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Abstract

Charting Cellular States, One Cell at a Time:
Computational, Inferential and Modeling Perspectives

by

Romain Lopez

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Associate Professor Nir Yosef, Co-chair

In this thesis, we pursue the design of Bayesian models as well as large-scale approximate
inference procedures for the analysis of single-cell transcriptomics data.

First, we rely on Bayesian statistics to formalize several central algorithmic steps of single-cell
transcriptomics data analysis. In particular, we introduce single-cell Variational Inference
(scVI), a deep generative model that separates technical noise from biological signal, and
is readily applicable de novo cell type identification, batch effect correction, and differen-
tial expression. As follow-up work, we introduce single-cell ANnotation using Variational
Inference (scANVI), an extension of scVI for sharing annotation of cells across experimental
conditions. scANVI is a fully-probabilistic method for harmonizing collections of single-cell
RNA sequencing datasets, and therefore provides a principled way of quantifying the un-
certainty of cell state annotation. The inference procedure for both methods is based on
auto-encoding variational Bayes and scales to millions of cells.

In a second line of work, we expose two pathological behaviors of variational inference we
encountered while developing scVI. First, the presence of an encoder network leads to entan-
glement of the latent variables, an undesirable behavior for factoring out unwanted variations
from embeddings. To address this problem, we introduce the Hilbert-Schmidt Information
Criterion (HSIC) constrained Variational Autoencoder (VAE), a generic variant of the VAE
that incorporates a non-parametric measure of dependence as an explicit constraint for the
variational distribution. Second, we expose the unsuitability of the variational distribution
for Bayesian decision-making and introduce a simple procedure for making more accurate de-
cisions with VAEs. In particular, we explore alternative training procedures, based on using
separate variational bounds for learning the generative model and variational posterior.
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Résumé

Cartographie des états cellulaires, une cellule à la fois: perspectives computationnelles,
inférentielles, et de modélisation

Cette dissertation explore la conception de modèles bayésiens et de procédures inférentielles
à large échelle pour l’analyse de données massives produites par le séquençage de l’ARN en
cellule unique.

Dans un premier temps, nous définissons plusieurs étapes algorithmiques centrales à l’analyse
de données massives produites par le séquençage de l’ARN en cellule unique, en utilisant le
formalisme statistique bayésien. Suite à quoi, nous présentons scVI (single-cell Variational
Inference), un modèle génératif profond qui distingue le bruit expérimental du signal bi-
ologique de ces bases de données. scVI permet d’identifier de nouveaux types cellulaires,
de corriger les effets de lots, ainsi que d’analyser l’expression différentielle de gènes. Nous
présentons ensuite scANVI (single-cell ANnotation Variational Inference), une extension de
scVI pour le partage d’annotations cellulaires entre base de données avec différentes condi-
tions expérimentales. scANVI est une méthode probabiliste pour fusionner des collections
différentes de base de données issues de séquençage de l’ARN en cellule unique, et donc
constitue une approche rigoureuse pour quantifier l’incertitude des annotations des états
cellulaires. Pour chaque méthode, nous proposons un algorithme inférentiel basé sur le
paradigme de l’auto-encodeur variationnel bayésien (AEVB), et qui fonctionne sans peine à
l’échelle de millions de cellules.

Dans un second temps, nous reportons deux comportements pathologiques de l’approche
de l’inférence variationnelle bayésienne utilisée pour la conception de scVI. D’abord, nous
montrons que l’utilisation d’un réseau de neurones pour l’inférence des variables latentes
conduit à leur enchevêtrement, un phénomène particulièrement gênant quand l’objectif est
d’isoler des variations indésirables en dehors de l’espace latent. Pour résoudre ce problème,
nous présentons le HSIC-constraint AEVB, une variante générique de l’AEVB qui incorpore
une mesure non-paramétrique de dépendance entre variable aléatoires comme contrainte
explicite de la distribution variationnelle pendant la procédure d’inférence. Ensuite, nous
montrons l’inaptitude de la distribution variationnelle pour la prise de décision bayésienne et
présentons une procédure simple pour prendre de meilleures décisions au sein du paradigme
de l’AEVB. En particulier, nous explorons des procédures d’entraînement alternatives, basées
sur l’utilisation de différentes inégalités variationnelles pour apprendre le modèle génératif,
et la distribution variationnelle.
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Chapter 1

Introduction

This introduction provides an overview of the field of single-cell genomics, as well as context
for each chapter of this dissertation. We also briefly present supplementary contributions
from my doctoral studies that are not exposed in this dissertation.

1.1 Brief exposition to cellular heterogeneity
Cell is the basic unit of life. Developing better understanding of cellular function and states
in tissue promises to unravel the most intriguing secrets of developmental biology, but also
to apprehend the most complicated mechanics of the immune system. This is a difficult task,
because there are many independent factors that concurrently shape cellular heterogeneity,
inside of a single organism [1]. For example, immune cells may respond to a stimulus and
produce various types of cytokines. Cells may also interact with surrounding cells and
therefore are heavily impacted by their spatial context. Researchers have therefore built
several single-cell experimental assays, each capturing a unique view on cellular heterogeneity.

1.2 The single-cell omics era
The variety of molecular interactions happening in a single cell is fascinating, although ver-
tiginous for the neophyte. Cells have a common genetic material (DNA), that get transcribed
into messenger RNA (mRNA). This process of transcription is usually conditioned by differ-
ent factors such as chromatic accessibility, or DNA methylation. Once transcribed, mRNA
may be translated into proteins. Proteins then take part in chemical reactions (metabolism)
to affect the concentration of many chemical constituents inside of that cell.

In the recent years, we have witnessed the developments of many methods for measur-
ing the output of many of these mechanisms at the single-cell level (e.g., scDNA-seq [2],
scRNA-seq [3]). Many assays recently permitted to measure two or more of those omics as
multiple modalities of the same dataset such as scNMT-seq [4] for transcriptomics and DNA
methylation and CITE-seq [5] for proteomics and transcriptomics. The content in this thesis
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focuses solely on scRNA-seq, although some extensions of the work have been applied to
other modalities.

Another impressive area of progress in the field of single-cell omics is the throughput.
In the very early stages of single-cell sequencing (2012), measuring the transcriptome of
twelve cells was a clear breakthrough [6]. However, 10x Genomics released a dataset of gene
expression for more than one million cells, a couple months after I started graduate school
(2017).

As a consequence of the success of single-cell RNA sequencing, many consortia were
formed to measure the transcriptome of a whole organism, as well as population. For ex-
ample, Tabula Muris is a compendium of single cell transcriptome data from the model
organism Mus musculus, containing nearly 100,000 cells from 20 organs and tissues [7]. This
created an exciting set of opportunities for statisticians to create scalable, and principled
tools for data fusion (also referred to as data harmonization in this thesis). This is also the
also the context for this thesis work.

1.3 Dissertation overview
I first present some background on deep generative models (Chapter 2) and in particular on
auto-encoding variational Bayes [8]. This chapter is a lightly edited version of the review
paper I co-authored about deep generative models for molecular biology, and that appears
in Molecular Systems Biology [9].

The rest of this dissertation has been written in two parts. First, I introduce two algo-
rithms we conceived for integrating massive single-cell transcriptomics datasets (scRNA-seq),
and that are based on variational auto-encoders (Part I). The first one is single-cell Vari-
ational Inference (scVI), exposed in Chapter 3. scVI is a fully probabilistic approach for
the normalization and analysis of scRNA-seq data. scVI is based on a hierarchical Bayesian
model with conditional distributions specified by deep neural networks and that can be
trained very efficiently even for very large datasets. This chapter has been slightly edited
from the original publication that appears in Nature Methods [10] (early versions of this
work also appeared in two workshop proceedings [11, 12]). As I write this thesis, I have
gather several biological studies where scVI was used for making scientific discoveries, in-
cluding the identification of the drivers of metastasis in cancer xenografts [13], as well as the
characterization of cellular heterogeneity for COVID-19 patients [14]. I additionally present
single-cell ANnotation using Variational Inference (scANVI) in Chapter 4. scANVI is a
semi-supervised variant of scVI designed to leverage existing cell state annotations. This
flexible framework of semi-supervised learning can be applied to two main variants of the
annotation problem. In the first scenario, we are concerned with a single dataset in which
only a subset of cells can be confidently labeled (e.g., based on expression of marker genes)
and annotations should then be transferred to other cells, when applicable. In the second
scenario, annotated datasets are harmonized with unannotated datasets and then used to
assign labels to the unannotated cells. scANVI has been applied in the context of the Tabula
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Sapiens study, a massive consortia that measured the transcriptome of many organs across
many human donors. This chapter has been slightly edited from the form it appears in
Molecular Systems Biology [15].

In Part II, I expose two fundamental failure modes of variational auto-encoders and
propose general approaches to alleviate those problems. Interestingly, I believe that ap-
proaching VAEs from an applied perspective helped me frame those problems in a unique
way. Consequently, all the chapters in Part II also have a short application to scRNA-seq
data. In Chapter 5, I expose a fundamental problem with auto-encoding variational Bayes:
while providing appealing flexibility, VAEs make it difficult to impose or assess structural
constraints such as conditional independence. I propose a framework for learning represen-
tations that still relies on auto-encoding variational Bayes, but in which the search space
is constrained via kernel-based measures of independence (the d-variable Hilbert-Schmidt
Independence Criterion) to enforce independence between the latent representations and ar-
bitrary nuisance factors. For broader context, I encountered this problem while trying to
factor sequencing errors out of the latent representation of scVI. This chapter appeared (in
a shortened version) in the proceedings of Neural Information Processing Systems [16]. In
Chapter 6, I expose the poor performance of letting the variational distribution serve as a
surrogate for the posterior distribution in the context of Bayesian decision-making. I explore
how fitting the variational distribution based on several objective functions other than the
ELBO, while continuing to fit the generative model based on the ELBO, affects the quality
of downstream decisions. Theoretical results suggest that a posterior approximation distinct
from the variational distribution should be used for making decisions. I therefore propose
learning several approximate proposals for the best model and combining them using multi-
ple importance sampling for decision-making. This work started as a quest to diagnose the
performance of scVI for Bayesian differential expression. A shorted version of this chapter
appeared in the proceedings of Neural Information Processing Systems [17].

Finally, I discuss in Chapter 7 several avenues for future work. This chapter is also an
excerpt from the review paper cited above.

1.4 Related contributions
Although the results presented in this dissertation constitute the core of my doctoral work, I
would like to give here a quick highlight on research that I participated on as a collaborator,
and that builds upon scVI. A star next to the title indicates I (co-)led the study.

1.4.1 Multi-modal data analysis: transcriptomics, proteomics and
spatial covariates

I have always been interested in adding as much information as possible into the same
methods, with the ultimate goal of building latent variable models that can relate or contrast



CHAPTER 1. INTRODUCTION 4

modalities from data, as well as improve in-silico the resolution of one modality (e.g., current
spatial transcriptomics assays).

Joint probabilistic modeling of single-cell multi-omic data with totalVI The
paired measurement of RNA and surface proteins in single cells with cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect
transcriptional variation with cell phenotypes and functions. However, combining these
paired views into a unified representation of cell state is made challenging by the unique
technical characteristics of each measurement. Total Variational Inference (totalVI) is a
framework for end-to-end joint analysis of CITE-seq data that probabilistically represents
the data as a composite of biological and technical factors, including protein background and
batch effects. TotalVI provides a cohesive solution for common analysis tasks such as dimen-
sionality reduction, the integration of datasets with different measured proteins, estimation
of correlations between molecules and differential expression testing [18].

A joint model of unpaired data from scRNA-seq and spatial transcriptomics for
imputing missing gene expression measurements∗ Spatial studies of transcriptome
provide biologists with gene expression maps of heterogeneous and complex tissues. How-
ever, most experimental protocols for spatial transcriptomics suffer from the need to select
beforehand a small fraction of genes to be quantified over the entire transcriptome. Standard
single-cell RNA sequencing (scRNA-seq) is more prevalent, easier to implement and can in
principle capture any gene but cannot recover the spatial location of the cells. We there-
fore focused on the problem of imputation of missing genes in spatial transcriptomic data
based on (unpaired) standard scRNA-seq data from the same biological tissue. Building
upon domain adaptation work, we propose gimVI, a deep generative model for the integra-
tion of spatial transcriptomic data and scRNA-seq data that can be used to impute missing
genes [19].

Multi-resolution deconvolution of spatial transcriptomics data reveals continuous
patterns of inflammation∗ Spatial transcriptomics analysis is a promising approach to-
wards disentangling biological intrinsic effects with environmental effects that define cellular
identities. In particular, bulk-RNA spatial measurements (e.g., 10x Visium) are becoming
widely available, but still do not provide single-cell resolution. Therefore, such a spatial
dataset is often matched with a single-cell RNA sequencing dataset from the same tissue. In
this setting, deconvolution methods first learn a dictionary of cell states from the single-cell
data and then estimate the cell type proportions for the spatial transcriptomics data. These
algorithms encountered significant success in tissues with discrete cell types but are more
challenging in other settings for which the cell states may better be described as continuous
variations within discrete cell types. To address this limitation, we present Deconvolution
of Spatial Transcriptomics profiles using Variational Inference (DestVI), a Bayesian model
for multi-resolution deconvolution of cell types in spatial transcriptomics data. DestVI first
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learns a cell type specific embedding on the single-cell data, using a deep generative model
and then estimates cell type proportions along with the expression of every cell type in every
spot [20].

1.4.2 Applications of Bayesian decision-making to single-cell
transcriptomics

Building flexible generative models is an important research topic. However, goodness of fit
is a poorly informative metric with a particular problem at hand. An excellent instance of
this is when the generative model is employed for Bayesian decision-making (especially for
making scientific discoveries).

Detecting Zero-Inflated Genes in Single-Cell Transcriptomics Data In single-cell
RNA sequencing data, biological processes or technical factors may induce an overabundance
of zero measurements. Existing probabilistic approaches to interpreting these data either
model all genes as zero-inflated, or none. But the overabundance of zeros might be gene-
specific. Hence, we propose the AutoZI model, which, for each gene, places a spike-and-slab
prior on a mixture assignment between a negative binomial (NB) component and a zero-
inflated negative binomial (ZINB) component. We approximate the posterior distribution
under this model using variational inference, and employ Bayesian decision theory to decide
whether each gene is zero-inflated [21].

An Empirical Bayes Method for Differential Expression Analysis of Single Cells
with Deep Generative Models Detecting Detecting differentially expressed genes is
important for characterizing subpopulations of cells. In scRNA-seq data, however, nuisance
variation due to technical factors like sequencing depth and RNA capture efficiency obscures
the underlying biological signal. Deep generative models have been extensively applied to
scRNA-seq data, with a special focus on embedding cells into a low-dimensional latent space
and correcting for batch effects. However, little attention has been given to the problem of
utilizing the uncertainty from the deep generative model for differential expression. Further-
more the existing approaches do not allow to control for the effect size or the false discovery
rate. Here, we present lvm-DE, a generic Bayesian approach for performing differential
expression from using a fitted deep generative model, while controlling the false discovery
rate. We apply the lvm-DE framework to scVI and scSphere, two deep generative models.
The resulting approaches outperform the state-of-the-art methods at estimating the log-fold-
change in gene expression levels, as well as detecting differentially expressed genes between
subpopulations of cells [22] (a preliminary version appeared as a workshop paper [23]).
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1.4.3 Open-source software development

Most of the work presented in this thesis builds off the scvi codebase, built in the summer
of the year 2018. This codebase was initially meant for external use by the single-cell
community, as well as internal use for creating new models in the scVI team. More recently,
we envisioned to make this prototyping tool more widely available.

A library for deep probabilistic analysis of single-cell omics data∗ Probabilistic
models have demonstrated state-of-the-art performance for many single-cell omics data anal-
ysis tasks, including dimensionality reduction, clustering, differential expression, annotation,
and removal of unwanted variation. As many of these models use scalable stochastic inference
techniques, they will also be critically important in light of growing single-cell dataset sizes.
However, the adoption of probabilistic models in data analysis pipelines is hindered by a frac-
tured software ecosystem resulting in an array of packages with distinct, and often complex
interfaces. To address this issue, we developed scvi-tools (https://scvi-tools.org),
a Python package that includes user-friendly implementations of ten leading probabilistic
methods that can also interface with Scanpy, Seurat, and Bioconductor workflows [24].

1.4.4 Counterfactual inference from observational data

Causal inference is relevant to many scientific applications, including for understanding gene
regulation. However, it is also relevant for internet marketing, when one would like to
evaluate the performance of an algorithm deployed online based on observational data. I
have worked on two of those problems, while interning at Ant Financial as well as Amazon.
I had hoped to apply a subset of these tools to single-cell biology (on pooled CRISPR
screenings with scRNA-seq readouts) during my PhD, but this is left as future work.

Cost-Effective Incentive Allocation via Structured Counterfactual Inference∗ We
address a practical problem ubiquitous in modern industry, in which a mediator tries to learn
a policy for allocating strategic financial incentives for customers in a marketing campaign
and observes only bandit feedback. In contrast to traditional policy optimization frame-
works, we rely on a specific assumption for the reward structure and we incorporate budget
constraints. We develop a new two-step method for solving this constrained counterfac-
tual policy optimization problem. First, we cast the reward estimation problem as a domain
adaptation problem with supplementary structure. Subsequently, the estimators are used for
optimizing the policy with constraints. We establish theoretical error bounds for our estima-
tion procedure and we empirically show that the approach leads to significant improvement
on both synthetic and real datasets [25].

Learning from eXtreme Bandit Feedback∗ We study the problem of batch learning
from bandit feedback in the setting of extremely large action spaces. Learning from extreme
bandit feedback is ubiquitous in recommendation systems, in which billions of decisions are

https://scvi-tools.org
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made over millions of choices in a single day, yielding massive observational data. In these
large-scale real-world applications, supervised learning approaches such as eXtreme Multi-
label Classification (XMC) remain the standard approach despite the bias inherent in the
data collection process. Conversely, previously developed importance sampling approaches
are unbiased but suffer from impractical variance when dealing with a large number of
actions. In this paper, we introduce a selective importance sampling estimator (sIS) with
more favorable bias-variance tradeoff. We employ this estimator in a novel algorithmic
procedure—named Policy Optimization for eXtreme Models (POXM)—for learning from
bandit feedback on XMC tasks [26].
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Chapter 2

Background on Deep Generative Models

The widespread use of information-rich technologies in the life sciences has spurred a lively
crosstalk with research in machine learning, with the goal of improving how we explore and
derive conclusions from biological data.

The most prevalent use of machine learning in this setting is supervised learning, where
one makes use of any available observations in order to make inferences about measurable,
yet unobserved quantities of interest. Consider as an example the case of a clinical study
where one is interested to predict the outcome (discrete or quantitative) of treatments based
on input covariates of environmental, genetic or other molecular origin [27, 28]. In super-
vised learning, the input covariates (normally denoted by x) are usually available for all
participants in the study, while the treatment outcome (i.e., the target, denoted by y) is
only available for a subset of them. A classical approach to predict y in those missing cases
is to learn a conditional distribution p (y ∣ x) – namely what is the probability for a certain
outcome y given any environmental or molecular information represented by x. Such an ap-
proach is referred to as discriminative learning and includes methods such as random forests,
support vector machines, linear models, and neural networks; We refer the reader to [29, 30,
31, 32] for reviews on the use of neural networks for supervised learning in biological settings.

While discriminative learning is a powerful approach, our focus in this thesis is on gen-
erative modeling – an alternative approach which models explicitly the joint distribution
p (x, y). Naturally, generative modeling is attempting to solve a harder statistical problem,
as it seeks to model the uncertainty in the input covariates x as well. Even though discrimi-
native approaches generally have superior performance in the prediction problem, generative
models can sometimes be preferred as they can account for domain knowledge about how
the data in x were generated [33]. For instance, if x represents an amino acid sequence, then
the probability that x occurs in nature can be better estimated by a generative model that
accounts for interactions between residues [34].

Explicitly modeling x means that generative models can also be used to generate new
instances of x in-silico. This capacity opens the way for additional applications that can aid
with and even go beyond the prediction problem. Specifically, data generation can be used
for identifying values of x that were not previously observed but are likely to be associated
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with a desirable value of y. This was used, for instance, to propose new chemical compounds
(represented by x) that are likely to have a certain melting temperature (represented by
y) [35]. Addition of new, artificial data points to an available set of observations has also
been useful for increasing the performance of classifiers, e.g., in the context of predicting
drug effects with fluorescence microscopy [36].

The use of generative models also extends beyond supervised learning, i.e., for cases
where one does not have a target output to predict. In this unsupervised regime, we are
interested in finding patterns in x, with common tasks including identifying measurements
errors (outlier detection [37]), inferring the values of missing entries in x (imputation [38]),
or otherwise identifying latent sources of variation that give rise to the data (dimensionality
reduction or embedding [10]). Notably, it is important to note that the embeddings are
commonly used for partitioning the data into groups (clustering). Generative modeling has
emerged as a powerful paradigm to address these tasks due to its ability to directly model x.
For instance, in single cell-RNA sequencing (where x corresponds to gene expression values in
each cell) a common practice is to model x by conditioning on a small set of latent variables
z that control the generative process. Estimating p(x ∣ z) provides a way to impute data
entries that are missing due to low sensitivity. Conversely, estimating p(z ∣ x) provides a
way for embedding the cells in an informative low dimensional space (represented by z) that
facilitates the clustering and identification of key latent sources of variation. In a different
context, generative models were used to estimate the marginal likelihood p(x) of protein
sequences (represented by x), providing a way to identify sequences that are not likely to
emerge in evolution, and thus of decreased functionality [34].

Once the form of the generative model p(x, z) is posed, we aim to perform inference: fit
the model to data. For example, a widely adopted paradigm is the one of Bayesian inference,
which consists in estimating the posterior distribution p(z ∣ x). This posterior can then be
utilized for many downstream tasks. Bayesian inference is often intractable due to the need
to estimate the normalization constant of the distribution p(x). A recent review describes
the main approximate inference methods (Markov chain Monte Carlo [39] and variational
inference [40]) as well as applications for high-throughput data in biology [41].

Our focus for this background section is the recent developments of deep generative mod-
els (DGM) and their applications in molecular biology. A DGM is a probabilistic framework
that contains both a generative model and an inference procedure and in which either the
model or the inference makes use of neural networks. The term DGM usually broadly refers
to generative adversarial networks (GAN) [42] or variational autoencoders (VAE) [8, 43].
Only the latter is the topic of this thesis. The VAE performs Bayesian inference using a
variational approximation to the posterior p(z ∣ x) parameterized with neural networks. A
VAE, like any other generative model, can be employed for making statistical inferences and
reasoning about biologically meaningful hypotheses.

Notably, the use of deep learning brings important pragmatic advantages: first neural
networks can be used as part of black-box inference frameworks, which makes it especially
easy for a practitioner to refine their modeling hypotheses without designing a whole new
algorithm. For example, [44] reports goodness of fit for 12 variants of a novel models for
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Figure 2.1: Overview of the modeling process with DGMs. Research in molecular biology
stems from the formulation of hypotheses. Such question can be studied through the lens
of a wide variety of data forms such as biological sequences, molecules, gene expression or
imaging data. The broad goal of a DGM is to estimate the distribution that generated
the observed data. Constructing a DGM involves iterating through the steps of Box’s loop.
First, a model with domain-specific components or assumptions is designed. Second, an
inference procedure learns the optimal model parameters. Third, the model is criticized,
which consists of benchmarking the model on datasets, or evaluating the goodness of fit of
the model. Finally, the model is updated based on the criticism, starting a new iteration of
the loop.

single-cell RNA sequencing, where each variant has a different form of p(x, y) but the in-
ference is mainly unchanged. Second, due to enormous progress on the neural networks
engineering side (Theano [45], TensorFlow [46], PyTorch [47], Stan [48], Pyro [49], Ed-
ward [50] and TensorFlow Probability [51]), DGMs can scale up to large data sets, which
have become common in the life sciences, such as transcriptome profiles of millions of single
cells [52], thousands of fluorescence microscopy images [36], or large collections of chemical
compounds [35, 53].
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2.1 Designing generative models
The steps to construct a generative model are best described by Box’s loop [54] (Figure 2.1).
This procedure, originally proposed by George Box and colleagues [55, 56], traverses through
the main steps of most applications: choosing a model (e.g., selecting the model type, the
input covariates, and the distributions that describe these covariates), inferring parameter
values (i.e., training), and criticizing the trained model (e.g., evaluating its accuracy on
various tasks). After criticism, we return to the first step and iterate through the loop until
we are ready to “deploy” our model.

An important consideration during model design is its interpretability – in the sense that
its parameters will either be immediately useful (e.g., quantifying interactions between pairs
of amino-acids [34]) or can be used in downstream analysis to extract knowledge (e.g., cell
to cell similarity [10]). It is often the case that there is a clear trade-off between model
complexity and interpretability. Generative models that consist solely of linear operations
(such as linear discriminant analysis or factor analysis) are easily interpretable since their
parameters normally pertain directly to the input covariates (e.g., one coefficient per gene).
This desirable property, however, comes at the cost of a limited ability to fit the data closely.
Alternatively, models that use non-linear operations in neural networks (such as VAEs) are
normally treated as black-boxes whose parameters are not interpretable. These models,
however, usually provide a better fit to the observed data and an increased capacity to
generalize upon it (e.g., [34]). The choice of the right trade-off therefore depends on the
prospective uses of the model.

Next, we perform inference over the parameters (i.e., fit the model to data). Since exact
inference is usually impossible for most types of generative models, one usually has to rely
on approximate inference schemes. In this thesis, we focus on specific flavors of approximate
inference that relies on neural networks as a way to achieve this. Our choice is motivated
by a slew of theoretical and engineering advances that make the task of training generative
models significantly more approachable than in the past.

Once the model is fit to the data, an important next step is model criticism. This is
achieved by defining a set of attributes that we would like our model to have and a set of
metrics to evaluate these attributes. A widely used attribute is the capacity to generalize,
namely to properly describe data points that were not available during training. Relevant
metrics include the likelihood of held out data points [57] or differences in summary statistics
between observed and generated data (Posterior Predictive Checks, [PPC] [58]). In the latter
procedure, we sample random duplicates x̃ of a sample x∗ (often a group of samples) from
the approximate posterior predictive distribution:

p(x̃ ∣ x∗) ≈ Eq(z∣x∗)p(x̃ ∣ z), (2.1)

and compare this to the original data distribution. The comparison can be made by selecting
key statistics for the data under scrutiny (e.g., comparing coefficient of variation of each gene
in single-cell transcriptomics [59]) and non-parametric tests. These metrics are especially
suitable to evaluate Bayesian models but may not be defined for other DGMs.
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2.2 Encoding knowledge with likelihood-based
generative models

All the generative models in this thesis are explicitly defined via a likelihood function of
the observed data. Our goal is to describe a distribution pθ(x) from which each observation
x has been generated, where θ denotes the parameters of our model. A widely-used way
of describing pθ(x) with a Bayesian approach is not to model x directly, but instead use
an unobserved (latent) random variables z as an intermediary. That is, to generate a new
observations x we first draw an intermediary value z from a prior distribution pθ(z) and
then sample from a likelihood distribution pθ(x ∣ z) [60]. There are two primary reasons
for this modeling strategy. First, conditioning on z allows us to decouple the contribution
of individual entries in x (e.g., positions along a sequence) to the overall likelihood of x.
Since each entry in x it assumed to be independent of all other entries when we condition on
z, the inference of the parameters θ becomes substantially simpler. This simplification, for
instance, aids DeepSequence to model high-order dependencies between amino acids, going
beyond more traditional models [61] that account only for pairwise interactions. Second,
in many applications z is of much lower dimension than x and can thus provide a concise
summary of the data. For instance, in scVI (the core work of this thesis), z represents the cell
state in a low dimensional space (typically set to less than 20 dimensions) that summarizes
the high dimensional observations of gene expression (usually thousands of genes). Note that
using this property requires a mapping from each observation x back to its representation z
in latent space. We discuss one way to achieve this in the next section.

With the use of intermediate variable z, the marginal probability (also termed the evi-
dence) of a given data set can be formally written by the a combination of the prior pθ(z)
and likelihood pθ(x ∣ z):

log pθ(x) = log(∫ [
d

∏
j=1

pθ(x
j ∣ z)]pθ(z)dz) , (2.2)

where d is the dimension of each observation (e.g., length of sequence in DeepSequence) and
xj denotes the j−th entry of observation x. Notably, if the prior for z is an isotropic Gaussian
distribution:

z ∼ N (0, I) (2.3)

and the likelihood for x is a Gaussian with a linear link:

x ∣ x ∼ N (uTj z + vj, σ
2
j ), (2.4)

then this formulation is a Bayesian version of principal components analysis (as we are
specifying a prior for each entry of the principle components), otherwise known as factor
analysis [62].
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While many practical applications indeed fix the prior to be an isotropic Gaussian, the
conditional distributions pθ(xj ∣ z) usually come in other forms, which better reflect the
nature of the data. For instance, scVI uses negative binomial - a distribution that adequately
captures technical [63] and biological [64] noise in the observations of transcript counts.
It also includes a possible addition of a zero inflation component to further account for
sparseness [21]. Finally, scVI also supports the modeling of the conditional distribution pθ(x ∣

z, s) where s denotes the batch information (treated as an observed random variable). This
conditional VAE [65] setting makes it particularly useful for removing of batch effects [15].

2.3 Fitting a generative model using variational
inference with neural networks

Once we specified the form of the distributions (prior and likelihood) in our generative
model, the inference task is two-fold. First, we would like to find a set of parameters θ that
maximizes the evidence for the data (Equation (2.2)). In parallel, for a complete model
we would also like to infer the posterior distribution pθ(z ∣ x), which provides a way to
represent our observations in the low dimensional latent space. While the parameters θ can
be computed precisely for a restricted choice of distributions (e.g., in factor analysis [62] or
other cases where the prior is conjugate to the likelihood), exact inference is intractable for
most real world applications. Indeed, evaluating the evidence requires integration over the
latent variable z, which may take exponential time to compute or for which a closed form is
not available [40]. The same caveat also applies to evaluating the posterior distribution. To
see this, recall that Bayes rule entails that:

pθ(z ∣ x) =
pθ(x ∣ z)pθ(z)

pθ(x)
. (2.5)

The numerator in this equation can be readily computed in most applications since the prior
and likelihood come with a pre-specified closed form density. However, the denominator is
the intractable evidence term.

The main idea behind variational inference is the realization that the problems of max-
imizing pθ(x) and approximating pθ(z ∣ x) are very much related. As one way to see this,
assume that our goal is to find a distribution qφ(zi) (also known as variational posterior)
that, for a given θ best approximates the posterior. In other words, for every observation
xi, its variational posterior qφ(zi) should be as similar as possible to the actual posterior
pθ(z ∣ xi). Because the evidence decomposes across datapoints, we present here the deriva-
tion for the evidence of a unique observation. Using Bayes rule, we have for each value
of z:

log pθ(x) = log
pθ(x ∣ z)pθ(z)

pθ(z ∣ x)
. (2.6)
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We can therefore take expectation of both sides of Equation (2.6) with respect to qφ(z) to
decompose the evidence as:

log pθ(x) = Eqφ(z) log
pθ(x ∣ z)pθ(z)

pθ(z ∣ x)
(2.7)

= Eqφ(z) log(
pθ(x ∣ z)pθ(z)

qφ(z)
.
qφ(z)

pθ(z ∣ x)
) (2.8)

= Eqφ(z) log
pθ(x ∣ z)pθ(z)

qφ(z)
+Eqφ(z) log

qφ(z)

pθ(z ∣ x)
(2.9)

= Eqφ(z) log
pθ(x ∣ z)pθ(z)

qφ(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Evidence lower bound (ELBO)

+∆KL(qφ(z) ∣∣ pθ(z ∣ x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Variational gap

, (2.10)

where ∆KL denotes the Kullback-Leibler (KL) divergence, a notion of similarity between
probability distribution. In Equation (2.10), the variational gap quantifies how well qφ(z)
approximates the posterior and is always positive because that is the KL divergence between
two distributions. Consequently, the ELBO is indeed a valid lower bound on the evidence.

Variational inference avoids the intractability of the evidence by maximizing the ELBO,
which helps address both of our inference problems. The ELBO includes two sets of pa-
rameters. The first set θ controls the generative model and the second set φ controls the
variational approximation to the posterior. Maximizing the ELBO with respect to φ for a
fixed θ yields an approximation to the posterior pθ(z ∣ x) and the ELBO approaches the
marginal probability pθ(x). In practice, however, we do not have θ and the optimization
procedure includes assignments of values to both the generative model parameters θ and the
variational posterior parameters φ so as to maximize the respective ELBO.

While the ELBO optimization problem is well-studied [66], recent advances in the field
provide an effective way to address it using stochastic optimization [67] as well as neural
networks, leading to substantial increase in scalability and (for large enough data sets)
accuracy. A notable way to achieve this is with variational autoencoders [8, 43].

2.4 Variational auto-encoders
VAEs provide a way for explicitly representing and then jointly inferring both the varia-
tional posterior and the generative model. A standard VAE model consists of two com-
ponents (Figure 2.2): an encoder neural network that maps any given point in the obser-
vation space (xi) to its corresponding location in latent space (zi). The mapping is done
by setting the parameters of the variational posterior qφ(zi) for any given observation xi
through a function fφ represented by the encoder network. In this notation, φ refers to the
weights of the encoder network. For example, with a Gaussian variational approximation
qφ(zi) = Normal (µi,diag(vi)), we have (µi, vi) = fφ(xi). Because we can compute µi and vi
with a neural network, we do not need to store these values in memory (by opposition to
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Figure 2.2: Computational Schematics of the VAE

classical variational inference). Notably, because we can obtain the values of the variational
parameters at any observation x (using the encoder network), we refer to the variational
distribution as qφ(z ∣ x). The second component is a decoder neural network that maps any
given point in the latent space (z) to the space of observations (x). The mapping is done by
setting the parameters of the generative model pθ(x ∣ z).

A rich literature surrounds the VAE, both in applications and methods development.
For instance, the VAE has been applied to image generation [68], object segmentation with
partial observation [69] and astronomy [70]. Others have focused on improving parts of
the framework such as a different (possibly tighter) lower bound [71, 72], better posterior
approximation [73], more flexible choices of distributions [74] and richer family of graphical
models [75].
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Part I

Bayesian Models for Single-cell
Transcriptomics
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Chapter 3

Large-scale Analysis of Single-cell
Transcriptomics

3.1 Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful tool that is beginning to make im-
portant contributions to diverse research areas such as development [76], autoimmunity [77],
and cancer [78]. Interpreting scRNA-seq remains challenging, however, as the data is con-
founded by nuisance factors such as variation in capture efficiency and sequencing depth [79],
amplification bias, batch effects [80] and transcriptional noise [1]. To avoid mistaking nui-
sance variation for relevant biological diversity, one must therefore account for measurement
bias and uncertainty, especially due to the highly abundant false negatives or “dropout”
events [81].

The challenge of modeling bias and uncertainty in single-cell data has been explored in
several recent studies. A common theme in these studies is treating each data point (cell ×
gene) as a random variable and fitting a parametric statistical model to this variable. Most
existing models are a mixture of an “expression” component, which is usually a negative
binomial (e.g., ZINB-WaVE [82]) or log normal (e.g., BISCUIT [83], and a zero (or low
expression) component. The parameters of the model are determined by a combination of
cell- and gene-level coefficients, and in some cases additional covariates provided as metadata
(e.g., biological condition, batch, and cell quality [82]). All of these methods can therefore
be interpreted as finding a low-dimensional representation of the data which can be used
to approximate the parameters of the cell × gene random variables. Once these models
have been fit to the data, they can then in principle be used for various downstream tasks
such as normalization (e.g., scaling, correcting batch effects), imputation of missing data,
visualization and clustering.

A complementary line of studies focuses on only one of these tasks, often without explicit
probabilistic modeling. For instance, SIMLR [84] fits a cell-cell similarity matrix, under
the assumption that this matrix has a block structure with a fixed number of clusters.
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The resulting model can be used for clustering and for visualization [85]. MAGIC [86]
performs imputation of unobserved (dropout) counts by propagation in a cell-cell similarity
graph. Census [87] and SCNorm [88] look for proper scaling factors by explicitly modeling
the dependence of gene expression on sequencing depth or spike-in RNA. For differential
expression analysis, the most common methods consist of both methods developed for bulk
count data (e.g., DESeq2 [63] and edgeR [89]) as well as methods developed for scRNA-seq
data, explicitly accounting for the high dropout rates (e.g., MAST [90]). In [91], neural
networks are used as function approximators reducing the dimension of single-cell RNA
sequencing data; however, this model is a supervised learning method and inherently relies
on some labeling of the cells.

