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Abstract

Three-body dispersion interactions are much weaker than their two-body counter-

part. However, their importance grows quickly as the number of interacting monomers

rises. To explore the numerical performance of correlation methods for long-range three-

body dispersion, we performed calculations on eight very simple dispersion-dominated

model metal trimers: Na3, Mg3, Zn3, Cd3, Hg3, Cu3, Ag3, and Au3. One encouraging

aspect is that relatively small basis sets of augmented triple zeta size appear to be ad-

equate for three-body dispersion in the long-range. Coupled cluster calculations were

performed at high levels to assess MP3, CCSD, CCSD(T), empirical density functional

theory dispersion (D3) and the many-body dispersion (MBD) approach. We found that

1



the accuracy of CCSD(T) was generally significantly lower than for two-body interac-

tions, with errors sometimes reaching 20% in the investigated systems, while CCSD

and particularly MP3 were generally more erratic. MBD is found to perform better

than D3 at large distances, whereas the opposite is true at shorter distances. When

computing reference numbers for three-body dispersion, care should be taken to appro-

priately represent the effect of the connected triple excitations, which are significant in

most cases and incompletely approximated by CCSD(T).

1 Introduction

Non-covalent interactions are omnipresent in molecular systems. They influence crucial pro-

cesses like protein folding, enantioselective reactions or molecular crystallization. The pair-

wise contributions between two molecules or two molecular fragments generally dominate

the total non-covalent energy, since three- and higher-body non-additive contributions decay

quickly with distance and individually represent smaller energies. However, as the number

of involved monomers per unit volume increases like in large biopolymers, in liquids or in

the solid phase, the effect of many-body interactions accumulates quickly and becomes non-

negligible.1–5 Since electrostatic energies are strictly pairwise additive, the main components

of many-body interaction energies are many-body polarization and many-body dispersion.

Many-body polarization arises from the wavefunction response to permanent electrostatic

moments and Pauli repulsion between more than two monomers. Mean-field methods al-

ready qualitatively take into account both phenomena. By contrast, many-body dispersion

purely arises from electronic correlation and requires methods including appropriate elec-

tronic correlation effects. The relative importance of polarization and dispersion obviously

depends on the system under study but dispersion cannot a priori be neglected.

Different contexts call for different definitions for many-body effects, depending on the

problem at hand: a body can be a single electron, a single atom or a molecular monomer.

Recent work on the benzene crystal lattice energy by Kennedy et al.6 and by Yang et al.,7
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defining a body as a single molecule, found that many-body effects contributed about 10%

of the lattice energy. This is in line with results from Tkatchenko and coworkers who ap-

proximated many-body dispersion contributions for 23 molecular crystal lattice energies,

defining this time each body as a single atom.8 While benchmarking dispersion-corrected

Density Functional Theory (DFT) methods on the S12L set of very large molecular com-

plexes, Grimme and coworkers found that three-body dispersion contributed 2 to 15% of the

total interaction energy.9 Approximate estimations of three-body interatomic dispersion in

even larger systems pointed to extremely large contributions, reaching 51% in the case of

graphene bilayers.10 These last two examples also define an atom as a single body, which

yields larger three-body contributions than defining a molecule as a single body since the

number of contributing trimers increase. Solvation energies and in particular aggregation

phenomena are also very sensitive to the inclusion of many-body dispersion.11

Since many-body dispersion effects only become important in large systems where the

necessary high-level electron correlation treatments are impractical, empirical expressions

have been developed and used for most of the estimates mentioned above. In particular,

the D3 method12,13 includes a correction for three-body dispersion based on the Axilrod-

Teller-Muto formula.14–16 D3 approximates the necessary C9 coefficients from monomer’s

C6 coefficients, however other methods exist to directly compute C9 ab initio.10,17 Recently,

Tkatchenko et al. developed the Many-Body Dispersion (MBD) method that treats atoms

as coupled quantum harmonic oscillators. MBD takes into account three- and higher-body

dispersion (for atomic bodies) while damping the Coulomb potential in the short range to

avoid double counting when combined with density functional approximations.18,19

Naturally, the accuracy of these empirical expressions for dispersion should be assessed.

Unfortunately, many-body interactions were the subject of much less attention than two-

body interactions and in particular reliable benchmarks for many-body dispersion are scarce.

Recently, the 3B-69 set partly remedied the situation by providing accurate CCSD(T) in-

teraction energies for trimers of 23 organic molecules, each in three different geometries
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extracted from various crystal structures.20 Other examples of highly accurate three- and

higher-body interaction energy computations include a study of nucleic acid tetramers,21

accurate computations of several lattice energies22 and high-level potential energy surfaces

of the trimers of Ne,23 water24,25 and CO2.26,27 The existing data has in our opinion two

shortcomings for benchmarking three-body dispersion: the systems considered are bound by

a mixture of many-body dispersion and polarization, and CCSD(T) is the highest level of

theory employed. The accuracy of CCSD(T) has been studied in detail for dimer interac-

tions28,29 where it reaches an accuracy of 1-2% with respect to Full Configuration Interaction

(FCI) for typical closed-shell molecules. Computations of three-body interactions beyond

CCSD(T) only exist for a few systems, specifically (H2)3,30 He3 31 and Ar3.32,33 In the He3

case, the difference between FCI and CCSD(T) is significant and mostly originates from the

neglect of the full triples effect present in CCSDT. Similar results were also found for Ar3

where the difference between CCSD(T) and CCSDT reaches 7% of the three-body energy for

an equilateral triangular geometry at 7.0 Bohrs interatomic separation.33 We note that ref-

erence lattice energies including many-body effects can also be extracted from experimental

data, but only after correcting for vibrational contributions, which introduces an additional

source of uncertainty.8,34 The data from noble gas studies indicate that CCSD(T) may not

be sufficient to reach benchmark accuracy for three-body interactions. Since Hartree-Fock

models three-body repulsion and polarization reasonably well (for example in water),24 most

of the challenge arises in describing three-body dispersion. It would thus be highly desirable

to obtain high-level reference interaction energies for different models of dispersion-bound

trimers, to explore and quantify the generality of CCSD(T) errors in the long range where

only three-body dispersion is expected to contribute.

