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Abstract Recent theories propose that schizophrenia/schizotypy and autistic spectrum disorder

are related to impairments in Bayesian inference that is, how the brain integrates sensory

information (likelihoods) with prior knowledge. However existing accounts fail to clarify: (i) how

proposed theories differ in accounts of ASD vs. schizophrenia and (ii) whether the impairments

result from weaker priors or enhanced likelihoods. Here, we directly address these issues by

characterizing how 91 healthy participants, scored for autistic and schizotypal traits, implicitly

learned and combined priors with sensory information. This was accomplished through a visual

statistical learning paradigm designed to quantitatively assess variations in individuals’ likelihoods

and priors. The acquisition of the priors was found to be intact along both traits spectra. However,

autistic traits were associated with more veridical perception and weaker influence of expectations.

Bayesian modeling revealed that this was due, not to weaker prior expectations, but to more

precise sensory representations.

DOI: https://doi.org/10.7554/eLife.34115.001

Introduction
In recent years Bayesian inference has come to be regarded as a general principle of brain function

that underlies not only perception and motor execution, but hierarchically extends all the way to

higher cognitive phenomena, such as belief formation and social cognition. Impairments of Bayesian

inference have been proposed to underlie deficits observed in mental illness, particularly schizophre-

nia (Fletcher and Frith, 2009; Corlett et al., 2009; Adams et al., 2013; Hemsley and Garety,

1986; Friston, 2005; Stephan et al., 2006) and autistic spectrum disorder (ASD) (Pellicano and

Burr, 2012a; Van de Cruys et al., 2014; Lawson et al., 2014; Palmer et al., 2017). The general

hypothesis for both disorders is that the weight, also called ‘precision’, ascribed to sensory evidence

and prior expectations is imbalanced, resulting in sensory evidence having relatively too much influ-

ence on perception.

In schizophrenia, overweighting of sensory information could explain the decreased susceptibility

to perceptual illusions (Notredame et al., 2014), as well as the peculiar tendency to jump to conclu-

sions (Speechley et al., 2010). Moreover, the systematically weakened low-level prior expectations

might lead to forming compensatory strong and idiosyncratic high-level priors (beliefs), which would

explain the emergence and persistence of delusions as well as reoccurring hallucinations

(Fletcher and Frith, 2009; Corlett et al., 2009; Adams et al., 2013).

In ASD, the relatively stronger influence of sensory information could explain hypersensitivity to

sensory stimuli and extreme attention to details. The weaker influence of prior expectations would

also result in more variability in sensory experiences. The desire for sameness and rigid behaviors
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could then be understood as an attempt to introduce more predictability in one’s environment

(Pellicano and Burr, 2012a). Furthermore, this could lead to prior expectations which are too spe-

cific and which do not generalize across situations (Van de Cruys et al., 2014). While all theories

agree that the relative influence of prior expectations is weaker in ASD, the primary source of this

imbalance is debated: does it arise from increased sensory precision (i.e. sharper likelihood) or from

reduced precision of prior expectations? (Brock, 2012; Pellicano and Burr, 2012b; van Boxtel and

Lu, 2013) (Figure 1). Some authors argue for attenuated priors (Pellicano and Burr, 2012a;

Pellicano and Burr, 2012b), while others argue for increased sensory precision (Lawson et al.,

2014; Palmer et al., 2017; Brock, 2012; Van de Cruys et al., 2013) but conclusive experimental

evidence is lacking.

A number of studies have aimed at testing Bayesian theories, either in a clinical population, or by

studying individual differences in the general population (Powell et al., 2016; Skewes et al., 2015;

Teufel et al., 2015; Schmack et al., 2013) under the hypothesis of a continuum between autistic/

schizotypal traits and ASD/schizophrenia (Nelson et al., 2013; van Os et al., 2009;

Constantino and Todd, 2003).

Attenuated slow-speed priors were reported in a motion perception task in individuals with ASD

traits (Powell et al., 2016). Autistic children also showed attenuated central tendency prior in tem-

poral interval reproduction (Karaminis et al., 2016). Attenuated priors were also reported in percep-

tual tasks that incorporate probabilistic reasoning (Skewes et al., 2015; Skewes and Gebauer,

2016). However, the direction of gaze priors (Pell et al., 2016) and the light-from-above priors

(Croydon et al., 2017) were found to be intact. Autistic children also demonstrated intact ability to

update their priors in a volatile environment in a decision-making task (Manning et al., 2017) but a

follow-up study in ASD adults showed that they overestimate volatility in a changing environment

(Lawson et al., 2017).

In schizophrenia/schizotypal traits, Teufel et al. (2015) reported increased influence of prior

expectations when disambiguating two-tone images, while Schmack et al. (2015, 2017) reported

weakened influence of stabilizing predictions when observing a bistable rotating sphere.

Overall, the existing findings are not only mixed, but also employ very different paradigms, which

makes their direct comparison difficult. Further, a critical limitation of most studies (except for

Karaminis et al., 2016) is the lack of formal computational models that can test whether behavioral

differences originate from different priors or from different likelihoods. Moreover, to our knowledge,

despite the similarity of the Bayesian theories proposed for ASD and schizophrenia, there is no

Figure 1. Alternative hypotheses for ASD impairments within the Bayesian inference framework. In Bayesian terms, the percept can be described as a

posterior distribution, which is a combination of sensory information (likelihood) and prior expectations (prior). Two contrasting hypotheses have been

proposed to underlie behavioral differences in ASD: enhanced sensory precision, that is, smaller ssens (left) vs. attenuated priors, that is, larger sexp

(right). Both hypotheses predict a reduced influence (bias) of the prior on the location of the posterior distribution (posterior mean). However, these

alternatives differ in their predictions for perceptual variability, which is determined by the posterior width: the enhanced sensory precision hypothesis

should lead to reduced variability while the attenuated prior hypothesis should lead to increased variability. By measuring both bias and variability, our

experimental paradigm can distinguish between these two hypotheses.

DOI: https://doi.org/10.7554/eLife.34115.002
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previous work investigating both autistic and schizotypal traits within the same experimental para-

digm so as to test their differences.

We here address these questions empirically in a context of visual motion perception. We used a

previously developed statistical learning task (Chalk et al., 2010) in which participants have to esti-

mate the direction of motion of coherently moving clouds of dots (Figure 2). Chalk et al. (2010)

found that in this task healthy participants rapidly and implicitly develop prior expectations for the

most frequently presented motion directions. This in turn alters their perception of motion on low

contrast trials resulting in attractive estimation biases towards the most frequent directions. In addi-

tion, prior expectations lead to reduced estimation variability and reaction times, as well as

increased detection performance for the most frequently presented directions. When no stimulus is

presented, the acquired expectations sometimes lead to false alarms (hallucinations), again, mostly

in the most frequent directions. Importantly, such biases were well described using a Bayesian

model, where participants acquired a perceptual prior for the visual stimulus that is combined with

sensory information and influences their perception. As such, this paradigm is well suited to quanti-

tatively model variations in likelihoods and priors in individuals with ASD or schizotypal traits.

Results
Here, we investigated individual differences in statistical learning in relation to autistic and schizoty-

pal traits in a sample of 91 healthy participants. Eight participants failed to perform the task satisfac-

torily and were excluded from the analysis (see Materials and methods), leaving 83 participants in

the study (41 women and 42 men, age range: 18–69; mean: 25.7).

Task behavior at low contrast
First, we investigated whether participants acquired priors on the group level. We discarded the first

170 trials as that is how long it took for the 2/1 and 4/1 staircases contrast levels to converge

(Appendix 1—figure 2) and for prior effects to become significant (Appendix 1—figures 3, 4 and

5). We analyzed task performance at low contrast levels (converged 2/1 and 4/1 staircases contrast

levels) where sensory uncertainty is high. Replicating findings of Chalk et al. (2010), we found that

on the group level people acquired priors that approximated the statistics of the task. Such priors

Figure 2. The moving dots task. (a) Sequence of events on a single trial. First, a fixation point is presented. Next, a field of coherently moving dots is

presented along with an estimation bar (extending from the fixation point) which participants are required to move to indicate perceived motion

direction. Lastly, in a two-alternative forced choice, participants are asked to report whether they saw the dots during the estimation part (detection

task). (b) The probability of different motion directions being presented: directions at ±32˚ are presented more often than other directions. Motion

direction is plotted relative to a central reference angle (at 0˚), which was randomly set for each participant.

