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Bounded-Depth Frege with Counting Principles Polynomially Simulates

Nullstellensatz Refutations

Russell Impagliazzo�and Nathan Segerlindy

Department of Computer Science

University of California, San Diego

La Jolla, CA 92093

russell@cs.ucsd.edu, nsegerli@cs.ucsd.edu

Abstract

We show that bounded-depth Frege systems with count-

ing principles modulo m can polynomially simulate Null-

stellensatz refutations modulo m. This establishes new up-

per bounds for proofs of certain tautologies in bounded-

depth Frege with counting axioms systems. When combined

with another paper by the authors, this simulation estab-

lishes a size (as opposed to degree) separation between

Nullstellensatz and polynomial calculus refutations.

1 Introduction

The central question of propositional proof complexity,

as posed by Cook and Reckhow in [7], is “How can we

prove lower bounds for the sizes of proofs of a given fam-

ily of tautologies in a fixed propositional proof system?”.

Despite substantial breakthroughs in recent years, our un-

derstanding is limited to weak proof systems, systems far

weaker than the textbook propositional proof systems, or

Frege systems, let alone the general problem of NP versus

coNP. Two subsystems of Frege which have received atten-

tion in recent yeanrs are bounded-depth Frege with counting

axioms, as studied in [1], [2], [3], [10], [6], [4], and Null-

stellensatz systems, as studied in [3], [6], [5].

In this paper we show that, under natural uniformity

conditions on the polynomials, bounded-depth Frege with

counting modulo m axioms can polynomially simulate
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Nullstellensatz refutations modulo m. This establishes up-

per bounds for bounded-depth Frege with counting axioms,

and also gives size lower bounds for the Nullstellensatz sys-

tem. In particular, a size separation between the polyno-

mial calculus and Nullstellensatz refutations follows from

the simulation and the results of [8].

Because lower bounds for bounded-depth Frege with

counting axioms imply lower bounds for Nullstellensatz

refutations, this simulation shows that the lower bound tech-

nique of reducing bounded-depth Frege with counting ax-

iom proofs into Nullstellensatz refutations, as used in [3],

[6], and [4], was not only sufficient but necessary:

By combining the simulation with the results of [8],

we demonstrate a size separation between the polynomial

calculus and Nullstellensatz refutations. Previously, the

only Nullstellensatz size lower bounds we knew of fol-

lowed from size lower bounds for the polynomial calcu-

lus, and as such were unable to give size separations be-

tween the polynomial calculus and Nullstellensatz refuta-

tions. Because the tautologies of [8] require large size to be

proven by bounded-depth Frege with counting axioms also

have small polynomial calculus refutations, we have a size

separation between Nullstellensatz and polynomial calculus

refutations.

Independently, in his work [9], Jan Krajicek made the

aisde “that the Nullstellensatz overZ
p

corresponds to an ex-

tension of S2

2

(�) by the so-called counting modulo p prin-

ciple”. Our results differ in some important ways. Our sim-

ulation is precise, and the details of the proof are given.

Moreover, our results do not immediately follow from a

simulation in bounded-arithmetic because the translation

from bounded-arithmetic to bounded-depth Frege is quasi-

polynomial not polynomial. Because the bounded-depth

Frege with counting gates lower bound of [8] is barely su-



perpolynomial, this distinction is necessary to get the size

separation between the Nullstellensatz and polynomial cal-

culus modulo 2.

In section 2, we provide background information on the

proof systems we use. In section 3, the outline of the proof

of the simulation is provided. In section 4, it is shown how

bounded-depth Frege with counting axioms can prove a

needed auxiliary tautology. In section 5 we give the proof of

the simulation. In section 6 we discuss the generality of the

uniformity condition on the system of polynomials. In par-

ticular, we show that for any unsatisfiable propositional for-

mula f , if there is a small size Nullstellensatz refutation of a

certain algebraic translation of f , then there is a small refu-

tation of f in bounded-depth Frege with counting axioms.