Since two-body dispersion can be viewed as simultaneous electronic excitations on two

monomers,14 it seems that three-body dispersion should arise from simultaneous electronic

excitations on three monomers. In Section 2, we will clarify which three-body dispersion

contributions exist at different levels of Møller-Plesset perturbation theory through an alge-
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braic analysis instead of a previous diagrammatic analysis.35 In Section 3, we will present

very simple model systems bound purely by dispersion and detail the electronic structure

methods used to quantify the three-body part of their interaction. The results are presented

and discussed in Section 4, and Section 5 contains our conclusions.

2 Theory of 3-body dispersion

In the present paper, we define the non-additive three-body interaction energy ∆E3-body for

three monomers A, B and C through the usual many-body expansion:

∆E3-body = ∆EABC −∆EAB −∆EAC −∆EBC (1)

where ∆EXY is the interaction energy of monomer X with monomer Y and is defined as:

∆EXY = EXY
tot − EX

tot − EY
tot (2)

where EZ
tot is the total energy of system Z. The trimer interaction energy ∆EABC is

∆EABC = EABC
tot − EA

tot − EB
tot − EC

tot (3)

All total energies for monomers, dimers and trimers are computed in the trimer basis set

to mitigate the effects of Basis Set Superposition Error (BSSE), following recommendations

from previous work.36,37 Here, monomers A, B and C are pairwise long-ranged, and thus

∆E3-body is associated with long-range three-electron processes. In the next Section, we in-

troduce our benchmark systems that have been chosen so that ∆E3-body is largely dominated

by the dispersion component ∆E3-body
disp .

The emergence of many-body interactions in intermolecular perturbation theory and su-

permolecular perturbation theory has been studied in detail previously,38–40 including using
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diagrammatic analysis of the various perturbation orders.35 We present here an alterna-

tive algebraic analysis of Møller-Plesset perturbation theory that contributes to building an

intuitive understanding of the emergence of three-body dispersion in electronic structure

methods. By analogy with long-range perturbation theory expressions for two-body disper-

sion,14 we could expect three-body dispersion to involve simultaneous electron excitations on

three monomers. Naively, we may expect that three-body dispersion only arises in electronic

structure methods including triply excited determinants, which first enter at the fourth order

of Møller-Plesset perturbation theory. This would make three-body dispersion considerably

more difficult to treat than two-body dispersion. We start our analysis with the simplest

contribution to the correlation energy, MP2.

It is easy to verify that MP2 contains exactly no three-body dispersion:

Ecorr
MP2 =

〈
Ψ(0)

∣∣∣V̂ ∣∣∣Ψ(1)
〉

(4)

=
1

2

∑
ijab

〈ij|ab〉 (〈ij|ab〉 − 〈ji|ab〉)
εi + εj − εa − εb

(5)

where
〈
Ψ(0)

∣∣ is the unperturbed Hartree-Fock wavefunction,
∣∣Ψ(1)

〉
the first-order correction

to the wavefunction, V̂ the electron correlation operator, εp the energy of orbital p, i and

j label occupied orbitals whereas a and b label virtual orbitals. In the long range, the

exchange integral 〈ji|ab〉 vanishes. The Coulomb integrals 〈ij|ab〉 where both i and j are on

the same monomer give rise to intramonomer correlation, as excitations from one monomer

to the other also vanish exponentially. Thus, the non-vanishing integrals corresponding to

dispersion have indices i and a on the first monomer and indices j and b on the second

monomer. Each term in the MP2 correlation energy involves at most two monomers and

the long-range interaction energy of the trimer ∆EABC is strictly pairwise additive, i.e.

∆EABC = ∆EAB + ∆EAC + ∆EBC . The non-additive three-body energy ∆E3-body vanishes.

We emphasize that this analysis is only valid when the non-additive polarization of the SCF

orbitals is negligible, i.e. in the long range and in the absence of permanent electrostatic
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moments.

Turning to MP3, we can write the corresponding correlation energy in two ways:

Ecorr
MP3 =

〈
Ψ(0)

∣∣∣V̂ ∣∣∣Ψ(2)
〉

(6)

=
〈

Ψ(1)
∣∣∣V̂ ∣∣∣Ψ(1)

〉
− E(1)

〈
Ψ(1)|Ψ(1)

〉
(7)

where E(1) is the first-order Møller-Plesset energy which is already included in Hartree-Fock

and
∣∣Ψ(2)

〉
is the second-order correction to the wavefunction.

∣∣Ψ(2)
〉
can also be interpreted

as a first-order correction to
∣∣Ψ(1)

〉
. Since

∣∣Ψ(1)
〉
can be written as a linear combination

of doubly excited Slater determinants weighted by amplitudes tabij , Equation (6) represents

the relaxation of these amplitudes from their MP2 values. Alternatively, Equation (7) ex-

presses the MP3 energy as a coupling between all the doubly excited configurations in
∣∣Ψ(1)

〉
mediated by the correlation operator V̂ .

