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Abstract

Adaptive mesh refinement (AMR) is a key technology for large-scale simulations that allows for 

adaptively changing the simulation mesh resolution, resulting in significant computational and 

storage savings. However, visualizing such AMR data poses a significant challenge due to the 

difficulties introduced by the hierarchical representation when reconstructing continuous field 

values. In this paper, we detail a comprehensive solution for interactive isosurface rendering of 

block-structured AMR data. We contribute a novel reconstruction strategy—the octant method—

which is continuous, adaptive and simple to implement. Furthermore, we present a generally 

applicable hybrid implicit isosurface ray-tracing method, which provides better rendering quality 

and performance than the built-in sampling-based approach in OSPRay. Finally, we integrate our 

octant method and hybrid isosurface geometry into OSPRay as a module, providing the ability to 

create high-quality interactive visualizations combining volume and isosurface representations of 

BS-AMR data. We evaluate the rendering performance, memory consumption and quality of our 

method on two gigascale block-structured AMR datasets.

Keywords

AMR; Isosurface; Ray tracing; Reconstruction strategy; OSPRay

1 INTRODUCTION

Adaptive mesh refinement (AMR) techniques are used to solve a range of complex problems 

in numerical analysis. By providing an adaptive, hierarchical resolution representation of the 
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computational domain, AMR techniques allow the simulation to focus both computational 

effort and storage on regions of interest, enabling larger, more complex problems to be 

solved. Although other forms of AMR data exist (e.g., mesh distortion and tree-based), 

block-structured AMR (BS-AMR) [3, 4] is the most widely used in practice, as it can be 

easily coupled with octree or recursive-grid AMR. BS-AMR forms the basis for a number of 

scientific simulation frameworks, including BoxLib [2], LAVA [17], Chombo [9], GR-

Chombo [7], Enzo [30], AMReX [1] and Uintah [32]. A detailed overview of these 

frameworks, and other BS-AMR-based simulations, can be found in Dubey et al.’s survey 

[10].

Although BS-AMR techniques have found wide adoption in current large-scale HPC 

simulations, visualization techniques for such data have struggled to keep up. Existing 

visualization solutions for large-scale AMR data remain either special purpose [13,26] or 

have severe limitations [28]. General visualization frameworks such as VTK [34], ParaView 

[36] and VisIt [6] provide limited support for direct visualization of AMR datasets, requiring 

the user to either down- or up-sample the data to a fixed resolution grid before rendering. 

Down-sampling the data clearly comes with an undesirable loss of resolution in regions of 

interest in the data, whereas up-sampling the data may require an exorbitant amount of 

memory.

A key challenge in directly rendering AMR data is reconstructing the data at level 

boundaries. Prior work has proposed to introduce unstructured mesh elements to stitch 

across level boundaries [11,45], at the cost of requiring the rendering method to handle 

unstructured elements. GPU-based approaches for visualizing such data [13, 16] typically 

remain in special-purpose tools, and are limited by the size of the GPU memory, requiring 

data-parallel rendering [12,21,24] to support the large datasets produced by current 

simulations. Thus, an efficient approach for direct isosurface visualization of AMR data on 

CPUs remains desirable, due to both the prevalence of CPUs on current and upcoming HPC 

systems and the large amount of memory available.

In this paper, we propose an efficient solution for isosurface visualization of large-scale BS-

AMR data. We build our approach on a novel reconstruction method for BS-AMR data, 

called the octant method, that allows us to construct crack-free implicit isosurfaces, even 

across level boundaries. To render these isosurfaces, we combine ideas from isosurface 

extraction and implicit isosurface ray tracing and present an efficient hybrid implicit 

isosurface ray-tracing approach, which allows for semi-interactive changes to the isovalue. 

Finally, we integrate our reconstruction method and hybrid implicit isosurface approach into 

the OSPRay ray-tracing framework [41] as a module, allowing us to trivially support 

multiple transparent isosurfaces, combined isosurface and volume rendering and advanced 

shading effects. Our contributions in detail are:

• A novel BS-AMR reconstruction strategy—the octant method—applicable to 

both isosurface and direct volume rendering, that is locally rectilinear, adaptive 

and continuous, even across level boundaries.
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• An efficient hybrid implicit isosurface ray-tracing approach that combines ideas 

from isosurface extraction and implicit isosurface ray-tracing, applicable to both 

non-AMR data and fusing our octant method) BS-AMR data.

• The integration of the octant method and hybrid isosurface ray-traing approach 

within OSPRay and the evaluation of the system’s capabilities on two complex 

BS-AMR datasets.

2 RELATED WORK

AMR was first introduced by Berger and Oliger [4], who used a binary decomposition (e.g., 

a quadtree or octree) to create a hierarchical representation of the simulation domain. Berger 

and Colella [3] extended this approach and proposed a more general BS-AMR 

representation. BS-AMR represents the simulation domain as a series of overlapping grids 

of arbitrary dimension, where higher resolution grids are used only in regions of interest. As 

discussed previously, this BS-AMR representation has found wide adoption in the 

simulation community [10]. Similar to nonadaptive grid approaches (Figures 2a and 2b), in 

BS-AMR methods the data can be stored either on the grid vertices (Figure 2c ) or at the cell 

centers (Figure 2d). In practice, most existing AMR simulation frameworks use a cell-

centered grid [42]. Unless otherwise specified, throughout the text we will focus on cell-

centered AMR data.

As AMR data becomes more widely used in scientific simulations, visualization researchers 

have worked to address the corresponding challenges encountered when visualizing such 

data. A key challenge in visualizing BS-AMR data is how to reconstruct the data across level 

boundaries to produce a continuous function. This reconstructed function can then be 

visualized using volume rendering or by explicitly extracting isosurfaces or rendering them 

implicitly.