In section 7 we show that the simulation can be applied to

the induction on sums principles of [8], thereby establish-

ing a size separation between Nullstellensatz and polyno-

mial calculus, and we show that the simulation gives upper

bounds for tautologies arising from systems of bounded-

width linear equations.

2 The Proof Systems

2.1 Bounded­Depth Frege with Counting Princi­
ples Modulo m

Frege systems are sound, implicationally complete

propositional proof systems with a finite number of axiom

schemas and inference rules. The system we discuss will be

over the basis of fan-in one NOT gates, and unbounded fan-

in AND and OR gates. The size of a proof is the total num-

ber of symbols appearing in the proof. We say that a family

of tautologies �
n

, each of size s(n), has polynomially sized

bounded-depth Frege proofs if there is are constants c and

d so that for all n, there is a proof P
n

of t
n

so that each

formula in P

n

has depth at most d, and P

n

has size size at

most
O

(s

c

(n)).

For an integer m � 2, we define a family of tautolo-

gies based on the fact it is impossible to partition a set of

N elements into pieces of size m when N 6�

m

0. For all

N 6�

m

0, let V be a fixed set of N elements. We associate

a variable x
e

with each m subset of V . The counting tau-

tology asserts that it is impossible to partition a set of size

N into pieces of size m.

CountN
m

:=

_

v2V

^

e3v

:x

e

_

_

e?f

(x

e

^ x

f

)

Bounded-depth Frege systems with counting principles

modulo m are just bounded-depth Frege systems which al-

low all substitution instances of CountN
m

as axioms.

For ease of comparison with algebraic systems, we will

view bounded-depth Frege as a refutation system: we add

an unsatisfiable formula as a hypothesis and derive 0.

2.2 Nullstellensatz Refutations

The Nullstellensatz system is a refutation system for

showing that a system of polynomials has no common root

by showing the ideal generated contains 1. Because we are

interested in binary solutions, we add extra equations re-

quiring that the variables be assigned 0; 1 values. For an

unsatisfiable system of polynomials, f
1

; ::: f

k

, a Nullstel-

lensatz refutation has the form

k

X

i=1

P

i

f

i

+

n

X

j+1

R

j

x

j

(x

j

� 1) = 1

The size of the refutation is the number of monomials ap-

pearing in the expansion of the left-hand side. The degree

of the refutation is the maximum degree of the polynomials

P

i

f

i

, R
j

x

j

(x

j

� 1). Hilbert’s nullstellensatz coupled with

the presence of the polynomials x
j

(x

j

� 1) shows the com-

pleteness of this system, but nothing is said about the degree

nor the size of the refutation.

2.3 Polynomial Calculus

Let g
1

; ::: g

k

be multivariate polynomials over Z
2

. A

polynomial calculus refutation of g
1

; :::g

k

over Z
2

is a

sequence of polynomials f
1

; ::: f

l

so that, for each i 2

f1; ::: lg, f
i

is either one of the g
j

’s, x
i

2

�x

i

for a variable

x

i

, af
j

+ bf

k

, with j; k < i; a; b 2 Z

P

, or x
i

f

j

with j < i.

The size of the proof is the number of monomials ap-

pearing in all of the polynomials, f
1

; ::: f

l

. The degree of

the proof is the maximum degree of a polynomial f
1

; ::: f

l

.

3 Proof Sketch

The first issue that must be addressed is how we can

compare the two systems when bounded-depth Frege with

counting axioms works with propositional formulas and the
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Nullstellensatz system works with polynomials. A term can

be viewed as a conjunction of literals, and an assignment is

a root to the polynomial modulom if and only if there exists

a partition of its satisfied terms intom-sets. The polynomial

can be thought of as uniform if there are simple formulas

which define a partition on its satisfied monomials.