In any case, the MP3 energy still only involves doubly excited Slater determinants.41–43

However, this energy does contain a three-body term, as previously shown diagramatically.35

Starting from the fully expanded unrestricted MP3 energy, as presented for example by Szabo

and Ostlund,43 we neglect all terms that are pairwise additive (those involving only one or two

monomers) and all terms that decay exponentially with distance. This effectively imposes

the constraint that occupied orbitals i, j and k must be on three different monomers, and

they must be excited to a virtual orbital on the same monomer. We are then left with the

following term:

E3-body,disp
MP3 =

∑
ia∈A

∑
jb∈B

∑
kc∈C

PABC
〈ij|ab〉 〈jk|bc〉 〈ik|ac〉

(εa + εb − εi − εj) (εa + εc − εi − εk)
(8)

where a, b and c label virtual orbitals in which electrons are excited from orbitals i, j

and k respectively in the above formula. The permutation operator PABC sums over all

permutations of index pairs ia, jb and kc while preserving ordering within each pair. Thus

MP3 does contain a non-additive three-body contribution, that will be purely dispersive in
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the limit of negligible non-additive SCF polarization of the orbitals and vanishing permanent

electrostatic moments. Note that the three-body dispersion in this equation can be both

repulsive and attractive, as found by previous numerical studies.44 Rewriting it in terms of

MP2 doubles amplitudes we have:

E3-body,disp
MP3 =

∑
ia∈A

∑
jb∈B

∑
kc∈C

PABCt
ab
ij t

ac
ik 〈jk|bc〉 (9)

which reveals the coupling between doubles amplitudes evoked by Equation (7). We can

interpret the MP3 three-body dispersion as an interaction between pairwise correlations

that introduces a correction to the MP2 doubles amplitudes. Finally, since the long-range

integrals and first order amplitudes decay no slower than R−3 with inter-monomer separation

(e.g. arising from the dipole of the charge-less (ia| product interacting with the |jb) dipole),

we see from Equation (8) that three-body dispersion decays as R−9 with separation. Three-

body dispersion will also be present in CCSD through two different effects: the infinite-order

relaxation of the doubles amplitudes, and the appearance of disconnected triples in the

residual equations which indirectly contribute to the total energy.

The above analysis demonstrates that doubles amplitude relaxation and disconnected

triples contribute to three-body dispersion. However, two-body dispersion is exclusively

associated with connected doubles, thus the role of connected triples in three-body disper-

sion should be elucidated. The first order of Møller-Plesset perturbation theory to contain

connected triples is MP4. In that case, the non-additive triples term that survives in the

long-range interaction of three monomers is:

E3-body,disp
MP4,T = − 1

36

∑
ia∈A

∑
jb∈B

∑
kc∈C

PABC

∣∣wabc
ijk

∣∣2
εa + εb + εc − εi − εj − εk

(10)

where wabc
ijk was defined by Krishnan at al.45 and is not further explicated here. Equation (10)

shows that the perturbative connected triples contribution is strictly attractive. However,

once coupling and relaxation effects on the doubles and singles amplitudes are fully included
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as in CCSDT, the sign of the total three-body connected triples contribution can change.

In conclusion, three-body dispersion first arises as a recoupling of double excitation am-

plitudes, and not as triple excitations.35 However, three-body dispersion still arises at a

higher order of Møller-Plesset perturbation theory than two-body dispersion, and thus we

expect higher-order methods to be necessary for an accurate description. We will explore in

this work the relative importance of connected triples in three-body dispersion and examine

the performance of MP3, CCSD, and the most popular perturbative approximation to full

triples, CCSD(T), on small model systems.

3 Systems and methods

Our model systems need to satisfy several constraints: (i) only dispersion should contribute

to interaction energies in the long range ; (ii) our models should be small enough to be

treated by (very) high-level correlated wavefunction methods ; (iii) our models should be

very polarizable to maximize the magnitude of dispersion interactions and hence three-body

dispersion. To satisfy constraints (i) and (ii), we choose to study trimers of atoms with a

spherically symmetric ground state. Constraint (iii) led us to consider eight different atomic

trimers: Na3, Mg3, Zn3, Cd3, Hg3, Cu3, Ag3, Au3. These elements display very large static

polarizabilities,46 which are connected to large dispersion energies through the frequency-

dependent polarizabilities.14 Moreover, they all have a filled or half-filled outer s shell which

ensures that only dispersion contributes in the non-overlapping regime. In all cases, we only

considered trimers in an equilateral triangular geometry to facilitate our interpretation and

reduce the total number of necessary monomer and dimer computations to extract three-

body dispersion energies.

