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2Department of Biomedical Engineering, University of California, Irvine, CA, USA

3Department of Physics, Bogazici University, Bebek, Istanbul, Turkey

Abstract

We previously introduced Photo-Magnetic Imaging (PMI), an imaging technique that illuminates 

the medium under investigation with near-infrared light and measures the induced temperature 

increase using Magnetic Resonance Thermometry (MRT). Using a multiphysics solver combining 

photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature 

variation and recovers high resolution optical absorption images using these temperature maps. In 

this paper, we present a new fast non iterative reconstruction algorithm for PMI. This new 

algorithm uses analytic methods during the resolution of the forward problem and the assembly of 

the sensitivity matrix. We validate our new analytic-based algorithm with the first generation 

Finite Element Method (FEM) based reconstruction algorithm previously developed by our team. 

The validation is performed using, first synthetic data and afterwards, real MRT measured 

temperature maps. Our new method accelerates the reconstruction process 30-fold when compared 

to a single iteration of the FEM-based algorithm.
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1. Introduction

Diffuse optical tomography (DOT) is an optical imaging technique principally used to 

recover the spatial distribution of optical absorption and scattering of biological tissue [1–9]. 

This technique is able to probe several centimeters deep tissues owing to low tissue 

absorption in the near-infrared (NIR) spectral window [10]. This advantage makes DOT a 

suitable functional imaging technique for a variety of applications ranging from breast [11–

13] and brain functional imaging [14–17] to small animals imaging [18–20].

Despite its high sensitivity, DOT is characterized with a very poor spatial resolution. This is 

principally caused by high tissue scattering affecting the pathlength of the photons 

propagating inside the tissue. In addition, DOT image reconstruction is based on the 

resolution of a highly ill-posed inverse problem yielding to non-unique solutions [21]. 
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Basically, this arises from the DOT measurement acquisition scheme where the light sources 

and detectors are placed on the tissue boundary. Moreover, the most complex task in the 

resolution of the DOT inverse problem is assembling and inverting the sensitivity matrix. 

This matrix describes the change observed at each measurement site due to slight variations 

in the internal optical properties of a given point inside the medium. Since the number of 

unknowns, points inside the medium, are much higher than the number of measurements, the 

sensitivity matrix is non square [22]. Therefore, its inversion requires the use of unstable 

pseudo inversion methods [23,24]. It would be ideal to perform internal measurements at all 

points, which makes the number of unknowns and measurements equal. Such data 

acquisition scheme showed a drastic improvement in the quality of the reconstructed 

tomographic images as demonstrated by other modalities [25]. Practically, this configuration 

increases the number of measurements, which reduces the under-determination of the 

inverse problem and makes the inversion of the sensitivity matrix more stable.

Accordingly, we previously introduced a new high resolution diffuse optical imaging 

technique termed Photo-Magnetic Imaging (PMI) [26]. In fact, PMI uses an alternative 

concept compared to the conventional photon fluence detection at the boundary. It monitors 

the internal temperature variations induced by the optical absorption of the medium when 

illuminated with NIR light. Later, the optical absorption of the medium is obtained by 

minimizing the difference between the spatiotemporal simulated and measured temperature 

maps. First, the spatiotemporal distribution of temperature inside the medium is recorded 

using Magnetic Resonance Thermometry (MRT). Fundamentally, proton resonance 

frequency (PRF) decreases when hydrogen bonding decreases due to the temperature 

increase. By using one of the phase sensitive MRI sequences, a proportional relationship is 

established between the phase accumulation and temperature change between successive 

frames [27,28]. Afterwards, the simulated spatiotemporal temperature maps are generated by 

solving the combined diffusion and Pennes’ bio-heat equations [2,29–31]. Based on the 

principle of optical absorption of the medium, this system of equations models the 

distribution of photons inside the medium and conversion of their energy to bio-heat [28,32]. 

Therefore, solving the forward problem of PMI consists in the resolution of this system of 

equations, generally performed using Finite Element Method (FEM).

Although our first generation PMI reconstruction algorithm can provide high resolution 

optical absorption images, two main aspects need to be improved. First, the FEM-based 

reconstruction algorithm cannot utilize the full measured data provided by the high 

resolution MRT images. The FEM procedure is initiated by mapping the measured MRT 

temperature maps on the FEM mesh nodes. During this step, the spatial resolution of the 

measurements is drastically degraded due to the fact that the number of nodes is much 

smaller than the number of pixels of MRT images. In fact, this degradation can be reduced 

using extra fine meshes. However, increasing the number of nodes makes the sensitivity 

matrix considerably larger and amplifies the complexity of the inverse problem that prolongs 

the overall reconstruction time.

The second weakness of the FEM-based algorithm is related to the resolution of the inverse 

problem, which starts by assembling the sensitivity matrix. In DOT, the number of 

unknowns is much higher than the number of measurements and the assembly of the 
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sensitivity matrix is generally performed using the adjoint-method to accelerate the process 

[2,22]. On the other hand, using MRT, the number of unknowns is equal to the number of 

measurements which makes the use of the adjoint-method inadequate as will be explained in 

the following sections. Therefore, the sensitivity matrix is computed using the perturbation 

method, by sequentially varying the absorption at each node and then solving the forward 

problem to determine the induced temperature change. This method is very time consuming 

and requires very heavy computational resources.

These two weaknesses can be overcome using analytic methods. Both diffusion [33–45] and 

Pennes’ bio-heat equations [46–50] have been extensively solved analytically on regular 

geometries such as cylindrical, spherical and infinite or semi infinite slabs. These methods 

directly provide continuous spatiotemporal distribution of temperature inside the studied 

medium [51]. Using these analytic solutions not only accelerates the resolution of the 

forward problem but allow us to take advantage of the full high resolution data as well. Here, 

we present the framework of the second generation PMI reconstruction algorithm. In this 

new algorithm, the forward problem is solved analytically. This allows us to avoid MRT-to-

mesh mapping of the high resolution MRT temperature measurements. Also, analytic 

solutions are not only fast but provide solutions as accurate as FEM. Unlike our first 

generation PMI algorithm, this new reconstruction algorithm is not iterative and provides the 

absorption map of the medium directly. Moreover, a new analytic technique is used to 

assemble the sensitivity matrix, which considerably reduces the computation time. The 

performance of our new analytic-based reconstruction algorithm is evaluated using both 

simulated and experimental data. Finally, the acceleration in the computation time is 

quantified by comparing reconstruction times of our first and second generation algorithms.