We will show that if unsatisfiable formula f allows us to

prove with short, constant depth proofs that some formulas

�

i

E

form a partition on the satisfied terms of an unsatisfiable

system of polynomials p
i

, then there is a bounded-depth

Frege with counting axioms refutation of f of size poly-

nomially related to the size of the Nullstellensatz refutation

of the p
i

’s, and the size of the proofs that the �i
E

’s form a

partition on the satisfied terms of the p
i

’s.

The simulation of Nullstellensatz refutations works by

partitioning the satisfied monomials in the expansion of the

refutation in two contrary ways, thereby contradicting the

Count
m

axioms.

The first partition is obtained from the Nullstellensatz

refutation: after we expand the refutation and collect terms,

the coefficients of the non-constant monomials are zero,

therefore, if we group together the satisfied monomials

of the expansion, we will will have an m-partition which

leaves exactly one satisfied term uncovered.

On the other hand, if we work under the hypothesis that

the �i
E

’s define a partition on the satisfied terms of the poly-

nomials p
i

’s, we can extend that to a partition on the satis-

fied terms of the refutation. We take the “product partition”

and place the terms of the expanded f

i

p

i

’s into groups ac-

cording to their p
i

components, and we have a partition that

covers every satisfied term in the expansion.

It is impossible to have two m-partitions of a set, one

which leaves no element out, and the other leaving out a

number of elements non-divisible by m. This contradicts

the axioms Count
m

.

Therefore, bounded-depth Frege with counting axioms

can derive a contradiction from the hypothesis that the �i
E

’s

form a partition on the satisfied terms of the polynomials,

and therefore a contradiction from the assumption f .

4 A Tautology on Contrary Partitionings of

Satisfied Variables

For a fixed assignment to a set of underlying variables, it

is not possible to to have two distinct partitions, one which

perfectly covers the ones, and another which leaves ex-

actly 1 satisfied variable uncovered. Similarly, for any k,

0 < k < m, it is impossible to have one partition cover-

ing the ones perfectly, and another partitioning the satisfied

variables, and an extra m � k new points. These princi-

ples are what we call the contradictory partitions tautolo-

gies, CPn;k
m

.

Definition 4.1 Let u
1

; ::: u

n

be a set of boolean variables,

for each m-element subset e 2 [n]

m

, let y
e

be a variable,

and for each e 2 [n+m� k]

m

, let z
e

be a variable.

CPn;k

m

(~u; ~y; ~z) is the following formula:

:((

V

e

y

e

)

V

i2e

u

i

)

^ (

V

i

u

i

)

W

e3i

y

e

)

^ (

V

e?f

:y

e

_ :y

f

))

_:((

V

e

z

e

)

V

i2e; i�n

u

i

)

^ (

V

i�n

u

i

)

W

e3i

z

e

)

^ (

V

n+1<i�n+m�k

W

e3i

z

e

)

^ (

V

e?f

:z

e

_ :z

f

))

Proposition: The tautology CPn;k
m

has a bounded-depth,

polynomial size proof from Count
m

.

Proof: Fix m, n and k. The proof of CPn;k
m

is by contra-

diction. We make the assumption that the formula is false,

and then give a collection of formulas which can be shown

to define an m partition on a set of size mn + (m � k),

contradicting the axiom COUNTmn+(m�k)

m

.

We have m copies of each underlying variable, f(r; i) j

1 � r � m; 1 � i � ng, with m� k many extra elements,

f(0; i) j 1 � i � m � kg. If the variable x
i

is set to 0,

we group its copies together. For variables that are set to

1, within the first m � 1 copies, we use the partition with

no ones left over, and in the final copy we use the partition

which also covers the extra elements. This gives a partition

of a set of mn + m � k elements into m sets, violating

COUNTmn+(m�k)

m

.

Let U = f(r; i) j 1 � r � m; 1 � i � ng [ f(0; i) j

1 � i � m� kg. (Think of (r; i) as the r’th copy of u
i

.)

