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Self-Aligning Rotational Latching Mechanisms:
Optimal Geometry for Mechanical Robustness

Gabriel I. Fernandez∗, †, Samuel Gessow∗, †, Justin Quan∗, and Dennis W. Hong∗

Robotics and Mechanisms Laboratory (RoMeLa), Department of Mechanical and Aerospace Engineering
University of California Los Angeles, Los Angeles, California 90095, USA

In concurrent work, we introduced a novel robotic package
delivery system LIMMS (Latching Intelligent Modular Mo-
bility System). Each LIMMS end effector requires a small,
lightweight latching mechanism for pre-manufactured con-
tainers, such as cardboard boxes. In order to effectively pro-
cess a high volume of packages, aligning the latching mech-
anism quickly and reliably is critical. Instead of depending
on highly accurate controllers for alignment, we propose a
novel self-aligning rotational mechanism to increase the sys-
tem’s tolerance to misalignment. The radial latching design
consists of evenly spaced blades that rotate into slots cut into
the box. When misaligned, the blades contact the edges of
the engagement slots, generating a self-correcting force that
passively centers the blades with the slot pattern. This pa-
per introduces a mathematical framework with closed form
expressions to quantify error tolerance for for these mech-
anisms. Through our mathematical and optimization analy-
ses, it is shown that a 2-blade design can tolerate a maximum
misalignment of 3 times the radius to the blade tips, much
larger than commonly used designs with 3 or more blade-
like contacts. Our approach can be generalized for a class of
rotational latching mechanisms with any number of blades.
Utilizing this theory, a design process is laid out for devel-
oping an optimal self-aligning rotational latching mecha-
nism given desired parameters and task constraints. With
this methodology, we designed, manufactured, and verified
the effectiveness of both 2-blade and 3-blade self-aligning in
practical experiments.

Keywords Latch, Probability, Optimal, Design, Mecha-
nism, Rotating, Self-Correct, Self-Align, Symmetric, Ro-
bust, Passive, Modular, Robot, Delivery, Logistics, Multi-
Modal, Legged, Wheel, Lock, Package, Box, and Blades.

Nomenclature

α1, α2, α3 arc length between intersections, Fig. 6.
β1, β2 angle from sector edge to line through r′, Fig. 6.
FN ,µ normal force and coefficient of friction, Fig. 5.
γ angle of blade tip about (r′, θ), Sec. 4.

∗Corresponding authors: gabriel808@ucla.edu, sgessow@ucla.edu,
justinquan@ucla.edu, and dennishong@ucla.edu.

†Equal contribution by the leading first two authors for this work.

Fig. 1: LIMMS platform with a 3-blade latch design next to a delivery box
with mating holes in the cardboard to be used as anchor points.

IC instant center, Fig. 5.
l1, l2 arc length of unblocked α1 and α2, Fig. 6.
p probability of latching success for a position, Sec. 4.
φ1 half of the angle blocking the circle, Fig. 6.
φ2 angle defined by φ1 and blocking point, Fig. 6.
Ψ misalignment tolerance metric, Sec. 4.
r length from cutout center to nearest hole edge, Fig. 2.
r′ length from assembly center to cutout center, Fig. 5.
R radial length of cutout, Sec. 4.
ρ length from blade assembly center to blade tips, Fig. 2.
τ torque applied to blade assembly center, Fig. 4.
θ angle between r′ and nearest edge, Fig. 5.
ϑ angle between edges defining holes in pattern, Sec. 4.
V velocity, Fig. 5.
W length from blade assembly center to outer limit, Fig. 2.
x, y Cartesian coordinates of r and θ, Sec. 4.
Superscripts and Subscripts
* indicates an optimal parameter.
in, out refers to inner and outer alignments, respectively.
| separates a functions inputs from given parameters.
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1 INTRODUCTION

Fig. 2: a) Latching pattern cut from cardboard with red lines denoting engagement edges where the blades contact when fully engaged, b) Latch assembled
configuration, and c) Components of the latch.

1 Introduction

To solve the last-mile delivery problem, we recently intro-
duced LIMMS (Latching Intelligent Modular Mobility Sys-
tem) [1]. LIMMS is a novel decentralized robotic system
that operates without a primary body. A single LIMMS unit
resembles an appendage with latching mechanisms on both
ends, which can serve as either the end effector or the base,
as shown in Fig. 1. After securing one end to a fixed struc-
ture, the other end is free to behave like a manipulator or leg.
For example, LIMMS could attach itself to anchor points on
the surface of a wall to function as a manipulator, or four
LIMMS latched to four corners of a box could walk like a
quadruped, with the box itself serving as its body. Through-
out the delivery process, LIMMS will have to frequently
switch between walking and manipulating to process pack-
ages, which requires frequent latching and unlatching. Given
the massive volume of packages shipped daily and the de-
mand for faster delivery times, it is important to ensure that
latching can happen quickly and reliably, or it can become a
bottleneck that limits delivery times.

To perform its primary functions, LIMMS must be
equipped with a latching mechanism that interfaces with both
cardboard and wall-mounted anchor points integrated in de-
livery vehicles. Latching mechanisms for attaching and de-
taching components have been explored for a wide variety of
applications, including tool changers [2], space vessel dock-
ing [3–5], and modular or self-configuring robotics [6–12].
The latching method varies widely depending on the use
case, including spring-loaded pin locks, magnetic locks, and
pneumatically actuated locks to constrain the parts in 6 DoF
(degrees of freedom). In most cases, latching mechanisms
rely on highly specialized gendered connectors with com-
plex features to assist with alignment such as opposing grip
claws [13], floating devices [14], and ball plungers [15].

While these examples offer good reliability and load sup-
port capabilities, they have distinct shortcomings that limit
their applicability for our applications. Most latching mech-
anisms are bulky, heavy, or complex, requiring large geomet-
ric features for passive self-alignment or additional actuation
to assist with alignment. They also have a small area of ac-
ceptance or range of possible starting conditions for which
mating will be successful [16]. With a small range of align-

ment relative to their size, these mechanisms require precise
positioning and orientation in 6 DoF during the docking pro-
cess, making them slow to use.

Moreover, LIMMS has several operational restrictions
that make conventional latching approaches unsuitable.
First, the mating surface of the latching mechanism must be
very cheap to integrate onto cardboard delivery boxes, since
it is assumed that the box will be discarded after use. This
means any additions to the box must have a small footprint
and low mass to minimize production and delivery costs,
respectively. Second, the mechanism should have a small
volume and have minimal protruding features with mating
surfaces in order to minimize the amount of volume lost in
boxes and delivery vehicles. Finally, the mechanism’s over-
all mass should be as small as possible, since excess weight
at the LIMMS end effectors will negatively impact its load
capacity and walking capabilities.