2.1 Reconstruction Across Boundaries

Correctly reconstructing, or “stitching”, the BS-AMR data across adjacent cells at different 

resolutions is a well-known and challenging problem. A survey provided by Van Gelder and 

Wilhelms [37] introduced various solutions to this problem, also sometimes referred to as 

the T-junction problem in the literature [42]. Generally, the T-junction problem produces 

discontinuities in the reconstructed field, leading to, for example, holes in isosurfaces 

computed on the field or incorrect colormapping when volume rendering. These errors in the 

reconstruction lead to incorrect interpretations of the simulation data. A desirable 

reconstruction method should be able to interpolate a continuous function at any given point 

in the simulation domain, including across level boundaries.

Weber et al. [42, 45] proposed a solution based on the dual grid to generate a stitching mesh. 

To simplify their implementation, they pre-compute a case table for stitching cell generation. 

Beyer et al. [5] computed tetrahedral cells to stitch together the level boundaries of cell-

centered AMR grids (e.g.. Figure 2d). Fang et al. [11] created a “transition region” of 

pyramid cells to stitch between the levels. Although these approaches resolve the T-junction 

problem, they introduce new challenges with adding these unstructured elements and dealing 
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with the resulting unstructured mesh. Ljung et al. [22] proposed an interblock interpolation 

technique for directly volume rendering multiresolution volumes. Recently, Wald et al. [38] 

detailed the T-junction problem and introduced multiple reconstruction methods for direct 

volume rendering of BS-AMR data. These solutions have different characteristics and 

properties. For example, the basis method is suitable only for direct volume rendering and 

thus is not applicable for our work.

Our octant reconstruction method employs a similar approach to that of Ljung et al. [22] and 

Beyer et al. [5], but it is less restrictive in that it supports an arbitrary number of grids. 

Moreover, our method can leverage the optimized data query approach of Wald et al. [38].

2.2 Volume Rendering

Ma and Crockett [25] introduced the first high-quality AMR volume rendering system, 

based on cell projection. Ma [24] further extended this approach to support MPI parallel 

rendering, thereby achieving better rendering performance. Norman et al. [29] proposed to 

leverage the support of standard visualization tools for volume rendering finite-element data 

to visualize AMR data by converting the AMR data into finite-element hexahedral cells. 

However, this conversion incurs both memory and computational costs. Park et al. [31] 

presented a hierarchical multiresolution splatting technique to visualize AMR data 

interactively on a single workstation. Wald et al. [38] recently introduced an interactive 

method for CPU-based rendering of AMR data within OSPRay.

On the GPU, Weber et al. [43, 44] presented an approach based on cell projection for direct 

volume rendering of AMR data. Kähler and Hege [15] introduced a 3D texture-based 

volume rendering algorithm for AMR data that employs a space-partitioning scheme to 

decompose the volume into axis-aligned regions of equal-sized cells. This approach, 

although it achieves fast rendering performance, ignores the T-junction problem at level 

boundaries. Kähler and Hege’s approach was further extended to employ ray tracing in 

multiple rendering passses [16] and finally in a single pass [14]. Gosink et al. [13] presented 

a visualization system for time-varying AMR data on the GPU and designed an out-of-core 

method to re-sample the data into nonadaptive grids. Marchesin and de Verdiere [26] 

employed a special-case solution for high-quality and semianalytical volume rendering of 

hexahedral cell data. Recently, Leaf et al. [21] used a reconstruction method similar to that 

of Ljung et al. [22] and provided a cluster- and GPU-parallel rendering scheme to visualize 

large-scale AMR data in a distributed parallel setting.

2.3 Isosurface Rendering

Whether extracting the isosurface to a mesh [23], or rendering it with an implicit method 

[33], the requirements placed on the reconstruction method used to sample the AMR data 

are much stricter than in volume rendering. Volume rendering tends to blur and smooth out 

features, hiding some artifacts; however, any small cracks or discontinuities will be readily 

apparent in a surface representation.

Marching cubes (MC) [23] has been applied to adaptive volumes with a variety of methods 

proposed for fixing cracks encountered at level boundaries. Shu et al. [35] extended the MC 

algorithm into the adaptive MC algorithm and patched cracks with polygons of the same 
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shape. Westermann et al. [46] introduced an adaptive approach for isosurfacing regular 

volume data at arbitrary levels of detail and employed triangle fans to fill in the cracks at 

boundaries. Fang et al. [11] subdivided the lower resolution cell faces into pyramid elements 

to match the higher resolution faces. These approaches, although they yielded a crack-free 

isosurface, were applicable only for a vertex-centered multiresolution grid. For cell-centered 

AMR data, Weber at al. [42,45] first transformed the cell-centered AMR grid into a vertex-

centered grid by introducing dual cells and then stitched the boundary with an unstructured 

mesh (see Figure 2d). However, explicitly tessellating the isosurface can produce a large 

number of triangles, impacting rendering performance and the time it takes to change the 

isovalue.

An alternative approach that addresses these limitations is to directly ray trace an implicit 

representation of the isosurface [33]. A large body of work has investigated ray tracing 

implicit isosurfaces on regular grid volumes [19, 20, 33, 40]; however, relatively little work 

has explored implicit isosurface rendering of BS-AMR data. Co et al. [8] mention the 

applicability of their iso-splatting approach to AMR data, although this has not been 

explored. Wald et al.’s AMR reconstruction kernels [38] can be used for isosurface ray-

tracing in OSPRay with the built-in sample-based isosurface method; however, this approach 

yields poor rendering quality and performance, as will be shown later.

3 RECONSTRUCTING BS-AMR DATA

In this section, we introduce a novel BS-AMR reconstruction strategy, called the octant 
method, which will take a given sample point p = (x, y, z) and map it to a scalar value F(p). 

BS-AMR data is specified as a set of data bricks, each a grid (typically of 16 × 16 × 16 cells) 

with a cell-centered data value associated with a refinement level L. Bricks on the same level 

do not overlap, and on the coarsest level generally form a structured grid that fills the entire 

domain. However, finer level bricks overlap coarser ones, and the boundary of the finer level 

brick aligns with the coarser level cell boundary, such that each coarser cell is covered by 

exactly R × R × R finer cells, where R denotes the refinement factor.

