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Abstract

Exploring the Potential of Autonomous Vehicles in Mixed Autonomy Transportation
Systems

by

Ruolin Li

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

Vehicular traffic congestion remains a critical challenge in metropolitan areas around the
world. Effectively addressing this problem requires a deep understanding of traffic congestion
from a behavioral perspective, as human drivers tend to prioritize their own interests, which
leads to selfish behaviors that negatively impact the entire traffic system’s efficiency. In
contrast, autonomous and connected vehicles, under rapid development, are capable of better
coordinating their motion with other neighboring autonomous vehicles and with roadside
infrastructure, resulting in potential significant capacity and mobility improvements in the
overall transportation networks. However, as a consequence, transportation systems are
facing not only unprecedented opportunities but also challenges in the transition to future
intelligent transportation systems involving autonomous vehicles.

This dissertation explores the potential improvements that autonomous road vehicles may
bring in diverse transportation scenarios and their overall impact on the broader transporta-
tion landscape. The study focuses on two approaches for the application of autonomous
vehicles: first, as altruistic decision-makers, and second, by maintaining a shortened head-
way. These approaches are analyzed via four scenarios that are typical in road vehicle
transportation networks: diverges with a bifurcating lane in the middle, highway on-ramps,
vehicles’ routing on networks, and highway toll lanes. The study emphasizes three challenges
that are crucial to successfully integrate autonomous vehicles into existing transportation
systems that are predominantly transited by human-driven vehicles: first, accurately yet
concisely modeling human behavior; second, modeling multi-agent systems that incorporate
the key features of autonomous vehicles; and third, developing suitable traffic management
and optimization strategies for societal benefits. This dissertation aims to shed light on
the complexities of the current transportation revolution and provide valuable insights into
the path forward: autonomous vehicles have various potentials to serve for enhanced soci-
etal benefits while selfish drivers may exploit the benefits brought by autonomous vehicles.
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Therefore, effective management and optimization methods are necessary to boost the per-
formance of transportation networks to pave the way for a safer, more efficient, and more
sustainable future transportation system.

Specifically, in this dissertation, a unified game-theoretic framework is first presented to
model and examine the selfish lane choice behavior of human-driven vehicles at various
traffic merges and diverges, which exhibits promising predictive power with minimal param-
eter calibration requirements. A systematic method is then proposed to induce altruistic
decision-making behavior of autonomous vehicles locally, which configures the costs per-
ceived by autonomous vehicles with a socially aware component. Moreover, a comprehensive
theoretical analysis is conducted from both static and dynamic perspectives on the routing of
mixed autonomy, where autonomous vehicles are configured with a controllable shorter lon-
gitudinal headway compared to human-driven vehicles. This analysis examines the impact
and stability of the resulting routing system, providing valuable insights into the potential
benefits induced by autonomous vehicles with shortened headway. Furthermore, the coexis-
tence of mixed autonomy and high-occupancy vehicles in a toll lane scenario is investigated
and a unified toll lane framework that integrates and compares autonomous vehicles and
high-occupancy vehicles is proposed. The effectiveness of this framework is demonstrated
across various application situations, including toll design, policy formulation and regulation
of autonomy.



i

Contents

Contents i

List of Figures iv

I Introduction 1

1 Mixed Autonomy: Human-driven and Autonomous vehicles 2
1.1 Selfish versus Altruistic Choice Behavior . . . . . . . . . . . . . . . . . . . . 3
1.2 Spontaneous versus Controllable Headway . . . . . . . . . . . . . . . . . . . 6

2 Preview of the Thesis 10
2.1 Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Highlights of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Decision Making Behavior 13

3 Selfish Lane Choice Behavior of Human-Driven Vehicles at a Diverge
with a Bifurcating Lane in the Middle 14
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Equilibrium Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Selfish Lane Choice Behavior of Human-Driven Vehicles at the Vicinity
of Highway On-Ramps 29
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Equilibrium Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Socially Optimal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



ii

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Employing Altruistic Vehicles at On-Ramps to Improve Social Traffic
Conditions 40
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 When No Uncertainty Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 When Uncertainty Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IIIHeadway in Organization 52