With these restrictions, the proposed solution is to inte-
grate a female latching pattern on the cardboard delivery
package. This involves cutting planar features and folding
them out of plane to form flaps into the surface that can assist
with alignment, depicted in Figs. 2, 4. This method results
in a very low cost latching pattern for disposable cardboard.
The male latch will be a lightweight radial design with blades
that insert into the engagement holes with a twisting motion,
which is easily generated by the wrist motor on LIMMS.
This design passively aligns itself as it rotates, using contact
forces from the pattern’s geometry. The simple construction
of this latching mechanism results in minimal mass added to
the end effector. This proposed framework leverages geom-
etry and mechanics for a self-aligning mechanism with max-
imum misalignment tolerance. By using radially symmetric
patterns and point contacts for the blade tips, design parame-
ters are chosen to have a higher chance of successfully latch-
ing given a position and random orientation around the axis
of rotation. This minimizes time spent and control effort on
alignment during delivery operations.

For our application, we formally derived the mechanics
for self-aligning and its associated misalignment sensitivity
for 3-blade and 2-blade latch designs with closed form ex-
pressions. From this, we formulated a metric associated with
misalignment tolerance in the cardboard (X-Y) plane. By
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2 PROBLEM SETUP

choosing a desired tolerance, our mathematical models will
calculate optimal design specifications for the latching mech-
anism and hole pattern. Our methodology is formulated in a
general case so it may also be used for other applications.

The resulting LIMMS latch synthesized using these theo-
ries demonstrates superior alignment capabilities compared
to existing 6-DoF latching and alignment methods. The un-
derlying theory demonstrates the importance of certain fac-
tors for passive alignment that are not immediately apparent,
which may be useful even for non-rotational latch designs.
While most latches utilize 4 or more interfacing bodies (such
as hooks, pins, blades, etc.), our models show that reduc-
ing the number of constraints at the interface makes success-
ful alignment easier. Since each body takes up space and
can overconstrain the latch, we found that the 2-blade design
was generally favorable for alignment. The following sum-
marizes our contributions in this paper:

1. Introduced a class of self-aligning mechanisms,
2. Characterized their mechanics and likelihood of mis-

alignment for the 2-blade and 3-blade designs,
3. Formulated an error tolerance metric by which optimal

design specifications can be determined, and
4. Verified results in simulation and hardware.

2 Problem Setup

The mechanism presented in this paper can be viewed in-
dependently from any specific application. Thus, our method
can be formulated to address a class of self-aligning rota-
tional latches. The generalized problem can be constructed
with the following criteria:
• Self-alignment at a fixed position is unique up to a finite

number of rotational symmetries,
• Actuation only occurs about the latch’s axis of rotation,
• Design parameters should be optimal with respect to any

two of the following constraints: space, strength of mat-
ing surface material, and error tolerance.

The last point on design parameters comes from the design
process proposed in Sec. 5 and derived through our analyses
in Sec. 4. We show that by choosing any two of the design
parameters with respect to the total workspace of the latch
W , strength of the center island of the pattern r, which is
dependent on the strength of the material, and misalignment
tolerance metric Ψ, optimal parameters are fully defined.

For this paper, the female component with cut engagement
slots will be referred to as the hole pattern (Fig. 2a) and the
male component as the latch (Fig. 2b) with equally spaced
blades. The scope of this paper only covers self-alignment
and deriving optimal designs for the latch and the cut hole
pattern geometries. Other areas of interest, such as locking
the assembly in place, blade angle of attack, speed, and load
distribution will be considered in future work.

Assumptions The majority of our mathematical and geo-
metric derivations rely on a few basic assumptions:
• A counter-clockwise torque is used for latching.
• Slots cut into the latching pattern are radially symmetric

pieces of a circle as shown in Fig. 2 with colinear edges
extending to R. There is an island, the non-hole portion

Fig. 3: Two blade design showing inner (red) and outer (blue) edges that
correspond to inner and outer alignment methods.

Fig. 4: Shows a sequence of a three blade design spinning to align.

at the pattern center as seen in Fig. 2a with radius r.
• The latch face and the surface of the latching pattern

are always parallel with one another and interact pri-
marily in a plane, and out-of-plane effects are minimal.
However, this assumption is not strictly required, as
shown during the hardware testing in Sec. 5. These tests
show that the mechanism could tolerate out-of-plane
misalignment and could still perform successful self-
alignment when angled slightly from parallel. Please
see the video link in footnote1.

• The forces applied to the latching mechanism in the X
and Y directions (parallel to the latch surfaces) during
engagement are minimal. This assumption, however, is
also not strict as shown during hardware testing where
the robotic arm does apply forces in X and Y, see video1.

Several assumptions were made about the physical behav-
ior of the latch as the blades interact with the pattern’s cut
slots. It is assumed that the blades slide along the card-
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3 ALIGNMENT MECHANICS

board pattern’s surface and fall into the engagement slots,
ultimately resulting in a line of contact between the slot’s en-
gagement edge and the blade spacers, shown in red in Fig. 2.
Thus, it is also assumed that the shape of the slot itself ulti-
mately does not matter for final engagement, other than the
red engagement edges. These edges are radially symmetric
intersecting at the center. For the 3-blade design, it is kine-
matically impossible to be greater than one latch radius away,
since being greater than one radius away would result in one
of the blades being constrained to the same hole or outside
of the hole pattern region.

Due to these assumptions, in addition to this kinematic
constraint, full cutouts for the 3-blade are not drawn and are
instead treated as a line as seen in Fig. 5, 6. This lack of de-
pendence on overall slot shape is verified in practical testing.
However, this is not the case for the 2-blade design. In [17]
we used a conservative model for the 2-blade latching where
only the final alignment edges when the blade is fully en-
gaged were considered. We extend this to include all edges.

Furthermore, we make the assumption that there is min-
imal penetration into the hole pattern. Additionally, once a
blade is inside a hole pattern it is constrained to be within
a hole pattern. Including these two assumptions gives us a
more realistic model and surprisingly substantially increases
the total probability as seen in Sec. 4. Again, this phe-
nomenon is not seen in the 3-blade assembly due to it being
kinematically overconstrained.

In Sec. 2 derivations, it is assumed that the blade’s radial
location can be approximated as a single point, depicted by
green dots in Fig. 4, 5. In the case of three or more blades,
the blade spacer and the engagement edge will only contact
at a single point until the latch is fully engaged due to the
spacer’s rounded shape. Additionally, the width of the spacer
can be ignored since the blades have a triangular shape. If the
blades are rotated off-center, the sloped surfaces of the blade
will contact the pattern edges and force its overall location
to adjust until it’s aligned with the blade’s tip. We tested a
mechanism with three pins to verify that this assumption is
valid as seen in the supplementary video1.

In later derivations for Sec. 4, it is assumed that the shape
of the blade does not matter beyond the requirements laid out
in Sec. 2. For this reason only the point locations of the blade
tips and where they start are considered.

In all derivations, the mating pattern surface is assumed
to be much stiffer than the forces it is subjected to. This
assumption needs verification based on the application and
materials involved. In our case, the cardboard’s strength is
high enough for this assumption to be valid.