2. Methods

PMI uses a NIR light to heat the probed medium and monitor its internal temperature 

increase with MRT. A dedicated forward model generates the spatiotemporal temperature 

maps using the combined diffusion and Pennes’ bio-heat equations system to model the 

photon migration and heat diffusion, respectively. These simulated temperature maps are 

later used during the resolution of the inverse problem.

2.1. Forward problem

The PMI image reconstruction algorithm requires the resolution of a combined diffusion and 

bio-heat equations system. PMI uses a continuous wave (CW) laser to warm up the medium. 

The CW light propagation in turbid media is generally modeled by the CW form diffusion 

equation [22,33]

− ∇D∇Φ(r) + μaΦ(r) = S(r) . (1)

Here, Φ, D(r) = 1
3[μa(r) + μs′ (r)] , μa,μs′ are the photon density, the diffusion coefficient, the 

absorption coefficient, and the reduced scattering coefficient, respectively. S is the isotropic 
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light source positioned 1/μs′ under the surface as imposed by diffusion approximation as 

shown in figure 1.

The temperature variation and propagation within the medium can be modeled by the 

Pennes’ bio-heat equation. Although the photon density within the medium is steady, 

temperature is a function of time that requires the solution of the following time-dependent 

form

ρc∂T(r, t)
∂t = ∇[k ∇T(r, t)] + E(r) . (2)

Here, ρ, c and k represent the density, specific heat and thermal conductivity, respectively. 

The thermal energy absorbed from the laser heating is given by the product of the absorption 

distribution and the light fluence rate, E(r) = µa Φ(r) [32]. It is important to note that the 

blood perfusion is omitted in this work but needs to be accounted for during in-vivo studies.

In our previous work [45], we obtained a comprehensive analytical solution for the diffusion 

equation based on an integral method for the Robin boundary condition. This solution is 

obtained by deriving a particular Green’s function based on the integral method. Based on 

the assumption that the diffusion coefficient is spatially invariant, equation (1) becomes

− ∇2Φ(r) +
μa
D Φ(r) = γ

Dδ(r, r′) (3)

for a point light source modeled by the Dirac delta function δ(r, r′) where r′ and γ are the 

position and the strength of the light source, respectively.

The solution of the homogeneous diffusion equation in 2D cylindrical polar coordinates for 

a Dirac delta like point source was previously presented [45]. Implementing this photon 

density solution in equation (2), and using the separation of variables method lead to the 

final expression describing the laser induced temperature variations [51].

T(r, θ, t) = Ts + ∑
m = − ∞

∞
∑
l = 0

∞ ρc
kλl

2ωm, lJm(λlr) cos(mθ)[1 − exp(−k
ρc λl

2t)] . (4)

Here,
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ωm, l =
μa
ρc{ − am(β)ri[βJm − 1(βri)Jm(riλl) − λlJm(βri)Jm − 1(riλl)]

+ bm(β)ri[βJm − 1(βri)Jm(riλl) − λlJm(βri)Jm − 1(riλl)]

− βRJm − 1(Rβ)Jm(Rλl) + RλlJm(Rβ)Jm − 1(Rλl)

+ cm(β)ri[βYm − 1(βri)Jm(riλl) − λlYm(βri)Jm − 1(riλl)]

− βRYm − 1(Rβ)Jm(Rλl) + RλlYm(Rβ)Jm − 1(Rλl)}

× 1
1
2 R(β2 − λl

2) R[Jm − 1(Rλl)
2 + Jm(Rλl)

2] −
2mJm − 1(Rλl)Jm(Rλl)

λl

(5)

where

am(β) =
γ cos (mθi)

2D[2DβξRJm − 1(βR) + (R − 2Dmξ)Jm(βR)]

× {Jm(βri)[2DβξRYm − 1(βR) + (R − 2Dmξ)Ym(βR)]

+ Ym(βri)[ − 2DβξRJm − 1(βR) − (R − 2Dmξ)Jm(βR)]},

(6)

bm(β) = γR
Dβξ[Ym − 1(βR) − Ym + 1(βR)] + Ym(βR)

2D[2DβξRJm − 1(βR) + (R − 2Dmξ)Jm(βR)] × Jm(βri) cos (mθi), (7)

cm(β) = − γ
2DJm(βri) cos (mθi) (8)

where β = i
μa
D , i is the complex number, R is the radius of the medium, ξ is a constant 

corresponding to the mismatch refractive index between the medium and its surrounding, Jm 

and Ym are the Bessel functions of the first and second kind, respectively. During the 

derivation of this final solution, equation (4), the following heat convection boundary 

condition is used
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−k ∂T(r)
∂t = h(Ts − T(r)) (9)

where h and Ts are the heat transfer coefficient and the surrounding temperature, 

respectively. During the derivation of this solution, we assumed that all optical and thermal 

properties are homogeneous. We also assumed that the spatial and temporal parts of the heat 

equation can be separable since we utilized the separation of variables method. Moreover, 

we approximated the light source by the Dirac delta function [51].

2.2. Inverse problem

High resolution absorption maps are obtained by solving the inverse problem of PMI. 