DOI: https://doi.org/10.7554/eLife.34115.003
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were indicated by: attractive biases towards ±32˚ (Figure 3a), less variability in estimations at ±32˚
(Figure 3b; standard deviation of estimations 11.9 ± 0.30˚ at ±32˚ versus 13.84 ± 2.38˚ over all other
motion directions; signed rank test: p<0.001), shorter estimation reaction times at ±32˚ as compared

to all other motion directions (Figure 3c; average reaction time was 201.87 ± 2.47 ms at ±32˚ versus
207.75 ± 2.60 ms over all other motion directions; signed rank test: p<0.001) and better detection

at ±32˚ as compared to all other motion directions (Figure 3d; detected 75.57 ± 0.65% at±32˚ versus
66.70 ± 0.83% over all other motion directions; signed rank test: p<0.001).

No-stimulus performance
Another indicator of acquired priors is the distribution of estimation responses on trials when no

actual stimulus was presented. We found that participants sometimes still reported seeing dots

(experienced hallucinations) but mostly so around ±32˚ (Figure 3f, solid line). To quantify the statisti-

cal significance of hallucinations around ±32˚, the space of possible motion directions was divided

into 45 bins of 16˚ and the probability of estimation within 8˚ of ±32˚ was multiplied by the total

number of bins:

prel ¼ pð�est ¼�32ð�8Þ�Þ �Nbins; (1)

Figure 3. Average group performance on low-contrast trials (a–d) and on trials with no stimulus (e). (a) Mean estimation bias, (b) standard deviation of

estimations, (c) estimation reaction time and (d) fraction of trials in which the stimulus was detected. (f) Probability distribution of estimation responses

on trials without stimulus. The solid line denotes the estimation responses when participants reported detecting a stimulus (hallucinations). The dash-

dot line denotes estimation distributions when participants correctly reported not detecting a stimulus. (e) Distribution of hallucinations for high and

low AQ groups (median split). The vertical dashed lines correspond to the two most frequently presented motion directions (±32˚). Error bars and
shaded areas represent within-subject standard error.

DOI: https://doi.org/10.7554/eLife.34115.004

The following source data is available for figure 3:

Source data 1. This zip archive contains .csv files with all of the data that was used to produce plots in Figure 3.

DOI: https://doi.org/10.7554/eLife.34115.005
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where Nbins is the number of bins (45), each of size 16˚. This probability ratio would be equal to one

if participants were equally likely to estimate within 8˚ of ±32˚, as they were to estimate within other

bins. We found that the median of prel was significantly greater than 1 (median(prel)=1.6, p<0.001,

signed rank test). Furthermore, the estimation distribution when no dots where detected (Figure 3f,

dash-dot line) was found to be significantly flatter (median(prel)=0, p<0.001, signed rank test com-

paring with the median of prel for hallucinations), suggesting that the hallucinations were indeed of

perceptual nature (rather than related to a response bias).

Task performance and autistic/schizotypy traits
Participants were prescreened to make sure they covered a wide range of autistic and schizotypy

scores. The AQ scores in our sample ranged from 6 to 41 with a mean (±SD) of 20.3 (±8.3). The RISC

scores ranged from 8 to 55 with a mean of 31.7 (±11.9), and the SPQ scores ranged from 4 to 59

with a mean of 26.4 (±13.8).

Figure 4. Correlations between AQ scores and task performance on low contrast trials (a, b) and when no stimulus is presented (c). (a) Mean absolute

bias (r = �0.175, p=0.053), (b) mean standard deviation (i.e. variability) of estimations (r = �0.327, p<0.001), and (c) the total number of hallucinations (r

= �0.238, p=0.010). The blue lines are robust regression slopes.

DOI: https://doi.org/10.7554/eLife.34115.006

The following source data is available for figure 4:

Source data 1. This zip archive contains .csv files with all of the data that was used to produce plots in Figure 4.

DOI: https://doi.org/10.7554/eLife.34115.007

Figure 5. Bayesian model of estimation response for a single trial. The actual motion direction (qact) is corrupted by sensory uncertainty (ssens), and then

combined with prior expectations (mean qexp and uncertainty sexp) to form a posterior distribution. The perceptual estimate (qperc) is defined as the

mean of the posterior distribution. Finally, motor precision ( 1=s2

m
) and a probability of random response (a) are incorporated to generate the response

(qest). This results in four free model parameters: ssens, sexp, qexp and a. The motor precision is estimated from high contrast trials and is used as a fixed

parameter.

DOI: https://doi.org/10.7554/eLife.34115.008
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We found that on low contrast trials autistic traits lead to less variability in estimations (Figure 4b;

mean standard deviation of estimations: r = �0.327, p<0.001), which remained significant after Bon-

ferroni correction (p=0.002). Moreover, there was a negative relationship between autistic traits and

estimation bias, which was trending according to robust regression (Figure 4a; mean absolute esti-

mation bias: r = �0.175, p=0.053) and significant according to Kendall’s correlation (tb = �0.163,

p=0.032), however, it did not survive Bonferroni correction (p=0.212). In the Bayesian framework,

less bias could arise either due to wider priors or narrower sensory likelihoods, while less variability

could be a result of either narrower priors or narrower likelihoods (see Figure 1). Thus, observing

less bias and less variability together suggests that the effects are driven by narrower likelihoods. An

alternative is that the differences in variability could be due to differences in motor precision, which

we further assess via modeling (below).

Schizotypy traits (RISC and SPQ scores) did not show any effect on task performance at low con-

trast as indicated by the absence of correlations with mean absolute estimation bias (RISC:

r = 0.140, p=0.197; SPQ (N = 39): r = �0.160, p=0.204) and with mean estimation variability (RISC:

r = 0.197, p=0.092; SPQ (N = 39): r = �0.229, p=0.171); see Appendix 1—figures 6, 7 and 8.

No-stimulus trials and autistic/schizotypal traits
We also investigated how the traits affected performance on trials when no actual stimulus was pre-

sented. First, we looked at the total number of estimations. We found that autistic traits were associ-

ated with less hallucinations (Figure 4c; r = �0.238, p=0.010), while schizotypal traits were found to

have no effect on the number of hallucinations (RISC: r = 0.126, p=0.163; SPQ (N = 39): r = �0.010,

p=0.959). Secondly, we looked for relationships between the traits and how the estimations on no-

stimulus trials were distributed. Specifically, we were interested in whether the traits predicted how

Figure 6. Modelling results. (a) Model comparison for all participants using Bayesian Information Criterion (BIC). y-axis measures the relative difference

between BIC of each model (as indicated on the x-axis) and BIC of BAYES model. Values greater than zero on the y-axis indicate that the BAYES model

provided a better fit. Each dot represents a participant. Red horizontal lines denote median values; blue horizontal lines denote 25th and 75th

percentiles. p-values above the plot indicate whether the median of the difference was significantly different from zero for each model (signed rank

test). Panels (a) and (c) present task performance at different motion directions as predicted by BAYES model: (b) estimation bias, (c) standard deviation

of estimations. Error bars represent within-subject standard error. (d) Population averaged prior as recovered via BAYES model. The vertical dashed

lines correspond to the two most frequently presented motion directions (±32˚).
DOI: https://doi.org/10.7554/eLife.34115.009
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densely hallucinations were distributed around ±32˚, as this could be considered to reflect the differ-

ences in the width of the underlying acquired prior distribution. For weaker priors we would expect

a more spread out distribution of hallucinations. To test this hypothesis, we looked at the fraction of

total hallucinations in the region around ±32˚ for three different-sized windows: Within 8˚, within 16˚
and within 24˚ of ±32˚. Bayesian Kendall correlation analysis on these measures provided positive

evidence that none of the traits had any effect on how hallucinations were distributed, suggesting

no differences in the acquired prior distributions (fraction of hallucinations within 8˚ of ±32˚: AQ - tb
= 0.003, BF01 = 7.24; RISC - tb = -0.050, BF01 = 3.73; SPQ - tb = 0.101, BF01 = 8.72; within 16˚
of ±32˚: AQ - tb = -0.068, BF01 = 2.86; RISC - tb = -0.129, BF01 = 0.84; SPQ - tb = 0.018,

BF01 = 5.45; within 24˚ of ±32˚: AQ - tb = 0.057, BF01 = 11.67; RISC - tb = -0.078, BF01 = 2.40; SPQ -

tb = 0.006, BF01 = 5.02).