To reduce computational expenses further and gain insight into one-, two- and many-

electron intramonomer processes in dispersion, we froze a number of core electrons in each

trimer. Initially, trimers of Na, Cu, Ag and Au only have one active electron per atom in
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the correlation treatment while trimers of Mg, Zn, Cd and Hg have two active electrons per

atom. In all these cases, the active electrons are in s shells. The use of such large cores

precludes us from obtaining accurate total interaction energies for these trimers, yielding

instead models for three-body dispersion interactions of very polarizable s electrons in various

effective potentials. To probe the generality of our conclusions, we also performed selected

computations with smaller frozen cores: Na and Mg trimers with a [He] core, Cu with an

[Ar] core and Cd with a [Kr] core. We chose a triplet spin state for dimers of open-shell

monomers and a quartet spin state for trimers of open-shell monomers. In these cases, the

underlying SCF computations were unrestricted. Dimers of metals near their equilibrium

distance tend to display significant multireference character, which in turn degrades the

quality of CCSD(T) energies. For example, CCSD(T) error varies between 17 and 20% in a

recent study of Mg2 using large basis sets.47 However, as the interatomic separation increases

the CCSD(T) errors on the dimer decrease significantly. In our case, they vary between 7

and 9% for both large and small cores in the case of Mg (see Supporting Information Tables

S13-S15, S21 and S22). Only Zn has similar errors while all other systems have lower errors.

Thus, at the distances examined in this work, the trimers do not exhibit strong multireference

character, and CCSD(T) offers a quantitatively reasonable description of the corresponding

dimer interactions in most cases. Noble gas trimers were not considered as their lower

polarizability reduces the magnitude of dispersion interactions, especially in the long range.

Moreover, very accurate data for He3 31 and Ar3 32,33 already exist in the literature.

Even though the considered models are very polarizable, the associated three-body dis-

persion energies are still extremely small and the default numerical thresholds in quantum

chemistry softwares are insufficient to obtain total energies to the needed numerical accuracy.

In the present work, we generally set integral sieving thresholds to 10−14 and converged all

energies to an accuracy of 10−12 Hartrees. In some cases, SCF convergence was still difficult

with these thresholds and it was necessary to increase the integral sieving threshold to 10−16.

Computations were performed using Psi4,48 Q-Chem49 and MRCC.50–52 In the case of
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Q-Chem, we noticed that the use of symmetry would sometimes make the results deviate

from what was obtained with the other programs, and we thus deactivated symmetry in

these electronic structure computations. We believe this originated in minute adjustments

to either the orbitals or the integrals that affected the very small three-body dispersion

energies. No such behavior seemed to occur in Psi4 or MRCC.

We computed all trimers, dimers and monomers in the basis set of the trimer to correct

for BSSE.36,37 We did not consider any of the more refined schemes to correct for BSSE37,53

for two reasons: we believe our chosen basis set to be of a sufficient quality as supported

by data presented later in this study, and the large distance between monomers limits the

magnitude of the BSSE since basis functions on distant centers have a small influence on a

monomer energy. All systems were computed with MP2, MP3,41,54 CCSD,55 CCSD(T)56 and

CCSDT,57 which becomes equivalent to Full Configuration Interaction (FCI) for trimers with

only three active electrons. Additional computations were performed for the two-electron

monomer systems at the CCSDT(Q)58 level to assess the performance of CCSDT. In the

case of Mg3 with two active electrons per monomer we pushed further to CCSDTQ59,60

and CCSDTQ(P)52 to assess the convergence of the excitation level. Computations were

performed with triple zeta diffuse basis sets, namely aug-cc-pVTZ61–63 (AVTZ) for Na3 and

Mg3, def2-TZVPPD64,65 without Effective Core Potential (ECP) for Cu3 and Zn3 and with

the appropriate def2-ECP66 for Ag3, Au3, Cd3 and Hg3. The basis set convergence was

estimated by comparison with aug-cc-pVQZ (AVQZ) results for Mg3 and Na3 with large

frozen cores, leaving respectively one and two active electrons per monomer.

Finally, we examined empirical methods correcting for three-body dispersion on the

trimers for which we performed small-core computations (Na3, Mg3, Cu3 and Cd3). In

particular, we computed the D3 dispersion term12 that is based on the Axilrod-Teller-Muto

expression14–16 with a zero-damping function. The parameters of the three-body dispersion

damping function do not depend on the functional used in conjunction with D3. We also

tested MBD which obtains screened dispersion energies from the solution to the Schrödinger
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equation for a system of coupled quantum harmonic oscillators.18 MBD does not include

a damping function, but instead modifies the Coulomb potential to avoid double counting

of the correlation energy at short distances. Here we use the parametrization of MBD for

PBE0, however in the long-range regime the results should be identical with other existing

parametrizations. The appropriate stand-alone programs were used to obtain MBD67 and

D368 numbers.

4 Results and discussion

We organize the discussion of our results in three sections, correlating an increasing number

of electrons. In Section 4.1 we present our results for trimers with only one active electron

per monomer in the correlation treatment. For these, reference CCSDT energies correspond

to FCI. In Section 4.2 we add intramonomer correlation effects since two electrons are active

per monomer. In these cases, we chose CCSDT(Q) to provide reference energetics, after

performing some test calculations at the CCSDTQ and CCSDTQ(P) levels. Finally we

consider fully many-body intramonomer correlation effects in Section 4.3 on the basis of

CCSDT reference results. We emphasize that our goal here is not to obtain benchmarks

for the true interaction energies of these trimers, but rather to examine the accuracy of

various methods in reproducing high-level energies for three-body dispersion between highly

polarizable model systems.

4.1 One-electron monomers

In this section, we examine trimers of Na, Cu, Ag and Au where all electrons are frozen except

for the outermost s shell for each monomer, which contains one electron. The spherical

electronic structure ensures that the only contribution to long-range interaction energies is

dispersion. In addition, there is no intramonomer correlation effect, thus ensuring that the

correlation energy directly corresponds to dispersion in the long range. This allows us to
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examine directly the effect of various correlation treatments on pure three-body dispersion.