6 The Impact of Autonomous Vehicles’ Headway on the Social Delay of
Traffic Networks 53
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Network, Delay and Routing Models . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Networks with a Single O/D Pair . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Networks with Multiple O/D Pairs . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Dynamic Routing and Queuing for Mixed Autonomy with Traffic Re-
sponsive Intersection Signaling 66
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Dynamic Routing and Queuing Models . . . . . . . . . . . . . . . . . . . . . 67
7.3 Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4 Signaling and Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5 A Simple Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 A Unified Framework for Designing Tolls on Freeways with Autonomous
and High-Occupancy Vehicles 81
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 Equilibrium Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4 Design Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.5 Differentiated Tolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.6 Effect of Vehicle Misbehavior . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



iii

IVConclusions and Future Directions 109

9 Conclusions 110

10 Future Directions 112

Bibliography 114



iv

List of Figures

1.1 Satellite imagery from Google Earth of the MacArthur Maze with an enlarged
view of a typical diverge with a bifurcating lane. . . . . . . . . . . . . . . . . . . 4

2.1 Structure of the dissertation. Part II and Part III are parallel. . . . . . . . . . . 10

3.1 Problem setting: a traffic diverge with a bifurcating lane targeting two exit links. 15
3.2 Three possible sketches of Jf

i (x
b
i) and J

b
i (x

b
i) in the region of xbi ∈ [0, qi]. . . . . . 21

3.3 An enlarged view of the traffic diverge with a bifurcating lane in SUMO. . . . . 25
3.4 Model prediction of the proportion of bifurcating lane users, xbi is compared to

simulation generated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Problem setting: a proportion of mainline through vehicles bypass the on–ramp
merging area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Three possible sketches of Js
1(x

b
1) and J

b
1(x

b
1) in the region of xb1 ∈ [0, 1]. . . . . . 35

4.3 Enlarged view of the highway on–ramp in Aimsun. . . . . . . . . . . . . . . . . 36
4.4 Model prediction of the proportion of bypassing vehicles is compared to simulation

generated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 The socially optimal proportion of bypassing vehicles is compared to simulation

generated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Problem setting: mainline vehicles on lane 1 (both selfish and altruistic) choose
to stay steadfast on lane 1 or bypass the merging with on–ramp vehicles. . . . . 41

5.2 Sketch of the travel delay and altruistic cost functions, where Φ is indicated by
the yellow dot and x̂b†1 is indicated by the pink dot. . . . . . . . . . . . . . . . . 45

5.3 The social delay versus the altruistic ratio under different altruism levels. The
on–ramp cost coefficients are Ct

1 = Ct
2 = 1, Cm

1 = 21.3, Cm
2 = 1, µ = 2.4, γ = 8.6

(calibrated in Section 4.4) and the neighboring flow configuration is n0 = 0.37.
The on–ramp configuration lies in the meaningful set G. As we can see, when
altruistic vehicles are not abundant or the altruism level is less than 1, the social
delay improvement is compromised. . . . . . . . . . . . . . . . . . . . . . . . . 47



v

5.4 The social delay versus βe under different altruistic ratios. The on–ramp cost
coefficients are Ct

1 = Ct
2 = 1, Cm

1 = 21.3, Cm
2 = 1, µ = 2.4, γ = 8.6 (calibrated

in Section 4.4) and the neighboring flow configuration is n0 = 0.37. The on–ramp
configuration lies in the set G2. The worst case social delay happens on the pink
curve. The optimal altruism level satisfies β∗ = 1√

eLeU
. . . . . . . . . . . . . . . 49

6.1 A network of parallel links with a single O/D pair from A to B. There are k
feasible paths and path p (p = 1, 2, ..., k) has np links. . . . . . . . . . . . . . . . 58

6.2 A simple network with multiple O/D pairs. Three O/D pairs are (A,C), (A,B)
and (B,C). O/D pair (A,C) has two feasible paths, i.e., P(A,C) = {{1, 2}, {3}}.
The other two O/D pairs have one feasible path each, i.e., P(A,B) = {{1}} and
P(B,C) = {{2}}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 The equilibrium social delay J(µ) is not a monotone increasing function of the
homogeneous capacity asymmetry degree µ as we may expect. . . . . . . . . . . 64

