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.SUMMARY 

·-
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Errors in theory and experi,ment are each taken into account explicitly in the 
- I 

methodology here presented. The theory is assumed to be represented by a mathe~ 

matical model and the experiment by a measured function. A suitably defined com-

posite deviation permits a proper allocation to model and to measurement of any dis­

crepancy between them. It is shown how quantitative limits may be obtained for the 

trustworthiness of the theory relative to the experiment. ~ appendix contains ap­

propriate mathematical forz-x:alism, based on the calculus of variations, as well as 

examples of application of the methods described. 

·" 

,, ' 
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. I. Introduction 

The principal .method for judging the validity of a theory is comparison with 

\- experiment. This testing of the theory is. often accomplished by taking into account 

experimental error and estimating how likely could be the experimental results, if 

the theory were perfectly valid~ Since the theory is but a conjecture it may contain 

error also, but the described procedure cannot consider error in theory directly. 

In the following discussion, we show how to take explicit account of error in theory, 

and we describe a method for allocation to theory and to experiment of any discrep-

ancy between them. This leads to a quantitative measure of the trustworthiness of 

the theory relative to the experiment. 

We confine our attention to the quantitaUvetheory represented by a mathe­

matical model and to the quantitative experiment represented.by measurements. 

The mathematical model is assumed to define a function that is measured experi~ 

mentally. By considering a suitably defined ~eviation of the measurement from 

the function given by the model, we determine the appropriate allocation of that devi-

ation to model error and to measurement error. Independent information about either 

error may then be used in judging both the validity of the model and the reliance to be 

placed in the model relative to the experiment.· 

Associated mathematical formalism is relegated to the Appendix, where 

several examples are given. This formalism most readily allows the analysis of 

linear models, in which the important errors often occur in the common use of the 

linear model as an a~knowledged approximation. 
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II. Strong and Weak Solutions 

Consider a mathematical model of the form 

M{yt,y,x)=O,. (1) 
. . 

relating the independent variable x to the dependent variable y and its derivative 

yt. We assume M to be a continuously differentiable function of its arguments. 

The relation {1) may contain a first ... order differential equation, and there 

may be an associated iriitial condition; but more general views of the relation {1) 

may be accommodated. For example, the variable y may be considered as a 

vector, with the relation (f) then containing a system of first-order ordinary dif­

ferential equations. We permit the absence of initial c;onditiohs, considering them 

as parameters of the model, and we permit the model to contain other z:>arameters 

as well. The variable x may also be considered a vector, with the relation {1) then 

interpreted to contain a system of partial differential equations. Even the restriction 

to first-order differential equations is not ne~essary, although that is the case we 

illustrate. 

A function y* satisfying equation {1) is called a strong solution of the model. 

If the model is given by equation (1), we assume that the experiment results in a 

measurement y of a strong solution over some interval~ If y = y*, then the model 

is taken to be perfectly valid, and the measurement to be exact. 

Since the model that is only nearly valid may provide a useful description of 

reality and since, in fact, we cannot expect absolute validity {Nooney, 1965),a 

satisfactory model may need satisfy only the inequality 

IM(~t,z,x)l < t: (2) 
\' 

~~ 
for some function ~ and small positive E .. Any function satisfying the inequality (2) 

for speCified t: is called a weak solution of the 1model. A more precise designation is 

E -weak solution, and we term the n1.odel E -valid~ 
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III. Deviations 

A common measure of deviation D between a strong solution y* and its 

t 
,..) . 

measuremen ·y 1s 
.' 

D{y*) = j l y*(x) - y(x) J 2 
dx, (3) 

where the range of integration is the domain of o/.· We assume that the model 
..-

defines y* over that domain also. If the model and consequently its strong solution 

contain parameters, then the definition is modified to make D{y*) the minimum of 

the right-hand side of equation (3) with respect to the parameters •. The resulting 

D(y*) is the usual least-squares deviation. The y* specified by the parameter 

values yielding the minimum is called the best-fitting strong solution. A common 

method of judging the validity of the model given in relation (1) has been to estimate 

the probability distribution of measurement error, assumed random, and to calculate 

the probability of a deviationr s exceeding D(y*) by applying the errors to y*. If 

. that probability is reasonably large, then the. mod~l is said to have a large degree 

of validity; if that probability is small, then the model is said to have a small de-

gree of validity. 