Finally, only the 2-blade and 3-blade cases for the latch
were considered. Preliminary analyses showed that for more
than three blades, the error tolerance is worse, and there are
no additional benefits. For successful alignment, each blade
must start its rotation in a separate angular region, since two
blades cannot enter the same engagement slot. Since blades
must be evenly spaced over 2π rads, increasing the number of

1 Experiments, verification, and a brief explanation of this paper can be
found online at: https://youtu.be/W5_3vF3nT28

Fig. 5: Visual representation of 3 blades (bright green dots on orange circle)
aligning with the hole pattern center island (blue circle). a) First, a single
blade engages the cutout edge (red) shown by the green dot on the far right.
b) A second blade engages, resulting in a V in the direction of alignment.
The dark green arrows depict the edge of constraint in which the blades can
move given the torque direction.

blades effectively decreases the angular region available for
each blade to start at for successful alignment. Also, a single
blade latch is not able to meet the self-aligning requirements
as it cannot both constrain the angle and the position of align-
ment when radially inserted into the mating surface.

3 Alignment Mechanics

The next section analyzes the mechanism’s sequence of
operations and self-aligning motion when the latch is actu-
ated to rotate about its center. For this analysis, it is assumed
that the starting configuration for latching is with the blades
lightly pressed against the surface of the cut pattern at some
initial position (r′,θ) and angle of rotation about the latch’s
center axis γ similar to the configuration in Fig. 4a.

3.1 Alignment with Two Blades
The 2-blade latch design consists of blades with an angular

separation of π rads as shown in Fig. 3. As the two blades
rotate and travel along the surface of the cut pattern, the first
blade that contacts the pattern’s edge becomes the new pivot
point that the latch begins to rotate about.

Once the second blade engages with an edge in the op-
posing hole, the latch moves along the two aligned edges at
the latch’s centerline. With only two blades, it would appear
impossible to fully constrain the position and rotation, r′ and
θ, given only a rotational actuation about its center. How-
ever, the final constraint needed for a self-correcting motion
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3.2 Alignment with Three Blades 4 ALIGNMENT TOLERANCE ANALYSIS

Fig. 6: The 3 alignment cases for the 3-blade design: a) Case 1 where there are no intersections, b) Case 2 where both intersections are either completely
in α2 or α3, and c) Case 3 where one intersection is in α2 and the other is in α3.

comes from the blade profiles as the latch inserts its blades
further into the the pattern.

This self-correcting motion comes from the contact force
between the blade and the engagement edge as it rotates.
This contact can occur at the blade’s inner edge or outer edge.
When the inner edge of the blade presses into the center is-
land of the hole pattern, this is referred to as inner alignment,
with the inner edge depicted in red in Fig. 3. Outer alignment
is when the blade edge furthest from the center pushes on the
outer edges of the hole during engagement, depicted with
the blue edge in Fig. 3. As the latch continues to rotate, self-
alignment occurs until the faces of the latch and hole pattern
are touching. The latch then becomes fully constrained due
to the width of the blade.

Inner Alignment Since inner alignment uses the inner
edge of the blade, the blade needs to taper from its maxi-
mum allowable distance from the center W at the tip of its
blade to r. Let f (t) describe the inner edge contour, with
f (0) = (ρ,θ) and f (1) = (r,0). As long as this contour fol-
lows the property that || f (t)|| is monotonically decreasing,
then alignment will be successfully achieved.

Outer Alignment For outer alignment, no center island is
needed, and the blade uses its outer edge of the hole pattern
to align. In this case, the blade tapers out from its minimum
distance from the center ρ at the blade’s tip to W when fully
aligned. This contour has a f (t) where f (0) = (ρ,θ) and
f (1) = (W,0). If the contour obeys the property that || f (t)||
is monotonically increasing, then alignment will succeed.

3.2 Alignment with Three Blades
The process of aligning with 3 blades can be broken down

into four stages: no blade engaged, then one engaged, fol-
lowed by two, and then finally all three. Note that it is not re-
quired to start at the first stage, although it is the most likely
case. The blade locations are modeled as points, shown in
green in Fig. 4, 5 and mentioned in Sec. 2.

The behavior of the first 2 stages closely follow the me-
chanics for the 2-blade case, where the first blade that con-
tacts the edge of an engagement pattern becomes the new
pivot point that the latch begins to rotate around. The be-
havior of this pivot point and the direction of velocity can be

explicitly stated using instant centers, IC.
From the starting configuration, the mechanism first spins

until one point makes contact with an edge. As torque τ is
continued to be applied, the resulting forces can be seen in
Fig. 5a. The figure further shows that the IC is not fully
constrained since there is only one line (dotted grey) perpen-
dicular to hole pattern edge (red line). In other words, the IC
would need another grey dotted line that intersects to define
a fully constrained point. Assuming µFN ≥ τsinθr′

ρ2 , the far
right green dot in Fig. 5a will be a stationary point, making it
the IC. The blade assembly (large orange circle) rotates like
a wheel around that point until the blade (green dot) contacts
with the second edge. Even if slipping occurs, the constraint
line (dark green) would cause the IC to be on the grey line,
which would lead to the second point engaging (green dot).

Once two points are in contact, the points are only free to
slide along the edge of the cutouts as shown in Fig. 5b. The
IC for these two velocities appear in the lower right of the
figure indicated by a red dot. The direction of the resulting
velocity V is perpendicular to the line through the IC. This
will continue until the third and final blade engages.

Finally, the three points provide three independent con-
straints, fully defining the latch’s position and orientation
given the axis of rotation and direction of τ. In this state
the FN from the edges are equal and opposite to those caused
from τ, so the latching mechanism cannot move and is fully
constrained at the target alignment.

4 Alignment Tolerance Analysis

One of the key features of our latching mechanism is its
robustness to misalignment. Given an initial position (x, y)
or (r′,θ) in polar, and a random orientation γ of the blade as-
sembly about its center axis, a probability distribution over
the area of the cutout mating surface can be derived. In [17]
we demonstrated the superiority of the 2-blade latch by com-
paring a conservative model of its probability distribution of
latching successfully with that of the 3-blade latching mech-
anism in closed form. As an extension of [17], we include
all four edges as show in Fig. 8a that fully define a hole in
the pattern. In addition in contrast with our previous analy-
sis we highlight the importance of ϑ, the angle from which
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4.1 Two Blades 4 ALIGNMENT TOLERANCE ANALYSIS

Fig. 7: Failure types: a) Type 0 where no edges engage with the pattern, b) Type 1 where a single blade engages but the resulting trajectory causes the other
blades to spin outside of the pattern, and c) Type 2 where 2 blades end up in the same region or 2 blades constrain the latch to a failure case.

the edges expand radially. In the 3-blade case the probabil-
ity distributions stay the same as it cannot take advantage of
the edge defined by the outer arc, since it would simply be
constrained to only failure cases. However, the 2-blade case
does not have this issue, and its overall probability drastically
increases. In this section we first prove that a set of optimal
parameters exist and show how to obtain them for the 2-blade
case. Then we show how suboptimal parameter choices can
affect the probability distribution. Finally, the derivations for
the probability distributions for the 3-blade design are used
to draw contrast to the robustness of the 2-blade design.