7.1 An illustration of paths, links and movements. The path containing link 1, 2, 4, 6, 7
can also be seen as a set of movements (1, 2), (2, 4), (4, 6), (6, 7). . . . . . . . . . 68

7.2 A numerical example. All vehicles travel from A to C through one of the two
paths. At intersection B, there is a either a fixed-time or a P0 traffic responsive
signalling policy implemented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Green signalling ratios under fixed-time and traffic responsive signalling policies. 79
7.4 Traffic flow responses under fixed-time and traffic responsive signalling policies. 79
7.5 Queuing responses under fixed-time and traffic responsive signalling policies. . . 80

8.1 Problem setting: all autonomous vehicles with high occupancy travel freely on
lane 1, whereas the other three classes of vehicles either pay a toll to travel on
lane 1 or travel on lane 2 freely. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Possible sketches of the travel cost on both lanes. Resulting lane choice equilibria
are indicated by the green dots. Non-unique equilibria only exist in case (b). . . 87

8.3 The best/worst-case total commuter delay versus different toll values, when a
uniform toll is imposed on all vehicles traveling on lane 1, except for autonomous
vehicles with high occupancy (AV,HO) (Examples 2 and 3). . . . . . . . . . . . 93

8.4 The best/worst case total commuter delay versus different values of the HOV
occupancy threshold n in Example 4. . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5 The best/worst case commuter total delay versus toll under the dedicated au-
tonomous vehicle lane (DAVL) policy, or the dedicated HOV lane (DHOVL)
policy in Example 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



vi

8.6 The lane delays and the total commuter delay as a function of the proportion
of misbehaving human driven vehicles with low occupancy (HV,LO) αHV,LO

m , as
described in Example 6. While the conditions in Theorem 12, 13 and Proposi-
tion 11 hold, the total commuter delay increases as αHV,LO

m increases, while lane
delays remain constant. As long as the toll design is rational, the minimum total
commuter delay occurs when vehicles do not misbehave. . . . . . . . . . . . . . 106



vii

Acknowledgments

The past years at UC Berkeley have been a transformative life experience for me, giving
me the opportunity to reflect on my own identity and aspirations and to envision the future I
am truly passionate about. I would like to first express my sincerest gratitude to my research
advisor Roberto Horowitz. I am truly thankful for the exceptional guidance, unwavering
encouragement, profound insights, and genuine concern for humanity he has consistently
provided me throughout my research journey. Under his mentorship, I have been fortunate
to experience the true spirit of research, explore meaningful problems in uncharted territories,
and think creatively in awe of science. Roberto’s support has been providing me with a strong
pillar of stability even during times of extreme uncertainty and challenges.

I extend my heartfelt appreciation to Joan Walker, who questioned me, inspired me and
never ceased to encourage me in my research. It was during our conversation at my qualifi-
cation exam that I found my initial spark to pursue a lifelong career in research. During my
doctoral studies, I have been greatly influenced and motivated by Murat Arcak, for whom
I hold deep appreciation and gratitude. Murat’s commitment to rigorous research, grace-
ful work manner, and compassionate nature toward students have profoundly inspired and
impacted my academic journey. I am immensely grateful to Robert Powell. His invaluable
assistance persisted until the end of his life and his unwavering dedication to students has
served as a constant reminder and motivation for me to strive for excellence as a future edu-
cator. I extend my heartfelt thanks to Negar Mehr, an exceptional collaborator and mentor
at the beginning of my doctoral studies. I discovered the beauty of research during our
collaborations. Her strength and determination have continued to inspire me in countless
ways, even if I may not fully realize all of them. I would like to acknowledge Philip Brown
for his remarkable qualities of inquisitiveness, perceptiveness, and composure in our online
conversations during the pandemic, which have always been a source of inspiration to me.

