
UC Davis
UC Davis Previously Published Works

Title
CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data.

Permalink
https://escholarship.org/uc/item/9xq6t5rm

Journal
IEEE transactions on visualization and computer graphics, 25(1)

ISSN
1077-2626

Authors
Wang, Feng
Wald, Ingo
Wu, Qi
et al.

Publication Date
2018-10-01

DOI
10.1109/tvcg.2018.2864850

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9xq6t5rm
https://escholarship.org/uc/item/9xq6t5rm#author
https://escholarship.org
http://www.cdlib.org/

CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data

Feng Wang,
Scientific Computing and Imaging Institute at the University of Utah, Salt Lake City, UT, 84112

Ingo Wald,
Intel Corporation

Qi Wu,
Scientific Computing and Imaging Institute at the University of Utah, Salt Lake City, UT, 84112

Will Usher,
Scientific Computing and Imaging Institute at the University of Utah, Salt Lake City, UT, 84112

Chris R. Johnson
Scientific Computing and Imaging Institute at the University of Utah, Salt Lake City, UT, 84112

Abstract

Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for

adaptively changing the simulation mesh resolution, resulting in significant computational and

storage savings. However, visualizing such AMR data poses a significant challenge due to the

difficulties introduced by the hierarchical representation when reconstructing continuous field

values. In this paper, we detail a comprehensive solution for interactive isosurface rendering of

block-structured AMR data. We contribute a novel reconstruction strategy—the octant method—

which is continuous, adaptive and simple to implement. Furthermore, we present a generally

applicable hybrid implicit isosurface ray-tracing method, which provides better rendering quality

and performance than the built-in sampling-based approach in OSPRay. Finally, we integrate our

octant method and hybrid isosurface geometry into OSPRay as a module, providing the ability to

create high-quality interactive visualizations combining volume and isosurface representations of

BS-AMR data. We evaluate the rendering performance, memory consumption and quality of our

method on two gigascale block-structured AMR datasets.

Keywords

AMR; Isosurface; Ray tracing; Reconstruction strategy; OSPRay

1 INTRODUCTION

Adaptive mesh refinement (AMR) techniques are used to solve a range of complex problems

in numerical analysis. By providing an adaptive, hierarchical resolution representation of the

Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/
publications/rights/index.html for more information.

For information on obtaining reprints of this article, please send to: reprints@ieee.org.

HHS Public Access
Author manuscript
IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.ieee.org/publications_standards/publications/rights/index.html

computational domain, AMR techniques allow the simulation to focus both computational

effort and storage on regions of interest, enabling larger, more complex problems to be

solved. Although other forms of AMR data exist (e.g., mesh distortion and tree-based),

block-structured AMR (BS-AMR) [3, 4] is the most widely used in practice, as it can be

easily coupled with octree or recursive-grid AMR. BS-AMR forms the basis for a number of

scientific simulation frameworks, including BoxLib [2], LAVA [17], Chombo [9], GR-

Chombo [7], Enzo [30], AMReX [1] and Uintah [32]. A detailed overview of these

frameworks, and other BS-AMR-based simulations, can be found in Dubey et al.’s survey

[10].

Although BS-AMR techniques have found wide adoption in current large-scale HPC

simulations, visualization techniques for such data have struggled to keep up. Existing

visualization solutions for large-scale AMR data remain either special purpose [13,26] or

have severe limitations [28]. General visualization frameworks such as VTK [34], ParaView

[36] and VisIt [6] provide limited support for direct visualization of AMR datasets, requiring

the user to either down- or up-sample the data to a fixed resolution grid before rendering.

Down-sampling the data clearly comes with an undesirable loss of resolution in regions of

interest in the data, whereas up-sampling the data may require an exorbitant amount of

memory.

A key challenge in directly rendering AMR data is reconstructing the data at level

boundaries. Prior work has proposed to introduce unstructured mesh elements to stitch

across level boundaries [11,45], at the cost of requiring the rendering method to handle

unstructured elements. GPU-based approaches for visualizing such data [13, 16] typically

remain in special-purpose tools, and are limited by the size of the GPU memory, requiring

data-parallel rendering [12,21,24] to support the large datasets produced by current

simulations. Thus, an efficient approach for direct isosurface visualization of AMR data on

CPUs remains desirable, due to both the prevalence of CPUs on current and upcoming HPC

systems and the large amount of memory available.

In this paper, we propose an efficient solution for isosurface visualization of large-scale BS-

AMR data. We build our approach on a novel reconstruction method for BS-AMR data,

called the octant method, that allows us to construct crack-free implicit isosurfaces, even

across level boundaries. To render these isosurfaces, we combine ideas from isosurface

extraction and implicit isosurface ray tracing and present an efficient hybrid implicit

isosurface ray-tracing approach, which allows for semi-interactive changes to the isovalue.

Finally, we integrate our reconstruction method and hybrid implicit isosurface approach into

the OSPRay ray-tracing framework [41] as a module, allowing us to trivially support

multiple transparent isosurfaces, combined isosurface and volume rendering and advanced

shading effects. Our contributions in detail are:

• A novel BS-AMR reconstruction strategy—the octant method—applicable to

both isosurface and direct volume rendering, that is locally rectilinear, adaptive

and continuous, even across level boundaries.

Wang et al. Page 2

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• An efficient hybrid implicit isosurface ray-tracing approach that combines ideas

from isosurface extraction and implicit isosurface ray-tracing, applicable to both

non-AMR data and fusing our octant method) BS-AMR data.

• The integration of the octant method and hybrid isosurface ray-traing approach

within OSPRay and the evaluation of the system’s capabilities on two complex

BS-AMR datasets.

2 RELATED WORK

AMR was first introduced by Berger and Oliger [4], who used a binary decomposition (e.g.,

a quadtree or octree) to create a hierarchical representation of the simulation domain. Berger

and Colella [3] extended this approach and proposed a more general BS-AMR

representation. BS-AMR represents the simulation domain as a series of overlapping grids

of arbitrary dimension, where higher resolution grids are used only in regions of interest. As

discussed previously, this BS-AMR representation has found wide adoption in the

simulation community [10]. Similar to nonadaptive grid approaches (Figures 2a and 2b), in

BS-AMR methods the data can be stored either on the grid vertices (Figure 2c) or at the cell

centers (Figure 2d). In practice, most existing AMR simulation frameworks use a cell-

centered grid [42]. Unless otherwise specified, throughout the text we will focus on cell-

centered AMR data.

As AMR data becomes more widely used in scientific simulations, visualization researchers

have worked to address the corresponding challenges encountered when visualizing such

data. A key challenge in visualizing BS-AMR data is how to reconstruct the data across level

boundaries to produce a continuous function. This reconstructed function can then be

visualized using volume rendering or by explicitly extracting isosurfaces or rendering them

implicitly.

2.1 Reconstruction Across Boundaries

Correctly reconstructing, or “stitching”, the BS-AMR data across adjacent cells at different

resolutions is a well-known and challenging problem. A survey provided by Van Gelder and

Wilhelms [37] introduced various solutions to this problem, also sometimes referred to as

the T-junction problem in the literature [42]. Generally, the T-junction problem produces

discontinuities in the reconstructed field, leading to, for example, holes in isosurfaces

computed on the field or incorrect colormapping when volume rendering. These errors in the

reconstruction lead to incorrect interpretations of the simulation data. A desirable

reconstruction method should be able to interpolate a continuous function at any given point

in the simulation domain, including across level boundaries.

Weber et al. [42, 45] proposed a solution based on the dual grid to generate a stitching mesh.

To simplify their implementation, they pre-compute a case table for stitching cell generation.

Beyer et al. [5] computed tetrahedral cells to stitch together the level boundaries of cell-

centered AMR grids (e.g.. Figure 2d). Fang et al. [11] created a “transition region” of

pyramid cells to stitch between the levels. Although these approaches resolve the T-junction

problem, they introduce new challenges with adding these unstructured elements and dealing

Wang et al. Page 3

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with the resulting unstructured mesh. Ljung et al. [22] proposed an interblock interpolation

technique for directly volume rendering multiresolution volumes. Recently, Wald et al. [38]

detailed the T-junction problem and introduced multiple reconstruction methods for direct

volume rendering of BS-AMR data. These solutions have different characteristics and

properties. For example, the basis method is suitable only for direct volume rendering and

thus is not applicable for our work.

