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ABSTRACT 

 

Understanding Human Mobility and Urban Dynamics with Big Geospatial Data Analytics 

 

by 

 

Chanwoo Jin 

 

Human mobility and urban dynamics are the keys to understanding diversity and 

complexity in cities. With advancement of technologies, a significant amount of geospatial 

data is generated, shared, and analyzed. Big geospatial data analytics highlights the 

importance of geography in data-driven knowledge discovery. The goal of this dissertation 

is to progress the fundamental understanding of human mobility and urban dynamics by 

developing novel methodological frameworks and models that utilize micro-scale 

spatiotemporal big data and encourage knowledge creation. To achieve this goal, this 

dissertation includes three studies that focus on developing new methods to understand 

human mobility, urban dynamics, and their interactions. In the first study (Chapter 2), I 

propose a novel index measuring similarities between human mobility patterns from 

different data sources such as social media and traditional survey. The second study 

(Chapter 3) shifts focus to urban dynamics. Applying a series of spatiotemporal exploratory 

studies, an efficient method for examining spatiotemporal patterns at a micro-scale in 

restaurants is proposed. The third study (Chapter 4) investigates the relationships between 

human mobility and urban dynamics with a novel explainable deep learning approach 
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enhancing predictivity and interpretability of neural network models within geographic 

context. Throughout this dissertation, a comprehensive framework for understanding 

complexity of human mobility and urban dynamics is suggested through incorporating 

detailed spatial data into big data analytic models from geographic perspectives. This will 

provide individuals and governments with fundamental knowledge for better decision-

making associated with economic growth and development. 
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1. Introduction 

 Motivation 

Understanding human mobility and urban dynamics is fundamental to enhancing 

decision-making associated with socioeconomic development in urban systems. Human 

mobility, including physical travel of people and goods and virtual transactions of 

information, plays a significant role in (re)distributing uneven resources in cities and 

(re)organizing urban structures. Modern cities, homes of more than half of the world’s 

population, are not simple spaces where various activities occur, but complex places where 

human activities continuously interact with urban structures. Impacts of human activities on 

urban environments are non-linearly intertwined with various unobserved and unknown 

factors. Urban dynamics, as the study and understanding of forces and their effects on 

changes in urban structures such as land uses, socioeconomic functions of locations, and 

relationships between areas, have been highlighted to understand the complexity of cities 

(Forrester, 1969; Batty et al., 1999). They suggested bottom-up approaches that emphasize 

impacts of heterogeneous and autonomous individuals on spatiotemporal changes in urban 

structures; however, insufficient micro-scale data on human mobility and urban dynamics 

have resulted in major challenges. 

The recent advancement of technologies, along with a new culture of data creation and 

sharing is enabling a generation of large and diverse data in real-time, making them 

accessible for unveiling various patterns of human mobility and urban dynamics (Shaw et 

al., 2016). For example, location-based social media and consumer review services provide 

information on individuals, revealing their current locations and impressions on places 
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through check-in, messages, and ratings. In addition, open data initiatives encourage 

governments to share individual-level data routinely collected for public purposes such as 

welfare, taxation, and business licensing (Arribas-Bel, 2014; Lansley et al., 2018). Although 

the availability of these new spatially and temporally fine-granular data can help fill research 

gaps in understanding of micro-scale human mobility and urban dynamics, it remains a 

challenge to utilize these new types of data in urban studies due to population biases, 

privacy concerns, uncertainties, and concurrence of scales from multiple data sources 

(Longley et al., 2015). 

Various methodologies, from traditional statistical models to cutting-edge big data 

analytics, have been applied to comprehend the complex relationships between human 

mobility and urban dynamics. The increasing amount of georeferenced data enhances the 

importance and the necessity of geospatial exploratory data analysis, which aims to identify 

underlying spatiotemporal patterns and trends hidden in datasets beyond priori knowledge 

(Miller & Han 2009; Miller & Goodchild, 2015). Furthermore, using geospatial big data has 

also improved performance of Artificial Intelligence (AI) techniques, especially deep neural 

networks, in geographic studies as GeoAI (Janowicz et al., 2020). Despite the substantial 

progress in applying deep neural networks to geographic studies, for example, to classify 

spatial objects from remote sensing images and textual data, GeoAI remains in an early 

stage with many technical and theoretical challenges such as a lack of explainability of deep 

learning models (Li, 2020). Explainable AI is an ongoing research effort to increase the 

transparency and the interpretability of models to verify its modeling process and outcome 

and to provide human-understandable justifications for supporting decision making in 

practical applications. However, it is still challenging to implement explainable neural 
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network models for geographic studies because of the absence of a methodological 

framework and case studies.  

 Big Geospatial Data Analytics: GeoAI 

The term Artificial Intelligence (AI) is not a completely new term, but one that has been 

re-highlighted and is now ubiquitous, not only in academia but also in our daily lives. 

Automatic subtitling and recommendation systems in YouTube, autonomous driving cars 

produced by Tesla, and virtual assistant systems in smartphones are prominent examples of 

the successful utilization of AI techniques. AI is simply defined as an attempt to enable a 

computer to have some of the same intellectual capabilities and thought processes as human 

beings (Openshaw & Openshaw, 1997). It is an extremely broad concept encompassing 

many other technical terms such as machine learning (ML), deep learning (DL), artificial 

neural network (ANN) and deep neural network (DNN). For instance, ML is a sub-field of 

AI, referring to the study of improving computer algorithms through iterating experiments or 

processes, which are, in turn, implemented by the use of techniques such as neural networks. 

AI development has been ongoing since the 1930s, but there have been several 

fluctuations in its popularity due to computing, algorithm, and data issues. For example, in 

the 1950s, neural networks were conceptually developed, but researchers at the time lacked 

sufficient tools to support the idea. It was not until the 1980s that advancements in computer 

hardware and software refueled the study of the field. However, AI faced another “winter” 

in the early 1990s because there were insufficient data to solve difficult problems to which 

complex AI techniques could be applied. DNNs that stacked multiple neural networks as 

layers, were developed in the 1990s, but they did not flourish until the 2010s. In addition to 

technical advances, significant changes in culture have played a key role in advancing AI, 
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particularly in the case of deep learning techniques (Janowicz et al., 2020). Opening data to 

the public has successfully attracted enormous attention from diverse fields. For example, 

public competitions, such as the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) for classifying images (ImageNet, 2017) and the Netflix Prize for the best 

prediction of movie ratings in 2009, encouraged people to develop better models with 

advancements in prediction.  

In contrast to the diverse applications of AI in computer science and other fields, AI has 

attracted less attention from geographers, even geographic information (GI) scientists 

utilizing quantitative approaches. However, there have been some attempts to adapt AI to 

geography since the 1990s (Openshaw & Openshaw, 1997). The concept of AI has included 

diverse notions such as machine learning, methodologies developed by GI scientists can also 

be regarded as AI techniques. Geographically weighted regressions (GWR) (Brunsdon et al., 

1998) are another good example of integrating geospatial models and machine learning 

techniques. As a kind of local regression, it is an efficient method to explore spatial 

heterogeneity such as varied relationships between independent variables and a dependent 

variable in a space. One challenge in this process is defining the range of neighborhood due 

to the bias–variance trade-off problem. When a small neighborhood range is defined, the 

model will be accurate but with little flexibility (overfitting). On the other hand, with a large 

neighborhood, it will be less accurate but more flexible (underfitting). As an example, GWR 

models highlight the importance of definitions of locality to control model fitting problems 

and provide interpretable explanations in terms of geographic context.  

Although there have been several successful integrations of GIS and machine learning, 

these seem insufficient to reflect recent advancements of AI, a particularly deep learning 
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process or deep neural networks. There are many obstacles hindering development of AI in 

GIS. Tsou (2017) points out that the lack of programming skills and suitable high-

performance computing (HPC) frameworks is a significant challenge for integrating AI and 

GIS. Moreover, uncertainty and complexity of spatial data have also impeded opening 

spatial data to the public (Kedron et al., 2021). For example, the practice of standardizing 

datasets, like the enormous number of labeled images that have been obtained by ImageNet 

has the power to attract researchers and ideas from diverse fields and provide ground truth to 

compare and evaluate new models and techniques. GI scientists have been less devoted to 

these efforts. However, since 2017, after the first international workshop on the theme of 

“GeoAI”, academic interest in this area has spiked and the amount of data from diverse 

sources such as social media, crowdsourcing maps and street images continues to grow 

(Janowicz et al., 2020).  

GeoAI, or geospatial artificial intelligence, is an attempt to combine AI, geospatial big 

data, and high-performance computing to provide a better understanding of complex 

geospatial processes (Li, 2020). GeoAI does not refer to a single analytic tool or technique, 

but a new research agenda encompassing a variety of research topics from data acquisition 

and storage to analysis and visualization. Although there are, as of yet, few studies explicitly 

addressing geospatial context in AI techniques, it is applied to a wide range of fields 

including health (VoPham et al., 2018; Boulos et al., 2019), mobility (Yin et al., 2019; Xing 

et al., 2019; Yin et al., 2019), neighborhood conditions (Yen et al. 2018),  disaster 

management (Tien et al., 2018; Peng et al., 2019), urban dynamics (Dorji et al., 2019; 

Snyder et al., 2019) and land use changes (Gebru et al., 2017; Shi 2019; Law & Leira, 

2019).  
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GeoAI remains in an early stage with many technical and theoretical challenges 

including an insufficient explainability of deep learning models (Li, 2020). Although many 

studies have successfully applied popular deep learning techniques such as convolutional 

neural networks (CNNs) to classify geospatial objects and to detect changes in spatial 

structures from remote sensing images (Dorji et al., 2019; Snyder et al., 2019; Li & Hsu, 

2020), it is still challenging to explain the relationships between inputs and outputs and the 

reason why the models provide better prediction. Improved predictive accuracy has been 

achieved by GeoAI models, but explanation remains as the next question of GeoAI 

(Papadakis et al., 2022).  

As deep learning techniques employ a large number of hidden layers to improve their 

performance, the architecture of a network becomes complex, with a number of layers, thus 

hindering humans from understanding these processes. For example, one of the earliest 

models of convolutional neural networks for image detection, named LeNet-5, used six 

hidden layers and about 60 thousand parameters to identify a handwritten letter with a 32 by 

32 image (LeCun et al., 1998). Within the architecture, even a single feature generates a 

considerable number of random values, which improves model performance such as 

prediction, but they are hardly observed because they have too many parameters to be 

interpreted one by one and do not have any contextual meanings. Because of the 

interpretability issues with complex structures of hidden layers and neurons, deep neural 

networks are frequently referred to as "black-box" models. (Gilpin et al., 2018).  

The explainability of a model is essential for validating the modeling process and results 

as well as for providing human-understandable knowledge to support decision-making in 

critical applications, including medicine, urban planning, and disaster management. 
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Explainable AI has been widely explored as a new research priority in several disciplines, 

with the goal of improving the transparency and interpretability of deep learning models 

(Samek et al., 2018). Generally, two approaches are recommended: (1) visualizing hidden 

layers and their relationships and (2) contextualizing the network's component parts. 

Researchers can identify more crucial values than others by visualizing the process of how 

input values change but attempting to understand a model in the context of geography is less 

focused. To summarize, GeoAI studies employing deep neural networks are required to 

consider the explainability of their models in order to enhance our understanding of complex 

relationships between human mobility and urban dynamics. 

 Research Objectives  

In this dissertation, I introduce novel methodological frameworks and models that utilize 

micro-scale geospatial big data to advance knowledge in human mobility, urban dynamics, 

and their relationships through big data analytic approaches. Three key research challenges 

are: (1) evaluating human mobility patterns imprinted in various data sources including 

social media data and public data; (2) understanding micro-scale urban dynamics through 

publicly available individual-scale data; and (3) explaining urban dynamics with human 

mobility through highly accurate and interpretable neural network models.  

The first study in this dissertation addresses a challenge of understanding diverse 

characteristics of human mobility patterns across geographic scales by utilizing fine-scale 

data extracted from diverse sources. Due to discordance of spatiotemporal resolution 

between data sources, aggregation at a certain level is required. An origin–destination (OD) 

matrix provides mobility patterns among spatial units within a given temporal scale. This 

study proposes a novel method to measure similarity of origin–destination (OD) matrices by 
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considering spatial contexts that usually determine mobility patterns. It will provide an 

underlying knowledge of human mobility extracted from social media data, which can 

ultimately facilitate the understanding of the complexities of human mobility (Jin et al., 

2020). 

The second study in this dissertation investigates the value of public open data in urban 

studies. In this study, individual-level data on restaurant business licenses is explored to 

identify underlying spatiotemporal trends in micro-scale urban dynamics. Among many 

businesses in the tertiary industry, restaurants are one of the most common services and they 

open and close more frequently than other types of service-based firms. This study explores 

spatiotemporal changes in restaurant locations with hot spot analyses, trends analysis on 

spatial clusters, and space-time scan statistics. This study presents a new analytical 

framework to discover spatial hot spots of commercial activities and their temporal 

fluctuations. Identifying not only spatial patterns but also temporal fluctuations is key to 

deepening our understanding of urban dynamics, providing insights on drivers of economic 

growth and development (Jin & Murray, 2021). 

The third study in this dissertation identifies the relationships between urban dynamics 

and human mobility with recurrent neural networks based on the survival analysis 

framework. To enhance explainability of the neural network model, this study proposes 

Geographically Localized Interpretable Model-agnostic Explanation (GLIME) by extending 

Local Interpretable Model-agnostic Explanation (LIME) within geographic context. The 

geographically explainable deep neural networks provide significant improvements in the 

predictability of nonlinear relationships between human mobility and urban dynamics, as 

well as shed light on complex mechanisms underlying human mobility and urban dynamics. 
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Most importantly, the findings emphasize the importance of spatial heterogeneities in 

impacts of human mobility on urban dynamics. 

 Significance 

This dissertation provides a comprehensive framework for studying human mobility and 

urban dynamics, particularly from a spatiotemporal perspective through big geospatial data 

analytics. Moreover, this study contributes to the literature in the fields of urban geography, 

economic geography, geospatial data science, and complex system science by addressing 

challenges around the use of micro-scale big data, integrating heterogeneous multi-scale 

data, modeling spatial and spatiotemporal interactions and processes, and applications of AI 

to geographical studies. By emphasizing the spatial perspective, in particular, this study 

contributes to geographic information sciences by extending aspatial analytic tools 

geographically with consideration of spatial context (Chapter 2 and 4). Also, it advances the 

study of explainable AI and GeoAI for social sciences, aiming for a comprehensive 

understanding of the processes of social phenomena (Chapter 4). It can be used to answer a 

number of research questions such as identifying spatial and spatiotemporal disparities in 

socioeconomic developments.  