Modeling results
Group level results
To quantitatively evaluate the relationships between underlying perceptual mechanisms and task

performance we fitted a range of generative models. One class of models was Bayesian - it was

Figure 7. Correlations between AQ scores and BAYES model parameters. (a) qexp - mean of the prior expectations (r = 0.031, p=0.820), (b) sexp -

uncertainty of the prior distribution (r = 0.018, p=0.962), (c) ssens - uncertainty in the sensory likelihood (r = �0.185, p=0.011) and (d) a - fraction of

random estimations (r = �0.135, p=0.238). The blue lines are robust regression slopes.

DOI: https://doi.org/10.7554/eLife.34115.010

The following source data is available for figure 7:

Source data 1. This zip archive contains .csv files with all of the data that was used to produce plots in Figure 7.

DOI: https://doi.org/10.7554/eLife.34115.011

Figure 8. Comparison of actual (x-axis) vs. recovered (y-axis) parameters using the BAYES’ model. (a) qexp - mean of the prior expectations (r = 0.90), (b)

sexp - uncertainty of the prior distribution (r = 0.92), (c) ssens - uncertainty in the sensory likelihood (r = 0.95), (d) a - fraction of random estimations

(r = 0.98). The dashed diagonal line is a reference line indicating perfect parameter recovery.

DOI: https://doi.org/10.7554/eLife.34115.012
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based on the assumption that participants combine prior expectations with uncertain sensory infor-

mation on a single trial basis (Figure 5).

To account for the possibility that the bimodal probability distribution of the stimuli, in addition

to inducing prior expectations, has also affected the sensory likelihood, we constructed three varia-

tions of the Bayesian model: BAYES, where the sensory precision was constrained to be the same

across all presented motion directions, ’BAYES_varmin, where the sensory precision was allowed to

be different for the most frequently presented motion directions, but was the same across all other

directions, and BAYES_var where sensory precision was allowed to be different across all motion

directions. Another class of models was based on the assumption that task performance can be

explained by response strategies that do not involve Bayesian inference. That is, on any given trial

participants responded based on the prior expectations or sensory information alone. We consid-

ered four variations of response strategy models: ADD1, ADD2, ADD1_m, and ADD2_m (see Meth-

ods for details).

To compare the models, we computed BIC values for each individual for each model; we used

individual BIC values as a summary statistic and compared the models using signed rank test in order

to preserve individual variability, which corresponds to a random effects Bayesian model selection

procedure. We found that the BAYES model had significantly smaller BIC values than the remaining

models (see the p-values within Figure 6a).

To determine how the best fitting model compared to the actual data, we analyzed the estima-

tion biases and variation in estimation responses as predicted by BAYES (Figure 6b,c). As in the

experimental data analysis, we computed estimation distributions predicted by the model by assum-

ing occasional random estimations (see Equation 2). Finally, using the BAYES model, we recon-

structed the priors acquired by participants. While on the individual level there was a considerable

variation in the shape of acquired priors (see Appendix 1—figure 10), on the group level, it approxi-

mated the statistics of the task (Figure 6d).

Model parameters and autistic/schizotypal traits
Correlational analysis of BAYES model parameters showed that there was no correlation between

AQ and the precision of the prior sexp (Figure 7b; r = 0.018, p=0.962). That autistic traits had no

effect on the precision of the prior was confirmed by Bayesian Kendall correlation, which provided

positive evidence (tb = 0.001, BF01 = 6.99).

Importantly, autistic traits were found to be strongly associated with less uncertainty in the sen-

sory likelihood, ssens (Figure 7c; r = �0.185, p=0.011), which also remained significant after Bonfer-

roni correction (p=0.044). Finally, there was no correlation with the amount of random estimations

(Figure 7d; r = �0.135, p=0.238). Motor precision, which was estimated from high contrast trials,

separately from all other parameters (see Methods), was also correlated with autistic traits

(r = 0.245, p=0.012). On the other hand, consistent with the absence of differences in the behavioral

findings, schizotypal traits were not associated with any difference in the BAYES model parameter

values (Appendix 1—figure 9), and in particular, were found to have no effect on prior precision

(RISC: tb = -0.012, BF01 = 6.90; SPQ: tb = 0.071, BF01 = 3.97).

Parameter recovery for BAYES
Finally, to further investigate that in our experimental paradigm the influence of stronger likelihoods

can be distinguished from that of weaker priors (Brock, 2012; Pellicano and Burr, 2012b) we per-

formed parameter recovery for the winning BAYES model. Parameter recovery involves generating

synthetic data with different sets of parameters (’actual parameters’) and then fitting the same

model to estimate the parameters (’recovered parameters’) that are most likely to have produced

the data. If actual and recovered parameters are in a good agreement, it means that the effects of

different parameters can be reliably distinguished. At the same time, parameter recovery is also

affected by the parameter estimation methods and even more so by the amount of data used for

model fitting. Therefore, parameter recovery provides an overall check for the reliability of modelling

results and is recommended as an essential step in computational modelling approaches

(Palminteri et al., 2017).
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We found that overall BAYES model (and MLE parameter estimation using simplex optimization

function) recovered parameters very well, which was reflected in Pearson’s correlation between

actual and recovered estimates being r > 0.9 for all model parameters (Figure 8).

Discussion
In this study, we investigated whether autistic and schizotypal traits are associated with differences

in the implicit Bayesian inference performed by the brain. Specifically, we wanted to know whether

autistic and schizotypal traits are accompanied by (1) differences in how the priors are updated and/

or in their precision and/or by (2) differences in the precision with which the sensory information (the

likelihood) is represented. We used a visual motion estimation task (Chalk et al., 2010) that induces

implicit prior expectations via more frequent exposure of two motion directions (±32˚). We found

that on the group level (N = 83) participants acquired prior expectations towards ±32˚ motion direc-

tions. This was indicated by shorter estimation reaction times and better detection at ±32˚, as well as
attractive biases towards ±32˚ and reduced estimation variability at ±32˚. Moreover, when no stimu-

lus was presented, participants sometimes still reported seeing the stimulus, mostly around ±32˚.
Performance was best explained by a simple Bayesian model, which provided a good fit to the data

and captured the characteristic features of perceptual bias and variability. This model provided esti-

mates of Bayesian priors and sensory likelihoods for each participant, which were then analyzed in

relation to participants’ schizotypal and autistic traits.

Schizotypal traits were found to have no measurable effect on perceptual biases in our task and,

therefore, were not associated with any differences in the precision ascribed to priors and likeli-

hoods. This finding challenges recent accounts of positive symptoms of schizophrenia that predict

impaired updating of priors and an imbalance in precision ascribed to sensory information and prior

expectations (Fletcher and Frith, 2009; Corlett et al., 2009; Adams et al., 2013). An immediate

explanation might be that the influence of schizotypal traits in the healthy population is not strong

enough to lead to behavioral differences, even if the dimensionality assumption holds. This would

need to be addressed by further research investigating clinical populations. Another possibility is

that the aberrant perception subconstruct of schizotypal traits, for which we did not acquire explicit

measures, is more relevant for the hypothesized effects then the entire construct as a whole. For

example, a recent study by Powers et al. (2017) found that overweighing of perceptual priors was

specifically linked to hallucinatory propensity and not to the diagnostic status of psychosis itself. Fur-

thermore, Teufel et al. (2015) also found that stronger influence of prior knowledge was primarily

associated with hallucinatory propensity and not with delusional propensity. Another possible differ-

ence between Teufel et al. (2015) study and ours might be the level at which the priors operate. In

Teufel et al. (2015) participants were presented with ambiguous two-tone versions of images

before and after seeing the actual images in full color and had to report whether the presented two-

tone image contains a face. The low-level prior for basic perceptual features (as induced in our task)

might function at a hierarchically lower level than prior knowledge related to complex collection of

features and semantic content (faces). The level at which prior expectations are induced has indeed

been shown to matter. A series of studies by Schmack et al. (2013, 2015, 2017) using 3D rotating

cylinders report weaker low-level (perceptually-induced - stabilizing) priors but stronger high-level

(cognitively-induced) priors in both schizophrenia and schizotypal traits. It is difficult to compare and

reconcile these findings with ours. One possibility is that the priors induced in our task lie in between

their perceptual and cognitive levels. The taxonomy of priors in relation to their place in the compu-

tational hierarchy or to their complexity or specificity is still far from being established (Seriès and

Seitz, 2013) and thus the potential relevance of such distinctions is still not known.