Table 1: Percent relative errors for three-body dispersion energies computed with AVTZ
compared to an AVQZ reference for the Na3 equilateral triangle at 6.0, 10.0 and 15.0 Å
distance.

Method 6.00 Å 10.0 Å 15.0 Å
MP3 -0.58% -0.40% 0.34%
CCSD -1.11% 0.63% 0.24%

CCSD(T) -2.05% 1.67% 0.34%
CCSDT -1.95% 2.80% 0.47%

We first provide data supporting our basis set choice, since AVTZ is usually not sufficient

to converge intermolecular interactions at the coupled-cluster level.47 In Table 1, we report

the percent relative error of our AVTZ results with respect to AVQZ computations for

Na3. At all distances and for all methods, the error is at most 3% and often significantly

lower. Dispersion energies are in general expected to converge faster than total correlation

energies with respect to the basis set angular momentum since recent work showed that low

angular momentum virtual orbitals describe dispersion energies accurately.69 Indeed, in the

long range the basis set need not describe the sharp electron-electron cusp. Moreover, the

distances examined in this work are significantly larger than the ones considered in most

basis set convergence studies. Hence, the remainder of this section relies on AVTZ and

def2-TZVPPD as detailed in Section 3.

As highlighted in Section 2, MP2 does not contain any three-body dispersion. Hence, we

expect MP2 three-body interaction energies to be effectively vanishing as we approach the

long-range limit. In the shorter range both MP2 and Hartree-Fock will give a non-negligible

contribution to the three-body energy due to orbital deformation caused by either electro-

static charge penetration effects or Pauli repulsion effects. We observe that at a distance

of 6.0 Å, the MP2 and HF three-body energies are non-negligible (see Supporting Informa-

tion Tables S7-S24). Although 6.0 Å is a relatively large distance, we emphasize again that

three-body interaction energies are extremely small, ranging from a few tenths of cal·mol−1

to a few cal·mol−1. Thus, very small overlaps between the monomer’s wavefunctions signif-
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icantly affect them. At 10.0 Å and beyond, such effects do not appear: the MP2 and HF

three-body energies are effectively zero and we are confident that our systems are into the

long-range regime at this point. The range of distance under study gives us access to both

the long-range regime that is purely dispersive and a slightly overlapping regime where other

contributions emerge.

Relative percent errors for three-body interaction energies with respect to CCSDT are

reported in Figure 1 for trimers with three correlated electrons. Although MP3 has a rather

large relative percent error of about 80%, it does describe some three-body dispersion in the

long-range as predicted by our algebraic analysis in Section 2 and a previous diagrammatic

analysis.35 Thus a description of three-body dispersion purely in terms of doubly excited

determinants, taking into account the first-order relaxation of doubles amplitudes, only re-

covers about 20% of the energy in the long range. Clearly, this is not sufficient to reach

quantitative accuracy. We also note that, in the particular geometry studied, three-body

dispersion is repulsive.

We then consider a more sophisticated electron correlation treatment, CCSD. Here, sin-

gles and doubles amplitudes enter the energy expression, and they are fully relaxed by repeat-

edly solving the residual equations. In addition, the exponential nature of the coupled-cluster

excitation operator includes disconnected triple excitations which are products of singles and

doubles excitations. Both these effects contribute to significantly improve the description of

three-body dispersion as observed on Figure 1. For the three noble metals considered here,

the error is always below 4% at 10.0 Å and longer distances. Thus CCSD suffices to describe

long-range three-body dispersion quantitatively in these cases. Whereas MP3 three-body

dispersion energies were not repulsive enough, the full amplitude relaxation introduced by

CCSD becomes slightly too repulsive. In Na3, the CCSD error is larger and reaches 20% at

10.0 Å.

The missing terms with respect to the CCSDT reference computations are the connected

triples, acting on the energy through their effect on the doubles and singles amplitudes. The
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CCSD(T) perturbative approximation to the full triples only recovers about half of their

effect in Na3, which is less than the typical two-body case.28 Considering both Na3 and the

noble metals examined here, CCSD(T) always compensates for the over-repulsion of CCSD.

This is consistent with the algebraic analysis of Section 2 which showed that the leading

triples contribution is attractive. However, the quantitative aspect of the perturbative triples

is somewhat unsatisfactory: it is either negligible for the case of the noble metals, or relatively

far from the full triples effect in the case of Na3.

Finally, the errors at 6.0 Å are much larger than at longer distances. Since this effect

appears in the overlapping regime, it might contain contributions beyond pure three-body

dispersion and it is outside the scope of this paper to completely elucidate it. Table 1 seems

to exclude a basis set effect, since the overall difference between AVTZ and AVQZ is quite

small. We note however that this difference does tend to increase with decreasing inter-

monomer distance. We also examined the multireference character of the FCI wavefunction

for Cu3 and Na3 but found that the leading determinant’s coefficient was larger than 0.99.