The knowledge gained through the framework provides critical insights not only to 

researchers in academia but also governments, industries, and citizens, thereby enhancing 

their geospatial decision-making processes associated with socioeconomic development. By 

utilizing publicly accessible data and analytic tools, the study lowers barriers to data 

analyses, which are essential for better decision-making (Chapter 3 and 4). This study 

provides critical guidance to individuals and governments, explaining complexity of human 
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mobility and urban dynamics with better understanding of complexities in human and urban 

dynamics associated with economic growth and development.  
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2. Evaluating Human Mobility Patterns in Big Data1 

 Introduction 

Urban dynamics are built up on diverse types of human movements including migration, 

commuting, and leisure activities and hence the study of human mobility is essential for 

understanding complex urban systems (Dodge et al., 2016; Miller & Shaw, 2015). To 

examine human mobility and urban dynamics, various forms of data sources exist; for 

instance, census surveys, activity diaries, Call Detailed Records (CDRs) from cellphones, 

Global Positioning System (GPS) points, and new media data. Among these, researchers 

have recently adopted social media data, which has produced a massive amount of publicly 

available individual-scale timestamped geo-referenced data, for discovering unrevealed 

travel patterns and activities. For example, finding major human flows (Gao et al., 2018; 

Poon & Pandit, 1996; Xu et al., 2015) can support decisions across multiple fields including 

public health, epidemiology, and disaster response (Martín et al., 2017; Nara et al., 2017; 

Panigutti et al., 2017; Wesolowski et al., 2015). While previous studies have often examined 

and analyzed spatial distributions of movements, less research has focused on measuring 

similarities and differences between multiple data sources (Gao et al. 2018). Each data 

source has its unique characteristics to describe human mobility due to diversities in survey 

participants or platform users who provide their mobility data, and methodologies to collect, 

manage, and publish geo-referenced data. For instance, in the case of social media data 

 

1 This chapter represents a revised version of a paper published in Transactions in GIS.  

Jin, C., Nara, A., Yang, J. A., and Tsou, M. H. (2020). Similarity Measurement on 

Human Mobility Data with Spatially Weighted Structural Similarity Index (SpSSIM). 

Transactions in GIS, 24(1), 104-122. 
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demographic characteristics, Instagram users are more popular among female and younger 

populations than Twitter (Table 2.1), the variations of which may produce significant 

differences in mobility patterns and play a significant role in shaping the complexity of 

human mobility.  

 Table 2.1 Demographic characteristics of Instagram and Twitter in the U.S. 

(Greenwood et al., 2016). 

  Instagram Twitter 

All online adults 32 24 

Gender 
Men 26 24 

Women 38 25 

Age 

18-29 59 36 

30-49 33 23 

50-64 18 21 

65+ 8 10 

% of online adults who use social media  
Therefore, it is crucial to understand the capabilities and limitations of each data source 

for describing human mobility. This can further help in grasping comprehensive human 

mobility patterns, where multiple mobility data sources complementarily explain different 

types of human movements. There have been attempts to develop new methodologies to 

measure similarities between mobility patterns from diverse sources (Xia et al., 2011; Yuan 

& Raubal, 2014) and to address those demographic biases on multiple social media data 

(Crooks et al., 2015; Gao et al., 2017). However, effectively and quantitatively measuring 

mobility similarities from multiple data sources continues to be a research challenge. 

To address this research gap, this chapter proposes a new method, Spatially weighted 

Structural SIMilarity index (SpSSIM), to measure the similarity of Origin-Destination (OD) 

flow matrices to compare mobility patterns from multiple data sources. SpSSIM adopted 

Structural SIMilarity index (SSIM), an image quality assessment technique to measure the 

similarity between two images (Wang et al., 2004). SSIM has been applied to measure the 
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similarity of human mobility by mapping the OD matrices into arrays of image values; 

however, previous works do not consider the spatial configuration of flows on the OD 

matrices. We extended SSIM by incorporating spatial adjacency by utilizing a series of 

spatial weight matrices. A key advantage of SpSSIM is that local similarities can be properly 

measured and investigated.  

While SSIM utilizes a square moving window to calculate the similarity of images or 

matrices, SpSSIM employs a geographically defined range with spatial weights. This 

enables SpSSIM to calculate similarities of flows in a certain geographic boundary. As our 

case study, we compared each pair of OD matrices of human daily mobility extracted from 

three mobility data sources; U.S. Census-based Longitudinal Employer-Household 

Dynamics Origin-Destination employment statistics (LODES), Twitter, and Instagram, and 

aggregated at the sub-regional areas (SRAs) scale in San Diego County, CA. Two geo-

referenced social media data, Twitter and Instagram, were collected via publicly available 

Application Programming Interfaces (APIs) in 2015. The case study demonstrated the 

capability of SpSSIM to measure the mobility similarities between each data source and to 

provide an underlying knowledge of human mobility extracted from social media data, 

which can ultimately facilitate the understanding of the complexities of human mobility. The 

remainder of this article is organized as follows. Section 2 describes related works on 

measuring the similarity of human mobility and studying human mobility with social media 

data. In Section 3 introduces the SpSSIM methodology and Section 4 describes data used in 

this study, respectively. Section 5 details the results of comparative experiments between 

SSIM and SpSSIM and interpretation of SpSSIM values with a case study of San Diego 
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County, CA. The final section discusses implications of the results and conclusions with 

future works. 

 Related Work 

2.2.1. Methodological Approaches for Quantifying Similarity of Mobility 

Methodological approaches to characterize and compare mobility patterns have been, in 

essence, quantifying similarity in mobility data, which can identify major trends in 

movements and allow comparing the trends from diverse data sources. As a traditional 

approach, dominant flow analysis (Nystuen & Dacey, 1961) counted the amount of flow and 

detected major trends of human mobility such as trading (Smith, 1970; Xu et al., 2015) and 

tourist traveling (Pearce, 1996). Another approach was employing principal component 

analysis to identify centers of mobility network (Garrison & Marble, 1964). Components 

derived from PCA represent the similarity of regions regarding the amount of flow (Poon & 

Pandit, 1996). For example, Clayton (1977) categorized US states in terms of the similarity 

of origins and the numbers of inter-state immigrants. More recently, Gao et al. (2018) 

employed spatial scan statistics (Kulldorff, 1997) to compare major patterns of taxi trips in 

the morning and afternoon in New York City and county-to-county migration flows between 

age-groups in the United State by clustering origins and destinations. While these 

methodological approaches have been effective to summarize mobility patterns with a few 

major trends, the number of clusters was potentially arbitrary, and the comparison was 

limited to detected clusters (Salvador & Chan, 2004). In other words, the similarities 

measured by clusters can be sensitive to the number of clusters and clustering methods.  
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Various methodologies have been explored to calculate the similarity between mobility 

data, which are often treated as trajectories, i.e., two sets of temporally sequenced location 

points. Common trajectory similarity measurements calculate distances between points on 

each trajectory. For example, Euclidian distance has been widely used to measure 

geographic gaps between two points from each trajectory (Zheng & Zhou, 2011). 

Meanwhile, Levenshtein distance, or edit distance, developed from informatics to measure 

distance between two strings has also been applied to geographic trajectories by matching 

each of their intermediate points and calculating the differences (Yuan & Raubal, 2014; 

Yuan & Nara, 2015).  

These approaches provide similarity measurements of individual sequential movements. 

More recently, Behara et al. (2018) proposed Mean Normalized Levenshtein distance for 

OD matrices (MNLdOD) by applying Levenshtein distance to measure similarity of two OD 

matrices. This measurement compares the descending order of destinations by the 

normalized flow volume from each origin (i.e., a row of OD matrices) as strings and 

calculates the similarity row by row to capture differences in the order of destination choices 

from the same origin. Since MNLdOD employs the orders by flow volumes rather than the 

actual number of flows, it is limited in fully incorporating flow volume variations in its 

similarity index. 

2.2.2. Human Mobility and Social Media 

Human mobility has been a long-discussed issue in social and geographic sciences and 

complex mobility dynamics and behaviors have been studied in a variety of applications 

including migration, traveling, and evacuation (Cresswell, 2012; Noulas et al., 2012). 

Focusing on the daily human mobility, fundamental activities of human living such as 
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commuting, shopping, and leisure trips often accompany movements, which further 

contribute to form complex urban dynamics through human-human and human-environment 

interactions in space and time (Huang & Wong, 2016; Sun et al., 2015; Wu et al., 2014). 

Thus, investigating human mobility is a key to comprehend complex urban systems, yet it 

has been challenging (Larsen et al., 2006; Yuan & Raubal, 2014) especially since traditional 

data collection methods (e.g., census survey and travel diary) were limited to observe and 

recode human mobility at the full-scale due to their high cost (Miller & Shaw, 2015). 

Nowadays, recent advancement and adaptation of mobile Information and Communication 

Technologies (mICTs) and location-aware technologies (LATs) have enabled the recording 

of human mobility via mobile devices. This larger and finer scale spatiotemporal data can 

fulfill the investigation of daily human mobility and reveal un-discovered patterns not 

captured in the data collected through traditional methods (Hawelka et al., 2014; Liu et al., 

2012; Wu et al., 2014).  

Social media can be one of data sources capturing human mobility by taking advantages 

of mICTs and LATs. Recent studies have explored the potential of social media data to 

reconstruct individual trajectories and describe dynamic human movement behaviors in 

detail (Nara et al., 2017). For example, traveling patterns and behaviors have been studied 

using check-in data to detect hotspots and unusual visiting places (Sun et al., 2015), and 

geo-tagged Twitter posts to estimate the volume of country-to-country flows (Hawelka et 

al., 2014). Geotagged social media posts have been applied to investigate human mobility 

and evacuation behavior during disastrous events (Li et al., 2018; Martín et al., 2017; Wang 

& Taylor, 2014). Despite the usefulness of social media data to investigate human and urban 

dynamics, they are known to be biased by the unevenness of demographic, geographic, and 
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temporal distributions. Furthermore, since each social media platform has its own unique 

usages and demographics, human mobility patterns extracted from social media potentially 

differ by platforms; however, few studies have investigated the similarity and difference in 

human mobility by social media platforms. 

 To solve the bias of a single social media data source, some studies have integrated 

multiple social media data sources with other spatial and aspatial data to gain profound 

knowledge in human activities and urban contexts. For instance, Gao et al. (2017) 

synthesized multiple data sources from Flickr, Instagram, Twitter, Travel Blogs, and 

Wikipedia to extract semantics and identify cognitive regions based on a belief that each 

source represented different user groups. They assumed that Flicker was more tourism-

oriented than other social media such as Twitter and Instagram, which showed daily 

activities, news and visited places. Crooks et al. (2015) utilized open-source crowdsourcing 

datasets ranging from Global Positioning System (GPS) tracks and Foursquare to Twitter, 

Flickr, and weblogs to demonstrate how social media, trajectory, and traffic data could be 

analyzed to capture the evolving nature of a city’s form and function. They argued that each 

data source represented a part of dynamic and complex urban functions. These approaches 

highlighted the importance of integrating multiple data sources to gain deeper insights into 

urban dynamics. Despite the importance and necessity of data integration in mobility 

studies, it has been less utilized due to limited understanding of the capabilities and 

limitations of each data source and their similarity and difference. 

 Methodology 

This research proposes a novel index, spatially weighted SSIM (SpSSIM), to measure 

the similarity of two OD flow matrices to compare mobility patterns. Our method adopted 
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the concept of structural similarity index (SSIM), which originally assess image quality by 

comparing local patterns of image structure. We extended SSIM spatially by utilizing a 

series of spatial weight matrices that define the range of neighborhood geographically. The 

following sub-sections demonstrate the algorithm of SSIM, the process of spatial extension, 

and verification of SpSSIM. 

2.3.1. Spatially Weighted Structural Similarity Index (SpSSIM) 

Wang et al. (2004) developed SSIM to measure the similarity between two images for 

assessing the quality of copied or generated images from an original image. As the human 

visual system is familiar with the overall arrangement of images rather than single values of 

cells to compare images, SSIM considered the arrangement of image values by quantifying 

the local patterns of pixel intensities consisting of three components - luminance, contrast, 

and structure – with a moving window. SSIM calculates image similarity between two 

images X and Y is expressed as Equation 2.1. 

 𝑆𝑆𝐼𝑀(𝑥,  𝑦) = 𝑓(𝑙(𝑥,  𝑦)𝛼 ∙ 𝑐(𝑥,  𝑦)𝛽 ∙ 𝑠(𝑥,  𝑦)𝛾) 

2.1 
 𝑙(𝑥,  𝑦) =  

2𝜇𝑥𝜇𝑦+ 𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
,  𝑐(𝑥,  𝑦) =

2𝜎𝑥𝜎𝑦+ 𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
, 𝑠(𝑥,  𝑦) =

𝜎𝑥𝑦+ 𝐶3

𝜎𝑥𝜎𝑦+𝐶3
 

where 𝑙(𝑥,  𝑦)𝛼,  𝑐(𝑥,  𝑦)𝛽, and 𝑠(𝑥,  𝑦)𝛾 represent the three components luminance, 

contrast, and structure, respectively. x and y denote black-white color values of pixels (0 to 

255) in images X and Y. μ, 𝜎2, and 𝜎𝑥𝑦 refer mean, variance, and covariance, respectively. 

C1, C2, and C3 are constants to enforce SSIM to be less than 1. Therefore, the value of SSIM 

equals 1 when two images are exactly same, and it gets close to 0 when they are less similar. 

When we regard the importance of each component is identical (𝛼 = 𝛽 = 𝛾 = 1), and C3 is 

equal to C2/2, Equation (1) can be simplified as the Equation 2.2.  
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𝑆𝑆𝐼𝑀(𝑥,  𝑦) =  

(2𝜇𝑥𝜇𝑦 +  𝐶1)(2𝜎𝑥𝑦 +  𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 2.2 

Once SSIM is calculated in a window, it moves to the next cells and computes SSIM by 

the last cell of images. Then, the overall similarity of images X, Y is represented by the 

mean of local SSIM values when M denotes the total number of local windows (Equation 

2.3). 

 

𝑀𝑆𝑆𝐼𝑀(𝑋,  𝑌) =  
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑥𝑗 , 𝑦𝑗)

𝑀

𝑗=1

 2.3 

SSIM has been widely utilized to assess the quality of images and to evaluate the 

performance of image processing due to its simplicity and accuracy (Brunet et al., 2012). 

The index has been recently employed to compare movements because the amount of flow 

in OD matrices can be considered as values of images (Djukic, 2014; Pollard et al., 2013). 

For example, Djukic (2014) used SSIM with a square window to evaluate the estimation of 

OD demands in traffic flows (Figure 2.1) since traditional statistics such as MSE are limited 

to consider the spatial correlation between OD pairs. Yet, SSIM is still problematic in terms 

of the sensitivity of OD pairs ordering because the order in a matrix is not always arranged 

by spatial contiguity or distances. For example, the contiguous cells in an OD matrix can be 

far from each other in real space when the order is based on the size of population or is 

randomly distributed. In this case, a square window is limited to filter out the spatial 

correlation between OD pairs because contiguous cells are not spatially adjacent. Moreover, 

the same values of OD matrices with different orders result in different SSIM values. To 

solve the problem, Djukic (2014) suggested to find the best way to represent spatial 

dependency of OD pairs by testing various window sizes and Behara et al. (2017) re-ordered 
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OD pairs to group to the upper level and calculated SSIM within the new level; however, 

selecting the optimal window size and the optimal order of OD pairs remains challenging.  

 

Figure 2.1 Comparison of two OD matrices using SSIM (Pollard et al. 2013). 

To overcome the SSIM ordering issue to compare OD matrices, SpSSIM (Equation 2.4) 

utilizes a series of spatial weight matrices instead of the moving window of SSIM. The 

range of locality is defined by multiplying a spatial weight matrix with OD matrix using 

Hadamard product (Equation 2.5). The spatial weight matrix consists of 0 and 1 where flows 

(𝑓𝑖𝑗) in the distance range (𝑑𝑖𝑗) has the weight value of 1 (Equation 2.6). In other words, 

SpSSIM computes a similarity between two OD matrices only in a specific geographic range 

by blocking values from outside of the range with multiplying 0 to the values (Figure 2.2). 

As a result, SpSSIM will have the value between 0 and 1 and be close to 1 when two 

matrices are similar.  