While these methods yield insights into biological variation in single-cell data, several
significant limitations remain. First, all of the existing distributional modeling methods
assume that a low-dimensional manifold underlies the data, and that the mapping from this
manifold to the parameters of the model can be captured by a generalized linear model.
While the notion of a restricted dimensionality is plausible (reflecting, for example, common
regulatory mechanisms among genes or common states among cells), it is difficult to justify
the assumption of linearity. Second, different existing methods use their fitted models for
different subsets of tasks (e.g., imputation and clustering, but not differential expression [83]).
Ideally, one would have a single distributional model that would be used for a range of
downstream tasks, thus help ensuring consistency and interpretability of the results. Finally,
computational scalability is increasingly important. While most existing methods can be
applied to no more than tens of thousands of cells, the next generation of tools must scale to
the size of recent data sets (commercial [92], or envisioned by consortia such as the Human
Cell Atlas [93]) that consist of hundreds of thousands of cells or more.

To address these limitations, we developed a fully probabilistic approach to normalization
and downstream analysis of scRNA-seq data, which we refer to as Single-cell Variational
Inference (scVI). scVI is based on a hierarchical Bayesian model [94]. For each cell, a low-
dimensional random vector represents its underlying state. Conditional on this state, each
observed gene expression level follows a zero-inflated negative binomial (ZINB) distribution,
which captures both overdispersion and dropout events [64, 63, 82]. The parameters of each
ZINB distribution are a nonlinear function of the cell state. We implement this function
with deep neural network.

We infer cell states under this model using another deep neural network, known as an
encoder network [8]. It maps the scRNA-seq data to an approximation of the posterior
distribution. The weights of both neural networks are learned from training data through
variation inference [66], which is a computationally efficient alternative to Markov chain
Monte Carlo.

In the remainder of this chapter, we demonstrate the extent to which scVI addresses the
current methodological limitations. First, we demonstrate the scalability of scVI to data sets
of up to a million cells. Second, we show that, by using non-linear transformations, scVI bet-
ter fits unseen data (imputation and held-out log-likelihood). Finally, we demonstrate that
the model of scVI can be used for a number of tasks, including batch removal and normal-
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ization, clustering, dimensionality reduction and visualization, and differential expression.
For each of these tasks, we show that scVI compares favorably to the current state-of-the-
art methods. scVI is publicly available at https://github.com/YosefLab/scvi-tools.
An implementation for all of the analysis performed in this chapter is available at https:
//zenodo.org/badge/latestdoi/125294792.

3.2 Overview of single-cell Variational Inference (scVI)

3.2.1 Model definition

The primary output of an scRNA-seq experiment is an N × G-matrix x that records the
number of transcripts measured for each of G genes in each of N cells. We may also have a
batch annotation sn observed for each cell n as well.

We model the expression level xng measured for each cell n and gene g as a sample drawn
from a conditional distribution that has a zero-inflated negative binomial (ZINB) form [64,
63, 82]. The distribution is conditioned on the observed batch annotation, as well as two
additional, unobserved random variables. The latent random variable `n represents nuisance
variation due to variation in capture efficiency and sequencing depth. It is drawn from a
log-normal distribution and serves as a cell-specific scaling factor.

The latent random variable zn represents the remaining variability, which should better
reflect biological differences between cells. It is drawn from a standard multivariate normal
of low dimensionality d, and provides a latent-space representation that can be used for
visualization and clustering. The matrix ρ is an intermediate value that relates the obser-
vations xng to the latent variables. It provides a batch-corrected, normalized estimate of
the percentage of transcripts in each cell n that originate from each gene g. We use ρ for
differential expression analysis and its scaled version (multiplying by the estimated library
size) for imputation.

Altogether, each expression value xng is drawn independently through the following pro-
cess:

zn ∼ Normal(0, I) (3.1)
`n ∼ LogNormal(`µ, `2

σ) (3.2)
ρn = fw(zn, sn) (3.3)
wng ∼ Gamma(ρgn, θ) (3.4)
yng ∼ Poisson(`nwng) (3.5)
hng ∼ Bernoulli(f gh(zn, sn)) (3.6)

xng =

⎧⎪⎪
⎨
⎪⎪⎩

yng if hng = 0,

0 otherwise.
(3.7)

https://github.com/YosefLab/scvi-tools
https://zenodo.org/badge/latestdoi/125294792
https://zenodo.org/badge/latestdoi/125294792
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A standard multivariate normal prior for z is commonly used in variational autoencoders
since it can be reparametrized in a differentiable way into any arbitrary multivariate Gaussian
random variable [8], which turns out to be extremely convenient in the inference process.

B denotes the number of batches and `µ, `σ ∈ RB
+ parameterize the prior for the scaling

factor (on a log scale), and are set to be the empirical mean and variance of the log-library
size per each batch. Let us note that the random variable `n is not the log-library size
(scaling the sampled observation) itself but a scaling factor that is expected to correlate
strongly with log-library size (hence the choice of the parameters).

The parameter θ ∈ RG
+ denotes a gene-specific inverse dispersion, are estimated as global

parameters estimated via variational Bayesian inference. fw and fh are neural networks
that map the latent space and batch annotation back to the full dimension of all genes:
Rd × {0,1}B → RG (Figure 1b, NN5-6). We use superscript annotation (e.g., f gw(zn, sn)) to
refer to a single entry that corresponds to a specific gene g. We apply a softmax activation at
the last layer of fw. Therefore, f gw(zn, sn) to take values in the probability simplex (namely,
for each cell n the sum of f gw(zn, sn) values over all genes g is one), and may be interpretated
as expected frequencies. Neural network fh encodes whether a particular entry has been
dropped out due to technical effects [95, 82]. Importantly, neural networks allows us to go
beyond the generalized linear model framework and provide a more flexible model of gene
expression. Figure 3.1a specifies the complete graphical model and its implementation using
neural-network conditionals.

All neural networks use dropout regularization and batch normalization. Each network
has 1, 2, or 3 fully connected-layers, with 128 or 256 nodes each. The activation functions
between two hidden layers are all ReLU. We use a standard link function to parametrize the
distribution parameters (exponential, logarithmic or softmax). Weights for some layers are
shared between fw and fh.

3.2.2 Fast inference via stochastic optimization

The posterior distribution combines the prior knowledge with information acquired from
the data X. We cannot directly apply Bayes rule to determine the posterior because the
denominator (the marginal distribution) p(xn ∣ sn) is intractable. We therefore proceed to
deriving a variational inference recipe.

Partial analytical integration of latent variables

Making inference over the whole graphical model is not needed. We can integrate out
the latent variables wng, hng and yng by ensuring the conditional p(xng ∣ zn, `n, sn) has a
closed-form density and is zero-inflated negative binomial. The result follows from analytical
integration:

Lemma 1. (Marginalizing the latent variables of scVI) The conditional distribution p(xng ∣

zn, `n, sn) follows a zero-inflated negative binomial distribution of mean `nf gw(zn, sn), disper-
sion θg and mixture weight f gh(zn, sn).
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Figure 3.1: Overview of scVI. Given a gene-expression matrix with batch annotations as
input, scVI learns a non-linear embedding of the cells that can be used for multiple analysis
tasks. (a) The underlying graphical model. Shaded vertices represent observed random
variables. Empty vertices represent latent random variables. Shaded diamonds represent
constants, set a priori. Empty diamonds represent global variables shared across all genes
and cells. Edges signify conditional dependency. Rectangles (“plates”) represent independent
replication. (b) The computational trees (neural networks) used to compute the embedding
as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on
the BRAIN-LARGE data with a limited set of 720 genes, and with increasing input sizes
(x-axis; cells in each input set are sampled randomly from the complete dataset). scVI is
compared against existing methods for dimensionality reduction in the scRNA-seq literature.
As a control, we also add basic matrix factorization with factor analysis (FA). For the one-
million-cell dataset only, we report the result with and without early stopping (ES).
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Proof. For this proof, we need to first apply a standard result on Gamma poisson compounds,
and then carefully identify the zero probability.

Step 1: integrating the Gamma latent variable Let r to be the gene-specific shape
parameter of a Gamma variable w and let p

1−p be its scale parameter. For any scalar λ ∈

R+, the random variable defined by y ∣ w ∼ Poisson(λw) has a negative binomial marginal
distribution with mean λ rp

1−p and shape r:

p(y) = ∫ p(y ∣ w)p(w)dw (3.8)

= ∫
wr−1e−w( 1

p
−1)

(1 − p)r

prΓ(r)

e−λwλywy

Γ(y + 1)
dw (3.9)

=
Γ(y + r)

Γ(y + 1)Γ(r)
(

1 − p

1 − p + λp
)
r

(
pλ

1 − p + λp
)

y

(3.10)

= NegativeBinomial(y;λ
rp

1 − p
, r) . (3.11)

Step 2: identifying the zero-probability Multiplication by zero to yng can be formally
encoded as a mixture between a point-mass at zero and the original distribution of yng.
Then, our conditional p(xng ∣ zn, `n, sn) is a zero-inflated negative binomial:

p(xj = 0 ∣ z, l, s) = fh(z)j + (1 − fh(z)j)(
θj

θj + lfw(z)j
)

θj

(3.12)

and

p(xj = y ∣ z, l, s) = (1 − fh(z)j)
Γ(y + θj)

Γ(y + 1)Γ(θj)
(

θj
θj + lfw(z)j

)

θj

(
lfw(z)j

θj + lfw(z)j
)

y

. (3.13)

Here fh(z) encodes the zero probability of h and fw(z) the mean of w.

Amortized variational inference

Having simplified our model, we use variational inference [66] to approximate the posterior
p(zn, `n ∣ xn, sn). Our variational distribution q(zn, `n ∣ xn, sn) is mean-field:

q(zn, `n ∣ xn, sn) = q(zn ∣ xn, sn)q(`n ∣ xn, sn). (3.14)

The variational distribution q(zn ∣ xn, sn) is chosen to be Gaussian with a diagonal covari-
ance matrix, mean and covariance given by an encoder network applied to (xn, sn), as in [8]
(Figure 1b, NN1-4)). The variational distribution q(`n ∣ xn, sn) is chosen to be log-normal
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with the scalar mean and variance also given by an encoder network applied to (xn, sn). The
variational lower bound is:

log p(xn ∣ sn) ≥Eq(zn,ln∣xn,sn) log p(xn ∣ zn, ln, sn)

−DKL(q(zn ∣ xn, sn) ∣∣ p(zn))

−DKL(q(ln ∣ xn, sn) ∣∣ p(ln)).

(3.15)

In this objective function, the dispersion parameters θg for each gene are treated as
global variables to optimize in a Variational Bayesian inference fashion. To optimize the
lower bound, we use the analytic expression for p(xn ∣ zn, ln, sn) and use analytic expressions
for the Kullback-Leibler divergences. We use the reparametrization trick to compute low-
variance Monte-Carlo estimates of the expectations’ gradients. Analytic closed-form for the
Kullback-Leibler divergence and the reparametrization trick are only possible on certain
distributions which multivariate Gaussians are a part of [8]. Now, our objective function is
continuous and end-to-end differentiable, which allows us to use automatic differentiation
operators. As indicated in [96], we use deterministic warmup and batch normalization during
learning to learn an expressive model.

Since our model assumes cells are identically independently distributed, we can also
benefit from stochastic optimization by sampling the training set. We then have an online
optimization procedure that can handle massive datasets. At each iteration, we focus only
on a small subset of the data randomly sampled (M = 128 data points) and do not need
to go through the entire dataset. Therefore, there is no need to store the entire dataset in
memory. Because the number of genes is in practice limited to a few tens of thousands, these
mini-batches of cells fit easily into a GPU.

Since the encoder network q(z ∣ x, s) might still produce output correlated with the bath
s, we use a Maximum Mean Discrepancy (MMD) based penalty as in [65] to correct the
variational distribution. For this chapter, however, we did not explicitly enforce the MMD
penalty and simply retained the conditional independence property, which has shown to be
sufficiently efficient. This may be useful on other datasets.

3.2.3 Choice of hyperparameters

Throughout the chapter, we use Adam (a first order stochastic optimizer) with ε = 0.01. A
complete list of datasets and their properties, the methods we applied, and a complete list of
hyperparameters is provided in Table 3.1. The hyperparameters were chosen using a small
grid search that maximized held-out log likelihood—a common practice for training deep
generative models. One of the strengths of scVI is that we have only three dataset-specific
hyperparameters to set (learning rate, number of layers, and layer width). We optimize
the objective function until convergence –usually between 120 and 250 epochs, where each
epoch is a complete pass through the dataset (let us note that bigger datasets require fewer
epochs). For the larger subset of the BRAIN-LARGE dataset, we also ran with the early
stopping criterion: the algorithm stops after 12 consecutive epochs with no improvement on
the loss.
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dataset properties scVI hyperparameters scalability to other algorithms

cells genes
learning
rate layers neurons FA ZIFA

ZINB
WaVE MAGIC SIMLR

CORTEX 3,005 558 0.0004 1 128 _ _ _ _ _

PBMC 12,039 3,346 0.0004 1 128 _ x x _ _

HEMATO 4,016 7,397 0.0004 1 128 _ x x _ NC

HEMATO∗ 4,016 700 0.0004 1 128 _ x x _ NC

BRAIN
LARGE 10,000 720 0.001 1 128 _ _ _ _ NA

BRAIN
LARGE 15,000 720 0.001 2 128 _ _ _ NC NA

BRAIN
LARGE 50,000 720 0.001 3 256 _ x x NC NA

BRAIN
LARGE 1M 720 0.001 3 256 _ x x x NA

BRAIN
LARGE 1M 10,000 0.001 3 256 _ x x x NA

RETINA 27,499 13,166 0.0005 1 128 _ x x x _

CBMC 8,617 600 0.0005 1 128 _ _ _ NC _

BRAIN
SMALL 9,128 3,000 0.001 1 128 NC NC NC NC NC

Table 3.1: Presentation of the different datasets, their gene filtering and applicability of
algorithms. “_” indicates combinations of algorithms and datasets that were included in
this study. “x” indicates that the algorithm took more than four hours to run (ZIFA) or
that the computer ran out of memory (others). “NA” indicates datasets where pre-annotated
subpopulations were not available, which makes them less useful for application with SIMLR
and benchmarks of clustering. “NC” indicates the remaining combinations of algorithms and
datasets that were not considered for this study. For instance, BRAIN-SMALL was only
used to study the correlation of scVI zero probabilities and quality parameters (Figure 6).
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3.2.4 Related variational autoencoder works

Independently of our work, several recent articles and preprints have also described the
use of neural networks, including variational autoencoders [8] (VAEs), to embed scRNA-seq
datasets. Like scVI, these methods use stochastic optimization and therefore also scale to
the size of recent data sets. scVI stands apart from this research in its focus on separating
technical effects from biological signals. To this end, we explicitly model library size and
batch effects as nuisance variables in a hierarchical Bayesian model. Empirical advantages of
such careful modeling are underlined in [83, 97] for library size and [82, 98] for batch effects.
scVI is also distinguished by the large variety of datasets it has been validated on, and the
number downstream applications it supports (see Table 3.2). In the following, we provide a
brief description of each method.

scvis [37] proposes a new variational lower bound inspired by the parametric version of
tSNE for single-cell visualization. Unlike scVI, scvis uses principal component analysis for
preprocessing the data, and relies on t-distributed conditional distributions. These assump-
tions may be fruitful for visualization purposes but may not help in recovering hidden gene
expression levels for either imputation or differential expression. One notable reason is that
the underlying statistical assumptions for applying principal component analysis are not ver-
ified in the scRNA-seq dataset and the output of this preprocessing may have artifacts [82].

VASC [99] adds zero-inflation to a VAE with Gaussian conditional distributions and
shows competitive performance on clustering. Preprocessing relies on normalizing the data
by library size in order to suit their loss function. However, it is known that size scaling
normalization can induce bias in the analysis [79] and that count distributions such as ZINB
outperform zero-inflated Gaussian conditional distribution for modeling and downstream
analysis [82, 95].

DCA [100] is a denoising auto-encoder [101] that proposes a ZINB loss function. The
output of this algorithm is a latent space as well as a point estimate for the conditional
distributions (this denoising method is essentially a non-linear version of ZINB-WaVE).
However, it is hard to extend this method for differential expression without the possibility
of posterior sampling. Notably, library size discrepancies are also corrected via size scaling
and potentially hurt downstream analysis [79].

scVAE [44] proposes to use VAEs with count conditional distributions for Bayesian mod-
eling and clustering analysis. Notably, their work uses (among others) the NB and the ZINB
as conditional distributions but do not propose an approach for normalization, which is
crucial for further analysis.

3.3 Results

3.3.1 Presentation of the datasets

We apply scVI to seven publicly available datasets for preprocessing information). We focus
on datasets with unique molecular identifiers (UMIs), which prevents overcounting due to
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Characteristics of the Model Features of the Software

Dropout
Count
distribution Library size

Batch
Effects

Generative
Model

Dimensionality
Reduction Imputation

Differential
Expression

Factor Analysis X X

ZIFA X X X

SIMLR X X

BISCUIT X X X*

ZINB-WaVE X X X X X

MAGIC X X

DESeq2 X X X X

MAST X X X X X

edgeR X X X X

ComBat X X

MNNs X X

scvis X X

DCA X X X X

VASC X X X

scVAE X X X X X

scVI X X X X X X X X

Table 3.2: Presentation of all the papers cited in this chapter. We describe both features of
the model and the corresponding open-source software. Dropout : any computing solution to
mitigate the dropout effect on data analysis. Count distribution: the underlying distribution
modeling the gene expression has support in the integer set. Library size: the model is
designed to correct for library size or other technical effects. Batch effects refers to a model
that can account for this technical variation. Generative Model refers to the possibility of
sampling from a posterior. The star (∗) for BISCUIT indicates that this algorithm cannot
perform dimensionality reduction but can still cluster cells.

amplification. Due to scalability issues, not all of the benchmark methods included in this
chapter are applicable to all datasets. A star after the dataset name indicates we used it as
an auxiliary dataset; these datasets were not used for general benchmarking, but rather to
support specific points presented in the chapter. The only case where we subsampled the
data multiple times was the BRAIN-LARGE dataset. However, we simply used one instance
of it to report all possible scores (further details in Table 3.1).

The first dataset (BRAIN-LARGE) consists of 1.3 million mouse brain cells, spanning
the cortex, hippocampus and subventricular zone, and profiled with 10x chromium [92]. We
use this dataset to demonstrate the scalability of scVI. We randomly shuffle the data to get
a 1M subset of cells and order genes by variance to retain first 10,000 and then 720 sampled
variable genes. This dataset is then sampled multiple times in cells for the runtime and
goodness-of-fit analysis. We report imputation scores on the 10k cells and 720 gene samples
only.
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The second dataset (CORTEX) consists of 3,005 mouse cortex cells profiled with the
Smart-seq2 protocol, with the addition of UMI [102]. To facilitate comparison with other
methods, we use a filtered set of 558 highly variable genes as in [83]. The CORTEX dataset
exhibits a clear high-level subpopulation structure, which has been inferred by the authors
of the original publication using computational tools and annotated by inspection of specific
genes or transcriptional programs. Similar levels of annotation are provided with the third
and fourth datasets.

The third dataset (PBMC) consists of 12,039 human peripheral blood mononuclear cells
from a healthy donor (4K PBMCs and 8K PBMCs) [103]. We derived quality control met-
rics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were extracted from
CellRanger throughout the molecule-specific information file. After filtering as in [98], we
extract 12,039 cells with 10,310 sampled genes and generate biologically meaningful clusters
with the software Seurat [3] (see Table 3.4). We then filter genes that we could not match
with the bulk data used for differential expression to be left with g = 3,346.

Cell Type # cells
Cluster ID
(original)

Cluster ID
(#4)

Cluster ID
(#3)

Cluster ID
(#2)

astrocytes ependymal 224 0 1 0 0
endothelial-mural 235 1 2 1 0
interneurons 290 2 3 2 1
microglia 98 3 2 1 0
oligodendrocytes 820 4 0 0 0
pyramidal CA1 939 5 3 2 1
pyramidal SS 399 6 3 2 1

Table 3.3: Cell types present in the CORTEX dataset and their labels in some slices of the
original hierarchical clustering.

The fourth dataset (RETINA) includes 27,499 mouse retinal bipolar neurons, profiled in
two batches using the Drop-Seq technology [104]. We filtered 13,166 most variable genes.
The original annotations of these datasets were used to benchmark scRNA-seq algorithms
in several subsequent studies (e.g., [84, 83]). We also extract their normalized data with
Combat and use it for benchmarking.

The fifth dataset (HEMATO) includes 4,016 cells from two batches that were profiled
using in-drop (7,397 genes captured). This data provides a snapshot of hematopoietic pro-
genitor cells differentiating into various lineages. We use this dataset as an example for
cases where gene expression varies in a continuous fashion (along pseudo-temporal axes)
rather than forming discrete subpopulations [105]. We removed the library basal-bm1, which
was of poor quality, based on authors recommendation. We use their population balance
analysis [106] result as a potential function for differentiation.
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Cell Types # cells

B cells 1625
CD14+ Monocytes 2237
CD4 T cells 5024
CD8 T cells 1452
Dendritic Cells 339
FCGR3A+ Monocytes 351
Megakaryocytes 88
NK cells 459
Other 464

Table 3.4: Cell types present in the PBMC dataset.

The sixth dataset (CBMC∗) includes 8,617 cord blood mononuclear cells profiled using
10x along with, for each cell, 13 well-characterized mononuclear antibodies [5]. We used this
dataset to analyze how the latent spaces inferred by dimensionality-reduction algorithms
summarize protein marker abundance. We kept the top 600 genes by variance.

The seventh dataset (BRAIN-SMALL∗) consists of 9,128 mouse brain cells profiled using
10x [92]. This dataset is used as a complement to PBMC for our study of zero abundance
and quality control metric correlation with our generative posterior parameters. We derived
quality control metrics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were
extracted from CellRanger throughout the molecule-specific information file. We kept the
top 3000 genes by variance. We used the clusters provided by cellRanger for the correlation
analysis of zero probabilities.

3.3.2 Scalability to large datasets

We start by comparing the scalability of scVI to that of state-of-the-art algorithms for
imputation and dimensionality reduction (Figure 3.1c). We evaluate scalability in terms of
runtime and memory requirements for increasing numbers of cells, sampled from the complete
BRAIN-LARGE dataset. To facilitate comparison to less scalable methods, we limited the
analysis to the 720 genes with largest standard deviation across all cells. All the algorithms
were tested on a machine with one eight-core Intel i7-6820HQ CPU addressing 32 GB RAM,
and one NVIDIA Tesla K80 (GK210GL) GPU addressing 24 GB RAM.

Available memory (RAM) limits scalability of many existing algorithms. Under the hard-
ware and input settings above, we find that BISCUIT runs out of memory when provided
with more than 15K cells. MAGIC, ZIFA, SIMLR and ZINB-WaVE can process up to 50K
cells before running out of memory. One explanation for this is the explicit storage in memory
of the full-data matrix or its derivative (e.g., the cell-cell distance matrix or a proxy whose
memory complexity is linear in the number of data points, as in SIMLR and MAGIC).



CHAPTER 3. SINGLE-CELL VARIATIONAL INFERENCE 29

Focusing on the memory-feasible dataset sizes, we also observe a range of runtimes.
For instance, ZIFA, ZINB-WaVE and BISCUIT have relatively high runtime requirements,
possibly because their optimization algorithms need to go through all of the training data
at each each step: the runtime of each iteration scales linearly in the number of samples and
linearly in the number of genes.

scVI relies instead on stochastic optimization, sampling a fixed number of cells at each
iteration. Its time and space complexity per iteration therefore depends only on the number
of genes, ensuring scalability both in terms of memory use and processing time. In our
experiments, the algorithm converged in less than 250 epochs. Within a reasonable range of
sample sizes (less than a hundred thousand cells), our algorithm achieves the best running
time and is comparable to DCA, which also uses a neural network and stochastic optimiza-
tion. As the dataset size reaches one million cells, fewer iterations are needed; heuristics
for stopping the learning process may save unnecessary processing time. Evidently, DCA,
which implements this strategy, is faster than scVI in the one-million-cell case. To explore
this further, for an extremely large dataset, we incorporated an early stopping criterion,
commonly used for efficient training of deep generative models. The resulting model, which
can be trained in less than an hour, fits the held-out data as well the standard scVI run with
no early stopping (Figure 3.A).

3.3.3 Goodness of fit and generalization to held-out data

Held-out log-likelihood

To evaluate the extent to which the different models fit the data, we use a goodness-of-fit
score on unseen data that is defined by the marginal log-likelihood of a held-out dataset.
We first partition our data X into “training” set Xtrain and “testing” set Xtest, and apply the
various methods to learn a ten-dimensional latent space and a mapping from this space to
the original dimension of the data. We then measure the marginal likelihood p(Xtest) of the
held-out data for the trained model.

More precisely, each model gives and underlying probability measure p that we will
specify. We define the log-likelihood on held-out data by integrating in the following way:

∫
Θ
p(Xtest ∣ Θ) ⋅ dp(Θ ∣Xtrain), (3.16)

where dp(Θ ∣ Xtrain) designates the posterior parameters of the model after having fitted
the training data and where p(Xtest ∣ Θ) is assessing the goodness-of-fit of the held-out data
under the chosen parameter Θ.

In the case of a fully generative model like BISCUIT, the posterior parameter dp(Θ ∣

Xtrain) is designated by a probability measure we have to sample from. For technical reasons,
we did not include BISCUIT in this analysis. Specifically, the original code does not provide
a straightforward way to evaluate posterior likelihood on unseen data. In most generative
models, we take a point estimate over these parameters (parameters of a neural network
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cells 4K 10K 15K 50K 100K

FA -1175.36 -1177.35 -1177.27 -1171.93 -1169.86
ZIFA -1250.44 -1250.77 -1250.59 NA NA
ZINB-WaVE -1166.39 -1163.91 -1163.39 NA NA
scVI -1150.96 -1146.59 -1144.88 -1136.57 -1133.94

Table 3.5: Marginal log likelihood for a held-out subset of the brain-cell dataset. NA indicates
we could not run the given algorithm for this sample size. FA denotes factor analysis.

in scVI, factor loading matrix or decay rate in ZIFA) and the former measure is a Dirac
centered on the parameters fixed at testing time.

Now, we focus on the value p(Xtest ∣ Θ) itself. First, because some algorithms are run
on log transformed data and some on raw data, we take into account the distortion for the
log-likelihood scores, using the change of variable formula. Second, this quantity can often
be intractable because of latent variables we have to marginalize out. In that case, we can
take lower bounds from the Expectation Maximization algorithm for ZIFA, exact value for
FA and the variational lower bound for scVI. In the case of an algorithm where the latent
variables are actual parameters to optimize (as in ZINB-WaVE), we need to re-run this
partial optimization at testing-time.

Exploring a range of training dataset sizes from a few thousand cells to a hundred thou-
sand cells, sampled from the BRAIN-LARGE dataset (Table 3.5) with 720 genes, we observe
that scVI provides the most likely model for the held-out data (consisting of 10K randomly
sampled cells that are not in the training set) and that its added accuracy grows as the train-
ing dataset size grows. Using the smaller CORTEX dataset for the same analysis—where we
partitioned the data as 60% training and 30% testing—yields similar results (Figure 3.Ba).
For both datasets, scVI and ZINB-WAVE are more accurate than ZIFA or a standard factor
analysis (FA), thus corroborating that scRNA-seq data is better approximated by a ZINB
than a log-normal or a zero-inflated-log-normal.

Held-out marginal likelihood is a less informative metric when the data is dominated by
zero entries, but that was not the case for the two datasets reported above due to gene filter-
ing. When zero entries dominate, this test reduces to comparing which algorithm generates
a predominance of values close to zero. We therefore turn to imputation benchmarking as a
method for assessing the model’s fit on the remaining datasets.

Imputation

Imputing missing values is useful in practical applications in addition to providing an assay
for generalization performance [86]. In the following analysis, we compare scVI to BISCUIT,
ZINB-WaVE and ZIFA, as well as DCA [100] (a denoising auto-encoder [101] that proposes
a ZINB loss function) and MAGIC (a diffusion method that provides imputation without
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explicit statistical modeling). To evaluate these methods on a given dataset, we generated
a corrupted training set by setting 9% uniformly chosen non-zero entries to zero. We then
fitted the perturbed dataset with each of the benchmark methods and evaluated them by
comparing the imputed values to the original ones, using the median average error. Overall,
we observe that scVI, DCA and ZINB-WaVE (when it scales to the dataset size) perform
well across all datasets tested, suggesting again that non-Gaussian modeling provides the
largest improvement over other existing methods (Figure 3.2d-f, 3.Bb-d).

One important exception when comparing scVI with MAGIC is the full HEMATO
dataset, in which the number of cells (4,016) is smaller than the number of genes (7,397).
In such cases, scVI is expected to underfit the data, potentially leading to worse imputation
performance. However, additional gene filtering (to the top 700 variable genes) helps to
recover a more accurate imputation (Figure 3.Bd).

To provide an example in which the perturbed values depend on the amount of mRNA
observed, we also generated a corrupted training set by downsampling 10% uniformly cho-
sen non-zero entries with a binomial law of rate 20%. These values guarantee that most
of the dataset is unchanged and require that the model has enough flexibility to impute
correctly the changed values. With respect to these corruption scheme, scVI also performs
well (Figure 3.C, 3.D).

scVI, like ZIFA and FA, can also be used to generate unseen data by sampling from the
latent space. As evidence of the validity of this procedure, we sampled from the posterior
distribution given the perturbed training data and observed that the samples are largely
consistent with the unperturbed data (Figure 3.E).

3.3.4 Capturing biological structure in a latent space

To further assess the performance of scVI, we evaluated how well its latent space summarizes
biological information and recovers biologically coherent subpopulations. For these experi-
ments, we used three datasets where pre-annotated clusters or subpopulations are available:
CORTEX, PBMC and RETINA. We then examined whether the annotated subpopulations
were distinguishable in the latent space, as in [84].

Annotation-based evaluation metrics

We report two different type of metrics for this analysis. The first is silhouette width [107],
which evaluates whether cells from the same subpopulation have a similar latent representa-
tion and cells from different subpopulations have a different representation. The silhouette
width requires either a similarity matrix or a latent space. We can define a silhouette score
for each sample i with:

s(i) =
b(i) − a(i)

max{a(i), b(i)}
, (3.17)
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Figure 3.2: Imputation of scVI on the CORTEX dataset. The heatmaps denote density
plots of imputed values (by scVI, ZIFA, MAGIC and ZINB-WaVE respectively) on a down-
sampled version versus the original (non- zero) values prior to down-sampling. The reported
score d is the median imputation error across all the hidden entries (Lower is better; see
Methods).
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where a(i) is the average distance of i to all data points in the same cluster ci and b(i) is
the lowest average distance of i to all data points in the same cluster c among all clusters c.
Clusters can be replaced with batches if we are estimating the silhouette width for assessing
batch effects [98].

For the second metric, we used the latent representation as an input to the K-means
algorithm (with T = 200 random initializations to achieve a stable score), and measured the
overlap between the resulting clustering annotations and the pre-specified subpopulations
using the adjusted rand index (ARI) and normalized mutual information (NMI) scores. For
ease of comparison across methods, we set K to the number of annotated subpopulations.

The ARI is defined as:

ARI =
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where nij, ai, bj are values from the contingency table.
The NMI is defined as

NMI =
I(P ;T )

√
H(P )H(T )

(3.19)

where P,T designates empirical categorical distributions for the predicted and real clustering.
I is the mutual entropy and H is the Shannon entropy.

Annotation-agnostic evaluation metrics

While these annotated subpopulations were subject to manual inspection and interpretation,
a remaining caveat is that they are computationally derived. To address this, we make use of
the CBMC dataset that includes measurements of thirteen key marker proteins in addition
to mRNA. For evaluation, we quantify the extent to which the similarity between cells in the
mRNA latent space resembles their similarity at the protein level. To this end, we compute
the overlap fold enrichment between the protein and mRNA-based cell 100-nearest neighbor
graph and the Spearman correlation of the adjacency matrices.

Results

Based on these benchmarks, we compared scVI to other methods that aim to infer a biologi-
cally meaningful latent space (ZIFA, ZINB-WaVE, DCA, and FA), using the same clustering
scheme. We find that scVI compares favorably to these methods for all of the datasets (Fig-
ure 3.Fab). Focusing on the PBMC dataset, we also compared scVI with a simpler version
that does not explicitly model library size. Our results (Figure 3.Fa) suggests that this
additional modeling increases the clustering abilities of scVI. Next, we benchmark scVI with
SIMLR [84], a method that couples clustering with learning a cell-cell similarity matrix.
For the first set of tests, we set the number of clusters in SIMLR to be the true number
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Figure 3.3: We apply scVI, PCA and SIMLR to three datasets (from right to left: CORTEX,
HEMATO and a simulated ‘’noise” dataset sampled iid from a fixed zero-inflated negative
binomial (ZINB) distribution). For each dataset, we show a distance matrix in the latent
space, as well as a two-dimensional embedding of the cells. Distance matrices: the scales are
in relative units from low to high similarity (over the range of values in the entire matrix).
For CORTEX and HEMATO, cells in the matrices are grouped by their pre-annotated labels,
provided by the original studies (for the CORTEX dataset, cell subsets were ordered using
hierarchical clustering as in the original study). For ZINB, the color in the distance matrices
is determined by the clusters found by SIMLR on this data. Embedding plots: each point
represents a cell and the layout is determined either by tSNE (CORTEX, ZINB) or by a
5-nearest neighbors graph visualized using a Fruchterman-Reingold force-directed algorithm
(HEMATO; see Figure 3.Hd for the original embedding for SIMLR). For CORTEX and
HEMATO, the color scheme in the embeddings is the same as in the distance matrices. For
ZINB, the colors reflect the number of UMI in each cell (see Figure 3.Ha-c for coloring of
cells according to SIMLR clusters)

of annotated subpopulations. For the CBMC case, we let SIMLR automatically determine
that number. When we examine the evaluations that were based on the computationally
derived annotations, we find that SIMLR outperforms scVI (Figure 3.Fab). However, while
the latent space inferred by SIMLR provides a tight representation for these subpopulations,
it may disregard other forms of critical information. Indeed, in the CBMC-based test, where
the clustering is based on “external” but biologically meaningful data, scVI and DCA are
the best performing methods, albeit by a small margin (Figure 3.Fc).
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Another example of important information that may be missed is the hierarchical struc-
ture among clusters, such as the one reported for the CORTEX dataset [102]. We take
several cuts at different depths of the hierarchical clustering (Table 3.3) and report clus-
tering scores based on these agglomerated labels (Figure 3.Fefg). These results suggest
that scVI and ZINB-WaVE find low-dimensional representations that better preserve this
important biological structure.

A second important case occurs when the variation between cells has a continuous, rather
than discrete, form. An example of this is the HEMATO dataset, which consists of hem-
atopoietic cells annotated along seven different stages of differentiation. As a first step,
we focus on cell development towards either granulocytic neutrophil or erythoid fate [105].
SIMLR applied to this dataset predicts the presence of five clusters, and the resulting five-
nearest-neighbors graph (visualized using a Fruchterman-Reingold force-directed algorithm)
does not reflect the continuous nature of this system. Conversely, standard PCA analysis
and scVI are able to capture this property of the data (Figure 3.3), albeit with less precision
than the finely tuned process used in the original publication (Figure 3.G).

Finally, there may be the case of lack of structure, where the data is almost entirely
dominated by noise. To explore this setting, we generated a noise dataset, sampled at
random from a vector of zero-inflated negative binomial distributions. SIMLR erroneously
reports eleven distinct clusters in this data, which are not perceived by any other method
(Figure 3.3, 3.Ha-c).

Altogether, these results suggest that the latent space of scVI is flexible and describes the
data well, either as discrete clusters, as a continuum between cell state, or as structureless
noise. scVI is therefore better suited than SIMLR in scenarios where the data does not
necessarily fit with a simple structure of discrete subpopulations.