Technically, it consists in minimizing the quadratic difference between the measured MRT 

and the simulated temperature maps according to the following objective function

Ω(μa) = ∑
p = 1

N p
‖T p

M − Fp(μa)‖2
(10)

where Np represents the total number of pixels within the medium. T p
M is the high resolution 

MRT temperature measured at pixel p. The forward operator Fp provides the simulated 

temperature at pixel p = 1, 2, …Np using the spatial distribution of the absorption coefficient 

µa as expressed by equation (4). Equation (10) is minimized using the Levenberg-Marquard 

minimization [23,52]

Δμa = (JTJ + λI)−1JT(TP
M − Fp(Xinit(μa)))2

(11)

with ∆µa(Np × 1) being the update to the unknown vector of µa, obtained considering the 

initial distribution of absorption Xinit. λ is the regularization parameter and I is the identity 

matrix. J is the sensitivity matrix also called Jacobian, describing the effect of an absorption 

variation at any point within the medium on the measured temperatures [2]

Jμa
= ∂T

∂μa
. (12)

2.3. Analytic sensitivity matrix

It is generally established that when performing DOT reconstructions using FEM, the 

sensitivity matrix is computed using the adjoint-method [22]. This method states that the 

influence of a source “s” on a detector “d” is the same as the influence of “d” on “s” when 

“d” is used as source and “s” as detector. Using this formulation, the Jacobian is simply 

obtained by solving the forward problem NS + ND times, where NS and ND are the number 
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of sources and detectors, respectively. This adjoint-method significantly reduces the 

Jacobian assembly time and the overall computation time [7]. Using MRT to measure the 

internal spatiotemporal temperature of the medium is equivalent to placing a detector at each 

node of the FEM mesh. This configuration makes the use of the adjoint-method inadequate 

for the computation of the Jacobian since it loses its advantage due to high number of 

detectors. Therefore, the Jacobian is computed using the perturbation approach by varying 

the absorption at each node individually then solving the forward problem to establish a 

relationship between the absorption change at this node and the induced temperature 

variation at any point. Evidently, this straightforward method is very time consuming and 

requires very heavy computational resources.

Obtaining the Jacobian analytically requires the implementation of a new solution that can 

perform on a homogeneous medium with an absorbtion perturbation at a single point then 

deriving it. To our knowledge, such an analytical computation would be very complex and 

has not been done yet. Therefore, we introduce a new method to analytically assemble the 

Jacobian and implement it into our new analytic-based PMI reconstruction algorithm. Our 

analytic solution to the combined diffusion and bio-heat equation systems, is derived using a 

homogeneous absorption distribution within the medium. Hence, we first utilize the FEM-

based algorithm to understand the dependence of the shape and amplitude of the Jacobian at 

any point as a function of optical and thermal properties of the medium. Please note that 

medium properties are varied over a wide range during these calculations. This empirical 

approach allows us to understand the relationship between these parameters and the shape as 

well as the amplitude of the Jacobian.

During this empirical approach, the first step is to compute the Jacobians for all the N FEM 

nodes (Jn, n = 1, 2, ‥N), using our FEM-based solver while varying the optical and thermal 

properties of a synthetic phantom. Although we repeat these calculations over a wide range 

of optical and thermal properties, here we will present an example case with a certain set of 

parameters to explain this step in detail. Figure 2 shows a 40 mm diameter circular synthetic 

phantom whose absorption and reduced scattering coefficients are set to 0.01 mm−1 and 0.8 

mm−1, respectively. Meanwhile, the phantom is assumed thermally homogeneous where the 

density, specific heat and thermal conductivity are set to 1000 kg m−3 and 4200 J (kg C°)−1, 

and 0.5 10−3 W (mm C°)−1, respectively. The light is illuminated from the bottom of the 

phantom and the laser power is optimized in order to allow a maximum heating under 2 C° 

at the illumination site as shown in figure 2(a).

Figure 2(b) shows the temperature simulated after 8 seconds of heating with light using our 

FEM-based algorithm. This simulation uses a very fine mesh (Mesh_1) which consists of 

65536 triangular elements connected at 33025 nodes. The Jacobian Jn at each node is 

computed using the perturbation method. After that, each individual Jacobian is mapped into 

a 200 pixel × 200 pixel grid to express them in cartesian coordinates. As an example, figure 

2(c) shows the Jacobian Jn obtained at one of the nodes whose coordinates are x0 = 0 mm 

and y0 = −15 mm. Unlike the banana shape sensitivity matrix observed in diffuse optical 

tomography [22], the obtained Jacobian Jn consists in a kernel centered at this point as 

shown in figure 2(c).
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The Jacobian for each set of optical and thermal properties is first calculated for all nodes 

and then mapped into the Cartesian grid. Afterwards, extensive series of fitting are 

performed to investigate all the aforementioned parameters. Based on these fittings, we 

establish that the distribution of the Jacobian Jn at any node n(x0, y0) can be expressed as

Jn(x, y) = An(x0, y0)Js(x − x0, y − y0) (13)

where An(x0,y0) is the amplitude of the kernel and Js is the shape of the kernel, which is 

obtained by normalizing the kernel fitted on the Jacobian computed on that node n(x0, y0). 

This shows that the amplitude and the normalized shape of each Jacobian can be 

independently studied. Accordingly, we investigate them separately as a function of the 

parameters of the medium and the spatial position within the phantom.

2.3.1. Shape of the Kernel (Js)—To investigate the shape of the kernels, a series of 

fittings is performed on all the Jacobians computed with FEM at each node n(x0, y0). Figure 

3(a) shows an example of the fitted kernel on the Jacobian Jn obtained at a particular node (x 
= 0 mm, y = −15 mm) as shown in figure 2(c). After normalizing the fitted kernels, we 

observe that the shape of the kernel is found to be governed only by the optical and thermal 

properties of the phantom and is totally independent from the strength of the laser source 

and the spatial position within the medium. In other words, the normalized shape of the 

kernel is found to be the same for a given set of optical and thermal properties. The 

normalized shape of the kernel, Js = J̃n/max(J̃n), is given by

Js(x, y) = exp [( − 3.12μa
0.58 − 2.41)( κ

ρc )
0.27

(x − x0)2 + (y − y0)2] . (14)

The profiles performed on both Jacobians Jn and J̃n are in very good agreement as shown in 

figure 3(b). Please note that these fittings are verified not only for each node in a particular 

synthetic phantom but also for a large range of optical and thermal properties. Although the 

fitting is performed on Jacobians computed at the nodes, it is important to mention that 

equation (14) is valid for any point within the medium and allows us to calculate Js at any 

point (x, y) in the cartesian grid.