' 
Now, suppose we do not request absolute validity .of the model, but only 

E -validity. Then we may define a composite deviation that gives a measure of how 

well satisfied is the model and how well approximated is the measurement. For any 

function z we set 

J . 2 
1Vi(z) = . l M(z', z, x)] dx, 

. where the range of integration is again the domain of y, ind we define the composite 

·deviation 

C(z) = w 1Vt (z) + D(z) {4) 
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where. w is a weight reflecting the relative importance ·of model and measure­

ment. The parameter w may also be considered to "specify the trust placed in 

the theory relative to the experiment • 
• 

IV. The Function z * and the Weight w 

It is natural to seek the minimum composite deviation, and we set 

C(z*} = min C(z}, (5) 

z 

where the functions competing to achieve the minimum are the functions con­

tinl,lously differentiable over the domain of y. We call the function z* the best­

fitting weak solution. In general, z* is not a strong solution. ·Equation (AZ) of 

the Appendix shows th.at D(z*) ~D(y*), and therefore z* better approximates 

-v . 
the measurement y than does y*. If the model contains parameters, then the 

minimization of the composite deviation must be carried out simultaneously with 

respect to the function z and all parameters of the model. The resulting best­

fitting weak solution is again a better approximation to· y in the .sense of D than 

is the best-fitting strong solution.. Note that the two sets of parameter .values 

obtained by minimizing the two deviations need not be identical. The expression 

M(z*) is a measure of the error in the model; any discrepancy between z* ~nd 

y, given for instance by D(z*), maybe attributed to .measurement error. Both 

errors are influenced by the choice of w. The measurement error, we realize,· 

is actually due entirely to experimental inaccuracies only if the value of w 

employed is the correct value and only if the model truly has error M{z*1 , z*, x). 

The deviation D(z*) may be investigated by the same statistical methods used with 

D(y*) • 
~~. '· 

Regardihg . w as variable in equation (4), we see that as w becomes. 

small, the best-fitting ..yeak solution z* tends to the measurement r. and as w 

-.. 
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becomes large, z* tends to a strong solution y*. We may. expe.ct, then,· that a 

given maximum allowable value for D{z*) will define an upper bound for w. 

We may expect also that a requirement for the model to be E -valid,· with a 

given maximum allowable value• of e, ~11 define a lower bound for w. Should 

.this upper bound exceed the lower bo'und, there would be a weak solution satisfying 

both conditions given in advance. That is, there would be a function that 

sufficiently well satisfies the model while sufficiently well approximating the 

measurement. Should the lower bound for w exceed the upper bound, there " 

would be no function simultaneously satisfying the advance conditions. Each 

bound separately limits the trustworthiness of the model relative to the measure­
l 

ment. 

V. Calculations 

The Appendix demonstrates the application of the calculus of variations 

.in the determination of the best-fitting weak solution.z*. Although the expressions 

·M(z*) and D(z*) are of major interest, it is expedient for us to make use of 

available formalism in first obtaining z*, then calculating those expressions. 

With the linear model, an explicit formula may be obtained for z* as afunction 

of the variable x and the weight-parameter w. Such a formula lends itself to 

the relatively easy determination of the aforementioned bounds for w. 

Throughout this discussion the measurement y w~s assumed given only 

at each point ofsome interval. This assumption is violated in many experiments, 

which may give y only on a· sparsely distributed, dis.cr~te set of points. · For this 

reason, the Appendix ,concludes with .a definition of the composite deviation for 

discrete measurements and with an indicat~on of formalism appropriate to that 

definition. 
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APPENDIX 

.. Formalism 

If the measurement y. is give!} over the interval (a, b), then the mathe-· 

matical problem set in the main text of this paper is the minimization of 

b [ . . . . 2 J 2 
C{z) =( w[M(zi,z,x)] + [z(x)- y{x)] }· dx 

.)a ~ . 
{A1) 

with .respect to the Class of functions z continuously differentiable on (a, b). De­

pending on the formulation of the model M, the functions z may be subjected also 

to an.initial condition, z{a) = z 0 ~ We assume there is a unique function z* of the 

class mentioned for which 

C(z*) =min C{z). . . . 
z 

' .. 
. ! 

We have already defined the deviation D and the (continuously differentia?le). 

strong solution y* by the· relations 

b 

D(y) = 1 [ y(x) - Y<><ll Z dx . 

and 

.M(y*1 , y*, x) = 0. 

From the definition (Ai) and these last three relations follow the inequalities 

D{z*) ~ C(z*) ~ C(y*) = D{y*) • . (A2) 

Therefore, in the sense of the deviation D, .z* more closely approximates 'Y 
than does Y*· 

The minimization of the integral in equation (Ai) is a stanc:tard probl~tn 
~~ ;· 

of the calculus 'a.£ variations (e. g., Bliss, 1946), and leads to the Euler-Lagrange 
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equation as well as supplementary boundary conditions for z*. In general, the 

. function. z* will not be a strong solution of the modei. If the model . M contains 

but a single fii·st-order ordinary differential equation, the corresponding Euler­

Lagrange equation will be a. second-order ordinary differential equation. Systems 

o£ such equations and systems of partial ¢lifferential equations arise as the Euler-

Lagrange equations corresponding to our other interpretations of M. 