I consider myself extremely fortunate to have had the opportunity to engage in inspiring
conversations with Pravin Varaiya and Masayoshi Tomizuka, who have offered valuable ad-
vice that has greatly influenced my research journey. Their wisdom and guidance have been
instrumental in shaping my academic development. I would like to express my heartfelt ap-
preciation to Alex Kurzhanskiy and Gabriel Gomez for their mentorship at the initial stage
of my graduate studies. Their assistance and mentorship were pivotal in helping me navigate
the start in my academic career. I am grateful to Matthew Wright for his selfless assistance
and warm heart during the early years of my graduate studies. I extend my deep gratitude to
Mark Mueller and Paul Grigas for their invaluable support during my qualification process.
Furthermore, I am indebted to Kameshwar Poolla, who taught my first control courses at
the beginning of my graduate studies which shaped my trajectory even before my research
began. His belief in my potential has been invaluable throughout my academic journey.

I would like to thank the brilliant and kind people who I have worked with: Zahra Amini,
Stanley Smith, Mikhail Burov, Prateek Shah, Zhi Chen, Mathias Wulfman, Nikhil Potu
Surya, and Joohwan Seo, whose encouragement and friendship have made this journey more
rewarding. I am especially grateful to Yeping Hu, for her enjoyable company in the years



viii

and countless memorable discussions on research and life. I would like to extend my utmost
gratitude to Jiaxi Liu, for her warm company, remarkable tenderness, and extraordinary
tolerance during the most challenging times. I cherish every moment we share on and off
campus. I would also like to express my heartfelt appreciation to my selfless friends in all
corners of the world for providing me with solace and strength in our conversations and
reminding me of the power of human connection and compassion.

I am profoundly grateful to my loving parents, whose support and encouragement have
been a constant presence throughout my journey. Their belief in me and the freedom they
have granted me to pursue my goals are invaluable. I am especially grateful to my father,
Dongming Li, for envisioning an unlimited future for me, for always listening with patience
and comprehending the difficulties I have encountered, and for demonstrating courage and
responsibility as a role model of a strong character facing life’s challenges. I extend my
deepest thanks to my mother, Xiaojuan Lin, whose empathy, and optimism have been an
endless source of strength and motivation for me. Her dedication to daily life and her nur-
turing presence have provided me with the resilience and determination needed to overcome
obstacles.

I am particularly grateful for the support and companionship of Xudong Frank Wang. His
presence has provided me with a profound sense of security, and he has been an endless source
of inspiration and encouragement. I want to express my sincere appreciation for his vibrant
spirit and boundless energy, as well as his tranquil presence and composed demeanor. The
distinct yet harmonious nature of our behavior, perspectives, and styles ignites my passion
for the diverse, thriving, and occasionally chaotic world.



1

Part I

Introduction



2

Chapter 1

Mixed Autonomy: Human-driven and
Autonomous vehicles

Road traffic congestion is a major source of inefficiency in modern society. According to
INRIX 2022 Global Traffic Scorecard [1], in 2022, congestion delays in the US alone resulted
in drivers collectively losing over 4.8 billion hours and costing the country approximately 81
billion dollars. While the data has not yet reached pre-COVID levels, it is steadily climbing
once again following the pandemic. Severe congestion not only results in a significant waste of
resources and energy but also constantly interrupts peoples’ daily lives and increases drivers’
fatigue and road rage, and therefore, becomes the source of anxiety for numerous drivers
and passengers.

To improve the efficiency of traffic networks, researchers and engineers have studied vari-
ous methods such as ramp metering for freeway networks [2]–[4], signaling controls for urban
networks [5]–[8] and pricing policies [9]–[11]. Recently, with the development of autonomous
vehicles, researchers have also considered controlling the autonomous vehicles on the roads
to improve the overall traffic performance [12]–[18].

Decades of research on autonomous vehicles and rapidly developing communication tech-
nologies have shed light on the large–scale deployment of autonomous and connected vehicles,
which can profoundly alter the way people commute in the future. Autonomous vehicles, as
an alternative to human-driven vehicles, are expected to perform in a better way for certain
metrics. For example, it is expected that autonomous vehicles can improve travel safety by
potentially reducing human errors [19], [20]. Moreover, by predicting the upcoming traf-
fic signals and observing the movements of surrounding vehicles, autonomous vehicles can
reduce fuel consumption and increase network sustainability [21], [22]. In addition, with
cooperative strategies, autonomous vehicles can also increase the capacity of the local traf-
fic [23], [24]. In particular, in this dissertation, we focus on two major features of autonomous
vehicles (altruistic decision-making and controllable headway) and analyze the consequent
impact on mixed autonomy transportation systems.
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1.1 Selfish versus Altruistic Choice Behavior