To draw a fair comparison between inner and outer
alignment the maximum area for the latch is defined by
radius W , island size r, pattern angle by ϑ, and the inte-
gral of the probability distribution for successfully latching.
Successfully latching means that each blade engages edges
within different holes of the pattern. The number of failure
modes varies based on parameter choices. The types of fail-
ure modes are defined as follows:
• Type 0: No blades engage with any edge,
• Type 1: One blade engages with one edge, while the

other cannot engage with any edge, and
• Type 2: Two blades engage edges within the same hole.

4.1 Two Blades
The probability distribution for the 2-blade design de-

pends on certain parameters for both the pattern and the
latch. The pattern is defined by r, R, and ϑ, and the blades
are defined by ρ and W . The parameters ρ∗, R∗, and ϑ∗ can
be converted to only depend on r∗ and W ∗. In this section the
optimal parameters for 2-blade inner align are derived for R∗

in a bounded set. Outer align derivations follow similarly.

4.2 Inner Align
Proposition 4.1. For 2-blade inner align: ρ∗ =W ∗.

Proof. By definition of W it follows: ρ ≯W ∀ ρ,W . There-
fore, we consider if ρ < W . There exists some scaling be-
tween R and ρ such that simply increasing both by this fac-
tor would increase the overall maximum area of successfully
latching and the total probability mass. Therefore, ρ∗ = W
and vice versa following the same logic for W ∗.

Lemma 4.1. For 2-blade inner align:

R∗ ∈ [2ρ− r,
√

1
2 (r

2 cos2ϑ− r2)+4ρ2 − r(cosϑ−1)− r].

Proof. If R < 2ρ− r, then simply increasing R increases the
total probability of successfully latching. As R increases the
number of Type 0 failures strictly decreases since the maxi-
mum distance of engaging an edge increases. Some Type 0
failures get converted to Type 1 assuming small enough R.
As R increases, Type 1 failures strictly convert to successes.
Type 2 failures cannot exist in this case since 2ρ ≫ R and the
blades’ circular trajectory cannot fit within the pattern.

The upper limit
√

1
2 (r

2 cos2ϑ− r2)+4ρ2−r(cosϑ−1)−
r is the furthest distance away an engagement point can be in
order to successfully latch as seen in Fig. 8b. This point is
defined by the furthest corner of a hole and the correspond-
ing nearest small corner of the opposing hole. This distance
at most is 2ρ. This is then used to calculate the theoretical

upper bound. If R >
√

1
2 (r

2 cos2ϑ− r2)+4ρ2 − r(cosϑ−
1)−r, one blade engaging on any part of the larger arc of the
hole pattern, as seen in Fig. 8a, will result in a Type 1 fail-
ure since it can no longer reach the other hole. Decreasing R
would serve to reduce those Type 1 failures.

For our purposes, we define R∗ as the following: R̂∗ =

2ρ−r, where R̂∗ is a close approximation with bounded error
on the true R∗. When r = 0, R∗ = R̂∗ since it is independent
of ϑ and r. Furthermore, since R̂∗ is the lower bound on R∗,
the probability distribution for one half of the hole pattern
(since it’s rotationally symmetric by π) is a convex hull. This
property provides continuous area without any break near the
center as seen in Fig. 9a. From a controls perspective having
any low probability around or near the axis of pattern en-
gagement would be detrimental.

Lemma 4.2. For r ∈ (0,ρ), ϑ∗ ∈ (π

3 ,π). As r → 0, ϑ∗ → π

3 .

Proof. First, we establish that the largest distance between
any two points on the edges of a single hole d: d = 2ρ =⇒
∃ϑ∗. If d > 2ρ, Type 2 failures strictly increase since there
now is a length in which two blades can fit into the same
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4.2 Inner Align 4 ALIGNMENT TOLERANCE ANALYSIS

Fig. 8: a) Diagram showing all the parameters that define the latching pat-
tern for the two blade case. b) R+δR indicates the maximum length that R
can be. The features in green are used to calculate the length.

Fig. 9: a) Probability distribution when R is bigger than the upper bound
from Lemma 4.1. b) Probability distribution when ϑ is almost π. c)
Probability distribution when r = 0 and ϑ= 2π

3 . The area of high probability
is mostly out to the corners, which is not ideal for controllers. d) Simulation
showing how the probability distribution decreases when ϑ < ϑ∗.

hole. As d increases more successes are converted to Type
2 failures. Similarly, if d < 2ρ, the number of Type 0 and
Type 1 failures strictly increase since the trajectory of a latch
can either completely encompass one of the hole patterns or
engage with one hole pattern and encircle the other with-
out making contact. At d = 2ρ, with probability zero it will
be in an initial condition where it fails, since there are only
single points of failure along a continuous spectrum of real
numbers. Therefore, d = 2ρ is a necessary condition for the
optimality for ϑ∗.

If r = 0, then R̂∗ = 2ρ by definition. Then the longest
length d = 2ρ. That means ϑ ∈ (0, π

3 ) and is not unique.
We take ϑ∗ to be the maximum value since increasing ϑ in-
creases the overall potential to convert Type 0 and Type 1
failures to successes as the total area has increased, meaning
ϑ∗ = π

3 from it being an isosceles triangle. The other bounds
are its physical limits by definition.

Theorem 4.3. There exists a unique ϑ∗ for every R̂∗, and ϑ∗

is monotonically increasing with respect to r:
∃! ϑ∗ ∀ R̂∗, r ∈ (0,ρ).

Proof. From Lemma 4.2, when r = 0, ϑ∗ is chosen to be as
large as possible to increase the total number of potential suc-
cesses. The argument for the remaining interval of r follows
similarly to the analysis presented in Lemma 4.1.

For ϑ<ϑ∗, then d ≤ 2ρ where the total number of failures
either decrease or remain the same when ϑ is increased. Type
0 failures decrease as the area of the hole is larger. Type
1 failures remain unchanged or decrease since the possible
number of intersections in opposing holes have increased.
There will still be no change in Type 2 failures as d ≤ 2ρ

except for potentially a few instances with zero probability.
A probability distribution for this case is shown in Fig. 9d.

Now that ϑ is monotonically increasing in r and is unique,
we show that this definition is optimal. For ϑ>ϑ∗ the overall
probability distribution decreases. By adding a small angle,
δϑ to ϑ∗ as shown in Fig. 13. We can analyze what happens
when ϑ > ϑ∗. To complete this proof, a key insight was that
adding δr introduced a half circle of probabilities centered at
δr that changed from 1 to 0 as shown in Fig. 13. At the same
time, adding δϑ will convert part of a radius of probability
from 0 to 1. An under-approximation of the probability loss
δPl and over-approximation of the probability gained δPg are
as follows:

δPl = δrπρ

δPg =
(2ρ)2

2
δϑ− r2

2
δϑ .

These regions are shown in Fig. 13b. The derivation of these
equations is provided in Appendix 6. Based on this insight
the relationship between δϑ and δr is critical and defined as:

δr =
2ρsin(δϑ)

2sin(δϑ+ϑ)
.