3.1 Methodology Overview

A range of interpolants are available from numerical analysis for use in reconstructing a 

continuous field F(x) from a discrete set of data points. For example, the nearest neighbor, 

linear and higher order basis function interpolation methods have been widely used in 

visualization and computer graphics. However, these interpolation methods are highly 

dependent on the underlying topology of the data being reconstructed, making their 

application to BS-AMR grids more challenging than to nonadaptive grids (Figure 2), due to 

the grid topology change at the level boundaries. Computing a “correct” interpolant on BS-

AMR data is made more challenging due to the variety of formats and layouts employed. 

While there is currently no gold standard interpolation method for AMR data, several key 

properties (ranked by importance) should be considered when designing an interpolant:

1. Continuity, in particular across-level boundaries, is a key concern, as 

discontinuities in F(x) can change the computed isosurface topology, resulting in 

undesirable artifacts.
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2. Adaptivity denotes that it is desirable for the interpolant to have a higher 

frequency in finer regions and a lower frequency in coarser ones.

3. Accuracy requires that a reconstruction method should be interpolating, and, 

furthermore, that given an arbitrary sample point x, the reconstructed value F(x) 

should be as close to the ground truth as possible.

4. Locally Rectilinear means that the approach will decompose the domain into a 

set of nonoverlapping rectilinear “cells” within which the interpolant is locally 

trilinear, allowing for fast implicit ray-isosurface intersections.

5. Simplicity indicates that the reconstruction kernel should be easy to implement. 

A simpler kernel is more likely to perform well.

3.2 Octant Method

A key challenge of reconstructing cell-centered AMR data is that the dual cells at different 

resolution levels do not line up and can even reach across the level boundaries (Figure 3a). 

Taking p  in Figure 3a as an example, using dual cell D1, D2 or D3 to interpolate the value of 

p  will yield different results. We can address these issues by casting the problem in terms of 

interpolating within the octants of cells (Figure 3b). First, an octant does not extend beyond 

the bounds of its parent cell and thus will not cross level boundaries. Second, the entire set 

of octants completely tiles the domain, without gaps or overlap. Finally, octants are 

rectilinear, freeing us from requiring unstructured elements to stitch boundaries. Performing 

trilinear interpolation within each octant yields an adaptive and locally rectilinear 

interpolation scheme. Furthermore, we can achieve a continuous interpolant by taking some 

care in choosing the values at the octant vertices at level boundaries.

To better explain the octant method, let us consider a logical cell C. The cell is evenly split 

into eight octants {Oi, i ∈ 1,2 … 8}, which lie along one of eight unit vectors (±X, ±Y , ±Z) 

from C’s center (Figure 4b). Of the eight vertices of each octant, O(0) coincides with the cell 

center, whereas the others lie on the cell’s boundary (faces, edges and corners). The 

boundary vertices are named based on the direction in which they can be reached from the 

cell center. For example, the vertices on C’s faces are labeled O(X), O(Y), O(Z); those on C’s 

edges are labeled O(XY), O(YZ), O(XZ); and those on C’s corners O(XYZ).

Similarly, we can also compute the dual cell D (Figure 4a). We name the eight vertices of D 
following the same scheme as for the octant vertices: D(0) coincides with the cell center; 

D(X) lies along X from D(0), D(XY) lies along (X,Y) and D(XYZ) along (X,Y ,Z). It easy to see 

the cells and dual cells form a symmetric relationship: the cell center vertex is the corner 

vertex of the dual cell, the cell edge vertices are the dual cell’s face vertices, etc.

In nonboundary regions, an octant of a cell is also an octant of a dual cell. Therefore, we will 

get the same interpolant as with dual cells when we use trilinear interpolation within the 

eight octants. Due to the symmetry between cells and octants, this interpolant is trivial to 

construct. Here are the rules: 1) O(0) carries the value of cell C since it coincides with the 

cell center. 2) The face vertex O(X) lies exactly halfway between C(0) and its neighbor cell 

along X, C(X), and thus its value should be the average of those two cells’ values. From the 
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symmetry of the cells and dual cells, the center of C(X) is D(X), and thus 

Ov
(X) = 1

2 (Dv
(0) + Dv

(X)). 3) The edge vertex O(XY) lies exactly in the center of the face spanned 

by C(0), C(X), C(Y) and C(XY) and thus is the average of the values for those four cells. 4) 

The corner vertex O(XYZ) is set to the average value of the eight vertices of D.

We can achieve a continuous interpolation across the boundaries if we take the vertices of 

the finer side and set their value to whatever the octant’s interpolant produces on the coarser 

side. Even in a three-dimensional scenario, where the octant’s vertex may touch cells on 

multiple different levels, the finer level octant’s vertices always fall within the coarser level 

octant’s faces. Therefore, we will achieve continuity across the boundary as long as the 

coarser side octant defines the interpolant; however, this strategy will sacrifice some 

accuracy at the boundary.

Octant Algorithm.—The above strategy leads to an algorithm that combines the stitching 

with the trilinear interpolant in coarse regions: For any point p , we first find the leaf cell C 
and octant O it is contained in, and its corresponding dual cell D on this level. In this octant, 

the value of vertex O(0) is set to Cv. For those vertices on the edge of the cell, there could be 

2, 4 or 8 of D’s corners that are required to compute their value, if we are in a nonboundary 

region. Taking O(XY) as an example, we would need to consider D(0), D(X), D(Y) and D(XY). 