2.3.2. Amplitude of the Kernel (An)—Unlike the shape of the kernel, Js, its amplitude, 

An, exhibits a strong dependence on the spatial position within the medium in addition to the 

dependence on the optical and thermal properties. Implementing an analytical formula to 

obtain the amplitude of the kernel, An, with respect to its spatial position and background 

optical properties is complicated. In this paper, we propose an alternative method that allows 

us to obtain An in two steps.

Since analytic solutions can be obtained only on homogeneous media, first the so called 

Total Jacobian, JT, is computed using equation (12) by varying the absorption coefficient of 

all pixels simultaneously instead of varying it locally at a given pixel. Since this step is 

performed using analytic methods, cartesian coordinates are used and all the positions are 
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defined as pixels that belong to the 200 × 200 grid. Accordingly, the Total Jacobian, JT, 

corresponds to the sum of all the individual Jacobians Jn centered at each pixel n(x0, y0) and 

can be written as:

JT(x, y) = ∑
x = 0

Nx
∑

y = 0

Ny
Jn(x, y) (15)

where Nx and Ny are the size of the grid describing the domain, containing the phantom, in 

the x− and y− directions, respectively. By substituting equation (13) into equation (15), we 

obtain

JT(x, y) = ∑
x = 0

Nx
∑

y = 0

Ny
An(x0, y0)Js(x − x0, y − y0) . (16)

Equation (16) shows that by definition, JT at any pixel is then given by the convolution of 

the normalized kernel Js(x, y) and the amplitude of the kernel An(x0, y0) at pixel n(x0, y0) so 

that we can write

JT = An ⊗ Js . (17)

From equation (17), An(x, y), the amplitude of the kernels at any position within the 

phantom is simply obtained by deconvolving the normalized kernel Js from the Total 

Jacobian, JT,

An = JT ⊗−1 Js . (18)

Figures 4(a)–4(c) show the Total Jacobian (JT) map, the normalized analytic kernel (Js), and 

the maximum amplitudes (An) of the individual Jacobians obtained using our new algorithm. 

Since both Js and JT are noise free, the deconvolution can be performed using any 

deconvolution method without any difficulty. In the following calculations, the 

deconvolution is performed using the Lucy-Richardson deconvolution algorithm [53]. Once 

the maximum amplitudes An are obtained analytically, the analytic Jacobians are assembled 

using equation (13).

To validate our approach, we compare the computed maximum amplitudes using equation 

(18) with the amplitude of the FEM-based individual Jacobians chosen at random points. 

Figure 4(d) shows that the profile of An, along the white dashed-line, matches perfectly the 

amplitudes obtained with the FEM-based algorithm at nodes (x = 0 mm, y = −17.5, −15, 

−12.5 mm). In summary, our new analytic Jacobian assembly method is performed 

following these steps. First, the distribution of the Jacobian Js is obtained using equation 

(14). Secondly, the Total Jacobian JT is obtained using equation (12) by varying the 
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absorption coefficient of the whole medium instead of a local variation at one given position. 

Afterwards, the amplitude of the Jacobian at each pixel An is obtained by simply 

deconvolving Js from JT. Following that, the Jacobian J at any point n(x0, y0) is obtained 

using equation (13), multiplying the shape function by its corresponding amplitude at that 

particular point n(x0, y0). Finally, the obtained Jacobian J is used in the PMI inverse problem 

as expressed by equation (11).

2.4. Simulation studies

The performance of our new PMI reconstruction algorithm is first tested with simulation 

studies. Using our FEM-based forward solver, synthetic measurements are generated by first 

calculating the photon density distribution in the medium using equation (1) then simulating 

the photon thermal energy deposition and the temperature propagation at any point and any 

time using equation (2). The numerical phantom used in this study mimics the phantom used 

in the validation of the forward problem of our FEM-based solver [54]. The same 40 mm 

diameter cylindrical synthetic phantom described in section 2.3 is utilized for this study. In 

order to model an optical heterogeneity, however, two 5 mm diameter cylindrical inclusions 

are embedded 4.5 mm below the illuminated surface of the phantom (edge-to-center) and 

positioned 8.5 mm apart as shown in Figure 5. The absorption of both inclusions is set to be 

four times higher than the background (µa = 0.04 mm−1) while no scattering contrast is 

introduced. Figure 5 shows a cross- section of the cylindrical phantom and the laser beam 

used to heat it up. The laser power and the irradiated area are matched to those used in the 

previous experimental studies [54].

2.5. Experimental studies

A dedicated small animal PMI system has been developed in our laboratory as shown in 

figures 6(a) and 6(b). A customized animal interface, with four ports for illumination 

purpose, is placed in the center of a Philips 3 Tesla Achieva MR scanner. An 808 nm, high 

power fiber coupled laser (Focuslight, China) is used to illuminate the imaged phantom. 

Although our system is equipped with 4 laser ports, only the port at the bottom of the 

phantom is used in this experiment. The high power laser is placed on a copper heat sink 

with TEC thermoelectric cooler using temperature feedback control. The laser, its driver, 

TEC cooling unit and computer that generates signals for MRI synchronization are all 

positioned in the control room due to the high magnetic fringe field. Light is transported 

from the laser to the surface of the phantom via 15-meter long optical fiber. A 35 mm 

diameter Newport aspherical lens is placed at the end of the fiber to collimate the output 

laser in order to provide uniform illumination over a spot diameter of 13.5 mm. The laser 

power level is set to 1.2 W resulting in a power density of 840 mW/cm2 at the surface.

The laser-induced temperature is measured by MRT using the proton resonance frequency 

shift method. A temperature map is acquired every 8 seconds using a gradient echo sequence 

with a repetition time (TR) and echo time (TE) set to 80 ms and 48 ms, respectively. Figure 

6(c) shows the timeline for MRT acquisition. First, a T1 weighted sequence is performed to 

precisely locate the laser position in the axial direction. Following that, a dynamic imaging 

set consisting of multiple frames (8 seconds each) is started. The first image of the dynamic 

MRT set is acquired prior turning the laser on and used as the baseline phase map (frame 1). 
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Once it is completed, the laser is then turned on and the second frame is acquired. Post 

processing is performed afterwards to calculate the laser induced temperature variation 

based on the phase shift between the second frame and baseline [54]. This high resolution 

temperature map is used as measured data in the PMI image reconstruction algorithm, 

equation (11).