For each e 2 [U ]

m

if there exists i, 1 � i � n, so that e = f(r; i) j 1 � r � mg

�

e

= :u

i

if e � f(r; i) j 1 � i � ng for some 1 � r < m
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let f = fi j (r; i) 2 eg

�

e

= y

f

if e � f(m; i) j 1 � i � ng [ f(0; i) j 1 � i � m� kg

let f = fi j (m; i) 2 eg [ fn+ i j (0; i) 2 eg

�

e

= z

f

otherwise, �
e

= 0

The formula
�

:Countmn+m�k

m

�

[x

e

 �

e

] is then con-

structed by brute force from the hypothesis :CPmn+m�k

m

.

5 The Simulation

In order to use a Nullstellensatz refutation in a bounded-

depth Frege proof, one must translate an algebraic hypoth-

esis, that a system of polynomials simultaneously vanish,

into a hypothesis in propositional logic. In the case of Z
m

,

a polynomial vanishes if and only if there is an m-partition

of its non-zero monomials. The simulation makes use of

a family of formulas which define a partition on the satis-

fied monomials. For the sake of generality, we allow the

system of polynomials to be in a different set of variables

than the formulas defining the partition. That is, the poly-

nomials can be in variables ~y and the partition definitions

in variables ~x. For this situation, we require, for each i, a

propositional formula �
i

defining y
i

from the x’s.

Definition 5.1 Let p 2 Z

m

[~y] be given, with p =

P

I�f1; ::: ng

c

I

Q

i2I

y

i

. The set of monomials of p is the

following set:

M

p

= f(c; I) j I � f1; ::: ng; 1 � c � a

I

g

Definition 5.2 Let fx
i

j i 2 S

1

g and fy
i

j i 2 S

2

g be dis-

tinct, but not necessarily disjoint, sets of boolean variables.

Let p be a polynomial in variables ~y, p =

P

I

a

I

Q

i2I

y

i

.

For each i 2 S
2

, let �
i

(~x) be a propositional formula.

For each E 2 [M

p

]

m

, let �
e

be a formula in ~x.

We say that the �’s form a ones-partition the monomials

of p with definitions ~� if the following formula holds:

^

E

0

@

�

E

)

^

(c;I)2E

^

k2I

�

k

1

A

^

0

@

^

(c;I)2M

p

^

k2I

�

k

)

_

E3(c;I)

�

E

1

A

^

 

^

E?F

:�

E

_ :�

F

!

Theorem 1 Let fx
i

j i 2 S

1

g and fy
i

j i 2 S

2

g be distinct,

but not necessarily disjoint, sets of boolean variables.

Let �(~x) be a propositional formula. Let p
1

; ::: p

k

2

Z

m

[~y] be a system of polynomials with a Nullstellensatz

refutation f

1

; ::: f

k

, r
1

; ::: r

n

of size S. For each i 2 S

2

,

let �
i

be a formula in ~x.

Suppose there are formulas �i
E

(~x), E 2 [M

p

i

]

m

, so that

for each i, there is a size T , depth D Frege proof from �(~x)

that the �

i’s form ones-partitions on the monomials of p
i

with definitions ~�.

Then there is a depth
O

(D) Frege refutation of �(~x) with

size polynomial in m, j�j, T and S.

Proof:

We are going to obtain contrary partitionings of the the

monomials that appear in the expansion of
P

k

i=1

p

i

f

i

in

which all polynomials are multiplied and multilinearized,

but no terms are collected. Therefore, our index set is:

V :=

k

[

i=1

f((c; I); (d; J); i) j (c; I) 2M

f

i

; (d; J) 2M

p

i

g

The underlying “variables” will be the conjunctions of

the definitions of the variables in each monomial: for v 2

V , v = ((c; I); (d; J); i), 

v

=

V

k2I[J

�

k

.