 
𝑆𝑝𝑆𝑆𝐼𝑀(𝑥, 𝑦, 𝑤) =  

(2𝜇𝑤𝑥𝜇𝑤𝑦 +  𝐶1)(2𝜎𝑤𝑥,𝑤𝑦 +  𝐶2)

(𝜇𝑤𝑥
2 + 𝜇𝑤𝑦

2 + 𝐶1)(𝜎𝑤𝑥
2 + 𝜎𝑤𝑦

2 + 𝐶2)
 

 

2.4 
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𝑊𝐹 = 𝑊 ∗ 𝐹 =  [

𝑤11 ⋯ 𝑤1𝑗

⋮ ⋱ ⋮
𝑤𝑖1 ⋯ 𝑤𝑖𝑗

] ∗ [

𝑓11 ⋯ 𝑓1𝑗

⋮ ⋱ ⋮
𝑓𝑖1 ⋯ 𝑓𝑖𝑗

]

= [

𝑤11 ∗ 𝑓11 ⋯ 𝑤1𝑗 ∗ 𝑓1𝑗

⋮ ⋱ ⋮
𝑤𝑖1 ∗ 𝑓𝑖1 ⋯ 𝑤𝑖𝑗 ∗ 𝑓𝑖𝑗

] 

2.5 

  

𝑤𝑖𝑗
𝐷𝑚𝑎𝑥

𝑚𝑖𝑛

= {
1,   𝐷𝑚𝑖𝑛 ≤ 𝑑𝑖𝑗 < 𝐷𝑚𝑎𝑥       

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
 

 

 

2.6 

 

Figure 2.2 Comparison of two OD matrices using SpSSIM. 

For the global similarity between two OD matrices, a series of spatial weight matrices is 

required to encompass the whole study area (Equation 2.7). For instance, if the first spatial 

weight matrix takes 1 when the distance between two regions is less than 10km (bin 1), the 

flows in the range of 0 to 10km are included for a local SpSSIM value. Then, the second 

matrix represents spatial relationships between two regions in the range of 10 to 20km to 

calculate another SpSSIM value in the next bin two. When the series of bin covers the whole 

region (bin n), the average of SpSSIM values in each bin is calculated to denote the overall 

similarity between two OD matrices. As SSIM, the SpSSIM value equals to 1 when two OD 

matrices have the exact same patterns.  
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𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑝𝑆𝑆𝐼𝑀(𝑋,  𝑌) =  

1

𝑛
∑ 𝑆𝑝𝑆𝑆𝐼𝑀(𝑋, 𝑌, 𝑊𝑏)

𝑛

𝑏=1

 2.7 

Moreover, SpSSIM can compare local inbound flows (in-flows) and outbound flows 

(out-flows) (Localized SpSSIM). The similarity of local directions of movements is 

measured by calculating SpSSIM with only columns or rows in a spatial weight matrix 

(Equation 2.8). When the i-th row of two matrices are compared in a geographic bin, the 

value of localized SpSSIM represents the similarity of out-flows starting from the i-th 

region. On the other hand, the similarity of flows moving into the j-th region can be 

calculated by comparing the jth columns of two matrices. 

 
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑝𝑆𝑆𝐼𝑀(𝑋,  𝑌) =  {

𝑆𝑝𝑆𝑆𝐼𝑀(𝑋𝑖, 𝑌𝑖 , 𝑊𝑏),   𝑜𝑢𝑡𝑓𝑙𝑜𝑤

𝑆𝑝𝑆𝑆𝐼𝑀(𝑋𝑗, 𝑌𝑗 , 𝑊𝑏),     𝑖𝑛𝑓𝑙𝑜𝑤
 2.8 

2.3.2. Bootstrap Verification 

To verify the statistical significance of SpSSIM, we employed bootstrap to estimate the 

distribution. Bootstrap generates a random distribution of a parameter by iteratively 

resampling the observed data (Westfall & Young, 1989). It simulates samples with the same 

size of observation and allows replacement (Efron, 1979). For example, when a set of 

observation is 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}, a sample can be 𝑋̃1 = {𝑥3, 𝑥2, 𝑥2, … , 𝑥𝑛}. Then, the 

process of sampling is iterated a large number of times and statistics of the created samples 

are computed. It is similar to Monte Carlo simulation regarding repeating a process, but 

Monte Carlo simulation generates random cases under null hypothesis rather than resamples 

from the existing dataset. In this study, we resampled the observed number of flows from 

each OD matrix due to difficulty to assume a null hypothesis for mobility patterns. We 

randomly resample 999 times to generate the probability distribution of SpSSIM and 
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estimate p-values of the index based on the mean and standard deviation of resampled 

values. The p-values verify whether the observed mobility patterns from two data sources 

are randomly different or not. 

 Data 

2.4.1. Build OD Matrices from Social Media Data 

As a case study to demonstrate SpSSIM to measure similarity in human mobility, we 

compared OD matrices generated from three data sources, Twitter, Instagram, and LODES. 

First of all, we collected Twitter and Instagram georeferenced posts using APIs from 

12/07/2014 to 05/17/2015 (161 days) in San Diego County. To avoid duplicated posts 

possibly generated by cross-posting from Instagram to Twitter, we considered tweets only 

posted from mobile-based Twitter application sources (e.g., Twitter for Android, Twitter for 

iPhone, etc.). This removed tweets cross posted from other social media platforms including 

Instagram and Foursquare. The numbers of posts in the period were 1,916,580 for Twitter 

and 4,362,176 for Instagram, respectively. From these social media posts, we extracted 

individual daily trip segments by connecting temporally adjacent two georeferenced points 

within the same day. For example, if a person posted a message on a social media at a 

location A in the morning and another one at a location B at night, the segment from A to B 

is regarded a movement. If the person posts at three locations A, B, C sequentially in a day, 

the segment is regarded as two movements, A-B and B-C.  

These extracted trip segments include irrelevant data such as no movements and 

movements with an unrealistically high velocity. To further clean up the irrelevant trip 

segments, we removed segments with zero distance where their origin and destination are at 
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a same location. We also removed segments with the average velocity greater than sixty-five 

miles per hour (mph), which is the state’s general maximum speed limit in California 

(California Department of Transportation). Then we aggregated these trip segments to build 

OD matrices based on 41 San Diego sub-regional areas (SRAs) as a spatial unit. SRAs 

represent local communities/neighborhoods that is suitable to describe regional contexts of 

human mobility. From the social media data, we extracted 116,253 and 297,339 individual 

daily movements between SRAs from Twitter and Instagram, respectively. Error! 

Reference source not found. summarizes the number of data collected, processed, and 

generated for each social media platform. 

Table 2.2 Data summary. 

Source of 

social media 

Number of posts 

originally collected 

Number of posts after 

removing cross-platform data 

Number of extracted 

daily movements 

Twitter 2,202,719 1,916,580 116,253 

Instagram 4,362,176 - 297,339 

 

To compare human mobility extracted from social media data with non-social media-

based mobility data, we used the LODES data. It represents commuting patterns, or home-

to-work flows, based on employer reporting records at census block level that can cover 

more than 90 % of all employment categories except self-employment or military personnel 

(Horner & Schleith, 2012). We aggregated LODES flows into the SRA level to investigate 

the regional context of human mobility patterns. A flow between two SRAs was defined as 

fij indicating a person moved from the i-th SRA to the j-th SRA in a day. We define origin 

regions as rows and destination as columns in an OD matrix, where the sum of the i-th row 

denotes the total amount of out-flows from the i-th SRA and the sum of the j-th columns 

represents the total amount of in-flows to the j-th SRA. To understand flows between 
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neighborhood, we removed internal flows, which their origins and destinations are the same 

region (fii). Then, we normalized the flows between SRAs through probability of flows, 

which scale the value of flows from all datasets to be between zero and one. 

2.4.2. Data Description 

Table 2.3 describes descriptive statistics of flows in three data sources. Generally, all 

probability distributions of flows were positively skewed. Almost all movements from three 

sources were traveled within 50 km. Twitter and Instagram have more movements within 20 

km (78.8%, 73.0% respectively) than LODES (57.5%). However, LODES has the largest 

total amount of flows and the lowest percentages of zero cells, which refer to no movements 

between two SRAs. In LODES, there are 23 (1.4%) OD pairs of SRAs with no flow out of 

1,640 pairs (41x40) excluding internal flows. On the other hand, there are many OD pairs 

with no flow in Twitter and Instagram. This describes that the commuting-based mobility 

(LODES) was more ubiquitously distributed in San Diego County than social media-based 

mobility. This further indicates that social media were more frequently used within 

geographically confined regions rather than overall regions. Between Twitter and Instagram, 

Instagram-based flows (zero OD flows=27.5%) were geographically sparser than Twitter-

based flows (zero OD flows=13.4%) even though the number of flows in Instagram is 2.5 

times more than that in Twitter. One potential explanation for these patterns is that each 

social media has different usages and purposes. For example, Twitter users are more likely 

post messages at their ordinary locations such as home and work, while Instagram users are 

more willing to share their extraordinary experiences by posting pictures at places for social 

activities and entertainment. Section 5 provides further discussions on the difference in 

flows between Twitter and Instagram. 
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Table 2.3 Descriptive statistics of flows. 

 LODES Twitter Instagram 

Total amount 836,974 116,253 297,339 

Mean 497.9 69.2 176.9 

Median 91 8 14 

Std. D 1,135.601 180.722 551.491 

Max 10,438 1,539 7,163 

1st quartile 19 2 0 

3rd quartile 420 44 108 

# of Zero (ratio) 23 (1.4%) 219 (13.4%) 451 (27.5%) 

Skewness 4.444 4.605 7.418 

By 20km 57.535% 78.849% 73.040% 

By 50km 96.490% 98.042% 98.116% 

 

Table 2.4 Top 5 flows between SRAs by data sources. 

Rank 
LODES Twitter Instagram 

Origin Destination Origin Destination Origin Destination 

1 Southeastern Central Central 
Kearny 

Mesa 
Coastal Central 

2 
Kearny 

Mesa 
Central San Marcos Escondido 

Kearny 

mesa 
Central 

3 Mid-city Central 
Kearny 

Mesa 
Central Central Coastal 

4 Central 
Kearny 

Mesa 

Kearny 

Mesa 
Mid-city Peninsula Central 

5 
Del Mar-

Mira Mesa 

Kearny 

Mesa 
Escondido San Marcos Central Peninsula 
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(a) 

 

(b) 
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(c) (d) 

Figure 2.3 Spatial distribution of probability of flows: (a) total; (b) LODES; (c); 

Twitter; and (d) Instagram. 

Four maps in Figure 2.3 describe the density of total probability of flows in San Diego 

County and the spatial distributions of out-flows from LODES, Twitter, and Instagram, 

respectively. The majority of flows were concentrated in the western region of San Diego 

County corresponding with population distribution. Flows represented as an arrow in the 

maps are major flows where the number of flows is over 1.5 standard deviations from the 

mean of each source. To avoid over cluttering, only flows larger than +1.5 standard 

deviation are displayed. The most frequent flows from LODES moved into two regions 

(highlighted by the yellow border in Figure 2.3a), Central San Diego known as the Central 

Business District (CBD) of San Diego and Kearny Mesa known as a new business district. 

As compared to LODES, flows from social media revealed that frequent destinations are not 

limited to those two business districts. Twitter users visited comparatively diverse 

destinations whereas Instagram users preferred traveling to coastal areas such as Coastal and 

Peninsula SRAs (Table 2.4). 

 Results 

2.5.1. SSIM and Sensitivity 

To test the sensitivity of the OD pairs ordering, we generated two sets of reordered OD 

matrices of each data source and compared the results of SSIM and SpSSIM. We resampled 

the orders of pairs two times based on 1) the population size and 2) the alphabetical order of 

the SRA name. For SSIM, we tested 8 square windows, where the window size was 

increased from 5 to 40 cells by 5 cells. For SpSSIM, we set twelve distance bins where the 
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bin width is 10km and the distance range is from 0 to 120km. For each bin, we calculated 

SpSSIM using a spatial weight matrix determined by Equation 2.6. Cells of the nine 

heatmaps in Figure 2.4 represent the probabilities of movements and rows and columns are 

origins and destinations, respectively. The LODES heatmaps illustrate an apparent tendency 

of central places to move in with distinct lines, whereas Twitter maps reveal relatively 

diverse patterns and Instagram maps look mixed versions of the other two. 

 

Figure 2.4 Heatmaps of OD pairs. 
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We calculated SSIM by varying sizes of windows to test the sensitivity of SSIM (Table 

2.5). LODES and Twitter (L-T) have the lowest similarity while Twitter and Instagram (T-I) 

show similar patterns. However, the SSIM values differ by orders. For example, L-T have 

all different values of SSIM when the orders were shuffled regardless of the window sizes. 

Reordered OD matrices basically represent the same phenomenon, but SSIM is incapable to 

identify that they are the same patterns although the differences are slight. Moreover, SSIM 

fails to consider spatial correlations between OD pairs. Since the two matrices were 

reordered by population and names, it is hard to guarantee that contiguous cells in a window 

are spatially close to each other. The sensitivity issues of pair ordering make SSIM less 

reliable, and it is challenging to define pair orderings. 

Table 2.5 The values of SSIM by window sizes. 

Win Size 

OD  5 10 15 20 25 30 35 40 

Reference 

L-T 0.675 0.663 0.684 0.692 0.697 0.701 0.681 0.675 

L-I 0.715 0.729 0.754 0.758 0.760 0.743 0.703 0.668 

T-I 0.823 0.797 0.785 0.776 0.788 0.803 0.806 0.793 

 

Reorder1 

 

L-T 0.617 0.635 0.637 0.642 0.658 0.666 0.667 0.679 

L-I 0.682 0.692 0.694 0.692 0.683 0.670 0.650 0.644 

T-I 0.778 0.776 0.779 0.782 0.788 0.785 0.780 0.779 

 

Reorder2 

L-T 0.637 0.642 0.660 0.682 0.695 0.695 0.691 0.681 

L-I 0.687 0.676 0.658 0.646 0.636 0.632 0.630 0.644 

T-I 0.779 0.737 0.758 0.763 0.767 0.770 0.772 0.780 

 

Contrary to SSIM, SpSSIM produces the same value regardless of the order of OD pairs. 

Because the weight matrices in SpSSIM define the spatial relationships between SRAs, 

reordering does not affect the spatial arrangements of OD pairs whereas SSIM compares 

contiguous cells in OD matrices regardless of OD pairs’ spatial configurations. Table 2.6 

shows the SpSSIM values calculated for twelve travel distance bins. Most SpSSIM values 

up to 80km travel distance ranges were significant at a 95% confidence level or better when 
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compared to a random distribution. It demonstrates that the similarity between mobility 

patterns from each pair of sources is statistically significant. These results imply that SSIM 

is less suitable to be a measurement of similarity than SpSSIM because the former fails to 

calculate the same values from the same events while the latter succeeds.  

Table 2.6 The values of SpSSIM by spatial weight distances. 