Using this relationship we find:

δP ≤ 2δϑρ
2 − δϑr2

2
− 4δϑρ2π

2δϑ+ϑ
.

The right-hand side of this equation is negative over the fol-
lowing sets of parameters defined by physical limitations:

{r,ρ,R|0 ≤ r < ρ ≤ R ≤ 1}
{ϑ, δϑ |0 < ϑ < π, 0 < δϑ < (π−ϑ)} .

Now when substituting the appropriate upper bounds to max-
imize the right-hand side, we prove it is always negative on
these sets:

2δϑρ
2 − 4δϑρ2π

2δϑ+ϑ
(Substitute minimum r)

2− 4π

2δϑ+ϑ
(Factor out δϑ and ρ

2)

2− 4π

2π−ϑ
(Substitute maximum δϑ)

2− 4
2− ε

(Substitute επ > 0 for ϑ)

2− 4
2− ε

< 0 , ∀ ε ∈ (0,1) (Bounds on ϑ) .
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4.3 Outer Align 4 ALIGNMENT TOLERANCE ANALYSIS

Fig. 10: Simulations showing a progression of increasing ϑ. Note how when they are overlaid the regions described in Theorem 4.3 show up.

In addition, there is also a similar line of decreased proba-
bility for an arc-like area centered about the bottom corner of
the pattern. It is also caused by an increase in the likelihood
of Type 2 failures. This line, however, does not add areas
of zero probability, as there are still starting angles that lead
to successful alignments due to the rotation direction of the
latch. This covers where δr increases with δϑ.

Once ϑ is sufficiently large, increasing δϑ cannot increase
δr, as the entire upper edge of the slot already results in
failure. In this case, no new area is gained or lost on the
upper edge or half circle around the upper corner, but the
area around the lower corner still decreases as the likelihood
of Type 2 failures is still increasing. Therefore, the change
in probability brought about by a change in angle from ϑ to
ϑ+δϑ is always negative.

Intuition In Fig. 10, δϑ is much larger than the one used
in the argument for visualization purposes, which results in
regions being shaped slightly differently. However, the re-
gions of interest and arguments still follow.

The final piece of the argument relies on the independence
of R̂∗ and ϑ∗. To see this we superimposed two distributions,
one with a suboptimal R and another with a suboptimal ϑ

in Fig. 11. By rotating the superimposed image of the hole
pattern of suboptimal R over the hole pattern of suboptimal
ϑ, the overlapping regions compose to form the combined
suboptimal R and ϑ graph.

We found the approximation of R∗ with R̂∗ for inner align
did not affect performance noticeably in our practical exper-
iments in Sec. 5. We consider deriving the exact R∗ to be
outside the scope of this paper and will derive the exact so-
lution in future work.

4.3 Outer Align
The propositions, lemmas, and theorems from the previ-

ous inner align section also apply to outer align. The argu-
ments are the same in both cases since the model has been

simplified down to contact points kinematically interacting
with edges. The only difference is W because the outer align
uses the outer edges to self-align and, therefore, will be larger
than ρ. Additionally, as a design principle, r is always 0 for
outer alignment. This is because r arises from a mechani-
cal constraint dictated by the material and application. Since
outer alignment uses the outer edge, it does not need any
strength for the center island. In fact, having a center island
creates an additional constraint, resulting in an adverse ef-
fect. Even if r is small, assuming the island can hold, one
should just use inner align and scale the latch and pattern for
the same W . Therefore, for outer align r = 0 is the only case
considered.

Lemma 4.4. For outer alignment R∗ =W, and ρ∗ = R
2 .

Proof. By definition to fully constrain the latch using outer
align: R=W . If R>W , the latch cannot be fully constrained
with the pattern. If R <W , there is more than one way to be
constrained. Therefore, R∗ = W to uniquely constrain the
alignment of the latch and pattern. By following the proof
Lemma 4.1 with r = 0, the bounds converge to a single point
ρ∗= R

2 , implying R∗ = 2ρ.

Unlike in the inner align case, we can derive the optimal
set of parameters without approximating R∗. Since kinemat-
ically, the analysis of outer align follow exactly the same as
the inner align section above but instead of R̂∗ being used the
true R∗ is used. We now can claim that these are the exact
optimal parameters for outer align.

Theorem 4.5. For outer align, the summation over the prob-
ability distribution for ϑ∗ and R∗ is greatest for a given ρ

when r = 0.

Proof. By Lemma 4.1
P(ϑ ̸= ϑ

∗,R ̸= R∗|r,ρ,W )< P(ϑ ̸= ϑ
∗,R∗|r,ρ,W )
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Fig. 11: a) Independent probability distributions suboptimal R and subop-
timal ϑ overlaid. Red hole pattern is of suboptimal R. The hole pattern for
suboptimal ϑ is the same as the figure on the right. b) Probability distribu-
tion for combined suboptimal R and suboptimal ϑ. By rotating the superim-
posed hole pattern of suboptimal R over suboptimal ϑ from the graph on the
left, the overlapping regions compose to make the figure on the right.

Fig. 12: Optimal value of ϑ∗ for a given island size r.

And by Lemma 4.3
P(ϑ ̸= ϑ

∗,R∗|r,ρ,W )< P(ϑ∗,R∗|r,ρ,W )

Therefore, the probability is the greatest for ϑ∗ and R∗.

Now that we have proved optimal parameters, we de-
rive the probability distribution for those parameters. These
distributions shown in Fig. 15 are calculated by taking points
ρ away from the edge of the hole pattern.

4.4 Three Blades
For the 3-blade case, the blades must be evenly spaced for

radial symmetry, so they must be located 2
3 π apart. These

probabilities are rotationally symmetric. In order to achieve
successful latching in the 3-blade case, each blade needs
to start in separate regions outlined in Fig. 5, 6 and not be
blocked by the center island. This is because each blade must
be able to enter an engagement slot after rotating, and no two
blades can physically enter the same slot. If the center of the
latch is positioned such that an orientation exists where each
blade is located within its own region (and will enter its own
slot), then a non-zero probability exists that latching will suc-
ceed. If the probability distribution is defined over a single
region, it can be rotated by 2

3 π to get the full distribution.

The boundary with zero probability for a single region,
i.e., 0 ≤ θ < 2π

3 , is defined. For latching to be possible, when
one blade is engaged and the assembly begins to rotate, the
second blade must be able to reach the other side of the island
to engage: |r′| ≤ ρ.

Two additional constraints appear due to the center is-
land area blocking any blades from entering the engagement
slots, which would also result in zero probability. Fig. 6b,
c show how the center island creates new boundary con-
straints given by: y2 +(x− r)2 ≤ ρ2 and (y− r sin( 2π

3 ))2 +

(x− r cos( 2π

3 ))2 ≤ ρ2.