Autistic traits were associated with significant behavioral differences: weaker biases and lower

variability of direction estimation on low contrast trials. Modeling revealed that this was because of

increased sensory precision as well as higher motor precision, while there was no attenuation of

acquired priors. Parameter recovery analysis confirmed that our methodology provides reliable

parameter estimates and, in particular, allows disentangling variations in priors and likelihoods.

Autistic traits were also found to be associated with less false detections (hallucinations) on trials

when no stimulus was presented, consistent with the idea that prior expectations had less influence

in individuals with higher AQ. In an attempt to measure those individual differences, we fitted a

more sophisticated Bayesian model that could account not only for the estimation performance but
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also for the detection data (see Appendix 2). This model provided a good fit to both estimation and

detection data, and preserved the correlation between ASD traits and the precision of the motion

direction likelihood (r = �0.202, p=0.029). However, parameter recovery was not as good as for the

BAYES model presented above (see Appendix 2—figure 3) and for this reason we focused on the

simpler model in this paper.

Overall, our findings are in agreement with most of the recent Bayesian theories of ASD, namely,

that autistic traits are associated with a relatively weaker influence of prior expectations. However,

we find that this is due to enhanced sensory precision (Lawson et al., 2014; Palmer et al., 2017;

Brock, 2012; Van de Cruys et al., 2013), rather than attenuated priors per se (Pellicano and Burr,

2012a). Other empirical studies inspired by the Bayesian accounts have reported either attenuated

or intact priors, but most are subject to methodological limitations, either because they did not use

computational modeling (Skewes et al., 2015; Skewes and Gebauer, 2016; Croydon et al., 2017)

or because their model could not extract likelihoods and quantify their variations (Powell et al.,

2016; Lawson et al., 2017).

The idea that sensory processing could be enhanced in autism has long been proposed outside

the Bayesian framework. Autistic traits have been associated with enhanced orientation discrimina-

tion (Dickinson et al., 2014), but only for first-order (luminance-defined) stimulus (Bertone et al.,

2005). This enhancement has been proposed to be a result of either enhanced lateral

(Bertone et al., 2005), or a failure to attenuate sensory signals via top-down gain control

(Lawson et al., 2014), both of which could be directly related to narrower likelihoods in the Bayesian

framework (Ma et al., 2006). However, in motion perception, previous research did not find

improved discrimination for first-order stimulus in autism, while for second-order (texture-defined)

stimulus, the autistic group was found to underperform (Bertone et al., 2003). Our findings chal-

lenge these results and call for more research in this area.

In ASD as in schizotypy, prior integration might function differently at different levels of sensory

processing. For example, Pell et al. (2016) reported intact direction-of-gaze priors for healthy indi-

viduals with high autistic traits and for highly functional individuals with a clinical diagnosis. The

authors did not directly investigate differences in sensory precision, but the lack of behavioral differ-

ences suggests that there was none. Arguably, their paradigm involves more complex stimuli than

used in our task, which are also strongly associated with semantic content (faces). It would not be

surprising if increased sensory precision does not extend to such stimuli. In fact, autistic individuals

are known to exhibit differential performance based on the complexity of the stimulus

(Bertone et al., 2005), which also lies at the foundation of some theoretical accounts, such as the

‘Weak Central Coherence’ (Happé and Frith, 2006).

In our paradigm people acquire prior expectations very quickly, within 200 trials (see Appendix

1), which did not allow us to study individual differences in the rate at which the priors are acquired.

Bayesian accounts predict differences in the dynamical updating of the priors, namely, that both

autistic and schizotypal traits should be associated with increased learning rate - which is the ratio of

likelihood and posterior precisions (Palmer et al., 2017). Our findings of increased sensory precision

in autistic traits also suggest that their learning rate should be faster. However, this prediction might

need to be more nuanced for volatile environments when there are multiple (hierarchical) levels of

uncertainty that need to be updated simultaneously. A recent study by Lawson et al. (2017) found

that when transitioning from stable to volatile environments, autistic adults showed larger change in

the learning rate about volatility and smaller change in the learning rate about the environmental

probabilities, while the average learning rates were found to not be different from those of controls.

Another aspect that our paradigm could not test is the specificity of the acquired priors

(Seriès and Seitz, 2013). Some Bayesian accounts (Van de Cruys et al., 2014) predict that priors

may be overly context-sensitive in autism. This is in line with the view that generalization is impaired

in autism (Plaisted, 2015). Furthermore, such over-specificity is thought to be stronger with more

repetitive stimuli (Harris et al., 2015). Future research could address this using statistical learning

paradigms that incorporate increasingly distinct contexts or stimuli.

Conclusion
We investigated statistical learning and Bayesian inference in a visual motion perception task along

autistic and schizotypal traits. To our knowledge, this study is the first to investigate differences in

Bayesian inference along both trait spectra in a single task. Furthermore, this study is the first visual
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study to computationally disentangle and quantitatively assess the variations in individuals’ likeli-

hoods and priors. Surprisingly, schizotypal traits were found to have no effect on task performance

and thus were not associated with any differences in the underlying statistical learning and Bayesian

inference. For autistic traits, however, significant behavioral differences in prior integration were

found, which were due to an increase in the precision of internal sensory representations in partici-

pants with higher AQ. Whether the current results extend to clinical populations will have to be

examined in the future.

Materials and methods

Participants
91 (47 females, 44 males, age range: 18–69) naı̈ve participants with no motor disabilities and with

normal (or corrected to normal) vision were recruited from the general population. We advertised

for participants using posters and the internet across University of Edinburgh locations and other

sites across Edinburgh. All participants gave informed written consent and received monetary com-

pensation for participation. The study was approved by the University of Edinburgh School of Infor-

matics Ethics Panel.

Questionnaires
ASD was assessed using 50-item version Autism Spectrum Quotient (AQ) (Baron-Cohen et al.,

2001), which is commonly used for assessing milder variants of autistic-like traits within the general

population. Schizotypal traits were assessed using The Rust Inventory of Schizotypal Cognitions

(RISC) (Rust, 1988). RISC is specifically developed to measure schizotypal traits in the general popu-

lation. In addition, a sub-group of 41 participants also completed Schizotypal Personality Question-

naire (SPQ) (Raine, 1991). Finally, all participants were also asked to complete the Warwick-

Edinburgh Mental Well-being Scale (WEMWBS) (Tennant et al., 2007) in order to control for poten-

tial depression-induced differences in performance (Austin et al., 2001).

Apparatus
The visual stimuli were generated using Matlab Psychophysics Toolbox (Brainard, 1997). Partici-

pants viewed the display in a dark room at a distance of 80–100 cm. The stimuli consisted of a cloud

of dots with a density of 2 dots/deg2 moving coherently (100%) at a speed of 9˚/sec. Dots appeared
within a circular annulus with minimum diameter of 2.2˚ and maximum diameter of 7˚. The stimuli

were displayed on a Dell P790 monitor running at 1024 � 768 at 100 Hz. The display luminance was

calibrated using a Cambridge Research Systems Colorimeter (ColorCal MKII).

The task
The task was developed previously in our laboratory (Chalk et al., 2010). Participants have to: (i)

estimate the direction of coherently moving simple stimuli (dots) that are presented at low contrast

levels (estimation task) and then (ii) indicate whether they have actually perceived the stimulus or not

(detection task). Since Chalk et al. (2010) had shown that the effects of acquired priors become sig-

nificant within the first 200 trials, instead of two experimental sessions of 850 trials each as in the

original study, we used a single session of 567 trials (lasting around 40 min).

Each trial started by first displaying a fixation point (0.5˚, 12.2 cd/m2) for 400 ms, after which a

field of moving dots appeared along with an orientation bar (length 1.1˚, width 0.03˚, luminance 4

cd/m2, extending from the fixation point). Initial angle of the bar was randomized for each trial. Par-

ticipants had to estimate the direction of motion by aligning the bar (using a computer mouse) to

the direction the dots were moving in, and by clicking the mouse button to validate their estimate.