𝐃𝐦𝐢𝐧
𝐦𝐚𝐱 

(km) 

L-T L – I T – I 

SpSSIM Mean Std.dev SpSSIM Mean Std.dev SpSSIM Mean Std.dev 

0 - 10 0.655*** 0.335 0.085 0.682** 0.371 0.113 0.841*** 0.290 0.107 

10 - 20 0.744*** 0.257 0.054 0.680*** 0.328 0.076 0.732*** 0.205 0.064 

20 - 30 0.467*** 0.237 0.049 0.617*** 0.318 0.069 0.793*** 0.192 0.060 

30 - 40 0.377* 0.252 0.052 0.610*** 0.333 0.079 0.657*** 0.206 0.066 

40 - 50 0.466** 0.271 0.060 0.717*** 0.344 0.087 0.623*** 0.221 0.070 

50 - 60 0.523*** 0.285 0.062 0.704*** 0.348 0.093 0.713*** 0.228 0.073 

60 - 70 0.520** 0.298 0.068 0.395 0.357 0.101 0.774*** 0.251 0.085 

70 - 80 0.594** 0.339 0.088 0.715** 0.377 0.117 0.878*** 0.290 0.107 

80 - 90 0.568 0.371 0.115 0.207 0.385 0.134 0.458 0.328 0.133 

90 - 100 0.637 0.401 0.147 0.515 0.390 0.157 0.772* 0.371 0.157 

100 - 110 0.753 0.419 0.246 0.000 0.411 0.257 0.000 0.406 0.251 

110 - 120 0.000 0.425 0.316 0.000 0.392 0.328 0.000 0.000 0.000 

Global 0.525** 0.344 0.018 0.487** 0.366 0.005 0.603*** 0.249 0.098 

***: 99.9%, **: 99%, *: 95% significance level 

2.5.2. SpSSIM in San Diego County 

The SpSSIM values in Table 2.6 represent the degree of similarity in the mobility 

patterns derived from two different data sources by distances. Overall, the mobility patterns 

between social media in San Diego County were more similar to each other (Global SpSSIM 

(T-I) = 0.603) than to LODES flows (Global SpSSIM (L-T) = 0.525; Global SpSSIM (L-I) = 

0.487). The mobility similarity between LODES and Twitter is relatively higher under 20km 

(0.655 and 0.744). It describes that Twitter users were more likely to make short trips where 

origins and destinations were similar to home and work locations reported in LODES in the 

travel distance range from 0 to 20km. The SpSSIM values, however, steeply decrease from 

20 to 40km (0.467 and 0.377). The dissimilarity increases since there are much fewer 
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Twitter-based flows than LODES commuter-based flows in this distance range (Table 2.3). 

In addition, the majority of flows in LODES were heading to business districts such as 

Central San Diego and Kearny Mesa (see Figure 2.3b) while the destinations of Twitter 

users were diverse including beach areas (South Bay, Oceanside, and Del Mar-Mira Mesa) 

and parks (Sweetwater and Poway) as well as business districts (see Figure 2.3c). From 

40km, the SpSSIM value gradually increases again by 110km since the probabilities in 

longer distance trips were close to zero in both data sources. To note, the SpSSIM values are 

not statistically significant over the range of 80km. Compared to Twitter, mobility patterns 

from Instagram were less similar to LODES. Similar to other comparison, the SpSSIM 

values of LODES and Instagram are relatively higher within 0 to 20km. Unexpectedly, 

however, the similarity between LODES and Instagram within 40 to 60km peeked. A 

potential explanation of this pattern is that remarkable places in San Diego are concentrated 

in downtown and coastal area, where also have many jobs. This similarity is also observed 

from Table 2.3 and Figure 2.3b and 2.3d. The most frequently visited destinations from two 

datasets are quite similar. It indicates that Instagram users are more willing to move longer 

distance than Twitter if attractions are far away. 

On the other hand, travel patterns derived from Twitter and Instagram resemble each 

other. The SpSSIM value of Twitter and Instagram in the range of 0 to 10km (0.841) is the 

highest in the same distance range bin and the second highest among all SpSSIM values. 

This explains that short daily trips observed from Twitter and Instagram users share similar 

origins and destinations, which are clustered in Central San Diego, Kearny Mesa, Peninsula, 

and Mid-City (Figure 2.3c and 2.3d). The SpSSIM value of Twitter and Instagram slightly 

decreased in the range of 10 to 20km. Travel destinations of Twitter users in this distance 
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range included suburb regions such as Escondido, San Marcos, Pendleton, and North San 

Diego, whereas those of Instagram users were concentrated in the downtown region of San 

Diego City such as Central San Diego, Coastal, and Peninsular. The SpSSIM values further 

decreased as the distance range increased to 30 to 50km because the total probability of 

mobility derived from Twitter in the range (0.06) was smaller than that from Instagram 

(0.09). In addition, destinations of Twitter movements were more scattered than those of 

Instagram (Table 2.4).  

2.5.3. Localized SpSSIM 

Localized SpSSIM helps investigating similarity in terms of local in-flows and out-

flows. Figure 2.5 demonstrates an example of comparing localized in-flow SpSSIM between 

LODES and Twitter from 10 to 40km. Since in-flows describe the number of people moving 

into a region, it represents the popularity of places. The mobility patterns from LODES and 

Twitter were less similar in Southeastern San Diego (highlighted by the blue border) within 

20km than other regions indicating the lowest SpSSIM values in each range (0.074 and 

0.120 respectively) while the global SpSSIM is the highest in the range 10–20km (0.744). 

On the other hand, the Del-Mar-Mira Mesa region (green border in Figure 2.5) showed 

different patterns. While the SpSSIM value was high in the range of 0 to 20km, the value 

dropped from 30km. In the range of 20 to 40km, SpSSIM values were 0.289 and 0.181 

respectively while the global values are 0.467 and 0.377. Although the dissimilarities were 

not as large as Southeastern San Diego, it denotes that the flows moving into the region 

dramatically changed from 30km.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.5 Localized SpSSIM (in-flows of LODES-Twitter): (a) 10km; (b) 20km; (c) 

30km; and (d) 40km.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.6 Localized SpSSIM (in-flows of Twitter-Instagram): (a) 10km; (b) 20km; 

(c) 30km; and (d) 40km. 
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Figure 2.6 illustrates localized SpSSIM of in-flows between Twitter and Instagram in the 

range of 0 to 40km. Unlike the comparison of LODES and Twitter, most regions show 

relatively high values indicating that Twitter and Instagram have similar mobility patterns. 

Within 10km, the lowest localized SpSSIM value is 0.577 at Southeastern San Diego SRA 

denoting that short trip patterns of Twitter and Instagram users are relatively very similar. 

However, in the range of 10 to 20km, Coastal (blue border in Figure 6, localized SpSSIM = 

0.298) and Central San Diego (green border in Figure 6, localized SpSSIM = 0.404) display 

dissimilarity patterns compared to the global value in the range (0.732). This suggests that 

in-flow mobility patterns from two social media data in these two regions present notable 

dissimilarity when travel distances are 10-20 km (Figure 2.6b) or longer (Figure 2.6c and 

2.6d). 

To further investigate the dissimilarity of the localized SpSSIM in those two regions, we 

mapped standardized differences of in-flows between two data sources by dividing the 

differences by the standard deviation of the difference. Figure 2.7a illustrates the 

standardized differences between LODES and Twitter regarding in-flows into Southeastern 

San Diego SRA. The negative values in Figure 2.7a represent that the probability of 

movements derived from Twitter was larger than LODES. In other words, more Twitter 

users entered into Southeastern San Diego than LODES-based commuters within 20km. In 

particular, the movements of Twitter users between Central San Diego and National City, 

within 20km from the origin, outnumbered LODES movements. The localized SpSSIM 

detects the large differences with significantly low values (0.074 and 0.120). Similarly, 

Figure 2.7b demonstrates the differences between Twitter and Instagram flows moving into 

Coastal SRA. Blue lines with negative values describe more Instagram users entered into the 
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region than Twitter users. The localized SpSSIM also depicts a large inflow of Twitter users 

from Mid-City to Costal SRA (orange line) when traveling distances are within 20km (Local 

SpSSIM=0.298) while most shorter distance inflows to Costal SRA are dominated by 

Instagram users.  

 

(a) 

 

(b) 

Figure 2.7 Standardized difference of in-flows: (a) Southeastern San Diego 

(LODES-Twitter); and (b) Coastal (Twitter-Instagram). 

Although the localized SpSSIM values measure the differences between mobility 

patterns formed from OD matrices of diverse sources, the measurement itself does not 

provide the contexts behind the (dis)similarity. Here we provide potential explanations for 

the discovered patterns. Dissimilarities between LODES and Twitter in Southeastern San 

Diego (Figure 2.7a) can be explained by the socioeconomic backgrounds. Southeastern San 
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Diego SRA has been one of the most impoverished areas in San Diego County (Joassart-

Marcelli et al. 2014). Due to its economic decline, there have been fewer job opportunities 

and attracting places. Furthermore, the region has been historically more ethnically diverse 

than other areas. According to ACS 5-Year (2007 – 2011) estimation, the Hispanic 

population took over 50% of the total population followed by the African and African-

American population (18.2%). Due to lack of job opportunities in the region, LODES 

commuter-based in-flows was identified as low. On the other hand, Twitter has been more 

popular among Hispanic African and African-American  than other ethnic groups (Krogstad, 

2015), which can explain relatively larger in-flows into the region by Twitter users. 

Discovered patterns can be also described by the differences in the social media platform 

usage. Gao (2015) and Steiger et al (2015) pointed out that Tweets are most likely 

associated with home and workplace activities. Instagram, on the other hand, has more 

geotagged pictures (18.8%) as compared to Twitter (0.6%). Since Twitter posts are more 

related to home and workplace activities, the similarity of LODES-Twitter is larger than 

LODES-Instagram (Table 2.6). Moreover, the dissimilarity of Twitter and Instagram in 

terms of in-flows into Coastal SRA (Figure 2.6) can come from the fact that there are many 

photogenic spots in the coastal region, where people are willing to share their experiences.  

 Conclusion 

In this research, we introduced a new method, SpSSIM, to measure the similarity 

between two OD matrices. We demonstrated the capability of SpSSIM by conducting a case 

study to compare three mobility data sources, LODES, Twitter, and Instagram in San Diego 

County. In addition, we assessed the OD matrix ordering problem in SSIM when it is 

applied to spatial datasets. Our sensitivity test verified that SpSSIM is robust regardless of 
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the arrangement of OD pairs while conventional SSIM is sensitive. This is achieved by 

employing a series of spatial weight matrices to resolve the sensitivity to the spatial 

configuration. SpSSIM is also statistically verified through bootstrap which generates the 

hypothetical distribution of SpSSIM.  

Our case study revealed notable similarities and differences in the mobility patterns from 

three data sources. In general, the mobility patterns of two social media, Twitter, and 

Instagram, resembled each other more so than when compared to LODES. The most 

frequent destinations of LODES were distributed in business districts while social media 

users were traveling to diverse points of interests. This is expected results since LODES 

flows are specifically comprised of employment-based home-work trips whereas Twitter 

and Instagram flows are based on social media users who have various purposes for trips. 

SpSSIM can depict similarity over travel distances. For example, the similarity between 

LODES and Twitter increased in the range of 0 to 20km and steeply decreased in the range 

of 20 to 40km, which is explained by the sparseness of mobility probability and diversity of 

destinations in Twitter. Furthermore, SpSSIM can help discovering local outliers by 

mapping localized values. We demonstrated in-flow (dis)similarities of LODES-Twitter and 

Twitter-Instagram. The localized SpSSIM values quantify and characterize the local 

mobility from different data sources by geographic distances.  

While SpSSIM can successfully measure the similarity between two mobility datasets in 

the form of OD matrices, SpSSIM has two limitations. The first issue is that the distance 

ranges are arbitrary defined and SpSSIM values are sensitive on them. SpSSIM utilizes a 

series of pre-defined distance bins to overcome the sensitivity of OD pairs and window sizes 

in SSIM. Further research is required to understand the sensitivity of defined distance bins. 
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However, we argue that the use of the distance instead of the window size in SSIM can 

provide an explainable frame in terms of spatial context. Thus, SpSSIM helps measuring the 

(dis)similarity of movements occurring in a specific spatial boundary in which researchers 

are interested. As another limitation, SpSSIM does not provide the amount of flow 

difference. Therefore, it is necessary to map the differences to understand the contexts of 

discovered mobility patterns (Figure 2.7). Nevertheless, SpSSIM, as an exploratory tool, 

provides spatial distribution of similarity with localized values and better understanding of 

the human dynamics and complexity in urban system. By detecting outliers, researchers can 

selectively focus on investigating regions with high (dis)similarity and further study 

mobility contexts in those regions. In sum, this study provides a methodological approach to 

comparing mobility patterns in spatial context and deepens our understanding of social 

media data in mobility analysis. 
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3. Exploring Micro-scale Spatiotemporal Dynamics in Urban Space2 

 Introduction 

Competition in commercial activities has a significant impact not just on the success of 

individual businesses, but also on urban structure and economy (Jung and Jang 2019; 

Vandell and Carter 1994). Within the tertiary industry, restaurants are one of the most 

common services, with an interesting tendency to open and close more frequently than other 

types of businesses. The diverse locations and popularity of restaurants aid in understanding 

changes in urban space since they regenerate or revitalize neighborhoods by attracting 

consumers and investment (Zukin et al. 2017; Zhai et al. 2015; Hyde 2014). Although many 

socioeconomic factors can contribute to the success and failure of restaurants, the precise 

location of the restaurant usually plays a crucial role in entrepreneurship (Dock et al. 2015; 

Ghosh and Craig 1983). Some locations can be more accessible and profitable than other 

locations (Church and Murray 2009). Moreover, they compete and seek to gain strategic 

advantages, consequently generating agglomerations when successful (Li and Liu 2012; 

Hotelling 1929). However, locational advantages are not necessarily permanent (Prayag et 

al. 2012). Over time, once popular districts may become dilapidated, have outdated designs, 

and fail to reflect current trends or preferences of consumers. Therefore, identifying spatial 

 

2 This chapter represents a revised version of a paper published in the International 

Journal of Geospatial and Environmental Research.  

Jin, C., and Murray, A. T. (2021). Exploring Public Open Data: Spatiotemporal 

Dynamics of Restaurant Entrepreneurships in Seoul, Korea, International Journal of 

Geospatial and Environmental Research, 8(3). 5.  
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patterns and temporal fluctuations is key to deepening our understanding of urban dynamics, 

providing insights on drivers of economic growth and development. 

Big data analysis has been recently important in better understanding human and 

environmental complexities (Singleton and Arribas-bel 2021) and capable of discovering 

new knowledge about urban dynamics (Miller and Goodchild 2015). The advancement of 

information and communication technologies, computation technologies, and location-aware 

technologies enables the generation of large and diverse data in real-time, making them 

accessible for broad usage (Shaw et al. 2016). For example, location-based social networks 

and consumer review services provide information on people, revealing where they are and 

their impressions through check-in, messages, and ratings. New types of data help to fill 

research gaps on micro-scale urban dynamics, including shop preference and restaurant 

popularity (García-palomares et al. 2018; Steiger et al. 2015; Tsou 2015). However, it 

remains a challenge to utilize these data in urban studies when temporal changes are 

significant due to limited history and a lack of detailed information, such when the 

businesses opened, closed, etc.  

On the other hand, public open data, or government administrative data, is routinely 

collected by authorities for public purposes, including welfare, taxation, and licensing 

(Lansley et al. 2018). As a governmental tool, it generally covers an entire population and is 

regularly updated. Although public data has a long history and is considered “officially 

approved,” its use has been limited in geographic studies at the individual level because of 

spatiotemporal aggregation. However, as interest in open data has increased, governments 

have made some raw individual data available to the public (Arribas-bel 2014). As an 

example, the U.S. and U.K. recently launched websites to share the governmental data with 
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other countries, including Japan and South Korea. It is expected that such data can help 

improve the effectiveness of public policies involving socioeconomic issues. 

To understand dynamic patterns given increasing amounts of data, the importance and 

necessity of exploratory data analysis has become apparent. Exploratory approaches are 

generally grounded in statistics, supporting the identification of unique patterns in data 

before assuming hypotheses based on theories (Tukey 1962). Such an approach enables 

detection of underlying spatiotemporal trends in complex urban dynamics as the amount of 

fine scale data grows (Miller 2010; Mazur and Manley 2016). Many studies have recently 

utilized Big Data, including call records and social media, to understand diverse patterns of 

human activities in urban spaces, effectively overcoming limitations associated with data 

reported via traditional aggregated geographic units (Tu et al. 2017). For example, using the 

check-in information from a consumer reviewing service, Zhai et al. (2015) and Zhang et al. 

(2021) discerned popular places in a city through exploratory analyses involving kernel 

density estimation and cluster detection. With public open data in Seoul, Korea, Kim et al. 