For each E � [V [ f1; ::: m� 1g]

m

, we will give a

formula �
E

. This family of formulas will be shown to define

an m-partition on the satisfied monomials and m � 1 extra

points.

For each E � [V ]

m

, we will give a formula �
E

. Using

the hypothesis that the �i’s partition the satisfied monomials

of p
i

, we can show that these define an m-partition on the

satisfied monomials.

This will contradict CPjV j;1
m

[u

v

 


v

; y

E

 �

E

; z

E

 �

E

],

which is provable in bounded-depth Frege with counting

axioms.
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The Partition with 1 One Left Uncovered

When we collect terms after expanding
P

k

i=1

p

i

f

i

and

multilinearizing, the coefficient of every term of degree> 0

is 0 modulo m, and the constant term is 1 modulo m.

For each S � [n], let V
S

= f((c; I); (d; J); i)) 2 V j

I [ J = Sg. When S is a nonempty subset of f1; ::: ng,

there is an m-partition P
S

on V

S

. Likewise, there is an m-

partition P
;

on V
;

[ f1; ::: m� 1g.

We define formulas �

E

, for E 2

([V ] [ [1; ::: m� 1])

m

, as follows:

If E 62
S

S�[n]

P

S

then �
E

= 0

Otherwise, for E 2 P
S

�

E

=

V

j2S

�

j

Bounded-depth Frege can prove that this is a m-partition

of V [ f1; ::: m � 1g by brute-force with a proof of size

O

(jV j

m

). It is trivial from the definition of �
E

that the

edges cover only satisfied monomials. That every satisfied

monomial
V

k2S

�

k

is covered is also trivial: the edge from

P

S

is used if and only if the term �

S

is satisfied. Finally,

it easily shown that the formulas for two overlapping edges

are never both satisfied: only edges from P
S

are ever used

(regardless of the values of the x’s), and for any pair of over-

lapping edges, one of the two formulas is identically 0.

The Partition with No Ones Left Uncovered

The partition which we use simply groups the pairs of

monomials according to their p
i

component using the parti-

tion defined by the �i’s.

We consider only edges in which the contribution from

a term of an f

i

is fixed. For each E 2 [V ]

m

, if there

exists i; 1 � i � k; (c; I) 2 M

f

i

so that E =

f((c; I); (d

l

; J

l

); i) j 1 � l � mg, let E
0

= f(d

l

; J

l

) j

1 � l � mg.

For each E 2 [V ]

m

, define �
E

as follows:

If there exists i, (c; I) 2M
f

i

so that E = f((c; I); (d

l

; J

l

); i) j 1 � l � mg

then

let �
E

=

V

k2I

�

k

^ �

E

0

Otherwise, �
E

= 0

Every satisified monomial is covered. Let

((c; I); (d; J); i) 2 V be given. If
V

k2I[J

�

k

holds, then so do
V

k2I

�

k

and
V

k2J

�

k

. Because

the �

i’s form a ones-partition on the monomials of

p

i

, there is an E

0

3 (d; J) so that �

i

E

0

holds. Set

E = f((c; I); (d

0

; J

0

); i) j (d

0

; J

0

) 2 E

0

g. derive

�

E

0

^

V

k2I

�

k

= �

E

.

Every monomial covered is satisfied. Let v =

((c; I); (d; J); i) 2 V be given. Suppose v 2 E and

�

E

holds. By definition, the monomial is
V

k2I[J

�

k

and

�

E

=

V

k2I

�

k

^ �

i

E

0

. Therefore
V

k2I

�

k

holds. Be-

cause the �

i’s form a ones-partition on the monomials of

p

i

,
V

k2J

�

k

holds. Therefore
V

k2I[J

�

k

holds.