Our octant reconstruction method employs a similar approach to that of Ljung et al. [22] and

Beyer et al. [5], but it is less restrictive in that it supports an arbitrary number of grids.

Moreover, our method can leverage the optimized data query approach of Wald et al. [38].

2.2 Volume Rendering

Ma and Crockett [25] introduced the first high-quality AMR volume rendering system,

based on cell projection. Ma [24] further extended this approach to support MPI parallel

rendering, thereby achieving better rendering performance. Norman et al. [29] proposed to

leverage the support of standard visualization tools for volume rendering finite-element data

to visualize AMR data by converting the AMR data into finite-element hexahedral cells.

However, this conversion incurs both memory and computational costs. Park et al. [31]

presented a hierarchical multiresolution splatting technique to visualize AMR data

interactively on a single workstation. Wald et al. [38] recently introduced an interactive

method for CPU-based rendering of AMR data within OSPRay.

On the GPU, Weber et al. [43, 44] presented an approach based on cell projection for direct

volume rendering of AMR data. Kähler and Hege [15] introduced a 3D texture-based

volume rendering algorithm for AMR data that employs a space-partitioning scheme to

decompose the volume into axis-aligned regions of equal-sized cells. This approach,

although it achieves fast rendering performance, ignores the T-junction problem at level

boundaries. Kähler and Hege’s approach was further extended to employ ray tracing in

multiple rendering passses [16] and finally in a single pass [14]. Gosink et al. [13] presented

a visualization system for time-varying AMR data on the GPU and designed an out-of-core

method to re-sample the data into nonadaptive grids. Marchesin and de Verdiere [26]

employed a special-case solution for high-quality and semianalytical volume rendering of

hexahedral cell data. Recently, Leaf et al. [21] used a reconstruction method similar to that

of Ljung et al. [22] and provided a cluster- and GPU-parallel rendering scheme to visualize

large-scale AMR data in a distributed parallel setting.

2.3 Isosurface Rendering

Whether extracting the isosurface to a mesh [23], or rendering it with an implicit method

[33], the requirements placed on the reconstruction method used to sample the AMR data

are much stricter than in volume rendering. Volume rendering tends to blur and smooth out

features, hiding some artifacts; however, any small cracks or discontinuities will be readily

apparent in a surface representation.

Marching cubes (MC) [23] has been applied to adaptive volumes with a variety of methods

proposed for fixing cracks encountered at level boundaries. Shu et al. [35] extended the MC

algorithm into the adaptive MC algorithm and patched cracks with polygons of the same

Wang et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shape. Westermann et al. [46] introduced an adaptive approach for isosurfacing regular

volume data at arbitrary levels of detail and employed triangle fans to fill in the cracks at

boundaries. Fang et al. [11] subdivided the lower resolution cell faces into pyramid elements

to match the higher resolution faces. These approaches, although they yielded a crack-free

isosurface, were applicable only for a vertex-centered multiresolution grid. For cell-centered

AMR data, Weber at al. [42,45] first transformed the cell-centered AMR grid into a vertex-

centered grid by introducing dual cells and then stitched the boundary with an unstructured

mesh (see Figure 2d). However, explicitly tessellating the isosurface can produce a large

number of triangles, impacting rendering performance and the time it takes to change the

isovalue.

An alternative approach that addresses these limitations is to directly ray trace an implicit

representation of the isosurface [33]. A large body of work has investigated ray tracing

implicit isosurfaces on regular grid volumes [19, 20, 33, 40]; however, relatively little work

has explored implicit isosurface rendering of BS-AMR data. Co et al. [8] mention the

applicability of their iso-splatting approach to AMR data, although this has not been

explored. Wald et al.’s AMR reconstruction kernels [38] can be used for isosurface ray-

tracing in OSPRay with the built-in sample-based isosurface method; however, this approach

yields poor rendering quality and performance, as will be shown later.

3 RECONSTRUCTING BS-AMR DATA

In this section, we introduce a novel BS-AMR reconstruction strategy, called the octant
method, which will take a given sample point p = (x, y, z) and map it to a scalar value F(p).

BS-AMR data is specified as a set of data bricks, each a grid (typically of 16 × 16 × 16 cells)

with a cell-centered data value associated with a refinement level L. Bricks on the same level

do not overlap, and on the coarsest level generally form a structured grid that fills the entire

domain. However, finer level bricks overlap coarser ones, and the boundary of the finer level

brick aligns with the coarser level cell boundary, such that each coarser cell is covered by

exactly R × R × R finer cells, where R denotes the refinement factor.

3.1 Methodology Overview

A range of interpolants are available from numerical analysis for use in reconstructing a

continuous field F(x) from a discrete set of data points. For example, the nearest neighbor,

linear and higher order basis function interpolation methods have been widely used in

visualization and computer graphics. However, these interpolation methods are highly

dependent on the underlying topology of the data being reconstructed, making their

application to BS-AMR grids more challenging than to nonadaptive grids (Figure 2), due to

the grid topology change at the level boundaries. Computing a “correct” interpolant on BS-

AMR data is made more challenging due to the variety of formats and layouts employed.

While there is currently no gold standard interpolation method for AMR data, several key

properties (ranked by importance) should be considered when designing an interpolant:

1. Continuity, in particular across-level boundaries, is a key concern, as

discontinuities in F(x) can change the computed isosurface topology, resulting in

undesirable artifacts.

Wang et al. Page 5

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Adaptivity denotes that it is desirable for the interpolant to have a higher

frequency in finer regions and a lower frequency in coarser ones.

3. Accuracy requires that a reconstruction method should be interpolating, and,

furthermore, that given an arbitrary sample point x, the reconstructed value F(x)

should be as close to the ground truth as possible.

4. Locally Rectilinear means that the approach will decompose the domain into a

set of nonoverlapping rectilinear “cells” within which the interpolant is locally

trilinear, allowing for fast implicit ray-isosurface intersections.

5. Simplicity indicates that the reconstruction kernel should be easy to implement.

A simpler kernel is more likely to perform well.

3.2 Octant Method

A key challenge of reconstructing cell-centered AMR data is that the dual cells at different

resolution levels do not line up and can even reach across the level boundaries (Figure 3a).

Taking p in Figure 3a as an example, using dual cell D1, D2 or D3 to interpolate the value of

p will yield different results. We can address these issues by casting the problem in terms of

interpolating within the octants of cells (Figure 3b). First, an octant does not extend beyond

the bounds of its parent cell and thus will not cross level boundaries. Second, the entire set

of octants completely tiles the domain, without gaps or overlap. Finally, octants are

rectilinear, freeing us from requiring unstructured elements to stitch boundaries. Performing

trilinear interpolation within each octant yields an adaptive and locally rectilinear

interpolation scheme. Furthermore, we can achieve a continuous interpolant by taking some

care in choosing the values at the octant vertices at level boundaries.

To better explain the octant method, let us consider a logical cell C. The cell is evenly split

into eight octants {Oi, i ∈ 1,2 … 8}, which lie along one of eight unit vectors (±X, ±Y , ±Z)

from C’s center (Figure 4b). Of the eight vertices of each octant, O(0) coincides with the cell

center, whereas the others lie on the cell’s boundary (faces, edges and corners). The

boundary vertices are named based on the direction in which they can be reached from the

cell center. For example, the vertices on C’s faces are labeled O(X), O(Y), O(Z); those on C’s

edges are labeled O(XY), O(YZ), O(XZ); and those on C’s corners O(XYZ).