3.3.5 Controlling for batch effects

scVI explicitly accounts for the contribution of discrete nuisance factors of variation such as
batch annotations in its graphical model. It does so by enforcing conditional independence
between them and the inferred parameters.

Our model therefore learns gene expression bias that comes from the batch effects and
provides a parametric distribution that is disentangled from these technical effects, thus
ideally reflecting the relevant biological variation. We evaluate the performance of scVI in
correcting for batch effects using the RETINA dataset, which consists of two batches. We
measured the entropy of batch mixing across the K-nearest neighbors graph with the ideal
expectation of a uniform representation of batches (i.e., maximum entropy) in any local
neighborhood. We also measure the average silhouette width; with no batch bias, batches
should overlap perfectly and exhibit a null silhouette width. We compare our method to
the more standard pipeline of batch correction ComBat [108] followed by principal com-
ponent analysis and the recent mutual nearest neighbors method (MNN [109]). We also
report results for methods that do not include batch correction in their underlying model,
namely PCA, SIMLR, DCA and a simplified version of scVI with no conditioning for batches
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Figure 3.4: Batch effect removal with scVI on the RETINA dataset. We visualize the batch
removal and clustering performance. A successful method renders a latent space which
maintains a satisfactory level of clustering while sufficiently mixing the batches. Embedding
plots (PCA with ComBat, scVI without batch correction, scVI and PCA with MNNs) were
generated by applying tSNE on the respective latent space. In the upper part of the figure,
the cells are colored by batch. In the lower part, cells are colored by the annotation of
subpopulations, provided in the original study [104]. For each algorithm, we report the
batch entropy mixing for the batches (BE; higher is better) and the adjusted Rand index
for the clustering (ARI; higher is better). When using PCA, we used the top 100 principal
components (the top 10 resulted in no discernible structure).

(Methods). Our results (Figure 3.4, 3.Fd, 3.I) demonstrate that in this dataset scVI aligns
the batches better than Combat and MNN, while still maintaining a tight representation of
pre-annotated subpopulations and compares favorably to all the other algorithms. Consid-
ering the latent space provided by algorithms without explicit batch modeling we find, as
expected, that the mixing of the batches is poor. Specifically, while SIMLR and DCA are
capable of clustering the cells well within each batch, the respective clusters from each batch
remain largely separated. Furthermore, the poor batch mixing of the simplified scVI version
demonstrates that the additional modeling complexity brought by the batch correction is
important. Notably, we performed a similar analysis with the PBMC dataset, which consists
of cells from two donors. However, this data seemed to exhibit only a minor batch effect to
begin with (our metrics are averaged across all cell-types) and was thus less informative for
the purpose of this evaluation (Figure 3.Fa).
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3.3.6 Differential expression

Identifying genes that are differentially expressed between two subpopulations of cells is an
important application of our generative model. The Bayesian model in scVI makes hypothesis
testing straightforward.

A Bayesian hypothesis testing procedure for scVI

For each gene g and pair of cells (za, zb) with observed gene expression (xa, xb) and batch
ID (sa, sb), we can formulate two mutually exclusive hypotheses:

M
g
1 ∶= Esf gw(za, s) > Esf gw(zb, s) vs. M

g
2 ∶= Esf gw(za, s) ≤ Esf gw(zb, s), (3.20)

where the expectation Es is taken with respect to the batch variable empirical frequencies.
Notably, we propose a hypothesis testing that do not to calibrate the data to one batch but
will find genes that are consistently differentially expressed. Again, evaluating the likelihood
ratio test for whether our datapoints (xa, xb) are more probable under the first hypothesis
is equivalent to writing a Bayes factor [110]:

K = loge
p(Mg

1 ∣ xa, xb)

p(Mg
2 ∣ xa, xb)

. (3.21)

A Bayes factor is a Bayesian generalization of the p-value. Its sign indicates which of Hg1
and Hg2 is more likely. Its magnitude is a significance level and throughout the chapter, we
consider a Bayes factor as strong evidence in favor of a hypothesis if ∣K ∣ > 3 [111] (equivalent
to an odds ratio of exp(3) ≈ 20).

The posterior of these models can be approximated by integrating against the variational
distribution:

p(Mg
1 ∣ xa, xb) ≈∑

s
∬

za,zb
p(f gw(zx, s) ≤ f

g
w(zx, s))p(s)dq(za ∣ xa)dq(zb ∣ xb). (3.22)

Here p(s) designates the relative abundance of cells in batch s and all of the measures are
low-dimensional, so we can use naive Monte Carlo to compute these integrals. We can then
use a Bayes factor for the test.

Since we assume that the cells are i.i.d., we can average the Bayes factors across a large
set of randomly sampled cell pairs, one from each subpopulation. The average factor will
provide an estimate of whether cells from one subpopulation tend to express g at a higher
frequency.

Benchmarking on real data

We demonstrate the robustness of our method by repeating the entire evaluation process
and comparing the results (Figure 3.5ab). We also ensure that our Bayes factor are well
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Figure 3.5: Benchmark of differential expression analysis using the PBMC dataset, based
on consistency with published bulk data. (a, b) Evaluation of consistency with the irrepro-
ducible discovery rate (IDR) [112] framework (blue) and using AUROC (green) is shown for
comparisons of B cells vs Dendritic cells (a) and CD4 vs CD8 T cells (b). Error bars are
obtained by repeatedly sub-sampling the data to show robustness. Whiskers denote the 5th
and 95th percentiles. (c,d,e,f): correlation of significance levels of differential expression of
B cells vs Dendritic cells, comparing bulk data and single cell. Points are individual genes.
Bayes factors or p-values on scRNA-seq data are presented on the x-axis; microarray-based
p-values are depicted on the y-axis. Horizontal bars denote significance threshold of 0.05 for
corrected p-values. Vertical bars denote significance threshold for the Bayes factor of scVI
(c) or 0.05 for corrected p-values for DESeq2 (d), edgeR (e), and MAST (f). We also report
the median mixture weight for reproducibility p (higher is better).

calibrated by running the differential expression analysis across cells from the same cluster
and making sure no genes reach the significance threshold (Figure 3.Je).

To evaluate scVI as a tool for differential expression, we used the PBMC dataset along
with its classification of cells into well-studied subtypes of hematopoietic cells, for which
reference bulk expression data is available.
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We compare scVI to three widely used methods: DESeq2 [63], MAST [90] and edgeR [89].
We also compare scVI to a simpler version of the model in which we do not explicitly model
library size. Finally, we compare to a hybrid method where the counts are first imputed by
DCA and then used for differential expression with DESeq2, as proposed by the authors [100].
To facilitate the evaluation, we defined a reference set of differentially expressed genes using
publicly available bulk expression datasets. Specifically, we assembled a set of genes that are
differentially expressed between human B cells and dendritic cells (microarrays, n=10 in each
group [113]) and between CD4+ and CD8+ T cells (microarrays, n=12 in each group [114]).
We apply all six methods in these two differential expression tasks (using the respective
clusters of cells) and evaluate the consistency with the reference data using two scores. For
the first score, we assign each gene with a label of DE or non-DE based on their p-values
from the reference data (genes with a corrected p-values under 0.05 are positive and the rest
are negative); then these labels to compute AUROC for scVI and each of the benchmark
methods.

Since defining the labels requires a somewhat arbitrary threshold, we use a second score
that evaluates the reproducibility of gene ranking (bulk reference vs. single cell; considering
all genes), using the irreproducible discovery rate (IDR) [112]. Considering the AUROC
metric, scVI is the best performing method in the T cell comparison, while edgeR outperforms
scVI by a smaller margin in the B vs. dendritic cell comparison. Considering the proportion
of genes with reproducible rank as fitted by IDR, scVI is the best performing method in
both comparisons (Figure 3.5, Figure 3.Ja-d). Interestingly, the simpler scVI model shows
extremely poor performance on the B vs. dendritic cell comparison, being the only model
that does not explicitly handle normalization. This is evidence of the usefulness of explicitly
including library size normalization in the scVI model. Furthermore, we see that the hybrid
method of DCA followed by DESeq2 constitutes a solid improvement over a direct application
of DESeq2; however, the performance is still lower than other methods.

3.3.7 Capturing technical variability

To further interpret the fitted models, we study the extent to which they capture technical
variability. We focus on datasets that were generated by 10x, as they share the same set
of cell quality metrics (generated by cell ranger) and can thus provide reproducible insights
about the relationship between our parameters and library quality. Additionally, we required
our test datasets to have pre-annotated subpopulations, with the assumption that each
subpopulation consists primarily of cells of the same type, thus decreasing the extent of
biological heterogeneity (e.g., in total mRNA content). The two datasets that fit these
requirements, which we report next, are the PBMC and BRAIN-SMALL.

In each case, we trained the model on the entire dataset and then investigated each pre-
annotated subpopulation separately. As a general rule, we find that variation in library size
correlates strongly with the cell-specific scaling factor, which is to be expected by the defini-
tion of the model. Figure 3.6a depicts these results for the CD14+ monocytes subpopulation
in the PBMC data (notably, the negative curvature on the plot can be explained by shrink-
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ing the values towards the mean due to the use of a prior). Another important nuisance
factor to be considered is the limitation in sensitivity, which exacerbates the number of zero
entries. In principle, zero entries can be captured by two different components of our model:
the negative binomial and the “inflation” of zeros added to it with a Bernoulli distribution.
Evidently, the expected number of zeros generated by the negative binomial for each cell
correlates strongly with the library size and its proxies (e.g., the number of detected genes
or the number of reads per UMI; Figure 3.6cd, 3.Kd). This result can be explained by our
definition of the negative binomial mean, which is the predicted frequency of expression ρgn
scaled by the respective library size `n.

The remaining question is therefore, what is the relationship between the expected fre-
quency of expression ρgn and the observed zeros? A simple model would consist of a random
process of sampling genes from each cell, in a manner proportional to their frequency, and
with no added bias (e.g., in capture efficiency). To explore this, for every gene we plot the
mean expected frequency against the percent of detecting cells in a subpopulation of interest
(Figure 3.6b). The resulting trend supports this simple model as it closely fits with the
zero probability of a hypergeometric distribution—namely, random sampling of molecules
without replacement.

Interestingly, the number of additional zeros induced by the Bernoulli random variable in
each cell is less correlated with library size, and instead correlates with metrics of alignment
rate (Figure 3.6cd, 3.Kcd). These metrics are not necessarily coupled to size, but may reflect
other technical factors such as contamination or the presence of degraded mRNA. However,
we observed that most zero values in the data can be explained by the negative binomial
component alone (Figure 3.Ka). Taken together, these results therefore corroborate the idea
that most zeros, at least in the datasets explored here, can be explained by low (or zero)
“biological” abundance of the respective transcript, which is exacerbated by limited sampling.

3.3.8 Alternative modeling choices

We consider here the extent to which each of a sequence of modeling choices in the design
of scVI contributes to its performance. As a baseline approach, consider normalizing single-
cell RNA sequencing data as in previous literature [95] and reducing the dimensionality of
the data using a variational autoencoder with a Gaussian prior and a Gaussian conditional
probability.

One way in which a model can be enhanced is by changing the Gaussian conditional
probability to one of the many available count distributions, such as zero-inflated negative
binomial (ZINB), negative binomial (NB), Poisson or others. Recent work by Eraslan and
colleagues using simulated data shows that when the dropout effect drives the signal-to-
noise ratio to a less favorable regime, a denoising autoencoder with mean squared error (i.e.,
Gaussian conditional likelihood) cannot recover cell-types from expression data while an au-
toencoder with ZINB conditional likelihood can [100]. This results points to the importance
of at least modeling the sparsity of the data and is consistent with previous contributions [95,
82].
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Figure 3.6: Capturing technical variability using scVI. Data for panels a-b is based on the
CD14+ cell subpopulation of the PBMC dataset. (a) Scatter plot for each cell of inferred
scaling factor using scVI against library size. (b) The frequency of observed zero values versus
the expected expression level, as produced by scVI. Each point represents a gene g, where
the x-axis is ρ̄g—the average expected frequency per cell (for gene g, average over ρgc for all
cells c in the subpopulation), and the y-axis the is observed percentage of cells that detect
the fee (UMI>0). The green curve depicts the probability for selecting zero transcripts from
every gene as a function of its frequency, assuming a simple model of sampling U molecules
from a cell with N molecules at random without replacement. U = 1398 is the average
number of UMIs in the subpopulation and N is the average number of transcripts per cell
(for this curve N = 10k). Notably, the curve converges for values larger than 20k to the
red curve, a binomial selection procedure (conform to the probabilistic limit of the sampling
process when N → ∞). (c, d) Signed log p-values for testing correlations between the zero
probabilities from the two distributions (negative binomial, Bernoulli) and quality control
metrics across five random initializations of scVI and all subpopulations of the PBMC and
BRAIN-SMALL datasets. Whiskers denote the 5th and 95th percentiles.
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The next question is which count distribution to use. In scVI we have chosen to use
the zero-inflated negative binomial, a choice motivated by previous literature (e.g., [82]).
First, the choice of negative binomial is common in RNA-sequencing data, as it is over
dispersed [63]. Furthermore, under some assumption this distribution captures the steady
state form of the canonical two-state promoter activation model [64]. Finally, recent work by
Grønbech and colleagues [44] proposes an analysis based on Bayesian model selection (held-
out log-likelihood as in this manuscript). In that analysis, the NB and ZINB distribution
stand out with similarly high scores. We demonstrate that the addition of a zero-inflation
(Bernoulli) component is important for explaining a subset of the zero values in the data
(Figure 3.K) and that it captures important aspects of technical variability which are not
captured by the NB component (Figure 3.6).

To enhance the model further, we added terms to account for library-size as a nuisance
factor, which can be considered as a Bayesian approach to normalization as in [83, 97]. We
showed how this contributes to our model by increasing clustering scores and the accuracy
of differential expression analysis.

As a further enhancement, we designed the generative model to explain data from differ-
ent experimental batches. This is not a trivial task as there may exist a significant covariate
shift between the observed transcript measurements. We also showed how this modification
to our model is crucial when dealing with batch effects.

3.4 Discussion
Our study focuses on an important need in the field of single-cell RNA-seq – namely, a
method capable of accounting for confounding factors and measurement uncertainty in ter-
tiary analysis tasks (e.g., clustering, differential expression, and annotation) through a com-
mon, scalable statistical model. To achieve this, we developed scVI – a hierarchical Bayesian
model that makes use of neural networks to provide a complete probabilistic representation
of single-cell transcriptomes. In this study, we demonstrated that scVI provides a compu-
tationally efficient and “all-inclusive” approach to denoising and analyzing gene expression
data, and showcased its performance by comparing it to the state-of-the-art methods for a
range of downstream tasks, including dimensionality reduction, imputation, visualization,
batch-effect removal, clustering and differential expression.

The scVI procedure takes as input a matrix of counts, and therefore does not need a
preliminary normalization step. Instead, it learns a cell-specific scaling factor as a hidden
variable of the model, with the objective of maximizing the likelihood of the data (as in [83,
82, 97]), which is more justifiable than a posteriori correction of the observed counts [79].
Further, scVI explicitly accounts for the contribution of discrete nuisance factors, such as
batch annotations, by enforcing conditional independence between them and the (inferred)
parameters that govern gene expression distributions. We demonstrate that these normaliza-
tion components are needed to achieve good performance in critical tasks such as clustering
and differential expression (Figures 3.4, 3.5, 3.F, and 3.I). Notably, the batch correction step
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is performed via the mild modeling assumption of conditional independence, and therefore
scVI is expected to reasonably integrate and harmonize multiple datasets. Further modeling
would be needed for more intensive usage of batch removal (number of batches/datasets
≥ 20) and is left as an avenue for future research.

Another important feature of scVI and other methods based on neural networks [37,
99, 100, 44] is their scalability. Indeed, unlike many of the benchmark methods, scVI is
capable of efficiently processing the very large datasets of up to a million cells explored in
this study [93, 92]. To achieve this high level of scalability while ensuring a good fit to
the data, we designed an efficient procedure to learn the parameters of our graphical model.
Importantly, exact Bayesian inference is in most cases not tractable for these kinds of models.
Furthermore, until recently, even variational inference was rarely applied to such models
without restrictive “conditional conjugacy” properties. To address this, we use a stochastic
optimization procedure that samples our approximation of the posterior distribution (as well
as random subsamples or “mini-batches” of our dataset), allowing us to efficiently perform
inference with arbitrary models, including those with conditional distributions specified by
neural networks [8].

The deep learning architecture used in scVI is built on several canonical building blocks
such as rectified linear units, fully-connected layers, dropout [115], mini-batch normaliza-
tion [116], deterministic warm up [96], and mean-field approximation to the posterior [8].
Together, these building blocks provide the means to effectively fit the generative model of
scVI and approximate its posterior. However, an important area of research going forward
is to explore other, possibly better, architectures [117] and procedures for parameter and
hyper-parameter tuning [118], which may in some instances increase the accuracy of the in-
ferred model. Notably, since our procedure has a random component, and since it optimizes
a non-convex objective function, it may give alternative results with different initializations.
To address this concern, we demonstrate the stability of scVI in terms of its objective func-
tion, as well as imputation and clustering (Figure 3.L). Another related issue is that, if there
are few observations (cells) for each gene, the prior (and the inductive bias of the neural
network) may keep us from fitting the data closely. Indeed, in the case of datasets such as
HEMATO [105], where the number of cells is smaller than the number of genes, some proce-
dure to pre-filter the genes may be warranted. Another approach that could help make scVI
applicable to smaller data sets (hundreds of cells), which we intend to explore, is utilizing
techniques such as Bayesian shrinkage [63] or regularization and second order optimization
with larger mini-batch size / full dataset [82]. We do however show that for a range of
datasets of varying sizes, scVI is able to fit the data well and capture relevant biological
diversity between cells.

From a system perspective, single-cell RNA-seq analyses paradoxically benefit from the
abundance of zero values, as this allows us to store the data in a sparse (rather than dense)
matrix format. A sparse matrix with one million cells and ten thousand genes would represent
around 7.5 GB, assuming one percent fill. On the other hand, the output of batch- corrected
data is not sparse, and is therefore potentially very large (for 1M cells, approximately 75
GB). While it performs batch correction, scVI still provides a compact representation of the
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complete data, as it requires only the latent space and the specification of the model (overall,
it has a memory footprint of less than 1G, assuming 10 latent variables). One obvious
drawback of such compressed representation (apart from the potential loss of information) is
that gene expression values need to be computed on the fly; however, this can be done very
efficiently in a single pass through the generative networks (which requires approximately
10 seconds for generating the ρ matrix for a test dataset of 500k cells and 8k genes, with
the same hardware specification used throughout this chapter). This property makes scVI a
good baseline for use in interactive visualization tools [119, 120, 121].

Looking ahead, it is important to note that the model of scVI is very general and therefore
provides a proper statistical framework for other forms of scRNA-seq analysis that were not
explored in this chapter, such as lineage inference [76] or cell-state annotation [122, 1].
Further, as the scale and diversity of single-cell RNA-seq increase, we expect that there
will be a great demand for tools such as scVI, especially in cases where there is interest
in harmonizing datasets in a manner that is scalable and conducive to various forms of
downstream analysis [93]. Indeed, one subsequent research direction would be to merge
multiple datasets from a given tissue to build a generative model with biological annotations
of cell-types or phenotypical conditions in a semi-supervised fashion. This would allow
researchers to “query” the generative model with a new dataset in an online fashion in order
to “retrieve” previous biological information, which would allow verification of reproducibility
across experiments, as well as transfer of cell state annotations between studies.
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3.5 Supplementary figures
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Figure 3.A: Stability of the early stopping criterion on the one-million-cell sample of the
BRAIN-LARGE dataset. (a) Evolution of the loss function (y-axis) value on a validation set
with the number of epochs (x-axis) (b) Contrast of the expected frequency ρ-values between
the model trained with early stopping (x-axis) and the model trained without early stopping
(y-axis) on a random subset of 100 cells and all genes. We also report the Pearson correlation,
r.
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Figure 3.B: (a) Log-likelihood results on the CORTEX dataset. (b) through (d): We inves-
tigate how scVI latent space can be used to impute the data (with the uniform perturbation
scheme) and report benchmarking across datasets for state-of-the-art methods.
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Figure 3.C: Imputation of scVI on the CORTEX dataset. Models are trained on a binomial-
down-sampling corrupted dataset (see Methods). The heatmaps denote density plots of
imputed values scVI, ZIFA, MAGIC and ZINB-WaVE on a down-sampled version vs. original
values prior to down-sampling. The reported score d is the median imputation error across
all the hidden entries (lower is better; see Methods).
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Figure 3.D: (a) through (c): We investigate how scVI latent space can be used to impute
the data (with the binomial perturbation scheme) and report benchmarking across datasets
for state-of-the-art methods.
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Figure 3.E: Posterior analysis of generative models on the CORTEX dataset. Panels (a-
c) depict the observed counts of randomly selected entries of the data matrix (x-axis) and
their posterior uncertainty (y-axis) by sampling from the variational posterior (scVI) or
the exact posterior (FA, ZIFA). Whiskers denote the 5th and 95th percentiles. Panels (d-
f) represent the observed counts of a representative gene, Thy1, in the CORTEX dataset.
Data is presented across all cells (n = 3005) (x-axis) against the posterior expected counts
produced by scVI, ZIFA and FA, respectively (y-axis). The values on each axis have been
divided into 20 bins and the color scale reflects the proportion of cells in each pair of bins.
By definition, the uncertainty of FA is independent of the input value and tight around
the observed count. ZIFA can generate zero and puts realistically more weight in this area.
scVI’s posterior is more complex, and is able to generate zero for low UMI values but also
able to generate high UMI values when the original count observed was only of intermediate
intensity.
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Figure 3.F: We investigate how scVI latent space can be used to cluster the data and report
benchmarking across datasets for state-of-the-art methods. The first four panels depict
the results for the (a) PBMC dataset (b) CORTEX (c) CBMC and (d) RETINA. ASW:
average silhouette width of pre-annotated subpopulations (higher is better), ARI: adjusted
Rand index (higher is better), NMI: normalized mutual information (higher is better), BE:
batch-mixing entropy (higher is better), BASW: average silhouette width of batches (lower
is better). Panels (e-g) depict the performance of clustering metrics for different depths of
the hierarchical clustering in the CORTEX data, computed in the original publication [102].
The numbers in the legend indicate the number of clusters at the given depth.
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Figure 3.G: Additional comparison of scVI and PCA on the HEMATO dataset. All scatter
plots illustrate the embedding of a 5-nearest neighbors graph of a latent space. Cells positions
are computed using a force-directed layout; (a) denotes a reduction to 60 pcs as in the original
paper. (b) denotes the output of a scVI in dimension 60. As the dimension is sensibly
different from other experiments, the warm-up schedule (which governs how the prior on z
is enforced) was adjusted. (c) denotes the figure from the main paper. To recover all the
differentiation paths, the authors performed several operations on the K-nearest neighbors
graph that we did not reproduce in this analysis. We instead visualize the graph before the
smoothing procedure.
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Figure 3.H: Details for the clustering panel. For the random data, we obtain the labels that
order the cell-cell similarity matrices by a k-means clustering on SIMLR latent space. (a)
scVI latent space with SIMLR labels. There is no structure. (b) SIMLR latent space with
SIMLR labels. (c) PCA latent space with SIMLR labels. (d) SIMLR tSNE on the HEMATO
dataset. We prefer to visualize the SIMLR embedding on a kNN graph since the continuum
structure of the dataset would be lost, even with tSNE.
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(a) tSNE embedding for PCA,
colored by batch

(b) tSNE embedding for
PCA, colored by cell type

(c) Embedding for SIMLR,
colored by batch

(d) Embedding for SIMLR,
colored by cell type

(e) Embedding for DCA, col-
ored by batch

(f) Embedding for DCA, col-
ored by cell type

Figure 3.I: Batch effect removal on the RETINA dataset. (a, b) Embedding plots for PCA
were generated by applying tSNE on the respective latent space. (c, d) For SIMLR, we used
the tSNE coordinates provided by the program and the number of clusters was set to the
number of pre-annotated subpopulations (n = 15). (e, f) Embedding plots for DCA were
generated by applying tSNE on the respective latent space.
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Figure 3.J: Differential expression with scVI on the PBMC dataset. (a) (b) (c) (d) (f) p-
values of microarray against p-values or Bayes factor for CD4 /CD8 comparison. In the
order indicated, scVI, edgeR, MAST, DESeq2, DESeq2 on DCA imputed counts (e) Bayes
factor of scVI when applying DE to two sets of random cells from the same cluster.
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Figure 3.K: The generative distributions of scVI. This study focuses on a particular subpop-
ulation of the BRAIN-SMALL dataset (n = 2592) (a) To assess whether most of the zeros in
the data comes from the negative binomial, for each entry of the count matrix (percentage in
y-axis), we plot the probability that a given zero comes from the NB conditioned on having a
zero (x-axis). (b) Number of genes detected vs. negative binomial zero probability averaged
across all genes. (c) Genome_not_gene vs. Bernoulli zero probability averaged across all
genes. (d) Mapped_reads vs. Bernoulli zero probability averaged across all genes.
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Figure 3.L: Robustness analysis for scVI. Whiskers denote 5th and 95th percentiles. (a) Im-
putation score on the BRAIN-LARGE dataset across multiple random initialization, training
and dimension of the latent space. (b) Visualization of scVI numerical objective function
during training on the BRAIN-LARGE dataset. This shows our model does not over fit and
has a stable training procedure. (c) Imputation score as a function of the number of epochs
on the BRAIN-LARGE dataset. This figure also shows stability across posterior sampling
since there is not much change in the parameters between two subsequent epochs. (d) Clus-
tering metrics on the CORTEX dataset across multiple initializations and dimensions for
the latent space.
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Chapter 4

Harmonization and Annotation of
Multiple Single-cell Experiments

4.1 Introduction
Recent technological improvements in microfluidics and low volume sample handling [122]
have enabled the emergence of single-cell transcriptomics [3, 103] as a popular tool for analyz-
ing biological systems [76, 77, 78]. This growing popularity along with a continued increase
in the scale of the respective assays [52] has resulted in massive amounts of publicly available
data and motivated large scale community efforts such as the Human Cell Atlas [93], Tabula
Muris [7] and the BRAIN Initiative Cell Census Network [123]. The next natural step in the
evolution of this field is therefore to integrate many available datasets from related tissues
or disease models in order to increase statistical robustness [124], achieve consistency and
reproducibility among studies [109, 125], and ultimately converge to a common ontology of
cell states and types [93, 1].

A fundamental step toward the ideal of a common ontology is data harmonization, namely
integration of two or more transcriptomics datasets into a single dataset on which any down-
stream analysis can be applied. We use the term harmonization rather than batch effect cor-
rection in order to emphasize that the input datasets may come from very different sources
(e.g., technology, laboratory), and from samples with a different composition of cell types. A
wide range of methods have already been developed for this fundamental problem, initially
for microarrays and later on for bulk RNA sequencing, such as ComBat [108] and limma [126].
These approaches mainly rely on generalized linear models, with empirical Bayes shrinkage
to avoid over-correction. More recently, similar methods have been proposed specifically
for single-cell RNA sequencing (scRNA-seq), such as ZINB-WaVE [82], which explicitly ac-
counts for the overabundance of zero entries in the data. However, because of their linear
assumptions, these approaches may not be appropriate when provided with a heterogeneous
sample that includes different cell states, each of which may be associated with a different
sample-to-sample bias [109]. With these limitations in mind, the next generation of methods
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turned to non-linear strategies. Broadly speaking, each of these methods includes a combi-
nation of two components: (i) joint factorization of the input matrices (each corresponding
to a different dataset) to learn a joint low-dimensional latent representation. This is usu-
ally done with well established numerical methods, such as integrative non-negative matrix
factorization (LIGER [127]), singular value decomposition (Scanorama [128]), or canonical
correlation analysis (Seurat Alignment [125]); (ii) additional non-linear transformation of
the resulting latent representations so as to optimally “align” them onto each other. This is
usually done using heuristics, such as alignment of mutual nearest neighbors (MNN [109],
Scanorama [128] and Seurat Anchors [129]), dynamic time warping (Seurat Alignment [125])
or quantile normalization (LIGER [127]). While this family of methods has been shown to
effectively overlay different datasets, it suffers from two important limitations. First, an ex-
plicit alignment procedure may be difficult to tune in a principled manner and consequently
result in over-normalization. This is especially relevant when the cell type composition is
different between datasets and when technical differences between samples are confounded
with biological differences of interest. Second, the alignment is done in an ad hoc manner
and lacks probabilistic interpretability. Consequently, the resulting harmonized dataset is
of limited use and cannot be directly applied for probabilistic decision-making tasks, for
example differential expression.

Besides harmonization, another important and highly related problem is that of auto-
mated annotation of cell state. In principle, there are two ways to approach this problem.
The first is ab initio labeling of cells based on marker genes or gene signatures [125, 130,
119]. While this approach is intuitive and straightforward, its performance may be affected
in the plausible case where marker genes are absent due to limitations in sensitivity. The
second approach is to “transfer” annotations between datasets. In the simplest scenario, we
have access to one dataset where states have been annotated either ab initio, or using addi-
tional experimental measurements (e.g., protein expression [103, 5] or lineage tracing [131])
and another, unannotated dataset from a similar condition or tissue. The goal is to use the
labeled data to derive similar annotations for the second dataset, whenever applicable. This
task is often complicated by factors such as differences in technology (e.g., using Smart-Seq2
data to annotate 10x Chromium data), partial overlap in cell type composition (i.e., not
all labels should be transferred and not all unannotated cells should be assigned a label),
complex organization of the labels (e.g., hierarchy of cell types and sub-types [132], contin-
uum along phenotypic or temporal gradients), partial labeling (i.e., only a subset of cells
from the “annotated” dataset can be assigned a label confidently), and the need to handle
multiple (more than 2) datasets in a principled and scalable manner. One way to address the
annotation problem with this approach is learning a classifier [132, 133] in order to predict a
fixed stratification of cells. However, this approach might be sensitive to batch effects, which
could render a classifier based on a reference dataset less generalizable to an unannotated
dataset. Another, more flexible approach is to transfer annotations by first harmonizing the
annotated and unannotated datasets, thus also gaining from the benefits of having a single
dataset that can be subject to additional, joint, downstream analysis.

In this chapter, we propose a strategy to address several of the outstanding hurdles



CHAPTER 4. SINGLE-CELL ANNOTATION USING VARIATIONAL INFERENCE 59

in both of the harmonization and annotation problems. We first demonstrate that single-
cell Variational Inference (scVI) [10] a deep generative model we previously developed for
probabilistic representation of scRNA-seq data — performs well in both harmonization and
harmonization-based annotation, going beyond its previously demonstrated capacity to cor-
rect batch effects. We then introduce single-cell ANnotation using Variational Inference
(scANVI), a new method that extends scVI and provides a principled way to address the an-
notation problem probabilistically while leveraging any available label information. Because
scANVI is able to model cells with or without label information, it belongs to the category
of semi-supervised learning algorithms. This flexible framework of semi-supervised learning
can be applied to two main variants of the annotation problem. In the first scenario, we are
concerned with a single dataset in which only a subset of cells can be confidently labeled
(e.g., based on expression of marker genes) and annotations should then be transferred to
other cells, when applicable. In the second scenario, annotated datasets are harmonized with
unannotated datasets and then used to assign labels to the unannotated cells.

The inference procedure for both of the scVI and scANVI models relies on neural net-
works, stochastic optimization and variational inference [8, 65] and scales to large numbers
of cells and datasets. Furthermore, both methods provide a complete probabilistic repre-
sentation of the data, which non-linearly controls not only for sample-to-sample bias but
also for other technical factors of variation such as over-dispersion, library size discrepan-
cies and zero-inflation. As such, each method provides a single probabilistic model that
underlies the harmonized gene expression values (and the cell annotations, for scANVI),
and can be used for any type of downstream hypotheses testing. We demonstrate the
latter point through a differential expression analysis on harmonized data. Furthermore,
through a comprehensive analysis of performance in various aspects of the harmonization
and annotation problems and in various scenarios, we demonstrate that scVI and scANVI
compare favorably to current state-of-the-art methods. scANVI is publicly available at
https://github.com/YosefLab/scvi-tools. An implementation for all of the analysis
performed in this chapter is available at https://doi.org/10.5281/zenodo.2529945.

4.2 Overview of our proposed probabilistic models for
harmonization

4.2.1 Joint modeling of scRNA-seq datasets

We consider a collection of scRNA-seq datasets (Figure 4.1ab). After using a standard
heuristic to filter the genes and generate a common (possibly large) gene set of size G, we
obtain a concatenated dataset that may be represented as a matrix. Individual entries xng
of this matrix measures the expression of gene g in cell n. Additionally, we use the integer sn
to denote the dataset of origin for each cell n. Finally, a subset of the cells may be associated
with a cell state annotation cn, which can describe either discrete cell types or hierarchical

https://github.com/YosefLab/scvi-tools
https://doi.org/10.5281/zenodo.2529945
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cell types. More complex structures over labels such as gradients are left as a future research
direction.

Since the problem of data harmonization of single-cell transcriptomics is difficult and
can potentially lead to over-correction [134], we propose a fully-generative method as a
robust and principled approach to address it. In our previous work [10], we built single-cell
Variational Inference (scVI), a deep generative model where the expression level xng is zero-
inflated negative binomial (ZINB) when conditioned on the dataset identifier (sn), and two
additional latent random variables. The first, which we denote by ln, is a one-dimensional
random variable accounting for the variation in capture efficiency and sequencing depth. In
practice, we noticed that this random variable is highly correlated to the library size [10].
The second, which we denote as zn, is a low dimensional random vector that represents the
remaining variability (Figure 4.1b). This vector is expected to reflect biological differences
between cells, and can be effectively used for visualization, clustering, pseudotime inference
and other tasks. Since the scVI model explicitly conditions on the dataset identifier (in the
sense that it learns a conditional distribution), it provides an effective way of controlling for
technical sample-to-sample variability. However, scVI is unsupervised and does not make
use of the available annotations cn, which can further guide the inference of an informative
latent representation zn. To this end, we present a more refined hierarchical structure for zn.
We draw zn as a mixture conditioned on the cell annotation cn and another latent variable
un, accounting for further biological variability within a cell type. We name the resulting
approach single-cell ANnotation using Variational Inference (scANVI).

The variables zn, inferred either with scVI or scANVI, provide an embedding of all cells
in a single, joint latent space. Since this latent space is inferred while controlling for the
dataset of origin (sn), it inherently provides a way to address the harmonization problem.
The annotation of unlabeled cells can therefore be conducted with scVI using their proximity
to annotated cells in the joint latent space (e.g., using majority vote over the k-nearest
neighbors). The scANVI model provides a more principled way to annotate cells, namely
through a Bayesian semi-supervised approach. Once fitted, the model is able to provide
posterior estimates for the unobserved cell state cn, which can be particularly useful when
labels cannot be entirely trusted.

4.2.2 Definition of the generative model for scANVI

In our generative model, we assume each cell n is an independent realization of the following
generative process. Let K be the number of datasets and C be the number of cell types
across all datasets (including cell types that are not observed). Let c describe the expected
proportion of cells for each cell type. As in general this information is not available to the
user, we consistently use a non-informative prior c = 1/C in the chapter. Although some prior
information about proportions of cell type is generally accessible, we observe that using the
non-informative prior allows us to recover the correct proportion of cells. In addition, in
comparative studies such as disease case-control comparisons, or between tissue comparisons
of immune cells [135] we might not want to bias the estimate of cell-type proportion by prior
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Figure 4.1: Harmonization and annotation of scRNA-seq datasets with generative models.
(a) Functional overview of the methods proposed in this chapter. (b) Schematic diagram
of the variational inference procedure in both of the scVI and scANVI models. We show
the order in which random variables in the generative model are sampled and how these
variables can be used to derive biological insights. (c) The graphical models of scVI and
scANVI. Vertices with black edges represent variables in both scVI and scANVI, and vertices
with red edges are unique to scANVI. Shaded vertices represent observed random variables.
Semi-shaded vertices represent variables that can be either observed or random. Empty
vertices represent latent random variables. Edges signify conditional dependency. Rectangles
(“plates”) represent independent replication.