For illustration, let us assume for the model the form 

M{z',z,x) = zt -f(z,x), 

with the function f having continuous partial derivatives. ·This is a common form 
I . 

for dynamical models, as in the study of tracer kinetics, for instance. For this 

model, the function z * yielding the minimum composite deviation is given by the 

Euler-Lagrange equation satisfied by z = z*, 

w z" + w(f .- ff ) - {z - y) = 0 
X Z 

{A3) 

where the subscripts denote partial derivatives •. ~o that differential equation 

must be adjoined the natural boundary conditions 

z 1 -f{z,x}=O, x.=a,b, 

obtained also through the formalism of the calculus of variations. It is re-

markable that, although the solution z* of equation {A3) need not be a strong 

solution of the model, the natural boundary conditions require exact satisfaction 

of the model by z* at the points .a and b. I£ an initial condition has been 

specified, it replaces the natural boundary conditio~ for x = a. I£ the function f · 

is linear in z, then we may write the explicit solution ot (A3) in ter~s o£ in~egrals 
.,~ ! ~ 

(Ince, 1.944). Qf course, that explicit solution contains w and thus offers the 
·'! 

possibility of hounding w as discussed in Sec. IV. 
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Example 1. Suppose the model is given by an expression containing no 

derivatives, 

M{z.1 ,z,x) = z- g{x) 1 

for some function g~ Then we obtain for the strong solution y*(x) = g(x). 

The composite deviation takes the form 

C(z) = Jlw(z-g)
2 

+ {z.-y)
2

] dx 1 

and the associated Euler-Lagrange equation for the minimizing function is 

w(z* - g) + z* - y = 0 • 

This yields for the best-fitting weak solution 

z * = 1 
{w f + y) . . i+w 

The error in the model is 

z* - g = 1 ! w {y- g) ' 

and the. difference between the best-fitting weak solution and the measurement is 

...J w ,..) 
z * - y = 1 + w (g - y) 

Since y* = g 1 we may. write 

z* - Y = i ~ w (y* ;..'1-) 

and conclude that z* is closer to y at every point than is y*. We find also that 

w .2 
D(z*) = ( i + w ) D(y*) • 

t~ l 

It is clear that ,~pecifying upper bounds for model error and deviation D fuihishes 
:t 

lower and upp~i~ bounds, respectively, for .w. 
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Example z. Suppose the model is given by 

M(z 1 , z, x) = z" - z , 

with the initial condition z(O) = 1. Suppose further.the experimental measure-, 

ment is given by 

X 
y(x) = e + x, 0 ~ x ~ 1 • 

Then we find y*(x} = ex and p{y*) = 1/3. The composite deviation become's 

1 
( l z .v z] C(z) = Jo w(z 1 

- z) + (z - y) dx , 

with the associated Euler-Lagrange equation 

w z 11 
- (1. + w) z + y = 0 • 

The initial condition and the natural boundary condition z 1 (1) - z{1) = 0 must 

be satisfied for z = z*. We find 

X 1 
z *{x) = e + i + w x • 

The error in the model is given by 

or 

1 
M(z* 1

, z*• x) = r+W (1 - x) 

z 
M{z*) = } { 1 ! w ) • 

Again, we see that z* is closer to ·1 at every point than is y*. Further, 

z w ' 
D(z*) = { i + w} D(y*) • 

As before, .!' priori specifications of maximum allowable errO:J;"S result in upper 

and lower bounds for w. 
. ...~! 

1". f 
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Example 3. Let us take the conditions of· Example 2, deleting the initial con:.. 

clition. The value. y*{O) = y
0 

then becomes a parameter of the model to be de-

· termined by considering y*{x) = y0ex. and 

1 

D{y*) =min 

Yo 
[ {y*- y) dx. 

0 . 

The minimum is given.by the .best-fitting strong solution 

-1 -1 X 
y*{x) = (1 - e } e • 

The composite deviation and the Euler~Lagrange equation for the best~fittii?.g 

weak solution z* remain unchanged. The absence of initi~l condition requires. 

the i_mposition on z * of both natura~ boundary conditions z t {x) - z (x) = 0 for 

x = 0, 1. The resulting solution of the Euler-Lagrange equation is 

*( ) x + i x. + A. erx + B e-irx . z x =e 1 . . + w 

where 

r = {i + i/w)
1

/
2 

-1 · · Zr 
A = (1 + w) ·(i - r) (i - e ) • 

B- 1 = (1 + w) (i + r) (1 - e - 2r) .: 

Here algebraic difficulties are annoying, but again the imposition of..! priori 

limits on the errors result in bounds for w. 

Discrete· Measurement 

When the measured function '1 is known at a relatively few points xi 

(including the end points) of some interval (a, b), we may employ another definition 

of the composit,~ deviation 

· 'a<z> = w M<z> + I 
i 

l z(.x.) - y(x.)] 
2 

• 
1 1 



'o' 
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In this case, existing formalism of the calculus of variations is unfortunately 

of little use. For the calculation of the best-fitting weak solution we may turn 

to the theory of dynamic programming, where constructive methods are available 
• 

(Bellman, 1. 957). 

... 

.. 

•· 
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