Human drivers on the roads can be selfish, which implies that human drivers only care
about their own costs and make decisions aiming to minimize their own costs. Lane-changing
behavior is one typical potentially selfish behavior, and it is well known that vehicles’ complex
and unpredictable lane-change maneuvers can be a significant cause of congestion and safety
concerns. Unfortunately, lane changes are notoriously difficult to model, both because it is
difficult to predict when and why a driver might change lanes and how their maneuver will
affect the movements of other vehicles [25].

A significant number of papers that analyze lane changes at the “microscopic level” focus
on determining accurate yet simple driver behavior models that will be able to reproduce ac-
tual individual vehicle’s lane changing behavior in a variety of scenarios. These lane-changing
models can be categorized into four groups [26], among which rule-based models are widely
explored. In [27], a typical rule-based model of a driver’s lane-changing decision-making
process is formulated, focusing on decisions that balance safety concerns with lane-changing
incentives. These decisions require a series of evaluations concerning the velocity and prox-
imity of the vehicles that surround the ego vehicle in the lane that it wishes to change to.
Much work, both theoretical and simulation-based, has taken place on so-called “gap ac-
ceptance models”, which model whether a driver will attempt to change lanes as a function
of the inter-vehicle gaps that arise in their target lane (see [28]–[30], among others). Sub-
sequently, researchers have endeavored to decipher people’s decision-making process when
performing a lane-changing maneuver via a variety of rule-based microscopic models. In [31],
for example, a new lane-changing model, MOBIL, is proposed to minimize the overall brak-
ing induced by lane change. Microscopic-level research in vehicles’ lane-changing behavior
also considers the different characteristics that vehicles’ lane–changing behaviors exhibit in
various traffic scenarios and road configurations. For example, in [32], [33], the lane-changing
behavior in a merging scenario is studied. Recently, a series of papers have been presented
that study microscopic lane-changing behavior using game theory, such as [34], [35], which
have brought new perspectives and insights to the field. Generally, microscopic modeling
of human drivers’ lane changing behavior can involve parameters sensitive to drivers’ own
characteristics, which need to be calibrated for distinct drivers to achieve accurate modeling.
When a large number of vehicles are of interest, it is hard to attain or calibrate such a great
number of parameters.

Another considerable part of related work addresses the “macroscopic” impact of vehicles’
lane changing behavior, i.e., how lane changes affect other vehicles and the aggregate traffic
conditions. In [36], [37], it is shown that the social delay may deteriorate under vehicles’
selfish routing behavior. In [38], [39], researchers studied the macroscopic characteristics that
affect vehicles’ lane-changing behavior. Among all the traffic scenarios, highway on-ramps
have gained considerable attention. In [40], lane-changing behaviors of vehicles entering
a freeway on-ramp and how it affects the onset of congestion are examined. In [41], it
is shown that lane-changing behaviors frequently cause the well-known “freeway capacity
drop” phenomenon. Subsequently, [42], [43] analyzed the macroscopic impacts qualitatively
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Figure 1.1: Satellite imagery from Google Earth of the MacArthur Maze with an enlarged
view of a typical diverge with a bifurcating lane.

and quantitatively of lane changing behaviors focusing on the section of lanes away from
freeway diverges, by modeling lane changing vehicles as particles linking interactive streams
on different lanes. In [44], a scenario where vehicles bypass at the end of the diverge is
studied, and the macroscopic choice behavior of vehicles of such a process is modeled as
a Wardrop equilibrium [45]. The resulting model shows impressive predictive power and
can be easily calibrated. Macroscopic modeling of human drivers’ lane changing behavior
usually only require parameters that are more robust to drivers’ own characteristics compared
to microscopic modeling. When a large number of vehicles’ behavior or its impact are of
interest, macroscopic modeling can efficiently achieve the accuracy without considering a
single vehicle’s characteristics.