.
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knowledge. All in all, adjustment of the prior c is not required. Latent variable

cn ∼ Multinomial(c), (4.1)

describes the cell type of the cell n. Latent variable

un ∼ N (0, I), (4.2)

is a low-dimensional random vector describing cell n within its cell type. Conceptually,
this random variable could describe cell-cycles or sub-cell types. By combining cell type
information cn and random vector un, we create a new low-dimensional vector

zn ∼ N (fµz (un, cn), f
σ
z (un, cn)), (4.3)

where fµz and fσz are two functions parametrized by neural networks. Let sn encode the
dataset information. Given lµ ∈ RK

+ and lν ∈ RK
+ specified per dataset as in [10], latent

variable

ln ∼ LogNormal(lsnµ , lsnν ), (4.4)

encodes a cell-specific scaling factor. As the prior are adjusted per dataset, our inference
procedure will shrink the posteriors towards dataset specific values. This is particularly useful
when aligning datasets with dramatically different library size values. Let θ ∈ RG

+ encode
a gene specific inverse dispersion parameter (inferred as in [10]). Conditional distribution
xng ∣ zn, ln, cn, sn is conform to the one from the scVI model

wng ∼ Gamma(f gw(zn, sn), θg) (4.5)
yng ∼ Poisson(lnwng) (4.6)
hng ∼ Bernoulli(f gh(zn, sn)) (4.7)

xng =

⎧⎪⎪
⎨
⎪⎪⎩

yng if hng = 0

0 otherwise
, (4.8)

where fw and fh are functions parametrized by neural networks. fw has a final softmax
layer to represent normalized expected frequencies of gene expression as in [10]. Let us note
that the resulting distribution for the counts is zero-inflated negative binomial. However, it is
straightforward using our implementation to use a negative binomial or a Poisson noise model
instead. In this model, annotation cn can be either observed or unobserved following [65,
136], which is useful in our applications where some datasets would come partially labeled
or unlabeled. Only the first part of the generative model, as separated above, differs from
the original scVI formulation. This corresponds to the top part of the new representation of
the graphical model in Figure 4.1b.
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4.2.3 Variational inference recipe

We rely on collapsed variational inference, a standard approximate Bayesian inference proce-
dure that consists in analytically integrating over some of the random variables [137] before
optimizing the parameters. As we proved in [10], we can integrate the random variables
{wng, yng, hng} to simplify our model at the price of a looser though tractable lower bound
(xng ∣ zn, ln, sn is zero-inflated negative binomial). This procedure reduces the number of la-
tent variable and avoids the need for estimating discrete random variables, which is a harder
problem. We then use variational inference, neural networks and the stochastic gradients
variational Bayes estimator [8] to perform efficient approximate inference over the latent
variable {zn, un, cn, ln}. We assume our variational distribution factorizes as:

qΦ(cn, zn, ln, un ∣ xn, sn) = qΦ(zn ∣ xn)qΦ(cn ∣ zn)qΦ(ln ∣ xn)qΦ(un ∣ cn, zn). (4.9)

Following [65, 136], we derive two variational lower bounds: one L in the case of cn
observed for pΘ(xn, cn ∣ sn) and a second U in the case of cn non-observed for pΘ(xn ∣ sn)
where Θ are all the parameters (neural networks and inverse-dispersion parameters).

We derive the evidence lower bound (ELBO) and detail the training details in the follow-
ing notes. Briefly, we optimize the sum ELBO = L + U over the neural networks parameters
and the inverse-dispersion parameters (in a variational Bayesian inference fashion). Remark-
ably, the approximate posterior qΦ(cn ∣ zn) can be used as a classifier, assigning cells to cell
types based on the location on the latent space.

We sample from the variational posterior using the reparametrization trick [8] as well as
“mini-batches” from the dataset to compute unbiased estimate of the objective gradients’
with respect to the parameters. We use Adam [138] as a first-order stochastic optimizer to
update the model parameters.

Evidence Lower Bound decomposition

We drop the parameters Θ (resp. Φ) of the generative model (resp. the variational distri-
bution) for notational convenience, as well as the conditioning on the batch identifier s. We
report the evidence lower bound (ELBO) only for one sample (i.e one cell) and drop the
index notations by substituting {xn, zn, un, cn, ln} by {x, z, u, c, l}. This is without loss of
generality since all the cells are independent and identically distributed under our model.

We derive the ELBO in the case where c is not observed (almost same calculations resolve
the case where c is observed). Similar derivations can be found in the variational autoencoder
literature (e.g, [136]). We assume our variational distribution factorizes as:

q(c, z, u, l ∣ x) = q(z ∣ x)q(c ∣ z)q(u ∣ z, c)q(l ∣ x). (4.10)

In this case, we may simply apply Jensen’s inequality weighted by the variational distribu-
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tion q(z, u, l, c ∣ x):

log p(x) ≥ Eq(z,u,c,l ∣ x) [log
p(x, z, u, c, l)

q(z, u, c, l ∣ x)
] (4.11)

= Eq(z,u,c,l ∣ x) [log
p(x ∣ z, l)p(z ∣ u, c)p(c)p(u)p(l)

q(z, u, c, l ∣ x)
] . (4.12)

Then, by decomposing this last term, we obtain the following lower bound:

log p(x) ≥ Eq(z,u,c,l ∣ x) [log p(x ∣ z, l)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(i)

+Eq(z,u,c,l ∣ x) [log
p(z ∣ u, c)

q(z ∣ x)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(ii)

+Eq(z,u,c,l ∣ x) [log
p(c)

q(c ∣ z)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii)

+Eq(z,u,c,l ∣ x) [log
p(u)

q(u ∣ z, c)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iv)

+Eq(z,u,c,l ∣ x) [log
p(l)

q(l ∣ x)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(v)

(4.13)

Then we simplify each individual term of the ELBO in 4.13 by recognizing KL divergence
terms. In particular, we use subscript notation KLG (.∣∣.), and KLM (.∣∣.) to denote Gaussian
and multinomial KL divergences.

Eq(z,u,c,l ∣ x) [log p(x ∣ z, l)] = Eq(z ∣ x)q(l ∣ x) [log p(x ∣ z, l)] (i)

Eq(z,u,c,l ∣ x) [log
p(z ∣ u, c)

q(z ∣ x)
] = Eq(z ∣ x) [Eq(u ∣ z,c)q(c ∣ z) [log

p(z ∣ u, c)

q(z ∣ x)
]] (ii)

= Eq(z ∣ x) [
K

∑
c=1

q(c ∣ z)Eq(u ∣ z,c) [log
p(z ∣ u, c)

q(z ∣ x)
]]

Eq(z,u,c,l ∣ x) [log
p(c)

q(c ∣ z)
] = Eq(z ∣ x)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∑
c=1

q(c ∣ z) log
p(c)

q(c ∣ z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−KLM(q(c ∣ z)∣∣p(c))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(iii)

Eq(z,u,c,l ∣ x) [log
p(u)

q(u ∣ z, c)
] = Eq(z ∣ x)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∑
c=1

q(c ∣ z)Eq(u ∣ z,c) [log
p(u)

q(u ∣ z, c)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−KLG(q(u ∣ z,c)∣∣p(u))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(iv)

Eq(z,u,c,l ∣ x) [log
p(l)

q(l ∣ x)
] = −KLG (q(l ∣ x)∣∣p(l)) (v)
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4.2.4 Customized training procedures

In order to train scANVI properly, several options are possible to train all the parameters (θ
from the generative model, φ from the variational distribution except the labels’ posterior
and φC from the labels’ posterior exclusively). In all cases, parameters θ and φ should
minimize the evidence lower bound

J = L + U , (4.14)

decomposed over the labeled samples L and unlabeled samples U . Furthermore, [136] sug-
gests to jointly optimize a modified objective that penalize the ELBO by a classification loss
C on the labeled data so that the parameters φC also benefits from the learned data. They
introduce the modified objective function

Jα = J + α ⋅ C, (4.15)

where α is a parameter set by cross-validation. This modified lower bound can be interpreted
as placing a Dirac prior on c [136] or as a correction term for noisy labels [139]. In their
procedure, Jα is optimized with respect to all parameters [θ, φ, φC] and for a fixed number
of epochs. This joint training procedure is appealing as it shapes the latent space directly,
through the modification of the encoder’s weights. However, we found this approach to have
two limitations. First, this joint training breaks down the mixing in the latent space in the
case of transferring labels from one dataset to another. We attribute this to the loss C having
only contributions from a unique dataset. Second, we did not find convenient to choose the
optimal value for the parameter α and concluded it may not be desirable for a practitioner
either.

We use in scANVI an alternate training procedure which deletes the need for α and
has better performance in the setting of transferring annotations. We aggressively train the
classifier separately, updating the parameters φC for c > 1 epochs for every single epoch of
updating [θ, φ]. The total number of epochs is fixed and chosen high enough to guarantee
convergence. In the case of a single dataset (resp. transfer of labels), we use c = 1 (resp.
c = 100) epochs of classifier training in between each variational update. This helps the
classifier correctly identify cell types at the end of each epoch of updating φC. This is a
clearly advantageous procedure, because it then improve indirectly the latent space quality,
through the next steps of optimization.

4.2.5 Choice of hyperparameters

Notably, scANVI and scVI both have a certain number of hyperparameters. In the following
evaluations, conducted on different datasets and different scenarios, we use the exact same
set of hyperparameters in order to demonstrate that our methods can be applied with a
minimal requirement of hyperparameter tuning.

For all harmonization tasks in this chapter, we consistently use the same set of hyper-
parameters. Each network has exactly 2 fully-connected layers, with 128 nodes each. The
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number of latent dimensions is 10, the same as other algorithms for benchmarking purposes
(e.g., the number of canonical correlation vectors used in Seurat Alignment). The activa-
tion functions between two hidden layers are all ReLU. We use a standard link function
to parametrize the distribution parameters (exponential, logarithmic or softmax). Weights
for the first hidden layer are shared between fw and fh. We use Adam with η = 0.001 and
ε = 0.01. We use deterministic warmup [96] and batch normalization [116] in order to learn
an expressive model. When we train scANVI, we therefore assume that the data come from
a set of Cobserved+Cunobserved populations, each generated by a different distribution of zn val-
ues. This set includes the Cobserved populations for which annotated cells are available, and
Cunobserved population that accounts for cell types for which an annotation is not available to
the algorithm.

We also provide a robustness study for hyperparameters in the context of harmonization
in Figure 4.A.

4.2.6 Alternative model choices

Zero-inflation in the context of harmonization

In this chapter, we mainly rely on a zero-inflated negative binomial (ZINB) distribution for
the counts — which is a widely used model for single cell transcriptomics data. Recent
research however suggests that for some technologies such as droplet-based UMI single-cell
protocols, the abundance of zero mainly may be explained only by limited sensitivity and
subsampling effect [140]. On the other hand, zero-inflated might be a realistic addition to
count distributions for describing full-length plate-based technologies data [141]. Indeed,
it has been hypothesized that PCR duplication or uneven fragment sampling may be re-
sponsible for zero-inflation in plate-based technologies [140]. Still, no definite conclusion
can be drawn about which distribution better fits UMI technologies or full-length method.
Although full-length methods seem more affected by technical noise, they also provide extra
information at the transcript resolution that is lost in droplet-based UMI methods. Conse-
quenly, many consortia have chosen to obtain data by both full-length and UMI methods [7,
142]. A method that can flexibly use different distribution and appropriately these two data
types is therefore extremely valuable for analyzing collections of single cell transcriptomics
data.

scVI and scANVI are both flexible to use both ZINB and NB methods and we show in
Figure 4.S that the benchmarking results are similar using both methods in all four datasets
used in our benchmarking procedure. However, we observed that for MarrowTM dataset,
using the ZINB version of scVI does perform better in terms of harmonization. Since in this
case, we are merging a 10x dataset with a Smart-Seq2 dataset, we compared the average
zero-inflation parameter for each gene in each dataset and found that the differences between
Smart-Seq2 and 10x are significantly skewed to the right (more zero-inflation in Smart-Seq2,
p=6.3e-31, using a D’Agostino-Pearson K2 test). Finally, we also performed differential
expression with negative binomial versions of scVI and scANVI and show that results are
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Negative log-likelihood DentateGyrus MarrowTM

ZINB model / batch-specific prior 514.5 2339.8
ZINB model / shared prior 513.8 2349.2
NB model / batch-specific prior 523.4 2531.3
NB model / shared prior 524.0 2544.1

Table 4.1: The effect of library size prior and count distribution on the model likelihood

similar (Figure 4.T). These results show that both NB and ZINB model can be used in scVI
and scANVI and in most instances, downstream analysis might not be impacted by this
modeling choice. Interestingly, our model successfully learns the difference in the degree of
zero-inflation in different datasets while merging them and exploits this information when
necessary.

Library-size prior for scVI and scANVI

Besides zero-inflation, another major difference between sequencing technologies is the se-
quencing depth. scVI and scANVI both make use of technical scalar factors that have a
batch-specific prior, and are therefore extremely suited for this setting. To evaluate the ef-
fectiveness of both the model and the prior choice, we compute the negative log likelihood of
the scVI model using ZINB with batch-specific library size prior, ZINB with shared library
size prior, NB with a batch-specific library size prior, and NB with shared library size prior.
All four models are fit on two pairs of datasets, DentateGyrus (Fluidigm C1 and 10x) and
MarrowTM (10x and SmartSeq2). Since only the second pair is a comparison between UMI
and full-length datasets, we expect the differences between the four model choices to be
larger in the MarrowTM comparison, and that ZINB with batch-specific library size prior
to have the highest likelihood (reported in Table 4.1).

4.2.7 Related machine learning literature

Our approach relates to the machine learning literature in two major aspects. First, we
relate the problems of harmonization and annotation to the litterature of domain adapta-
tion or covariate shift. Second, we present all the different options for performing semi-
supervised learning with variational autoencoders (VAEs) and further explain how they
relate to scANVI.

Domain adaptation

In the supervised learning framework, data is drawn from a distribution PX and one posits
a conditional distribution PY ∣X from which to draw the labels. There are multiple flavors of
domain adaptations [143]. We focus here in the setting where one observes paired data on a
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certain source domain PSXPY ∣X but no labels on a target domain PTX with PSX ≠ PTX (commonly
referred to as distribution shift, or covariate shift in the statistical literature). Our problem of
single-cell annotation is much related to this variant of supervised domain adaptation where
one observes the cell labels for one dataset and wishes to transfer it to another (annotated)
dataset. This is a well-established research area in computer vision, where algorithms such
as NBNN [144] and JDA [145] are used to transfer labels over datasets of images (e.g.,
with different lightning conditions, collections of images). As these algorithms might not
scale to millions of samples, a notable contribution is the DANN framework [146] which
learns a adversarial classifier to in order to generalize to the new (unlabelled) dataset. This
approach is justified from the statistical theory perspective as the adversarial regularization is
equivalent to controlling for the H-divergence between source domain PSX and target domain
PTX . Another notable contribution is the variational fair autoencoder, which focuses on semi-
supervised domain adaptation with VAEs [65] by adding a maximum mean discrepency [147]
loss between source and target latent distributions.

Moving away from the supervised domain adaptation scenario, recent work based on
generative adversarial networks [42] focuses on unsupervised domain adaptation of unpaired
datapoints. This problem is relevant to the scRNA-seq methodology since one never gets to
observe the same cell several times (the protocol is a destructive process). CycleGAN [148]
is based on the idea of cycle consistency (a translator that would transform a french sentence
into english and then back to french again should be the identity map). This idea was then
improved by Cycada [149], which adds more consistency to the objective function. Star-
GAN [150] extended CycleGAN to multiple domains while reducing the overall complexity.
Finally, MAGAN [151] proposed to add a correspondence loss to further orient the manifold
alignment and facilitate the inference. Notably, MAGAN [151] was also applied to merging
scRNA-seq and CyTOF data.

Semi-supervised learning with variational autoencoders

Extending scVI to semi-supervised learning took some design that we describe here. Our
first attempt was based on the M2 model [136]. While this algorithm performed a posteriori
as good or better than the final version of scANVI (in terms of cross-validation estimate of
the cell type prediction accuracy), it restrained our latent space z to be conditioned on the
cell type label (as in the conditional VAE [69]) and it was not possible anymore to visualize
the latent space, which is an crucial practice in scRNA-seq data analysis [152]. We therefore
turned to extending scVI based on the M1 + M2 model [136], which enabled both a flexible
modeling of cell types and visualization of a joint latent space for all cells. We also tried more
complicated models based on the M1 + M2 model such as ADGM [153] and LVAE [154] but
did not find them to contribute significantly enough to the accuracy, which might be either
due to the labeling errors in the dataset, because dividing cells into cell types is a relatively
easy problem in most regimes (e.g., not considering rare cell types) or because of the limited
sample size in the datasets we consider.
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4.2.8 Related scRNA-seq harmonization work

Why is harmonization a subtle problem?

Harmonization is a hard and ill-defined problem. Especially, it can be difficult to formulate
exactly its objective and at which level of granularity the “harmonization” is expected. Let
us take the example of two scRNA-seq datasets of peripheral blood mononuclear cells. If
we assume that these datasets that are exact biological replicates and with the same exper-
imental conditions, then the problem is well defined. We wish to identify latent variables
that govern these biological processes (for example, clear demarcation of cell types). Fun-
damentally, this is possible because we made a non-confounder assumption, and therefore,
removing in a principled way all the variation in the data that corresponds to batches is
reasonable.

However, if we consider a more complex although also more common case, the biology
might be slightly different from one dataset to another. For example, in the case of T
cell activation (one stimulated sample and one control sample), we expect that the overall
clusters should stay similar. At a broader level, CD4 T cells should cluster together, as
for all the other cell types. However, a non-negligible proportion of T cells will express
markers of activation. In this case, forcing the latent spaces to exactly overlay might be
problematic in the sense that this subtle signal of activation will be lost. One might think
about the activation signal as a confounding factor for harmonization, and this makes the
overall problem much more difficult (ill-posed).

Therefore, it is extremely important to state how different models perform harmonization
and what are their underlying hypotheses and modeling capabilities.

State-of-the-art approaches

scmap [133] proposes a new gene filtering method to select gene that are claimed to be in-
variant to batch-effects. However, it is clear that over filtering can lead to ignoring biological
information. MNN [109] assumes that the topology of cell types can be easily resolved by a
k-nearest neighbors graph, where neighborhoods are defined with respect to the cosine dis-
tance. This allows MNN [109] and all the neighbor-matching-based approaches [129, 128] to
remarkably merge batches with the risk of also merging cell types in the case where they are
not detectable with this normalization scheme. SAUCIE [155] and MMD ResNet [80] both
propose to perform batch-correction by adding on their objective function a non-parametric
measure of distance between distributions (maximum mean discrepancy). This approach
specifically assumes that each dataset has the same cell type composition and the same bi-
ological signal. Therefore, SAUCIE and ResNet are susceptible to perform over-correction.
Seurat Alignment [125] relies on a milder assumption that there is a common signal exactly
reproducible between the two datasets and that CCA capture most of the biological varia-
tion. This is not obviously true considering limited suitability of linear Gaussian model for
scRNA-seq. Seurat anchors [129] relies on CCA and suffers from the same problems as MNN
with its specific normalization scheme. Finally, the recent LIGER [127] method at first sight
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seems like a non-probabilistic version of scVI since it also learns a degenerate conditional
distribution via its integrative non-negative matrix factorization [127] (NMF is a noisy-less
version of a Gamma-Poisson generative model). However, it has a further quantile normal-
ization of the latent spaces within clusters. First, the output of the clustering algorithm is
not necessarily correct and could perturb downstream analyses. Second, if a cell type would
be slightly different from one condition to another, this information would be lost in the
final latent space. Overall, all these correction methods can therefore potentially lead to
over-correction and statistical artifacts [134].

Our approach

scVI and scANVI perform harmonization by learning a common generative model for a
collection of gene expression probability distributions [p(x ∣ z, s)]s∈{1,...,K} indexed by the
dataset-identifier s. The statistical richness of the collection of conditional distributions
dictates the flexibility of our model towards integrating datasets.

Another notable factor that sensibly contributes to harmonization capabilities is the prior
for cell-specific scaling factor ln that is dataset-specific. This helps probabilistically removing
library-size caused discrepancies in the measurements and is more principled than normaliza-
tion of the raw data [79]. Another important parameter is the parametrization of the neural
network that maps variables (z, γ) to the expected frequencies E[w ∣ z, s] = fw(z, s). Since
our function fw is now potentially non-linear, our model can benefit from more flexibility
and fit batch-specific effects locally for each cell types or phenotypical condition. Especially,
depending on how one designs the neural architecture of fw, it is possible to more flexibly
correct dataset-specific effects. More specifically, we treat fw as a feed-forward neural net-
work for which at each layer we concatenate the batch-identifier with the hidden activations.
A consequence of this design is that with more hidden layers in fw, less parameters are shared
and the family of distributions [p(x ∣ z, s)]s∈{1,...,K} has more flexibility to fit batch-specific
effects (Figure 4.Aa-c). Conversely, when the latent dimension grows, the generative network
has less incentive to use the dataset covariate and might mildly duplicate the information in
its latent space (Figure 4.Ad-f). Throughout the chapter, we have fixed those parameters
and show competitive performance for all our datasets.

Another insight comes from how the variational distribution q(z ∣ x, s) is parametrized.
Our neural networks play the role of an explicit stochastic mapping from the gene expression
xn of a single-cell n to a location in a latent space zn (a standard theme in scRNA-seq
analysis). With this map, we match an empirical distribution in gene expression space
(i.e, a dataset) pdata(x, s) = ∑n δ(xn,sn)(x, s), with a certain distribution on the latent space
pdata(z) = ∑n δΦ(xn,sn)(z). In certain cases, even though we designed this latent space to
represent biological signal, the transformed dataset might still be confounded by technical
effects [16]. In particular, this effect is susceptible to be severe when the generative model
is not flexible enough to fit the dataset-specific effects or has a model misfit (as in, to some
extent, the case with the CCA of [125] that assumes the data is log-normal). In this case,
the go-to method is to empirically constrain the mapping (i.e the variational network in our
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case or the latent space itself in the case of Seurat) to match the collections of variables
pdata(z, s)s∈{1,...,K}. This is what is done via all the methods presented above. Therefore,
our method might be improved with respect to the entropy of batch mixing by adding some
specific penalties to the loss function, but at the price of risking to over-correct. We have
preferred to not add any penalties, which is enough for most applications (especially all those
in this chapter).

4.3 Results
In the following we demonstrate that our framework compares favorably to state-of-the-art
methods for the problems of harmonization and annotation in terms of accuracy, scalability,
and adaptability to various settings. The first part of the chapter focuses on the harmo-
nization problem and covers a range of scenarios, including harmonization of datasets with
varying levels of biological overlap, handling cases where the data is governed by a contin-
uous (e.g., pseudotime) rather than discrete (cell types) form of variation, and processing
multiple (> 20) datasets. While we demonstrate that scVI performs well in these scenarios,
we also demonstrate that the latent space learned by scANVI provides a proper harmonized
representation of the input datasets — a property necessary for guaranteeing its performance
in the annotation problem.

In the second part of this result section we turn to the annotation problem and study its
two main settings, namely transferring labels between datasets and ab-inito labeling. In the
first setting we consider the cases of datasets with a complete or partial biological overlap and
use both experimentally- and computationally- derived labels to evaluate our performance.
In the second setting, we demonstrate how scANVI can be used effectively to annotate a
single dataset by propagating high confidence seed labels (i.e., based on marker genes) and
by leveraging a hierarchical structure of cell state annotations. Finally, we demonstrate that
the generative models inferred by scANVI and scVI can be directly applied for hypotheses
testing, using differential expression as a case study.

4.3.1 Presentation of the datasets

We apply our method on datasets generated by a range of technologies (10x Chromium [103,
92], plate-based Smart-Seq2 [156], Fluidigm C1 [157], MARS-Seq [158], inDrop [159] and
CEL-Seq2 [160]), spanning different numbers of cells (from a few thousand to over a hundred
thousand cells), and originating from various tissues (mouse bone marrow, human peripheral
mononuclear blood cells [PBMCs], human pancreas, mouse brain). Datasets are listed and
referenced in Table 4.2.

Gene Selection A common practice in data harmonization is to perform gene selection
prior to harmonization. This assumption is critical when the number of genes that can
be taken into account by the algorithm is small and potentially biological signal could be
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lost. scVI is however designed for large datasets which do not fall into the high-dimensional
statistics data regime [10]. Remarkably, there is no need for crude gene filtering as part
of our pipeline and we adopt it as part of this publication only for concerns of fairness in
benchmarking. For real datasets, we calculated the dispersion (variance to mean ratio) for all
genes using Seurat in each dataset and selected g = 1,000 genes with the highest dispersion
from each. The performance of scVI is not as affected by gene set and we use the same gene
selection scheme as in [125] to ensure fairness in our comparison. We then took the union
of these gene list as input to Seurat Alignment, MNN and scANVI. One exception is the
differential expression study for which we kept the gene set (g = 3,346) to have it match the
bulk reference as in [10].

Cell type labeling for the Tabula Muris Dataset For the Tabula Muris dataset, cell
types are defined by first reducing the dimensions of the data by principal component analysis
and then performing nearest-neighbor-graph-based clustering. The labels for Smart-Seq2 and
10x data are derived independently. All cells in both dataset are labeled, but there is also a
possibility that they are mislabelled since the labels are computationally derived. Since cells
used in Smart-Seq2 are first FACS sorted into each plate, some cell types might have been
lost during the sorting process, resulting in incomplete overlap in cell types between the two
datasets.

Normalization of SmartSeq2 data For the MarrowMT-ss2 dataset, we normalized the
read counts per gene by relative transcript length (average transcript lengths of a gene
divided by average gene length over all genes), and subsequently took the integer part of
the normalized count. This is different from standard normalization procedures in that we
do not normalize by cell size because cell size normalization can be performed by scVI. And
we only keep the integer part of the counts, due to the distributional assumptions made by
scVI. The scVI model can to be extended to fit data with amplification bias, however we
have not done so for this chapter and thus have to perform this normalization heuristic.

4.3.2 Harmonizing pairs of datasets with a discrete population
structure

We conducted a comparative study of harmonization algorithms on four different instances,
each consisting of a pair of datasets. The first pair (PBMC-CITE [5], PBMC-8K [92]) repre-
sents the simplest case, in which the two datasets come from very similar biological settings
(i.e., PBMCs) and are generated by the same technology (i.e., 10x) but in different labs
(i.e., akin to batch correction). A second scenario is that of similar tissue but different
technologies, which we expect to be more challenging as each technology comes with its own
characteristics and biases [166]. For instance, some methods (10x, CEL-Seq2) profile the end
of the transcript and use Unique Molecular Identifier (UMI) to mitigate inflation in counting,
whereas others (e.g., most applications of Smart-Seq2) consider the full length of the tran-
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Dataset Name Tech. n cells Description Ref.

PBMC-8K 10x 8,381 peripheral blood mononuclear cells
(PBMCs) from a healthy donors; labels
extracted from [98]

[92]

PBMC-CITE 10x 7,667 PBMCs obtained from CITE-seq; labels
generated manually by inspection of pro-
tein marker level on Seurat clusters

[5]

PBMC-68K 10x 68,579 fresh PBMCs collected from healthy
donor

[103]

PBMC-Sorted 10x 94,655 Bead-purified PBMCs collected from the
same donor as PBMC68K

[103]

MarrowTM-10x 10x 4,112 Mouse bone marrow cells collected from
two female mice

[7]

MarrowTM-ss2 Sma.-Seq2 5,351 FACS sorted cells (B cells, T cells, gran-
ulocytes and Kit (+), Sca-1 (+) and Lin
(-) hematopoietic stem cells) from 3 male
and 2 female mice,

[7]

Pancreas-InDrop inDrop 8,569 Human Pancreas [161]

Pancreas-CELSeq2 CEL-Seq2 2,449 Human Pancreas [162]

DentateGyrus-10x 10x 5,454 Mouse Dentate Gyrus [163]

DentateGyrus-C1 Fluid. C1 2,303 Mouse Dentate Gyrus [163]

CORTEX 10x 160,796 Mouse Nervous System [164]

HEMATO-Tusi inDrop 4,016 Hematopoeitic Progenitor Mouse Cells [105]

HEMATO-Paul MARS-seq 2,730 Hematopoeitic Progenitor Mouse Cells [165]

SCANORAMA Mixture 105,476 human cells from 26 diverse scRNA-seq
experiments across 9 different technolo-
gies

[128]

Table 4.2: List of datasets used in this chapter. Note that for the PBMC-Sorted 11 cell types
were collected according to the paper but only 10 are available from the 10x website [92].
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script without controlling for this potential bias. Additionally, some protocols (e.g., Smart-
Seq2) tend to have higher sensitivity and capture more genes per cell compared to others.
Finally, studies using droplet based protocols tend to produce much larger numbers of cells
compared to plate-based methods. We explore three such cases, including a bone marrow 10x
and Smart-Seq2 pair from the Tabula Muris project (MarrowTM-10x, MarrowTM-ss2 [7]),
a pancreas inDrop and CEL-Seq2 pair (Pancreas-InDrop, Pancreas-CEL-Seq2 [161]), and a
dentate gyrus 10x and Fluidigm C1 pair (DentateGyrus-10x, DentateGyrus-C1 [163]).

Successful harmonization should satisfy two somewhat opposing criteria. On the one
hand, cells from the different datasets should be well mixed; namely, the set of k-nearest
neighbors (kNN) around any given cell (computed e.g., using euclidean distance in the har-
monized latent space) should be balanced across the different datasets. For a fixed value
of k, this property can be evaluated using the entropy of batch mixing [109], which is akin
to evaluating a simple k-nearest neighbors classifier for the batch identifier. Briefly, the
entropy of batch mixing is the average negative entropy of cell type proportion of the k-
nearest-neighbors of each cell in the harmonized latent space. Higher value for this metric
indicates that the harmonized latent space shows strong mixing: the neighbors of each cell is
composed of cells from different batches. While this property is important, it is not sufficient,
since it can be achieved by simply randomizing the data. Therefore, in our evaluation we
also consider the extent to which the harmonized data retains the original structure observed
with each dataset taken in isolation. Here, we expect that the set of k-nearest neighbors of
any given cell in its original dataset should remain sufficiently close to that cell after har-
monization. We evaluate this property using a measure we call k-nearest neighbors purity,
computed as the average percent overlap of the k-nearest-neighbors of each cell before and
after harmonization. This metric takes value between 0 and 1 and higher values indicate
better retainment of structure. This criteria is important, but is maximized by a trivial
approach of simply concatenating the latent spaces. Of course, this will result in poor per-
formance with respect to our first measure. Our evaluation therefore relies on both types
of measures, namely mixing of data sets and retainment of the original structure. Since
our results depend on the neighborhood size k, we consider a range of values - from a high
resolution (k = 10) to a coarse (k = 500) view of the data.

We compare scVI to several methods, including MNN [109], Seurat Alignment [125],
ComBat [108] and principal component analysis (PCA). In addition, and in order to com-
pare our methods to unpaired data integration approaches based on generative adversarial
networks [148], we also tested MAGAN [151]. However, even after manual tuning of the
learning rate hyperparameter, the input datasets remain largely unmixed (Figure 4.B). This
might be due to the fact that MAGAN was not directly applied to harmonize pairs of scRNA-
seq datasets and need more tuning to be applicable in that context. For each algorithm and
pair of datasets, we report embeddings computed via a Uniform Manifold Approximation
and Projection (UMAP) [167] (Figure 4.2a, Figure 4.C - 4.F) as well as the two evaluation
metrics (Figure 4.2b-c).

Overall, we observed that scVI compares favorably to the other methods in terms of
retainment of the original structure (Figure 4.2a) and performs well in terms of mixing
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Method PBMC8KCITE MarrowTM Pancreas DentateGyrus

scVI 0.73395 0.74325 0.81425 0.5418

scANVI1 0.74465 0.7418 0.76625 0.55875

scANVI2 0.8184 0.77825 0.78815 0.54135

Seurat 0.7351 0.72095 0.6174 0.4149

MNN 0.7364 0.6783 0.76205 0.4296

PCA 0.59895 0.6089 0.5474 0.4179

Table 4.3: Additional metric for retainment of structure via k-means clusters preservation.
For scANVI we perform semi-supervision using the cell type label (not k-means cluster
labels) from only one of the two datasets. Thus we train two separate models SCANVI1 and
SCANVI2. To obtain a measure of clustering conservation, we first run k-means clustering
in the latent space of dataset 1, then in the harmonized latent space using only cells from
dataset 1. We compute the adjusted Rand Index of the two clustering results. We then do
the same for dataset 2 and the final score is the average for both datasets.

(Figure 4.2b) for a wide range of neighborhood sizes and across all dataset pairs. The trade-
off of these two aspects of harmonization for a fixed k is shown in Figure 4.2c, and again
scVI and scANVI performs favorably and show up on the top right corner of the scatter
plot. scANVI performs slightly better than scVI. Furthermore, because the conservation of
k-nearest neighbors might be more indicative of a local stability of the algorithm and misses
the clustering aspect of the data, we also quantified the conservation of cluster assignments.
Towards this end, we used the adjusted Rand index to compare the agreement of a k-
means clustering algorithm, before and after harmonization (Figure 4.2d). Reassuringly, our
positive results for preservation of the output of a clustering algorithm indicates that scVI
and scANVI are also stable with regards to more global aspects of the data.

While scANVI was designed for the problem of cell state annotation, we also wanted to
evaluate its ability to harmonize datasets, which can be seen as a prerequisite. To evaluate
this, we consider each dataset pair twice, each time using labels from one of the datasets
(exploiting the semi-supervision framework of scANVI) and leaving the other one unlabeled.
Reassuringly, we found that scANVI is capable of effectively harmonizing the datasets, with
a similar performance to that of scVI in terms of entropy of batch mixing and retainment
of the original structure (Figure 4.2). We further explore the performance of scANVI in the
annotation problem in the subsequent sections.
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Figure 4.2: Benchmarking of scRNA-seq harmonization algorithms. Each row is a different
dataset. Each column is a metric. (a) k-nearest neighbors purity that ranges from 0 to
1, with higher values meaning better preservation of neighbor structure in the individual
datasets after harmonization. (b) Entropy of batch mixing where higher values means that
the cells from different datasets are well-mixed. (c) The trade-off between the kNN purity
and entropy of batch mixing for a fixed K = 150. Methods on the top right corner have
better performances. (d) The trade-off between entropy of batch mixing and the preserva-
tion of biological information using an alternative unsupervised statistic k-means clustering
preservation.
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4.3.3 Harmonizing datasets with a different composition of cell
types

One of the primary challenges of the harmonization problem is handling cases in which the
cell types present in the input datasets only partially overlap or do no overlap at all. Since
this is a plausible scenario in many applications, it is important to account for it and avoid
over-normalizing or “forcing” distinct cell populations onto each other. To evaluate this,
we performed several stress tests in which we artificially manipulated the composition of
cell types in the input datasets prior to harmonization. As our benchmark method we use
Seurat Alignment, which performed better than the remaining benchmark methods in our
first round of evaluation (Figure 4.2).

As a case study, we used a pair of PBMC datasets (PBMC-CITE [5], PBMC-8K [92])
that initially contained a similar composition of immune cell types (Table 4.4). We were
first interested in the case of no biological overlap (Figure 4.3a-d). To test this, for a given
cell type c0 (e.g., natural killer cells), we only keep cells of this type in the PBMC-CITE
dataset and remove all cells of this type from the PBMC-8K dataset. In Figure 4.3a-b, we
show an example of UMAP visualization of the harmonized data, with natural killer cells
as the left out cell type c0. Evidently, when harmonizing the two perturbed datasets with
scVI, the natural killer cells appear as a separate cluster and are not wrongly mixed with
cells of different types from the other dataset. Conversely, we see a larger extent of mixing
in the latent space inferred by Seurat Alignment. A more formal evaluation is provided
in Figure 4.3c-d, which presents our harmonization performance metrics for each cell type
averaged across all perturbations (in each perturbation, c0 is set to a different cell type). We
also included scANVI with the true number of cell types (C = 6) in this analysis, using the
cell labels from the PBMC-CITE dataset.

Under the ideal scenario of a successful harmonization, we expect both a low entropy of
batch mixing (since the datasets do not overlap), and retainment of the original structure.
Evidently, both scVI and scANVI exhibit a consistently low level of batch mixing that is
better or comparable to that of Seurat Alignment, while retaining the original structure more
accurately.