It is however possible that on the scale of the very small energies examined here, a minor

multireference character causes large relative errors. We also noticed that the weight of the

leading determinant was decreasing with distance, indicating once again that the studied

systems are better behaved in the long range than in the short range. Indeed, the study

from Patkowski et al. of alkaline earth metal dimers near their equilibrium distance point

to inadequacies of single-reference methods at these distances.47

4.2 Two-electron monomers

We now turn to trimers of Mg, Zn, Cd and Hg where all electrons are frozen except in the

outermost s shell. This shell now contains two electrons, thus intramonomer correlation con-

tributions enter the computed energies. We start by examining again the effect of extending

the basis set from AVTZ to AVQZ for Mg3, reporting the relative percent error of AVTZ

in Table 2. In the long range (10.0 Å and beyond), the relative error is below 3%, similar
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Figure 1: Relative percent errors in the three-body interaction energy for Na3, Cu3, Ag3
and Au3 for MP3 (blue), CCSD (orange) and CCSD(T) (green) relative to CCSDT.

to what we observed in the previous section. The exception is MP3 which has a relative

error of 7% at 15.0 Å, however this is still significantly lower than the error due to neglect

of higher-order correlation effects as we will see below. At 6.0 Å, the basis set error becomes

more important, indicating a distance dependence of the basis set requirements. Since our

main interest lies in the long-range region, we perform our computations with AVTZ for Mg

and def2-TZVPPD for Zn, Cd and Hg as detailed in Section 3.

Table 2: Percent relative errors for three-body dispersion energies computed with AVTZ
compared to an AVQZ reference for the Mg3 equilateral triangle at 6.0, 10.0 and 15.0 Å
distance.

Method 6.00 Å 10.0 Å 15.0 Å
MP3 -1.15% -0.14 % 7.09%
CCSD -22.81% 1.91% 0.24%

CCSD(T) 11.93% 0.74% -0.83%
CCSDT 6.52% 0.76% 0.18%

CCSDT(Q) 9.57% 0.67% 2.98%
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In the trimers examined in this section, there are 6 active electrons in the correlation

treatment and CCSDT does not correspond to FCI. To assess the effect of higher-order

clusters, we ran computations up to CCSDTQ(P) on the Mg trimer with the AVTZ basis

set. The relative percent error for various methods with respect to these reference three-

body interaction energies are reported in Table 3. Overall, CCSDT(Q) approximates the

reference numbers pretty well with errors below 2% except at the shortest distance examined

in this work. Even then, the error of 3.4% is not excessively large when compared to the

performance of more approximate methods, and thus we choose CCSDT(Q)/AVTZ as our

reference method in this section. Our observations are also consistent with the intuition that

once connected triples are fully included in the treatment of three-body dispersion at the

CCSDT level, only minor errors remain.

Table 3: Percent relative errors for three-body dispersion energies computed with various
methods with respect to CCSDTQ(P) for the Mg3 equilateral triangle at 6.0, 10.0 and 15.0
Å distance.a

Method 6.00 Å 10.0 Å 15.0 Å
MP3 63.6% -21.5% -25.6%
CCSD -106.4% -44.2% -45.3%

CCSD(T) -60.9% -25.3% -25.3%
CCSDT 6.6% -1.4% -1.8%

CCSDT(Q) -3.4% -0.90% 2.0%
CCSDTQ -2.3% 0.16% 0.26%

CCSDTQ(P)b [4.11] [0.113] [2.89·10−3]
a All computations are performed with the AVTZ basis set. b CCSDTQ(P) total

three-body interaction energies in cal/mol.

The three-body dispersion relative percent errors for MP3, CCSD, CCSD(T) and CCSDT

with respect to CCSDT(Q) are reported in Figure 2 for Mg3, Zn3, Cd3 and Hg3. In all cases,

only the two outermost s electrons for each atom are active in the correlation treatment.

For all four of these trimers, MP3 reproduces three-body dispersion energies surprisingly

well, being superior to CCSD in most cases and even to CCSD(T) in some cases. This

is unexpected since CCSD contains higher-order perturbation terms than MP3 and is thus

expected to be more accurate. Indeed, the good performance of MP3 originates in a fortuitous
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error compensation that occurs only in specific cases as we will see in the next section.

Similarly to the previous section, MP3 is not repulsive enough and underestimates the three-

body dispersion correction. However, the full amplitude relaxation in CCSD worsens the

error and makes three-body dispersion even less repulsive in most cases.

The CCSD(T) perturbative triple contribution makes three-body dispersion more repul-

sive, bringing it closer to reference values. Our analysis in Section 2 indicated that the

leading triples correction should be attractive. This is however not a contradiction: in the

present case the triples also contribute to the two-body energies since they involve four elec-

trons. Thus, the difference between the effect of the triples on the dimer energies and their

effect on the trimer energy may be of either sign, and happens to be repulsive in the present

case. Unfortunately, the CCSD(T) perturbative triples only account for about half of the

difference between CCSD and CCSDT. Thus, CCSD(T) three-body dispersion energies still

contain significant errors (in a percentage sense) that range between 10 and 25% at 10.0 Å

and further.

Finally, in all cases the CCSDT numbers are accurate to within 4%, except for Mg3 at

the shortest distance examined here. This is consistent with observations by Patkowski et al.

on Mg2 who showed that the convergence of the perturbation series is slower than what is

usually observed for closed-shell systems.47 We believe however that this is less of a problem

at the intermonomer distances examined in this work, as supported by Tables 1, 2 and 3

that all show improved convergence behavior of the basis set and the cluster expansion at

larger distances.

To explore the possibility of correcting CCSD(T) errors, we computed a composite

CCSDT three-body dispersion energy ∆Ẽ3-body
CCSDT :

∆Ẽ3-body
CCSDT = ∆E3-body

CCSD(T )/AV TZ + ∆E3-body
CCSDT/AV DZ −∆E3-body

CCSD(T )/AV DZ (11)

where ∆E3-body
CCSD(T )/AV TZ is the three-body energy computed at the CCSD(T)/AVTZ level,
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Figure 2: Relative percent errors in the three-body interaction energy for Mg3, Zn3, Cd3

and Hg3 for MP3 (blue), CCSD (orange), CCSD(T) (green) and CCSDT (red) relative to
CCSDT(Q).