Case 1 |r′| is sufficiently small such that the trajectory of
rotation about the blade assembly’s center, shown in orange
in Fig. 6a, does not intersect the center island indicated by
the blue circle. In this case, the arc length of interest is the
smaller of α2 and α3, since it defines the first blade to vio-
late a boundary. However, there are also blades located 2

3 π

away in the other regions. The feasible arc lengths of these
blades need to be considered as well. The minimum of this
is divided by 2

3 π to give the probability.

Case 2 The trajectory when rotating about the assembly’s
center intersects the center island exactly twice as seen in
Fig. 6b, c. Depending on where the intersection occurs, the
probability distribution function p(·) varies. If the intersec-
tions are both in the same region, then it would look similar
to Fig. 6b. In this scenario, the arc lengths of l1 and l2 are of
interest, as well as how much of the other region is available
for the blade tip, which is 2

3 π away engaging. This is done
for both l1 and l2, always taking the minimum of it and its
offset. Once this is done all of the resulting arc lengths are
summed and divided by 2

3 π to give the probability.

Case 3 The intersections are split across sectors as shown
in Fig. 6c. This case is similar to Case 1 where there are
no intersections. The only exception is when α2 and α3 are
blocked by the center island.

The probability function for the 3-blade case is not con-
tinuous since it must take into account different cases and
take minimum values. In order to present the closed form
expression of p, several intermediate variables are provided
to simplify the expression, also depicted in Fig. 6:

β1 =
π

3
− sin−1

(
r′ sin(θ)

ρ

)
−θ

β2 =
π

3
− sin−1

(
r′

ρsin( 2π

3 −θ)

)
+θ

β3 =
π

3
− sin−1

(
r′ sin( 2π

3 +θ)

ρ

)
−θ

α1 = (2π− (β2 +β1))

α2 = β3 +β2.

For 3 blades p is as follows:
Case 1: r′ ≤ ρ− r (0 or 1 intersections with the island)

p = min(α2 +α3 − 2π

3 ,min(α2,α3))
Case 2: r′ > ρ− r (2 intersections with the island)
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Fig. 13: a) Geometry used for relating δϑ to δr. The red line with angle B′ and the blue line with angle β is defined to have length of 2ρ. b) By perturbing
ϑ∗ by δϑ, a net loss of probability mass occurs, despite an overestimation of the probability gained, shown by the little triangle sticking out on the upper
left of the probability defined by δϑ and 2ρ− r, and an underestimation of the probability loss, shown by the greyed out yellow arc in the upper left.

(a) θ−φ2 <
4π

3 (2 intersections in α2)
l1 = β2 −φ1
l2 = β1 −α3 −φ1
p1 = min(max(α2 +α3 − 2π

3 ,0), l1)
p2 = min(max(α2 +α3 − l1 −2φ1 − 2π

3 ,0), l2)
p = p1 + p2

(b) θ+φ2 >
4π

3 (2 intersections in α3)
p1 = min(max(α2 +α3 − 2π

3 ,0), l1)
p2 = min(max(α2 +α3 − 2π

3 − l1 −2φ1,0), l2)
p = p1 + p2

Case 3: r′ > ρ− r (1 intersection in α2 & other in α3)
θ+φ2 ≤ 4π

3 and θ−φ2 ≥ 4π

3
p1 = max(min(l1, l2)+2φ1 − 2π

3 ,0)
p2 = min(α2 +α3 − 2π

3 ,min(l1, l2))
p = max(p2 − p1,0)

4.5 Alignment Tolerance Metric Ψ

With probability p now defined, the performance of differ-
ent latch designs can be compared based on their alignment
tolerance. Ψ is a scalar quantity that can help compare rela-
tive designs by summing over p:

Ψ(W,ρ,r) =
∫

D(0,Wc)
p(r′,θ|r,ρ,W )dA (1)

where p(r′,θ|r,ρ,W ) is defined above, and c is a constant
based on the application. It is constrained to c ≤ 3, as this
will capture the entire distribution. Due to the complexity
and piece-wise nature of p, Ψ can most easily be computed
numerically. Ψ is not unitless to allow it to maintain a physi-
cal meaning for design comparisons. Comparisons are made
on a relative scale for similar designs, but there are nuanced
specifications in which looking at both p and Ψ could be
even more beneficial.

The best case offset from the center comes from the 2-
blade case using inner alignment when r approaches 0. When
r goes to 0, it becomes 3ρ∗

in. Although r can never truly equal
zero in a practical design, it can be reduced to nearly zero
if the hole pattern incorporates a stronger material such as
metal or plastic to reinforce the center island.

4.6 Monte Carlo vs Theoretical
For the 3-blade cases, our derivations are validated by

comparing Monte Carlo simulations (MC) to our closed-
form expressions (CF) as shown in Fig. 14. The left image,
Fig. 14a, shows the two probability density functions side by
side for comparison. The two are the nearly identical, ver-
ifying our CF results. Fig. 14b shows a zoomed-in view of
the bottom 3-blade patterns from Fig. 14a and increases the
number of blades in the pattern. It can clearly be seen that
the larger the number of blades in the pattern, the less robust
it is for handling misalignment. Inspecting Fig. 15 indicates
that the 2-blade design has a larger overall area of feasible
positions with a higher probability of success than any of the
other designs with more than 2 blades.

5 Design Case Study

Design Framework Using Ψ defined in (1), three different
design methods can be outlined based on known constraints
for a particular application. These can be alignment toler-
ance Ψ∗, a minimal r based on material properties, or a max-
imum W based on the size constraints for the mechanism.

The designer must first decide if 2 or 3 blades work better
for the application. The 2-blade design has a better Ψ but
uses r to align, while 3-blades has a worse Ψ but does not
use r for alignment. The flow charts shown in Fig. 16 show
the process for picking the best design given 2 of the 3 pa-
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Fig. 14: Depicts p where brighter colors represent higher probabilities of success: a) Monty Carlo (MC) experiments and closed-form (CF) expressions for
the 3-blade design, with r values of 0, 0.2, 0.5, and 0.7. b) Zoomed-in figures of our MC experiments for 4, 5, and 10 blades with r values of 0.2, 0.5, and
0.7, where the 3-blade case was added to show how increasing the number of blades decreases the misalignment tolerance.

Fig. 15: Varying 2-blade probability distribution on the left versus 3-blade
design on the right. As one can clearly see, the 2-blade design is much more
robust than the 3-blade design.

rameters. For the 3-blade design, inner align is similar to that
of the 2-blade’s.

Using Fig. 16a, a viable design for both 2-blade and 3-

blade mechanisms for use on LIMMS was developed. We
first conducted experiments and determined r ≥ 8 mm based
on the strength of cardboard. Since corrugated cardboard is
an orthotropic composite material, patterns were cut with the
flutes oriented the same way to eliminate effects from the
material anisotropic properties [18].