3. Results

3.1. Simulation results

In order to validate our new method, absorption maps are obtained using our new analytic-

based reconstruction algorithm and compared with those obtained with our FEM-based 

reconstruction algorithm. For both FEM- and analytic-based algorithms, the synthetic 

temperature map is generated using our FEM-based PMI forward solver as shown in figure 

7(b). This temperature map clearly shows the laser induced temperature increase under the 

illumination site. Also, this map already reveals the position of both inclusions prior to any 

reconstruction process. In fact, due to their higher absorption, the temperature rises more 

within the inclusions [55]. However, the low spatial resolution of the temperature map, 

mainly due to heat diffusion, does not allow a precise localization of the inclusions. In order 

to overcome the effect of diffusion and obtain quantitative absorption maps, the PMI inverse 

problem needs to be solved.

First, in order to optimize the computation time of our FEM-based reconstruction algorithm, 

a coarser mesh (Mesh_2) is used rather than Mesh_1, which is utilized to generate the 

synthetic temperature map. Mesh_2 consists of 8192 triangular elements connected at 4225 

nodes. Figures 7(c) and 7(d) show the reconstructed high resolution absorption maps 

obtained by our FEM-based reconstruction algorithm at the first and the second iterations, 

respectively. Actually, the algorithm is stopped automatically when the stop criteria -no 

more than 1% improvement- is met at the end of the second iteration. Figure 7(c) shows that 

the FEM-based algorithm is able to recover 71% of the true absorption value at the first 

iteration and a second iteration is needed to recover an additional 22% of the true absorption 

value as shown in figure 7(d). This can be clearly seen on the profiles carried-out along the 

dashed line passing by the center of the two inclusions as shown in figure 7(f). However, it is 

important to note that this iterative step is very time consuming. In fact, performing an 

additional iteration approximately doubles the overall computation time.

Figure 7(e) shows the reconstructed high resolution absorption map obtained using our new 

analytic method. This map shows that in addition to being non iterative, our new method 

provides comparable results to those obtained at the end of the FEM-based reconstruction 

algorithm. Quantitatively, the FEM-based algorithm recovers an absorption coefficient of 

0.0365 ± 0.0063 mm−1 and our new method recovers a similar absorption of 0.0365±0.0064 

mm−1. However, our new results are much better than the results obtained at the first 

iteration of the FEM-based algorithm which only recovered an absorption value of 

0.0287±0.0049 mm−1 as can be seen of the profiles presented in figure 7(f).

Although the meshes used by the FEM-based method for reconstruction and data generation 

are different, using the same method in both steps gives the FEM-based reconstruction 
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algorithm an additional advantage. Despite this unfair advantage allowed for the FEM-based 

algorithm, our new method still seems more suitable considering the quality of its 

reconstructed images and its fast computation time. In fact, it is very important to emphasize 

that our new method is non iterative and requires only 2.8% of the computation time of one 

single iteration of the FEM-based reconstruction algorithm. In fact, only 51 seconds are 

necessary to provide an absorption map from a 200 pixel × 200 pixel MRT temperature map.

3.2. Experimental results

Figure 8(b) shows the 200 pixel × 200 pixel MRT temperature map measured on the agarose 

phantom used in the validation of the forward problem of our FEM-based solver [53]. The 

geometry of the phantom contains Np = 31401 pixels of the MRT image. Similar to the 

simulated temperature map, the localization of both inclusions is possible on the MRT image 

prior to any reconstruction process. This is due to the higher increase in their temperature 

compared to the background of the phantom [55]. However, the temperature increase inside 

the inclusions is strongly dependent on the distance from the laser source, which necessitates 

the resolution of the PMI inverse problem. In the following, our new algorithm is 

experimentally validated by comparing the analytically reconstructed absorption maps with 

those obtained using our FEM-based algorithm. The FEM-based reconstructions are 

performed using Mesh_2. In order to initialize the measurements for the FEM-based 

algorithm, the 31401 measured MRT temperature map pixels are mapped to Mesh_2 which 

results in 86% loss of data. The reconstructed absorption maps obtained by our FEM-based 

algorithm with one and two iterations are presented in figures 8(c) and 8(d), respectively. On 

the other hand, our new analytic method is a pixel based reconstruction algorithm. Using a 

pixel size of 0.2 mm, the geometry of the numerical phantom fits inside a 200 pixel × 200 

pixel grid, indicated by black dashed line in figure 8(a), of those 31401 pixels are within the 

circular geometry (gray area as shown in figure 7(a)). All these 31401 measured MRT 

temperature map pixels are directly used to initialize the measurements for the analytic-

based method, and no mapping nor interpolation is needed yielding to no data loss. Despite 

the noise present in the measured MRT map, the inclusions are recovered successfully on all 

three reconstructed absorption maps and their locations are in very good agreement with the 

cross-section of the phantom presented in figure 8(a). However, the FEM-based algorithm is 

not able to correctly recover the circular shape of the inclusions as shown in figures 8(c) and 

8(d). Moreover, the absorption map obtained at the first iteration recovered only 58.25% of 

the real absorption and a second iteration is needed to recover an additional 12.75%, Table 1.

Figure 8(e) shows that our new method is more robust to noise due to the higher amount of 

data used in the resolution of the inverse problem. In fact, in addition to being very fast, our 

new method recovers the circular shape of the inclusions more successfully with high 

quantification accuracy, Table 1. It is however important to note the slight artifact observed 

at the boundary under the illumination site. Actually, the laser is collimated and has a beam 

diameter of 13.5 mm at the surface of the phantom while our analytic-based method models 

the laser as a point source. This difference in the source beam size is responsible for these 

slight artifacts under the illuminated surface. Nevertheless, these slight artifacts do not 

degrade the quantification accuracy of our method as you can see on the profiles presented 

in figure 8(f). These profiles show that our new method provides better results than those 
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obtained at the end of the FEM-based algorithm. In addition, our new analytic-based results 

are obtained approximately 30 times faster than one single iteration of the FEM-based 

algorithm.