As an additional scenario, we investigated the case where the input datasets contain a
similar set of cell types, with the exception of one cell type that appears in only one of
the datasets. To simulate this, for a given cell type c0, we removed cells of this type from
the PBMC-8K dataset, and then harmonize the remaining cells with the unaltered PBMC-
CITE (which still contains c0). We show an example of UMAP visualization in Figure 4.3e-f,
removing CD4+ T cells from the PBMC-8K dataset. Evidently, in the scVI latent space,
the PBMC-CITE “unique” CD4+ T cell population is not wrongly mixed with cells from the
perturbed PBMC-8K dataset, but rather appears as a distinct cluster. For a more formal
analysis, Figure 4.3g-i shows the harmonization statistics for perturbing the six major cell
types present in the PBMC datasets. As above, we also evaluated scANVI in this context,
using the labels from the unperturbed (PBMC-CITE) dataset.

Figure 4.3g shows that the entropy of batch mixing from the “unique” population (av-
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cell-type
PBMC-8K
proportion

PBMC-CITE
proportion

NK cells 0.036 0.178

CD8 T cells 0.119 0.091

B cells 0.133 0.104

FCGR3A+
Monocytes 0.028 0.029

CD14+
Monocytes 0.186 0.159

CD4 T 0.421 0.436

Dendritic Cells 0.026 0

Megakaryocytes 0.008 0

Other 0.043 0.004

Table 4.4: Composition of cell-types in the PBMC-8K and the PBMC-CITE dataset

eraging over all six perturbations) is low in all three methods (scVI, scANVI and Seurat
Alignment), with a slight advantage for scVI and scANVI. Figure 4.3h-i shows the harmo-
nization statistics for each population, averaging over all shared cell types between the two
datasets. Evidently, for the populations that are indeed common to the two datasets, scVI
and scANVI are capable of mixing them properly, while preserving the original structure,
comparing favorably to Seurat Alignment on both measures. Overall, the results of this
analysis demonstrate that scVI and scANVI are capable of harmonizing datasets with very
different compositions, while not forcing erroneous mixing. These results are consistent with
the design of scVI and scANVI, which aim to maximize the likelihood of a joint generative
model, without making a priori assumptions about the similarity in the composition of the
input datasets.

In a similar but more complex experiment, we also study the case when the two datasets
both have their own unique cell types but also share several common cell types. Populations
unique to each dataset have low mixing (Figure 4.Ga), especially with scVI and scANVI.
Conversely, the shared populations have a substantially higher mixing rate (Figure 4.Gc).
Specifically, scANVI and scVI both mix shared populations better than Seurat, with a better
overall performance for scANVI. Finally, the preservation of original structure is higher scVI
and scANVI when compared to Seurat across all cell types, especially for B cells, NK cells and
FCGR3A+ Monocytes (Figure 4.Gb). Overall, these results demonstrate that our methods
do not tend to force wrong alignment of non-overlapping parts of the input datasets.
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Figure 4.3: Harmonizing datasets with different cellular composition. (a − d) show the case
when no cell type is shared. PBMC-8K contains all cells other than cell type c0 while
PBMC-CITE contains only cell type c0. (a − b) UMAP visualization for the case where c0

corresponds to natural killer cells. (c − d) entropy of batch mixing and k-nearest neighbors
purity, aggregating the six experiments (setting c0 to a different cell type in each experiment).
(e − i) show the case when cell type c0 is removed PBMC-8K but not from PBMC-CITE.
(e− f) UMAP visualization for the case where c0 corresponds to CD4+ T cells. (g) entropy
of batch mixing for the removed cell type. (h) entropy of batch mixing for the remaining cell
types. (i) k-nearest neighbors purity, aggregating all 6 experiments. Red arrows indicate
the desired direction for each performance measure (e.g., low batch entropy is desirable in
(d)). The boxplots are standard Tukey boxplots where the box is delineated by the first and
third quartile and the whisker lines are the first and third quartile plus minus 1.5 times the
box height. The dots are outliers that fall above or below the whisker lines.
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4.3.4 Harmonizing continuous trajectories

While so far we considered datasets that have a clear stratification of cells into discrete
sub-populations, a conceptually more challenging case is harmonizing datasets in which the
major source of variation forms a continuum, which inherently calls for accuracy at a higher
level of resolution.

To explore this, we use a pair of datasets that provides a snapshot of hematopoiesis in
mice (HEMATO-Tusi [105], HEMATO-Paul [165]; Figure 4.4). These datasets consist of cells
along the transition from common myeloid progenitor cells (Figure 4.4a-b; middle) through
two primary differentiation trajectories myeloblast (top) and erythroblast-megakaryocyte
(bottom). Notably, the HEMATO-Tusi dataset contains cells that appear to be more termi-
nally differentiated, which are located at the extremes of the two primary branches. This can
be discerned by the expression of marker genes (Figure 4.4e). For instance the HEMATO-
Tusi unique erythroid cell population expresses Hba-a2 (hemoglobin subunit) and Alas2
(erythroid-specific mitochondrial 5-aminolevulinate synthase) that are known to be present
in reticulocytes [168, 169]. At the other end, the granulocyte subset that is captured only
by HEMATO-Tusi expresses Itgam and S100a8. S100a8 is a neutrophil specific gene pre-
dicted by Nano-dissection [170] and is associated with GO processes such as leukocyte mi-
gration associated with inflammation and neutrophil aggregation. Itgam is not expressed in
granulocyte-monocyte progenitor cells but is highly expressed in mature monocytes, mature
eosinophils and macrophages [171]. We therefore do not expect mixing to take place along
the entire trajectory. To account for this, we evaluated the extent of batch entropy mixing at
different points along the harmonized developmental trajectory. As expected, we find that
in most areas of the trajectory the two datasets are well mixed, while at the extremes, the
entropy reduces significantly, using either scVI or Seurat Alignment (Figure 4.4c). Overall,
we observe that scVI compares well in terms of both mixing the differentiation trajectories
in each dataset and preserving their original, continuous, structure (Figure 4.4a-d).

To validate scANVI in this context as well, we provided it with the categorical labels of
cells along the two developmental trajectories, indicating their cell state (Figure 4.4c-d and
Figure 4.H). Even though this labeling scheme does not explicitly account for the ordering
between states, we observe that scANVI is capable of mixing the two datasets, while retaining
their original structure, achieving a level of accuracy comparable to that of scVI and better
than that of Seurat Alignment.

4.3.5 Rapid integration of multiple datasets

To demonstrate the scalability of our framework in the context of harmonizing multiple (and
possibly large) dataset, we ran scVI to integrate a cohort of 26 datasets spanning 105,476
cells from multiple tissues and technologies, which was made available by the authors of
Scanorama (a method based on truncated singular value decomposition followed by nearest
neighbor matching [128]). Using the hardware specified in the original paper [128] (Intel
Xeon E5-2650v3 CPU limited to 10 cores with 384 GB of RAM), Seurat Alignment and MNN
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Figure 4.4: Harmonizing developmental trajectories. (a−b) UMAP visualization of the scVI
latent space, with cells colored by the original labels from either the HEMATO-Paul (a)
or HEMATO-Tusi (b) studies. The cells from the other dataset are colored in gray. (c)
Entropy of batch mixing along 20 bins of the HEMATO-Tusi cells, ordered by the potential
of each cell. Potential is a pseudotime measure that describes the differentiation state of a
cell using the population balance analysis algorithm (center: common myeloid progenitors;
moving left: erythrocyte branch; moving right: granulocyte branch). (d) k-nearest neighbors
purity for scVI, Seurat, and scANVI. (e) Expression of marker genes that help determine
the identity of batch-unique cells.
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required over 24 hours, while Scanorama completed its run in 20 minutes. Using a simpler
configuration (eight-core Intel i7-6820HQ CPU with 32 GB RAM) along with one NVIDIA
Tesla K80 GPU (GK210GL; addressing 24 GB RAM), we found that scVI integrates all
datasets and learns a common embedding in less than 50 minutes. This running time is
competitive considering the reduced memory availability and the increased complexity of
our model, compared to that of Scanorama. Notably, all the downstream analyses, such as
annotation, differential expression or visualization can be operated by accessing the latent
space or via forward passes through the neural networks. Since these access operations can
be conducted very efficiently [10], the dominant factor, on which we focused our run time
analysis, is the time required for model fitting. Considering the results, the latent space of
scVI recapitulates well the major tissues and cell types (Figure 4.I), and the position of cells
in the latent space provides an effective predictor for the cell type label (Figure 4.I).

4.3.6 Transferring cell type annotations between datasets

We next turned to evaluate scVI and scANVI in the context of harmonization-based annota-
tion. Here, we test the extent to which annotations from a previously annotated dataset can
be used to automatically derive annotations in a new unannotated dataset. For scVI and
Seurat Alignment, we derive the annotations by first harmonizing the input datasets and
then running a k-nearest neighbors classifier (setting k to 10) on the joint latent space, using
the annotated cells to assign labels to the unannotated ones. Conversely, scANVI harmonizes
the input datasets while using any amount of available labels. The prediction of unobserved
labels is then conducted using the approximate posterior assignments qΦ(c ∣ x) of cell types,
directly derived from the model. An alternative approach that we benchmark against was
taken by scmap-cluster [133]. scmap directly builds a classifier based on the labeled cells
(instead of performing harmonization first) and then applies this classifier to the unlabeled
cells. Finally, we also applied the domain adaptation method Correlation Alignment for Un-
supervised Domain Adaptation (CORAL, [172]). This method was not initially developed
for single-cell analysis but is an insightful benchmark from the machine learning literature.

We start by exploring the four dataset pairs in Figure 4.2, which have been annotated in
their respective studies. In each experiment, we “hide” the cell type annotations from one
dataset and transfer the second dataset labels to the first one. As a measure of performance,
we report the weighted accuracy, which is the percent of cells that were correctly assigned
to their correct (hidden) label, averaging over all labels. Importantly, the annotations in
this first set of case studies were derived computationally. For example, by first clustering
the cells, looking for marker genes expressed by each cluster and then assigning labels to
the clusters accordingly. This level of annotation therefore makes the prediction problem
relatively easy, and indeed, while we find that overall scANVI predicts unobserved labels more
accurately, the differences between the methods are mild (Figures 4.J and 4.K). Notably,
CORAL achieves overall competitive performance except when transferring labels on the
MarrowTM pairs, from 10x to Smart-Seq2. In this specific instance, CORAL maps most of
the cells to a single label (incidentally, while this label marks cells that are transcriptionally
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similar, it is defined by the authors as an unknown class “NA”, corresponding to cells that
cannot be confidently assigned or low quality cells according to the authors of [7]), which
might be due to its linear transformation of the feature space.

To evaluate the accuracy of annotations without the need for computationally-derived la-
bels, we turned to the PBMC-CITE dataset which includes measurements of ten key marker
proteins in addition to mRNA [5], and the PBMC-sorted dataset [103], where cells were col-
lected from bead purifications for eleven cell types (Table 4.5). We applied scVI and scANVI
to harmonize and annotate these two datasets along with a third dataset of PBMC (PBMC-
68K [103]). Our analysis contains a combined set of n = 169,850 cells from the three datasets
altogether. To generate a realistic scenario of cell type annotation, we only provide access
to the experimentally-based labels from the PBMC-sorted dataset (Figure 4.5a-c). As an
additional benchmark, we also evaluate Seurat Alignment, which was tested after removal of
a randomly selected subset (40%) of the two large datasets (PBMC-68K and PBMC-sorted)
due to scalability issues. Considering our harmonization performance measures (i.e., retain-
ment of the original structure and batch mixing), we observe as before that scVI and scANVI
perform similarly and compare favorably to Seurat Alignment. We then evaluated the accu-
racy of assigning unobserved labels, focusing on the PBMC-CITE dataset. Instead of using
the labels from the original PBMC-CITE study as ground truth (which were computation-
ally derived), we used the protein data, which provides an experimentally-derived proxy for
cell state. To this end, we quantified the extent to which the similarity between cells in the
harmonized mRNA-based latent space is consistent with their similarity at the protein level.
We first computed the average discrepancy (sum of squared differences) between the protein
measurements in each cell and the average over its k-nearest neighbors. As a second mea-
sure we computed for each PBMC-CITE cell the overlap between its k-nearest PBMC-CITE
neighbors in the harmonized mRNA-based space and in the protein space. We then report
the average across all cells in Figure 4.L. Evidently, scANVI outperformed both scVI and
Seurat Alignment for a wide range of neighborhood sizes, providing a representation for the
mRNA data that is more consistent with the protein data (Figure 4.5c).

4.3.7 Cell type annotation in a single dataset based on “seed”
labels

An important variant of the annotation problem lies within the context of an ab initio
labeling of a single dataset where only a subset of the cells can be confidently annotated based
on the raw data. This increasingly prevalent scenario may result from limited sensitivity of
the scRNA-seq assay, where marker genes may only be confidently observed in a small subset
of cells. One common way to address this problem is to compute some form of a distance
metric between cells (e.g., after embedding with scVI or using Seurat PCA) and then assign
labels based on proximity to annotated cells [103]. To benchmark our methods, we consider
two such predictors: the first is clustering the cells and taking a majority vote inside each
cluster, and the second is taking the majority vote of the k-nearest neighbors around each
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Figure 4.5: Validation of cell type annotations using additional metadata. (a-b) UMAP plot
of the scANVI latent space inferred for three harmonized datasets: PBMC-CITE, PBMC-
sorted, and PBMC-68K. Cells are colored by the dataset of origin (a) and the PBMC-sorted
labels (b). Cells from the PBMC-CITE and PBMC-68K are colored in gray in (b). (c)
The consistency of the harmonized PBMC-CITE mRNA data with the respective protein
measurements, evaluated by mean squared error and for different neighborhood size. Lower
values indicate higher consistency. (d) UMAP plot of the scANVI latent space, where cells
are colored by normalized protein measurement. Only PBMC-CITE cells are displayed. (e)
UMAP plot of the scANVI latent space, with cells from the PBMC-68k dataset colored
according to their original label. For clarity of presentation, only cells originally labeled as
dendritic cells or natural killer cells are colored. Evidently, a large number of these cells are
mapped to a cluster of T-cells (right side of the plot).
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Cell Types # cells

B cells 10,085
CD14+ Monocytes 2,612
CD34+ cells 9,232
CD4 T cells 11,213
CD56 NK cells 8,385
CD8 T cells 10,209
Memory T cells 10,224
Naive CD8 T cells 11,953
Naive T cells 10,479
Regulatory T cells 10,263

Table 4.5: Cell types present in the PBMC-sorted dataset.

unannotated cell (k = 10). While these approaches are quite straightforward, their accuracy
might suffer when the data do not form clear clusters [105], or when differences between
labels are too subtle to be captured clearly by a transcriptome-wide similarity measure.
To address these issues, scANVI takes an alternative approach, namely learning a latent
embedding that is guided by the available labels, and then producing posterior probabilities
for assigning labels to each cell.

As a case study, we compiled a dataset consisting of several experimentally sorted and
labeled subsets of T cells from the PBMC-sorted dataset, including CD4 memory, CD4 naive,
CD4 regulatory and CD8 naive. To make our analysis more realistic, we assume that the
labels are completely unknown to us and therefore assign each T cell to its respective subset
using marker genes (12 altogether):

• CD4 regulatory: GITR+ CTLA4 + FOXP3 + CD25 + S100A4 −CD45 −CD8B−

• CD4 naive: CCR7 + CD4 + S100A4 −CD45 −FOXP3 −IL2RA−CD69 −

• CD4 memory: S100A4 + CD25 −FOXP3 −GITR−CCR7 −

• CD8 naive: CD8B+ CCR7 + CD4 −

Notably, several important biomarkers (CD4, CTLA4, and GITR) are detected in less than
5% of the cells. This renders their use for annotation not straightforward. Furthermore,
many of these biomarkers are sparsely expressed to the extent that they are likely to be
filtered out in the gene selection step of most harmonization procedures (Figure 4.6a).

To analyze this dataset, we first computed a signature score for each cell and for each
label (i.e., T cell subset) using the scaled raw expression values of the respective marker
genes. We then designated the top 50 scoring cells in each subset as the seed set of cells
that are confidently annotated for that subset (Figure 4.6b). Reassuringly, this partial
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annotation is in agreement with the experimentally-derived cell type labels available for this
dataset (Figure 4.6c). However, this dataset does not form clear clusters, and in particular
the seed sets of cells are not well separated. Such an observation makes clustering-based
approaches potentially less precise. Indeed, using k-means clustering on the scVI and Seurat
PCA latent space, we find that 74% and 72% of the cells were assigned with their correct
label. Similar analysis with two additional popular clustering algorithms (DBSCAN [173]
and PhenoGraph [174]) further emphasizes the challenge of a cluster-based approach on
this data. Specifically, DBSCAN does not partition the data into more than one cluster
(scanning through a large number of parameter values), and PhenoGraph predicts 9 clusters
and achieves an accuracy of 41% (Figure 4.M).

Consistent with these results, the application of a k-nearest neighbors classifier resulted in
a similar level of accuracy in the Seurat PCA latent space (71%), which is slightly improved
when replacing it with the scVI latent space (73%; Figure 4.M). Conversely, after fitting the
scANVI model based on this partial labeling, the annotation posterior qΦ(c ∣ z) (Figure 4.6d)
provides a substantially more accurate cell type assignment, with 84% of cells annotated
correctly.

While scANVI has been designed to handle discrete (but not continuous) labels, we
hypothesized that gradual transition between cell states may still be captured by the uncer-
tainty of label assignment. We tested it using simulated data [175] that consists of a set of
“end-point” states along with intermediary states that connect them (Figure 4.Na). We pro-
vided labels only to end-point cells, and investigated the label assignment scores calculated
for the intermediary cells. We find that scANVI provides a range of assignment probabil-
ity values and that these values are proportional to the distance from the respective end
points (Figure 4.Nb-g). Conversely, the scores provided by scmap tend to be more extreme
(Figure 4.Nh-i), thus less reflecting the continuous nature of the data.

4.3.8 Cell type taxonomy and hierarchical classification with
scANVI

Another subtle yet important variation of the annotation problem is when the labels are
not mutually exclusive but rather form a taxonomy of cell types or states. To effectively
annotate cells in this setting, we extended scANVI to perform hierarchical classification,
which as before we carry out from first principles, relying on probabilistic graphical models.

Hierarchical classification of cells onto a cell type taxonomy

For hierarchical label propagation in scANVI, we propose a extension of the formerly pre-
sented model by modifying the variable cn to be a tuple where each entry denotes the label
at a given level of the hierarchy. Our approach is similar to previous work in robustness
to noisy labels [176] and hierarchical multi-labels flavors of classification problems [177].
We now detail the case for a depth of level two in though our approach can in principle
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Figure 4.6: Cell type annotation in a single dataset using “seed” labeling. (a) discrepancies
between marker genes that can be used to confidently label cells and highly variable genes in
scRNA-seq analysis. (b − d) UMAP plot of the scVI latent space. (b) Seed cells are colored
by their annotation (using known marker genes). (c) PBMC-sorted cell type labels from the
original study based on marker-based sorting (d) The posterior probability of each cell being
one of the four T cell subtypes obtained with scANVI.

be adapted to arbitrary depths. In our setting, the taxonomy needs to be hard-coded and
known a priori.

We do not modify the generative model but only the structure of the variable cn in the
variational distribution. Notably, we formally pose:

cn = (yn, y
g
n) ∈ {0, . . . ,C} × {0, . . . ,Cg}, (4.16)

where C denotes the number of cell types and Cg the number of cell type groups. The
parametrization of the full variational distribution q(c ∣ z) = q(y, yg ∣ z) must be further
defined. For this, we notice that the prior taxonomy knowledge encapsulates whether the
assignment (yg, y) = (i, j) is biologically possible (i.e cell type i is a sub-population of group
cell type j). We encode this biological compatibility into a parent function π ∶ {0, . . . ,K}→

{0, . . . ,Kg} that maps a cell type to its parent in the hierarchy. We note for simplicity:

q(yi, y
g
j ∣ z) = q(y = i, yg = j ∣ z). (4.17)
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We then use two neural networks f and fg (with softmax non-linearities) to map the latent
space to the joint approximate posterior q(y, yg ∣ z) with the following rules:

q(yi, y
g
j ∣ z) =

⎧⎪⎪
⎨
⎪⎪⎩

fi(z) if π(i) = j,
0 otherwise.

q(ygj ∣ z) = f gj (z).

(4.18)

Then, we can derive the marginal probability over finer cell types classes using the chain rule
and Bayes rule:

q(yi ∣ z) = q(yi ∣ yπi , z)q(yπi ∣ z) (4.19)

=
q(yi, yπi ∣ x)

q(yπj ∣ x)
q(yπi ∣ z) (4.20)

=
q(yi, yπi ∣ x)

∑
j∈c(πi)

q(yj, yπj ∣ x)
q(yπi ∣ z) (4.21)

=
fi(z)

∑
j∈c(πi)

fj(z)
f gπi(z), (4.22)

where c(πi) denotes the set of children of node i children.

Dataset

To demonstrate this extended version, we use a dataset of the mouse nervous system [164]
that was annotated using a cell type taxonomy with several levels of granularity. At the
lowest (most granular) level, the cells are stratified into 265 cell sub-types. At the second
lowest level of granularity these 265 subtypes are grouped into 39 subsets, each corresponding
to a more coarse definition of a cell type. The multi-level labels are generated through an
iterative process that is described in detail in the original publication [164]. The clustering
was performed with strict quality filters, takes into account anatomical information and
were validated at different levels using existing scRNAseq dataset, osmFISH, RNAscope and
others. The cell types taxonomy is derived differently for each level and the details can be
found in the original publication. Cell type clusters were obtained by Louvain clustering
on a multiscale k-nearest neighbors graph and DBSCAN. The first level separates neurons
and non-neuronal cells. The second level separates peripheral neuronal system from central
neuronal system. The third layer separates anterior posterior domain, and the fourth layer
is split by excitatory versus inhibitory neurotransmitter. At this level, all cells are divided
into 39 subsets, each corresponding to a coarse cell type definition. Then, within each subset
the authors defined (N=28) enriched genes and used linkage (correlation distance and Ward
method) to construct the dendrogram.
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Results

We evaluate the ability of scANVI as well as the competing methods at inferring the most
granular level of labels when provided with partial “seed” annotation — namely label in-
formation for 5 randomly selected cells per label (which accounts for an overall of 0.8% of
the cells). We first observe that Seurat PCA followed by a k-nearest neighbors classifier
provides a weighted accuracy of 23% (averaging over all cell types). While this might seem
like a low accuracy, it is in fact far from trivial since the expected weighted accuracy of a
random classifier or a constant predictor is of around 1/265 ≈ 0.3%. Such low numbers are
due to the high number of labels at this highly granular scale. scVI provides a substantially
better, yet still low level of accuracy at 32%. Interestingly, when scANVI is used without
accounting for hierarchy, its performance is similar to the unsupervised scVI (at 32%), which
might result from very large number of labels that may require hyperparameter tuning (e.g.,
increasing the number of classifier training epochs). However, when we take the hierarchy
of the labels into account, the performance of scANVI increases to 37%, thus outperforming
the other methods by a significant margin. Notably, while we tested the extrapolation of
seed labeling and the hierarchical mode only in the context of a single dataset, this variation
of the scANVI model can also be directly applied in the context of multiple datasets (i.e.,
transferring hierarchical annotations between datasets).

4.3.9 Hypothesis testing in harmonized datasets: the case of
differential expression

With their probabilistic representation of the data, scVI and scANVI each provide a nat-
ural way of performing various types of hypotheses testing. This is different from other
approaches [109, 125, 127, 128, 129] where the dataset alignment procedures do not carry di-
rect probabilistic interpretation, and the resulting harmonized data can thus not be directly
used for these purposes.

Bayesian differential expression with scANVI

Contrary to scVI, scANVI doesn’t need to rely on specific cells for differential expression
since labels are given during the training. We still use the generative model but with the
following probability for p(Hg1 ∣ ca, cb) where ca (resp. cb) is the first (resp. second) cell type
of interest:

p(Hg1 ∣ ca, cb) =∑
s
∫ 1fgw(za,s)≤fgw(zb,s)p(s)dp(za ∣ ua, ca)dp(zb ∣ ub, cb)dp(ua)dp(ub). (4.23)

Notably, we draw here data from the prior distribution and not the posterior for given cells.
As a consequence, these Bayes factors can be approximated in a unbiased fashion using a
naive Monte Carlo estimator. We noticed in the case of the real dataset that the aggregate
posterior on u might not perfectly match the prior for rare cell types. Consequently, we
replaced the prior by the aggregate posterior for all the analyses in this chapter.



CHAPTER 4. SINGLE-CELL ANNOTATION USING VARIATIONAL INFERENCE 90

Figure 4.7: Differential Expression on multiple datasets with scVI. (a) distribution of true log
fold change between all pairs of cell types for the simulated data. The pairs of cells are chosen
to represent different levels of distance on the tree as in Figure 4.Oa. The pairs of population
from most distant to least distant are ‘12’, ‘24’, ‘23’, ‘45’. (b) Evaluation of consistency with
rank correlation and Kendall-Tau is shown for comparisons of multiple pairs of cell types
in the simulated data. (c) Evaluation of consistency with the AUROC and Kendal Tau
metric is shown for comparisons of CD4 vs CD8 T cells and B cells vs Dendritic cells on
the PBMC-8K only (A), the PBMC-68k only (B) and the merged PBMC-8K / PBMC-68K
(A+B) for scVI and edgeR. Error bars are obtained by multiple subsampling of the data to
show robustness. boxplots are standard Tukey boxplots where the box is delineated by the
first and third quartile and the whisker lines are the first and third quartile plus minus 1.5
times the box height. The dots are outliers that fall above or below the whisker lines. (d)
Mislabeling experiment in differential expression in both the SymSim simulated datasets and
in the PBMC8K and PBMC68K dataset. The top row shows differential expression results
for the correctly labeled population pair (Population 1 v.s. Population 2 in simulated dataset
and CD4 T cells v.s. CD8 T cells in PBMC dataset. The bottom row shows differential
expression results for the mislabelled population pair ( Population 2 v.s. Population 3
in simulated dataset and Dendritic Cells v.s. B cells in PBMC dataset). For all, x-axis
represents the proportion of flipped labels.
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Dataset

To demonstrate this, we focus on the problem of differential expression. As a first case study,
we use two of the PBMC datasets (PBMC-8K and PBMC-68K) and looked for differentially
expressed genes in two settings: comparing the B cells to dendritic cells, and similarly for
CD4+ versus CD8+ T cells. For evaluation, we used reference sets of differentially expressed
genes that were obtained from published bulk-level analysis of similar cell subsets (microar-
rays, [113, 114], as in [10]). While this benchmark relies on real data, a clear caveat is the
lack of a well defined ground truth. To address this, we used a second benchmark based on
simulations with Symsim [175]. The simulated data consists of five subpopulations of varying
degrees of transcriptional distance, profiled in two different “batches” of different technical
quality (Figure 4.O). This framework allowed us to derive an exact log fold changes (LFC)
between every pair of simulated subpopulations, which enable a more accurate evaluation of
performance (Figure 4.7a).

In both benchmark studies, we assume that labels are only available for one of the two
input batches or datasets (in the real data we assume that PBMC-8K is the annotated
one). To apply scVI, we first harmonized the input pair of datasets and transferred labels
using a k-nearest neighbors classifier on the joint latent space (k = 10). We then consider
these annotations (predicted and pre-labeled) as fixed and sample 100 cell pairs, each pair
consisting of one cell from each population. For each cell pair we sample gene expression
values from the variational posterior, while marginalizing over the different datasets, to
compute the probability for differential expression in a dataset-agnostic manner. Aggregating
across all selected pairs results in approximate Bayes factors that reflect the evaluated extent
of differential expression.

Results

For reference, we also included edgeR [89] using the same labels as scVI. Notably, edgeR was
shown to perform well on scRNA-seq data [178] and uses a log-linear model to control for
technical sample-to-sample variation.

In our simulations, we considered differential expression between every possible pair out of
the five simulated subpopulations. For evaluation, we computed the Spearman and Kendall
rank correlation coefficients between the true LFC and the inferred Bayes factors (for scVI
and scANVI) or estimated LFC (for edgeR). Our results in (Figure 4.7b) show that with
this artificial, yet more clearly defined objective, scVI was substantially more accurate than
edgeR and that in the harmonized data scANVI provided more exact and stable estimates
than scVI.

To evaluate performance on the real data, we defined genes as differentially expressed
if the adjusted p-value in the reference bulk data (provided by [113, 114]) was under 5%.
Considering these genes as positive instances, we calculated the area under the ROC curve
(AUROC) based on rank ordering the inferred Bayes factors (for scVI and scANVI) or
p-values (for edgeR). Since the definition of positives genes required a somewhat arbitrary
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threshold, we also used a second score that evaluates the reproducibility of gene ranking (bulk
reference vs. single-cell; considering all genes), using the Kendall rank correlation coefficient
(Figure 4.7c). As a reference, we look at the accuracy of differential expression analysis in
each PBMC dataset separately (using their prior annotations to define the sets of cells we
are comparing), which can be computed with scVI (as in [10]) and edgeR. Reassuringly, we
observe that the performance of scVI on the joint data is not lower than it is in either dataset
in isolation. We also find that while scVI performs moderately better than scANVI, both
methods compare favorably to edgeR in terms of accuracy.

Mislabeling of a certain proportion of cells in a dataset is a plausible scenario that may
occur in any study. An important challenge is therefore to maintain the validity of down-
stream analysis despite such “upstream” annotation errors. To evaluate robustness in this
setting, we repeated the simulation analysis, while introducing labeling errors at different
rates. Specifically, prior to evaluating differential expression between two simulated sub-
populations, we flip the labels of a certain proportion (up to 30%) of the respective cells
in the annotated batch. We then proceed as before and assign labels to cells in the unan-
notated batch by scVI or scANVI, followed by differential expression analysis. Our results
(Figure 4.7d) suggest that scANVI is clearly more robust to this type of mislabeling than
scVI (or edgeR, applied on the scVI- derived labels). Repeating the same analysis on the
PBMC data (where the differential expression ground truth is obviously not available), we
observe similar level of robustness in scANVI, albeit with not much difference compared to
scVI and edgeR.

Overall, our results demonstrate that both scVI and scANVI are capable of conducting
differential expression effectively, while working directly on a harmonized dataset. Fur-
thermore, we observe that both methods and especially scANVI are robust to mislabeling,
providing further motivation for explicitly modeling label uncertainty.

4.4 Discussion
In this study, we demonstrated that scVI provides a principled approach to harmonization
of scRNA-seq data through joint probabilistic representation of multiple dataset, while ac-
counting for technical hurdles such as variable library size and limited sensitivity. We have
demonstrated that scVI compares favorably to other methods in its accuracy and that it
scales well, not only in terms of the number of cells (as in [10]) but also the number of input
datasets (as opposed to other methods that work in a pairwise fashion and therefore scale
quadratically with dataset size [128]). We have also shown that the harmonization step of
scVI provides an effective baseline for automated transfer of cell type labels, from annotated
datasets to new ones.

While the performance of scVI in the annotation problem compares favorably to other
algorithms, it does not make use of any existing cell state annotations during model training,
but rather after the latent space has been learned. To make better use of these annotations
(which may be available for only some of the input datasets or only some cells within a
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dataset), we developed scANVI, a semi-supervised variant of scVI. While the latent space
of scVI is defined by a Gaussian vector with diagonal unit variance, scANVI uses a mixture
model, which enables it to directly represent the different cell states (each corresponding
to a mixture component) and provide a posterior probability of associating each cell with
each label. We have demonstrated that similar to scVI, scANVI is capable of harmonizing
datasets effectively. In addition, scANVI provides a way to address a number of variants
of the annotation problem. Here, we have first shown that it performs well in the most
prevalent application of transferring labels from a reference dataset to an unannotated one.
We then demonstrated that scANVI can be used in the context of a single unannotated
dataset, where high confidence (“seed”) labels are first inferred for a few cells (using marker
genes) and then propagated to the remaining cells. Finally, we have shown that scANVI
is especially useful in the challenging case where the differences between cell states are too
subtle to be captured clearly by a transcriptome-wide similarity measure, as well as in the
case where the labels are organized in a hierarchy.

Notably, although scANVI achieves high accuracy when transferring labels from one
dataset to another, it was not designed to automatically identify previously unobserved
labels. Indeed, in Figure 4.R we demonstrate that increasing the number of labels in the
model (C) to values beyond the number of observed labels does not alter the results much.
Nevertheless, we observed that unannotated cell populations that have an unobserved label
are associated with low levels of mixing between the input datasets. We therefore advocate
that clusters from an unannotated dataset that do not mix well should be inspected closely
and, if appropriate, should be manually assigned with a new label.

One concern in applying methods based on neural networks [155, 37, 99, 100, 44] in
single-cell genomics and other domains is the robustness to hyperparameters choices [179].
This concern has been addressed to some extent by recent progress in the field, proposing
search algorithms based on held-out log-likelihood maximization [100]. In this chapter, we
used an alternative approach that is more conducive for direct and easy application of our
methods — namely we fix the hyperparameters and achieve state-of-the-art results on a
substantial number of datasets and case studies.

The development of scVI and scANVI required several modeling and implementation
choices. In Figures 4.S and 4.T we discuss the rationale behind the choice of a zero-inflated
negative binomial (ZINB) distribution as well as robustness to choice of priors. Briefly,
we find that exclusion of zero inflation from the model results in approximately similar
performance, which is consistent with findings in [180, 181]. The only exception is the case
of harmonizing Smart-Seq2 and 10x data sets, in which ZINB performs significantly better.
Such results might suggest that zero-inflation may be more suitable for certain technologies
than others. Similarly, we investigate the prior on the library size which is defined per batch
and show that computing the same prior for both the datasets (rather than each dataset
individually, as we do by default) affects the performance only in the case of harmonizing the
same pair of Smart-Seq2 and 10x datasets. Since these datasets have very different sources
of technical noise, this may suggest that it is indeed advisable to explicitly account for such
differences during model fit.
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An important distinguishing feature of both scVI and scANVI is that they rely on a
fully-probabilistic model, thus providing a way to directly propagate uncertainties to any
downstream analysis. While we have demonstrated this for differential expression analysis
and cell type annotation, this can be incorporated to other tasks, such as differential abun-
dance of sub-populations in case-control studies, correlation between genes and more. We
therefore expect scVI, scANVI and similar tools to be of much interest as the field moves
toward the goal of increasing reproducibility and consistency between studies and converging
on to a common ontology of cell types. In particular, we expect scANVI to be especially
useful for transferring labels while taking into account the uncertainty, or in the case of a
more complex label structure such as hierarchical cell types. Finally, as recent preprints pro-
pose proof of concepts for integrating single cell data across different data modalities such as
Single molecule fluorescent in situ hybridization (smFISH), RNA-seq, ATAC-seq and DNA
methylation [127, 129], further work can utilize probabilistic graphical models that quantify
measurement uncertainties in each assay, as well as the uncertainties of transferring infor-
mation between modalities (e.g., predicting unmeasured gene expression in smFISH data as
in [182]).
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4.5 Supplementary figures

Figure 4.A: Robustness analysis for harmonization of the pair of datasets MarrowMT-10x
/ MarrowMT-ss2 with scVI. (a − c) We augment the number of hidden layers in the neural
network fw and track across n = 5 random initializations for the batch entropy mixing (a),
the held-out log likelihood (b) and the weighted accuracy of a nearest neighbor classifier on
the latent space (c). (d − f) We increase the number of dimensions for the latent variable z
and track across n = 5 random initialization the batch entropy mixing (d), the held-out log
likelihood (e) and the weighted accuracy of a nearest neighbor classifier on the latent space
(f).
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Figure 4.B: Visualization of the output of MAGAN on the DentateGyrus pair of datasets.
Using MAGAN, we projected the first dataset into the second one (a) and vice-versa (b).



CHAPTER 4. SINGLE-CELL ANNOTATION USING VARIATIONAL INFERENCE 97

Figure 4.C: Visualization of the benchmark PBMC-8K / PBMC-CITE. All positions for the
scatter plots are derived using UMAP on the latent space of interest.