Similarly, we can also compute the dual cell D (Figure 4a). We name the eight vertices of D
following the same scheme as for the octant vertices: D(0) coincides with the cell center;

D(X) lies along X from D(0), D(XY) lies along (X,Y) and D(XYZ) along (X,Y ,Z). It easy to see

the cells and dual cells form a symmetric relationship: the cell center vertex is the corner

vertex of the dual cell, the cell edge vertices are the dual cell’s face vertices, etc.

In nonboundary regions, an octant of a cell is also an octant of a dual cell. Therefore, we will

get the same interpolant as with dual cells when we use trilinear interpolation within the

eight octants. Due to the symmetry between cells and octants, this interpolant is trivial to

construct. Here are the rules: 1) O(0) carries the value of cell C since it coincides with the

cell center. 2) The face vertex O(X) lies exactly halfway between C(0) and its neighbor cell

along X, C(X), and thus its value should be the average of those two cells’ values. From the

Wang et al. Page 6

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

symmetry of the cells and dual cells, the center of C(X) is D(X), and thus

Ov
(X) = 1

2 (Dv
(0) + Dv

(X)). 3) The edge vertex O(XY) lies exactly in the center of the face spanned

by C(0), C(X), C(Y) and C(XY) and thus is the average of the values for those four cells. 4)

The corner vertex O(XYZ) is set to the average value of the eight vertices of D.

We can achieve a continuous interpolation across the boundaries if we take the vertices of

the finer side and set their value to whatever the octant’s interpolant produces on the coarser

side. Even in a three-dimensional scenario, where the octant’s vertex may touch cells on

multiple different levels, the finer level octant’s vertices always fall within the coarser level

octant’s faces. Therefore, we will achieve continuity across the boundary as long as the

coarser side octant defines the interpolant; however, this strategy will sacrifice some

accuracy at the boundary.

Octant Algorithm.—The above strategy leads to an algorithm that combines the stitching

with the trilinear interpolant in coarse regions: For any point p , we first find the leaf cell C
and octant O it is contained in, and its corresponding dual cell D on this level. In this octant,

the value of vertex O(0) is set to Cv. For those vertices on the edge of the cell, there could be

2, 4 or 8 of D’s corners that are required to compute their value, if we are in a nonboundary

region. Taking O(XY) as an example, we would need to consider D(0), D(X), D(Y) and D(XY).

If all these inputs exist and are at the same level as C, then these vertices do not lie on a

boundary, and thus can be computed as in the nonboundary case. Otherwise, if at least one

of those inputs lies on a coarser level, we know that this vertex lies on at least one boundary,

with a coarser cell on the other side. In this case, we will find the coarsest level neighbor and

construct a continuous stitching by setting the vertex’s value with the interpolant from the

coarser side. The searching of the coarsest level neighbor could be easily realized by

recursively calling our sample function for the vertex position minutely moved along the

direction away from the octant’s cell center. If both cases do not hit, we know that there

exists at least one of those inputs that is involved for an octant’s vertex but is an inner node,

and yet no other input is on a coarser level. Thus, we can infer that the vertex lies on a

boundary but is on the coarser side and therefore can determine the interpolant. This

description leads to the following algorithm:

float octant(P)

 Octant oct = findLeafOctant(P)

 Dual D = findDualCell(oct)

 /* center vertex */

 oct[0].v = C.v;

 /* edge vertex */

 int lXmin = min(D[0].l,D[X].l)

Wang et al. Page 7

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 int lXmax = max(D[0].l,D[X].l)

 if (lXmin == lXmax) /* not a boundary */

 oct[X].v = avg(D[0].v,D[X].v);

 else if (lxMin < oct.l) /* we’re fine side */

 /* finer side: fill *FROM* coarse side*/

 oct[X].v = octant(oct[X].p + eps * oct.dX)

 else /* we’re coarse side */

 〈Compute Coarser Side Vertex〉

 /* face vertex */

 int lXYmin = min(D[0].l,D[X].l,D[Y].l,D[XY].l)

 … /* symmetric to above*/

 /* corner vertex */

 int lXYZmin = min(D[0].l,D[X].l, …)

 … /* symmetric to above*/

Figure 5 illustrates the above procedure. To determine the value of p using the octant
method, octant Op and dual cell Dp, shown as red and blue square, are initialized (Figure

5a). Unlike the simple calculation of O(0)’s and O(Y)’s value by applying the previously

mentioned rules, the calculation of O(X)’s and O(XY)’s value requires an additional stitching

process since we detect that D(X) .level < O.level. Then p ′ is computed by moving O(X) a bit

to the coarser side and used for calculating octant Op′’s logical coordinates. Subsequently,

the vertex value of Op′ is recursively initialized with the octant method. So far, the value of

O(X) can be achieved by trilinearly interpolating the original point OX with octant Op′’s

value, which is the same as the calculation of O(XY)’s value.

Computing the Coarser Side Interpolant.—How exactly we compute the value for the

coarser side octant Op′ is completely our choice. Fortunately, whatever we set to those

vertices, the above rules will guarantee that our interpolant is continuous, adaptive, accurate

and locally rectilinear. In this paper, we will introduce four options: coarsest level lerp,

current-level lerp, basis function and finest level lerp.

Coarsest Level Lerp.: The most obvious way of setting the coarser-side interpolant is to

simply perform trilinear interpolation on the coarsest level involved for any of the inputs. In

the logical grid abstraction of AMR data, we can still view each refinement level as a

Wang et al. Page 8

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

structure grid [38]. Hence, we could pick cells in any logical cell and provide an interface—

lerpOnLevel—to trilinearly interpolate the value based on the cell. In this case, we can even

forgo the epsilon-offsetting and directly call this trilinear interpolant for boundary vertices:

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’ = min(D[0’].l,D[X’].l)

 if (lX’ == oct.l)

 oct[X’].v = avg (D[0’].v,D[X’].v);

 else

 oct[X’].v = lerpOnLevel (lX’,oct[X’].p)

In most cases, the possibly multiple lerpOnLevel calls would all find the same dual cell D.

This case could obviously be detected and replaced with directly averaging the respective

inputs in a performance-oriented implementation.

Current-Level Lerp.: Given that it is easy to get the current level of a cell at a point using

findLeafCell, we could perform the interpolation on the leaf cell, rather than the coarsest

level cell. This strategy allows for the interpolant to be adaptive.

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’ = min D[0’].l,D[X’].l)

 if (lX’ == oct.l)

 oct[X’].v = avg(D[0’].v,D[X’].v);

 else

 int level = findLeafCell(oct[X’].p).l

 oct[X’].v = lerpOnLevel(level,oct[X’].p)

Basis Functions.: Setting the boundary to the above option is similar to the blending

method described in [38], which involves some inner cell values at the boundary and

therefore yields some ghosting. However, since we have full freedom on how exactly to set

the coarser side boundary, we can also set the coarser side’s octant vertices using any other

method. For example, we can compute these vertices using the basis function method

Wang et al. Page 9

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

described in [38], which employs a hat-shaped basis function to define the interpolant. This

strategy will remove the ghost artifacts, since the calculation involves actual leaf cells only

on the boundary; however, as described by Wald et al. [38], it is unclear how to perform ray-

isosurface intersections with this interpolant.

Finest Level Lerp.: Perhaps the best alternative for computing the coarser side interpolant is

to use the f inestLevelLerp. The vertex in question lies exactly on at least one boundary and

always right in the center of any finest level logical dual cell. Therefore, the finest level lerp

computes the weighted average of all leaf cells that touch at this point. For example, the

value of O(X′) in Figure 5b is filled with the weighted average of V2,V3 and V4. This

method, therefore, is not only fast and trivially simple to code but also qualitatively one of

the best methods we have found so far, and it is used by default for calculating the coarser

side octant’s value in our results. It is implemented as follows:

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’min = min(D[0].l,D[X’].l)

 int lX’max = max(D[0].l,D[X’].l)

 if (lX’min == lX’max) /* not a boundary */

 oct[X’].v = avg(D[0].v,D[X’].v);

 else

 D’ = findDualCell(finest_l,oct[X’].p)

 oct[X’].v = avg(all D’.v)

3.3 Potential Numerical Issue

Although the octant method provides a continuous interpolant across the level boundary in

theory, it is still worth mentioning the potential numerical issue when using limited-

precision floating-point arithmetic. The vertex value of the adjacent octant across the

bounday might not exactly agree in practice due to intermediate round-off error when

operations are performed on the same-source values in different orders, such as calculating

the vertex values in a pre-computing step and then interpolating, as opposed to directly

interpolating on the other side of an abuting face. Although the numerical issue is

theoretically possible, we did not see it in practice in our experiments.