No two overlapping edges E and F can have �

E

and

�

F

simultaneously satisfied. If E ? F , and neither �
E

nor �
F

is identically 0, then they share the same (constant)

f

i

component. That is, there exists i, (c; I) 2 M

f

i

so

that E = f((c; I); (d

l

; J

l

); i) j 1 � l � mg, and F =

f((c; I); (d

0

l

; J

0

l

); i) j 1 � l � mg. Because E ? F , we

also have E
0

? F

0

. Because the �i’s form a ones-partition

on the monomials of p
i

, we can derive :�i
E

0

_ :�

i

F

0

and

thus :
�

V

k2I

�

k

^ �

i

E

0

�

_ :

�

V

k2I

�

k

^ �

i

F

0

�

= :�

E

_

:�

F

.

6 Generality of the Uniformity Condition

The uniformity condition of the 1 may strike the reader

as somehwat unnatural. However, if we begin with a propo-

sitional formula and translate it into a system of polynomi-

als in a standard way, we can show that the system of poly-

nomials admits a definition of partitions on its monomials

with proofs of size polynomial in jf j.

Definition 6.1 Let f be a formula in the variables

X

1

; : : : X

n

and the connectives f
W

;:g.

For each subformula g of g, let there be a variable Y
g

.

For each pair of subformulas of f , g
1

and g

2

, with g

1

an

input to g
2

let there be a variable Z
g

1

;g

2

.

Canonically order the subformulas of f , and write g
1

<

g

2

if g
1

precedes g
2

in this ordering.

The polynomial translation of f , poly(f), is the follow-

ing set of polynomials:

for each subformula g
1

whose top connective is an
W

5



P

g

2

!g

1

Z

g

2

;g

1

� Y

g

1

For each triple of subformulas g
1

; g

2

; g

3

with the top connectie of g
1

an
W

, g
2

! g

1

, g
3

! g

1

and g
2

< g

3

Y

g

2

Z

g

3

;g

1

For each pair of subformulas g
1

; g

2

, with the top connective of g
1

an
W

and g
2

! g

1

Z

g

2

;g

1

Y

g

2

� Z

g

2

;g

1

For each subformula g
1

whose top connective is a :, with g
2

the unique input of g
1

Y

g

1

Z

g

2

;g

1

� Y

g

1

Y

g

2

Z

g

2

;g

1

Finally, we stipulate that the formula is satisfied:

Y

f

� 1

One can easily show by induction that f is satisfiable if

and only if poly(f) has a common root.

Theorem 2 Suppose that f is an unsatisfiable formula in

the variables X
1

; : : : X

N

and the connectives f
W

;:g. If

poly(f) has a size S Nullstellensatz refutation, the f has a

Frege refutation of depth
O

(depth(f)), and size polynomial

in jf j, S.

Proof:

We define the variable Y
g

by the formula g(~x), and the

formula Z
g

2

;g

1

by g
2

(~x) ^

V

g

3

<g

2

g

3

!g

1

:g

3

(~x).

We use the subformulas of f to define a partition on the

monomials of each polynomials.

For polynomials of the form
P

g

2

!g

1

Z

g

2

;g

1

�Y

g

1

, where

g

1

is a polynomial whose top connective is an
W

, we pair up

the monomialsZ
g

2

;g

1

and Y
g

1

if and only if g
2

^

V

g<g

2

g!g

1

:g.

For polynomials Y
g

2

Z

g

3

;g

1

, with the top connective of

g

1

an
W

, g
2

! g

1

, g
3

! g

1

and g

2

< g

3

, it is quickly

shown that these monomials (under our definitiions) cannot

be satisfied. Y
g

2

is defined by g
2

(~x) andZ
g

3

;g

1

is defined by

g

3

(~x) ^

V

g<g

3

g!g

1

:g(~x). Because g
2

< g

3

, these definitions

contain g
2

and :g
2

as conjuncts, respectively.

For Z
g

2

;g

1

Y

g

2

� Z

g

2

;g

1

, we pair the two monomials if

and only if g
2

^

V

g

3

<g

2

g

3

!g

1

:g

3

.