(2021) and Lee et al. (2020) explored spatiotemporal patterns of restaurants by analyzing the 

annual number of openings and closings of restaurants. However, exploring spatial patterns 

of restaurants as temporal snap shots provides only a partial understanding of spatiotemporal 

dynamics because business lifespans are continuously changing.  

In this chapter we explore spatiotemporal dynamics in the entrepreneurship of 

restaurants through the application of three exploratory approaches using public open data. 

While several studies have analyzed social media and consumer review services data with 

points of interest to identify the popularity of places (Zhang et al. 2021; Widaningrum et al. 

2020; Zukin et al. 2017; Li et al. 2013), they have not focused on the survivability of 
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businesses. Because government agencies manage licensing of businesses, it is possible to 

explore the spatiotemporal changes in not only openings and closings of restaurants but also 

their lifespans. Among many businesses in a city, we focus on restaurants because of 

constant change and the significant impacts they have on local structure (see Zukin et al. 

2009). We also advance replicability efforts in research by analyzing freely accessible public 

datasets, doing so using methods available through open software (Kedron et al. 2021; 

Murray et al. 2013; Newman 2010). This study will investigate continuously changing 

spatiotemporal patterns of restaurant clusters in Seoul, Korea with public open data at micro 

scales to enhance our understanding of urban dynamics, providing a foundation for diverse 

planning and decision-making in cities.  

 Location of restaurant business  

3.2.1. Location theories for restaurants in cities 

Restaurants have played a major role in economic growth of cities by providing jobs, 

tourism, and regenerating and revitalizing neighborhoods by attracting more consumers and 

investment (Self et al. 2015; Hyde 2014; Zukin 2009). Therefore, understanding their 

location patterns is a key issue for not only individual businesses but also for public policy 

and decision-makers. Seminal theories have been developed, often supported by empirical 

studies associated with retail location success in urban environments (Hurst 1972). Central 

place theory highlights that there is a maximum distance that people are willing to travel in 

consuming a good or service as well as requirements for a minimum level of demand to 

support a business. These two essential concepts explain why service providers prefer 

certain locations in central business districts with a larger customer base (Church and 
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Murray 2009; Austin et al. 2005; Mulligan 1984). However, restaurant patronage is more 

complex, relying on intra-urban patterns of travel (Smith 1985). While the gravity law 

explains some aspects of trade area behavior (Huff 1964), particularly retail and restaurant 

locations (Li and Liu 2012), it cannot fully explain clustering effects. 

Competition between vendors based on Hotelling (1929) offers some insights for the 

restaurant industry. Co-location in accessible areas results in profit maximization, provided 

total demand is sufficient. That is, agglomeration of businesses generates positive 

externalities, so restaurants gain an advantage by clustering together as long as the market is 

not saturated (Jung and Jang 2019). Since restaurant clusters provide favorable 

environments for enhanced food options and reduced costs of shared facilities, the 

spatiotemporal patterns of clusters are important (Prayag et al. 2012). Sun and Paule (2017), 

for example, detected restaurant clusters from Yelp reviews. As another example, Minner 

and Shi (2017) argued that spatial clusters of locally owned restaurants in commercial strips 

are signs of redevelopment. Recently, point of interest (POI) data enabled Zhang et al. 

(2021) to distinguish areal characteristics based on differences in clusters of local and non-

local restaurants and Widaningrum et al. (2020) found spatial clusters of fast-food 

restaurants. Although these studies highlight the importance of restaurant clusters, rarely 

illustrated is their temporal change such information is lacking in social media and consumer 

review services data.  

3.2.2. Restaurants in Seoul, South Korea 

The South Korean restaurant sector represents a relatively large percentage of industry 

compared to other developed countries. According to the 2017 economic census in South 

Korea, 12.36% (496,915) of all establishments were restaurants while in the USA they 
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represent 6.05% (598,656) of all establishments. However, the portion of employees in this 

sector was only slightly larger in South Korea (7.29%) than the USA (6.68%). Thus, the 

average number of employees per business is only 3.17 in Korea whereas in the USA it is 

16.80. Furthermore, 95.81% of restaurants in Korea were operated by sole proprietors and 

96.81% were single stores, having no headquarters or other locations. Low entry barriers 

encourage starting new businesses, but causes a saturated market, with economic 

fluctuations posing a risk to marginal operations. As small businesses comprise a large 

portion of the national economy in South Korea, a significant number of failures can lead to 

not only individual but also nationwide socioeconomic issues, such as a high unemployment 

(Kim and Lee 2019). 

Many studies have investigated spatiotemporal patterns of restaurants in Seoul, the 

capital and socioeconomic center of South Korea. Competition in Seoul is greater than most 

other cities. Shin and Shin (2009) found that restaurants tend to be concentrated in the 

central business district (Jung-gu and Jongno-gu) and the other centric regions, including 

Gangnam and Seocho-gu and Mapo-gu, relying on large demand from nearby office workers 

and young adults. Yu and Lee (2017) also investigated restaurant clusters in Seoul and 

categorize them by factors contributing to their level of agglomeration. While restaurants in 

the central business district depend on commuter demand, those in Mapo-gu are oriented to 

more diverse types of consumers such as tourists. Although these studies explain urban 

structure through the spatial configurations of restaurants, they are limited to recent changes, 

lacking sufficient temporal information about evolving spatial patterns. 

The South Korean government made data on business licenses available, encompassing 

location and opening/closing information, making research possible for exploring 
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spatiotemporal patterns of all businesses, no just samples. However, many studies have been 

limited in explaining citywide changes because they have focused solely on well-known 

commercial areas. Jeong and Yoon (2017) compared the survivability of restaurants along 

main streets and back streets in the Itaewon region, a prominent multicultural district in 

Seoul. Kim et al. (2018) illustrated expansions of commercial areas in Hongdae region, a 

well-known campus town with four prestigious universities. At a broader scale, Ryu and 

Park (2019) classified five popular commercial areas based on changes in types of 

businesses. Lee et al. (2020) attempted to follow temporal changes in restaurant clusters 

with yearly changes in density of operating restaurants. Kim et al. (2021) compared 

spatiotemporal differences in opening and closing restaurants before and after COVID19, 

but the temporal differences were not significant because the pandemic has persisted. 

Although these approaches are valuable spatiotemporal dynamic snapshots, they do not 

illustrate continuous changes at the city level. 

 Methods 

To better understand the spatiotemporal dynamics in restaurant entrepreneurship at the 

city level, we employ three exploratory methods in a space-time framework: 1) spatial hot 

spot analysis, 2) trend analysis of clusters, and 3) spatiotemporal scan statistics with 

exponential models. Collectively, these analytic approaches facilitate accessibility of public 

open data since they are available as open source software, making the analysis relatively 

easy to replicate. 
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3.3.1. Spatial hot spot analysis 

Methods to identify (dis)similarities in geographic events have been developed and 

widely applied in a variety of fields (Getis 2008). Global spatial autocorrelation measures 

the relationship of a variable across spatial units. Although global statistics are useful to 

evaluate the strength of spatial dependence between spatial units in a region, they are limited 

in identifying whether and where similarity or dissimilarity occurs. As an alternative, local 

statistics, such as the local indicator of spatial autocorrelation (LISA) (Anselin 1995) and Gi
* 

(Getis and Ord 1992), focus on interaction between neighboring units. Among many local 

autocorrelation indices, Gi
* is an effective measure/tool to identify statistically significant 

clusters. Gi
* calculates the local average in a neighborhood as follows: 

 
𝐺𝑖

∗ =
∑ 𝑤𝑖𝑗𝑥𝑗

𝑛
𝑗=1 − 𝑋̅ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖𝑗
2 − (∑ 𝑤𝑖𝑗

𝑛
𝑗=1 )2𝑛

𝑗=1

𝑛 − 1

 
3.1 

where xj refers the value in neighbor of target unit, i, 𝑋̅ indicates the local mean of the 

value (𝑋̅ =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
), and 𝑆 = √

∑ 𝑥𝑗
2𝑛

𝑗=1

𝑛
− 𝑋̅2. As Equation 3.1 facilitates the comparison of 

values in neighborhood i, it can detect either hot or cold spots by identifying areas with 

relatively high or low clustered values. Hot spots reflect a high number of clustered start-

ups, and can be considered as booming or popular areas, whereas cold spots represent a 

declining area. In this study, we analyze the number of currently operating restaurants and 

the number of net start-ups by subtracting the number of closed restaurants from the number 

of opened restaurants at dong level. The neighborhood is defined as the area sharing edges 

of the target unit. 
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3.3.2. Trend analysis of clusters 

Trend analysis of clusters traces temporal changes via the local spatial autocorrelation 

index, Gi
*. Although the index is useful for exploring spatial distributions of geographic 

events, it is limited in its ability to identify temporal changes in spatial patterns. The Mann-

Kendall statistic enables a test of temporal relationships between different time steps fora 

spatial unit (Kendall 1948; Mann 1945). As a rank correlation analysis, the test determines 

statistically significant temporal trends by comparing values in a time sequence as follows: 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑖,𝑡+𝑝 − 𝑥𝑖,𝑡)

𝑛

𝑝=1

𝑛−1

𝑡

 3.2 

where 𝑥𝑖,𝑡 = {

   1,  𝑧𝑖𝑡 > 𝑧𝑖,𝑡−1

   0, 𝑧𝑖𝑡 = 𝑧𝑖,𝑡−1

−1, 𝑧𝑖𝑡 < 𝑧𝑖,𝑡−1

, (t = 0, 1, … n). 

If the current value of standardized Gi
*, 𝑧𝑖,𝑡, is larger than the previous value, 𝑧𝑖,𝑡−1, the 

result of the paired comparison is 1. On the other hand, a result of -1 occurs when 𝑧𝑖,𝑡−1 is 

larger. The paired results are summed by units and compared to the null hypothesis that 

trends do not exist over time (S = 0). As a result, the analysis categorizes current clusters 

into one of eight types of hot and cold spots.  

For this study, we aggregate restaurants into a space-time cube defined by dong and 

year, and calculate the number of net start-ups in each spatiotemporal bin by counting 1 

when a shop opens and -1 when a shop closes. In other words, the value of each bin in the 

space-time cube represents the number of net start-ups in a year from January 1st to 

December 31st at the dong level. The spatial neighborhood is defined as the area sharing 

edges of the target unit and each bin is analyzed in comparison to the entire time period. 
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3.3.3. Spatiotemporal Scan Statistics 

The spatial and space-time scan statistics suggested by Kulldorff (1 The spatial and 

space-time scan statistics suggested by Kulldorff (1997) have been widely used to detect 

clusters of geographic events such as disease outbreaks (Smith et al. 2015) and crimes 

(Leitner and Helbich 2013; Nakaya and Yano 2010). Initial statistics relied on the Bernoulli 

probability distribution of binary events, whether it happens or does not happen. It detects 

subareas in which events more (or less) frequently occur than they do in other areas by 

scanning the study region using a moving window. However, the Bernoulli assumption is 

restricted to spatiotemporal disparities of continuous variables, such as lifespan of diseases. 

Huang et al. (2007) propose using an exponential distribution for these scan statistics to find 

lower (or higher) survivability areas, and it has been widely used to identify geographic 

disparity of survivability in diverse diseases (Lin et al. 2015; Wan et al. 2012; Henry et al. 

2009). Let 𝜃𝑧 represent the mean survival time for each individual inside a subarea, Z. The 

null hypothesis is that there is no difference in the mean survival time inside or outside the 

subarea (e.g., H0: 𝜃𝑧 = 𝜃𝑍′). The likelihood function for the exponential case is:  

 
𝐿(𝑍, 𝜃𝑍, 𝜃𝑍′) =

1

(𝜃𝑍)𝑟
𝑒

− ∑
𝑡𝑖
𝜃𝑧

𝑖 1

(𝜃𝑍′)𝑟′
𝑒

− ∑
𝑡𝑗

𝜃𝑧′
𝑗

 3.3 

where t is the survival time of an individual (𝑖 ∈ 𝑍, 𝑗 ∈ 𝑍′) and r the number of non-

censored individuals (R = r + r’; G = Z + Z’). Under the alternative hypothesis (Hα: 𝜃𝑧 ≠

𝜃𝑍′), one is interested in the zone 𝑍̂ that maximizes likelihood function (3). This can then be 

derived as:   
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λ =  
𝑚𝑎𝑥𝑍,𝜃𝑍≠𝜃𝑍′

𝐿(𝑍, 𝜃𝑍 , 𝜃𝑍′)
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1

𝜃𝐺
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 3.4 

The statistical significance of λ is assessed using a p-value generated through Monte 

Carlo simulation. Therefore, a detected cluster indicates that individuals in the subarea are 

significantly shorter (or longer) in survival than outside of the subarea if the null hypothesis 

is rejected. 

The spatiotemporal scan statistic under exponential conditions is applied to survival data 

for restaurants in order to assess not only spatial clusters but also which restaurants survive 

shorter (or longer) durations. If a restaurant closed before the end of 2018, it is regarded as 

non-censored, and its survival time is counted from its opening date to the closing date. On 

the other hand, for a restaurant still operating at the end of 2018, its survival time is counted 

from its opening date to 12/31/2018 by censoring data. The maximum size of each cluster is 

restricted to 50% of the total individuals, and the p-value of each cluster is derived from 999 

random permutations. 

 Data 

Local governments in South Korea, si-gun-gu, have the authority to approve new 

businesses. All businesses are required to report their closure to their local government. 

South Korea recently made this business data available, detailing business types, location, 

starting date, and closing date. The data covers 191 types of business, such as markets, 

residential services, and restaurants, and updates in real time are available through an open 

application programming interface. It has been used in a wide range of fields, including 

academia, public, and private sectors, because it is regarded as a population versus a sample 
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of businesses. With a focus on restaurants (general food services and drinking places), 1.7 

million records were identified at the end of 2018. Seoul has 21% of total restaurants 

whereas the population and household represent 18.9% and 19.6% of the country, 

respectively. Due to uncertainty in old records, we only use currently operating restaurants 

and those that closed after 2000. 

 

Figure 3.1 The number of opening and closing restaurants from 2000 to 2018. 

Since 2000, 346,628 restaurants have opened and closed in Seoul. The number of start-

ups peaked in 2001 with 18,659, but steadily declined until reaching a low in 2008. The 

number of closures outnumbered starts-up beginning in 2005 until 2008. The number 

decreased by 2014 but increased again, whereas the number of opening restaurants had been 

quite constant. As a consequence, the number of openings and closings in 2018 are almost 

even (Figure 3.1). Figure 3.2 suggests an exponential distribution with a long right tail 

associated with survival times of restaurants. The overall average of the life span is 8.24 
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years, and the median is 5.73 years. However, closed restaurants have survived for 6.98 

years on average and 31.4% of businesses have failed in 3 years.  

 

Figure 3.2 Distribution of survived years of restaurants 

The number of currently operating restaurants at the end of 2018 was 120,011. That 

equates to 198.3 shops per km2 and 28.28 shops per 1,000 households. Figure 3.3a illustrates 

the spatial distribution at the dong scale. 283.04 restaurants were operating in a unit on 

average, but four dongs, Jongno-gu, Mapo-gu, Yeongdeungpo-gu, and Gangnam-gu, showed 

significantly high numbers. With the exception of Seogyo-dong in Mapo-gu, which is a 

popular college campus town, the other areas are major business districts in Seoul. When the 

number is normalized by households, Jongno-gu and Jung-gu are stand out (Figure 3.3b). 

While those major commercial areas contained more start-ups than closures in 2018, most 

areas experienced more closures. Notably, decreases in Seocho-gu, which is considered a 

thriving area, were considerable (Figure 3.3c). Based on Figure 3.3d presenting the average 
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survival years for closed businesses, restaurants in the campus town of Mapo-gu survived 

less than the other major districts. 