4 RAY TRACING IMPLICIT ISOSURFACES

Our octant reconstruction method is applicable to any use case that requires sampling of BS-

AMR data. For example, our method could be used for explicit isosurface extraction by

simply iterating over the octants, computing each octant’s vertex values with our octant

Wang et al. Page 10

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

method and applying marching cubes [23], treating each octant as a “voxel”. Although this

approach would certainly work, it would generate a potentially very large number of

triangles.

In a ray tracer, explicit tessellation can be avoided by employing an implicit isosurface ray

tracing method [19, 33, 40]. The simplest approach is to march the ray through the volume

with a fixed-step size, and at each step check if an intersection with the isosurface exists.

OSPRay currently employs this ray marching approach to render implicit isosurfaces.

However, this method is inherently nonadaptive, creating many unnecessary samples in

coarse regions, and an insufficient number of samples in fine regions (Figure 6a), resulting

in unnecessary high costs and poor rendering quality. Instead, one can build an implicit KD-

tree [40] or implicit BVH [18, 39] over the voxels and use this acceleration structure to

quickly locate voxels that contain the isosurfaces being rendered. The voxels containing the

isosurface are referred to as “active voxels”. A similar approach could be implemented with

our octant method by treating each octant as a “voxel”.

Although we initially considered this approach, several issues arise when attempting to

implement it within OSPRay. First, OSPRay heavily relies on Embree for BVH construction

and ray traversal; however, Embree has no notion of implicit BVHs, requiring us instead to

implement our own BVH construction and traversal kernels. Second, a naïve implementation

of implicit BVHs usually has high memory requirements, because typically a BVH has at

least one node per input voxel, which can significantly multiply the storage requirements.

When this multiplication is coupled with the fact that each AMR cell would produce eight

octants, the total memory cost of this approach becomes prohibitive.

To address these issues, we adopted two different and orthogonal strategies. First, we

developed a “hybrid” implicit isosurface module for OSPRay that is able to use Embree for

BVH construction and traversal and is applicable to general rectilinear volume data. Second,

we derive a series of optimizations (e.g., active octant filtering and octant merging) specific

to our octant method to reduce the number of primitives we have to build the BVH over,

further reducing memory overhead.

4.1 “Hybrid” Implicit Isosurface Ray Tracing

The core idea of our hybrid implicit isosurface method is to combine ideas from both

explicit isosurface extraction and implicit isosurface ray tracing. As in explicit isosurface

extraction, we first extract a list of all the active voxels and consider only those active

voxels; yet like implicit isosurface ray tracing, we then build a BVH over these active voxels

(using Embree), traverse rays through this BVH and perform an implicit ray-isosurface

intersections within each voxel, without ever extracting any polygons (Figure 6b).

4.1.1 Voxels, Encoding and Active Voxel Sources—At the core of our method is

an abstraction for viewing any structured volume (e.g., regular grids, rectilinear grids, BS-

AMR), as a collection of logical voxels, where each voxel is a cube with trilinearly

interpolated scalar values at each of its vertices. In this case, each voxel can thus be

described by 12 values: three for its 3D coordinates, one for its width and eight for its vertex

values. Note that for general rectilinear volumes we require two additional values to specify

Wang et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the height and depth of the voxel. These voxels can be, for example, dual cells in a

structured volume or octants in a BS-AMR volume. Active voxels are those whose value

range contains at least one of the isovalues we are interested in rendering.

With this abstraction, we can view any volume as simply a source of active voxels, by

assuming that there is some kind of entity—a VoxelSource—which can quickly generate a

list of active voxels in the volume. This initial process works similar to the active voxel

extraction of explicit isosurface extraction methods. We will describe later in Section 4.2.1

how we generate the voxels for our BS-AMR data.

Having to consider only the active voxels reduces memory use considerably, as typically

only a few of the total voxels are active. Nevertheless, explicitly storing a full 12 floats for

even just these voxels would be prohibitively expensive. Therefore, our software abstraction

further assumes that each active voxel can be encoded into a single 64-bit value (e.g., as

21:21:21 bit coordinates in a structured volume). The VoxelSource then offers an interface to

retrieve the complete voxel information from this 64-bit reference.

4.1.2 BVH Construction and Traversal—Since we now have to consider only the

active voxels, we no longer need any special BVH construction or traversal kernel and can

simply use Embree. To do so, we first use the VoxelSource to produce a list of all active

voxels, storing the 64-bit reference for each active voxel. We then create an Embree “user

geometry” with as many primitives as active voxels, and within the geometry’s getBounds

callback query the VoxelSource for the respective voxel’s bounding box to allow Embree to

build a BVH over the voxels.

4.1.3 Ray Voxel Intersection—To perform the actual ray-voxel intersection, we

implemented an ISPC version of the ray-iso voxel intersection technique proposed by

Marmitt et al. [27] and used this as our Embree user geometry’s intersection routine. As with

the bounding box callback, we first have to query the full voxel data for the 64-bit reference

from the VoxelSource.

Based on how ISPC and Embree’s intersection callbacks work, this ISPC implementation

will always intersect the same voxel with either 4-, 8- or 16-wide ray “packets” in packet

mode. Given the (very) small nature of each of our voxels, we are fully aware that the

number of rays active during intersection will hardly ever be much larger than one, which is

clearly wasteful. However, any alternative of intersecting eight different voxels would

require significant changes to Embree, which is beyond the scope of this paper.

4.2 Application to Our Octant Method

As mentioned previously, to apply our hybrid implicit isosurface method to AMR data

reconstructed using our octant method, we can simply implement a VoxelSource that

encodes each octant as a “voxel”.

4.2.1 Octant Decomposition and Initialization—Although the core idea of our

approach is straightforward, some care must be taken to efficiently extract the active octants

from large AMR datasets. To allow efficient access to the AMR cells, we employ the AMR-

Wang et al. Page 12

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

KDTree introduced by Wald et al. [38]. This AMR-KDTree can be built over whatever

external memory is used to store the brick’s cells, introducing little memory or compute

overhead. The structure of the AMR-KDTree is as follows:

• A leaf in the tree represents a region where all cells come from the same brick.

Note that the brick will likely stick out of the leaf’s bounding box, and the same

brick may be listed in multiple leaves.

• A leaf node stores a pointer to the finest level brick along with pointers to the

coarser bricks that overlap the region.

• A leaf node stores the value range of its finest level cells, which can be used for

filtering leaves that do not contain the isovalue.

On top of this AMR-KDTree, the active octant extraction is particularly easy to implement.

A naïve first approach could traverse all leaves of the tree, ignoring those that do not contain

the isovalue, and decompose each cell of the finest brick in the leaf into eight octants using

our octant to compute the values of the octant’s vertices. Although this naïve approach will

extract a correct crack-free isosurface, it will lead to a large amount of redundant

computation. Specifically, the vertex values of “inner” octants will be re-computed eight

times, as they are shared with eight other octants.

4.2.2 Optimized Octant Generation—In nonboundary regions, an “inner” octant is

also an octant of the corresponding dual cell. Thus, we can reduce the number of octants we

need to process by merging these “inner” octants into dual cells, without affecting the

isosurface. We illustrate this optimization in Figure 7: the inner octants (shaded blue) can be

merged into dual cells; however, octants touching a level boundary cannot be merged.