19



and the other energies are defined similarly for CCSD(T) and CCSDT where ADVZ is short

for the aug-cc-pVDZ basis. In spite of the small size of the basis set used for this correction,

we see an improvement in the three-body dispersion energies for both Na3 and Mg3 at all

distances, as reported in Table 4. In the worst case, our correction scheme reduces the

CCSD(T)/AVTZ relative percent errors by a factor of two but the improvement is usually

more substantial. Whether such a correction is more generally applicable will require more

testing that is outside the scope of the current work. AVDZ is usually considered too small a

basis set to give useful results for electron correlation, however we would expect three-body

dispersion in the long range to converge relatively fast with angular momentum. In the

shorter range the situation will of course be different.

Table 4: Percent relative errors for three-body energies ∆E3-body
CCSD(T )/AV TZ and ∆Ẽ3-body

CCSDT for
Na3 and Mg3.a

Method 6.00 Å 10.0 Å 15.0 Å

Na3b
CCSD(T) -13.9% 11.3% 2.32%

composite CCSDT -2.08% 2.72% 0.45%

Mg3c
CCSD(T) -59.5% -24.6% -26.7%

composite CCSDT 14.0% 1.20% -17.4%
a All electrons are frozen except those in the outermost s shell. The calculations used

equilateral triangle geometries at 6.0, 10.0 and 15.0 Å atom-atom distances. b Reference
energies CCSDT/AVTZ. c Reference energies CCSDT(Q)/AVTZ.

4.3 Small core benchmarks

In this section, we investigate three-body dispersion for selected systems with a smaller

frozen core. This allows us to assess the robustness of the previous results and to examine

the accuracy of D3 and MBD three-body dispersion energies. We computed Na and Mg with

2s2p3s electrons included in the correlation treatment ([He] core), Cu with 4s3d electrons

active ([Ar] core) and Cd with 5s4d electrons active ([Kr] core) using CCSDT with AVTZ for

Na and Mg and with def2-TZVPPD for Cu and Cd as reference for three-body dispersion.

Looking at the total trimer binding energies (see Supporting Information Tables S1-S6), we
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see that they become more attractive for MP2 as the number of active electrons is increased.

This is expected since the MP2 correlation energy is strictly additive in the long range for

non-polar monomers. However, for coupled-cluster methods the binding energies become a

little less attractive for smaller cores, as more electrons are correlated. This seems to indicate

that the use of a large core tends to over-correlate the remaining electrons in the active space,

giving rise to some partial error compensation between the overestimated correlation of the

active electrons and the neglected correlation of the frozen core electrons.

Turning to three-body interaction energies, the results displayed in Figure 3 show errors

between 40 and 80% for MP3, except for the Mg trimer. The fortuitous error cancellation

observed in the previous section disappears for Cd when switching from a large to a small

frozen core, confirming that it is not robust. For Mg3, the favorable error cancellation remains

even with a smaller frozen core, which may indicate that the outer s electrons dominate the

three-body dispersion term. MP3 underestimates three-body repulsion for Na3, Mg3 and

Cu3 but overestimates it for Cd3. Overall, we should thus expect generally large errors for

MP3 three-body dispersion energies.

CCSD three-body interaction energies have very significant errors, reaching 20 to 40% in

the long range, that correspond to both over- and undercorrections of the MP3 results. More

importantly though, the inclusion of perturbative triples in CCSD(T) only partially corrects

the deficiencies of CCSD. In most cases, the (T) correction only recovers about half of the

effect of the full triples, although the situation is a bit better for Cd trimer. The CCSD(T)

errors are still around 10% of the CCSDT reference in most cases but reach 20% in the Mg

trimer.

Turning to empirical methods for three-body dispersion, our results show that MBD

performs reasonably well at long range, especially given its negligible cost compared to the

high-level wavefunction methods applied here. For Cd3 and Mg3 in particular, MBD relative

error is below 20%, thus performing better than CCSD. Here we emphasize again that we

believe our results to be reasonably well-converged in the long-range, as the effect of higher-
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order clusters and larger basis sets is at most a few percent. D3 generally performs worse

than MBD at long range. This seems to indicate that the effective C9 coefficients in MBD are

more accurate than in D3, however the exact origin of this difference should be pinpointed by

further investigations. At the shortest distance examined here however, the trend is reversed

and the D3 error is lower than MBD. We believe that the damping used in MBD is at the

origin of this difference. Issues with MBD damping at shorter distances have been pointed

out in previous work.70

Figure 3: Relative percent errors in the three-body interaction energy for Na3, Mg3, Cu3

and Cd3 for MP3 (blue), CCSD (orange), CCSD(T) (green), D3 (red) and MBD (purple)
relative to CCSDT. Small frozen cores were employed as described in the text.