For polnynomials of the form Y

g

1

Z

g

2

;g

1

�Y

g

1

, where g
1

is a subformula of f whose top connective is a : and g

2

is

the unique input of g
1

, we pair the monomials if and only if

:g

2

.

For polynomials of the form Y

g

2

Z

g

2

;g

1

, where g

1

is a

subformula of f whose top connective is a : and g

2

is the

unique input of g
1

, it is easily shown from the definitions

that the monomial is never satisfied.

For the polynomial Y
f

� 1, because Y
f

is defined as f ,

from the hypothesis f we can quickly show that the pairing

of these monomials forms a ones-partition.

7 Applications

7.1 A Size Separation Between the Nullstellensatz
System and the Polynomial Calculus

In [8], a family of tautologies, the “induction sums

principles”, is presented. This principle is shown to re-

quire super-polynomial size refutations in bounded-depth

Frege with counting axioms modulo two. A natural alge-

braic translation of the principle is shown to have constant-

degree, polynomial-size refutations in the polynomial cal-

culus.

Here we show that that the algebraic translations of the

induction on sums principles satisfy the uniformity condi-

tion of our simulation. Therefore, there is a superpolyno-

mial size separation between the polynomial calculus and

Nullstellensatz refutations for this principle.

We recap the tautologies below:

Let M and N be positive integers. Suppose that we have

M rows of N boolean variables. There is no assignments to

these variables with the following properties:

1. The parity of the first row is 0.

2. The parity of the final row is 1.

3. For each r from 2 to M , the parity of row r is equal to

the parity of row r times the parity of row r � 1.

Let M and N be integers. Let R
1

; : : : R

M

be disjoint

sets of size N (view each R
i

as a row of N variables).

For r 2 f0; : : : Mg, the “set of monomials for equation

r”, U
r

, is the set of monomials appearing in E
r

, represented

as sets of indices (this suffices because we are working mod-

ulo 2).

U

0

= ffig j i 2 R

1

g

U

r

= ffi; jg j i 2 R

r

; j 2 R

r+1

g [ ffjg j j 2 R

r+1

g
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U

M

= ffig j i 2 R

M

g [ f;g

We express that each equation is satisfied by partitioning

the satisfied monomials into groups of two.

Definition 7.1 For each r; 0 � r �M; there are partition

variables Y
e

for each e 2 [U

r

]

2

.

The formula IS(M;N) is the negation of the conjunction

of the following clauses:

for each r; 0 � r �M; each I 2 U

r

,
W

i2I

:X

i

_

W

e3I

Y

e

for each r; 0 � r �M; each I 2 U

r

, each i 2 I ,

and each e 2 [U

r

]

2

, e 3 I ,

:Y

e

_X

i

for each r; 0 � r �M;, each e; f 2 [U

r

]

2

, e ? f ,

:Y

e

_ :Y

f

Definition 7.2 For each r; 0 � r �M; there are partition

variables Y
e

for each e 2 [U

r

]

2

.

The formula AIS(M;N) is set of the following equa-

tions:

for each r; 0 � r �M; each I 2 U

r

,
Q

i2I

X

i

�

P

e3I

Y

e

� 1

�

for each r; 0 � r �M; each I 2 U

r

, each i 2 I ,

and each e 2 [U

r

]

2

, e 3 I ,

Y

e

X

i

� Y

e

for each r; 0 � r �M;, each e; f 2 [U

r

]

2

, e ? f ,

Y

e

Y

f

Lemma 3 If there is a size S Nullstellensatz refutation of

AIS(M;N), then there is a size poly(M;N; S), depth
O

(1)

Frege proof of IS(M;N).