With this optimization, we reduce the number of octants processed on the LandingGear

(Figure 1, right) by 70.6%, from roughly 2 billion to 616 million. Furthermore, the

redundant computation of the “inner” octant’s shared vertices (e.g., point A in Figure 7) can

also be avoided. The merged dual cell’s vertices coincide with the cell centers and can

simply be set to the cell values. This optimization yields a 64.76% improvement in

performance on the LandingGear data. Additional performance improvement can be

achieved by computing the list of active octants in parallel; in our implementation we use

TBB’s parallel_for. To encode our octants in the 64-bit reference used by the VoxelSource,

we store them as 32:32 bits, with the first 32 bits encoding the AMR-KDTree leaf index and

the second 32 encoding the octant ID within the leaf.

4.2.3 OSPRay Integration—Although our approach can be realized in any ray tracer,

we evaluate our method implemented within the OSPRay ray tracing framework [41].

OSPRay already includes the previously discussed AMR volume and AMR-KDTRee

structure presented by Wald et al. [38], allowing us to easily re-use them. To integrate our

approach, we extend OSPRay with a module implementing our hybrid implicit isosurface

geometry, which can take any rectilinear volume as a VoxelSource and extend OSPRay’s

AMR volume to implement our octant method.

Wang et al. Page 13

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 RESULTS

In this section, we first compare the quality of our reconstruction method with prior work

[38] using a 2D visualization tool (Section 5.1). Next, we evaluate our approach according to

two criteria: rendering quality (Section 5.2) and performance (Section 5.3).

Evaluation Hardware.—We conduct our evaluation on three different systems. FSM is

quad-socket workstation with four Xeon E7-8890 v3 CPUs, for a total of 72 physical cores

at 2.5 GHz, along with 1.4 TB RAM. Lago is a Skylake Xeon workstation equipped with

one Intel Xeon Skylake Processor (Gold 6136), for a total of 24 physical cores at 3.0 GHz,

along with 256 GB RAM. Stampede2 is the largest supercomputer at the Texas Advanced

Computing Center (TACC) and is composed of 4,200 Xeon Phi 7250 Knights Landing

(KNL) nodes and 1,736 Skylake Xeon Platinum 8160 nodes (SKX). Each KNL node has 96

GB RAM and 68 physical cores, and each SKX node has 192 GB RAM and 48 physical

cores over two sockets. The nodes are connected with an Intel Omni-Path network

configured in a fat tree topology with six core switches.

Data Description.—We use two BS-AMR datasets in our evaluation. The Black Hole

Merger (BHM) is a GR-Chombo [7] simulation of the gravitational waves resulting from the

collision of two black holes. The BHM is 28 GB, consisting of 4,114 data blocks and four

refinement levels. The finer refinement levels are concentrated at the center of the domain

where the black holes merge. The LandingGear (LG) is a dataset produced by NASA using

LAVA [17] to simulate the air flow around a aircraft’s landing gear assembly. The

LandingGear is 57 GB, consisting of 72,865 blocks and nine refinement levels.

5.1 2D Comparison of Reconstruction Methods

To demonstrate and compare the multiple reconstruction techniques discussed, we developed

a 2D AMR reconstruction kernel visualization tool, which implements the five kernels

proposed by Wald et al. [38] (the coarsest, current, finest, blend and basis methods), along

with our octant method. We show a comparison on a simple case in Figure 8; here we

compare on a two-level BS-AMR grid where cell values are 1 (blue, solid circle) or 0 (light

green, open circle). To demonstrate the isosurface that would be reconstructed with these

methods, we draw isocontours at values of 0.25, 0.5 and 0.75, which are shown in blue,

green and white.

We observe that the coarsest method is not adaptive and loses data in refined regions, since it

interpolates using the value at the coarsests level. In contrast, the current method preserves

the raw data but produces a discontinuity at the level boundary, leading to cracks in the

surface. The finest method provides high-quality results, but it is not linearly interpolating in

some regions (along AB) and is costly to compute. The blend method combines multiple

levels but leads to “ghost” artifacts, as it involves interpolating the values of some inner

cells. The basis method and our octant method provide similar quality and are both

continuous and adaptive. However, the basis method is not locally rectilinear, and thus it is

unclear how to formulate ray-isosurface intersections when using it.

Wang et al. Page 14

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Rendering Quality

Two factors affect the quality of the isosurfaces rendered by our approach: the choice of the

reconstruction kernel and the choice of the implicit isosurface ray tracing strategy. We

compare the previous sampling kernels of Wald et al. [38] that are applicable to isosurface

rendering with our octant method and evaluate the quality of our hybrid implicit isosurface

module against OSPRay’s current sample-based isosurface module.

5.2.1 Octant vs. Other Reconstruction Methods—To generate a crack-free

isosurface, the reconstruction of the field produced by the sampling method must be

continuous. In particular, the “stitching” strategy employed at the level boundaries must

provide a continuous interpolation between the levels; otherwise, visible cracks will be

produced in the surface at these boundaries. We compare our octant reconstruction method

against current and nearest methods proposed by Wald et al. [38]. Compared to these prior

reconstruction methods with two gigscale BS-AMR data, we find that only our octant
method can reconstruct a correct, crack-free isosurface (see Figure 9).

Although Wald et al. [38] propose an additional three methods—the finest, blend and basis
methods—these are either not applicable to isosurface rendering or not feasible to use for

generating an isosurface. Although reported to provide good image quality [38], the lack of

adaptivity in the finest method would require up-sampling the dataset to build the isosurface

BVH over all the finest level voxels, which is not feasible for the majority of BS-AMR data.

For example, the width of a cell at the finest level of the LandingGear is 0.00024 times that

of the coarsest. Re-sampling the entire domain to this resolution would require roughly 1015

voxels, or 4.3 PB of memory. The blend and basis methods are not applicable to isosurface

rendering, as it is unclear how to formulate ray-isosurface intersection with them.

5.2.2 Hybrid vs. Sample-Based Isosurface Method—To evaluate the quality of the

isosurfaces produced by our proposed hybrid method, we compare the rendering quality of

the hybrid implicit isosurface with OSPRay’s built-in sampling-based method on the

LandingGear using our octant reconstruction method (see Figure 10). While both

approaches yield a crack-free isosurface at the boundary, the sample-based method

frequently misses the surface and loses key features of the data, resulting in a potentially

misleading visualization. In addition, we find that our hybrid implicit isosurface module

presents more detail on the surface in refined regions. This is due to the fixed step-size of the

sample-based method being too large for these refined regions of the data.

5.2.3 Advanced Capabilities—We show our application has the capability of

simultaneously direct volume rendering and isosurfacing gigascale BS-AMR data. Figure 11

demonstrates the simultaneous visualization of LandingGear data on FSM. We achieve a

framerate of 2.2 FPS with a 1024 × 768 framebuffer when using OSPRay’s SciVis renderer.

Furthermore, our application is capable of visualizing multiple transparent isosurfaces

simultaneously. In Figure 1 (left), we show two transparent isosurfaces on the Black Hole

Merger dataset.

Wang et al. Page 15

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.3 Performance Evaluation

We evaluate the rendering performance of our octant method and hybrid implicit isosurface

ray tracing approach on the three previously mentioned hardware platforms. The

benchmarks were done by rendering to a 1024 × 768 framebuffer with OSPRay’s adaptive

sampling enabled. We render a single warm-up frame and then take the average framerate

over 100 frames. We report rendering performance on both the Black Hole Merger and

LandingGear datasets, and we compare the current method [38] with our octant method and

our hybrid implicit isosurface method against OSPRay’s built-in sample-based method in

Table 1. Our comparisons are also done with two different renderers in OSPRay, the SciVis

and pathtracer (pt) renderers. The SciVis renderer is a standard scientific visualization style

renderer, supporting shadows and ambient occlusion, whereas the pathtracer is a

photorealistic global illumination renderer.

We find that our octant method provides similar rendering performance to that of the current
method, but produces a crack-free isosurface. When comparing the performance of our

hybrid implicit isosurface module to the OSPRay’s sample-based method, we find a

significant performance improvement of one to two orders of magnitude. In addition to the

single node runs on Lago and FSM, we leverage OSPRay’s support for data-replicated

rendering using MPI to run on 32 Stampede2 Skylake Xeon nodes, and achieve interactive

rendering with our proposed approach even in the most expensive rendering configurations

(i.e., with path tracing).

