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. SUMMARY

Errors in fheory and eiperi;nent are each t_é.icen into é%écount explicitl_y in thie
methodology here presented, : The theory is assumed to be represented by a mathe-
matical mode_l and the experiment by a measured funct:ionf A suitably defined com-
posite deviation permits a pr.oper allocation to model and to rﬂeasuremen’c of anybdis—
crepancy between them. It is shqwn how quantitative limits may.be obtained for the

.trustwo_vrt'hiness of the theory reiative to the experiment. An appendix contains ap-

propriate mathematical formalism, ‘based on the calculus of variations, ‘as well as ,

examples of application of the methods described.



L)
-
\

-1-

'I. Introduction

The principal ';_'nethod for judging th‘e validit); of a theéry is comparison with
‘experimént. This testing of the thepr'y is, ofﬁen accomplished by ta.kiﬁg intc; aécount
experimental error and estimating how likely could be the 'experimenté.l results, if
the theory were perfectly valid, v Siﬁce the theory is but a conje‘ct.ure it may contain
error also, but the described procedure cannot consider error in theory directly.

In the folloWing discussion, we show how to take explicit account of error in theory,

and we describe a method for allocation to theory and to experiment of any discrep~

ancy between them. This leads to a quantitative measure of the trustworthiness of

the theory relative to the experiment. '

We confine our atteﬁtion to the t;ltx‘antitatiw}evthebr? represented by a mathe-
matical model and to the quantitative experiment represented by measurements,
The matherhatical model is assumed to define a function that is measured experi<
mentally. By considering a suitably defined deviation of the measurement from

the function given by the model, we determine the appropriate ‘allocation of that devi-
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ation to model error and to measurement error. Independent information about either

error may.then be used in juvdg’ing‘ both the validity of the model and the reliance to be

. ®
placed in the model relative to the experiment,

Associated mathematical formalism is relegated to the Appendix, where

 several examples are given, This formalism most readily allows the analysis of

linear models, in which the important errors often occur in the common use of the

linear model as an acknowledged approximation,
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II. Strong and Weak Solutions

&

‘Con"sider a mathematical model of thé form
| Myty.x) =0, . W

rela.ting the i.ndependent variable x -to.tfle dependent 'variébié y la,nd its derivative
l‘ yt.,. We assume M to be a contiﬁucvmsly‘ 'diﬁ_'ere_ntiable f‘unctior'x‘of its arguments.

The relation (1) may conté.in a first-order differenfial equation, and there
may be an associated_in'itial conditioﬁ; but more general views of the relation (1)
nﬁa#y be acéommodateci. _For' example, the variable y may be considered as a
veétor, withvthe relation (1) then containing a sjrstém of first-order ordinary dif-
ferential eq’uations.{ We permit the abs‘ence of initial c..';ond.itiohs,‘ considering thém
as parameters ;)fv the model, ana we pvermit the model‘t‘o" contain other parameters
as well, The variable x may aléo be coﬁsidered a ve;:tor, with the relation (1) then
interpreted to contain a system of partial ciifferer;tial eqﬁa.tions. “Even the restriction
to first-order differential equatioﬁs is not necessary, -althougl.l tﬁat is thé case we
illustrafe. ‘ . : o | . -

A function y* satisfying equat.ion (1) is called a st;'ong solution of the model.
If the model is given by equa;tién (1), we assume that the experiment results in a
measurement ¥ ofa; strong solution over some interval, If ¥ = .y*, then the model
is takeﬁ to be p‘erfectly valid, and the measurement to be exé.ct.

Since the model that is only nearly valid may provide a useful description of
reality and since, in fact, we cannot expeét absolute validity (Nooney, 1965),a
satisfactory model may need satisfy only the inequality |

[M(’z;r..‘,z.,x)l <e | o (2)

for some function ; and small positive ¢ .1 Any function satisfying fhe ineéualiiy (2)
for specifigd € is called a weak solution of the model. A more precise designation is -

€ -weak soiution, and we term the model €-valid,
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III. Deviations

A common measure of deviation D between a strong solution y* and its

) o .
measurement 'y is
. 7
L .