CHAPTER 4. SINGLE-CELL ANNOTATION USING VARIATIONAL INFERENCE 98

Figure 4.D: Visualization of the benchmark MarrowMT 10x / ss2. All positions for the
scatter plots are derived using UMAP on the latent space of interest.
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Figure 4.E: Visualization of the benchmark Pancreas InDrop / CEL-Seq2. All positions for
the scatter plots are derived using UMAP on the latent space of interest.
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Figure 4.F: Visualization of the benchmark DentateGyrus10X - Fluidigm C1. All positions
for the scatter plots are derived using UMAP on the latent space of interest.
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Figure 4.G: Supplementary study of harmonizing datasets with different cellular composition.
We show here the case where each of the two datasets has a unique cell types and share all
the others. For each box plot, we report over all the possible combinations of left-out cell
types. (a) Entropy of batch mixing for the unique population (lower is better). (b) k-nearest
neighbor purity (unique and non-unique; higher is better). (c) Entropy of batch mixing for
the non-unique populations (higher is better). The boxplots are standard Tukey boxplots
where the box is delineated by the first and third quartile and the whisker lines are the first
and third quartile plus minus 1.5 times the box height. The dots are outliers that fall above
or below the whisker lines.
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Figure 4.H: Follow-up analysis on continuous trajectory harmonization with scANVI. (a− b)
Continuous trajectory obtained by the Seurat Alignment procedure for the HEMATO-Tusi
and the HEMATO-Paul datasets. (c − d) Continuous trajectory obtained by the scANVI
using the Tusi cell type labels for semi-supervision. (e − f) Continuous trajectory obtained
by the scANVI using the Paul cluster labels for semi-supervision. All locations for scatter
plots are computed via UMAP in their respective latent space.
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Figure 4.I: Large-scale data integration with scVI. (a − b) UMAP visualization of the scVI
latent space colored by datasets (a) and by cell types (b). (c) accuracy of a nearest neighbor
classifier based on scVI latent space
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Figure 4.J: Annotation results for all four dataset pairs. PBMC-8K / PBMC-cite (a − b),
MarrowMT-10X / MarrowMT-SS2 (c − d), Pancreas InDrop-CELSeq2 (e − f) and Dentate
Gyrus 10X / Fluidigm C1 (g − h). Accuracies for transferring annotations from one dataset
to another from a k-nearest neighbors classifier on Seurat Alignment, and scVI latent space,
scANVI, SCMAP and CORAL classifier are shown. The aggregated results across for cell
types that are shared between the two datasets is shown in box plots.
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Figure 4.K: Annotation results for all four dataset pairs. PBMC-8K / PBMC-cite (a − b),
MarrowMT-10X / MarrowMT-SS2 (c − d), Pancreas InDrop-CELSeq2 (e − f) and Dentate
Gyrus 10X / Fluidigm C1 (g − h). Accuracies for transferring annotations from one dataset
to another from a k-nearest neighbors classifier on Seurat Alignment, and scVI latent space,
scANVI, SCMAP and CORAL classifier are shown. The prediction accuracy for each cell
type that is shared between the two datasets is shown on the y-axis and the size of the dots
are proportional to the proportion of a cell type in the total population.
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Figure 4.L: Supplementary study of labels concordance. (a) k-nearest neighbors purity of
the merged latent space on the protein expression space as a function of the size of the
neighborhood. (b) Protein expression heatmap showing consistency of PBMC-Sorted labels
and protein expression in PBMC-CITE. The protein expression per cell type is based on
k-nearest neighbors imputation from the harmonized latent space obtained from scANVI
trained with pure population labels. (c) We select individual cells that were labeled as
dendritic cells or Natural Killer cells in the original publication of the respective datasets,
and compare the raw transcript count from cells inside the scANVI T cells cluster (DC*,
NK*) against cells outside the T cells cluster (DC, NK). The expression of marker genes
suggest that DC* and NK* is more likely to be T cells and thus the scANVI latent space
is more accurate. (d) The batch entropy mixing of the three datasets in scVI, scANVI and
Seurat Alignment merged space.
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Figure 4.M: Other methods of classifying T-cell subsets of the PBMC-Pure dataset. Coordi-
nates for the scatter plots are derived from UMAP embedding based on the latent space of
scANVI. (a) Ground truth labels from the purified PBMC populations (b) k-nearest neigh-
bors classification labels when applied on scVI latent space from the seed set of cells (c)
k-nearest neighbors classification labels when applied on Seurat Alignment latent space (d)
k-means clustering based labels when applied to scVI latent space (e) DBSCAN clustering
based labels when applied to scVI latent space. DBSCAN returns only one cluster but return
some cells as unclassified. (f) PhenoGraph clusters on scVI latent space
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Figure 4.N: Continuous trajectory simulated using SymSim. (a) Tree structure from which
the cells are sampled. Each grey dot represent a cell sampled along the trajectory. Colored
dots with a black edge are treated as labeled, while the others are treated as unlabeled.
Each path simulates a continuous phenotypical variation. (b − g) The same tree with each
cell colored by the posterior probability of being assigned to a specific label. (h − i) An-
other visualization of the gradual change of posterior probability by plotting the posterior
probability of root (h) and population 3 (i). The x-axis represents the pathwise distance
(paths are defined in (a)), and the y-axis represents the probability, or confidence of the
assignment.
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Figure 4.O: Presentation of the simulated dataset used for differential expression benchmark-
ing. (a) The tree used to sample the cells in SymSim. We sample cells from the five leaves
nodes representing five different cell types derived from the same root node. (b) UMAP
of scVI latent space colored by cell types and batch identifier (c) UMAP of scVI latent
space without batch correction, proving that the data is indeed subject to batch effects.
(d) Entropy of batch mixing for all the algorithms (e) Weighted accuracy using a k-nearest
neighbors classifier on the latent space (f) Per cell type accuracy for the label transfer.
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Figure 4.P: Differential Expression on multiple datasets with scVI. (a) Evaluation of con-
sistency with rank correlation is shown for comparisons of multiple pairs of cell types in the
simulated data. The pairs of cells are chosen to represent different levels of distance on the
tree as in Figure 4.Oa. The pairs of population from most distant to least distant are ‘12’,
‘24’, ‘23’, ‘45’. (b) distribution of true log fold change between all pairs of cell types for the
simulated data. (c) Evaluation of consistency with the AUROC and Kendal Tau metric is
shown for comparisons of CD4 vs CD8 T cells and B cells vs dendritic cells on the PBMC-8K
only (A), the PBMC-68k only (B) and the merged PBMC-8K / PBMC-68K (A+B) for scVI
and edgeR. Error bars are obtained by multiple subsampling of the data to show robustness.
Boxplots are standard Tukey boxplots where the box is delineated by the first and third
quartile and the whisker lines are the first and third quartile plus minus 1.5 times the box
height. The dots are outliers that fall above or below the whisker lines.
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Figure 4.Q: Mislabeling experiment in differential expression with (a) PBMC8K and
PBMC68K datasets and (b) SymSim simulated datasets. Within each panel: Top: dif-
ferential expression results for the correctly labeled population pair (CD4 T cells - CD8 T
cells in (a) and 1-2 in (b)). Bottom: differential expression results for the mislabelled pop-
ulation pair (dendritic cells and B cells in (a) and 2-3 in (b)). For all, x-axis represents the
proportion of flipped labels.
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Figure 4.R: The effect of the choice of number of classes on the scANVI model likelihood
(a), classification accuracy (b) and entropy of batch mixing (c). We trained scANVI using
PBMC8K as the labelled dataset, and varied the number of classes in scANVI from 6(true
number of labelled cell types) to 14. The thicker line show the mean of 9 replicates, while the
colored shading show the 95% confidence interval. We used a subsampled PBMC8K-CITE
dataset, where NK cells are removed from the PBMC8K dataset and B cells are removed
from the PBMC-CITE dataset. As we expect, the two unique dataset have low mixing in (c)
while the other cell types have high mixing. Although there is no labelled B cells, scANVI
does not cluster B cells from the PBMC8K dataset with other cell types in PBMC-CITE.
The three metrics we use to evaluate scANVI performance are minimally affected by the
increase in the number of classes.
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Figure 4.S: Performance of scVI and scANVI with a negative binomial (NB) distribution.
(a) UMAP plot of the MarrowTM pair using a NB distribution for scVI. (b) Harmoniza-
tion statistics and differences between regular scVI and NB version (scVI-NB). Dotted lines
represent results using scVI-NB.
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Figure 4.T: Differential Expression with a negative binomial version of scVI. We report
all metrics on all pairs of cell types using the simulated dataset previously analyzed as in
Figure 4.Oa.
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Chapter 5

Information Constraints on
Auto-Encoding Variational Bayes

5.1 Introduction
Since the introduction of variational auto-encoders (VAEs) [8], graphical models whose con-
ditional distribution are specified by deep neural networks have become commonplace. For
problems where all that matters is the goodness-of-fit (e.g., marginal log probability of the
data), there is little reason to constrain the flexibility/expressiveness of these networks other
than possible considerations of overfitting. In other problems, however, some latent rep-
resentations may be preferable to others—for example, for reasons of interpretability or
modularity. Traditionally, such constraints on latent representations have been expressed in
the graphical model setting via conditional independence assumptions. But these assump-
tions are relatively rigid, and with the advent of highly flexible conditional distributions, it
has become important to find ways to constrain latent representations that go beyond the
rigid conditional independence structures of classical graphical models.

In this chapter, we propose a new method for restricting the search space to latent repre-
sentations with desired independence properties. As in [8], we approximate the posterior for
each observation X with an encoder network that parameterizes qφ(Z ∣X). Restricting this
search space amounts to constraining the class of variational distributions that we consider.
In particular, we aim to constrain the aggregated variational posterior [183]:

q̂φ(Z) ∶= Epdata(X) [qφ(Z ∣X)] . (5.1)

Here pdata(X) denotes the empirical distribution. We aim to enforce independence state-
ments of the form q̂φ(Zi) á q̂φ(Zj), where i and j are different coordinates of our latent
representation.

Unfortunately, because q̂φ(Z) is a mixture distribution, computing any standard measure
of independence is intractable, even in the case of Gaussian terms [184]. In this chapter,
we circumvent this problem in a novel way. First, we estimate dependency though a kernel-
based measure of independence, in particular the Hilbert-Schmidt Information Criterion
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Figure 5.1: Tasks presented in the chapter.

(HSIC) [185]. Second, by scaling and then subtracting this measure of dependence in the
variational lower bound, we get a new variational lower bound on log p(X). Maximizing it
amounts to maximizing the traditional variational lower bound with a penalty for deviating
from the desired independence conditions. We refer to this approach as HSIC-constrained
VAE (HCV).

The remainder of the chapter is organized as follows. In Section 5.2, we provide back-
ground on VAEs and the HSIC. In Section 5.3, we precisely define HCV and provide a
theoretical analysis. The next three sections each present an application of HVC—one
for each task shown in Figure 5.1. In Section 5.4.1, we consider the problem of learning
an interpretable latent representation, and we show that HCV compares favorably to β-
VAE [186] and β-TCVAE [187]. In Section 5.4.2, we consider the problem of learning an
invariant representation, showing both that HCV includes the variational fair auto-encoder
(VFAE) [65] as a special case, and that it can improve on the VFAE with respect to its
own metrics. In Section 5.4.3, we denoise single-cell RNA sequencing data with HCV,
and show that our method recovers biological signal better than the current state-of-the-
art approach. A open-source implementation of our framework is available on GitHub
https://github.com/romain-lopez/HCV.

5.2 Background
In representation learning, we aim to transform a variable x into a representation vector z
for which a given downstream task can be performed more efficiently, either computation-
ally or statistically. For example, one may learn a low-dimensional representation that is
predictive of a particular label y, as in supervised dictionary learning [188]. More generally,
a hierarchical Bayesian model [94] applied to a dataset yields stochastic representations,
namely, the sufficient statistics for the model’s posterior distribution. In order to learn rep-
resentations that respect specific independence statements, we need to bring together two
independent lines of research. First, we will present briefly variational auto-encoders and
then non-parametric measures of dependence.

https://github.com/romain-lopez/HCV


CHAPTER 5. HSIC-CONSTRAINED VAES 118

5.2.1 Auto-Encoding Variational Bayes (AEVB)

We focus on variational auto-encoders [8] which effectively summarize data for many tasks
within a Bayesian inference paradigm [75, 73]. Let {X,S} denote the set of observed random
variables and Z the set of hidden random variables (we will use the notation zi to denote the
i-th random variable in the set Z). Then Bayesian inference aims to maximize the likelihood:

pθ(X ∣ S) = ∫ pθ(X ∣ Z,S)dp(Z). (5.2)

Because the integral is in general intractable, variational inference finds a distribution qφ(Z ∣

X,S) that minimizes a lower bound on the data—the evidence lower bound (ELBO):

log pθ(X ∣ S) ≥ Eqφ(Z∣X,S) log pθ(X ∣ Z,S) −DKL((qφ(Z ∣X,S) ∣∣ p(Z)) (5.3)

In auto-encoding variational Bayes (AEVB), the variational distribution is parametrized
by a neural network. In the case of a variational auto-encoder (VAE), both the generative
model and the variational approximation have conditional distributions parametrized with
neural networks. The difference between the data likelihood and the ELBO is the variational
gap:

DKL(qφ(Z ∣X,S) ∣∣ pθ(Z ∣X,S)). (5.4)

The original AEVB framework is described in the seminal paper [8] for the case Z = {z},X =

{x}, S = ∅. The representation z is optimized to “explain” the data x.
AEVB has since been successfully applied and extended. One notable example is the

semi-supervised learning case—where Z = {z1, z2}, X = {x}, y ∈ X ∪ Z—which is addressed
by the M1 + M2 model [136]. Here, the representation z1 both explains the original data
and is predictive of the label y. More generally, solving an additional problem is tantamount
to adding a node in the underlying graphical model. Finally, the variational distribution can
be used to meet different needs: qφ(y ∣ x) is a classifier and qφ(z1 ∣ x) summarizes the data.

When using AEVB, the empirical data distribution pdata(X,S) is transformed into the
empirical representation:

q̂φ(Z) = Epdata(X,S)qφ(Z ∣X,S). (5.5)

This mixture is commonly called the aggregated posterior [189] or average encoding distri-
bution [190].

5.2.2 Non-parametric estimates of dependence with kernels

Let (Ω,F ,P) be a probability space. Let X (resp. Y) be a separable metric space. Let
u ∶ Ω→ X (resp. v ∶ Ω→ Y) be a random variable. Let k ∶ X ×X → R (resp. l ∶ Y ×Y → R) be
a continuous, bounded, positive semi-definite kernel. Let H (resp. K) be the corresponding
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reproducing kernel Hilbert space (RKHS) and φ ∶ Ω→ H (resp. ψ ∶ Ω→ K) the corresponding
feature mapping.

Given this setting, one can embed the distribution P of random variable u into a single
point µP of the RKHS H as follows:

µP = ∫
Ω
φ(u)P (du). (5.6)

If the kernel k is universal1, then the mean embedding operator P ↦ µP is injective [191].
We now introduce a kernel-based estimate of distance between two distributions P and Q

over the random variable u. This approach will be used by one of our baselines for learning
invariant representations. Such a distance, defined via the canonical distance between their
H-embeddings, is called the maximum mean discrepancy [147] and denoted MMD(P,Q).

The joint distribution P (u, v) defined over the product space X ×Y can be embedded as
a point Cuv in the tensor space H ⊗K. It can also be interpreted as a linear map H → K:

∀(f, g) ∈ H ×K, Ef(u)g(v) = ⟨f(u),Cuvg(v)⟩H = ⟨f ⊗ g,Cuv⟩H⊗K. (5.7)

Suppose the kernels k and l are universal. The largest eigenvalue of the linear operator
Cuv is zero if and only if the random variables u and v are marginally independent [185]. A
measure of dependence can therefore be derived from the Hilbert-Schmidt norm of the cross-
covariance operator Cuv called the Hilbert-Schmidt Independence Criterion (HSIC) [192]. Let
(ui, vi)1≤i≤n denote a sequence of iid copies of the random variable (u, v). In the case where
X = Rp and Y = Rq, the V-statistics in Equation 5.8 yield a biased empirical estimate [191],
which can be computed in O(n2(p + q)) time. An estimator for HSIC is

ˆHSICn(P ) =
1

n2

n

∑
i,j

k(ui, uj)l(vi, vj)

+
1

n4

n

∑
i,j,k,l

k(ui, uj)l(vk, vl)

−
2

n3

n

∑
i,j,k

k(ui, uj)l(vi, vk).

(5.8)

The definition of the cross-covariance operator can be extended to the case of d random
variables, simply by adhering to the formal language of tensor spaces. Let X = (X1, ...,Xd)

be a random vector with each component of dimension p. The components X1, ...,Xd are
mutually independent if the joint distribution is equal to the tensor product of the marginal
distribution. [193] derives functional formulation, population statistics and V-statistics for
the Hilbert-Schmidt norm of the corresponding generalized cross-covariance operator called
dHSIC. Notably, under the hypothesis that the canonical kernel from the tensor product

1A kernel k is universal if k(x, ⋅) is continuous for all x and the RKHS induced by k is dense in C(X ).
This is true for the Gaussian kernel (u,u′)↦ e−γ∣∣u−u

′∣∣2 when γ > 0.



CHAPTER 5. HSIC-CONSTRAINED VAES 120

⊗kHk is universal, the dHSIC is null if and only if the components of the random vector
are mutually independent. We write here the retained V-statistics that we will use for the
experiments and can compute in time O(dn2p):

ˆdHSICn(P ) =
1

n2 ∑
M2(n)

d

∏
j=1

kj(xji1 , x
j
i2
)

+
1

n2d ∑
M2d(n)

d

∏
j=1

kj(xji2j−1
, xji2j)

−
2

nd+1 ∑
Md+1(n)

d

∏
j=1

kj(xji1 , x
j
ij+1

)

(5.9)

The question that naturally follows is when is the canonical kernel from the tensor product
⊗kHk universal. [194] showed that the characteristic property of the individual kernels is
not enough in general. However, in the case of continuous, bounded and translation invariant
kernels this is a sufficient condition. In subsequent work, we plan to consider the dHSIC in
this setting.

5.3 Theory for HSIC-Constrained VAE (HCV)
This chapter is concerned with intepretability of representations learned via VAEs. Inde-
pendence between certain components of the representation can aid in interpretability [187,
195]. First, we explain why AEVB might not be suitable for learning representations that
satisfy independence statements. Second, we present a simple diagnostic in the case where
the generative model is fixed. Third, we introduce HSIC-constrained VAEs (HCV): our
method to correct approximate posteriors learned via AEVB in order to recover independent
representations.

5.3.1 Independence and representations: Ideal setting

The goal of learning representation that satisfies certain independence statements can be
achieved by adding suitable nodes and edges to the generative distribution graphical model.
In particular, marginal independence can be the consequence of an “explaining away” pattern
as in Figure 5.1a for the triplet {u,x, v}. If we consider the setting of infinite data and
an accurate posterior, we find that independence statements in the generative model are
respected in the latent representation:

Theorem 1. Let us apply AEVB to a model pθ(X,Z ∣ S) with independence statement I
(e.g., zi á zj for some (i, j)). If the variational gap Epdata(X,S)DKL(qφ(Z ∣ X,S) ∣∣ pθ(Z ∣

X,S)) is zero, then under infinite data the representation q̂φ(Z) satisfies statement I.
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Proof. Without loss of generality, we can write I as independence between two variables
Zi á Zj for some (i, j). Under infinite data, the empirical distribution pdata(X,S) is close to
p(X,S), the real distribution:

q̂φ(Zi, Zj) = ∫ qφ(Zi, Zj ∣X,S)pdata(X,S)

= ∫ pθ(Zi, Zj ∣X,S)pdata(X,S)

= ∫ pθ(Zi, Zj ∣X,S)p(X,S)

= p(Zi, Zj)

= p(Zi)(Zj).

(5.10)

In practice we may be far from the idealized infinite setting if (X,S) are high-dimensional.
Also, AEVB is commonly used with a naive mean field approximation qφ(Z ∣ X,S) =

∏k qφ(z
k ∣ X,S), which could poorly match the real posterior. In the case of a VAE, neural

networks are also used to parametrize the conditional distributions of the generative model.
This makes it challenging to know whether naive mean field or any specific improvement [73,
72] is appropriate. As a consequence, the aggregated posterior could be quite different
from the “exact” aggregated posterior Epdata(X,S)pθ(Z ∣ X,S). Notably, the independence
properties encoded by the generative model pθ(X ∣ S) will often not be respected by the
approximate posterior. This is observed empirically in [65], as well as Section 5.4.1 and
Section 5.4.2 of this work.

5.3.2 A simple diagnostic in the case of posterior approximation

A theoretical analysis explaining why the empirical aggregated posterior presents some mis-
specified correlation is not straightforward. The main reason is that the learning of the model
parameters θ along with the variational parameters φ makes diagnosis hard. As a first line
of attack, let us consider the case where we approximate the posterior of a fixed model.
Consider learning a posterior qφ(Z ∣ X,S) via naive mean field AEVB. Recent work [196,
190, 189] focuses on decomposing the second term of the ELBO and identifying terms, one of
which is the total correlation between hidden variables in the aggregate posterior. This term,
in principle, promotes independence. However, the decomposition has numerous interacting
terms, which makes exact interpretation difficult. As the generative model is fixed in this
setting, optimizing the ELBO is tantamount to minimizing the variational gap, which we
propose to decompose as

DKL(qφ(Z ∣X,S) ∣∣ pθ(Z ∣X,S)) =∑
k

DKL(qφ(z
k ∣X,S) ∣∣ pθ(z

k ∣X,S))

+Eqφ(Z∣X,S) log
∏k pθ(z

k ∣X,S)

pθ(Z ∣X,S)
.

(5.11)
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The last term of this equation quantifies the misspecification of the mean-field assump-
tion. The larger it is, the more the coupling between the hidden variables Z. Since neural
networks are flexible, they can be very successful at optimizing this variational gap but at
the price of introducing supplemental correlation between Z in the aggregated posterior. We
expect this side effect whenever we use neural networks to learn a misspecified variational
approximation.

5.3.3 Correcting the variational posterior

We aim to correct the variational posterior qφ(Z ∣X,S) so that it satisfies specific indepen-
dence statements of the form ∀(i, j) ∈ S, q̂φ(zi) á q̂φ(zj). As q̂φ(Z) is a mixture distribution,
any standard measure of independence is intractable based on the conditionals qφ(Z ∣X,S),
even in the common case of mixture of Gaussian distributions [184]. To address this is-
sue, we propose a novel idea: estimate and minimize the dependency via a non-parametric
statistical penalty. Given the AEVB framework, let λ ∈ R+, Z0 = {zi1 , .., zip} ⊂ Z and
S0 = {sj1 , .., sjq} ⊂ S. The HCV framework with independence constraints on Z0 ∪ S0 learns
the parameters θ, φ from maximizing the ELBO from AEVB penalized by

−λdHSIC(q̂φ(z
i1 , .., zip)pdata(s

j1 , .., sjq)). (5.12)

A few comments are in order regarding this penalty. First, the dHSIC is positive and therefore
our objective function is still a lower bound on the log-likelihood. The bound will be looser
but the resulting parameters will yield a more suitable representation. This trade-off is
adjustable via the parameter λ. Second, the dHSIC can be estimated with the same samples
used for stochastic variational inference (i.e., sampling from the variational distribution) and
for minibatch sampling (i.e., subsampling the dataset). Third, the HSIC penalty is based
only on the variational parameters—not the parameters of the generative model.

5.4 Results

5.4.1 Learning interpretable representations

Suppose we want to summarize the data x with two independent components u and v, as
shown in Figure 5.1a. The task is especially important for data exploration since independent
representations are often more easily interpreted.

A related problem is finding latent factors (z1, ..., zd) that correspond to real and in-
terpretable variations in the data. Learning independent representations is then a key step
towards learning disentangled representations [187, 186, 197, 198]. The β-VAE [186] proposes
further penalizing the DKL(qφ(z ∣ x) ∣∣ p(z)) term. It attains significant improvement over
state-of-the art methods on real datasets. However, this penalization has been shown to yield
poor reconstruction performance [199]. The β-TCVAE [187] penalized an approximation of
the total correlation (TC), defined as DKL(q̂φ(z) ∣∣ ∏k q̂φ(z

k)) [200], which is a measure
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of multivariate mutual independence. However, this quantity does not have a closed-form
solution [184] and the β-TCVAE uses a biased estimator of the TC—a lower bound from
Jensen inequality. That bias will be zero only if evaluated on the whole dataset, which is not
possible since the estimator has quadratic complexity in the number of samples. However,
the bias from the HSIC [192] is of order O(1/n); it is negligible whenever the batch-size is
large enough. HSIC therefore appears to be a more suitable method to enforce independence
in the latent space.

To assess the performance of these various approaches to finding independent representa-
tions, we consider a linear Gaussian system, for which exact posterior inference is tractable.
Let (n,m, d) ∈ N3 and λ ∈ R+. Let (A,B) ∈ Rd×n ×Rd×m be random matrices with iid normal
entries. Let Σ ∈ Rd×d be a random matrix following a Wishart distribution. Consider the
following generative model:

v ∼ Normal(0, In)
u ∼ Normal(0, Im)

x ∣ u, v ∼ Normal(Av +Bu,λId +Σ).

(5.13)

The marginal log-likelihood p(x) is tractable:

x ∼ Normal(0, λId +Σ +AAT +BBT ). (5.14)

The complete posterior p(u, v ∣ x) is tractable via block matrix inversion, as is the
marginal p(x):

V −1 = In+m + [A,B]T (λId +Σ)−1[A,B]

Hµ = Σ[A,B]T (λId +Σ)−1

u, v ∣ x ∼ Normal(Hµx,V ).

(5.15)

We apply HCV with:

Z = {u, v},X = {x}, S = ∅,Z0 = {u, v}, and S0 = ∅. (5.16)

This is equivalent to adding to the ELBO the penalty:

−λHSIC(Epdata(x)qφ(u, v ∣ x)) (5.17)

. We report the trade-off between correlation of the representation and the ELBO for vari-
ous penalty weights λ for each algorithm: β-VAE [186], β-TCVAE [187], an unconstrained
VAE, and HCV. As correlation measures, we consider the summed Pearson correlation
∑(i,j) ρ(q̂φ(u

i), q̂φ(vj)) and HSIC.
Results are reported in Figure 5.2. The VAE baseline (like all the other methods) has an

ELBO value worse than the marginal log-likelihood (horizontal bar) since the real posterior is
not likely to be in the function class given by naive mean field AEVB. Also, this baseline has
a greater dependence in the aggregated posterior q̂φ(u, v) than in the exact posterior p̂(u, v)
(vertical bar) for the two measures of correlation. Second, while correcting the variational
posterior, we want the best trade-off between model fit and independence. HCV attains the
highest ELBO values despite having the lowest correlation.
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Figure 5.2: Results for the linear Gaussian system. All results are for a test set. Each dot is
averaged across five random seeds. Larger dots indicate greater regularization. The purple
line is the log-likelihood under the true posterior. The cyan line is the correlation under the
true posterior.

(a) s: angle between the
camera and the light source

(b) One image x for a given
lighting condition s and

person y

x

sz1

yz2

(c) Complete graphical model

Figure 5.3: Framework for learning invariant representations in the Extended Yale B Face
dataset.

5.4.2 Learning invariant representations

We now consider the particular problem of learning representations for the data that is
invariant to a given nuisance variable. As a particular instance of the graphical model in
Figure 5.1b, we embed an image x into a latent vector z1 whose distribution is independent of
the observed lighting condition s while being predictive of the person identity y (Figure 5.3).
The generative model is defined in Figure 5.3c and the variational distribution decomposes
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as:

qφ(z
1, z2 ∣ x, s, y) = qφ(z

1 ∣ x, s)qφ(z
2 ∣ z1, y), (5.18)

as in [65]. This problem has been studied in [65] for binary or categorical s. For their
experiment with a continuous covariate s, they discretize s and use the MMD to match the
distributions q̂φ(z1 ∣ s = 0) and q̂φ(z1 ∣ s = j) for all j. Perhaps surprisingly, their penalty
turns out to be a special case of our HSIC penalty.

Theorem 2. Let the nuisance factor s be a discrete random variable and let l (the kernel
for K) be a Kronecker delta function δ ∶ (s, s′) ↦ 1s=s′. Then, the V-statistic corresponding
to HSIC(q̂φ(z1), pdata) is a weighted sum of the V-statistics of the MMD between the pairs
q̂φ(z ∣ s = i), q̂φ(z ∣ s = j). The weights are functions of the empirical probabilities for s.

Proof. The proof relies on sum manipulations. First, we carefully write the case where s is
binary without loss of generality. Let us assume M samples from the joint (x, s) and let us
reorder them such that s0 = ... = sN = 0 and sN+1 = ... = sM = 1. In that case,

HSIC =
1

M2

M

∑
ij

kijlij +
1

M4

M

∑
ijkl

kijlkl −
2

M3

M

∑
ijk

kijlik
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N

∑
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N

∑
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M
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−2
1
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∑
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kij) .

Above, the term inside the parenthesis is the V-statistic for the MMD between q(z ∣ s = 0)
and q(z ∣ s = 1). In the general case of s discrete, we then have a sum of MMD weighted by
the values of the empirical p(s).

Working with the HSIC rather than an MMD penalty lets us avoid discretizing s. We
take into account the whole angular range and not simply the direction of the light. We
apply HCV with mean-field AEVB, Z = {z1, z2},X = {x, y}, S = {s},Z0 = {z1} and S0 = {s}.



CHAPTER 5. HSIC-CONSTRAINED VAES 126

Dataset The extended Yale B dataset [201] contains cropped faces [202] of 38 people
under 50 lighting conditions. These conditions are unit vectors in R3 encoding the direction
of the light source and can be summarized into five discrete groups (upper right, upper left,
lower right, lower left and front). Following [65], we use one image from each group per
person (total 190 images) and use the remaining images for testing. The task is to learn a
representation of the faces that is good at identifying people but has low correlation with
the lighting conditions.

Experiment We repeat the experiments from the paper introducing the variational fair
auto-encoder (VFAE) [65], this time comparing the VAE [8] with no covariate s, the VFAE [65]
with observed lighting direction groups (five groups), and the HCV with the lighting direc-
tion vector (a three-dimensional vector). As a supplemental baseline, we also report results
for the unconstrained VAEs. As in [65], we report 1) the accuracy for classifying the per-
son based on the variational distribution qφ(y ∣ z1, s); 2) the classification accuracy for the
lighting group condition (five-way classification) based on a logistic regression and a random
forest classifier on a sample from the variational posterior qφ(z1 ∣ z2, y, s) for each datapoint;
and 3) the average error for predicting the lighting direction with linear regression and a
random forest regressor, trained on a sample from the variational posterior qφ(z1 ∣ z2, y, s).
Error is expressed in degrees. λ is optimized via grid search as in [65].

We report our results in Table 5.1. As expected, adding information (either the light-
ning group or the refined lightning direction) always improves the quality of the classifier
qφ(y ∣ z1, s). This can be seen by comparing the scores between the vanilla VAE and the
unconstrained algorithms. However, by using side information s, the unconstrained models
yield a representation less suitable because it is more correlated with the nuisance vari-
ables. There is therefore a trade-off between correlation to the nuisance and performance.
Our proposed method (HCV) shows greater invariance to lighting direction while accurately
predicting people’s identities.

5.4.3 Learning denoised representations

This section presents a case study of denoising datasets in the setting of an important open
scientific problem. The task of denoising consists of representing experimental observations
x and nuisance observations s with two independent signals: biological signal z and technical
noise u. The difficulty is that x contains both biological signal and noise and is therefore
strongly correlated with s (Figure 5.1c). In particular, we focus on single-cell RNA sequenc-
ing (scRNA-seq) data which renders a gene-expression snapshot of an heterogeneous sample
of cells. Such data can reveal a cell’s type [1, 122], if we can cope with a high level of
technical noise [64].
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Person identity
(Accuracy)

Lighting group
(Average classification error)

Lighting direction
(Average error in degree)

Random Forest
Classifier

Logistic
Regression

Random Forest
Regressor

Linear
Regression

VAE 0.72 0.26 0.11 14.07 9.40
VFAE∗ 0.74 0.23 0.01 13.96 8.63
VFAE 0.69 0.51 0.42 23.59 19.89
HCV∗ 0.75 0.25 0.10 12.25 2.59
HCV 0.75 0.52 0.29 36.15 28.04

Table 5.1: Results on the Extended Yale B dataset. Preprocessing differences likely explain
the slight deviation in scores from [65]. Stars (∗) the unconstrained version of the algorithm
was used.

Data presentation

The output of an scRNA-seq experiment is a list of transcripts (lm)m∈M. Each transcript lm is
an mRNA molecule enriched with a cell-specific barcode and a unique molecule identifier, as
in [159]. Cell-specific barcodes enable the biologist to work at single-cell resolution. Unique
molecule identifiers (UMIs) are meant to remove some significant part of the technical bias
(e.g., amplification bias) and make it possible to obtain an accurate probabilistic model for
these datasets [10]. Transcripts are then aligned to a reference genome with tools such as
CellRanger [103].

The data from the experiment has two parts. First, there is a gene expression matrix
(Xng)(n,g)∈N×G, where N designates the set of cells detected in the experiment and G is the set
of genes the transcripts have been aligned with. A particular entry of this matrix indicates
the number of times a particular gene has been expressed in a particular cell. Second, we
have quality control metrics (si)i∈S which assess the level of errors and corrections in the
alignment process:

• s1: proportion of transcripts which confidently mapped to a gene;

• s2: proportion of transcripts mapping to the genome, but not to a gene;

• s3: proportion of transcripts which did not align;

• s4: proportion of transcripts whose UMI sequence was corrected by the alignment
procedure;

• s5: proportion of transcripts whose barcode sequence was corrected by the alignment
procedure.
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These metrics cannot be described with a generative model as easily as gene expression data
but they nonetheless impact a significant number of tasks in the research area [98]. Another
significant portion of these metrics focus on the sampling effects (i.e., the discrepancy in
the total number of transcripts captured in each cell) which can be taken into account in a
principled way in a graphical model as in [10].

(a) Embedding of x: gene
expression data. Each point

is a cell. Colors are
cell-types.

(b) Embedding of s:
alignment errors. Each point

is a cell. Color is s1.

(c) Embedding of x: gene
expression data. Each point
is a cell. Color is the same
quality control metric s1.

Figure 5.4: Raw data from the PBMC dataset. s1 is the proportion of transcripts which
confidently mapped to a gene for each cell.

We visualize these datasets x and s with tSNE [85] in Figure 5.4. Note that x is correlated
with s, especially within each cell type. A common application for scRNA-seq is discovering
cell types, which can be be done without correcting for the alignment errors [84]. A second
important application is identifying genes that are more expressed in one cell type than
in another—this hypothesis testing problem is called differential expression [63, 90]. Not
modeling s can induce a dependence on x which hampers hypothesis testing [98].

Deep generative model

Most research efforts in scRNA-seq methodology research focus on using generalized linear
models and two-way ANOVA [82, 98] to regress out the effects of quality control metrics.
However, this paradigm is incompatible with hypothesis testing. A generative approach,
however, would allow marginalizing out the effect of these metrics, which is more aligned
with Bayesian principles. Our main contribution is to incorporate these alignment errors into
our graphical model to provide a better Bayesian testing procedure. We apply HCV with
Z = {z, u},X = {x, s},Z0 = {z, u}. By integrating out u while sampling from the variational
posterior, ∫ qφ(x ∣ z, u)dp(u), we find a Bayes factor that is not subject to noise.

