Lawrence Berkeley National Laboratory

LBL Publications

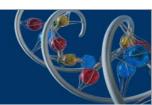
Title

limitations and Improvement of Constructing Long Paired-end Libraries

Permalink

https://escholarship.org/uc/item/9xq3q2p1

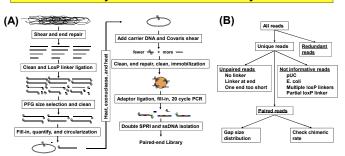
Authors


Peng, Ze Hamilton, Matthew Froula, Jeff et al.

Publication Date

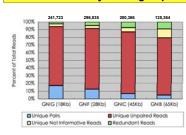
2010-03-25

Limitations and Improvement of Constructing Long Paired-end Libraries

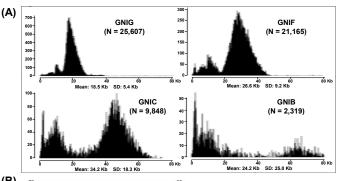


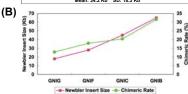
Ze Peng¹, Matthew Hamilton¹, Jeff Froula¹, Aren Ewing¹, and Jan-Feng Cheng¹ Lawrence Berkeley National Laboratory

Abstract


Fosmid or BAC end sequencing plays an important role in de novo assembly of large genomes like fungi and plants. However construction and Sanger sequencing of fosmid or BAC libraries are laborious and costly. The current 454 Paired-End (PE) Library and Illumina Jumping Library construction protocols are limited with the gap sizes of approximately 20 kb and 5 kb. respectively. In the attempt to understand the limitations of constructing PE libraries with greater than 30Kb gaps, we have purified 18, 28, 45, and 65Kb sheared DNA fragments from yeast and circularized the ends using the CreloxP approach described in the 454 PE Library protocol. With the increasing fragment sizes, we found a general trend of decreasing library quality in several areas. First, redundant reads and reads containing multiple loxP linkers increase when the average fragment size increases. Second, the contamination of short distance pairs (<10Kb) increases as the fragment size increases. Third, chimeric rate increases with the increasing fragment sizes. We have modified several steps to improve the quality of the long span PE libraries. The modification includes (1) the use of special PFGE program to reduce small fragment contamination; (2) the increase of DNA samples in the circularization step and prior to the PCR to reduce redundant reads; and (3) the decrease of fragment size in the double SPRI size selection to get a higher frequency of LoxP linker containing reads. With these modifications we have generated large gap size PE libraries with a much better quality.

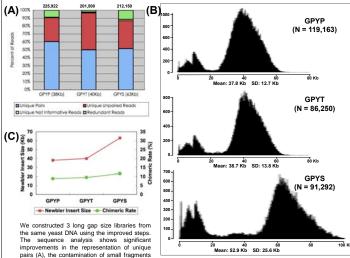
Paired-end Library Construction and Data Analysis Processes

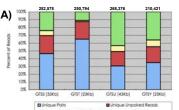

(A) This is a modified version of the 454 Recombi Paired-end Library Construction Protocol. We use pulsed-field gels to size select fragments greater than 20Kb in size. We increase the amount of DNA in the circularization step tolong. The pUC carrier DNA is treated with UV to reduce the chance of amplification. We also use Covaris sonicator to shear circularized DNA. The flow of sequence data analysis is shown in (B). All reads are cross-matched against each other to identify redundant reads (greater than 95% nucleotide matches). The remaining reads are orguped into 3 major categories including "not informative", "unpaired", and "paired" reads. The paired reads must have more than 15 bases of sequences on both sides of the loxP linker. Only unique paired reads are used to check for chimera and gap size distribution.