In this dissertation, we approach and analyze the macroscopic lane changing or lane
choice behavior of selfish human-driven vehicles in various commonly encountered traffic
network scenarios. We assume that all human-driven vehicles act selfishly, i.e., they choose
a lane only when their own cost is minimized. We then aim to accurately model and predict
human-driven vehicles’ selfish lane choice behavior and evaluate its impact on social traffic
conditions.

One typical scenario is a frequent cause of bottlenecks: bifurcating lanes at traffic diverges.
Bifurcating lanes are encountered in (poorly designed) complex distribution structures, such
as the four-freeway interchange in the San Francisco Bay Area known as the MacArthur
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Maze (see Figure 1.1 for an aerial photograph of the MacArthur Maze), where consecutive
diverges with bifurcating lanes are employed to split the I-80 west/I-580 east (Eastshore
Freeway) traffic into 1) traffic going towards San Francisco via the I-80 west (Bay Bridge),
2) traffic going towards downtown Oakland, Walnut Creek, Hayward or Stockton via I-580
east (MacArthur Freeway) and I-980, and 3) traffic going towards San Jose via I-880 south
(Nimitz Freeway). The enlarged view in Figure 1.1 shows a typical diverge with a bifurcating
lane: one upstream lane in the middle target two exit directions (a bifurcating lane), whereas
each of the two upstream lanes on the sides only target one of the exit directions (feed-
through lanes). Vehicles face two choices at the diverge. One is to employ a feed-through
lane on the sides, while the other is to employ the bifurcating lane. Selfish drivers would
only employ the bifurcating lane in order to save time or effort, as compared to using one of
the feed–through lanes, and vice versa. Thus, in Chapter 3, we focus on the bifurcating lane
scenario and present a model that describes the decision-making process of selfish drivers at
such traffic diverges from a macroscopic view. The model is in a similar form of a Wardrop
Equilibrium [45] in the routing scenario, but it reveals the specific characteristics of vehicular
lane choice behavior at the bifurcating lane scenario, which to the best of our knowledge, has
not been previously addressed in the literature. Moreover, the model predicts selfish vehicles’
lance choice behavior at the diverge accurately but only requires traffic flow information at
the diverge, which is realistically attainable, in the calibration process of a small number of
parameters in the model.

Highway on–ramps are another typical bottlenecks which are severely affected by vehicles’
selfish lane–changing behaviors [46]. Vehicles’ complex lane–changing behavior at on-ramp
areas can enormously contribute to the potential congestion propagating from the on-ramp
onto the highway mainline. However, it is hard to develop an expressive yet simple model to
accurately describe the underlying complex lane–changing behavior and meanwhile quantify
the potential resultant congestion. In Chapter 4, we focus on the selfish lane choice behavior
of mainline vehicles’ facing on-ramps ahead. With the presence of an on-ramp, mainline
vehicles traveling on the outermost lane have two options: they either bypass the merging
area by switching to an inner lane, or they stay steadfast on the current lane and merge with
on-ramp vehicles later. We model and predict the macroscopic lane choice behavior of selfish
mainline vehicles facing on–ramps in a similar form to the Wardrop equilibrium while showing
unique characteristics of the behavior. We also show the model’s promising predictive power
and ease of calibration, and further reveal that there is a gap between mainline vehicles’ selfish
behavior and the socially optimal behavior, i.e., such selfish lane choice behavior degrades
social traffic conditions. The model analytically explains one underlying mechanism of how
the congestion forms at on-ramps and propagates onto the highway mainline.

Due to that vehicles’ selfish behavior is one significant cause of severe bottlenecks, re-
searchers have resorted to various methods to constrain or guide vehicles’ selfish behaviors to
improve social traffic conditions. In [11], [47]–[50], the impact of the toll pricing on vehicles
is studied in vehicles’ selfish routing scenario. In [51], [52], a specific kind of toll called the
marginal cost is proved to be capable of optimizing the social delay when vehicles are selfish
routing. Recently, autonomous vehicles, which are more controllable than human-driven ve-



CHAPTER 1. MIXED AUTONOMY: HUMAN-DRIVEN AND AUTONOMOUS
VEHICLES 6

hicles, are also increasingly studied on transportation networks. In [53], autonomous vehicles
are regarded as altruistic vehicles, which are willing to take routes with a longer delay than
the quickest route when routing on a transportation network.