The display cleared when either the participant had clicked the mouse or when 3000 ms had

elapsed. On trials where no stimulus was presented, the bar still appeared for the estimation task to

be completed.

After a 200 ms delay, the participants had to indicate whether they had actually detected the

presence of dots in the estimation period (detection task). The display was divided into two parts by

a vertical white line across the center of the screen, the left hand side area reading ‘NO DOTS’ and

the right hand side area reading ‘DOTS’ (Figure 2a). The cursor appeared in the center of the
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screen, and participants had to move it to the left or right and click to indicate their response. Imme-

diate feedback for correct or incorrect detection responses was given by a cursor flashing green or

red, respectively. The screen was cleared for 400 ms before the start of a new trial. Every 20 trials,

participants were presented with feedback on their estimation performance in terms of average esti-

mation error in degrees (e.g., ‘In the last 20 trials, your average estimation error was 23˚’). Every 170

trials (i.e. on three occasions) participants were given a chance to ‘have a short break to rest their

eyes’, in order to prevent fatigue. Participants clicked when they were ready to continue.

Design
The stimuli were presented at four different levels of contrast: 0 contrast (no-stimulus trials), two low

levels contrasts and high contrast, randomly mixed across trials. There were 167 trials with no stimu-

lus. The two low levels of contrast were determined using 4/1 and 2/1 staircases on detection perfor-

mance (Garcı́a-Pérez, 1998). There were 243 trials following the 4/1 staircase and 90 trials following

the 2/1 staircase. The remaining 67 trials were at high contrast, which was set to 3.51 cd/m2 above

the background luminance.

For the two low contrast levels, there was a predetermined number of possible directions: 0˚,
±16˚, ±32˚, ±48˚, and ±64˚ with respect to a reference direction. The reference direction was random-

ized for each participant. For the 2/1 staircased contrasts, each predetermined motion direction was

presented equally frequently. Unbeknownst to participants, stimuli at high and 4/1 staircase con-

trasts were presented more frequently at �32˚ and +32˚ motion directions, resulting in a bimodal

probability distribution (Figure 1b). For the 4/1 staircase contrast level, the dots were moving at

±32˚ in 173 (~70%) trials and in all the other predetermined motion directions in the remaining 70

(~30%) trials equally frequently. At the highest contrast level, 34 (~50%) trials had the dots moving at

±32˚ and the remaining 33 (~50%) trials were at random directions (i.e. not just the predetermined

directions).

Data analysis
Responses on high contrast trials were used as a performance benchmark to ensure that participants

were performing the task adequately. The predefined inclusion criteria were: (1) at least 80% detec-

tion and (2) less than 30˚ root mean squared error of estimations. 8 out of 91 participants failed to

satisfy at least one of the criteria and were excluded from further analysis (Appendix 1—figure 1).

Data analysis on the estimation of motion directions was performed on 4/1 and 2/1 staircased

contrast levels only and only on trials where participants both validated their choice with a click

within 3000 ms in the estimation part and clicked ‘DOTS’ in the detection part. The first 170 trials of

each session were excluded from the analysis, as this was the upper limit for the convergence of the

staircases to stable contrast levels (Appendix 1—figure 2).

After removing these trials, the luminance levels achieved by the 2/1 and 4/1 staircases were

found to be considerably overlapping (Appendix 1—figure 2). Therefore, the data for both of these

contrast levels was combined for all further analysis.

To account for random estimations (either accidental or intentional) that participants made on

some trials, we fitted each participant’s estimation responses to the probability distribution:

ð1�aÞ �Vð�j�;kÞþa; (2)

Where a is the proportion of trials in which participant makes random estimates, and V(q|m,k) is

the probability density function for the estimated angle � for von Mises (circular normal) distribution

with the mean m and precision k. The parameters m and k of the von Mises distribution were deter-

mined by maximizing the likelihood of the distribution in Equation (2) for each presented angle.

To analyze the distribution of estimations in no-stimulus trials, we constructed histograms of 16˚
size bins. These histograms were converted into probability distributions by normalizing over all

motion directions. We analyzed the estimation distribution when participants reported seeing dots

(clicked ‘DOTS’) within no-stimulus trials. We interpreted these false alarms as a simple form of per-

ceptual hallucination.
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Modelling
Bayesian models
Bayesian models assume that participants combined a learned prior of the stimulus directions with

their sensory evidence in a probabilistic manner. We first assume that participants make noisy sen-

sory observations of the actual stimulus motion direction (qact), with a probability

psensð�sensj�actÞ ¼ Vð�t;ksensÞ: (3)

where qt itself varies from trial to trial around qact according to p(qt|qact)=V(qact, ksens).

While participants cannot access the ‘true’ prior, p(q), directly, we hypothesized that they learned

an approximation of this distribution, denoted pexp(q). This distribution was parameterized as the

sum of two von Mises distributions, centered on motion directions qexp and -qexp, and each with pre-

cision kexp:

pexpð�Þ ¼ 0:5½Vð��exp;kexpÞþVð�exp;kexpÞ� (4)

Combining these via Bayes’ rule gives a posterior probability that the stimulus is moving in a

direction �:

ppostð�j�sensÞ / pexpð�Þ �psensð�sensj�Þ (5)

The perceived direction, qperc, was taken to be the mean of the posterior distribution (almost

identical results would be obtained by using the maximum instead). Finally, we accounted for motor

precision and a possibility of random estimates on some trials via:

pð�estj�percÞ ¼ ð1�aÞ �Vð�perc;kmÞþa; (6)

where a is the proportion of trials in which participants make random estimates and km is the motor

precision.

Increased exposure to some motion directions might not only give rise to prior expectations, but

also induce learning in the sensory likelihood function itself (Stocker and Simoncelli, 2006;

Sato and Kording, 2014). Therefore, we fitted two more model variants: ’BAYES_var’ where ksens

varied with the stimulus direction (i.e. it took five different values for each of the angles: 0˚, ±16˚,
±32˚, ±48˚, ±64˚) and ’BAYES_varmin’ where ksens was allowed to be different for ±32˚ but was the

same for all other directions.

Response strategy models
We wanted to test whether task behavior might be better explained by simple behavioral strategies.

This class of models assumed that on trials when participants were unsure about the presented

motion direction, they made an estimation based solely on prior expectations, while on the remain-

ing fraction of trials they made unbiased estimates based solely on sensory inputs. The first model,

’ADD1’, assumed that estimations derived from prior expectations were simply sampled from a

learnt expected distribution, pexp(q) (see Chalk et al., 2010 and Appendix 2). The second model,

’ADD2’, was just as ’ADD1’ except when participants were unsure about the stimulus motion direc-

tion, instead of sampling from the complete learned probability distribution ranging from �180˚
to +180˚, they effectively truncated this distribution on a trial by trial basis and sampled from only

one part of it, negative (�180˚ to 0˚) or positive (0˚ to +180˚), depending on which side of the distri-

bution the actual stimulus occurred (see Chalk et al., 2010) and Appendix 2). We also considered

slight variations of the ‘ADD1’ and ‘ADD2’ models, denoted ‘ADD1_m’ and ‘ADD2_m’ respectively.

These were identical to ‘ADD1’ and ‘ADD2’ except from setting 1/kexp to zero; that is, on trials

when perceptual estimates were derived only from expectations, they were equal to the mode of

the learnt distribution (i.e. no uncertainty).

Parameter estimation
We used performance in high contrast trials to estimate motor precision, km, for each individual. We

assumed that, for those trials, sensory uncertainty was close to zero. Motor precision was then deter-

mined by fitting estimation responses to the distribution in Equation (2) by replacing m with the
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actual motion direction, qact. The estimated motor precision was used in all subsequent model fitting

as a fixed parameter. The rest of the free parameters were estimated by fitting the response data at

the two low (staircased) contrast levels. For each model with a set of free parameters M, we com-

puted the probability distribution p(qest|qact; M) of making an estimate qest given the actual stimulus

direction qact. For the response strategy models, by definition, the p(qest|qact; M) corresponds to

average behavior in the task.