4. Conclusion

We have previously introduced PMI, a new multi-modality technique that provides high 

resolution optical absorption maps. By combining MRI and optical imaging, PMI leverages 

the high spatial resolution of MRI and the high sensitivity of optical imaging. The main 

innovation of PMI is the interaction between optical and MRI modalities to break optical 

scattering barrier and produce higher resolution optical absorption images. The superior 

performance of our FEM-based PMI was demonstrated with both simulation and 

experimental studies earlier [26,55]. The bottleneck of the FEM-based image reconstruction 

algorithm is mainly the assembly of the Jacobian matrix during the iterative resolution of the 

inverse problem. In fact, the Jacobian is assembled using the perturbation method that 

consists in solving the forward problem for each node after varying its absorption. Thus, our 

FEM-based PMI reconstruction process requires heavy computational resources and long 

computation time.

In this paper, we present a new fast and non iterative analytical based reconstruction method 

for PMI. First, our new algorithm uses an analytic method to solve the forward problem and 

gain considerable computation time by avoiding any mesh generation or system matrix 

assembly, which are necessary and time-consuming processes in FEM. However, this 

analytical method can perform only in homogeneous media. This limits our new 

reconstruction algorithm to a single iteration which is equivalent to linearizing the nonlinear 

PMI inverse problem. Nevertheless, our analytic method has the advantage of avoiding the 

inefficient mapping of the high resolution MRT temperature measurements to the FEM 

mesh. This allows the direct use of the whole MRT measurements and eliminates the data 

loss in the mapping step. In addition, the major advantage of this new algorithm consists in 

the fast analytical implementation of the Jacobian matrix which drastically reduces the 

computation time. In fact, an acceleration of 30-fold is obtained which yields a high 

resolution absorption image (200 pixel × 200 pixel) in 51 seconds. This reconstruction time 

can be reduced even farther by either increasing the pixel size, i.e. by reducing the 

resolution, or by parallelizing the codes on a graphic processing unit.

The PMI optical absorption maps can be used for diagnostic purposes. In fact, intrinsic 

tissue contrast can be used to identify cancerous tissue based on its higher absorption 

contrast. Alternatively, highly absorbing contrast agents such as gold nanoparticles can be 

utilized to differentiate diseased tissue for diagnostic purposes. Moreover, PMI can play a 

key role in providing therapy guidance. For instance, these high resolution optical absorption 

maps can be utilized to optimize the laser pulse duration and the mean power density for 

laser thermal therapy. Our future work would focus on the implementation of new Jacobian-

free optimization method and the adaptation of this algorithm for multi-wavelength, and in-

vivo PMI applications.

Nouizi et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This research is supported in part by Fulbright awarded to Dr. Nouizi, NIH grants, F31CA171915-01A1, 
SBIRHHSN261201300068C, 1R21CA191389, R21EB013387, R01EB008716, P30CA062203, TUBITAK Grant 
2219, Bogazici University Research funding Grant No. BAP 7126 and TUBITAK Grant No. 112T253.

References

1. Hebden J, Arridge S, Delpy D. Optical imaging in medicine. I. Experimental techniques. Phys. Med. 
Biol. 1997; 42:825. [PubMed: 9172262] 

2. Arridge SR, Hebden JC. Optical imaging in medicine: II. Modelling and reconstruction. Phys. Med. 
Biol. 1997; 42:841. [PubMed: 9172263] 

3. Gibson A, Hebden J, Arridge SR. Recent advances in diffuse optical imaging. Phys. Med. Biol. 
2005; 50:R1. [PubMed: 15773619] 

4. Gibson A, Dehghani H. Diffuse optical imaging. Philos. Trans. A Math. Phys. Eng. Sci. 2009; 
367:3055. [PubMed: 19581255] 

5. Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image reconstruction in 
diffuse optical tomography Philos Trans A. Math. Phys. Eng. Sci. 2009; 367:3073.

6. Koenig A, Hervé L, Da Silva A, Dinten JM, Boutet J, Berger M, Texier I, Peltié P, Rizo P, Josserand 
V, Coll J. Whole body small animal examination with a diffuse optical tomography instrument. 
Nucl. Instrum Meth. A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007; 
571:56.

7. Nouizi F, Torregrossa M, Chabrier R, Poulet P. Improvement of absorption and scattering 
discrimination by selection of sensitive points on temporal profile in diffuse optical tomography. 
Opt. Express. 2011b; 19:12843–12854. [PubMed: 21716527] 

8. Lapointe E, Pichette J, Brub-Lauzire Y. A multi-view time-domain non-contact diffuse optical 
tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal 
imaging. Rev. Sci Instrum. 2012; 83:063703. [PubMed: 22755630] 

9. Unlu MB, Birgul O, Shafiiha R, Gulsen G, Nalcioglu O. Diffuse optical tomographic reconstruction 
using multifrequency data. J. Biomed. Opt. 2006; 11:054008. [PubMed: 17092157] 

10. EganWG, , HilgemanTW. New York: Academic; 1979Optical Properties of Inhomogeneous 
Materials. 

11. QuartoG, , TorricelliA, , SpinelliL, , PifferiA, , CubedduR, , TaroniP. Advanced Time-Correlated 
Single Photon Counting ApplicationsSpringer; 2015587611

12. Jiang S, Pogue BW, Kaufman PA, Gui J, Jermyn M, Frazee TE, Poplack SP, DiFlorio-Alexander R, 
Wells WA, Paulsen KD. Predicting breast tumor response to neoadjuvant chemotherapy with 
diffuse optical spectroscopic tomography prior to treatment. Clin. Cancer Res. 2014; 20:6006. 
[PubMed: 25294916] 

13. Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of 
diffuse optical imaging technologies for breast cancer management. Med. Phys. 2008; 35:2443. 
[PubMed: 18649477] 

14. Eggebrecht AT, Ferradal SL, Robichaux-Viehoever A, Hassanpour MS, Dehghani H, Snyder AZ, 
Hershey T, Culver JP. Mapping distributed brain function and networks with diffuse optical 
tomography. Nat. Photonics. 2014; 8:448. [PubMed: 25083161] 