Verification Experiments To verify the results of our de-
sign methodology, both the 2-blade and 3-blade latches were
built and tested using two different mating surfaces. The first
surface tested was cardboard, which is required for the last
mile delivery problem. The cardboard chosen for experi-
ments was C-flute cardboard with a thickness of 4.4 mm,
chosen to best simulate the average properties of common
shipping boxes. The second surface was acrylic, which is
transparent and has a lower coefficient of friction. This was
to explore the option of integrating a plastic insert with the
cardboard pattern for reinforcement and to study the mechan-
ical behavior of the latch as it rotates. A set of stills from the
2-blade testing on acrylic can be seen in Fig. 17. In this fig-
ure, the blue point denotes the center of the hole pattern, and
the orange point marks the center of the latch. The red lines
indicate the edges of the hole pattern that contact the blades.
In Fig. 17a, the hole pattern and the latch are significantly
misaligned. As the latch is rotated, the blade tip enters the
slot, and the latch self-aligns with the hole pattern.

The blade mechanisms were attached to YORI, a 5-DoF
robotic arm [19], to simulate the mechanism’s behavior when
attached to the LIMMS platform. YORI was operated using a
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Fig. 16: Design process derived for 3 separate desired design specifications
using defined metric Ψ. The process is split based on starting parameters:
a) W and r, b) W and Ψ∗, and c) Ψ∗ and r.

simple PID (proportional-integral-derivative) controller with
minimal gain tuning. In these tests, the latching mechanisms
were able to align and hold as expected, as shown in video1.

Performance Comparison The 2-blade LIMMS latch
demonstrated superior alignment capabilities compared to
existing latching and alignment methods. While the scale
and mechanical approach varies widely between examples,
we can still compare alignment performance by designating
the connector diameter Dc and connector thickness Tc, and
characterize misalignment distance as a ratio of these geome-
tries. The LIMMS prototype latch uses parameters ρ = 35

Fig. 17: Two-blade latching with an acrylic mating surface. The blue point
is the center of the hole pattern, and the orange point marks the center of the
latch. The red lines depict the hole pattern edges that contact the blades.

mm, W = 40 mm, Dc = 80 mm, and Tc = 36 mm from the
base to the blade tips.

It is important to note that most existing latching methods
use male and female hole patterns with identical diameters.
For LIMMS, however, the connector diameter Dc does not
connect into a hole pattern of the same diameter. The hole
pattern diameter Dh is 140 mm, since the hole pattern on
the cardboard does not have the same size constraints as the
connector. This significantly increases the area of acceptance
for successful latching. Additionally, for the following com-
parisons, we define displacement in the X or Y direction as
parallel to the mating surfaces, while displacement in Z is the
perpendicular distance between the mating surfaces.

Most existing literature does not include an analysis of tol-
erance to misalignment, but the few examples that do can
only tolerate a very small amount of misalignment. For ex-
ample, the HiGen connector, when misaligned in X or Y by
0.035D, experienced a ∼65% drop in success rate [7]. It also
has a tolerance range of 0.33Tc in Z with a ∼50% drop in
success rate. Comparatively, our data and experiments show
that the LIMMS prototype latch can be misaligned by up to
1.31Dc and 0.83Tc with a 100% success rate. This is a toler-
ance increase of 37x and 2.5x respectively.

For angular misalignments, the LIMMS latch’s capabili-
ties far exceed that of existing latches, with a 100% success
rate at any angle about the Z-axis, even when considerably
displaced in X-Y. This is thanks to the blade design, which
features point contacts that can engage at any location in the
slots. By comparison, the HiGen connector experiences a
∼75% drop in success when displaced up to 12◦. Other non-
radial designs exhibit even lower tolerances, up to 1.7◦ [13].

As a final note, the latch prototype used in these experi-
ments does not represent the fully optimal case. These per-
formance metrics can be enhanced even further by changing
some aspects of the design. The area of acceptance in X-
Y could be increased by setting ρ = W , which would allow

12 JMR-22-1509 Fernandez, Gessow, Quan, Hong



REFERENCES

the blade tips to engage even when displaced by a distance
equal to the entire connector diameter. The prototype could
reach a theoretical misalignment tolerance of 3ρ∗

in or 1.5Dc
with these changes. While not the focus of this paper, toler-
ance to Z-axis and angular misalignments can be improved
by increasing the blade length or angle of attack.

6 Conclusion

In this paper, we analyzed a class of self-aligning rota-
tional latching mechanisms and manufactured prototypes for
use on LIMMS. The probability distributions for both 2-
blade and 3-blade designs were formally derived and veri-
fied using MC and CF. By inspection of Fig. 14, it is clear
that the 2-blade design outperforms the others in terms of
self-alignment. As the number of blades increased, the rate
of success decreased overall. From the probability distri-
bution, a new metric Ψ was introduced to compare relative
designs and quantify alignment tolerance. This metric also
demonstrated that the 2-blade latching mechanism achieves
self-alignment more consistently than the other designs. De-
pending on the specific application, using both Ψ and the
probability distribution may be preferable when designing
the latch as there may be subtle trade-offs between robust-
ness in (x,y) and θ. Our analysis also showed that the 2-
blade latch can be misaligned as far as 3ρ∗

in away and still
align successfully with the hole pattern.

Our analyses were formalized as a design process for this
type of latching mechanism to find optimal design specifi-
cations for specific constraints as laid out in Fig. 16. We
then used this methodology to manufacture both a 2-blade
and 3-blade latching mechanism. The theory was then tested
using these mechanisms with a robotic arm holding a single
off-center position with PID control. The results of these ex-
periments with two different surface materials were consis-
tent with our theory, and the prototype demonstrated superior
alignment capabilities compared to existing methods.

Future Work The theory described in this paper serves as
an excellent basis for creating an optimal latch design for the
LIMMS system. We will further continue to develop tighter
bounds for R∗ in the 2-blade inner align design. Nonetheless,
the proposed system provides reliable alignment, which is
vital for LIMMS as a delivery platform. However, its align-
ment capabilities could be enhanced even further by explor-
ing more topics, such as, trying to optimize the arcs of the
hole pattern such that they do not have to be circular. Most
notably, we plan on studying the effects of blade length and
angle of attack for better tolerance to Z-axis and angular dis-
placements. Another topic to explore would be the develop-
ment of a generalized p function for n blades to further study
the effects of redundancies and constraints. More practically,
we plan on studying the dynamics of these latches in order
to develop controllers that use their robustness such that fast
latching is possible with minimal damage to the box.

In the immediate future, methods for locking the rotation
after torque is no longer being applied will be explored, most
likely through an actuated locking mechanism. When fully
engaged, the latching pattern itself provides geometries that

constrain 5 out of the 6 DoF, and the last degree of free-
dom (Z-axis rotation) must be fully constrained to form a
rigid connection. Since the blades also prevent counter-
clockwise rotation in Z, the locking mechanism only needs
to prevent clockwise rotation in Z. One option currently be-
ing explored is using small reverse blades that deploy after
successful alignment to prevent clockwise rotation. A worm
drive will allow these blades to remain locked in place with-
out supplying continuous power. With these improvements,
this mechanically intelligent latching mechanism could al-
low LIMMS to quickly and reliably perform its operations
and enhance mobile delivery operations in the future.

Acknowledgements Special thanks to LG Electronics for
sponsoring this research and providing useful feedback.