The parameters were estimated by maximizing the fit of the log likelihood function for the experi-

mental data for each participant individually. The maximum likelihood was found using a simplex

algorithm, using fminsearchbnd Matlab function. To avoid convergence at a local maximum we con-

structed a grid of initial kexp and ksens parameter values covering the range found in previous stud-

ies. We selected the resulting set of parameters that corresponded to the largest log-likelihood.

Model comparison
To compare the model fits we used Bayesian Information Criterion (BIC), which approximates the

log of model evidence (Burnham and Anderson, 2004):

�2 � logðPðDjMÞÞ»BIC¼�2 � logðPðDjM; Q̂ÞÞþ k � logðnÞ; (7)

where M is model, D is observed data and P (D|M, Q̂) is the likelihood of generating the experimen-

tal data given the most likely set of parameters, Q̂; k is the number of model parameters and n is the

number of data points (or equivalently, the number of trials). BIC evaluates the model by how it fits

the data by also penalizing for model complexity (number of parameters); lower BIC score indicates

a better model.

Parameter recovery
To determine whether the BAYES model can distinguish the effects of strong likelihoods from those

of weak priors (Brock, 2012; Pellicano and Burr, 2012b) and to evaluate the robustness of our

methods, we performed parameter recovery. First, we generated 80 sets of parameters (i.e. 80 syn-

thetic individuals) by randomly sampling each parameter from a Gaussian distribution centered on

the mean value of each parameter found in our sample (40˚ for qexp, 15˚ for sexp, 10˚ for ssens, 0.06

for a and 10˚ for smotor). Second, for each set of parameters, we simulated data for 200 trials with

the Bayesian model by randomly sampling from the estimation probability distribution. We used 200

simulated trials only, to match the empirical data (200 corresponds to the amount of experimental

trials used for fitting, after excluding high contrast and zero contrast trials; Simulating more trials

would result in a better parameter recovery but the results would no longer be informative about

the reliability of parameters estimated from empirical data). Finally, we fitted the BAYES model to

the simulated data. To evaluate the goodness of recovered parameters, we computed Pearson’s cor-

relation between the actual parameters and the recovered parameters.

Statistical tests
Due to the presence of outliers in many of the measures, we used robust regression techniques for

measuring the presence and strength of the effects in our data. This was done using robustfit func-

tion in Matlab, which downweighs the influence of outliers in proportion to their distance from the

regression line, which is computed via iteratively reweighted least squares (IRLS) (Holland and

Welsch, 1977). For the loss function we used Huber function (Huber, 1964) with a tuning constant

of 1.345, which corresponds to 95% estimator efficiency as compared to ordinary least squares.

Furthermore, we applied Bonferroni correction for multiple testing based on the number of inde-

pendent hypotheses that we tested; that is, whether two personality traits, ASD and schizotypy,

were associated with the two variables of interest, acquired priors and sensory likelihoods, - this

resulted in four different hypotheses. Note that while the number of null hypothesis significance tests

that we performed exceeds this number, the tests within each set concerning the same hypothesis

were not independent (each test was based on derivative and/or correlated values to those in the

other tests within the same set), and thus would not have met the independence assumption on

which Bonferroni correction is based.

Finally, due to the limitations of frequentist statistics for accepting the null hypothesis, we per-

formed Bayesian correlation analysis and computed Bayesian Factors (Kass and Raftery, 1995) for

Karvelis et al. eLife 2018;7:e34115. DOI: https://doi.org/10.7554/eLife.34115 14 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.34115


the null hypothesis (BF01). This was done using JASP (Team, 2017) (Version 0.8.6). Due to the pres-

ence of outliers, this analysis was carried out using the non-parametric Kendall’s Tau-b correlation

coefficient.

Source code and data
The source data of the main figures is provided. These include, Figure 3—source data 1, Figure 4—

source data 1 and Figure 7—source data 1. Source code 1 contains all the source code necessary

to reproduce the figures. More detailed information about the source code is in SourceCode_R-

eadme.txt, while SourceData_Readme.txt contains more details about the source data files.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.34115.015

Exclusion criteria
In order to ensure that participants performed adequately in the psychophysical task, we used

predetermined performance criteria for inclusion into the study. Firstly, participants were

required to detect the motion stimuli on more than 80% of trials with the high contrast motion

stimuli and also make active estimates of the motion directions by clicking the mouse.

Secondly, their average estimation performance on the high contrast stimuli had to be within

30˚ of the correct angle. 8 out of 91 participants failed to satisfy at least one of the criteria:

two participants did not satisfy the first criteria, four did not satisfy the second criteria and two

did not satisfy both of the criteria (Appendix 1—figure 1). These participants were excluded

from further analysis.

Appendix 1—figure 1. Task performance at the highest contrast level and exclusion Criteria.

Left panel: fraction of detected high contrast trials - quantified as the fraction of trials in which

participants both validated their choice with a click within 3000 ms in the estimation part and

reported seeing dots (clicked ‘DOTS’) in the detection part. Right panel: root mean square

error of estimations on high contrast trials. The dashed lines represent minimum performance

criteria (more than 80% detection and less than 30˚ RMS error of estimations). Excluded

participants are denoted by cross markers.

DOI: https://doi.org/10.7554/eLife.34115.016

Staircased stimulus contrast levels
Appendix 1—figure 2 describes the average convergence of the contrast staircases. Two

groups comprising our sample performed the task at different background contrast levels. For

a subgroup of 50 participants (left panel), the background luminance was set to 1.16 cd/m2 for

the other sub-group of 41 (right panel) it was set to 5.18 cd/m2. For both groups, contrast

staircases converged after 170 trials for both intermediate contrast levels, denoted with the

vertical dashed line. In both groups, 2/1 and 4/1 staircased contrasts were considerably

overlapping: on average 2/1 being 0.20 ± 0.04 cd/m2 and 4/1 being 0.22 ± 0.04 cd/m2 above

the 1.16 cd/m2 background luminance; and on average 2/1 being 0.42 ± 0.05 cd/m2 and 4/1

being 0.46 ± 0.05 cd/m2 above the 5.18 cd/m2 background luminance. Thus, the two

intermediate contrasts were combined for all further data analysis.

Karvelis et al. eLife 2018;7:e34115. DOI: https://doi.org/10.7554/eLife.34115 19 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.34115.016
https://doi.org/10.7554/eLife.34115


Appendix 1—figure 2. Population averaged stimulus contrast relative to the background con-

trast for the 2/1 (red) and 4/1 (black) staircased contrast levels. Standard deviation is denoted

by shaded areas with corresponding colors. The vertical dashed line marks 170 trials. Left

panel: 44 participants (remaining after exclusion) that performed the task with the background

luminance set to 1.16 cd/m2. Right panel: 39 participants (remaining after exclusion) that

performed the task with the background luminance set to 5.18 cd/m2.

DOI: https://doi.org/10.7554/eLife.34115.017

Combining the different background luminance levels
To compare the two sub-groups that performed the task at different background luminance

levels, we performed Wilcoxon two-tailed rank sum test for all of the behavioral measures and

none of them indicated any differences: mean absolute estimation bias (z = 0.652;

ranksum = 1920; p=0.514), mean variance of estimations (z = �0.406; ranksum = 1803;

p=0.685), total number of hallucinations (z = 0.128; ranksum = 1862; p=0.898) number of

hallucinations within 8˚ of ±32˚ (z = 0.870; ranksum = 1943; p=0.384), mean estimation

reaction time (z = 0.479; ranksum = 1901; p=0.632). The two groups were therefore

combined.

Temporal emergence of the impact of expectations
We investigated how many trials it took for the acquired prior effects to impact behavior. First,

we looked at estimation reaction times (RT) and compared mean RT of each individual at ±32˚

with mean RT at all other directions; we compared cumulative moving averages at every 30

trials (Appendix 1—figure 3). We found that it took less than 90 trials for RT at ±32˚ to

become significantly shorter than average RT at all other directions (Appendix 1—figure 3

and p-values within).

Appendix 1—figure 3. Cumulative moving average of ratio of estimation reaction times at ±32˚

vs average reaction times at all other directions. Red bars indicate median values and blue bars

indicate 25th and 75th percentiles. p-values indicate whether RTs at ±32˚ are significantly

shorter than average RTs over all other directions (one-tailed Wilcoxon signed rank test).