 
 

(a) 
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(b) 

 
 

(c) 



57 

 

 
 

(d) 

Figure 3.3 Spatial distribution of restaurant businesses: (a) the number of 

operating restaurants at the end of 2018; (b) the number of restaurants per 1,000 

households; (c) the number of net openings in 2018; (d) the mean survival years of 

closed restaurants. 

 Results 

Moving beyond the descriptive details offered in the previous section regarding 

restaurant openings and closings, exploratory analysis is not offered based on the application 

of the previously reviewed methods. 

3.5.1. Spatial Clusters of Restaurants 

To assess spatial patterns observed in Figure 3.3, Gi
* local spatial autocorrelation 

statistics were derived. Figure 3.4 displays detected hot and cold spots of current businesses 

and net start-ups in 2018. The first map shows three large hot spots with a significantly 

higher number of operating businesses than their neighbors (Figure 3.4a). These areas 
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include three major cores in Seoul: Jongno-Jung-gu (central business district), 

Yeongdeunpo-Mapo-Seodaemun-gu (Yeouido business district), and Gangnam-Seocho-gu 

(Gangnam business district) (Shin and Shin 2009). In Jongno-Jung-gu, as the traditional 

central business district, there are many restaurants for both tourists and office workers. 

Gangnam-Seocho-gu is also a well-known district and a socioeconomic center of Seoul 

which supports many popular shopping districts. On the other hand, Mapo-gu has mixed 

characteristics. The area has a business-oriented section, but it is well-known as a campus 

town with four prestigious universities. The general location patterns of restaurants have not 

much changed since 2000. 

 

(a) 
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(b) 

Figure 3.4 Spatial hot and cold spots of restaurant businesses: (a) operating 

restaurants at the end of 2018; (b) the number of net openings in 2018. 

These clusters are still viable for starting new establishments (Figure 3.4b). The central 

business district area shows hot spots for the number of net start-ups in 2018, which 

indicates the new business outnumbered closed shops. Although the year is considered as an 

economic downturn period, significantly large numbers of businesses started in the three 

core areas. However, the area of hot spots is much smaller than the area of currently 

operating restaurants’ hot spots (See Figure 3.4a). In the region, the most significant hot 

spots shrink from 11 to 2 dongs. Similarly, the hot spots in Yeouido Business District 

diminished to three dongs. Seocho-gu resulted in significant cold spots indicating that more 

restaurants closed than opened. Moreover, Seongdong-gu, rather than Gangnam-gu, is 

detected as a new hot spot for new restaurants. Additionally, the southern part of Gangnam-
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gu, which does not contain hot spots of current businesses (See Figure 3.4a), became a hot 

spot because new towns had been developed (similarly to Gangseo-gu).  

3.5.2. Temporal dynamics of spatial clusters  

Based on a space-time cube with bins representing net openings in a dong by year, the 

results of emerging hot spot illustrate temporally categorized current clusters. Compared to 

Figure 3.4b, Figure 3.5a shows a large area of cold spots. The north-eastern area, including 

Gangbuk, Seongbuk, Jungnang, Dongdaemun-gu, have oscillating cold spots. This indicates 

areas that have a history of statistically significant hot spots for less than 90% of the total 

time period but become a cold spot at the final time step, 2018. Another notable pattern is 

the large area of new cold spots in Eunpyeong-gu and Seocho-gu. New cold spots represent 

areas which have never been a cold spot except in the final time step, 2018. Although these 

areas have different socioeconomic composition, current environments in both areas are not 

favorable for restaurants starting new businesses.  

On the other hand, centric areas appear as hot spots, except Gangnam district. The 

central business district contains sporadic hot spots, which have never been cold spots. 

During most of the time period, the area has shown statistically significant hot spots 

especially from 2000 to 2006 and 2015 to 2018 (Figure 3.5b). Although the net opening 

restaurants from 2005 to 2006 were negative at the entire city level (see Figure 3.1), more 

restaurants opened than closed in the region. Also, Yeouido district has significant hot spots 

with persistent, diminishing, and sporadic areas. A persistent hot spot denotes that the areas 

have maintained the status of a hot spot for 90% of the time period. Diminishing hot spots 

are like persistent hot spots, but the intensity of clusters decreases. In the Mapo-gu area 

(Figure 3.5c), the two diminishing hot spots are detected in 2018 compared to the persistent 
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hot spots even though they have more significant clusters over time. Unlike the two centers, 

Gangnam district (Figure 3.5d) presents new cold spots referring the areas were favorable 

for restaurants to start at least by 2015 but it recently turned to be cold spots.  

These temporal fluctuations in clusters implies that the preferable locations for new 

restaurants have changed even for cores of the city. While Yeouido district is still attractive 

for business investments and the central business district recovers its reputation, Gangnam 

district is experiencing a decline in popularity of its restaurants. Also, recent economic 

decreases are observed through many cold spots in local (or town) centers where it has never 

occurred before. Although some edge areas are booming in 2018 with development of new 

towns, the restaurant business generally has faced a downturn and thus, its concentration 

into city centers has intensified. 

 

 
(a) 
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(b) (c) (d) 

Figure 3.5 Temporal changes in spatial clusters of restaurant businesses: (a) the 

number of net openings from 2000 to 2018; (b) yearly bins of spatial cluster in Jongno 

and Jung-gu (area encircled in red in a); (c) yearly bins of spatial cluster in Mapo-gu 

(area encircled in green in a); (d) yearly bins of spatial cluster in Gangnam and 

Seocho-gu (area encircled in blue in a). 

3.5.3. Spatiotemporal variations in survivability of restaurants 

To identify spatiotemporal disparities in survivability of restaurants, we analyze survival 

time of restaurants with a spatiotemporal scan statistic (exponential model). We count only 

statistically significant clusters with greater than 0.05 p-values derived from 999 random 

permutations. Moreover, we define a risky cluster of restaurants when it has a significantly 

large number of observed closures than expected. On the other hand, a safe cluster is when 

the number of observed closures is significantly lower than expected. The number of 

expected closures is calculated under the hypothesis that survival times of all restaurants in 

the city follow an exponential distribution with the homogeneous mean over space and time. 

As a result, thirty-four clusters in Seoul over19 years are identified, with 23 clusters deemed 

risky. The detected clusters are ordered by λ denoting higher likelihood of being a 

statistically significant.  

First, restaurants in the major districts survived longer than those in other areas (Figure 

3.6). Based on relative survival time (RST), restaurants in cluster 1 in Jongno-gu last 73.8% 

longer than those outside of the area (RST: 1.738). In cluster 7 in Gangnam district and 9 in 
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Yeouido district, restaurants had shorter lifespans than ones in cluster 1 in the central 

business district; they show 26.0% and 23.3% longer survived time, respectively. In 

contrast, restaurants in cluster 8 ran their businesses for an average 47.3% shorter length of 

time than those outside of the area. 

Figure 3.7a shows the ratio of observed closures compared to expectations. Generally, 

the three cores have higher survivability clusters than suburban areas. Most of the risky 

clusters are located in the north-eastern and south-western areas while the safest cluster with 

the lowest observation to expectation ratio (OE ratio: 0.582) is detected in the central 

business district (Figure 3.7b). This means that in that particular cluster, 41.8% more 

restaurants had survived than the expected number whereas the riskiest cluster (Figure 3.7d) 

located in the Gangnam district indicates 89.5% more restaurants failed in the cluster area. 

Another cluster across Gangnam-gu and Seocho-gu (Figure 3.7c) is identified as a safe 

cluster with relatively low OE ratio (0.797). Compared to Gangnam, a cluster in Yeouido 

district (Figure 3.7e) shows a high survivability with 0.814. Both indices, OE ratio and 

relative survival time, demonstrate that the cluster in Gangnam district (#8) is the riskiest 

area for restaurant businesses in this study area and time period. 
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Figure 3.6 Spatial distribution of relative survival time. 
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(a) 

 

  
(b) (c) 



66 

 

  
(d) (e) 

Figure 3.7 Spatiotemporal distribution of observation to expectation ratio: (a) 

spatial distribution of risky clusters; (b) the number of observed and expected closures 

in cluster #1; (c) the number of observed and expected closures in cluster #7; (d) the 

number of observed and expected closures in cluster #8; (e) the number of observed 

and expected closures in cluster #9. 
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Figure 3.8 Spatiotemporal distribution of observation to expectation ratio in 3D 

view. 

 

From a 3D perspective, Figure 3.8 illustrates the temporal gaps between clusters. Red 

cylinders represent risky clusters with high OE ratio and occur in relatively recent years 

compared to safe clusters. For example, the most likely and safest cluster (#1) was from 

2000 to 2008. This result corresponds to the patterns of net opening clusters in Figure 4(B). 

Although these two clusters do not share the same time period and spatial extent, the results 

demonstrate that the central business district was a favorable environment for restaurants in 

the early 2000s. During the period, restaurants in the area could survive longer than they 

could in other areas and more restaurants opened rather than closed. Likewise, Yeouido 

district also experienced a longer survivability of restaurants in the early 2000s. The area 

still has more openings than closures (see Figure 5(C)), but the restaurant’s lifespans 

shortened from 2014 to 2017 compared to its history. Another safe cluster across Gangnam-

gu and Seocho-gu (#7) appeared from 2003 to 2011 while the riskiest cluster (#8) started in 

2015. Since 2015, both areas experienced a higher number of closures than expected even 

though the ratio in cluster #7 was not statistically significant. In 2018, the OE ratio in cluster 

8 soared to about 4.0, indicating that the number of closed restaurants is four times higher 

than the expected failures. Similar to the result of spatiotemporal cluster analysis on net 

openings, the results strongly support the posture that Gangnam district has recently 

undergone a decline in restaurant businesses. 
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 Discussion 

Within three core areas in Seoul, including the central business district, Yeouido, and 

Gangnam, they have been the most favorable for restaurants since 2000. These patterns are 

based on advantages of agglomeration. These business districts are the most profitable areas 

with the highest number of lucrative companies, including headquarters of global 

conglomerates. A large number of workers in these areas has generated a great amount of 

demand for restaurants. Not just commuters, but also travelers, contribute to the growth of 

restaurant businesses in the areas because of their unique vibes and media impacts. 

International travelers, in particular, have been major consumers in the central business 

district. However, these advantages are not fully observed in all areas through time. 

Reflective of this is the downturn in Gangnam compared to central business district and 

Yeouido, which have been revitalized and remain favorable environments. There are two 

potential reasons for the observed declines. Firstly, the overall regional economy has slowed 

due to a recent nationwide downturn. Although Gangnam is the most affluent area, it can be 

impacted by national scale economic changes. Another possible reason is that the 

environment for restaurant businesses in the district is no longer favorable. As a huge 

commercial center in Seoul, rents have been increasing in the area, but restaurants are less 

likely to be able to afford rising rents compared to other services, such as shopping or other 

leisure services. 

Failures in smaller markets can be more critical than those in the core areas. In the 

context of Korean economic and labor structure, a considerable number of small restaurants 

are launched by the early-retired, who have low capital and little experience in the restaurant 

industry. They have few choices except opening a new restaurant in a small market with 
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limited capital. This likely causes saturation of the local market, leading to massive failure 

during economic downturns. As small businesses in a local market consume labor, including 

the early-retired as well as low-skilled workers, their failures have a great impact on the 

local and national economy. This aggravates an economic downturn. Evaluating the level of 

saturation based on risky cluster detection suggested in this research is helpful to manage 

stability of local markets by alerting government agencies to potential risk in opening new 

businesses in certain areas. Based on the knowledge of risky clusters for new businesses, 

individuals can re-consider start-ups and county-level local governments can require stricter 

standards to open new businesses in the risky areas.  

Although this exploratory approach is noteworthy, it has a few limitations. For instance, 

it is challenging to explain reasons underlying spatiotemporal patterns of clusters. Although 

two potential causes of declines in Gangnam were highlighted, more formal modeling with 

additional covariates, including relationships with hotels, shopping centers, etc., would be 

important as a secondary assessment. Secondly, details about different types of restaurants 

could present diverse patterns of urban dynamics. More information about ownership and 

food types would be particularly valuable. As many studies have pointed out, type of food 

and/or ownership can determine a phase of development in a region (Zukin et al. 2009; 

Hyde 2014; Minner and Shi 2017; Ryu and Park 2019; Widaningrum et al. 2020). This 

would facilitate the evaluation of risky local markets. Finally, impacts of failures on local 

markets should be closely investigated to determine whether governmental interventions are 

helpful. Further research extension along these lines to address such issues would be of great 

interest. 
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 Conclusion 

This chapter explored the spatiotemporal dynamics of restaurant entrepreneurship in 

Seoul, South Korea based on the availability of public open data using three exploratory 

methods within a space-time framework. Spatial hot spot analysis identified core areas in 

Seoul that remain favorable for restaurants. The individual records of restaurants facilitated 

delineating a more precise extent of restaurant hot spots, generally not corresponding to 

traditional administrative units. Moreover, the individual records on opening and closing 

date allowed us to examine temporal changes in restaurant businesses. Trend analysis 

revealed intensifying or diminishing cluster patterns, finding that Gangnam district and 

many other areas had recently become less favorable for restaurants in contrast to other core 

areas. Spatiotemporal scan statistics examined risky areas, revealing that lifespans of 

restaurants were significantly shorter than other areas.  

Based on the findings, we conclude that the general downturn in restaurant businesses in 

Seoul started after 2010, but Gangnam district experienced significant decreases in 

restaurant businesses beginning in 2015. The applied spatiotemporal exploratory approaches 

illustrate dynamic changes in restaurant businesses, with the results highlighting that the 

concentration of restaurants in popular areas has intensified in Seoul. Despite limitations of 

exploratory approaches, this study suggests a methodological framework for investigating 

spatiotemporal changes at micro scales within a city featuring a series of analyses verifying 

the changes from multiple perspectives. This research provides fundamental knowledge of 

urban dynamics by demonstrating that locational advantages are not permanent, but rather 

change continuously, and even dramatically, over time. This knowledge enables the private 
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and public sectors to make better decisions such as avoiding high-risk areas to open new 

businesses and imposing stricter requirements for new start-ups within riskier areas. 
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4. Explaining Urban Dynamics with Human Mobility through GeoAI 

 Introduction 

Human mobility encompasses diverse human activities such as physical travels of people 

and objects, imaginative travels through texts and images, virtual travels transcending 

geographical and social distance, and communicative travels via media (Urry, 2002). Human 

mobility that occurred by unevenly distributed resources in cities is a key to examine urban 

dynamics (Shaw & Sui, 2018). For example, goods and services have to move to meet 

peoples’ demands because the best location for businesses is not evenly distributed, but 

spatially and temporally limited. Meanwhile, whenever, and wherever people move, travel 

costs are inevitably incurred regarding either time or money. Since the travel costs limit the 

range of services, the location is critical to sustain one’s business, and competitions for 

better locations determine businesses’ successes (Church & Murray, 2009). Also, urban 

structures are spatiotemporally dynamic through the location competitions (Jin & Murray, 

2021). In other words, human mobility has not only shaped urban structures but has also 

been determined by unevenly distributed resources in cities. Understanding the complicated 

relationship between spatial structure and spatial interaction has been an enduring research 

topic in spatial science (Lo, 1991). 

Traditional location theories and models, such as central place theory and gravity 

models, developed many years ago still provide considerable insights on interpreting 

complex spatiotemporal patterns of human and urban dynamics (Jin & Murray, 2021). 