Dy = [Iyxe) - Fo1 P ax, )

where the range of integration is the domain of V. We‘assv‘.xme that the model

defines y* over that domain also, If the modelfaﬁd consequently its strong solution
contain parameters, fhen the definition is modified t.o make D(y*) the minimum of
~ the right-hand side of equation (3) with respect to the parameters.. The resulting
D(y*) is the usual least-squares deviation, Thg y* specified by the parameter
values yielding the minimum is called the  best-fitting strong ;olufion; .A‘comrnon
method of judging the validity of the model given in relafion (1) has been to estimate |
the probability distribution of measurement error, assumed random, and to calculate
the .probability of a de\;iation's ex‘ceeding ,D'(y"*) by api»lying the errors to y*, If
that probability is reasonably large, then the .model is said to have a large degree

of vilidity; if that probability is small, thén the model is .saia to have a small de-
_ grée of validity. | | |
Now, suppose we cio not request absdlute vzalidity of the model, bth only
‘e-validity, Then we may define a composite deviation.tha.t 'gives a measure of how
- well satisfied is the model and how well approximated. is the measuremént. For any
functioh .2 _weyset | )
M‘(z) = j [ M(z? ,z.,x)]‘2 dx,

- where £he r'a'nge of integration is again the domain of “f,v;énd we definé the composite

' deQiation | | | “ | |

Clz) = w M (z) +_D(VVZ) , R (4)
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where w is a weight reflecting the relaiive importance of model and measure~
ment, The parameter w may also be cons_idei-ed to specify the trust placed in

the theory relative to the experiment.

*

IV. The Function z* and the Weight w
It is netural to seek the minimum composite deviation, and we eet _ |
C(z*) = min C(z), . | (5)
. :

where the functions competing fo achieve the minimum are the functions con-
tinuously differentiable over the domain of ')’r' We call the function z* the best-
fitting weak solution. In general, z* is not a strong solution. -Equation (A2) of
the Appendix shows that D(z*) <D(y¥), and therefere z* better approximates
t_he measurement ¥y than does y*. If the model contains parameters, then the
minimization of the compesite deviation must be carried out simultaneously with
respect to the function z and all parameters of the model. The resulting best-
flttmg weak solution is again a better a.pproxunatmn ta ¥ in the sense of D than
is the best ﬁttmg strong solut1on. Note that the two sets of parameter values
obta.ined by minimizing _the two deviations need not be identical. The expressidn
__I\Z(z*) is a measure of the error in the_ model; any diecrepancy between z* and
¥, given‘for instance. by D(z*), .maylbe attributed to measurement error. Both
errors are influenced by the choice of w. The measurement error, we realize,
is actually due entirely to experimental inaccuracies only if the value of w
employed is the correct value and only if the model truly has ‘error M(z*',z%, x).
The devxa.tion D(z *) may be mvestiga.ted by the same statistical methods used with
D,(Y*)- a

Regariihg .w as variable in equation (4), Qe see that as w be'comes :

- small, the best-fitting weak solution z* tends to the measurement ';rj, and as w
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' Becomgs large, z* tends to a strong solution y*, We may expect, then, that a .
given maximum a.llowable‘value for D(z*) will deﬁné an upper bound for w.