4.4 Discussion

The atoms we examined in the present work offer the advantage of having a spherical outer

shell of s electrons and high polarizabilities, ensuring a significant dispersion contribution in

the long range. However, they also appear to be generally more difficult to treat than typical
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closed-shell systems. The larger errors observed at 6.0 Å are symptomatic of this difficulty,

where the convergence of the basis set and cluster expansions become slower than at longer

range. This is consistent with previous observations by Patkowski et al. who showed that

CCSD(T) yields large errors of about 20% for Zn2 and Mg2 at their equilibrium distance.47

Our work demonstrates numerically that at larger distances the CCSD(T) error decreases

significantly. Specifically, we observe errors of 7-10% for Zn2 and Mg2 with triple zeta basis

set, 5-7% for Cd2 and Hg2, less than 1% for Na2, Cu2, Ag2, Au2. These results are valid

in both the large and small core cases, except for Cu2 where the small core error reaches

3-4%. Thus, at the distances considered in this work, most of our systems do not exhibit

strong multireference character, and CCSD(T) is suitable for a quantitative description of

the dimer interaction. This is further confirmed in the case of Cu3 and Na3 with a large

core where the weight of the Hartree-Fock determinant for the FCI wavefunction is larger

than 0.99. The difficulty in treating Mg2 and Zn2 near equilibrium is thought to be linked to

the proximity of their ground and excited states.47 Based on the sum-over-state formula, we

would expect the proximity of ground and excited states to be linked to larger polarizabilities,

and hence to larger dispersion energies. Thus, we believe our trimers model the behaviour

of very polarizable systems with limited or no multireference character. The large errors

observed in the above analysis for CCSD and CCSD(T) might be relevant to other highly

polarizable systems, which are precisely the systems where three-body dispersion becomes

more significant. In the Supporting Information, we compare the relative errors obtained

for three-body and two-body dispersion (see Tables S7-S24). We observe that the relative

percent error of three-body dispersion is generally larger than that of two-body dispersion in

the trimers studied. We also believe this trend to be robust, since three-body dispersion first

appears at a higher perturbation order than two-body dispersion and is thus intrinsically

more difficult to describe. This is further supported by previous results on noble gas trimers,

which highlight the importance of including full triples excitations beyond CCSD(T) to reach

accurate results.31–33
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Since three-body dispersion becomes important in large systems, we need efficient ap-

proximate methods to account for it. Often, such methods are tested first on small systems

using highly correlated wavefunctions. Although CCSD(T) is usually considered the gold

standard of quantum chemistry and provides accurate reference energetics for intermolecular

interactions, our computations indicate that for three-body dispersion higher level methods

might be necessary. Other perturbative corrections to CCSD may provide more accurate

energetics, in particular those taking into account the relaxation of the singles and doubles

amplitudes.71 This will be the object of future work.

5 Conclusions

In this work, we investigated three-body dispersion and assessed the accuracy of various

computational methods on model systems. Careful algebraic analysis revealed that MP3

already contains a three-body dispersion contribution, in line with previous diagramatic

work.35 Our analysis showed that the MP3 contribution can be both repulsive or attractive,

whereas the first contribution involving triply excited determinants at the MP4 level should

always be attractive. However, in coupled-cluster wavefunctions amplitudes are allowed to

relax and so does the constraint on the sign of the triply excited term.

To obtain quantitative insight into the accuracy of various methods, we computed three-

body interaction energies for carefully chosen atomic trimers of high polarizability and spher-

ical valence electronic structure. This allowed us to identify the three-body interaction en-

ergy with three-body dispersion in the long range. We divided our systems in three classes:

monomers with one active electron, two active electrons, and many active electrons. We

computed reference energies with triple zeta diffuse basis sets, at the CCSDT(Q) level for

the monomers with two active electrons and at the CCSDT level for the other ones, and

ensured both basis set and cluster excitation levels were reasonably converged. Overall, our

results show that MP3 indeed contains three-body dispersion contributions, however with a
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very significant error of about 80% in most cases. Fortuitous error cancellation reduces this

relative error to about 20% for systems where two valence electrons dominate the dispersion

description. The MP3 contribution can both over- and underestimate the reference results.

CCSD generally improves upon MP3 results by fully relaxing singles and doubles am-

plitudes and introducing disconnected triple excitations. For monomers with one active

electrons, where there is no intramonomer correlation, the remaining error is low and CCSD

even reached quantitative accuracy for Cu3, Ag3 and Au3 in the long-range regime. For Na3,

CCSD is still in error by about 20% at 10.0 Å intermonomer separation. As intramonomer

correlation is introduced in the Mg3, Zn3, Cd3 and Hg3 systems, the CCSD errors rise sig-

nificantly to range between 20 to 40% in the long range. CCSD(T) always improves the

energetics, unfortunately in a number of cases only half of the full triples effect is recovered

and significant errors of around 20% remain at relatively large distances. Finally, inclusion

of the full triples with the CCSDT method accurately reproduces our reference results to

within a few percent. Our results on monomers with one active electron seem to suggest

that full triples are especially important when intramonomer correlation is present.

We investigated the accuracy of D3 and MBD for three-body dispersion. In the long

range, MBD errors are at most 20% to 40% and usually lower, a very good result given that

this method is considerably faster than CCSD and reaches higher accuracy. D3 surpasses

MBD for short-range results, a behavior that could originate from the different damping in

the two methods.

Some model systems we have chosen are more difficult to describe than typical closed-shell

molecules since their excited states are in close energetic proximity to their ground state.

This is however, also true for highly polarizable molecules, for which dispersion interactions

become dominant. Moreover, our data reveals that relative errors for three-body dispersion

are systematically larger than for two-body dispersion. Thus, we believe caution should be

applied when using CCSD(T) to obtain reference numbers for three-body dispersion.
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