Quality of Long Gap Size PE Libraries

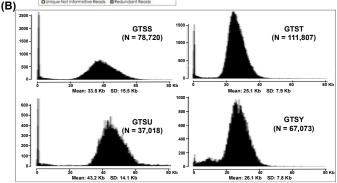
We constructed 4 libraries with DNA isolated from Saccharomyces cerevisiae S288.C. We used this completed genome of 12,156,676 bases to evaluate the limitations of the current approach for constructing long gap size paired-end libraries. The fragments isolated from the PFG range from 18 to 65Kb. The names and fragment sizes of these libraries are shown in the left bar graph. The number of reads generated from these libraries are shown on the top of the graph. The large amount of unpaired reads seen in all 4 libraries were caused by the short sequence read length (avg. 300bp) and the long library inserts (avg. 600bp).

Gap Size Distribution and Chimeric Rate




We mapped all the unique pairs of these libraries to the yeast genome and plotted the gap size distribution as 0.5Kb bins in (A). We've seen an increasing amount of small fragment contamination as the targeted fragment size increases. Chimeric pairs include two reads with wrong orientation or separated greater than 80Kb. We've seen an increase of chimeric rate as the targeted fragment size increases.

Improvement of the Long Gap Size PE Library Construction


Steps to improve	Old process	New Process	Effect
Pulsed-field gel size selection	Once	Twice or two discontinuous pulse cycles	Reduce small fragments
DNA concentration in circularization	6 ng/ul	3 ng/ul	Reduce chimeric rate
Sonication shearing	500-700 bp	200-400 bp	Increase reads with loxP linkers

Long Gap Size PE Library Construction of Fungal Genomes

We constructed 4 long gap size paired-end libraries from 3 fungal DNA - Mucor circinelloides (GTSS and GTST), Neurospora tetrasperma (GTSU), and Spathaspora passaildarum (GTSY). The number of reads generated from these libraries are shown on the top of the bar graph (A). The increase of redundant reads in GTSS, GTSU, and GTSY were resulted from a higher loss of DNA during the library construction process. For each of these 3 genomes, we only have a draft assembly to locate the resulted pairs. The gap size distribution plots are shown in (B). We could not accurately determine chimeric pairs without a finished genome.

Test Assembly of a Fungal Genome with Long Gap Size Libraries

	Test assembly 1	Test secombly 2	Test assembly 2	Current assembly
454 std	438.60 Mb	438.60 Mb		
New 26Kb 454 PE Fosmid ends		67.41 Mb	23.34 Mb	23.34 Mb
Old 23Kb 454 PE				172.65 Mb
Scaffold Count	N/A	35	32	47
Scaffold Length	N/A	13.23 Mb	13.31 Mb	13.27 Mb
N50 Scaffold Number	N/A	3	3	4
N50 Scaffold Length	N/A	2.03 Mb	2.06 Mb	1.75 Mb
≥1Kb Contigs Number	155	152	135	153
≥1Kb Contigs Length	13.00 Mb	13.03 Mb	13.03 Mb	12.98 Mb
N50 Contigs Number	24	20	18	22
N50 Contigs Length	153.94 Kb	211.37 Kb	205.22 Kb	196.77 Kb

We ran a set of test assemblies of the Spathaspora passalidarum sequences using Newbler. They include the 454 shotgun reads (-33X depth) only (test assembly 1), the 454 shotgun and the new long 454 pairs (test assembly 2), and the 454 shotgun, the 454 shotgun, the fosmid pairs (test assembly 3), and the ourner assembly with the 454 shotgun, the fosmid pairs, and the old 454 pairs. The assemblies 2 and 3 resulted in comparable numbers of scaffolds, and large contigs, as well as the scaffold length and contig length. More assemblies with the Mucor circinelloides and Neurospora tetrasperma long 454 pairs are being investigated.

Conclusions

- We have observed some limitations of generating long gap size (≥ 30Kb)
 paired-end libraries using a modified the 454 Recombi Paired-end Library
 construction process
- 2. We further modified the process to improve the quality of the long gap size libraries
- 3. We have generated long gap size paired-end reads from 3 fungal genomes and the early evaluation of assemblies with these reads seems to be comparable with the fosmid end sequences

Acknowledgements

We would like to thank Roche/454 Life Science for providing early access to the Titanium Recombi Paired-end Library construction reagents and protocol, and Matt Hamilton and David Robinson of JGI for the sequencing support.