Our approach is also capable of quickly recomputing the active octants, allowing for semi-

interactive changes to the isovalue. On the Black Hole Merger dataset, our method takes

1.58s to generate and initialize the active octants, whereas on the LandingGear it requires

6.83s. The BVH is then built over these active octants using Embree, which can process

approximately 110 million primitives per second. The BVH build time is less than a second

in our experiments. Our approach allows for more interactive exploration of large data with

fast isosurface updates, compared to explicit isosurface extraction approaches. Furthermore,

by computing the active octants on the fly, and storing a minimal 64-bit reference for each

such octant, we require only 10 GB of storage for the LandingGear isosurface.

Overall, we found that mid-gigascale BS-AMR data, such as the 57 GB LandingGear, can be

rendered interactively on a single node with our approach. Larger AMR data could be

handled with large-memory single node resources, or with parallel rendering on HPC

platforms.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient solution for ray tracing implicit isosurfaces of

BS-AMR data. Our method is based on a novel reconstruction method—the octant method

—which allows us to reconstruct crack-free isosurfaces, even across refinement levels,

without introducing unstructured elements at the boundaries. Combined with our hybrid

implicit isosurface ray tracing method, we enable interactive, high-quality visualization of

gigascale BS-AMR datasets, with relatively low memory overhead. Furthermore, our

optimized octant extraction method enables semi-interactive isovalue changes. Finally, the

Wang et al. Page 16

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hybrid implicit isosurface method presented is applicable to any rectilinear volume data,

providing better quality and higher performance isosurface rendering than OSPRay’s built-in

ray marching approach.

By integrating our approach into OSPRay as a geometry type, we can easily create

combined visualizations, displaying the original volume and simulation mesh data to provide

context. We can also leverage OSPRay’s support for transparent MPI-parallel data-replicated

rendering to distribute work over multiple nodes. Our OSPRay module can also be leveraged

by existing work integrating OSPRay into ParaView and VTK, to provide similar results to

production visualization users.

Although our technique can produce high-quality isosurfaces of BS-AMR data, some issues

remain to be addressed. First, we would like to investigate further optimizations of the active

octant extraction, to provide faster isovalue updates. As isosurface exploration is a key mode

of visualizing scientific data, the ability to quickly explore the field is important. Additional

work can be done to further reduce the memory consumption of our method. In addition to

allowing for larger data to be explored on a single machine, this could also make our

approach applicable to in situ use cases. Additional improvements can also be explored to

improve our reconstruction method. While capable of computing crack-free isosurfaces, the

computed surface normals can be discontinuous, producing some subtle shading artifacts.

Finally, it would also be interesting to extend our work to apply for time-varying distributed

AMR data, to allow for interactive visualization of large time-series datasets.

Acknowledgments

This work was supported in part by the NIH (Grant P41 GM103545-18). This research was supported in part by the
DOE, NNSA, Award DE-NA0002375: (PSAAP) Carbon-Capture Multidisciplinary Simulation Center, the DOE
SciDAC Institute of Scalable Data Management Analysis and Visualization DOE DE-SC0007446, NSF
ACI-1339881, and NSF IIS-1162013. Additional support comes from the Intel Visualization Center and Parallel
Computing Centers Program.

The authors wish to thank Patrick Moran from NASA Ames for providing the LandingGear dataset, Juha Jaykka
and Paul Shellard from the Stephen Hawking Center for Theoretical Cosmology for use of their COSMOS data.
The authors would also like to thank the Texas Advanced Computing Center and Paul Navrátil for the use of
Stampede2, and the reviewers for their useful feedback.

REFERENCES

[1]. AMReX. https://amrex-codes.github.io/amrex/. Accessed 3-30-2018.

[2]. Bell J, Almgren A, Beckner V, Day M, Lijewski M, Nonaka A, and Zhang W. BoxLib user’s
guide. 2016.

[3]. Berger MJ and Colella P. Local adaptive mesh refinement for shock hydrodynamics. Journal of
Computational Physics, 82(1), 1989.

[4]. Berger MJ and Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations.
Journal of Computational Physics, 53(3), 1984.

[5]. Beyer J, Hadwiger M, Möller T, and Fritz L. Smooth mixed-resolution GPU volume rendering. In
Proceedings of the Fifth Eurographics/IEEE VGTC conference on Point-Based Graphics, 2008.

[6]. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Weber
GH, Krishnan H, et al. VisIt: An end-user tool for visualizing and analyzing very large data
Technical report, Lawrence Berkeley National Laboratory, 2012.

Wang et al. Page 17

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://amrex-codes.github.io/amrex/

[7]. Clough K, Figueras P, Finkel H, Kunesch M, Lim EA, and Tunyasuvunakool S. GRChombo:
Numerical relativity with adaptive mesh refinement. Classical and Quantum Gravity, 32(24),
2015.

[8]. Co CS, Hamann B, and Joy KI. Iso-splatting: A point-based alternative to isosurface visualization.
In Computer Graphics and Applications, 2003. Proceedings. 11th Pacific Conference on, 2003.

[9]. Colella P, Graves D, Ligocki T, Martin D, Modiano D, Serafini D, and Van Straalen B. Chombo
software package for AMR applications design document, 2000.

[10]. Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M,
Löffler F, O’Shea B, Schnetter E, Van Straalen B, and Weide K. A survey of high level
frameworks in block-structured adaptive mesh refinement packages. Journal of Parallel and
Distributed Computing, 74(12), 2014.

[11]. Fang DC, Weber GH, Childs H, Brugger ES, Hamann B, and Joy KI. Extracting geometrically
continuous isosurfaces from adaptive mesh refinement data. In Proceedings of 2004 Hawaii
International Conference on Computer Sciences, 2004.

[12]. Feng W, Gang W, Deji P, Yuan L, Liuzhong Y, and Hongbo W. A parallel algorithm for viewshed
analysis in three-dimensional digital earth. Computers & Geosciences, 75, 2015.

[13]. Gosink LJ, Anderson JC, Bethel EW, and Joy KI. Query-driven visualization of time-varying
adaptive mesh refinement data. IEEE Transactions on Visualization and Computer Graphics,
14(6), 2008.

[14]. Kähler R and Abel T. Single-pass GPU-raycasting for structured adaptive mesh refinement data.
In IS&T/SPIE Electronic Imaging, 2013.

[15]. Kähler R and Hege H-C. Texture-based volume rendering of adaptive mesh refinement data. The
Visual Computer, 18(8), 2002.

[16]. Kähler R, Wise J, Abel T, and Hege H-C. GPU-assisted raycasting for cosmological adaptive
mesh refinement simulations. In Volume Graphics, 2006.

[17]. Kiris CC, Barad MF, Housman JA, Sozer E, Brehm C, and Moini-Yekta S. The LAVA
computational fluid dynamics solver. In 52nd Aerospace Sciences Meeting, 2014.

[18]. Knoll A, Thelen S, Wald I, Hansen CD, Hagen H, and Papka ME. Full-resolution interactive CPU
volume rendering with coherent BVH traversal. In 2011 IEEE Pacific Visualization Symposium
(PacificVis), 2011.

[19]. Knoll A, Wald I, and Hansen CD. Coherent multiresolution isosurface ray tracing. The Visual
Computer, 25(3), 2009.

[20]. Knoll A, Wald I, Parker S, and Hansen CD. Interactive isosurface ray tracing of large octree
volumes. In IEEE Symposium on Interactive Ray Tracing 2006, 2006.

[21]. Leaf N, Vishwanath V, Insley J, Hereld M, Papka ME, and Ma K-L. Efficient parallel volume
rendering of large-scale adaptive mesh refinement data. In 2013 IEEE Symposium on Large-
Scale Data Analysis and Visualization, 2013.