References

[1] Zhu, T., Fernandez, G., Togashi, C., Liu, Y., and Hong,
D., 2022. “Feasibility study of limms, a multi-agent
modular robotic delivery system with various locomo-
tion and manipulation modes”. In 2022 19th Interna-
tional Conference on Ubiquitous Robots (UR), IEEE.

[2] Gökler, M. I., and Koc, M. B., 1997. “Design of an
automatic tool changer with disc magazine for a cnc
horizontal machining center”. International Journal of
Machine Tools and Manufacture, 37(3), pp. 277–286.

[3] Hays, A. B., Tchoryk Jr, P., Pavlich, J. C., Ritter, G. A.,
and Wassick, G. J., 2004. “Advancements in design of
an autonomous satellite docking system”. In Spacecraft
Platforms and Infrastructure, Vol. 5419, SPIE, pp. 107–
118.

[4] Gampe, F., Priesett, K., and Bentall, R., 1985. “A
modular docking mechanism for in-orbit assembly and
spacecraft servicing”. In NASA. Ames Research Cen-
ter 19th Aerospace Mech. Symp.

[5] Mccown, W., and Bennett, N., 1988. “Structural latches
for modular assembly of spacecraft and space mecha-
nisms”. In NASA. Langley Research Center, The 22nd
Aerospace Mechanisms Symposium.

[6] Sproewitz, A., Billard, A., Dillenbourg, P., and Ijspeert,
A. J., 2009. “Roombots-mechanical design of self-
reconfiguring modular robots for adaptive furniture”.
In 2009 IEEE international conference on robotics and
automation, IEEE, pp. 4259–4264.

[7] Parrott, C., Dodd, T. J., and Groß, R., 2014. “Hi-
gen: A high-speed genderless mechanical connec-
tion mechanism with single-sided disconnect for self-
reconfigurable modular robots”. In 2014 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 3926–3932.

[8] Liu, C., Lin, Q., Kim, H., and Yim, M., 2021. “Smores-
ep, a modular robot with parallel self-assembly”. arXiv
preprint arXiv:2104.00800.

[9] Murata, S., Yoshida, E., Kamimura, A., Kurokawa,
H., Tomita, K., and Kokaji, S., 2002. “M-tran: Self-
reconfigurable modular robotic system”. IEEE/ASME
transactions on mechatronics, 7(4), pp. 431–441.

[10] Yim, M., Duff, D. G., and Roufas, K. D., 2000. “Poly-

13 JMR-22-1509 Fernandez, Gessow, Quan, Hong



REFERENCES REFERENCES

bot: a modular reconfigurable robot”. In Proceed-
ings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), Vol. 1,
IEEE, pp. 514–520.

[11] Fukuda, T., Ueyama, T., Kawauchi, Y., and Arai, F.,
1992. “Concept of cellular robotic system (cebot) and
basic strategies for its realization”. Computers & elec-
trical engineering, 18(1), pp. 11–39.

[12] Nilsson, M., 2002. “Heavy-duty connectors for self-
reconfiguring robots”. In Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (Cat.
No. 02CH37292), Vol. 4, IEEE, pp. 4071–4076.

[13] Sproewitz, A., Asadpour, M., Bourquin, Y., and
Ijspeert, A. J., 2008. “An active connection mechanism
for modular self-reconfigurable robotic systems based
on physical latching”. In 2008 IEEE International Con-
ference on Robotics and Automation, IEEE, pp. 3508–
3513.

[14] Cruijssen, H., Ellenbroek, M., Henderson, M., Pe-
tersen, H., Verzijden, P., and Visser, M., 2014. “The
european robotic arm: A high-performance mechanism
finally on its way to space”. In 42nd Aerospace Mech-
anisms Symposium.

[15] Yip, H. M., Wang, Z., Navarro-Alarcon, D., Li, P., Liu,
Y.-h., and Cheung, T. H., 2015. “A new robotic uter-
ine positioner for laparoscopic hysterectomy with pas-
sive safety mechanisms: Design and experiments”. In
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, pp. 3188–3194.

[16] Eckenstein, N., and Yim, M., 2012. “The x-face:
An improved planar passive mechanical connector for
modular self-reconfigurable robots”. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IEEE, pp. 3073–3078.

[17] Fernandez, G. I., Gessow, S., Quan, J., and Hong, D.,
2022. “Self-aligning rotational latching mechanisms”.
In International Design Engineering Technical Confer-
ences and Computers and Information in Engineering
Conference, American Society of Mechanical Engi-
neers.

[18] Aboura, Z., Talbi, N., Allaoui, S., and Benzeggagh, M.,
2004. “Elastic behavior of corrugated cardboard: ex-
periments and modeling”. Composite structures, 63(1),
pp. 53–62.

[19] Noh, D., Liu, Y., Rafeedi, F., Nam, H., Gillespie, K.,
Yi, J.-s., Zhu, T., Xu, Q., and Hong, D., 2020. “Mini-
mal degree of freedom dual-arm manipulation platform
with coupling body joint for diverse cooking tasks”.
In 2020 17th International Conference on Ubiquitous
Robots (UR), pp. 225–232.

Appendix

Derivation of the δr and δϑ Relationship All defini-
tions for angles and side lengths are provided graphically in
Fig. 13. We note that γ = ϑ as they form an isosceles trian-
gle with β. Then we can calculate β using β+ 2ϑ = π and

similarly β′ using the new triangle defined by ϑ+δϑ:
β = π−2ϑ

β
′ = π−2(ϑ+δϑ) .

Let δβ= β−β′. Since the red-green-blue triangle is isosceles
as both the red side and green side are 2ρ, ω is defined as:

ω =
π−δβ

2
.

Next δg can be computed using the law of sines:

δg = sin(δβ)
2ρ

sin(ω)
.

Finally δr can be calculated using the green-black-red trian-
gle and the law of sines:

δr =
sin(ω)δg

sin(π− (ω− γ)−ω)
,

Where the denominator is the angle opposite δγ in the green-
black-red triangle.

Derivation of δPl and δPg The insight for defining δr can
be seen in Fig. 13b. If the circle defined by the path of the
blade tips passes through δr then the first point will engage
such that the second point will also end up in the same cutout,
resulting in a Type 2 failure. One example of this is the or-
ange circle with the green points indicating the current and
future locations of the blade tips in Fig. 13b. If δr is suffi-
ciently small, this area can be calculated as δrπρ, which is
shown in the shaded region of the figure. At the same time
some area is being converted from probability 0 to proba-
bility 1 as now a blade tip can reach the upper edge of the
cutout removing some Type 0 failures. This area is shown
as the yellow sliver sticking out of the probability mass next
to the shaded region. This area can be calculated by sub-
tracting two triangles: the smaller one defined by length r
and width rδϑ from the larger one defined by length 2ρ and
width 2ρδϑ. This is an upper bound on the area of prob-
ability mass added as the yellow sliver sticking out clearly
should not have been converted from probability 0 to 1 since
it is at least ρ away from δr. δPl is defined as the probability
region that goes from p = 1 to p = 0.
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