15. NouiziF, , Diaz-AyilG, , BléF-X, , DuboisB, , UhringW, , PouletP. Timegated near-infrared 
spectroscopic imaging of brain activation: a simulation proof of concept. In: SPIE, editorSPIE 
BIOSSan Francisco: International Society for Optics and Photonics; 2011a78960L–L–8

16. Singh H, Cooper RJ, Wai Lee C, Dempsey L, Edwards A, Brigadoi S, Airantzis D, Everdell N, 
Michell A, Holder D, Hebden JC, Austin T. Mapping cortical haemodynamics during neonatal 
seizures using diffuse optical tomography: a case study. Neuroimage Clin. 2014; 5:256. [PubMed: 
25161892] 

17. Montcel B, Chabrier R, Poulet P. Time-resolved absorption and hemoglobin concentration 
difference maps: a method to retrieve depth-related information on cerebral hemodynamics. Opt. 
Express. 2006; 14:12271. [PubMed: 19529655] 

Nouizi et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Nouizi F, Torregrossa M, Geneveaux O, Chabrier R, Poulet P. 3D modeling of noncontact fiber-
based approach for time-resolved diffuse optical tomography. SPIE BiOS: International Society for 
Optics and Photonics. 2011c:78961Z–Z–8.

19. MuY, , NiedreM. A fast SPAD-based small animal imager for early-photon diffuse optical 
tomography; Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual 
International Conference of the IEEE: IEEE); 201428332836

20. Lin Y, Thayer D, Nalcioglu O, Gulsen G. Tumor characterization in small animals using magnetic 
resonance-guided dynamic contrast enhanced diffuse optical tomography. J. Biomed. Opt. 2011; 
16:106015. [PubMed: 22029362] 

21. Arridge SR, Lionheart WRB. Non-uniqueness in diffusion-based optical tomography. Opt. Lett. 
1998; 23:882. [PubMed: 18087373] 

22. Arridge S. Optical tomography in medical imaging. Inverse Problems. 1999a; 15:R41.

23. Marquardt DW. An algorithm for least squares estimation of nonlinearpaameters. J. Soc. Ind. Appl. 
Math. 1963a:431.

24. Yalavarthy PK, Pogue BW, Dehghani H, Paulsen KD. Weight-matrix structured regularization 
provides optimal generalized least-squares estimate in diffuse optical tomography. Med. Phys. 
2007; 34:2085. [PubMed: 17654912] 

25. Woo EJ, Seo JK. Magnetic resonance electrical impedance tomography (MREIT) for high-
resolution conductivity imaging. Physiol. Meas. 2008; 29:R1. [PubMed: 18799834] 

26. Lin Y, Gao H, Thayer D, Luk AL, Gulsen G. Photo-magnetic imaging: resolving optical contrast at 
MRI resolution. Phys. Med. Biol. 2013; 58:3551. [PubMed: 23640084] 

27. Kickhefel A, Roland J, Weiss C, Schick F. Accuracy of real-time MR temperature mapping in the 
brain: a comparison of fast sequences. Phys. Med. 2010; 26:192. [PubMed: 20096617] 

28. Rieke V, Butts Pauly K. MR thermometry. J. Magn. Reson. Imaging. 2008; 27:376. [PubMed: 
18219673] 

29. Arridge S. Photon-measurement density functions. Part I: Analytical forms. Appl. Opt. 1999b; 
34:7395.

30. Schweiger M, Arridge SR, Hiraoka M, Delpy DT. The finite element method for the propagation of 
light in scattering media: boundary and source conditions. Med. Phys. 1995; 22:1779. [PubMed: 
8587533] 

31. Wissler EH. Pennes' 1948 paper revisited. J. Appl. Physiol. 1985; 85:35.

32. Diaz SH, Aguilar G, Lavernia EJ, Wong BJF. Modeling the thermal response of porcine cartilage to 
laser irradiation. IEEE. J. Sel. Topics Quantum Electron. 2001; 7(6):944.

33. Arridge SR, Cope M, Delpy DT. The theoretical basis for the determination of optical pathlengths 
in tissue: temporal and frequency analysis. Phys. Med. Biol. 1992; 37:1531. [PubMed: 1631197] 

34. Boas DA, O'Leary MA, Chance B, Yodh AG. Scattering of diffuse photon density waves by 
spherical inhomogeneities within turbid media: analytic solution and applications. Proc. Natl. 
Acad. Sci. USA. 1994; 91:4887. [PubMed: 8197151] 

35. Walker SA, Boas DA, Gratton E. Photon density waves scattered from cylindrical inhomogeneities: 
theory and experiments. Appl. Opt. 1998; 37:1935. [PubMed: 18273113] 

36. Pogue BW, Patterson MS. Frequency-domain optical absorption spectroscopy of finite tissue 
volumes using diffusion theory. Phys. Med. Biol. 1994; 39:1157. [PubMed: 15552104] 

37. Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model 
based on diffusion approximation. I. Theory. Appl. Opt. 1997; 36:4587. [PubMed: 18259254] 

38. Kienle A, Patterson MS. Improved solutions of the steady-state and the time-resolved diffusion 
equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A Opt. Image Sci. 
Vis. 1997; 14:246. [PubMed: 8988618] 

39. Kienle A. Light diffusion through a turbid parallelepiped J. Opt. Soc. Am. A Opt. Image Sci. Vis. 
2005; 22:1883.

40. Martelli F, Sassaroli A, Del Bianco S, Zaccanti G. Solution of the time-dependent diffusion 
equation for a three-layer medium: application to study photon migration through a simplified 
adult head model. Phys. Med. Biol. 2007; 52:2827. [PubMed: 17473354] 

Nouizi et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Liemert A, Kienle A. Light diffusion in a turbid cylinder. I. Homogeneous case. Opt. Express. 
2010a; 18:9456. [PubMed: 20588792] 

42. Cong W, Wang LV, Wang G. Formulation of photon diffusion from spherical bioluminescent 
sources in an infinite homogeneous medium. Biomed. Eng. Online. 2004; 3:12. [PubMed: 
15125780] 

43. Sikora J, Zacharopoulos A, Douiri A, Schweiger M, Horesh L, Arridge SR, Ripoll J. Diffuse 
photon propagation in multilayered geometries. Phys. Med. Biol. 2006; 51:497. [PubMed: 
16424578] 

44. Liemert A, Kienle A. Light diffusion in N-layered turbid media: frequency and time domains. J. 
Biomed. Opt. 2010b; 15:025002. [PubMed: 20459243] 

45. Erkol H, Nouizi F, Unlu MB, Gulsen G. An extended analytical approach for diffuse optical 
imaging. Phys. Med. Biol. 2015b; 60:5103. [PubMed: 26083326] 

46. Brix G, Seebass M, Hellwig G, Griebel J. Estimation of heat transfer and temperature rise in 
partial-body regions during MR procedures: an analytical approach with respect to safety 
considerations. J. Magn. Reson. Im. 2002; 20:65.