Generative model Our probabilistic model is a modification of the single-cell Variational
Inference model [10]. The main difference is the addition of latent variable u and the node
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Figure 5.5: Our proposed modification of the scVI graphical model. Shaded vertices repre-
sent observed random variables. Empty vertices represent latent random variables. Shaded
diamonds represent constants, set a priori. Empty diamonds represent global variables shared
across all genes and cells. Edges signify conditional dependency. Rectangles (“plates”) rep-
resent independent replication.

for the sequencing errors s (Figure 5.5). Let `µ, `σ ∈ RB
+ and θ ∈ RG

+ . Let fw (resp. fh, fµs
and fσs) be a neural network with exponential (resp. sigmoid, sigmoid and exponential) link
function. Each datapoint (xn, sn) is generated according to the following model. First, we
draw the latent variables we wish to perform inference over:

zn ∼ Normal(0, I) (5.19)
un ∼ Normal(0, I) (5.20)
`n ∼ LogNormal(`µ, `2

σ) (5.21)

z will encode the biological information, u the technical information from the alignment
process and l the sampling intensity. Then, we have some intermediate hidden variables
useful for testing and model interpretation that we will integrate out for inference:

wng ∼ Gamma(f gw(zn, un), θ) (5.22)
yng ∼ Poisson(`nwng) (5.23)
hng ∼ Bernoulli(f gh(un)) (5.24)

Physically, wng represents the average proportion of transcripts aligned with gene g in
cell n. yng represents one outcome of the sampling process. hng represents some additional
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control for the zeros that come from alignment. Finally, the observations fall from:

xng =

⎧⎪⎪
⎨
⎪⎪⎩

yng if hng = 0,

0 otherwise.
(5.25)

snj ∼ Normal(f jµs(un), f
j
σs(un)) (5.26)

where we constrained the mean f jµs(un) to be in the 0-1 range since s is a vector of
individual proportions. This model is a very competitive solution for representing single-cell
RNA sequencing data.

Variational approximation to the posterior Applying AEVB with X = {x, s}, Z =

{z, l, u,w, y, h} seems doomed to fail since some of the variables are discrete. Fortunately,
variables {w, y, h} can be integrated out analytically: p(x ∣ l, z, u) is a Zero-Inflated Negative
Binomial distribution. We then apply AEVB with X = {x, s}, Z = {z, l, u} with the mean-
field variational posterior:

qφ(z, l, u ∣ x, s) = qφ(z ∣ x)qφ(l ∣ x)qφ(u ∣ x, s). (5.27)

The evidence lower bound is

log pθ(x, s) ≥ Eqφ(z∣x)qφ(l∣x)qφ(u∣x,s) log pθ(x ∣ l, z, u) +Eqφ(u∣x,s) log pθ(s ∣ u)

−DKL(qφ(z ∣ x) ∣∣ p(z)) −DKL(qφ(l ∣ x) ∣∣ p(l)) −DKL(qφ(u ∣ x, s) ∣∣ p(u))
(5.28)

When using the reparametrization trick [8], all the resulting quantities can be analytically
derived and differentiated. Parameters `µ, `2

σ are set to the mean and average of the number
of molecules in all cells of the data (in log-scale). Parameters θ are learned with variational
Bayes, and treated as global variables in the training procedure.

Bayesian hypothesis testing We capitalize on our careful modeling to perform principled
differential expression. Given two sets of samples {xa ∣ a ∈ A} and {xb ∣ b ∈ B}, we would
like to test whether a particular gene g is more expressed in population A or in population
B. More formally, for each gene g and a pair of cells (za, ua), (zb, ub) with observed gene
expression (xa, xb) and quality control metrics (sa, sb), we can formulate two models of the
world under which one of the following hypotheses is true:

H
g
1 ∶= Ef gw(za, u) > Ef gw(zb, u) vs. H

g
2 ∶= Ef gw(za, u) ≤ Ef gw(zb, u)

Where the expectation is taken over u to integrate out the technical variation. Evaluating
the likelihood ratio test for whether our datapoints (xa, xb), (sa, sb) are more probable under
the first hypothesis is equivalent to writing a Bayes factor:

K = loge
p(Hg1 ∣ xa, xb)

p(Hg2 ∣ xa, xb)
(5.29)
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where the posterior of these models can be approximated via the variational distribution:

p(Hg1 ∣ xa, xb) ≈ Eq̄p(f gw(za, ua) ≤ f gw(zb, ub)), (5.30)

where q̄ = q(za ∣ xa)q(zb ∣ xb)p(ua)p(ub). Remarkably, we can use Monte Carlo integration to
compute these integrals because all the measures have low dimension.

Dataset We considered scRNA-seq data from peripheral blood mononuclear cells (PBMCs)
from a healthy donor [103]. Our dataset includes 12,039 cells and 3,346 genes, five quality
control metrics from CellRanger and cell-type annotations extracted with Seurat [3]. We
preprocessed the data as in [10, 98]. Our ground truth for the hypothesis testing, from
microarray studies, is a set of genes that are differentially expressed between human B cells
and dendritic cells (n=10 in each group [113]).

Experiment We compare scVI [10], a state-of-the-art model, with no observed nuisance
variables (8 latent dimensions for z), and our proposed model with observed quality control
metrics. We use five latent dimensions for z and three for u. The penalty λ is selected
through grid search. For each algorithm, we report 1) the coefficient of determination of a
linear regression and random forest regressor for the quality metrics predictions based on
the latent space, 2) the irreproducible discovery rate (IDR) [112] model between the Bayes
factor of the model and the p-values from the micro-array. The mixture weights, reported
in [10], are similar between the original scVI and our modification (and therefore higher than
other mainstream differential expression procedures) and saturate the number of significant
genes in this experiment (∼23%). We also report the correlation of the reproducible mixture
as a second-order quality metric for our gene rankings.

We report our results in Table 5.2. First, the proposed method efficiently removes much
correlation with the nuisance variables s in the latent space z. Second, the proposed method
yields a better ranking of the genes when performing Bayesian hypothesis testing. This
is shown by a substantially higher correlation coefficient for the IDR, which indicates the
obtained ranking better conforms with the micro-array results. Our denoised latent space is
therefore extracting information from the data that is less subject to alignment errors and
more biologically interpretable.

5.5 Discussion
We have presented a flexible framework for correcting independence properties of aggre-
gated variational posteriors learned via naive mean field AEVB. The correction is performed
by penalizing the ELBO with the HSIC—a kernel-based measure of dependency—between
samples from the variational posterior.

We illustrated how variational posterior misspecification in AEVB could unwillingly pro-
mote dependence in the aggregated posterior. Future work should look at other variational
approximations and quantify this dependence.
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Irreproducible Discovery Rate Quality control metrics
(coefficient of determination)

Mixture
weight

Reproducible
correlation

Linear
Regression

Random Forest
Regression

scVI 0.213 ± 0.001 0.26 ± 0.07 0.195 0.129
HCV 0.217 ± 0.003 0.43 ± 0.02 0.176 0.123

Table 5.2: Results on the PBMCs dataset. IDR results are averaged over twenty initializa-
tions.

Penalizing the HSIC as we do for each mini-batch implies that no information is learned
about distribution q̂(Z) or ∏i q̂(z

i) during training. On one hand, this is positive since we
do no have to estimate more parameters, especially if the joint estimation would imply a
minimax problem as in [197, 189]. One the other hand, that could be harmful if the HSIC
could not be estimated with only a mini-batch. Our experiments show this does not happen
in a reasonable set of configurations.

Trading a minimax problem for an estimation problem does not come for free. First, there
are some computational considerations. The HSIC is computed in quadratic time but linear
time estimators of dependence [203] or random features approximations [204] should be used
for non-standard batch sizes. For example, to train on the entire extended Yale B dataset,
VAE takes two minutes, VFAE takes ten minutes, and HCV takes three minutes (VFAE is
slower because of the discrete operation it has to perform to form the samples for estimating
the MMD). Second, the problem of choosing the best kernel is known to be difficult [205]. In
the experiments, we rely on standard and efficient choices: a Gaussian kernel with median
heuristic for the bandwidth. The bandwidth can be chosen analytically in the case of a
Gaussian latent variable and done offline in case of an observed nuisance variable. Third,
the general formulation of HCV with the dHSIC penalization, as in Equation 5.12, should
be nuanced since the V-statistic relies on a U-statistic of order 2d. Standard non-asymptotic
bounds as in [185] would exhibit a concentration rate of O(

√
d/n) and therefore not scale

well for a large number of variables.
We also applied our HCV framework to scRNA-seq data to remove technical noise. The

same graphical model can be readily applied to several other problems in the field. For
example, we may wish to remove cell cycles [206] that are biologically variable but typi-
cally independent of what biologists want to observe. We hope our approach will empower
biological analysis with scalable and flexible tools for data interpretation.
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Chapter 6

Decision-making with Auto-Encoding
Variational Bayes

6.1 Introduction
The auto-encoding variational Bayes (AEVB) algorithm relies on neural networks to amor-
tize approximate inference and performs model selection by maximizing a lower bound on
the model evidence [8, 43]. In the specific case of variational autoencoders (VAEs), a low-
dimensional representation of data is transformed through a learned nonlinear function (an-
other neural network) into the parameters of a conditional likelihood. VAEs achieve im-
pressive performance on pattern-matching tasks like representation/manifold learning and
synthetic image generation [207].

Many machine learning applications, however, require decisions, not just compact repre-
sentations of the data. Researchers have accordingly attempted to use VAEs for decision-
making applications, including novelty detection in control applications [208], mutation-effect
prediction from genomic sequences [34], artifact detection [37], and Bayesian hypothesis test-
ing for single-cell RNA sequencing data [10, 15]. To make decisions based on VAEs, these
researchers implicitly appeal to Bayesian decision theory, which counsels taking the action
that minimizes expected loss under the posterior distribution [209].

However, for VAEs, the relevant functionals of the posterior cannot be computed ex-
actly. Instead, after fitting a VAE based on the ELBO, practitioners take one of three
approaches to decision-making: i) the variational distribution may be used as a surrogate
for the posterior [34], ii) the variational distribution may be used as a proposal distribution
for importance sampling [210], or iii) the variational distribution can be ignored once the
model is fit, and decisions may be based on an iterative sampling method such as MCMC or
annealed importance sampling [211]. But will any of these combined procedures (ELBO for
model training and one of these methods for approximating posterior expectations) produce
good decisions?

They may not, for two reasons. First, estimates of the relevant expectations of the
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posterior may be biased and/or may have high variance. The former situation is typical
when the variational distribution is substituted for the posterior; the latter is common for
importance sampling estimators. By using the variational distribution as a proposal distri-
bution, practitioners aim to get unbiased low-variance estimates of posterior expectations.
But this approach often fails. The variational distribution recovered by the VAE, which
minimizes the reverse Kullback-Leibler (KL) divergence between the variational distribution
and the model posterior, is known to systematically underestimate variance [60, 212], mak-
ing it a poor choice for an importance sampling proposal distribution. Alternative inference
procedures have been proposed to address this problem. For example, expectation propa-
gation [213] and CHIVI [214] minimize the forward KL divergence and the χ2 divergence,
respectively. Both objectives have favorable properties for fitting a proposal distribution [215,
216]. IWVI [210] seeks to maximize a tight lower bound of the evidence that is based on
importance sampling estimates (IWELBO). IWVI empirically improves over VI for estimat-
ing posterior expectations. It is unclear, however, which method to choose to address a
particular problem.

Second, even if we can faithfully compute expectations of the model posterior, the model
learned by the VAE may not resemble the real data-generating process [212]. Most VAE
frameworks rely on the IWELBO, where the variational distribution is used as a proposal [72,
217, 218]. For example, model and inference parameters are jointly learned in the IWAE [72]
using the IWELBO. Similarly, the wake-wake (WW) procedure [219, 220] uses the IWELBO
for learning the model parameters but seeks to find a variational distribution that minimizes
the forward KL divergence.

To address both of these issues, we propose a simple three-step procedure for making
decisions with VAEs . First, we fit a model based on one of several objective functions
(e.g., VAE, IWAE, WW or χ-VAE) and select the best model based on some metric (e.g.,
IWELBO calculated on held-out data with a large numbers of particles). The χ-VAE is a
novel variant of the WW algorithm that, for fixed pθ, minimizes the χ2 divergence (further
details in Appendix 6.3). Second, with the model fixed, we fit several approximate posteriors,
based on the same objective functions, as well as annealed importance sampling [211] where
applicable. Third, we combine the approximate posteriors as proposal distributions for
multiple importance sampling [221] to make decisions that minimize the expected loss under
the posterior. In multiple importance sampling, we expect the mixture to be a better proposal
than either of its components alone, especially in settings where the posterior is complex
because each component helps with different parts of the posterior.

After introducing the necessary background (Section 6.2), we provide a complete analy-
sis of our framework in setting of the probabilistic PCA model [222] (Section 6.5). In this
tractable setting, we recover the known fact that an underdispersed proposal causes severe
error to importance sampling estimators [223]. The analysis also shows that overdisper-
sion may harm the process of model learning by exacerbating existing biases in variational
Bayes. We also confirm these results empirically. Next, we perform extensive empirical eval-
uation of two real-world decision-making problems. First, we consider a practical instance of
classification-based decision theory. In this setting, we show that the vanilla VAE becomes
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overconfident in its posterior predictive density, which harms performance. We also show
that our three-step procedure outperforms IWAE and WW (Section 6.6). We then present a
scientific case study, focusing on an instance of multiple hypothesis testing in single-cell RNA
sequencing data. Our approach yields a better calibrated estimate of the expected posterior
false discovery rate (FDR) than that computed by the current state-of-the-art method (Sec-
tion 6.7). The code to reproduce the experiments in this manuscript is available on GitHub
https://github.com/PierreBoyeau/decision-making-vaes.

6.2 Background
Bayesian decision making [209] makes use of a model and its posterior distribution to make
optimal decisions. We bring together several lines of research in an overall Bayesian frame-
work.

6.2.1 Auto-encoding variational Bayes

Variational autoencoders [8] are based on a hierarchical Bayesian model [94]. Let x be the
observed random variables and z the latent variables. To learn a generative model pθ(x, z)
that maximizes the evidence log pθ(x), variational Bayes [60] uses a proposal distribution
qφ(z ∣ x) to approximate the posterior pθ(z ∣ x). The evidence decomposes as the evidence
lower bound (ELBO) and the reverse KL variational gap (VG):

log pθ(x) = Eqφ(z∣x) log
pθ(x, z)

qφ(z ∣ x)
+∆KL(qφ ∣∣ pθ). (6.1)

Here we adopted the condensed notation ∆KL(qφ ∣∣ pθ) to refer to the KL divergence between
qφ(z ∣ x) and pθ(z ∣ x). In light of this decomposition, a valid inference procedure involves
jointly maximizing the ELBO with respect to the model’s parameters and the variational dis-
tribution. The resulting variational distribution minimizes the reverse KL divergence. VAEs
parameterize the variational distribution with a neural network. Stochastic gradients of the
ELBO with respect to the variational parameters are computed via the reparameterization
trick [8].

6.2.2 Approximating of posterior expectations

Given a model pθ, an action set A, and a loss L, the optimal decision a∗(x) for observation
x is an expectation taken with respect to the posterior: Q(f, x) = Epθ(z∣x)f(z). Here f
depends on the loss [209]. We therefore focus on numerical methods for estimating Q(f, x).
Evaluating these expectations is the aim of Markov chain Monte Carlo, annealed importance
sampling (AIS) [224], and variational methods [210].

Although we typically do not have direct access to the posterior pθ(z ∣ x), we can, however,
sample (zi)1≤i≤n from the variational distribution qφ(z ∣ x). A naive, but practical, approach

https://github.com/PierreBoyeau/decision-making-vaes
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is to consider a plugin estimator [208, 34, 37, 10]:

Q̂nP(f, x) =
1

n

n

∑
i=1

f(zi), (6.2)

which replaces the exact posterior by sampling z1, . . . , zn from qφ(z ∣ x). A less naive approach
is to use self-normalized importance sampling (SNIS),

Q̂nIS(f, x) =
∑
n
i=1w(x, zi)f(zi)

∑
n
j=1w(x, zj)

, (6.3)

with importance weights w(x, z) ∶= pθ(x,z)/qφ(z∣x). The nonasymptotic behavior of both esti-
mators as well as their variants is well understood [215, 216, 225]. Moreover, each upper
bound on the error motivates an alternative inference procedure in which the upper bound is
used as a surrogate for the error. For example, [215] bounds on the error of the IS estimator
as a function of forward KL divergence ∆KL(pθ ∣∣ qφ), which motivates the WW algorithm
in [220]. Similarly, [216] provides an upper bound of the error based on the χ2 divergence,
which in turn justifies our investigation of the χ-VAE. However, these upper bounds are too
broad to explicitly compare, for example, the worst-case performance of χ-VAE and WW
when f belongs to a function class (further details in Appendix 6.4).

6.3 Chi-square VAEs
We propose a novel variant of the WW algorithm based on χ2 divergence minimization, and
thus potentially particularly suited for decision-making. This variant is incremental in the
sense that it combines several existing contributions such as the CHIVI procedure [214], the
WW algorithm [220] as well as using a reparameterized Student’s t distributed variational
posterior (e.g., explored in [210] for IWVI). However, we did not encounter any other mention
of such a variant in previous literature.

In the χ-VAE, we update the model and the variational parameters as a first-order
stochastic block coordinate descent (as in WW [220]). For a fixed inference model qφ, we
take gradients of the IWELBO with respect to the model parameters. For a fixed generative
model pθ, we seek to minimize the χ2 divergence between the posterior and the inference
model. This quantity is intractable but we can formulate an equivalent optimization problem
using the χ upper bound (CUBO) [214]:

log pθ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

=
1

2
logEqφ(z∣x) (

pθ(x, z)

qφ(z ∣ x)
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CUBO

−
1

2
log (1 +∆χ2(pθ ∣∣ qφ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
χ2 VG

.
(6.4)

It is known that the properties of the variational distribution (mode-seeking or mass-covering)
depends highly on the geometry of the variational gap [226], which was our initial motivation
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for using the χ-VAE for decision-making. For a fixed model, minimizing the exponentiated
CUBO is a valid approach for minimizing the χ2 divergence.

Finally, in many cases the χ2 divergence may be infinite. This is true even for two
Gaussian distributions provided that the variance of qφ does not cover the posterior enough.
We found in our pPCA experiments that using a Gaussian distributed posterior may still
provide helpful proposals. However, we expect a Student’s t distributed variational posterior
to properly alleviate this concern. [210] proposed a reparameterization trick for elliptical
distributions, including the Student’s t distribution based on the CDF of the χ distribution.
In our experiments, we reparameterized samples from a Student’s t distribution with location
µ, scale Σ = A⊺A and degrees of freedom ν as follows:

δ ∼ Normal(0, I) (6.5)
ε ∼ χ2

ν (6.6)

t ∼

√
ν

ε
A⊺δ + µ, (6.7)

where we used reparameterized samples for the χ2
ν distribution following [227].

6.4 Limitations of standard results for posterior
statistics estimators

Neither [215] nor [216] pretended that upper bounds on the error of the IS estimator may
help comparing algorithmic procedures. Similarly, [220] used the result from [215] as a
motivation but did not use it to claim better performance than another method. Still, we
outline two simple reasons in this section for why upper bounds on the error of IS are not
helpful for comparing algorithms.

We start by stating simple results of upper bounding the mean square error of the SNIS
estimator.

Proposition 1. (Deviation for posterior expectation estimates) Let f be a bounded test
function. For the plugin estimator, we have

sup
∥f∥∞≤1

E [(Q̂nP(f, x) −Q(f, x))
2
] ≤4∆2

TV(pθ, qφ) +
1

2n
, (6.8)

where ∆TV denotes the total variation distance. For the SNIS estimator, if we further assume
that w(x, z) has finite second order moment under qφ(z ∣ x), then we have

sup
∥f∥∞≤1

E [(Q̂nIS(f, x) −Q(f, x))
2
] ≤

4∆χ2(pθ ∣∣ qφ)

n
, (6.9)

where ∆χ2 denotes the chi-square divergence.
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We derive the first bound is derived in a later section while the second one is from [216].
We now derive two points to argue that such bounds are uninformative for selecting the best
algorithm.

First, these bounds suggest the plugin estimator is suboptimal because its bias does not
vanish with infinite samples, in contrast to the SNIS estimator. However, the upper bound
in [216] may be uninformative when the χ2 divergence is infinite (as it may be for a VAE).
Consequently, it is not immediately apparent which estimator will perform better.

A second issue we wish to underline pertains to the general fact that upper bounds may
be loose. For example, with Pinsker’s inequality we may further upper bound the bias of the
plugin estimator by the square root of either ∆KL(pθ ∣∣ qφ) or ∆KL(qφ ∣∣ pθ). In which case,
the VAE and the WW algorithm [220] both minimize an upper bound on the mean-square
error of the plugin estimator; which one to choose is again not clear.

Proof of Proposition 1

Proof. For the plugin estimator

Q̂nP(f, x) =
1

n

n

∑
i=1

f(zi), (6.10)

we can directly calculate and upper bound the mean-square error. First, we will use for
notational convenience:

I∗ = Ep(z∣x)f(z) (6.11)
Ī = Eq(z∣x)f(z) (6.12)

and notice that:

∣I∗ − Ī ∣ ≤ sup
∥g∥∞≤1

∣Eq(z∣x)g(z) −Ep(z∣x)g(z)∣ (6.13)

≤ 2∆TV(p(z ∣ x), q(z ∣ x)), (6.14)

by definition of the total variation distance. Now we can proceed to the calculations:

(
1

n

n

∑
i=1

f(zi) − I
∗)

2

= (
1

n

n

∑
i=1

f(zi) − Ī)

2

+ (I∗ − Ī)2 + 2(
1

n

n

∑
i=1

f(zi) − Ī)(I∗ − Ī), (6.15)

and take expectations on both sides with respect to the variational distribution:

E(
1

n

n

∑
i=1

f(zi) − I
∗)

2

= E(
1

n

n

∑
i=1

f(zi) − Ī)

2

+ (I∗ − Ī)2 (6.16)

=
1

n
E (f(z1) − Ī)

2
+ (I∗ − Ī)2 (6.17)

≤
1

2n
+ 4∆2

TV(p(z ∣ x), q(z ∣ x)) (6.18)
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For the self-normalized importance sampling estimator

Q̂nIS(f, x) =
1

n

n

∑
i=1

w(x, zi)f(zi), (6.19)

we instead rely on Theorem 2.1 of [216].

6.5 Theoretical analysis for pPCA
We aim to understand the theoretical advantages and disadvantages of each objective func-
tion used for training VAEs and how they impact downstream decision-making procedures.
Because intractability prevents us from deriving sharp constants in general models, to sup-
port a precise theoretical analysis, we consider probabilistic principal component analysis
(pPCA) [228]. pPCA is a linear model for which posterior inference is tractable. Though
the analysis is a special case, we believe that it provides an intuition for performance of our
decision-making procedures more generally because, for many of the models that are used in
practice, a Gaussian distribution approximates the posterior well, as demonstrated by the
success of the Laplace approximation [229].

In pPCA, the latent variables z generate data x. We use an isotropic Gaussian prior on
z and a linear model with spherical Gaussian observation model for x:

pθ(z) = Normal(0, I)
pθ(x ∣ z) = Normal(Wz + µ,σ2I).

(6.20)

To make model selection challenging, we follow [212] and parameterize σ2 = 1/(1−λ2) as well
as Wij = eλW ′

ij if i ≠ j and Wij =W ′
ij otherwise. In this setting, θ ∶= (W ′, µ, λ). We consider

an amortized posterior approximation,

qφ(z ∣ x) = Normal (hη(x),D(x)) , (6.21)

where hη is a neural network with parameters η, D(x) is the diagonal covariance matrix
given by diag(hξ(x)), and hξ is a neural network with parameters ξ. In this example, the
encoder parameters are φ = (η, ξ).

6.5.1 Approximate posterior variance

We wish to quantify the error of the importance sampling estimator, based on a variational
approximation to the pPCA model. For the pPCA model, it is known that the posterior
has a closed-form density: indeed it is Gaussian. Briefly, we will study the concentration of
the logarithm of the importance sampling weights under the true posterior. Consequently,
we need to establish a simple lemma for the sub-exponential concentration of quadratic
functions of Gaussians, it has an similar implication as the classic result in [230].
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Lemma 2. Let d ∈ N∗ and ε ∼ Normal(0, Id). For matrix A ∈ Rd×d and vector b ∈ Rd,

random variable v = ε⊺Aε + b⊺ε is sub-exponential with parameters (

√

2 ∥A∥
2
F +

∥b∥2
2/4,4 ∥A∥2).

In particular, we have the following concentration bounds,

P [∣v∣ ≥ t] ≤ 2 exp{−
t2

8 ∥A∥
2
F + ∥b∥

2
2 + 4 ∥A∥2 t

} for all t > 0. (6.22)

P [∣v∣ ≥ t] ≤ exp{−
t

8 ∥A∥2

} for all t >
8 ∥A∥

2
F + ∥b∥

2
2

16 ∥A∥2

. (6.23)

Proof. Let λ ∈ R+. We have that Ev = Tr(A). We wish to bound the moment generating
function

E[eλ(v−Tr(A))] = e−λTr(A)E[eλ(ε
⊺Aε+b⊺ε)]. (6.24)

Sums of arbitrary correlated variables are hard to analyze. Here we rely on the property that
Gaussian vectors are invariant by rotation: Let A = QΛQ⊺ be the eigenvalue decomposition
for A and denote ε = Qξ as well as b = Qβ. Since Q is an orthogonal matrix, ξ also follows
an isotropic normal distribution and

E[eλ(v−Tr(A))] = e−λTr(A)E[eλ(ξ
⊺Λξ+β⊺ξ)] (6.25)

= e−λTr(A)E [
d

∏
i=1

eλξ
2
i Λi+λβiξi] (6.26)

= e−λTr(A)
d

∏
i=1

E [eλξ
2
i Λi+λβiξi] (6.27)

=
d

∏
i=1

E [eλξ
2
i Λi+λβiξi−λΛi] . (6.28)

Because each component ξi follows a isotropic Gaussian distribution, we can compute the
moment generating functions in closed form

E [eλξ
2
i Λi+λβiξi−λΛi] =

e−λΛi

√
2π
∫

+∞

−∞
eλΛiu

2+λβiue−
u2

2 du (6.29)

=
e−λΛi

√
2π
∫

+∞

−∞
e[λΛi− 1

2
]u2+λβiudu. (6.30)

This integral is convergent if and only if λ < 1/2Λi. In that case, we have after a change of
variable that

E [eλξ
2
i Λi+λβiξi−λΛi] =

e−λΛi

√
π
√

1 − 2λΛi
∫

+∞

−∞
e
−s2+

√
2λβis√

1−2λΛi ds (6.31)

=
e−λΛie

λ2β2
i

2(1−2λΛi)
√

1 − 2λΛi

. (6.32)
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Then, using the fact that for a < 1/2, we have e−a ≤ e2a2
√

1 − 2a, we can further simplify for
λ < 1

4Λi

E [eλξ
2
i Λi+λβiξi−λΛi] ≤ e

2λ2Λ2
i+

λ2β2
i

2(1−2λΛi) (6.33)

≤ e[2Λ2
i+

β2
i
4

]λ2

. (6.34)

Putting back all the components of ξ, we have that for all λ < 1
4∥Λ∥2

= 1
4∥A∥2

E[eλ(v−Tr(A))] ≤ exp{[2 ∥Λ∥
2
F +

∥β∥
2
2

4
]λ2} (6.35)

≤ exp{[2 ∥A∥
2
F +

∥b∥
2
2

4
]λ2} , (6.36)

where the last inequality is in fact an equality because Q is an isometry. Therefore, according
to Definition 2.2 in [231], v is sub-exponential with parameters (

√

2 ∥A∥
2
F +

∥b∥2
2/4,4 ∥A∥2).

The concentration bound is derived as in the proof of Proposition 2.3 in [231].

Then, exploiting the invariance properties of Gaussian distributions [231], our next lemma
gives concentration bounds for the logarithm of the importance sampling weights under the
posterior.

Lemma 3. (Concentration of the log-likelihood ratio) For an observation x, let Σ be the
variance of the posterior distribution under the pPCA model, pθ(z ∣ x). Let

A(x) = Σ
1/2 [D(x)]

−1
Σ

1/2 − I. (6.37)

For z following the posterior distribution, logw(x, z) is a sub-exponential random variable.
Further, there exists a t∗(x) such that, under the posterior pθ(z ∣ x) and for all t > t∗(x),

P (∣logw(x, z) −∆KL(pθ ∣∣ qφ)∣ ≥ t) ≤ e
− t

8∥A(x)∥2 . (6.38)

This lemma characterizes the concentration of the log-likelihood ratio, a central quantity
to all the VAE variants we analyze, as the spectral norm of a simple matrix ∥A(x)∥2.

Proof. Here we first give the closed-form expression of the posterior and then we prove the
concentration bounds on the log-likelihood ratio. Let M = W ⊺W + σ2I. For notational
convenience, we do not explicit denote dependence on random variable x.

Step 1: Tractable posterior. Using the Gaussian conditioning formula [222], we have
that

pθ(z ∣ x) = Normal (M−1W ⊺(x − µ), σ2M−1) . (6.39)
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Step 2: Concentration of the log-ratio. For this, since x is a fixed point, we note
a =M−1W ⊺(x − µ) and b = ν(x). We can express the log density ratio as

w(z, x) = log
pθ(z ∣ x)

qφ(z ∣ x)
(6.40)

= −
1

2
log det(σ2M−1D−1) −

1

2σ2
(z − a)⊺M(z − a) +

1

2
(z − b)⊺D−1(z − b) (6.41)

= C + z⊺[
D−1

2
−
M

2σ2
]z + [D−1b −

Ma

σ2
]⊺z, (6.42)

where C is a constant. To further characterize the tail behavior, let ε be an isotropic
multivariate normal distribution and express the log-ratio as a function of ε instead of the
posterior probability. We have that z =M−1W ⊺(x − µ) + σM−1/2ε. The log ratio can now be
written as

logw(z, x) = C ′ + ε⊺[
σ2M−1/2D−1M−1/2 − I

2
]ε + [σM−1/2D−1b −

M 1/2a

σ
]⊺ε. (6.43)

Because ε is isotropic Gaussian, we can compute the deviation of this log-ratio and provide
concentration bounds. Because ε is Gaussian and ε↦ logw(z, x) is a quadratic function, we
show the log-ratio under the posterior is a sub-exponential random variable.

For A = σ2M−1/2D−1M−1/2−I
2 and b = σM−1/2D−1b−M

1/2a
σ , we can apply Lemma 2. We deduce a

concentration bound on the log-ratio around its mean, which is the forward Kullback-Leibler
divergence L = ∆KL(pθ(z ∣ x) ∣∣ qφ(z ∣ x)). More precisely, we have that

pθ (∣logw(z, x) −L∣ ≥ t ∣ x) ≤ 2 exp{−
t2

8 ∥A∥
2
F + ∥b∥

2
2 + 4 ∥A∥2 t

} for all t > 0. (6.44)

as well as the deviation bound for large t, which ends the proof.

Plugging the concentration bound from Lemma 3 into the result of [215], we obtain an
error bound on the IS estimator for posterior expectations.

Theorem 3. (Sufficient sample size) For an observation x, suppose that the second moment
of f(z) under the posterior is bounded by κ. If the number of importance sampling particles
n satisfies n = β exp{∆KL(pθ ∣∣ qφ)} for some β > log t∗(x), then

P(∣Q̂nIS(f, x) −Q(f, x)∣ ≥
2
√

3κ

β1/8γ −
√

3
) ≤

√
3

β1/8γ , (6.45)

with γ = max (1,4 ∥A(x)∥2)

Proof. Let t = lnβ. By Theorem 1.2 from [215], and by Lemma 1 for t > t∗(x) , and

ε = (e−
t
4 + 2e

− t
16∥A(x)∥2 )

1/2
, (6.46)
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Figure 6.1: Variational Bayes for the bivariate pPCA example. (A) Gaussian mean-field
approximations to the posterior (same legend for all the figures) (B) Corresponding values
of ∥A∥2 (C) IWELBO (k = 5) as a function of λ, with proposals estimated for λ = 0 and other
model parameters fixed to their true values (D) Specific zoom around the global maximum.

we have that

P(∣Q̂nIS(f, x) −Q(f, x)∣ ≥
2 ∥f∥2 ε

1 − ε
) ≤ ε. (6.47)

Now, let us notice that ε ≤
√

3e
−t
8γ and that x↦ x/1−x is increasing on (0,1). So we have that

P(∣Q̂nIS(f, x) −Q(f, x)∣ ≥
2
√

3κ

e
t

8γ −
√

3
) ≤

√
3e

−t
8γ . (6.48)

The bound in Theorem 3 follows by replacing et by β in the previous equation.

Theorem 3 identifies a key quantity—the spectral norm of A(x)—as useful for controlling
the sample efficiency of the IS estimator. Interestingly, the closed-form expression for ∥A(x)∥2

from Eq. (6.37) suggests overestimating the posterior variance is often more suitable than
underestimating variance. For the one-dimensional problem, ∥A(x)∥2 is indeed asymmetric
around its global minimum, favoring larger values of D(x).

As a consequence of this result, we can characterize the behavior of several variational
inference procedures such as EP, CHIVI, IWVI, and VI. We provide this analysis for a bivari-
ate Gaussian example in which all the quantities of interest can be visualized (full derivations
in Appendix 6.A). Figure 6.1A shows that the VI underestimates the variance while other
frameworks provide good coverage of the posterior. As expected, ∥A∥2 is significantly smaller
for EP and CHIVI than for VI (Figure 6.1B).

6.5.2 Model selection

In the VAE framework, the parameter of the model must also be learned. For a fixed
variational distribution, variational Bayes (VB) selects the model that maximizes the ELBO
or the IWELBO. Each approximate posterior inference method proposes a different lower
bound. Even though all these lower bounds becomes tight (equal to the evidence) with a
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VAE IWAE WW χ-VAE

log pθ(X) -17.65 -16.91 -16.93 -16.92
IWELBO -17.66 -16.92 -16.96 -16.92

∥A∥2 1.69 1.30 2.32 1.13
PSIS 0.54 0.53 0.66 0.47

MAE 0.103 0.032 0.043 0.030

Table 6.1: Results on the pPCA simulated data. MAE refers to the mean absolute error in
posterior expectation estimation.

infinite number of particles, the different proposal distribution might not perform equally for
model selection because a finite number of particles is used in practice. Moreover, because
the optimal IS proposal depends on the target function [232], a good proposal for model
learning may not be desirable for decision-making and vice versa.

We can further refine this statement in the regime with few particles. VB estimates of
the model parameters are expected to be biased towards the regions where the variational
bound is tighter [212]. For k = 1, the tightness of the ELBO is measured by the reverse KL
divergence:

∆KL(qφ ∣∣ pθ) =
1

2
[Tr [Σ(θ)−1D(x)] + log det Σ(θ)] +C, (6.49)

where C is constant with respect to θ. Interestingly, because ∆KL(pθ ∣∣ qφ) is linear in D(x),
a higher variance D(x) in Eq. (6.49) induces a higher sensitivity of variational Bayes in
parameter space. For k = 5, no closed-form solution is available so we proceed to numerical
experiments on the bivariate pPCA example. In this setting, the approximate posteriors
are fit for an initial value of the parameter λ = 0 (the real value is λ = 0.82) with all other
parameters set to their true value. EP and CHIVI exhibit in Figure 6.1C a higher sensitivity
than VI and IWVI, similarly to the case k = 1. This sensitivity translates into higher bias
for selection of λ (Figure 6.1D). These results suggest that lower variance proposals may be
more suitable for model learning than for decision-making, providing yet another motivation
for using different proposals for each task.

6.5.3 Experimental results

We now investigate how well our understanding of EP, CHIVI, IWVI and VI may translate to
WW, χ-VAE, IWAE, and the VAE. In particular, we generate synthetic data according to the
pPCA model described in Eq. (6.20) and assess how well these variants can estimate posterior
expectations. We use a linear function for the mean and the log-variance of the variational
distribution. This is a popular setup for approximate inference diagnostics [212] since the
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Figure 6.2: MAE (×102) of posterior expectation estimation on pPCA for combinations of
VAEs (row) and inference only (columns) frameworks.

posterior has an analytic form, and the form is not typically a mean-field factorization. We
propose a toy example of a posterior expectation, Q(fν , x) = pθ(z1 ≥ ν ∣ x), obtained for
fν(z) = 1{e

⊺
1z ≥ ν} with e1 as the first vector of the canonical basis of Rd. For this choice of

fν , the resulting posterior expectation is tractable since it is the cumulative density function
of a Gaussian distribution.