Along with a surge of individual-level human mobility data, artificial intelligence (AI) 

techniques, in particular deep neural networks, have been used to analyze a large amount of 
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data and predict patterns of human mobility and urban dynamics (Li et al., 2021; Hagenauer 

& Helbich, 2022). For a deeper understanding of complexities and non-linearity in 

geographic processes, GeoAI, or geospatial artificial intelligence, is suggested by combining 

AI, geospatial large data, and high-performance computing (Li, 2020). Rather than a simple 

analytic tool, GeoAI encompasses diverse issues related to the entire research process as a 

research agenda (Janowicz et al. 2020).  

Many studies have built deep learning models to understand geospatial objectives and 

phenomena from remote sensing images (Dorji et al., 2019; Snyder et al., 2019); 

nevertheless, it is still challenging to explain the relationships between inputs and outputs in 

the deep learning models. As deep neural networks have complicated architectures to 

enhance predictivity of a model by increasing the number of hidden layers and neurons, it is 

difficult for human to understand the functions and meaning of each input and layer in the 

process of model training. Due to this lack of transparency, deep neural networks are often 

regarded as “black-box” models (Gilpin et al., 2018). To justify the outcome of deep neural 

network models and support decisions in practice, the modeling process and outcome need 

to be more clearly and fully explained from humans’ perspectives. 

Explainable AI (XAI), which aims to increase the transparency and the interpretability of 

deep learning models, is a relatively new research agenda and has been extensively 

discussed in many disciplines (Samek et al., 2018). Van der Velden et al. (2022) categorized 

XAI based on three criteria including model base (model-based versus post-hoc), model 

agnostic (model-agnostic versus model-specific) and the scope of the explanations (global 

versus local). Model-based explanations, as a traditional approach, require an 

understandable size of input variables enabling human to comprehend the entire decision-
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making process in a model. Post-hoc explanations, however, are more feasible to analyze a 

trained model such as a neural network. Rather than enforcing model to be explained, the 

use of post-hoc explanations attempts to examine the model’s behaviors (e.g., how the 

model is trained) (Murdoch et al., 2019). Therefore, post-hoc approaches are beneficial to 

achieving insights from complex and nonlinear interactions between inputs and outputs 

without making the relationships simple. On the other hand, model-agnostic approaches, as a 

general model evaluation method, are more generally applicable to diverse types of neural 

networks than mode-specific explanations because perturbing is employed to test the 

impacts of inputs after models are built, regardless of the model types or architectures. 

Inherently, model-agnostic explanation is post-hoc (van der Velden et al., 2022). 

Furthermore, explanations can be conducted at both the global and local levels. While global 

explanations provide general relationships learned by the model with the entire dataset, the 

local level explanations utilize a limited number of subset data for understanding a specific 

case. 

In geographic studies, model based XAI approaches have been developed to enhance our 

understanding of geospatial processes with deep learning. Hagenauer and Helbich (2022) 

developed neural networks imbedded geographic weighted regression models to identify 

nonlinear relationships under geographic phenomena such as house prices through nonlinear 

architectures of neural networks. Yudistira et al. (2021) have focused on explainable deep 

learning models to understand the impacts of between socioeconomic and environmental 

factors on spatiotemporal disparities in COVID19. Cheng et al. (2020) suggest a more 

general explainable model that can handle spatiotemporal changes in human activities within 

a space-time cube. However, these approaches use predefined spatial structures between 
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spatial units in the models rather than examine how spatial structures are potentially 

constructed through other factors such as human mobility. It is limited to understand the 

interactions between human activities and spatial structures. 

In this study, we identify the relationships between urban dynamics and human mobility 

with recurrent neural networks based on the survival analysis framework. As neural 

networks generate a number of hidden variables (neurons), it is possible to predict well with 

only a small amount of given information by capturing unmeasurable patterns from peoples’ 

observation. To enhance explainability of the neural network model, this study proposes a 

local model-agnostic approach by adapting Local Interpretable Model-agnostic Explanation 

(LIME). It evaluates local fitness of a model, to geographic local samples to analyze spatial 

variation in the predictive power of the model. Moreover, we apply sensitivity analysis to 

the geographic local samples that explains spatial variations in importance of input 

variables. For this study, we analyze population flow data and businesses license data in 

Seoul, Korea. Population flow data is an origin-destination matrix estimating hourly de facto 

population at a spatial unit based on mobile tracking information. Due to privacy issues, the 

spatial unit of origins is aggregated to a larger scale than the unit of destination. The hourly 

flow data is comprised of 25 origins and 425 destinations collected from May 1st, 2018, to 

December 31st, 2020 (976 days). Regarding businesses license data, it is individual-level 

information managed by county-level local governments in Korea, including location 

coordinates and opening and closing dates (Jin & Murray, 2021).  

 Recurrent Neural Networks for Survival Analysis (RNN-Surv) 

Survival analysis is a statistical approach to measure the impacts of events such as 

diseases or on survivorship and lifespan. As survival analysis manages two types of data, 
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binary and continuous data, within a model, it has been widely applied to predict probability 

of events in a certain period time from medical studies to social sciences including finances 

and economics (Parsa et al., 2011). Originally, it requires lifespan data, which is the length 

of an event occurring for an entity, such as a patient, but it is not fully observed in many 

cases due to limited resources. In that case, we treat the observation as right censored data. 

As we do not know the exact time that the event occurs (e.g., a death of entity), the lifespan 

is censored at the right end on a timeline, and it is treated as censoring time Ci. To manage 

the censored data, life span of an event defined at an observed time is Yi = min (Ti, Ci), 

where Ti is the time when the event happens for an observation i. To predict survivability 

over time, a survival function is widely used. For our problem at hand, the survival function 

of an observation i, Si, is the probability that an event is not happening yet at the time, t. 

 𝑆𝑖(𝑡) = Pr (𝑇𝑖 > 𝑡) , 𝑆𝑖(𝑡0) = 1 4.1 

Based on the survival function, survival probability of a cohort is estimated by Kaplan-

Meier estimator (Kaplan et al., 1958).  

 
𝑆(𝑡) = S(t − 1) ∗ (1 −

𝑑𝑖

𝑛𝑖
) 4.2 

where di is the number of events at time t and ni is the number of observations alive just 

before the time t. As a time series model, machine learning approaches to the survival 

analysis has been developed with diverse convergence models such as random survival 

forest and dependent logistic regression and neural networks (Ishwaran et al., 2008; Yu et 

al., 2011). Deep learning techniques such as convolutional networks are also developed (Zhu 

et al., 2016), but recurrent neural networks (RNN) are more eligible to manage the 

sequential nature of the problem in survival analysis (Giunchigilia et al., 2018). The benefit 

of RNN in survival analysis is to identify the time-variant effects of given covariates. A 
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fully recurrent neural network generates a hidden layer that recurrently influence the status 

of the next steps (Williams et al., 1986). With this recurrent structure, a network is able to 

model cumulatively changing and threshold changing events. 

In this study, a recurrent neural network structure is employed for handling hourly flow 

populations in 31 months based on an assumption that populations visiting an area are 

potential customers of restaurants and which may affect on the survivability of restaurants. 

However, the changes do not impact on restaurants’ entrepreneurship immediately, For 

example, it rarely happens in the real world that a restaurant closes when it faced decreases 

in the number of customers in the last month. Rather, cumulative effects are more critical to 

restaurant businesses. This assumption fits well to the basic idea of the recurrent neural 

network structure. 

For the model evaluation, root mean square errors (RMSE), mean absolute errors 

(MAE), and coincidence index are used. Concordance index or C-index indicates the Area 

Under the ROC (receiver operating characteristic) Curve (or AUC) of censored data. It 

measures a model’s discrimination power whether the model correctly provide a reliable 

order of the survival times based on the individual risk scores. It can be computed with the 

following formula (Uno et al., 2011): 

 
C =  

∑ 1𝑇𝑗<𝑇𝑖
∙ 1𝜂𝑗>𝜂𝑖

∙ 𝛿𝑗𝑖,𝑗

∑ 1𝑇𝑗<𝑇𝑖
∙ 𝛿𝑗𝑖,𝑗

 4.3 

where 𝜂𝑖 is the risk score of a unit, i.  
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 Explainability of Neural Networks 

4.3.1. Sensitivity Analysis (SA) 

Sensitivity analysis is used to measure the sensitivity of an input on the output of the 

model. This can be used to calculate the variations in the output by minimizing or vanishing 

certain gradients (Patil et al., 2019).  

 
𝑅𝑑 = (

𝜕𝑓

𝜕𝑤𝑑
(𝑥))2 4.4 

Relevance score, Rd, is a variance of the output result, 𝜕𝑓, when a feature or input 

variable changes. The score provides information about the more sensitive parameters in a 

network. A large score means that the performance of output highly changes when an input, 

𝑥𝑑, vanishes.  

4.3.2. Geographic Local Interpretable Model-Agnostic Explanations (GLIME) 

Local Interpretable Model-Agnostic Explanations (LIME) is an algorithm which 

provides an explanation for predictions of a machine learning model, f(x), through 

approximating it with a local model, g(x), at a data point x and local samples around x 

(Ribeiro et al., 2016). 

 ξ(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) 4.5 

where 𝜉 is the lime explanation, ℒ is the fidelity function, 𝜋𝑥 is the proximity measure 

defining locally around a data point x, and 𝛺 is the complexity measure (Patil, et al., 2019). 

To ensure interpretability and local fidelity, minimizing ℒ(𝑓, 𝑔, 𝜋𝑥) is required.  

 ℒ(𝑓, 𝑔, 𝜋𝑥) =  ∑ 𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(𝑧′))2

𝑧,𝑧′∈𝑍

 4.6 
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where z is a perturbed data point in original data space, and 𝜋𝑥(𝑧) are the local weights 

on data points z around data point x. In other words, LIME is an approach of explaining a 

point through a localized model minimizing differences to the global model with a certain 

number of data points neighboring the point to be explained. 

In the LIME approach, the neighboring points are in not a physical space, but a 

conceptual variable space. However, in geographic analysis, spatial characteristics such as 

spatial dependence and heterogeneous do critically determine results. Therefore, defining 

the optimal range of neighborhoods and spatial weights has been tackled in geographic 

studies (Hagenauer & Helbich, 2022). As geographic events vary by space, a localized 

approach enhances interpretability of a neural network model in terms of local structures. 

When a specific geographic range is fixed, Equation 4.6 turns to Geographically Localized 

Interpretable Model-Agnostic Explanations (GLIME). 

 ℒ𝜋𝑥
(𝑓, 𝑔) =  (𝑓(𝑧) − 𝑔(𝑧′))2 4.7 

GLIME enhances spatial interpretability of neural network models by measuring local 

fidelities based on comparison to the global model at well-known geographic units such as 

states and counties. However, it does not explain locally various impacts of input variables 

on the local samples. To evaluate the local impacts of input variables, we calculate local 

relevance scores by combining sensitive analysis with the GLIME as follows:  

 𝑅𝜋𝑥,𝑑 = √(
𝜕𝑓

𝜕𝑤𝑑

(𝑧)  − 
𝜕𝑔

𝜕𝑤𝑑

(𝑧))

2

 4.8 
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The localized relevance score informs more critical variables in the local areas. A higher 

relevance score of an input variable A in an area reveals that the input variable A has greater 

impacts on the area than others.  

 Data 

For this study, two types of public open data in Seoul, Korea, is used: population flow 

data and business licenses data. First, population flow data is an hourly estimated de-facto 

population data based on the largest telecommunication company’s user information such as 

addresses and call detailed record. The original dataset is built on 50 m by 50 m grids with 

hourly population by ages and sexes, but due to privacy issues, it is only accessible with 

aggregated spatial units. Origin information is based on users’ addresses at the county-level 

local autonomy unit, named gu, while the population at a destination is estimated through 

Call Detailed Records (CDR) at smaller administrative unit, named dong. As Seoul has 424 

dongs and 25 gus, the given origin-destination matrix is the shape of 25 x 424.The temporal 

scale of the data is a monthly average hourly population collected from May 1st, 2018, to 

December 31st, 2020 (976 days). For example, if there are 100 people in a dong from a gu at 

noon in May 2018, 100 indicates the average of population between 12:00:00 pm and 

12:59:59 pm from May 1st to 31st. Because hourly trends are too narrow to understand 

dynamics in more than two years changes, additional temporal aggregation is conducted. 

Hourly population is summed up to 4-time periods; early morning (0 to 5 am), morning (6 

am to 11 am), afternoon (12 pm to 5 pm), night (6 pm to 11 pm). With these preprocesses, 

the shape of temporal origin-destination matrix is 25 (origin) x 424 (destination) x 4 (time 

periods) x 31 (months). 
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The second dataset involves the business license data in Seoul, Korea. As local 

governments (gu) in South Korea have the authority to approve new businesses, all 

businesses are required to report their closure to their local government (Jin & Murray, 

2021). South Korea recently made this business data available, detailing business types, 

location, starting date, and closing date of 191 types of business, such as groceries, 

residential services, and restaurants. With a focus on restaurants, among more than 1.7 

million records, about 150,000 restaurants are selected to match the time period of the input 

dataset by removing restaurants closed before May 2018. Based on opening and closing 

dates, each restaurant’s life span is calculated in months, and the life span is going to be the 

predictive output value. If a restaurant is still operating at the end of 2020, the life span is 

calculated as the time between its start date and the end of 2020. 

As the dataset includes individual characteristics such as location information and types 

of food they sell, they are used for other set of input variables. The location information is 

about coordinates and an administrative unit, gu, belonged to. In particular, as gu is nominal 

data, it is transformed to one-hot encode with 25 columns of binary variables. Similarly, 

types of food are encoded as the same way. As restaurants are categorized by 13 food types, 

restaurant’s types, representing one’s own merits, are encoded 13 binary variables (Table 

4.1). 

Table 4.1 Definition of variables. 

 Variables Dimension 

Y (output) Length of life span of restaurants in 

months 

1 

X (input) Population flow 25 (origin) * 4 (time period) 

Location 2 (coordinates) + 25 (gus) 

Types of restaurants 13 (types)* 
* 13 types are bars, buffet, café, chickens, Chinese, ethnic, family, fast food, Japanese, 

Korean, snacks, Western and others. 
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 Results 

4.5.1. Data description 

Figure 4.1(a) shows the number of restaurants in the study period between May 2018 

and December 2020. Within a 500 m hexagon, the largest number of restaurants is in S14, a 

popular place for young adults with four major universities. Based on Getis-Ord Gi*, three 

major hot spots are detected: across S1 and S2 (central business district: CBD), S14 

(Hongdae district), and S23 (Gangnam business district: GBD).  

Regarding mean life spans of restaurants, these three major districts show different 

patterns. As the original central business district, S1 and S2 areas has a larger number of 

long-standing restaurants, the S14 area shows relatively short life spans as a trendy place. 

Moreover, local hot spots around suburb areas in Figure 4.1(b) also show relatively short life 

spans. It indicates that business environments for restaurants are less friendly to new 

restaurants in minor districts.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.1. Spatial distribution of restaurants in Seoul, Korea: (a) number of 

restaurants in a 500m hexagons; (b) Hot-cold spots of number of restaurants; (c) mean 

life spans of restaurants in a 500m hexagons (in months); (d) hot-cold spots of life 

spans of restaurants. 

Survival probabilities through the Kaplan-Meier estimator varies by locations and types 

of food. Figure 4.2(a) presents locally different survival probability. Similar to Figure 4.1(a), 

the survival probability of restaurants in S14 area (red line) more steeply decreases than S1 

area (blue line). When they are compared at the point of 0.5 survival probability, restaurants 

in S14 survive 50% within 80 months, while more than half restaurants in S1 are able to 

survive over 150 months.  