Proof:

To define a ones partition on the monomials of
Q

i2I

X

i

�

P

e3I

Y

e

� 1

�

, we use the formula Y

e

^

V

i2I

for fI [ feg; Ig, the edge which pairs the monomials
Q

i2I

X

i

Y

e

and
Q

i2I

X

i

. From the hypotheses
W

i2I

:X

i

_

W

e3I

Y

e

and Y

e

Y

f

(for all e ? f ), there is a proof of size

O

() that these formulas define a ones-partition on the mono-

mials of
Q

i2I

X

i

�

P

e3I

Y

e

� 1

�

.

To define a ones partition on the monomials of an equa-

tion Y

e

X

i

� Y

e

, we simply pair the monomials if and only

if Y
e

is satisfied. The hypothesis :Y
e

_ X

i

shows that this

is a ones-partition of the monomials.

Defining a ones partition on the monomials of Y
e

Y

f

is

an exercise in vacuity. On one hand, because there is only

one monomial, there are no edge variables. On the other

hand, the hypothesis :Y
e

_ :Y

f

ensures that the mono-

mial is never satisfied, so the empty partition indeed forms

a ones-partition.

Therefore, by theorem 1, if there is a size S Null-

stellensatz refutation of AIS(M;N), then there is a size

poly(M;N; S), depth
O

(1) Frege proof of IS(M;N).

However, the constant-depth Frege systems have no

polynomial size proofs of IS(M;N).

Theorem 4 [8] Let c; d be positive constants. For suffi-

ciently large values of M;N , there is no depth d refutation

P of IS(U) of size � N

c.

The polynomial calculus has polynomial size refutations

of AIS(M;N):

Theorem 5 ([8]) Let M;N be given, and let U be an

(M;N) universe. AIS(U) system of polynomials has degree

3, size
O

(MN

3

) polynomial calculus refutation.

Corollary 6 The Nullstellensatz system modulo two does

not polynomially simulate the polynomial calculus modulo

two.

7.2 An Upper Bound: Unsatisfiable Systems of
Bounded­Width Linear Equations

Consider an inconsistent system of N linear equations in

variable ~x overZ
p

, in which no equation contains more than

C variables. Such systems have small Nullstellensatz refu-

tations (given by Gaussian elimination). Moreover, each

equation can be described by a depth two formula of size

O

(2

C

) in the variables ~x, so the system can be expressed as

a depth three propositional formula F of size
O

(N2

C

), in

the variables ~x.

To define the ones-partitions on the sets of monomials of

each polynomial, p
i

, we choose a partition on the satisfied

monomials for each root of p
i

. Then, for each E 2 [M

p

i

]

p

,

7



we simply let �i
E

be a case-analysis of the� C variables in-

volved in p
i

. From the hypothesisF , which explicitly states

that each polynomial vanishes, we can provide constant

depth proofs that these definitions form a ones-partitions on

the monomials.

8 Conclusions and Future Work

We have shown that bounded-depth Frege with counting

axioms can polynomially simulate Nullstellensatz refuta-

tions whenever the polynomials are sufficiently uniform. In

particular, polynomials which arise as translations of propo-

sitional formulas satisfy this uniformity condition. There-

fore, in most cases that have arisen in study, Nullstellen-

satz upper bounds yield bounded-depth Frege with counting

axioms upper bounds, and size lower bounds for bounded-

depth Frege with counting axoims yield size lower bounds

for Nullstellensatz refutations. In particular, this enables to

show that a large class of tautologies has small bounded-

depth Frege with counting axioms proofs, and that Nullstel-

lensatz refutations modulo two do not polynomiall simulate

polynomical calculus refutations modulo two.

The primary questions left open are those left open by

[8]: to generalize the lower bound for IS(M;N) from

bounded-depth Frege with counting axioms modulo two to

bounded-depth Frege with counting axioms of an arbitrary

modulus, and to finda tautology which improves the sepa-

ration from superpolynomial to exponential. Both improve-

ments would improve the size separation between the Null-

stellensatz and polynomial calculus systems.
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