We may expect also that a ;'eqx‘a.ivrerhent for the model to be ¢ -;ralid,A with a

given maximum allowable value of ¢, will define a léwer bound for w. Should
this upper bound exceed the lower bo@d, there would be a weak solution §a.tisfying
both conditions given in advance, That is, there would be a function that
sufficiently well satisfies the mo'del while sufficiently well approximating the
fneasurement. Should the lower bound for w exceed the upper bound, there .
would be no function simultaneously satisfying the advance conditions, Each
bound separately limits the trustworthinesé of the model relative to the measure~

1

ment,

V. Calculations

The Appendix demonstrates the application 6f the calculus of variations
in the determinaﬁori of the best-fitting weak solution z*. Although the expressions
-fﬁ(z*) and D(z*) are of major interest, it is expedient for us to make use of
available formalism in first obtaining z*, then calculating those expressions.
With the linear model, an éxplicit formula may be obta,iﬁed for z* as a function
of the variable x and the weight-parameter w, .Such'_a. fovrmula‘lends itself to
the relatively eaéy determination of the aforementioned bounds for w,

Throughout this discussion the measurement ';7 was assumed given only'
at each point of some interval. This assumption is violated in many experiments,
which may give ¥ only on a’ spa.rseiy distributed, d'is‘crgte set of points, Fof this
reagon, the Appendix concludes with a definition of the composite deviation fgr
discrete measurements and with an indication of formalism appropriate to that

definition.



-

class mentioned for which _

b } UCRL-16472

 APPENDIX
N . Fo'rmalism

If the mea.surement y is given over the interval (a,b), then the mathe-

mat1ca1 problem set in the main text of this paper 1s the mmlmizanon of
© Clz) =f {wl M(z" 2]+ Late) - y(x)] } d (A1)
Ja . S . '

with respect to the class of functions z continuously differentiable‘on (a,b). De-"

,'pen.ding on the formulation of the model M, the functions z may be subjected also

_'to an initial condition, z(a) = zo'. We assume there is a unique function z* of the

]

C(z*) = min C(z).

Z o

.

‘We have already defmed the dev1atlon D and the (contmuously chfferentla.ble)

strong solution y* by the relatmns
b

D(y) =j Lyt - F] % ax
| |

and

.M(y*' s Y*’ x) =0,
From the definition (A1) and these last three relations follow the inequalities

D(z*¥) €C(z*) <Cly*) = Dly®) . | L (A2)
Therefore, in the sense of the deviation D, z* inore closely approximates "f
than does y¥*, |

The m1mm1za.tion of the mtegral in equation (A1) is a sta.ndard problém

of the calculus: :?31‘ variations (e. g., Bhss, 1946), and lea.ds to the Euler- Lagrange :

33
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.equation as wéll as supplementary boundﬁry éondit.ions. f;)r z*, In general, the
.._fuuction'.z* will ubt be a stro'ng solution of the model. If the model .M contains
.Eut a éingle ﬁrst-orde.r ordinary differential equation, the corresponding Euler-
: Lagran‘ge etiuation will be a.second-order ordinary .differe.ntia;.l equation. Systems'
of such equations and systems of parti‘al‘ glifferentiél’ equatiuus az;ise as the Fuler-

Lagrange equations corresponding to our other interpretations of M,

. For illustration, let us assume for the model the form

M(z!)z:x) = .zt "f (Z, X),

with the function f having continuous partial derivatives. This is a common form
: ! o

for dynamical models, as in the study of tracer kinetics, for instance. For this

model, the functlon z* y1e1d1ng the minimum composite dev1a.t10n is given by the

Euler- Lagrange equatlon satisfied by Z = 2 ’9;,
wz"}rw(fx_-ffz)-(z-';‘r")=0,. L o (A3)
“where the subscripts denote partial derivatives, . To tha.t differential equation

must be adjoined the natural boundary conditions
z' - f(z,x)=0, x=a,b,

._ obtained also through the formalism of’ the calculus of uariatious. It is re~
markable that, althdugh the solution 2% of equa.tion. (A3) need not be a strong

‘v éolution of the model, the natural béundury conditiuns require exact satisfaction
of the model by z* at the points .a and b, If an initial condition has been
specxfxed it replaces the natural boundary condltlon for x=a, Ifthe functlon f

is linear in 1z, then we may write the exphcit solution of (A3) in terms of m'cegrals
i

!