If all these inputs exist and are at the same level as C, then these vertices do not lie on a 

boundary, and thus can be computed as in the nonboundary case. Otherwise, if at least one 

of those inputs lies on a coarser level, we know that this vertex lies on at least one boundary, 

with a coarser cell on the other side. In this case, we will find the coarsest level neighbor and 

construct a continuous stitching by setting the vertex’s value with the interpolant from the 

coarser side. The searching of the coarsest level neighbor could be easily realized by 

recursively calling our sample function for the vertex position minutely moved along the 

direction away from the octant’s cell center. If both cases do not hit, we know that there 

exists at least one of those inputs that is involved for an octant’s vertex but is an inner node, 

and yet no other input is on a coarser level. Thus, we can infer that the vertex lies on a 

boundary but is on the coarser side and therefore can determine the interpolant. This 

description leads to the following algorithm:

float octant(P)

 Octant oct = findLeafOctant(P)

 Dual D = findDualCell(oct)

 /* center vertex */

 oct[0].v = C.v;

 /* edge vertex */

 int lXmin = min(D[0].l,D[X].l)
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 int lXmax = max(D[0].l,D[X].l)

 if (lXmin == lXmax) /* not a boundary */

    oct[X].v = avg(D[0].v,D[X].v);

 else if (lxMin < oct.l) /* we’re fine side */

   /* finer side: fill *FROM* coarse side*/

   oct[X].v = octant(oct[X].p + eps * oct.dX)

 else /* we’re coarse side */

   〈Compute Coarser Side Vertex〉

 /* face vertex */

 int lXYmin = min(D[0].l,D[X].l,D[Y].l,D[XY].l)

 … /* symmetric to above*/

 /* corner vertex */

 int lXYZmin = min(D[0].l,D[X].l, …)

 … /* symmetric to above*/

Figure 5 illustrates the above procedure. To determine the value of p  using the octant 
method, octant Op and dual cell Dp, shown as red and blue square, are initialized (Figure 

5a). Unlike the simple calculation of O(0)’s and O(Y)’s value by applying the previously 

mentioned rules, the calculation of O(X)’s and O(XY)’s value requires an additional stitching 

process since we detect that D(X) .level < O.level. Then p ′ is computed by moving O(X) a bit 

to the coarser side and used for calculating octant Op′’s logical coordinates. Subsequently, 

the vertex value of Op′ is recursively initialized with the octant method. So far, the value of 

O(X) can be achieved by trilinearly interpolating the original point OX with octant Op′’s 

value, which is the same as the calculation of O(XY)’s value.

Computing the Coarser Side Interpolant.—How exactly we compute the value for the 

coarser side octant Op′ is completely our choice. Fortunately, whatever we set to those 

vertices, the above rules will guarantee that our interpolant is continuous, adaptive, accurate 

and locally rectilinear. In this paper, we will introduce four options: coarsest level lerp, 

current-level lerp, basis function and finest level lerp.

Coarsest Level Lerp.: The most obvious way of setting the coarser-side interpolant is to 

simply perform trilinear interpolation on the coarsest level involved for any of the inputs. In 

the logical grid abstraction of AMR data, we can still view each refinement level as a 
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structure grid [38]. Hence, we could pick cells in any logical cell and provide an interface—

lerpOnLevel—to trilinearly interpolate the value based on the cell. In this case, we can even 

forgo the epsilon-offsetting and directly call this trilinear interpolant for boundary vertices:

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’ = min(D[0’].l,D[X’].l)

 if (lX’ == oct.l)

   oct[X’].v = avg (D[0’].v,D[X’].v);

 else

   oct[X’].v = lerpOnLevel (lX’,oct[X’].p)

In most cases, the possibly multiple lerpOnLevel calls would all find the same dual cell D. 

This case could obviously be detected and replaced with directly averaging the respective 

inputs in a performance-oriented implementation.

Current-Level Lerp.: Given that it is easy to get the current level of a cell at a point using 

findLeafCell, we could perform the interpolation on the leaf cell, rather than the coarsest 

level cell. This strategy allows for the interpolant to be adaptive.

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’ = min D[0’].l,D[X’].l)

 if (lX’ == oct.l)

   oct[X’].v = avg(D[0’].v,D[X’].v);

 else

   int level = findLeafCell(oct[X’].p).l

   oct[X’].v = lerpOnLevel(level,oct[X’].p)

Basis Functions.: Setting the boundary to the above option is similar to the blending 

method described in [38], which involves some inner cell values at the boundary and 

therefore yields some ghosting. However, since we have full freedom on how exactly to set 

the coarser side boundary, we can also set the coarser side’s octant vertices using any other 

method. For example, we can compute these vertices using the basis function method 
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described in [38], which employs a hat-shaped basis function to define the interpolant. This 

strategy will remove the ghost artifacts, since the calculation involves actual leaf cells only 

on the boundary; however, as described by Wald et al. [38], it is unclear how to perform ray-

isosurface intersections with this interpolant.

Finest Level Lerp.: Perhaps the best alternative for computing the coarser side interpolant is 

to use the f inestLevelLerp. The vertex in question lies exactly on at least one boundary and 

always right in the center of any finest level logical dual cell. Therefore, the finest level lerp 

computes the weighted average of all leaf cells that touch at this point. For example, the 

value of O(X′) in Figure 5b is filled with the weighted average of V2,V3 and V4. This 

method, therefore, is not only fast and trivially simple to code but also qualitatively one of 

the best methods we have found so far, and it is used by default for calculating the coarser 

side octant’s value in our results. It is implemented as follows:

〈Compute Coarser Side Vertex〉 ≡

 // ---------- edge vertex ----------

 int lX’min = min(D[0].l,D[X’].l)

 int lX’max = max(D[0].l,D[X’].l)

 if (lX’min == lX’max) /* not a boundary */

   oct[X’].v = avg(D[0].v,D[X’].v);

 else

   D’ = findDualCell(finest_l,oct[X’].p)

   oct[X’].v = avg(all D’.v)

3.3 Potential Numerical Issue

Although the octant method provides a continuous interpolant across the level boundary in 

theory, it is still worth mentioning the potential numerical issue when using limited-

precision floating-point arithmetic. The vertex value of the adjacent octant across the 

bounday might not exactly agree in practice due to intermediate round-off error when 

operations are performed on the same-source values in different orders, such as calculating 

the vertex values in a pre-computing step and then interpolating, as opposed to directly 

interpolating on the other side of an abuting face. Although the numerical issue is 

theoretically possible, we did not see it in practice in our experiments.