47. Jaunich M, Raje S, Kim K, Mitra K, Guo Z. Bio-heat transfer analysis during short pulse laser 
irradiation of tissues. Int. J. Heat Mass Tran. 2008; 51:5511.

48. Deng ZS, Liu J. Mathematical modeling of temperature mapping over skin surface and its 
implementation in thermal disease diagnostics. Comput. Biol. Med. 2004; 34:495. [PubMed: 
15265721] 

49. Jiang L, Zhan W, Loew MH. Modeling static and dynamic thermography of the human breast 
under elastic deformation. Phys. Med. Biol. 2011; 56:187. [PubMed: 21149948] 

50. Neufeld E, Chavannes N, Samaras T, Kuster N. Novel conformal technique to reduce staircasing 
artifacts at material boundaries for FDTD modeling of the bioheat equation. Phys. Med. Biol. 
2007; 52:4371. [PubMed: 17634638] 

51. Erkol H, Nouizi F, Luk A, Unlu MB, Gulsen G. Comprehensive analytical model for CW laser 
induced heat in turbid media. Opt. Express. 2015a; 23:31069. [PubMed: 26698736] 

52. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q. Appl. 
Math. 1944; 2:164.

53. Richardson WH. Bayesian-Based Iterative Method of Image Restoration. JOSA. 1972; 62(1):55.

54. Thayer DA, Lin Y, Luk A, Gulsen G. Laser-induced photo-thermal magnetic imaging. Appl. Phys. 
Lett. 2012; 101:83703. [PubMed: 22991481] 

55. Nouizi F, Luk A, Thayer D, Lin Y, Ha S, Gulsen G. Experimental validation of a high-resolution 
diffuse optical imaging modality: photomagnetic imaging. J. Biomed. Opt. 2016; 21(1):16009. 
[PubMed: 26790644] 

Nouizi et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of the geometry of a homogeneous medium with a delta function source in 2D.
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Figure 2. 
a) Schematic showing the synthetic phantom and the position of the laser source. b) The 

simulated temperature obtained by solving the FEM-based PMI forward problem, 8 seconds 

after turning on the laser. c) The Jacobian computed with the FEM-based algorithm at a 

particular node (x = 0 mm, y = −15 mm).
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Figure 3. 
The analytic Jacobian J̃n fitted on J̃, the Jacobian obtained using our FEM-based solver at a 

particular node (x = 0 mm, y = −15 mm). b) The normalized profiles performed on J̃n and J̃.
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Figure 4. 
a) The Total Jacobian, JT, obtained by changing the absorption simultaneously at all nodes. 

b) The normalized shape of the kernel obtained using equation (15). c) An of the individual 

Jacobians obtained using our new algorithm. e) The profile carried-out on An, along the 

white dashed-line, matches the maximum amplitude of the individual Jacobians computed 

using the FEM-based algorithm at nodes (x = 0 mm, y = −17.5,−15,−12.5 mm). The arrows 

show that the amplitudes of the kernels computed using both the analytic-based and the 

FEM-based algorithms are in perfect agreement.
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Figure 5. 
Schematic of the 40 mm diameter cylindrical phantom containing two 5 mm diameter 

inclusions placed 8.5 mm apart and 4.5 mm below the illuminated surface. The absorption of 

both inclusions is set to be four times higher than the background, while no scattering 

contrast is introduced.
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Figure 6. 
a) Schematic of the PMI setup showing the optical instrumentation, the RF coil for MRI 

acquisition and the phantom inside the MRI bore. b) Picture of the PMI interface placed on 

the bed of a Philips 3 Tesla Achieva system. There are four ports for laser illumination with 

collimator lenses. c) The schematic of PMI data acquisition timeline.
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Figure 7. 
a) Schematic of the double inclusion numerical phantom. The two times more absorbent 

inclusions are shown with red circles while the limits of the pixel grid is shown in a black 

dashed line. b) The synthetic temperature map simulated at the end of the heating cycle (8 

seconds after turning on the laser). c) The reconstructed absorption map using one iteration 

of the FEM-based algorithm. d) The final reconstructed absorption map using the FEM-

based algorithm. e) The reconstructed absorption map using our analytic-based algorithm. f) 

The reconstructed absorption profiles along the centers of the two inclusions: real (dashed 

green line), reconstructed using the new analytical method (red line with circle marker), 

reconstructed using one iteration of the FEM-based algorithm (dash-dot black line) and 

reconstructed at the final iteration of the FEM-based algorithm (blue line).
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Figure 8. 
a) Schematic of the double inclusion agar phantom. The two times more absorbent 

inclusions are shown with red circles while the limits of the pixel grid is shown in a black 

dashed line. b) The high resolution MRT temperature map measured at the end of the 

heating cycle (8 seconds after turning on the laser). c) The reconstructed absorption map 

using one iteration of the FEM-based algorithm. d) The final reconstructed absorption map 

using the FEM-based algorithm. e) The reconstructed absorption map using our analytic-

based algorithm. f) The reconstructed absorption profiles along the centers of the two 

inclusions: real (dashed green line), reconstructed using the new analytical method (red line 

with circle marker), reconstructed using one iteration of the FEM based algorithm (dash-dot 

black line) and reconstructed at the final iteration of the FEM based algorithm (blue line).
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