[22]. Ljung P, Lundström C, and Ynnerman A. Multiresolution interblock interpolation in direct
volume rendering. 2006.

[23]. Lorensen WE and Cline HE. Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In International Conference on Computer Graphics and Interactive Techniques, 1987.

[24]. Ma K-L. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In The 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999.

[25]. Ma K-L and Crockett TW. A scalable parallel cell-projection volume rendering algorithm for
three-dimensional unstructured data. In Proceedings of the IEEE symposium on Parallel
rendering, 1997.

[26]. Marchesin S and De Verdiere GC. High-quality, semi-analytical volume rendering for AMR data.
IEEE Transactions on Visualization and Computer Graphics, 15(6), 2009.

[27]. Marmitt G, Kleer A, Wald I, Friedrich H, and Slusallek P. Fast and accurate ray-voxel
intersection techniques for iso-surface ray tracing. In VMV, vol. 4, 2004.

[28]. Moran P and Ellsworth D. Visualization of AMR data with multi-level dual-mesh interpolation.
IEEE Transactions on Visualization and Computer Graphics, 17(12), 2011.

Wang et al. Page 18

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[29]. Norman ML, Shalf J, Levy S, and Daues G. Diving deep: Datamanagement and visualization
strategies for adaptive mesh refinement simulations. Computing in Science & Engineering, 1(4),
1999.

[30]. Oshea BW, Bryan G, Bordner J, Norman ML, Abel T, Harkness R, and Kritsuk A. Introducing
Enzo, an AMR cosmology application. In Adaptive mesh refinement-theory and applications.
2005.

[31]. Park S, Bajaj CL, and Siddavanahalli V. Case study: Interactive rendering of adaptive mesh
refinement data. In Proceedings of the Conference on Visualization ’02, 2002.

[32]. Parker S, Guilkey J, and Harman T. A component-based parallel infrastructure for the simulation
of fluid-structure interaction. Engineering with Computers, 22(3-4), 2006.

[33]. Parker S, Shirley P, Livnat Y, Hansen CD, and Sloan P-P. Interactive ray tracing for isosurface
rendering. In Proceedings of the Conference on Visualization ’98, 1998.

[34]. Schroeder WJ, Lorensen B, and Martin K. The Visualization Toolkit: An object-oriented
approach to 3D graphics. 2004.

[35]. Shu R, Zhou C, and Kankanhalli MS. Adaptive marching cubes. The Visual Computer, 11(4),
1995.

[36]. Squillacote AH, Ahrens J, Law C, Geveci B, Moreland K, and King B. The ParaView Guide.
2007.

[37]. Van Gelder A and Wilhelms J. Topological considerations in isosurface generation. ACM
Transactions on Graphics (TOG), 13(4), 1994.

[38]. Wald I, Brownlee C, Usher W, and Knoll A. CPU volume rendering of adaptive mesh refinement
data. In SIGGRAPH Asia 2017 Symposium on Visualization, 2017.

[39]. Wald I, Friedrich H, Knoll A, and Hansen CD. Interactive isosurface ray tracing of time-varying
tetrahedral volumes. IEEE Transactions on Visualization and Computer Graphics, 13(6), 2007.

[40]. Wald I, Friedrich H, Marmitt G, Slusallek P, and Seidel H-P. Faster isosurface ray tracing using
implicit KD-Trees. IEEE Transactions on Visualization and Computer Graphics, 11(5), 2005.

[41]. Wald I, Johnson GP, Amstutz J, Brownlee C, Knoll A, Jeffers J, Günther J, and Navrátil P.
OSPRay-A CPU ray tracing framework for scientific visualization. IEEE Transactions on
Visualization and Computer Graphics, 23(1), 2017.

[42]. Weber GH, Childs H, and Meredith JS. Efficient parallel extraction of crack-free isosurfaces from
adaptive mesh refinement (AMR) data. In 2012 IEEE Symposium on Large Data Analysis and
Visualization, 2012.

[43]. Weber GH, Hagen H, Hamann B, Joy KI, Ligocki TJ, Ma K-L, and Shalf JM. Visualization of
adaptive mesh refinement data. In Visual Data Exploration and Analysis VIII, vol. 4302, 2001.

[44]. Weber GH, Kreylos O, Ligocki TJ, Shalf J, Hagen H, Hamann B, Joy KI, Ma K-L, and
Computergraphik A. High-quality volume rendering of adaptive mesh refinement data. In VMV,
vol. 1, 2001.

[45]. Weber GH, Kreylos O, Ligocki TJ, Shalf JM, Hagen H, Hamann B, and Joy KI. Extraction of
crack-free isosurfaces from adaptive mesh refinement data. In Hierarchical and Geometrical
Methods in Scientific Visualization. 2003.

[46]. Westermann R, Kobbelt L, and Ertl T. Real-time exploration of regular volume data by adaptive
reconstruction of isosurfaces. The Visual Computer, 15(2), 1999.

Wang et al. Page 19

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1:
High-fidelity isosurface visualizations of gigascale block-structured adaptive mesh

refinement (BS-AMR) data using our method. Left: a 28 GB GR-Chombo [7] simulation of

gravitational waves resulting from the collision of two black holes. Middle and Right: a 57

GB AMR dataset computed with LAVA [17] at NASA, simulating multiple fields over the

landing gear of an aircraft. Middle: isosurface representation of the vorticity, rendered with

path tracing. Right: a combined visualization of volume rending and an isosurface of the

pressure over the landing gear, rendered with OSPRay’s SciVis renderer. Using our approach

for ray tracing such AMR data, we can interactively render crack-free implicit isosurfaces in

combination with direct volume rendering and advanced shading effects like transparency,

ambient occlusion and path tracing.

Wang et al. Page 20

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2:
(a) Trilinear interpolation is trivial on a vertex-centered single-level grid. (b) A cell-centered

single-level grid can be converted to a vertex-centered grid by introducing dual cells. At the

level boundaries of vertex-centered AMR data (c), it is sufficient to introduce a layer of

ghost cells. (d) A cell-centered AMR grid can still be transformed using dual cells; however,

stitching across the boundary remains challenging. Previous work has addressed the T-

junction problem by introducing unstructured elements at the boundary, shown in green.

Wang et al. Page 21

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3:
Reconstructing the sample value of P near the level boundary would require combining

results from multiple dual cells across different levels (a). When using octants (b), P is

contained in a single octant and level, and we can simply perform trilinear interpolation.

Wang et al. Page 22

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4:
A dual cell and an octant of the grid cell C. In nonboundary regions, an octant of a cell is

also an octant of a dual cell.

Wang et al. Page 23

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5:
When sampling a point P on the fine side of a boundary (a), the octant vertices on the

boundary, O(X) and O(XY), are set by the coarse side. To compute O(X), we shift it to the

coarse side by ε to get Op′ and recursively initialize its vertex value. O(X) is then trilinearly

interpolated within Op′. When sampling a point P′ on the coarse side of a boundary (b), the

coarse side is free to set the interpolant at the boundary using the different strategies

presented, as the fine side will stitch to it, as discussed for (a). Here we illustrate the finest
level lerp strategy.

Wang et al. Page 24

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6:
OSPRay’s current sample-based isosurface intersection method (a) marches the ray through

the volume and uses the rule of signs to find the intersection, oversampling coarse regions

and undersampling fine ones in the case of AMR data. Our “hybrid” implicit isosurface

method (b) builds a BVH over the active voxels (or octants) of the volume and uses Marmitt

et al.’s ray-iso voxel intersection [27] within these voxels, resulting in a faster and more

accurate surface rendering.

Wang et al. Page 25

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7:
When generating the octants, we can merge “inner octants” (i.e., those not touching a

boundary) into dual cells (shaded), significantly reduing memory consumption. We find that

on the LandingGear, this optimization reduces the total number of octants by 70.6%.