4 RAY TRACING IMPLICIT ISOSURFACES

Our octant reconstruction method is applicable to any use case that requires sampling of BS-

AMR data. For example, our method could be used for explicit isosurface extraction by 

simply iterating over the octants, computing each octant’s vertex values with our octant 
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method and applying marching cubes [23], treating each octant as a “voxel”. Although this 

approach would certainly work, it would generate a potentially very large number of 

triangles.

In a ray tracer, explicit tessellation can be avoided by employing an implicit isosurface ray 

tracing method [19, 33, 40]. The simplest approach is to march the ray through the volume 

with a fixed-step size, and at each step check if an intersection with the isosurface exists. 

OSPRay currently employs this ray marching approach to render implicit isosurfaces. 

However, this method is inherently nonadaptive, creating many unnecessary samples in 

coarse regions, and an insufficient number of samples in fine regions (Figure 6a), resulting 

in unnecessary high costs and poor rendering quality. Instead, one can build an implicit KD-

tree [40] or implicit BVH [18, 39] over the voxels and use this acceleration structure to 

quickly locate voxels that contain the isosurfaces being rendered. The voxels containing the 

isosurface are referred to as “active voxels”. A similar approach could be implemented with 

our octant method by treating each octant as a “voxel”.

Although we initially considered this approach, several issues arise when attempting to 

implement it within OSPRay. First, OSPRay heavily relies on Embree for BVH construction 

and ray traversal; however, Embree has no notion of implicit BVHs, requiring us instead to 

implement our own BVH construction and traversal kernels. Second, a naïve implementation 

of implicit BVHs usually has high memory requirements, because typically a BVH has at 

least one node per input voxel, which can significantly multiply the storage requirements. 

When this multiplication is coupled with the fact that each AMR cell would produce eight 

octants, the total memory cost of this approach becomes prohibitive.

To address these issues, we adopted two different and orthogonal strategies. First, we 

developed a “hybrid” implicit isosurface module for OSPRay that is able to use Embree for 

BVH construction and traversal and is applicable to general rectilinear volume data. Second, 

we derive a series of optimizations (e.g., active octant filtering and octant merging) specific 

to our octant method to reduce the number of primitives we have to build the BVH over, 

further reducing memory overhead.

4.1 “Hybrid” Implicit Isosurface Ray Tracing

The core idea of our hybrid implicit isosurface method is to combine ideas from both 

explicit isosurface extraction and implicit isosurface ray tracing. As in explicit isosurface 

extraction, we first extract a list of all the active voxels and consider only those active 

voxels; yet like implicit isosurface ray tracing, we then build a BVH over these active voxels 

(using Embree), traverse rays through this BVH and perform an implicit ray-isosurface 

intersections within each voxel, without ever extracting any polygons (Figure 6b).

4.1.1 Voxels, Encoding and Active Voxel Sources—At the core of our method is 

an abstraction for viewing any structured volume (e.g., regular grids, rectilinear grids, BS-

AMR), as a collection of logical voxels, where each voxel is a cube with trilinearly 

interpolated scalar values at each of its vertices. In this case, each voxel can thus be 

described by 12 values: three for its 3D coordinates, one for its width and eight for its vertex 

values. Note that for general rectilinear volumes we require two additional values to specify 
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the height and depth of the voxel. These voxels can be, for example, dual cells in a 

structured volume or octants in a BS-AMR volume. Active voxels are those whose value 

range contains at least one of the isovalues we are interested in rendering.

With this abstraction, we can view any volume as simply a source of active voxels, by 

assuming that there is some kind of entity—a VoxelSource—which can quickly generate a 

list of active voxels in the volume. This initial process works similar to the active voxel 

extraction of explicit isosurface extraction methods. We will describe later in Section 4.2.1 

how we generate the voxels for our BS-AMR data.

Having to consider only the active voxels reduces memory use considerably, as typically 

only a few of the total voxels are active. Nevertheless, explicitly storing a full 12 floats for 

even just these voxels would be prohibitively expensive. Therefore, our software abstraction 

further assumes that each active voxel can be encoded into a single 64-bit value (e.g., as 

21:21:21 bit coordinates in a structured volume). The VoxelSource then offers an interface to 

retrieve the complete voxel information from this 64-bit reference.

4.1.2 BVH Construction and Traversal—Since we now have to consider only the 

active voxels, we no longer need any special BVH construction or traversal kernel and can 

simply use Embree. To do so, we first use the VoxelSource to produce a list of all active 

voxels, storing the 64-bit reference for each active voxel. We then create an Embree “user 

geometry” with as many primitives as active voxels, and within the geometry’s getBounds 

callback query the VoxelSource for the respective voxel’s bounding box to allow Embree to 

build a BVH over the voxels.

4.1.3 Ray Voxel Intersection—To perform the actual ray-voxel intersection, we 

implemented an ISPC version of the ray-iso voxel intersection technique proposed by 

Marmitt et al. [27] and used this as our Embree user geometry’s intersection routine. As with 

the bounding box callback, we first have to query the full voxel data for the 64-bit reference 

from the VoxelSource.

Based on how ISPC and Embree’s intersection callbacks work, this ISPC implementation 

will always intersect the same voxel with either 4-, 8- or 16-wide ray “packets” in packet 

mode. Given the (very) small nature of each of our voxels, we are fully aware that the 

number of rays active during intersection will hardly ever be much larger than one, which is 

clearly wasteful. However, any alternative of intersecting eight different voxels would 

require significant changes to Embree, which is beyond the scope of this paper.

4.2 Application to Our Octant Method

As mentioned previously, to apply our hybrid implicit isosurface method to AMR data 

reconstructed using our octant method, we can simply implement a VoxelSource that 

encodes each octant as a “voxel”.