DOI: https://doi.org/10.7554/eLife.34115.018
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Similarly, we looked at average detection performance and compared the fraction of trials

in which stimulus was detected at ±32˚ with the mean fraction detected over all other

presented directions; again, we compared cumulative moving averages at every 30 trials

(Appendix 1—figure 4). We found that it took less than 90 trials for detection at ±32˚ to

become significantly better than average detection over all other presented directions

(Appendix 1—figure 4 and p-values within).

Appendix 1—figure 4. Cumulative moving average of ratio of fraction of detected stimuli

at ±32˚ vs average fraction detected at all other directions. Red bars indicate median values and

blue bars indicate 25th and 75th percentiles. p-values indicate whether fraction detected

at ±32˚ are significantly larger than average fraction detected over all other directions (one-

tailed Wilcoxon signed rank test).

DOI: https://doi.org/10.7554/eLife.34115.019

Lastly, for trials where no stimulus was presented, we looked at how long it took

participants to start hallucinating predominantly around ±32˚ as opposed to all other possible

directions. This was quantified as a probability ratio prel:

prel ¼ pð�est ¼�32ð�8Þ�Þ �Nbins; (1)

where Nbins is the number of bins (45), each of size 16˚. This probability ratio would be equal

to one if participants were equally likely to estimate within 8˚ of ±32˚ as they were to estimate

within other bins. Again, we computed cumulative moving mean at every 30 trials

(Appendix 1—figure 5). For participants who did not report seeing dots at any direction

within a given number of trials (i.e. zero total hallucinations) this probability ratio was

undefined, therefore, those individuals were omitted from significance test at that point. We

found that it took less than 210 trials for prel to become significantly larger than 1

(Appendix 1—figure 5 and p-values within).

Appendix 1—figure 5. Cumulative moving average of ratio of fraction of detected stimuli

at ±32˚ vs average fraction detected at all other directions. Red bars indicate median values and

blue bars indicate 25th and 75th percentiles. p-values indicate whether fraction detected
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at ±32˚ are significantly larger than average fraction detected over all other directions (one-

tailed Wilcoxon signed rank test).

DOI: https://doi.org/10.7554/eLife.34115.020

Schizotypy traits and task performance
Appendix 1—figure 6 and Appendix 1—figure 7 show task performance by groups which

were formed by splitting the sample on the median RISC and SPQ scores respectively.

Appendix 1—figure 8 shows the correlations between RISC and SPQ scores and the

corresponding performance measures. There were no significant correlations with any of the

measures.

Appendix 1—figure 6. Average group performance on low-contrast trials (a–d) and on trials

with no stimulus (e) by groups split by median RISC score. (a) Mean estimation bias, (b)

standard deviation of estimations, (c) estimation reaction time and (d) fraction of trials in which

the stimulus was detected. (e) Distribution of hallucinations. The vertical dashed lines

correspond to the two most frequently presented motion directions (±32˚). Error bars and
shaded areas represent within-subject standard error.

DOI: https://doi.org/10.7554/eLife.34115.021

Appendix 1—figure 7. Average group performance on low-contrast trials (a–d) and on trials

with no stimulus (e) by groups split by median SPQ score. (a) Mean estimation bias, (b) standard

deviation of estimations, (c) estimation reaction time and (d) fraction of trials in which the
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stimulus was detected. (e) Distribution of hallucinations. The vertical dashed lines correspond

to the two most frequently presented motion directions (±32˚). Error bars and shaded areas

represent within-subject standard error.

DOI: https://doi.org/10.7554/eLife.34115.022

Appendix 1—figure 8. Correlations between personality traits, RISC (top row) and SPQ (bot-

tom row) and task performance. There were no significant correlations with any of the

measures: mean absolute bias (left column), mean estimation variability (middle column) and

total number of hallucinations (right column). Robust correlation coefficients and p-values are

indicated above each plot. The blue lines denote robust regression.

DOI: https://doi.org/10.7554/eLife.34115.023

Schizotypy traits and model parameters
Appendix 1—figure 9 shows the robust correlation analysis results between the BAYES model

parameter estimates and schizotypy scores. There was no significant correlation with any of

the parameters. Further Bayesian correlation analysis provided positive evidence that

schizotypy traits had no effect on prior precision (RISC: tb = -0.012, BF01 = 6.90; SPQ: tb =

0.071, BF01 = 3.97).

Appendix 1—figure 9. Correlations with the BAYES model parameter values and schizotypy

traits (as measured by both RISC and SPQ). First column: �exp - mean of the prior expectations,
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second column: sexp - uncertainty of the prior distribution, third column: ssens - uncertainty in

the sensory likelihood and fourth column: a - fraction of random estimations. Robust

correlation coefficients and p-values are indicated above each plot. The blue lines denote

robust regression.

DOI: https://doi.org/10.7554/eLife.34115.024

Individual priors recovered via BAYES model
Appendix 1—figure 10 shows a representative sample of the priors we extracted for a

number of individuals, using the ‘BAYES’ model.

Appendix 1—figure 10. A representative sample of prior expectations for each individual as

reconstructed via ‘BAYES’ model. The dashed lines correspond to the two most frequently

presented motion directions (±32˚).

DOI: https://doi.org/10.7554/eLife.34115.025
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Appendix 2

DOI: https://doi.org/10.7554/eLife.34115.026

Response bias models
We wanted to account for the possibility that the task behavior might be better explained by

simple behavioral strategies. This class of models assumed that on trials when participants

were unsure about the presented motion direction they made an estimation based solely on

prior expectations, while on the remaining fraction of trials they made unbiased estimates

based solely on sensory input.

ADD1
The first model (‘ADD1’) assumed that when participants were unsure about which motion

direction they had perceived, they made an estimate that was close to one of the two most

frequently presented motion directions. In this model, on each trial, participants make a

sensory observation of the stimulus motion direction, qsens. We parameterize the probability of

observing the stimulus to be moving in a direction qsens by a von Mises (circular normal)

distribution centered on the actual stimulus direction and with width determined by 1/ksens:

psensð�sensj�actÞ ¼ Vð�act;ksensÞ (2)

On most trials, we assume that participants make a perceptual estimate of the stimulus

motion direction (qperc) that is based entirely on their sensory observation so that qperc = qsens.

However, on a certain proportion of trials, when participants are uncertain about whether a

stimulus was present or not, they resort to their expectations by making a perceptual estimate

that is sampled from a learned distribution, pexp(�). For simplicity, we parameterize this

distribution as the sum of two circular normal distributions, each with width determined by 1/

kexp, and centered on motion directions �qexp and qexp, respectively. Finally, we

accommodate for the fact that there will be a certain amount of noise associated with moving

the estimation bar to indicate which direction the stimulus is moving in as well as allowing for

a fraction of trials a, where participants make estimates that are completely random. Thus, the

estimation response qest is related to the perceptual estimate qperc via the equation:

pð�estj�percÞ ¼ ð1�aÞ*Vð�perc;kmÞþa: (3)

Bringing all this together, the distribution of estimation responses for a single participant is

given by:

pð�est j�actÞ ¼ ð1�aÞ½ð1� að�ÞÞpsensð�sens ¼ �est j�actÞþ að�Þpexpð�Þ�*Vð0;kmÞþa: (4)

where the asterisk denotes a convolution and a(�) determines the proportion of trials that

participants sampled from the expected distribution, pexp(�). The resulting ‘ADD1’ model has

nine free parameters qexp, kexp, a(�) (which can take a different value for each of the five

angles: 0˚,±16˚,±32˚,±48˚,±64˚), ksens and a.

ADD2
The second model, ‘ADD2’, was just as ‘ADD1’ except that it had slightly more complex

strategy for trials when participants were unsure about the stimulus motion direction: instead

of sampling from the complete learned probability distribution ranging from �180˚ to +180˚

(Equation (11)), they effectively truncated this distribution on a trial by trial basis and sampled

from only one part of it, negative (�180˚ to 0˚) or positive (0˚ to +180˚), depending on which

side of the distribution the actual stimulus occurred. Incorporating this into the distribution of

estimation responses gives:

Karvelis et al. eLife 2018;7:e34115. DOI: https://doi.org/10.7554/eLife.34115 25 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.34115


pð�estj�actÞ ¼ ð1�aÞ½ð1� að�Þ� bð�ÞÞpsensð�sens ¼ �estj�actÞ

það�ÞpexpNð�Þþ bð�ÞpexpPð�Þ�*Vð0;kmÞþa:
(5)

where asterisk (*) denotes convolution; a(q) and b(q) determine the proportion of trials in

which participants sample from either anticlockwise or clockwise distributions pexpN(�) and

pexpP(�), respectively.