To evaluate the learned generative model, we provide goodness-of-fit metrics based on
IWELBO on held-out data as well as the exact log-likelihood. In addition, we report the
Pareto-smoothed importance sampling (PSIS) diagnostic k̂ for assessing the quality of the
variational distribution as a proposal [223]. PSIS is computed by fitting a generalized Pareto
distribution to the IS weights; it indicates the viability of the variational distribution for
IS. For multiple importance sampling (MIS), we combine the proposal (learned on the same
model) from IWAE, WW, and χ-VAE, as well as samples from the prior [233] with equal
weights.

When not stated otherwise, we report the median PSIS over 64 observations, using 5,000
samples from the posterior. We use 25 particles (also for the VAE, as in [217]) per iteration
for training the models, 10,000 samples for reporting log-likelihood proxies and 200 particles
for making decisions. All results are averaged across five random initializations of the neural
network weights.

Table 6.1 contains our results. IWAE, WW, and the χ-VAE outperform the VAE in terms
of held-out exact likelihood (always close to the IWELBO). There is a slight preference for
IWAE. In terms of posterior approximation, we find that all algorithms yield a reasonable
value for the PSIS diagnostic, in overall agreement with the spectral norm of A. PSIS
values are not directly comparable between models, as they only measure the suitability of
the variational distribution for a particular model. Finally, in terms of mean absolute error
(MAE), IWAE and χ-VAE achieve the best result. For the VAE, the plugin estimator attains
similar performance as the SNIS estimator.

In Figure 6.2, we fix these models and learn several proposal distributions for estimating
the posterior expectations. We also report the PSIS values in Figure 6.3. For a fixed model,
the proposal from the χ-VAE often improves the MAE, and the one from MIS performs best.
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Figure 6.3: PSIS for pPCA: combinations of VAEs (row) and inference only (columns)
frameworks.

The three-step procedure (IWAE-MIS, shown in green) significantly improves on all of the
single-proposal methods (shown in blue). The performance of WW when used to learn a
proposal is not as good as expected. Better results may be found by increasing the number
of particles or by using sleep phase updates [220]. With respect to the χ-VAE, we noticed
that replacing the Gaussian distribution as the variational distribution with a Student-t
distribution usually improves the MAE. As the heavier tails of the Student-t distribution
also help to avoid an infinite χ2 divergence, we systematically use it in the χ-VAE for the
real-world applications.

6.6 Classification-based decision theory
We consider the MNIST dataset [234], which includes features x for each of the images of
handwritten digits and a label c. We aim to predict whether x has its label included in
a given subset of digits (from zero to eight). We also allow no decision to be made for
ambiguous cases (the “reject” option) [222].

We split the MNIST dataset [234] evenly between training and test datasets. For the
labels 0 to 8, we use a total of 1,500 labeled examples. All images associated with label 9 are
unlabelled. We assume in this experiment that the MNIST dataset has C = 9 classes (i.e.,
c ∈ {0, . . . ,C −1}) and that we have a posterior probability for the class pθ(c ∣ x) for a model
yet to be defined. Let L(a, c) be the loss defined over the action set A = {∅,0, . . . ,C − 1}.
Action ∅ is known as the rejection option in classification (we wish to reject label 9 at
decision time). For this loss, it is known that the optimal decision a∗(x) is a threshold-based
rule [222] on the posterior probability. This setting is fundamentally different than traditional
classification because making an informed decision requires knowledge of the full posterior
pθ(c ∣ x) and not only the maximum probability class. This rule is a posterior expectation
Q(f, x) for z = c and f a constant unit function. Both the plugin and the SNIS estimator are
derived in Appendix 6.B. To our knowledge, this is the first time semi-supervised generative
models have been evaluated in a rejection-based decision-making scenario.
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VAE IWAE WW χ-VAE

IWELBO -104.74 -101.92 -102.82 -105.29
PSIS ≳ 1 ≳ 1 ≳ 1 ≳ 1
AUPRC 0.35 0.45 0.29 0.44

Table 6.2: Results for the M1+M2 model on MNIST. AUPRC refers to the area under of
the PR curve for rejecting the label 9.

As a generative model, we use the M1+M2 model for semi-supervised learning [136]. In
the M1+M2 model, the discrete latent variable c represents the class. Latent variable u is a
low-dimensional vector encoding additional variation (not contained in c). Latent variable
z is a low-dimensional representation of the observation, drawn from a mixture distribution
with mixture assignment c and mixture parameters that are a function of u. The generative
model is

pθ(x, z, c, u) = pθ(x ∣ z)pθ(z ∣ c, u)pθ(c)pθ(u). (6.50)

The variational distribution factorizes as

qφ(z, c, u ∣ x) = qφ(z ∣ x)qφ(c ∣ z)qφ(u ∣ z, c). (6.51)

Because the reverse KL divergence can cover only one mode of the distribution, it is more
prone to attributing zero probabilities to many classes while alternate divergences would
penalize this behavior. Appendix 6.C provides further detail as to why the M1+M2 model
trained as a VAE be overconfident and why WW and the χ-VAE have the potential to
remedy these problems. To simplify the derivation of updates for the M1+M2 model with
all of the algorithms we consider, we use the Gumbel-softmax trick [235] for latent variable
c for unlabelled observations. We fit an M1+M2 model with only nine classes and consider
as ground truth that images with label 9 should be rejected at decision time.

Table 6.2 gives our results, including the Area Under the Precision-Recall Curve (AUPRC)
for classifying “nines,” as well as goodness-of-fit metrics. IWAE and WW learn the best
generative model in terms of IWELBO. For all methods, we compare the classification per-
formance of the plugin and the SNIS estimator on labels 1 through 8. While the plugin
estimator shows high accuracy across all methods (between 95% and 97%), the SNIS es-
timator shows poor performance (around 60%). This may be because the PSIS diagnosis
estimates are greater than one for all algorithms, which indicates that the variational dis-
tribution may lead to large estimation error if used as a proposal [223]. Consequently, we
report the result of the plugin estimator for all algorithms in this experiment. Figure 6.4
shows the results of applying different variational distribution for a fixed model. We also
report the accuracy in Figure 6.5. These results suggest that using the χ-VAE or MIS on a
fixed model leads to better decisions. In particular, our three-step procedure (IWAE-MIS)
outperforms all single-proposal alternatives.
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Figure 6.4: AUPRC on MNIST for combinations of VAEs (row) and inference only (columns)
frameworks.
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Figure 6.5: Accuracy for M1+M2: combinations of VAEs (row) and inference only (columns)
frameworks.

6.7 Multiple testing and differential gene expression
We present an experiment involving Bayesian hypothesis testing for detecting differentially
expressed genes from single-cell transcriptomics data, a central problem in modern molecular
biology. Single-cell RNA sequencing data (scRNA-seq) provides a noisy snapshot of the gene
expression levels of cells [1, 122]. It can reveal cell types and gene markers for each cell type
as long as we have an accurate noise model [64]. scRNA-seq data is a cell-by-gene matrix X.
For cell n = 1, . . . ,N and gene g = 1, . . . ,G, entry Xng is the number of transcripts for gene
g observed in cell n. Here we take as given that each cell comes paired with an observed
cell-type label cn.

Single-cell Variational Inference (scVI) [10] is a hierarchical Bayes model [94] for scRNA-
seq data. For our purposes here, it suffices to know that the latent variables hng represent
the underlying gene expression level for gene g in cell n, corrected for a certain number of
technical variations (e.g., sequencing depth effects). The corrected expression levels hng are
more reflective of the real proportion of gene expression than the raw data X [98]. Log-fold
changes based on hng can be used to detect differential expression (DE) of gene g across cell
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VAE IWAE WW χ-VAE

AIS -379.93 -375.53 -376.34 -376.66
IWELBO -381.50 -376.21 -377.01 -378.32

PSIS 0.67 0.73 0.86 0.76

MAE FDR 8.49 0.97 1.10 1.52

Table 6.3: Results for the scVI model. MAE FDR refers to the mean absolute error for
FDR estimation.

types a and b [63, 236]. Indeed, Bayesian decision theory helps decide between a model of the
worldMg

1 in which gene g is DE and an alternative modelMg
0 of non-DE. The hypotheses

for the Bayesian hypothesis testing problem we are interested in are

M
g
1 ∶ ∣log

hag
hbg

∣ ≥ δ and M
g
0 ∶ ∣log

hag
hbg

∣ < δ, (6.52)

where δ is a threshold defined by the practitioner. DE can therefore be performed by
posterior estimation of log-fold change between two cells xa, xb, which can be written as
pθ(M

g
1 ∣ xa, xb) and estimated with importance sampling. The optimal decision rule for 0-1

loss is attained by thresholding the posterior log-fold change estimate. Rather than directly
setting this threshold, a practitioner typically picks a false discovery rate (FDR) f0 to target.
For controlling the FDR, we consider the multiple binary decision rule µk = (µkg , g ∈ G) that
consists of tagging DE the k genes with the highest posterior estimate of log-fold change.
With this notation, the false discovery proportion (FDP) of such a decision rule is

FDP =
∑g(1 −M

g
1)µ

k
g

∑g µ
k
g

. (6.53)

Following [237], we define the posterior expected FDR as FDR ∶= E [FDP ∣ xa, xb] , which can
be computed from the differential expression probabilities of Eq. (6.52). We then set k so
that it is the maximum value for which the posterior expected FDR is below f0. In this case,
controlling the FDR requires estimating G posterior expectations. To quantify the success
of a given method at controlling the FDR at any arbitrary level, we will report the mean
absolute error between the groundtruth FDR and the posterior expected FDR.

We fit the scVI model with all the objective functions of interest. In addition, we also
use annealed importance sampling (AIS) [224] to approximate the posterior distribution once
the model is fitted. AIS is computationally intensive, so we used 500 steps and 100 samples
from the prior to keep a reasonable runtime. Because the ground-truth FDR cannot be
computed on real data, we generated scRNA-seq data according to a Poisson Log-Normal
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Figure 6.6: MAE FDR for scVI: combinations of VAEs (row) and inference only (columns)
frameworks.
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Figure 6.7: PSIS (left) and PRAUC (right) for scVI: combinations of VAEs (row) and
inference only (columns) frameworks.

model (a popular choice for simulating scRNA-seq data [181, 238]) from five distinct cells
types corresponding to 10,000 cells and 100 genes. This model is meant to reflect both
biological signal and technicalities of the experimental protocol.

VAE performs worse in terms of held-out log-likelihood (both IWELBO and AIS), while
IWAE performs best (Table 6.3). We also evaluate the quality of the gene ranking for
differential expression, based on the AUPRC of the DE probabilities. The model learned
with the VAE objective function has an AUPRC of 0.85 while all other combinations have
an AUPRC of more than 0.95. Next, we investigate the role posterior uncertainty plays
in properly estimating the FDR. Table 6.3 and Figure 6.6 report the mean absolute error
(MAE) for FDR estimation over the 100 genes. The posterior expected FDR has a large
error for any proposal based on the VAE model (around 8%, even worse using the plugin
estimator). However, all other model yield a significantly lower error (from 1 to 2%), for any
proposal. We provided the PSIS and PRAUC in Figure 6.7, as well as the FDR curves and
MAE estimates in Figure 6.8. The VAE has highly inaccurate FDR control while IWAE,
WW and χ-VAE may be useful to a practitioner, also with some error. This suggests that the
model learned by the original scVI training procedure (i.e., a VAE) cannot be used for FDR
control, even using AIS to find a proposal. Conversely, our three-step procedure (IWAE-
MIS) has the best FDR estimates on this experiment (a tie with IWAE-WW), improving
over all the single-proposal alternatives as well as IWAE followed by AIS.
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Figure 6.8: Posterior expected FDR (blue) and ground-truth FDR (red) of the decision rules
consisting in selecting the genes with the highest DE probability for the different models.

6.8 Discussion
We have proposed a three-step procedure for using variational autoencoders for decision-
making. This is theoretically motivated by analyzing the derived error of the SNIS estima-
tor and the biases of variational Bayes on the pPCA model. Our numerical experiments
show that in important real-world examples this three-step procedure outperforms the VAE,
IWAE, WW, the χ-VAE, but also IWAE followed by AIS.

An alternative, and largely orthogonal, approach to decision-making is the elegant frame-
work of loss-calibrated inference [239, 240], which further adapts the ELBO to take into
account the loss function L. Similarly, amortized Monte Carlo integration [241] proposes to
fit a variational distribution with a model and a target in mind. However, both frameworks
are not directly applicable because adapting the ELBO for a specific decision-making loss
implies a significant bias in learning pθ. Still, developing hybrid algorithms is a promising
direction for future research.

6.A Analytical derivations in the bivariate Gaussian
setting

For a fixed x, we adopt the condensed notation pθ(z ∣ x) = p. According to the Gaussian
conditioning formula, there exists µ and Λ such that

p ∼ Normal (µ,Λ−1) . (6.54)

We consider variational approximations of the form

q ∼ Normal (ν,diag(λ)−1) . (6.55)
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We wish to characterize the solution q to the following optimization problems

qRKL = arg min
q

∆KL(q ∣∣ p), (6.56)

qFKL = arg min
q

∆KL(p ∣∣ q), (6.57)

qχ = arg min
q

∆χ2(p ∣∣ q). (6.58)

We focus on the setting where the mean of the variational distribution is correct. This
is true for variational Bayes or the general Renyi divergence, as underlined in [71]. We
therefore further assume ν can be chosen equal to µ for simplicity.

In the bivariate setting, we have conveniently an analytically tractable inverse formula:

Λ = [
Λ11 Λ12

Λ21 Λ22
] , Λ−1 = 1

∣Λ∣ [
Λ22 −Λ12

−Λ21 Λ11
] , (6.59)

We also rely on the expression of the Kullback-Leibler divergence between two multivari-
ate Gaussian distributions of Rd

∆KL(Normal (µ,Σ1) ∣∣ Normal (µ,Σ2)) =
1

2
[log

∣Σ2∣

∣Σ1∣
− d +Tr(Σ−1

2 Σ1)] . (6.60)

Reverse KL Using the expression of the KL and the matrix inverse formula, we have that

arg min
q

∆KL(q ∣∣ p) = arg min
λ1,λ2

logλ1λ2 +
Λ11

λ1

+
Λ22

λ2

. (6.61)

The solution to this optimization problem is

{
λ1 = Λ11

λ2 = Λ22
. (6.62)

Forward KL From similar calculations,

arg min
q

∆KL(p ∣∣ q) = arg min
λ1,λ2

− logλ1λ2 +
1

∣Λ∣
[λ1Λ22 + λ2Λ11] . (6.63)

The solution to this optimization problem is

{
λ1 = Λ11 −

Λ12Λ21

Λ22

λ2 = Λ22 −
Λ12Λ21

Λ11

. (6.64)
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Chi-square divergence A closed-form expression of the Renyi divergence for exponential
families (and in particular multivariate Gaussian) is derived in [242]. We could in principle
follow the same approach. However, [243] derived a similar results, which is exactly the
wanted quantity for α = −1 in Appendix B of their manuscript. Therefore, we simply report
this result

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λ1 = Λ11 [
3
2 −

1
2

√
1 + 8Λ12Λ21

Λ11Λ22
]

λ2 = Λ22 [
3
2 −

1
2

√
1 + 8Λ12Λ21

Λ11Λ22
]

(6.65)

Importance weighted variational inference For IWVI, most quantities are not avail-
able in closed-form. However, the problem is simple and low-dimensional. We use naive
Monte Carlo with 10,000 samples to estimate the IWELBO. The parameters λ1, λ2 are the
solution of numerical optimization of the IWELBO (Nelder–Mead method).

6.B Posterior expectation estimator for the M1+M2
model

We derive here the two estimators for estimating pθ(c ∣ x) in the M1+M2 model. First, we
remind the reader that the generative model is

pθ(x, z, c, u) = pθ(x ∣ z)pθ(z ∣ c, u)pθ(c)pθ(u), (6.66)

and that the variational distribution factorizes as

qφ(z, c, u ∣ x) = qφ(z ∣ x)qφ(c ∣ z)qφ(u ∣ z, c). (6.67)

Plugin approach

For the plugin approach, we compute qφ(c ∣ x) as:

qφ(c ∣ x) =∬
z,u
qφ(c, u, z ∣ x)dudz (6.68)

=∬
z,u
qφ(u ∣ c, z)qφ(c, z ∣ x)dudz (6.69)

=∬
z
qφ(c ∣ z)qφ(z ∣ x)dz, (6.70)

where the last integral is estimated with naive Monte Carlo.
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SNIS approach

We obtain pθ(c, x) via marginalization of the latent variables z, u:

pθ(c, x) =∬ pθ(x,u, c, z)dzdu. (6.71)

We may estimate this probability, for a fixed c, using qφ(z, u ∣ x, c) as a proposal for impor-
tance sampling:

pθ(c, x) = Eqφ(z,u∣x,c) [
pθ(x,u, c, z)

qφ(z, u ∣ x, c)
] . (6.72)

Then, the estimates for pθ(c, x) may be normalized by their sum for all labels (equals to
pθ(x)) to recover pθ(c ∣ x).

Interestingly, this estimator does not make use of the classifier qφ(c ∣ z), so we expect
it to have a possibly lower performance than the plugin. Indeed, the qφ(c ∣ z) is fit with a
classification loss towards the labelled datapoints.

6.C Analysis of alternate divergences for the M1+M2
model

We have the following pathological behavior, similar to the one presented in the factor
analysis instance. This ill-behavior is further exacerbated when the M1+M2 model is fitted
with a composite loss as in Equation 9 of [136]. Indeed, neural networks are known to have
poorly calibrated uncertainties [244].

Proposition 2. Consider the model defined in Eq. (6.50). Assume that posterior inference
is exact for latent variables u and z, such that qφ(z ∣ x)qφ(u ∣ c, z) = pθ(z, u ∣ c, x). Further,
assume that for a fixed z ∈ Z, pθ(c ∣ z) has complete support. Then, as Eqφ(c∣z) log qφ(c ∣ z)→
0, it follows that

1. ∆KL(qφ(c, z, u ∣ x) ∣∣ pθ(c, z, u ∣ x)) is bounded;

2. ∆KL(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) diverges; and

3. ∆χ2(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) diverges.

Proof. The proof mainly consists in decomposing the divergences. The posterior for unla-
belled samples factorizes as

pθ(c, u, z ∣ x) = pθ(c ∣ z)pθ(z, u ∣ x, c). (6.73)

From this, expression of the other divergences follow under the semi-exact inference hy-
pothesis. Remarkably, all three divergences can be decomposed in similar forms. Also, the
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expression of the divergences can be written in closed form (recall that c is discrete) and as
a function of λ.

Reverse-KL. In this case, the Kullback-Leibler divergence can be written as

∆KL(qφ(c, z, u ∣ x) ∣∣ pθ(c, z, u ∣ x)) = Eqφ(c∣z)∆KL(qφ(z, u ∣ x, c) ∣∣ pθ(z, u ∣ x, c)) (6.74)
+Eqφ(z∣x)∆KL(qφ(c ∣ z) ∣∣ pθ(c ∣ z)), (6.75)

which further simplifies to

∆KL(qφ(c, z, u ∣ x) ∣∣ pθ(c, z, u ∣ x)) = Epθ(z∣x)∆KL(qφ(c ∣ z) ∣∣ pθ(c ∣ z)). (6.76)

This last equation can be rewritten as a constant plus the differential entropy of qφ(c ∣ z),
which is bounded by logC in absolute value.

Forward-KL. Similarly, we have that

∆KL(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) = Epθ(c∣z)∆KL(pθ(z, u ∣ x, c) ∣∣ qφ(z, u ∣ x, c)) (6.77)
+Epθ(z∣x)∆KL(pθ(c ∣ z) ∣∣ qφ(c ∣ z)), (6.78)

which also further simplifies to

∆KL(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) = Epθ(z∣x)∆KL(pθ(c ∣ z) ∣∣ qφ(c ∣ z)) (6.79)

= Epθ(z∣x)
C

∑
c=1

pθ(c ∣ z) log
pθ(c ∣ z)

qφ(c ∣ z)
. (6.80)

This last equation includes terms in pθ(c ∣ z) log qφ(c ∣ z), which are unbounded whenever
qφ(c ∣ z) is zero but pθ(c ∣ z) is not.

Chi-square. Finally, for this divergence, we have the decomposition

∆χ2(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) = Eqφ(z,c,u∣x)
p2
θ(z, u ∣ x, c)p2

θ(c ∣ z)

q2
φ(z, u ∣ x, c)q2

φ(c ∣ z)
, (6.81)

which in that case simplifies to

∆χ2(pθ(c, z, u ∣ x) ∣∣ qφ(c, z, u ∣ x)) = Epθ(z∣x)∆χ2(pθ(c ∣ z) ∣∣ qφ(c ∣ z)). (6.82)

Similarly, the last equation includes terms in p2
θ(c∣z)/qφ(c∣z), which are unbounded whenever

qφ(c ∣ z) is zero but pθ(c ∣ z) is not.
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Conclusion
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Chapter 7

Discussion

In this thesis, we have covered multiple aspects around the utilisation of DGMs for single-
cell transcriptomics. In this section, we selected a subset of problems and avenues related,
although not thourougly covered by the previous chapters.

7.1 Model selection
With the recent proliferation of DGMs, more consideration needs to be given to model
selection: the task of comparing the performance of two or more candidate models. Aspects
of model selection that may be of interest can include different choices for the family of
distributions we use in the model (as in scVAE [44]) or to the hyperparameters (e.g., neural
networks architecture or parameters of the optimization procedure; refer to [30] for further
details about hyperparameters). In all of these scenarios, the methodology developed for
model criticism applies and should be used whenever appropriate. The starting point is the
assessment of the goodness of fit, often done via estimation of the likelihood of held out
data and posterior predictive checks in the case of VAEs. However, recent work showed that
held-out log-likelihood might not be correlated with performance for certain downstream
analyses where biological plausibility is evaluated [179] (phenomenon also discussed in the
machine learning literature [245]). Consequently, improvements on goodness of fit may
not be convincing enough and generative models must therefore be evaluated, whenever
possible, in the context of their prospective use. A notable example of evaluation framework
is TAPE [246], which provides public data sets, evaluation metrics and non-trivial training-
test-validation splits for assessing algorithms for embedding protein sequences. Such an
effort in applications ranging from machine learning to molecular biology will allow fast,
reproducible and scientifically relevant methodology developments.
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7.2 Generation of out-of-sample data
The ability to generate data can also be used for extending beyond our observations – namely
generating and then drawing conclusions from new data points that are fundamentally dif-
ferent from the observed ones. This can be done by sampling from areas of the latent space
to which none of the observed data points is mapped, but that may still have a meaning.
A popular way to do that is using the so-called latent space arithmetic, namely perform-
ing linear operations on the latent representation of observed points and generating data
from the resulting coordinates. For instance, one may sample points in latent space along a
line between two observed data points, presumably spanning all intermediate states between
these points. While latent space arithmetic does not have any theoretical guarantees, it has
been successfully applied in computer vision, for instance to linearly interpolate between z0,
the latent representation of an image of faces looking left and z1, of a face looking right, thus
generating an artificial, yet smooth left-to-right transition xt [247].

zt = tz0 + (1 − t)z1

xt = Ep(x∣zt)[x]
(7.1)

An application of this idea in molecular biology was presented by Ghahramani and colleagues
[248] who used latent space arithmetic to simulate epidermal differentiation. Here a GAN
was trained on scRNA-seq data sets of epidermal cells and a differentiation gradient was
estimated in the latent space by subtracting the latent representations of differentiated and
undifferentiated cells. This gradient was then used to study epidermal cell differentiation
in silico. Notably, mapping an observation x (here a cell’s transcriptome) back to its latent
representation z is not trivial with GAN since, unlike VAES, they do not include a posterior
distribution p(z ∣ x).

To resolve this, the authors proposed to randomly sample points from the latent space
(i.e., inputs to the generator network G) until a point z′ is found whose generated transcrip-
tome G(z′) is sufficiently similar to the desired x.

By starting from the latent representation of a specific undifferentiated cell and following
the differentiation gradient, new and unobserved points were then sampled at various points
along the undifferentiated - undifferentiated segment. These points in latent space were then
converted to a full dimensional points (in gene expression space) using the GAN generator.
The authors use these simulated profiles to understand the dynamics of the differentiation
process, and verified that known differentiation markers such as Ppl and Grhl3 increase over
the simulated process.

Latent space arithmetic is also central to the method scGen [249], which uses a VAE
framework to predict the effect of any given perturbation (e.g., chemical treatments) on the
trascritomes cells. First, the authors derive a perturbation vector that represents the differ-
ence in latent space between the average transcriptomes of perturbed xp and unperturbed
xu cells. Applying this vector to the latent representation x∗u of cells of a different type for
which perturbation data is not available, results in the generation of perturbed expression
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profiles x̃p, using the formula

δ = Eq(zp∣xp)[zp] −Eq(zu∣xu)[zu]
z̃p = Eq(zu∣x∗u)[zu] + δ
x̃p = Ep(xp∣z̃p)[xp]

(7.2)

This generated expression profile is then validated using held-out data. The authors also
showed that this method can be used to correct batch effects (estimated by a gradient
representing the latent space difference between batches). We stress that these methods
do not come with theoretical guarantees and that conclusions drawn from out-of-sample
generation require manual inspection. Indeed, DGMs often fail to capture the full extent of
the semantics contained in the dataset. For example, a dataset of shape drawings is used to
train a DGM in [250]. While each image of the training set contains exactly six colored dots,
the images generated from the DGM can contain a variable number of dots. This shows that
the model learned only a limited semantic and in a biological setting could generate artifacts
that are irrelevant to scientists. This risk can be mitigated by careful assumptions as well
as experimental validation.

7.3 Interpretability of deep generative models
Generally, it is difficult to interpret internal hidden neurons of the neural networks of a deep
generative model. Still, there are several examples where manual examination or algorithmic
procedures can unravel interesting information. Some of the topics we refer to here may be
related to the field of explainable machine learning [251].

First, it is known that linearity is an efficient way to get interpretability (as in principal
component analysis). Therefore, it is quite natural to investigate the last layer of the neural
network (which is followed by the output layer) since these neurons are often linked to the
output with a linear function. This last linear transformation can be used to discover feature-
specific information either in generative networks of VAEs or generators of GANs. In [248],
a GAN is trained on scRNA-seq data and a gene-gene covariance matrix is constructed
through representing each gene by the weights of the final neural network layer. While
this approach is interesting, we note that it comes with no theoretical guarantees and may
produce spurious correlations. In [252], a VAE with a linear decoder (LDVAE) is proposed
for scRNA-seq data. The LDVAE trades model fit for more interpretability since the decoder
now relates directly latent variables to the expression of individual genes.

For some type of data, features can have a spatio-temporal structure such as pixels in
images, sampling of a time-series or sequence data. In this case a common practice is to
structure the architecture in a way that each hidden variable can focus on only a certain
region (e.g., area of the image) at a time. These so-called attention mechanisms [253] may
be an attractive solution for interpreting predictions of a neural network. In [254], the multi-
modal convolutional neural networks have an attention mechanism to encode the SMILES
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string of the chemical compounds as well as gene expression and predict drug sensitivity.
Their results suggest that the attention mechanism focuses on relevant genes and functional
groups for understanding progression of leukemia. While attention mechanisms have proven
to be successful in areas of natural language processing [253], applications to biology should
control at least a measure of risk such as the false discovery rate. Current approaches have
no methods for providing such guarantees.

In a certain number of real-world instances, using a linear model might result in an im-
portant loss of performance and the input data might not have spatial structure such as
molecular information. In that setting, the Shapley value (the expected marginal contri-
bution over all possible subsets) can be a valuable tool to assess feature importance and
interpret models. Although the original Shapley value is computationally intensive, recent
research work provided tractable approximations [255] to interpret complex models and large
data sets. Such approach have been applied to explainable predictions of anti-cancer drug
synergy [256]. In this work, Janizek et al. provide a model which outperforms state-of-
the-art predictions and provides biological insight into relevant pathways for understanding
drug synergy in leukemia treatment. More systematic use of such tools may be an important
direction to take for applications of machine learning in computational biology.

A more Bayesian procedure for interpretability is to treat the weights of the neural net-
works as hidden random variables with a sparsity inducing prior (e.g., a Laplacian, Gamma
or a spike and slab prior depending on the property of interest), as in DeepSequence. Simi-
larly, the concrete autoencoder [257] performs combinatorial optimization to find the optimal
subset of features which better recapitulates the input data. This latter technique could be
applied more widely to investigate feature importance for different hidden random variables
for example.

7.4 Utilizing uncertainty for Bayesian decision-making
The Bayesian model in Equation (2.2) provides a joint probability distribution pθ(x, y) that,
along with Bayes rule, fully describes the latent variables associated with each data point
(i.e., the posterior distribution pθ(z ∣ x)). Variational methods provide an approximation to
this posterior (i.e., qφ(z ∣ x)) and therefore, as soon as the quality of the approximation is
sufficient, one can obtain a myriad of uncertainty measures about our observations, such as
a credible interval (or region) around the observed value x. Estimating and utilizing this
uncertainty is an area of much attention in the machine learning literature, especially in the
context of active learning and reinforcement learning [258]. More generally, the posterior
can be used for any type of Bayesian decision-making procedure such as hypothesis testing,
issuing natural hazard warnings in public policy [259] and novelty detection in robotics [208].
In this section, we present work that makes implicit appeal to Bayesian decision theory [209]
in order to ground scientific discoveries.

One natural utilization of the approximate posterior is to approximate the marginal log-
likelihood of each data point, which can help highlight observations that are not described
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well by the model. In the context of scRNA-seq, this concept was used by scvis [37] to
identify novel sub-populations of cells. Specifically, the authors first trained a VAE on a
set of mouse retinal bipolar cells. Then, another data set of cells from the entire retina
was embedded in the same latent space, without re-fitting the model. The authors found
that non-bipolar cells from the full retina data set had lower likelihood than bipolar cells.
While this trend was expected given our a-priori knowledge on the assayed cells, it served
to validate this use of VAEs as a general way of identifying sub populations of cells that are
present in a new sample and were not in any previous ones.

One useful application of the approximate posterior is to estimate the marginal likelihood
of each data point. For example, scvis [37] utilized this marginal likelihood to assess the
model fit of each cell in a scRNA-seq data. The authors of scvis explored the scenario of
training a VAE with one scRNA-seq sample and then projecting a new sample onto the
same embedding (namely, for every cell i, evaluate qφ(zi ∣ xi) without re-fitting the model’s
parameters φ). By estimating the marginal likelihood of the already- trained model for each
cell from the new data set, this analysis provides a way of estimating which parts of the new
data set can be confidently used and also highlights cell populations that were only observed
in the new sample. This application is useful in practical settings where one invests a great
deal of effort in studying and interpreting the embedding of one set of samples, and may
save the need to revise this work when new samples arrive.

A more complex application of uncertainty in molecular biology is for decision making
via likelihood-ratios. In the case of scVI, the posterior distribution over the latent space can
be used to derive credible intervals of gene expression levels (reflecting measurement uncer-
tainty), thus enabling estimation of differential expression. Indeed, differential expression
can be formulated as a Bayesian decision making problem (whether the expression of a gene
is significantly changing between two populations of cells). Building on this idea, scVI uses
a likelihood ratio (comparing the two models of either “differential” or “no difference” in gene
expression), approximated by sampling from the posterior distribution qφ(z ∣ x) and then
the generative model pθ(x ∣ z), of cells in the two populations of interest.

Estimation of uncertainty can be used for other critical tasks in scRNA-seq analysis,
beyond differential expression. One example is assignment of cell type labels, which is often
done by drawing arbitrary cutoffs between clusters (i.e., with no regards to uncertainty).
One way to address this was implemented in scANVI [15] where cell type annotations c are
treated in a semi-supervised learning fashion (e.g., only labels with high confidence such
as from cells expressing key marker genes from a curated gene set). The model learns
a likelihood distribution p(x ∣ z, c) that conditions the gene expression values x not only
on the latent space z but also on the annotation c. This model treats cell types c as a
random variable and defines a posterior p(c ∣ x) that can then be estimated with variational
inference [136]. This enables us to provide prediction as well as uncertainty for cell types
based on the variational posterior qφ(c ∣ x). Results suggest that this uncertainty can also
be useful for differential expression, since we longer compare two fixed sets of cells (which
might include misannotated cells), but rather draw from the posterior of these sets.

Another application of uncertainty to decision making is the prediction of effects of
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mutations in DeepSequence [34]. In this work, the main assumption is that the training
data is enriched for biological sequences (e.g., proteins) that were selected during evolution
and are therefore likely functional. In this setting, the model is assumed to attribute high
marginal likelihood to sequences that represent functional proteins (possibly harboring non-
deleterious mutations) and low marginal likelihood to sequences that include deleterious
mutations (which were presumably under-represented in the training set). Interestingly, the
likelihood ratio wild type pθ(xwt) to mutation pθ(xm) is informative of how much evidence
there is that mutation xm is functional or deleterious.

log
pθ(xwt)

pθ(xm)
(7.3)

These preliminary applications of decision-theory to real biological problems are promis-
ing and can potentially be applied to more critical problems such as online exploration of
treatments or even experimental design. However, these will probably require further de-
velopments of the inference mechanisms. Indeed, correctly estimating log-likelihood ratios
or marginal log-likelihood requires to have at disposal a variational distribution close to
the model’s posterior. In practice, variational inference does not provide a provably effi-
cient approximation method and in certain instances, estimations of log-likelihood ratios
can be especially inaccurate. Recent developments in variational inference provide empirical
procedures to assess the quality of the approximate posterior distribution [223], as well as
alternative training procedures that yield more suitable posterior distributions [220, 17]. We
expect that these tools will play an important role in building meaningful and principled
applications of VAEs to molecular biology.

7.5 Beyond statistical associations and towards causal
inference

Causal inference [260] provides a principled way of reasoning about actions and outcomes.
While generally, causal inference is out of the scope for this review, we will briefly discuss
how this paradigm, combined with DGMs might be applied to questions in molecular biology.

A key class of problems in causal inference relates to counterfactuals. This is an especially
common topic in healthcare, where key questions are of the form “what would have been
the treatment leading to the optimal outcome for this particular patient?”. Notably, deep
generative models have been used to study causal effects [260] on semi-simulated data, for
marketing or healthcare applications (e.g., individualized treatment effect estimation [261,
262, 25]). However, accurately recovering treatment effect from observational (rather than
interventional) data requires first that there are no hidden confounders that control treatment
outcome and second that it was feasible to assign to each observed case actions different from
the one observed.

Classically, integration of single-cell transcriptomics data is a very critical field of research
but which does not satisfy the hypothesis mentioned above. For example, let us consider a
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clinical study performed via scRNA-seq and in which there are n patients for control and
n others for the phenotype of interest. scRNA-seq is performed via the same protocol but
on different days. Of course, there are probably some hidden confounders such as age, sex
or lineage but more importantly each cell is assigned almost surely to the same batch (since
scRNA-seq is a destructive method). Consequently, having a general understanding of how
individual cells react to phenotypical changes is in general intractable and one might resort
to more structured hypotheses. For example, scGen [249] assumes that in its latent space all
cell types between conditions are affected by the same vector translation. While this might be
a reasonable assumption in the particular case studied in the manuscript, such an hypothesis
may not hold in a more general setting of cell type specific response to a stimulation. In
particular, such an approach might yield spurious discoveries and a more suitable approach
would be to re-think some experiments design. Indeed, another workaround to identify
causal effects is to be able to perform interventions (e.g., force key variables to have some
fixed values). A particularly promising framework is Pertub-seq [263], for which CRISPR
perturbations (e.g., interventions) allow to estimate causal effect for transcription factors or
gene modules.

7.6 Perspectives
With the increase of experimental protocols that generate large amounts of data [264] (such
as sequencing, microscopy) and the accumulation of large data repositories (e.g. of medical
records), we expect DGMs to find numerous new applications and challenges. Indeed, Deep
Generative Models bring to the table both remarkably flexible modeling capabilities and
convenient inference procedures. These advantages in practice resulted in promising range
of applications in molecular biology.

We have highlighted a number of success stories in the field of single-cell transcriptomics.
We also mentioned a few significant areas for improvement such as interpretability of the
models, looking for causal relationships and diagnosing the quality of the inference proce-
dures.

Finally, code libraries are available that already implement many of the operations needed
by DGM, while making use of modern computational tools such as stochastic optimization,
automatic differentiation and GPU-accelerated computing. For these reasons and given the
scale and complexity of current data sets (e.g., [93, 265, 266]), DGMs may become an
integral part of the standard analysis toolbox in the life sciences.
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