4.2.1 Octant Decomposition and Initialization—Although the core idea of our 

approach is straightforward, some care must be taken to efficiently extract the active octants 

from large AMR datasets. To allow efficient access to the AMR cells, we employ the AMR-
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KDTree introduced by Wald et al. [38]. This AMR-KDTree can be built over whatever 

external memory is used to store the brick’s cells, introducing little memory or compute 

overhead. The structure of the AMR-KDTree is as follows:

• A leaf in the tree represents a region where all cells come from the same brick. 

Note that the brick will likely stick out of the leaf’s bounding box, and the same 

brick may be listed in multiple leaves.

• A leaf node stores a pointer to the finest level brick along with pointers to the 

coarser bricks that overlap the region.

• A leaf node stores the value range of its finest level cells, which can be used for 

filtering leaves that do not contain the isovalue.

On top of this AMR-KDTree, the active octant extraction is particularly easy to implement. 

A naïve first approach could traverse all leaves of the tree, ignoring those that do not contain 

the isovalue, and decompose each cell of the finest brick in the leaf into eight octants using 

our octant to compute the values of the octant’s vertices. Although this naïve approach will 

extract a correct crack-free isosurface, it will lead to a large amount of redundant 

computation. Specifically, the vertex values of “inner” octants will be re-computed eight 

times, as they are shared with eight other octants.

4.2.2 Optimized Octant Generation—In nonboundary regions, an “inner” octant is 

also an octant of the corresponding dual cell. Thus, we can reduce the number of octants we 

need to process by merging these “inner” octants into dual cells, without affecting the 

isosurface. We illustrate this optimization in Figure 7: the inner octants (shaded blue) can be 

merged into dual cells; however, octants touching a level boundary cannot be merged.

With this optimization, we reduce the number of octants processed on the LandingGear 

(Figure 1, right) by 70.6%, from roughly 2 billion to 616 million. Furthermore, the 

redundant computation of the “inner” octant’s shared vertices (e.g., point A in Figure 7) can 

also be avoided. The merged dual cell’s vertices coincide with the cell centers and can 

simply be set to the cell values. This optimization yields a 64.76% improvement in 

performance on the LandingGear data. Additional performance improvement can be 

achieved by computing the list of active octants in parallel; in our implementation we use 

TBB’s parallel_for. To encode our octants in the 64-bit reference used by the VoxelSource, 

we store them as 32:32 bits, with the first 32 bits encoding the AMR-KDTree leaf index and 

the second 32 encoding the octant ID within the leaf.

4.2.3 OSPRay Integration—Although our approach can be realized in any ray tracer, 

we evaluate our method implemented within the OSPRay ray tracing framework [41]. 

OSPRay already includes the previously discussed AMR volume and AMR-KDTRee 

structure presented by Wald et al. [38], allowing us to easily re-use them. To integrate our 

approach, we extend OSPRay with a module implementing our hybrid implicit isosurface 

geometry, which can take any rectilinear volume as a VoxelSource and extend OSPRay’s 

AMR volume to implement our octant method.
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5 RESULTS

In this section, we first compare the quality of our reconstruction method with prior work 

[38] using a 2D visualization tool (Section 5.1). Next, we evaluate our approach according to 

two criteria: rendering quality (Section 5.2) and performance (Section 5.3).

Evaluation Hardware.—We conduct our evaluation on three different systems. FSM is 

quad-socket workstation with four Xeon E7-8890 v3 CPUs, for a total of 72 physical cores 

at 2.5 GHz, along with 1.4 TB RAM. Lago is a Skylake Xeon workstation equipped with 

one Intel Xeon Skylake Processor (Gold 6136), for a total of 24 physical cores at 3.0 GHz, 

along with 256 GB RAM. Stampede2 is the largest supercomputer at the Texas Advanced 

Computing Center (TACC) and is composed of 4,200 Xeon Phi 7250 Knights Landing 

(KNL) nodes and 1,736 Skylake Xeon Platinum 8160 nodes (SKX). Each KNL node has 96 

GB RAM and 68 physical cores, and each SKX node has 192 GB RAM and 48 physical 

cores over two sockets. The nodes are connected with an Intel Omni-Path network 

configured in a fat tree topology with six core switches.

Data Description.—We use two BS-AMR datasets in our evaluation. The Black Hole 

Merger (BHM) is a GR-Chombo [7] simulation of the gravitational waves resulting from the 

collision of two black holes. The BHM is 28 GB, consisting of 4,114 data blocks and four 

refinement levels. The finer refinement levels are concentrated at the center of the domain 

where the black holes merge. The LandingGear (LG) is a dataset produced by NASA using 

LAVA [17] to simulate the air flow around a aircraft’s landing gear assembly. The 

LandingGear is 57 GB, consisting of 72,865 blocks and nine refinement levels.

5.1 2D Comparison of Reconstruction Methods

To demonstrate and compare the multiple reconstruction techniques discussed, we developed 

a 2D AMR reconstruction kernel visualization tool, which implements the five kernels 

proposed by Wald et al. [38] (the coarsest, current, finest, blend and basis methods), along 

with our octant method. We show a comparison on a simple case in Figure 8; here we 

compare on a two-level BS-AMR grid where cell values are 1 (blue, solid circle) or 0 (light 

green, open circle). To demonstrate the isosurface that would be reconstructed with these 

methods, we draw isocontours at values of 0.25, 0.5 and 0.75, which are shown in blue, 

green and white.

We observe that the coarsest method is not adaptive and loses data in refined regions, since it 

interpolates using the value at the coarsests level. In contrast, the current method preserves 

the raw data but produces a discontinuity at the level boundary, leading to cracks in the 

surface. The finest method provides high-quality results, but it is not linearly interpolating in 

some regions (along AB) and is costly to compute. The blend method combines multiple 

levels but leads to “ghost” artifacts, as it involves interpolating the values of some inner 

cells. The basis method and our octant method provide similar quality and are both 

continuous and adaptive. However, the basis method is not locally rectilinear, and thus it is 

unclear how to formulate ray-isosurface intersections when using it.
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5.2 Rendering Quality

Two factors affect the quality of the isosurfaces rendered by our approach: the choice of the 

reconstruction kernel and the choice of the implicit isosurface ray tracing strategy. We 

compare the previous sampling kernels of Wald et al. [38] that are applicable to isosurface 

rendering with our octant method and evaluate the quality of our hybrid implicit isosurface 

module against OSPRay’s current sample-based isosurface module.