Wang et al. Page 26

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8:
A 2D comparison of the reconstruction methods of Wald et al. [38] (a-e) with our Octant
method (f). Isocontours are drawn at 0.25, 0.5 and 0.75, in blue, green and white,

respectively. (a) Coarsest loses data in the fine region (dashed box), leading to cracks in the

surface. (b) Current is discontinuous at level boundaries (dashed box), also resulting in

cracks. (c) Finest is accurate but not adaptive. Furthermore, values along AB are not linearly

interpolated. (d) Blend results in “ghost” artifacts in some regions. (e) Basis works well but

is not locally rectilinear and thus is not applicable to isosurface ray tracing. (f) Our Octant
method provides quality similar to (e) and is continuous, adaptive, locally rectilinear and

simple to implement.

Wang et al. Page 27

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9:
A comparison of the isosurfaces produced by two reconstruction kernels from Wald et al.

[38] (a,b,d,e) and our method (c,f) on the Black Hole Merger (BHM) and LandingGear (LG)

datasets. (a,d) Nearest is similar to nearest-neighbor filtering, resulting in discontinuities

even within the same level. (b,e) Current provides better interpolation within a level but still

has discontinuites at level boundaries. (c,f) Our Octant method provides a continuous

stitching across level boundaries, producing a crack-free isosurface even between levels.

Wang et al. Page 28

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10:
Left: OSPRay’s current ray marching-based isosurface rendering method frequently misses

the surface, resulting in holes, missing features and less surface detail. Right: Our hybrid

implicit isosurface ray tracing method yields a high-quality crack-free isosurface, at better

framerates.

Wang et al. Page 29

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11:
Our hybrid isosurface method is integrated into OSPRay as a geometry type, allowing users

to create high-quality, interactive visualizations. Here we show a semitransparent rendering

of the LandingGear isosurface, combined with the volume data and the landing gear

assembly. Both the isosurface and volume use our octant reconstruction method to sample

the data. This image is rendered at 2.2 FPS with 1024×768 framebuffer, using OSPRay’s

SciVis renderer.

Wang et al. Page 30

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 31

Ta
b

le
 1

:

R
en

de
ri

ng
 p

er
fo

rm
an

ce
 in

 f
ra

m
es

 p
er

 s
ec

on
d

(F
PS

)
of

 th
e

di
ff

er
en

t i
so

su
rf

ac
e

ra
y

tr
ac

in
g

m
et

ho
ds

 a
nd

 A
M

R
 r

ec
on

st
ru

ct
io

n
m

et
ho

ds
 o

n
th

e
B

la
ck

 H
ol

e

M
er

ge
r

(B
H

M
)

an
d

L
an

di
ng

G
ea

r
(L

G
)

da
ta

se
ts

. T
he

 b
en

ch
m

ar
ks

 w
er

e
ru

n
us

in
g

O
SP

R
ay

’s
 S

ci
V

is
 a

nd
 p

at
ht

ra
ce

r (
pt

)
re

nd
er

er
s,

 w
ith

 a
 1

02
4×

76
8

fr
am

eb
uf

fe
r.

O
ur

 o
ct

an
t r

ec
on

st
ru

ct
io

n
m

et
ho

d
pe

rf
or

m
s

si
m

ila
r

to
 th

e
cu

rr
en

t m
et

ho
d

[3
8]

 w
hi

le
 p

ro
vi

di
ng

 b
et

te
r

vi
su

al
 q

ua
lit

y.
 M

or
eo

ve
r,

ou
r

hy
br

id

is
os

ur
fa

ce
 r

ay
 tr

ac
in

g
m

et
ho

d
yi

el
ds

 s
ig

ni
fi

ca
nt

 p
er

fo
rm

an
ce

 im
pr

ov
em

en
ts

 c
om

pa
re

d
to

 O
SP

R
ay

’s
 b

ui
lt-

in
 s

am
pl

e-
ba

se
d

m
et

ho
d.

L
ag

o
F

SM
32

×
St

am
pe

de
2-

SK
X

D
at

a-
Is

os
ur

fa
ce

 M
et

ho
d

R
ec

on
st

ru
ct

io
n

M
et

ho
d

Sc
iV

is
pt

Sc
iV

is
pt

Sc
iV

is
pt

B
H

M
-H

yb
ri

d

oc
ta

nt
23

.0
9

4.
29

69
.3

7
16

.1
8

34
8.

83
61

.7
3

cu
rr

en
t

23
.4

0
4.

37
68

.8
3

16
.0

5
35

4.
45

61
.4

0

B
H

M
-S

am
pl

e

oc
ta

nt
 0

.4
4

0.
06

 8
.2

8
 0

.3
5

 1
1.

91
 1

.5
4

cu
rr

en
t

 0
.5

6
0.

07
 7

.2
9

 0
.4

5
 1

1.
95

 1
.5

4

L
G

-H
yb

ri
d

oc
ta

nt
 6

.1
5

0.
65

33
.1

4
 3

.0
9

12
1.

61
10

.0
9

cu
rr

en
t

 8
.2

8
0.

72
32

.5
3

 3
.0

9
12

0.
22

10
.0

6

L
G

-S
am

pl
e

oc
ta

nt
 0

.1
2

0.
04

 1
.1

9
 0

.2
2

 1
0.

10
 2

.3
1

cu
rr

en
t

 0
.2

8
0.

08
 2

.3
8

 0
.4

9
 1

0.
12

 2
.3

1

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

	Abstract
	Introduction
	Related work
	Reconstruction Across Boundaries
	Volume Rendering
	Isosurface Rendering

	Reconstructing BS-AMR Data
	Methodology Overview
	Octant Method
	Octant Algorithm.
	Computing the Coarser Side Interpolant.
	Coarsest Level Lerp.
	Current-Level Lerp.
	Basis Functions.
	Finest Level Lerp.

	Potential Numerical Issue

	Ray Tracing Implicit Isosurfaces
	“Hybrid” Implicit Isosurface Ray Tracing
	Voxels, Encoding and Active Voxel Sources
	BVH Construction and Traversal
	Ray Voxel Intersection

	Application to Our Octant Method
	Octant Decomposition and Initialization
	Optimized Octant Generation
	OSPRay Integration

	Results
	In this section, we first compare the quality of our reconstruction method with prior work [38] using a 2D visualization tool (Section 5.1). Next, we evaluate our approach according to two criteria: rendering quality (Section 5.2) and performance (Section 5.3).Evaluation Hardware.—We conduct our evaluation on three different systems. FSM is quad-socket workstation with four Xeon E7-8890 v3 CPUs, for a total of 72 physical cores at 2.5 GHz, along with 1.4 TB RAM. Lago is a Skylake Xeon workstation equipped with one Intel Xeon Skylake Processor (Gold 6136), for a total of 24 physical cores at 3.0 GHz, along with 256 GB RAM. Stampede2 is the largest supercomputer at the Texas Advanced Computing Center (TACC) and is composed of 4,200 Xeon Phi 7250 Knights Landing (KNL) nodes and 1,736 Skylake Xeon Platinum 8160 nodes (SKX). Each KNL node has 96 GB RAM and 68 physical cores, and each SKX node has 192 GB RAM and 48 physical cores over two sockets. The nodes are connected with an Intel Omni-Path network configured in a fat tree topology with six core switches.Data Description.—We use two BS-AMR datasets in our evaluation. The Black Hole Merger (BHM) is a GR-Chombo [7] simulation of the gravitational waves resulting from the collision of two black holes. The BHM is 28 GB, consisting of 4,114 data blocks and four refinement levels. The finer refinement levels are concentrated at the center of the domain where the black holes merge. The LandingGear (LG) is a dataset produced by NASA using LAVA [17] to simulate the air flow around a aircraft’s landing gear assembly. The LandingGear is 57 GB, consisting of 72,865 blocks and nine refinement levels.
	Evaluation Hardware.
	Data Description.

	2D Comparison of Reconstruction Methods
	Rendering Quality
	Octant vs. Other Reconstruction Methods
	Hybrid vs. Sample-Based Isosurface Method
	Advanced Capabilities

	Performance Evaluation

	Conclusion and Future Work
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Fig. 9:
	Fig. 10:
	Fig. 11:
	Table 1:

