ 2n+1 Γ(1 + n/2)/Γ(−n/2) ≃ 2.1 and 1 for n =
−3/2 and n = −1 (An diverges as n → −2+).

Particularly simple expressions hold in the case n = −1
for which An = Bn = 1, so ∆2 = (k/k⋆)

2,

ξ(r) =
(r0
r

)2
where r0 = k−1

⋆ , (E5)

and

w(θ) =

(
θ⋆
θ

)
= π

(
r0
χ0

)2 (
χ0

∆χ

)
θ−1. (E6)
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