5.2.1 Octant vs. Other Reconstruction Methods—To generate a crack-free 

isosurface, the reconstruction of the field produced by the sampling method must be 

continuous. In particular, the “stitching” strategy employed at the level boundaries must 

provide a continuous interpolation between the levels; otherwise, visible cracks will be 

produced in the surface at these boundaries. We compare our octant reconstruction method 

against current and nearest methods proposed by Wald et al. [38]. Compared to these prior 

reconstruction methods with two gigscale BS-AMR data, we find that only our octant 
method can reconstruct a correct, crack-free isosurface (see Figure 9).

Although Wald et al. [38] propose an additional three methods—the finest, blend and basis 
methods—these are either not applicable to isosurface rendering or not feasible to use for 

generating an isosurface. Although reported to provide good image quality [38], the lack of 

adaptivity in the finest method would require up-sampling the dataset to build the isosurface 

BVH over all the finest level voxels, which is not feasible for the majority of BS-AMR data. 

For example, the width of a cell at the finest level of the LandingGear is 0.00024 times that 

of the coarsest. Re-sampling the entire domain to this resolution would require roughly 1015 

voxels, or 4.3 PB of memory. The blend and basis methods are not applicable to isosurface 

rendering, as it is unclear how to formulate ray-isosurface intersection with them.

5.2.2 Hybrid vs. Sample-Based Isosurface Method—To evaluate the quality of the 

isosurfaces produced by our proposed hybrid method, we compare the rendering quality of 

the hybrid implicit isosurface with OSPRay’s built-in sampling-based method on the 

LandingGear using our octant reconstruction method (see Figure 10). While both 

approaches yield a crack-free isosurface at the boundary, the sample-based method 

frequently misses the surface and loses key features of the data, resulting in a potentially 

misleading visualization. In addition, we find that our hybrid implicit isosurface module 

presents more detail on the surface in refined regions. This is due to the fixed step-size of the 

sample-based method being too large for these refined regions of the data.

5.2.3 Advanced Capabilities—We show our application has the capability of 

simultaneously direct volume rendering and isosurfacing gigascale BS-AMR data. Figure 11 

demonstrates the simultaneous visualization of LandingGear data on FSM. We achieve a 

framerate of 2.2 FPS with a 1024 × 768 framebuffer when using OSPRay’s SciVis renderer. 

Furthermore, our application is capable of visualizing multiple transparent isosurfaces 

simultaneously. In Figure 1 (left), we show two transparent isosurfaces on the Black Hole 

Merger dataset.
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5.3 Performance Evaluation

We evaluate the rendering performance of our octant method and hybrid implicit isosurface 

ray tracing approach on the three previously mentioned hardware platforms. The 

benchmarks were done by rendering to a 1024 × 768 framebuffer with OSPRay’s adaptive 

sampling enabled. We render a single warm-up frame and then take the average framerate 

over 100 frames. We report rendering performance on both the Black Hole Merger and 

LandingGear datasets, and we compare the current method [38] with our octant method and 

our hybrid implicit isosurface method against OSPRay’s built-in sample-based method in 

Table 1. Our comparisons are also done with two different renderers in OSPRay, the SciVis 

and pathtracer (pt) renderers. The SciVis renderer is a standard scientific visualization style 

renderer, supporting shadows and ambient occlusion, whereas the pathtracer is a 

photorealistic global illumination renderer.

We find that our octant method provides similar rendering performance to that of the current 
method, but produces a crack-free isosurface. When comparing the performance of our 

hybrid implicit isosurface module to the OSPRay’s sample-based method, we find a 

significant performance improvement of one to two orders of magnitude. In addition to the 

single node runs on Lago and FSM, we leverage OSPRay’s support for data-replicated 

rendering using MPI to run on 32 Stampede2 Skylake Xeon nodes, and achieve interactive 

rendering with our proposed approach even in the most expensive rendering configurations 

(i.e., with path tracing).

Our approach is also capable of quickly recomputing the active octants, allowing for semi-

interactive changes to the isovalue. On the Black Hole Merger dataset, our method takes 

1.58s to generate and initialize the active octants, whereas on the LandingGear it requires 

6.83s. The BVH is then built over these active octants using Embree, which can process 

approximately 110 million primitives per second. The BVH build time is less than a second 

in our experiments. Our approach allows for more interactive exploration of large data with 

fast isosurface updates, compared to explicit isosurface extraction approaches. Furthermore, 

by computing the active octants on the fly, and storing a minimal 64-bit reference for each 

such octant, we require only 10 GB of storage for the LandingGear isosurface.

Overall, we found that mid-gigascale BS-AMR data, such as the 57 GB LandingGear, can be 

rendered interactively on a single node with our approach. Larger AMR data could be 

handled with large-memory single node resources, or with parallel rendering on HPC 

platforms.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient solution for ray tracing implicit isosurfaces of 

BS-AMR data. Our method is based on a novel reconstruction method—the octant method

—which allows us to reconstruct crack-free isosurfaces, even across refinement levels, 

without introducing unstructured elements at the boundaries. Combined with our hybrid 

implicit isosurface ray tracing method, we enable interactive, high-quality visualization of 

gigascale BS-AMR datasets, with relatively low memory overhead. Furthermore, our 

optimized octant extraction method enables semi-interactive isovalue changes. Finally, the 
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hybrid implicit isosurface method presented is applicable to any rectilinear volume data, 

providing better quality and higher performance isosurface rendering than OSPRay’s built-in 

ray marching approach.

By integrating our approach into OSPRay as a geometry type, we can easily create 

combined visualizations, displaying the original volume and simulation mesh data to provide 

context. We can also leverage OSPRay’s support for transparent MPI-parallel data-replicated 

rendering to distribute work over multiple nodes. Our OSPRay module can also be leveraged 

by existing work integrating OSPRay into ParaView and VTK, to provide similar results to 

production visualization users.