Survival probability by food types shows more dynamic patterns than locational 

variances (Figure 4.2b). It is because the number of samples for each type is unbalanced, 

and it reflects that the trend in dining quickly changes. For example, family restaurants, such 

as an Outback Steak House, boomed in 2000’s, but they are now facing down turns due to 

other trendy foods such as original western food or ethnic food. Ethnic food also decreases 

steeply indicating short median life spans, but this pattern comes from a recent boom in 

ethnic food.  
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(a) 

 
(b) 
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Figure 4.2 Kaplan-Meier estimation of survivability of restaurants: (a) by locations 

(25 gus); (b) by types of food (13 types). 

Table 4.2 Architecture of recurrent neural network (RNN) model 

Layer Output shape # of parameters Connected to 

Input 1 None x 31 x 100 0 - 

Masking None x 31 x 100 0 Input 

RNN None x 31 x 1  101 Masking 

Flatten None x 31 0 RNN 

Input 2 None x 40 0 - 

Concatenate None x 71 0 Flatten & Input 2 

Dense None x 1 71 Concatenate 

Total parameters: 172 

Trainable parameters: 172 

Non-trainable parameters: 0 

4.5.2. RNN-Surv model for survivability of restaurants 

For the recurrent neural network layer (RNN in Table 4.3), 3,100 (31 months x 25 

origins x 4 time periods) flow population variables are used as inputs. The recurrent layer 

generates a single parameter per each time step (31 months), indicating monthly features of 

human mobility. By combining these monthly features and restaurants’ non-temporal 

features including locations and characteristics, the second layer (Dense in Table 4.2) 

predicts life span of each restaurant in months through ReLU activation function because it 

is activated only if input values overcome a threshold. It is similar to the process of making 

restaurant entrepreneurship decisions. Although a restaurant is facing loss at a single month, 

it may not decide to close the restaurant right after because it could be an exceptional month, 

or it may have some money to operate for a while. However, when the sum of losses 

exceeds expected revenues, it will consider the business closed. In this model, we use a 

small number of hidden features to make the model interpretable, but its insufficient 

information is backed up by a number of iterations (the number of epochs is 30) with highly 

accurate predictive results. 
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In terms of mean absolute error (MAE), the model shows 4.011 in general, indicating 

only 4- months differences between predicted and actual life spans of restaurants. The Root 

Mean Squared Error (RMSE) value is slightly higher than MAE, 7.32, because there are 

some outliers who have survived more than 10 years. However, the RMSE value also 

supports the model’s predictive power. Regarding coincidence index, it is 0.9768, which 

demonstrates that 97.68% of pairs randomly chosen from the data are correctly predicted in 

terms of their orders. For example, Restaurant A survives 5 months while Restaurant B 

survives 10 months. In this case, if the model predicts A as 10 months and B as 5 months, 

MAE and RMSE are the same that A as 10 and B as 15. However, the second prediction is 

more reliable because Restaurant B survives longer than Restaurant A. With low errors and 

high proportion of matching orders, the model’s results prove that limited information works 

well in predictions via neural networks.  

To visualize spatial patterns of errors, we aggregate absolute errors into 500 m hexagons 

(Figure 4.3), but the model does not show severe spatial dependence, except some small 

outliers at the edge of the cities. For instance, S1, S2, S14 and S23 has smaller MAE values 

than the global mean value. Because the majority of restaurants is located in the three major 

districts (see Figure 4.1), the model focuses on minimizing errors in the areas.  
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(a) 

 
(b) 

Figure 4.3 Spatial distributions of mean absolute errors: (a) local mean absolute 

error; (b) hot spots of local mean absolute errors. 

To understand the impact of various variable sets, sensitivity analysis is conducted by 

sets of variables rather than each variable because of high correlations between variables. By 

vanishing variable sets, relevance scores are computed (Figure 4.4). Each dot on the graph 

represents a relevance score at a data point. In Figure 4.4a, the set of population flow 

variables has more sensitive impacts on the model than the other two sets of variables. 

Generally, without the population flow variables, the model works poorly except under 

some extraordinary cases. Among population flow variables, the first and last month 

information critically affects the model’s performance (Figure 4.4b). It mainly comes from a 

high correlation between human mobility patterns. As the data based on call details records 

and daily movements, the monthly patterns are not much different to each other. Therefore, 

when the first-month mobility patterns are used as inputs, it significantly improves the 

model’s performance, whereas others do not have the similar impacts because it is not much 

different to the first month patterns. However, the last month pattern is also important. Even 

though the daily patterns are stabilized in a short time period (31 months), some changes in 

daily mobility occurs in the period, and they enhance predictive powers of the model.  



88 

 

 

 
(a) 

 
(b) 

Figure 4.4 Relevance scores of input variables: (a) by set of variables; (b) by flow 

inputs 

4.5.3. Geographic Local Interpretable Model-Agnostic Explanations (GLIME) 

To identify local impacts of human mobility patterns on survivability of restaurants in 

Seoul, Korea, Geographic Local Interpretable Model-Agnostic Explanations (GLIME) is 

applied to the inputs of population flow information. By vanishing all other flows except a 

target area, the local models are computed. For example, to evaluate the influence of 

population from S1 area, we input only the population from S1 to the model and calculate 

local MAE. Therefore, each map in Figure 4.5 shows local MAEs with input of population 

flows from S1 to S25. More greenish areas have smaller MAEs, indicating the local model 

works well. In most areas, inner mobility is significantly important than others. Population 

flows from the S1 (central business district) make local models in S1 and neighboring areas 

including S2, S4, S12, and S13 predict well, but does not significantly improve local models 

in other areas. On the other hand, population flows from S23 (Gangnam business district) 

have broader impacts than those from S1. It clearly explains the survivability of restaurants 
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in the area (S23) with small gaps between limited local models and the full global model in 

terms of MAE. With high purchasing power, populations from S23, S24, and S25 have 

global and significant impacts on the survivability of restaurants in Seoul. 

 
(a) S1 

 
(b) S2 

 
(c) S3 

 
(d) S4 
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(e) S5 (f) S6 

 
(g) S7 

 
(h) S8 

 
(i) S9 

 
(j) S10 

 
(k) S11 

 
(l) S12 
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(m) S13 

 
(n) S14 

 
(o) S15 

 
(p) S16 

 
(q) S17 

 
(r) S18 



92 

 

 
(s) S19 

 
(t) S20 

 
(u) S21 

 
(v) S22 

 
(w) S23 

 
(x) S24 
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(y) S25 

 

Figure 4.5 Local relevance scores by inflow population of 25 gus. 

 Conclusion 

This research proposes an explainable deep learning approach with consideration of 

geographic context to understand nonlinear relationships between human mobility and urban 

dynamics. We developed one-layered RNN model to predict survivorship of restaurants in a 

city and attempted to interpret the deep neural networks from geographical perspectives by 

applying the GLIME. The RNN model generates the interpretable number of hidden 

parameters with GLIME, and local relevance scores enable spatially explicit interpretations 

and the generation of new hypotheses for future study. Our findings especially highlight the 

importance of purchasing powers of human mobility instead of the amount of flow, which 

has been emphasized by the rich literature on business analytics (Frank & Dana, 1994; Kim 

et al., 2018; Shebl et al., 2021).  

We acknowledge that the performance of the model is not as accurate as other deep 

learning models demonstrated in other applications such as image detection and natural 

language processing. The results with relatively poor predictions can be explained by the 

nature of complexity in human mobility and urban dynamics compared to the natural 
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sciences or computer sciences. For example, although image classification problems handle 

a great amount of data with more complicated structures of neural networks, at least, the 

patterns are quite predictable as people can catch them immediately. However, 

socioeconomic patterns cannot be clearly observed and predicted. There are large 

uncertainties and irregularities in human decision-making that result in unexpected patterns 

and outliers, which hinders the deep neural networks from predicting the trajectory 

accurately. Moreover, the relationships between human mobility and urban dynamics are 

still investigated to identify their precedence relation. In other words, it is still arguable 

whether urban structures pull visitors travels or people’s willingness to travel build urban 

structures. Despite the veiled relationships, this study proves that human mobility patterns 

strongly affect survivability of restaurants, which arouse regional ups and downs regarding 

economic developments. It also explains the impact of human mobility that depends on 

mobility origins representing purchasing power.  

The explainable deep neural networks suggested in this study demonstrate for human 

mobility and urban dynamics improve prediction as well as shed light on complex 

mechanisms underlying their relationships. In particular, the study suggests that we need to 

delve into the impact of path dependency and inter-dependencies among people’s travels. 

Most importantly, the findings emphasize the importance of spatial heterogeneities in 

drivers of urban dynamics across the city. 
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5. General Conclusion 

Through this dissertation, I suggest methodological frameworks and models that enhance 

our understanding of human mobility, urban dynamics, and their interactions with micro-

scale geospatial big data. Three individual studies are conducted to (1) evaluate human 

mobility patterns imprinted in various data sources including social media data and public 

data; (2) understand micro-scale urban dynamics through publicly available individual-scale 

data; and (3) explain urban dynamics with human mobility through highly accurate and 

interpretable neural network models.  

The first study in this dissertation addresses a challenge of understanding diverse 

characteristics of human mobility patterns across geographic scales by utilizing fine-scale 

data extracted from diverse sources. Due to discordance of spatiotemporal resolution 

between data sources, aggregation at a certain level is required. An origin–destination (OD) 

matrix provides mobility patterns among spatial units within a given temporal scale). A new 

measure, Spatial Weighted SSIM (SpSSIM), is developed to solve the sensitivity problems 

of SSIM. The applicability of SpSSIM is evaluated with OD matrices generated from his 

three data sources in San Diego County, CA: Census-based longitudinal employer-

household dynamics origin-destination employment statistics, Twitter, and Instagram. This 

case study shows that SpSSIM can capture the similarity of migration patterns between 

different datasets by distance. The results in this study enhance our understanding of 

diversity and complexity in human mobility and broaden opportunities of using social media 

data in human mobility studies. 

The second study in this dissertation investigates the value of micro-scale public open 

data for better understanding of urban dynamics. This study uses license data in Seoul, 
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Korea at the individual-level to discover patterns of spatiotemporal changes in restaurant 

locations because the restaurant industry is one of several industries that contributes 

significantly to the urban economy, and spatiotemporal differences in survivability are 

important indicators of urban dynamics. By applying three exploratory analytics, including 

hot spot analysis, trends analysis of spatial clusters, and space-time scan statistics, this study 

identifies the continuous temporal changes in spatial clusters of restaurants. Spatiotemporal 

ups and downs in restaurant businesses and expected shorter lifespans of restaurants in 

suburb areas verify deepening regional inequalities and economic disparities. The 

perspective offered by this study can be used to assess market conditions using 

spatiotemporally fine scale data, which can assist private and governmental decision-making 

processes regarding economic development and growth. 

The third study in this dissertation identifies the relationships between urban dynamics 

and human mobility with recurrent neural networks based on the survival analysis 

framework. To enhance explainability of the neural network model, this study proposes 

Geographically Localized Interpretable Model-agnostic Explanation (GLIME) by extending 

Local Interpretable Model-agnostic Explanation (LIME) within geographic context. The 

geographically explainable deep neural networks demonstrate nonlinear relationships 

between human mobility and urban dynamics with improved prediction as well as shed light 

on complex mechanisms underlying human mobility and urban dynamics. Through the case 

study of restaurant survivability in Seoul, Korea with flow population estimated by cell-

phone uses, origins of population flow are key factors determining entrepreneurships of 

restaurant businesses. Moreover, through the proposed localized explanatory approach, it is 

verified that the effect varies by origins regarding the strength and range of impacts. The 
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findings remind importance of spatial heterogeneities in complexity of human mobility and 

urban dynamics. 

This work takes a new perspective on long-standing research questions related to cities 

by integrating new forms of spatial information with geospatial big data analytics. By 

entering new territory, however, this research faces numerous issues. Though these concerns 

are not severe enough to invalidate the research results, it is nonetheless important to fully 

disclose these caveats. Since data-integration is a core component of this research, it should 

be noted that aligning multiple data sources can be frequently problematic. Data-alignment 

is a concern throughout this dissertation regarding time and space. The Modifiable Area 

Unit Problem (MAUP) and the Modifiable Temporal Unit Problem (MTUP) are the key 

challenges and should be examined further to identify the sensitivities of suggested 

methodological approaches.  

Additionally, although the new forms of data used here offer many advantages in terms 

of spatiotemporal resolution, the data must be systematically updated to maintain this 

benefit. Restaurants, for instance, can go out of business or change ownership, and such 

changes can produce different results. Further, since this data is gathered through publicly 

available application programming interfaces (APIs), these methodologies are vulnerable to 

changes in the companies’ data-sharing policies. Indeed, any data restrictions may prevent 

future analysis. The recent availability of user-contributed, fine-grained spatial data enables 

this research, but it is critical when working with such data to be mindful of privacy 

concerns. As Goodchild (2007) has discussed, volunteered geographic information from 

services such as Twitter or Yelp provides researchers new advantages in terms of the 

quantity and resolution of spatial data. However, researchers must be mindful to safeguard 
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this personal information against potential abuses (Harvey, 2010). Though this study has 

taken precautions against revealing personal information, any future applications of this 

work must be similarly concerned with protecting individuals’ information. 

Despite these fundamental difficulties, this dissertation provides a comprehensive 

framework for studying human mobility and urban dynamics, particularly from geographic 

perspectives. By incorporating detailed spatiotemporal data into big data analytic models, 

the framework allows researchers and policymakers to understand human mobility, urban 

dynamics, and their interactions at a finer scale. 

First, I highlight the importance of spatial configurations underlying data in the study on 

human mobility and urban dynamics. By adding spatial components on existing 

methodology, aspatial analytic tools are successfully applied to reveal spatial patters in 

diverse types of datasets. In Chapter 2, for example, applying a spatial weight matrix on the 

image analytic tool, SSIM, is proposed to consider spatial relationships, such as geographic 

closeness, in the arrangement of OD matrices because similarities in human mobility vary 

by distance. Understanding the differences between datasets that vary in space provides 

fundamental knowledge for making the best use of data integration. Moreover, in Chapter 4, 

Geographic boundaries are also proposed as an explanatory tool of neural networks for 

interpreting a "black box" model with geographic context. Based on the idea of spatial 

heterogeneity, spatial administrative units have distinctive characteristics in terms of 

demographic and socioeconomic status although the boundaries are artificially and arbitrary 

defined. By extending local explanations geographically, I propose a method for interpreting 

deep learning models in urban studies, where geographic context in a phenomenon is 

essential, with better predictions.  
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Second, I broaden the applicability of deep learning models in the social sciences with a 

focus on explainability to provide comprehensive explanations of complex social 

phenomena for a better society. GLIME, in Chapter 4, is the tool to explain a deep learning 

model with geographic perspectives that combines the ideas of Explainable AI (XAI) and 

GeoAI. As this study is an initial study, more cases and models will be investigated with 

motivating questions on the complex relationships between human mobility and urban 

dynamics.  

Finally, I maximize the utility of publicly accessible data. Although we are in the era of 

Big Data, data accessibility is still challenging. While big data analytics can play a 

significant role in business, potential benefits can be limited to large companies and 

corporations due to high cost in data access, data management, and data analyses. Therefore, 

a data analytic framework using free publicly accessible data is important. In Chapter 3, I 

offer a methodological framework that utilizes public data to evaluate local market 

situations. Furthermore, in Chapter 4, I suggest a model that predicts survivability of 

businesses with the limited information. Rather than analyzing comprehensive information 

including location characteristics and potential consumers’ demographic and socioeconomic 

backgrounds, the model provides accurate predictions with only the origins of population 

flows. The results can be less accurate than extensive big data analytic models operated by 

data companies; however, without paying for expensive data, it provides reasonable and 

feasible solutions that are beneficial for individuals and governments to make better 

decisions in business application from locating their new businesses to monitoring market 

saturation. These efforts will contribute to fostering economic growth and development. 
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