(Ince, 1944), Gf course, that explicit solutlon contains w and thus offers the
possxb1hty of bounding w as dlscussed in Sec. 1V,

v
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: Examgle 1. Suppose the model is given by an éxprés sion containing no

‘derivatives,

M(z' s z,_x) = z- 'g(x)- R

for some function g. Then we obtain for the strong solution y*(x) = g(x), .

The composite deviation takes the form

2 2 '
cla) = flwie-0)” + 2= D7) ax,
and the associated Euler-L_agrange equation for the minimizing function is
\;‘.r‘(z*-g)+z*-'§r’=_0.

This yields for the best-fitting weak solution EEE

ak= L (witH.

The error in the model is

1
Z¥ - g = m—@”g)»

and the difference between the best-fitting weak solution and the measurement is

"

W w :
2* -¥ = 1 -9
Since y* = g,' we may write
z*"}"l" '{“%’v(')'*‘ 12K
and conclude that z* is closer to y at every point than is y*, We find also that
W 2 . By . !
D(z*) = (4= ) Dly®.

_ N
It is clear that specifying upper bounds for model error and deviation D fufnishes

lower and' uppér bounds, respectively, for w, -
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Example 2. Suppose the model is given by_’ ‘ |

M(z',z,x) =2z -z,

with the initial condition z(0) = 4. Suppbsel furthér,‘.the experimental measure=-

N ~
|

ment is lgiven by
: N }
y(x)=e +x, 0<x<1,

Then we find y*(x) = e and D(y*) = 1/3. Thé_ composite deviation becomes

cw)jf.[ww'-msz—vﬁlmu
0 : ,

with the associated Euler-Lagrange equation

wz" - (1+w)z+¥=0.

The initial condition and the natural boundary _éo’nd.ition z' (1) = z{1) = 0 must
be satisfied for z = z%, We find |
z¥(x) = e* + ! b4
T+w *
The error in the model is given by
M(z*t,z%,x) = ! (1 ~x)
e Ivw ,
or
Man= (Ao’
-3 tw *
Again, we see that z* is closer to "3{ ‘at every point than is y* Further,
: w 2 R
%) = % '
D(z %) ( m) D(y*) .
As before, a priori specifications of maximum allowable errors result in upper

_and lower bounds for w,
: & :
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Example 3. Let us take the conditior.xs.of'Exa.mple 2, deleting the initial con-
dition, The value y*(0) = Yo then becomes a parameter of the model to be de-

‘termined by considering y*(x) = yoex and

| 1 )
D(y*) = min f (y* - ¥) dx ,
Yo -7
The minimum is given by the best-fitting st.rox_ag sdlﬁtioh
yrx) = (1 - e h Tl eX,
The composite deviation and the Euler—Lagré.nge equation for the besvti'fi't'ting g
| weék solution z* remain unchanged. The absence of initial condition requires.
‘the imposition on z* of both natural boundary conditions z!(x) - z{x) = 0 for
x = 0,41. The resulting solution of the Eﬁler-L&grange.equation is

X 1 : . TrX <rX
% = ?
VA (X) _e +W x+ Ae + B e: »

. where _
r=(1+ 1'/\7.')1/'2
Ats (e w (-0 (8- &Py,

Blarwt+n (- e;zr) N

Here algebraic difficulties are annbying, but again the imposition of a priori
limits on the errors result in bounds for w,

Discrete Measurement

When the measured funétion ’ir’ is known at a relatively few points X
(including the end points) of some interval (a,b), we may employ another definition

of the composite deviation

() = w File) + ) Laty) - yie)]
; i .
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In this case, (exivsting formalism of the calculus of variations is unfortunately

of little use. For the calculation of the best-—ﬁttingA weak solution we may turn

to the theory of dynamic programming, where constructive methods are available

(Bellman, 1957).
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