Although our technique can produce high-quality isosurfaces of BS-AMR data, some issues 

remain to be addressed. First, we would like to investigate further optimizations of the active 

octant extraction, to provide faster isovalue updates. As isosurface exploration is a key mode 

of visualizing scientific data, the ability to quickly explore the field is important. Additional 

work can be done to further reduce the memory consumption of our method. In addition to 

allowing for larger data to be explored on a single machine, this could also make our 

approach applicable to in situ use cases. Additional improvements can also be explored to 

improve our reconstruction method. While capable of computing crack-free isosurfaces, the 

computed surface normals can be discontinuous, producing some subtle shading artifacts. 

Finally, it would also be interesting to extend our work to apply for time-varying distributed 

AMR data, to allow for interactive visualization of large time-series datasets.
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Fig. 1: 
High-fidelity isosurface visualizations of gigascale block-structured adaptive mesh 

refinement (BS-AMR) data using our method. Left: a 28 GB GR-Chombo [7] simulation of 

gravitational waves resulting from the collision of two black holes. Middle and Right: a 57 

GB AMR dataset computed with LAVA [17] at NASA, simulating multiple fields over the 

landing gear of an aircraft. Middle: isosurface representation of the vorticity, rendered with 

path tracing. Right: a combined visualization of volume rending and an isosurface of the 

pressure over the landing gear, rendered with OSPRay’s SciVis renderer. Using our approach 

for ray tracing such AMR data, we can interactively render crack-free implicit isosurfaces in 

combination with direct volume rendering and advanced shading effects like transparency, 

ambient occlusion and path tracing.
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Fig. 2: 
(a) Trilinear interpolation is trivial on a vertex-centered single-level grid. (b) A cell-centered 

single-level grid can be converted to a vertex-centered grid by introducing dual cells. At the 

level boundaries of vertex-centered AMR data (c), it is sufficient to introduce a layer of 

ghost cells. (d) A cell-centered AMR grid can still be transformed using dual cells; however, 

stitching across the boundary remains challenging. Previous work has addressed the T-

junction problem by introducing unstructured elements at the boundary, shown in green.
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Fig. 3: 
Reconstructing the sample value of P near the level boundary would require combining 

results from multiple dual cells across different levels (a). When using octants (b), P is 

contained in a single octant and level, and we can simply perform trilinear interpolation.
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Fig. 4: 
A dual cell and an octant of the grid cell C. In nonboundary regions, an octant of a cell is 

also an octant of a dual cell.
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Fig. 5: 
When sampling a point P on the fine side of a boundary (a), the octant vertices on the 

boundary, O(X) and O(XY), are set by the coarse side. To compute O(X), we shift it to the 

coarse side by ε to get Op′ and recursively initialize its vertex value. O(X) is then trilinearly 

interpolated within Op′. When sampling a point P′ on the coarse side of a boundary (b), the 

coarse side is free to set the interpolant at the boundary using the different strategies 

presented, as the fine side will stitch to it, as discussed for (a). Here we illustrate the finest 
level lerp strategy.
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Fig. 6: 
OSPRay’s current sample-based isosurface intersection method (a) marches the ray through 

the volume and uses the rule of signs to find the intersection, oversampling coarse regions 

and undersampling fine ones in the case of AMR data. Our “hybrid” implicit isosurface 

method (b) builds a BVH over the active voxels (or octants) of the volume and uses Marmitt 

et al.’s ray-iso voxel intersection [27] within these voxels, resulting in a faster and more 

accurate surface rendering.
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Fig. 7: 
When generating the octants, we can merge “inner octants” (i.e., those not touching a 

boundary) into dual cells (shaded), significantly reduing memory consumption. We find that 

on the LandingGear, this optimization reduces the total number of octants by 70.6%.

Wang et al. Page 26

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
A 2D comparison of the reconstruction methods of Wald et al. [38] (a-e) with our Octant 
method (f). Isocontours are drawn at 0.25, 0.5 and 0.75, in blue, green and white, 

respectively. (a) Coarsest loses data in the fine region (dashed box), leading to cracks in the 

surface. (b) Current is discontinuous at level boundaries (dashed box), also resulting in 

cracks. (c) Finest is accurate but not adaptive. Furthermore, values along AB are not linearly 

interpolated. (d) Blend results in “ghost” artifacts in some regions. (e) Basis works well but 

is not locally rectilinear and thus is not applicable to isosurface ray tracing. (f) Our Octant 
method provides quality similar to (e) and is continuous, adaptive, locally rectilinear and 

simple to implement.
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Fig. 9: 
A comparison of the isosurfaces produced by two reconstruction kernels from Wald et al. 

[38] (a,b,d,e) and our method (c,f) on the Black Hole Merger (BHM) and LandingGear (LG) 

datasets. (a,d) Nearest is similar to nearest-neighbor filtering, resulting in discontinuities 

even within the same level. (b,e) Current provides better interpolation within a level but still 

has discontinuites at level boundaries. (c,f) Our Octant method provides a continuous 

stitching across level boundaries, producing a crack-free isosurface even between levels.
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Fig. 10: 
Left: OSPRay’s current ray marching-based isosurface rendering method frequently misses 

the surface, resulting in holes, missing features and less surface detail. Right: Our hybrid 

implicit isosurface ray tracing method yields a high-quality crack-free isosurface, at better 

framerates.
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Fig. 11: 
Our hybrid isosurface method is integrated into OSPRay as a geometry type, allowing users 

to create high-quality, interactive visualizations. Here we show a semitransparent rendering 

of the LandingGear isosurface, combined with the volume data and the landing gear 

assembly. Both the isosurface and volume use our octant reconstruction method to sample 

the data. This image is rendered at 2.2 FPS with 1024×768 framebuffer, using OSPRay’s 

SciVis renderer.
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