In addition, we also considered slight variations of the ‘ADD1’ and ‘ADD2’ models,

denoted ‘ADD1_m’ and ‘ADD2_m’ respectively. These were identical to ‘ADD1’ and ‘ADD2’

except from setting 1/kexp to zero; that is, on trials when perceptual estimates were derived

only from expectations, they were equal to the mode of the learnt distribution (i.e. no

uncertainty).

Non-symmetric prior models
The stimulus distribution is multimodal and symmetric. Learning such a distribution might be

inherently difficult. We reasoned that some individual differences might lie in asymmetries of

the acquired priors. Therefore, we explored an alternative parameterization of the acquired

priors which allowed them to be asymmetrical. We allowed the two modes in the prior to have

different position with respect to 0˚ and to have different amount of probability associated

with each mode. This resulted in:

pexpð�Þ ¼ ð1�pÞ �Vð�p;kexpÞþp �Vð�n;kexpÞ (6)

where p (2 [0 1]) is a mixing parameter. Using this parameterization we fitted ‘BAYES’ model

as described in the main text (thus, we denoted this alternative model as ‘BAYES_p’). The

alternative parameterization did not result in a better BIC as compared to ‘BAYES’ model

(p=0.378, signed rank test). In addition, we performed parameter recovery to determine how

robust ‘BAYES_p’ is and found that recovering the mixing parameter p was not very reliable

(r = 0.4), although other parameters retained most of their previous reliability (Appendix 2—

figure 1). We thus focused on the simpler model in the current study.

Appendix 2—figure 1. Comparison of actual and recovered parameters via ‘BAYES_p’ model.

�p and �n - positive and negative modes of the bimodal distribution of prior expectations, sexp

- uncertainty of the prior distribution, ssens uncertainty in the sensory likelihood, a - fraction of

random estimations, p - mixing parameter responsible for the degree of bimodality. Actual

parameters are scattered along x-axis and recovered parameters are scattered along y-axis.
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The dashed diagonal line is a reference line indicating perfect parameter recovery. Pearson’s

correlation coefficients are indicated above each plot.

DOI: https://doi.org/10.7554/eLife.34115.027

Full models (estimation + detection)
We have built a Bayesian model that incorporates both estimation and detection performance

(‘BAYES_full’) in order to fully account for the task behavior. This time, the acquired priors

consisted of both the expectations about the direction of stimuli motion (q) and the

expectations about whether stimulus is presented (s = 1) or not (s = 0). It was parameterized

as:

pexpð�; sÞ ¼
ð1� bÞ: 1

2p
; if s¼ 0

b: 1
2
½Vð��exp;kexpÞþVð�exp;kexpÞ�; if s¼ 1

�

where parameter b accounts for a participant’s average expectation that the stimulus will

be presented. Thus, we assumed that expectations about motion direction were uniform for

when no stimulus was expected. While the expectations about motion direction when the

stimulus was expected followed the bimodal probability distribution just as in the previous

models.

On each trial, given the presented motion direction (qact) and the presence of the stimulus

(s), participants made sensory measurements psens(�sens,ssens|�act,s). For simplicity, we assumed

that the sensory probability of whether the stimulus was present (psens(ssens|�act,s)) was

independent of the sensory input about the motion direction (psens(�sens|�act,s)). We further

assumed that ssens was independent of the presented motion direction �act, as informed by

‘BAYES_var’ model (that allowed the sensory likelihood to vary based on the presented

motion direction), which did not produce a better fit. As before, the mean of the motion

direction was allowed to fluctuate on trial-by-trial basis, such that:

pð�j�actÞ ¼ Vð�act;ksensÞ; (7)

where ksens is sensory precision. Given the estimate of the mean q, the sensory input qsens is

represented with the associated uncertainty via:

psensð�sensj�Þ ¼ Vð�;ksensÞ: (8)

Putting all this together, the sensory likelihood was expressed as:

psensð�sens; ssensj�; sÞ ¼ psensð�sensj�; sÞpðssensjsÞ (9)

where psens(�sens|�act,s) was parameterized as:

psecsð�sensj�act; sÞ ¼
1

2p
; if s¼ 0

Vð�;ksensÞ; if s¼ 1

�

where we assumed that sensory likelihood is uniform when no stimulus is presented. Finally,

psens(ssens|s) was parameterized as:

psensðssens ¼ 0;1f gjsÞ ¼
1� c;cf g; if s¼ 0

1� d;df g; if s¼ 1

�

where parameter c is the average probability of detecting dots when they are not

presented, and parameter d is the average probability of detecting dots when they are

presented. Putting together prior and likelihood, the resulting posterior probability

distribution becomes:

ppostð�; sj�sens; ssensÞapsensð�sensj�; sÞ � psensðssensjsÞ � pexpð�; sÞ; (10)

With a given posterior participants could have performed detection task at least in two

ways. One way is to maximize the posterior (i.e. to always choose the value of s that has

higher probability):
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sperc ¼ argmaxs ½ppostðsj�sens; ssensÞ� (11)

Another way is to perform probability matching and choose in accordance to the size of the

probabilities:

sperc ¼
0; if ppostðs¼ 0j�sens; ssensÞ>h
1; if ppostðs¼ 0j�sens; ssensÞ<h

�

where h 2 [0 1] and is drawn for each trial from a uniform distribution. We considered both

of these possibilities and implemented a variant of the model for each. Finally, just as in

‘BAYES’ model, the motion direction percept was formed by taking the mean of the posterior:

�perc ¼

Z

�:ppostð�j�sens; ssensÞd�¼
1

Z

Z

�:
X

s

pexpð�Þ:psensð�sensj�; sÞ:psensðssensjsÞd�; (12)

As previously, we accounted for motor precision and the lapse responses via:

pð�estj�percÞ ¼ ð1�aÞ �Vð�perc;kmotorÞþa � pexpð�Þ*Vð0;kmotorÞ: (13)

In total, ‘BAYES_full’ model had seven free parameters. To fit the model, in addition to

intermediate contrast trials, we also used no-stimulus trial data. The rest of the fitting

procedure was the same as in the main text: we built a distribution of 1000 posterior

estimations for each presented angle and one more distribution of 1000 posterior estimations

for no stimulus trials.

We found that ‘BAYES_full’ provided a good fit and captured the main features of both

estimation and detection performance (Appendix 2—figure 2). As before, to test how reliable

parameters estimated for ‘BAYES_full’ model are, we performed parameter recovery. Just as

for ‘BAYES’ parameter recovery described in the main text, we generated 80 sets of

parameters and simulated 200 trials of data with ‘BAYES_full’ model for each of them. Then

we fitted ‘BAYES_full’ to the simulated data. The results revealed that parameters d and c had

very poor recovery (Appendix 2—figure 3). We thus focused on the simpler model in the

current study.

Appendix 2—figure 2. Task performance as predicted by the BAYES_full model. Left panel:

mean estimation bias at different motion directions. Middle panel: standard deviation of

estimations at different motion directions. Right panel: fraction of detected stimuli at different

motion directions. The dashed lines correspond to the two most frequently presented motion

directions (±32˚). Error bars represent within-subject standard error.

DOI: https://doi.org/10.7554/eLife.34115.028
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Appendix 2—figure 3. Comparison of actual and recovered parameters via ‘BAYES_full’ model.

�exp - the mean of prior expectations of motion direction, sexp - uncertainty of the prior

expectations of motion direction, ssens - uncertainty in the sensory likelihood, a - fraction of

random estimations, b - prior expectation for dots being presented, c likelihood of detecting

the dots when they are not presented, d - likelihood of detecting the dots when they are

presented. Actual parameters are scattered along x-axis and recovered parameters are

scattered along y-axis. The dashed diagonal line is a reference line indicating perfect

parameter recovery.

DOI: https://doi.org/10.7554/eLife.34115.029
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