In Chapter 5, we propose to employ a proportion of altruistic vehicles among the selfish
mainline vehicles to improve the social traffic conditions in the highway on-ramp scenarios
studied in Chapter 4. Selfish mainline vehicles choose to stay steadfast or bypass to mini-
mize their own travel delay, whereas altruistic vehicles make the decision to stay steadfast
or bypass to minimize their own altruistic cost, which is a weighted average of the travel
delay and the marginal cost [51], [52]. The weight configuration of the altruistic costs in-
dicates how altruistic vehicles are. Altruistic vehicles are individual optimizers that require
local delay and cost information but no centralized coordination. With the presence of au-
tonomous vehicles, it is envisioned that connected and autonomous vehicles can be employed
as altruistic vehicles perceiving and minimizing configured altruistic costs. To evaluate the
effectiveness of the method, we first consider when the altruistic costs are perfectly measured
by altruistic vehicles, and we find the conditions under which altruism helps to decrease or
optimize the social delay. The conditions indicate altruism always improves social traffic
conditions when altruistic vehicles are abundant, but to optimize social traffic conditions,
the altruistic vehicles further need to be purely altruistic by not weighing their own travel
delay at all. We also consider the scenarios when altruistic vehicles only have inaccurate
estimates of altruistic costs, which are common in real-world applications. In the presence
of measurement errors, the original optimal configurations of altruistic vehicles can be unex-
pectedly undermined. We then give the optimal weight configuration for altruistic vehicles
that minimizes the worst-case social delay under such uncertainty.

1.2 Spontaneous versus Controllable Headway

Previous literature has also shown that under fine-tuned control, autonomous vehicles are
capable of increasing lane capacities by forming platoons (a fleet of vehicles traveling with
a predetermined headway) and preserving a shorter headway at a higher speed compared to
human-driven vehicles [13], [23], [24]. Results in [13] have shown that the traffic throughput
can be increased up to three-fold by platooning connected and autonomous vehicles. It is also
shown that vehicle platoons are able to increase the capacity of intersections and decrease
the total fuel consumption [54], [55]. Various research works also focused on the low-level
effective control of vehicles in platoons [56]–[60].

The platooning ability of autonomous vehicles will also influence vehicle routing on trans-
portation networks that are shared by both human-driven and autonomous vehicles. For a
network with only human-driven vehicles, it is generally assumed that vehicles route self-
ishly, i.e., a vehicle never unilaterally changes to a route with a longer delay than its current
route. Such selfish routing of vehicles to minimize their own travel cost with no considera-
tion of the total traffic conditions may result in a tremendous waste of resources and even
congested transportation networks [37], [61]. The selfish routing equilibria can be charac-
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terized by Wardrop conditions and the selfish routing behavior of vehicles then converges
to the Wardrop equilibrium [45]. Such Wardrop equilibria may lead to higher total travel
costs compared to the scenario when all vehicles are altruistic, i.e, the goal of all vehicles is
to minimize the total travel costs [37], [61]. When autonomous vehicles are also present in
the transportation networks, considering that the delay of each roadway in the network is
related to the capacity of the roadway by functions such as Bureau of Public Roads (BPR)
delay functions [62], autonomous and connected vehicles can increase the capacity and de-
crease the delay of the roadways in the network [63]. Therefore, the presence of autonomous
vehicles will induce an impact on the overall traffic conditions of the transportation network.
However, such impact may be unexpectedly complex to model or predict due to vehicles’
competitive selfish routing behavior, for example, it was shown in [15] that increasing the
penetration rate of autonomous and connected vehicles in the network, may actually worsen
the traffic network’s overall traffic conditions in certain scenarios.

In Chapter 6 and 7, we examine a routing game of mixed autonomy where both human–
driven and autonomous vehicles route selfishly on a transportation network shared by both
human-driven and autonomous vehicles. Compared to human-driven vehicles, autonomous
vehicles are able to increase road capacities by preserving a shorter headway. We utilize a
variable, capacity asymmetry degree [15] for each road in the network, which is the ratio
between the road capacity when all vehicles are human-driven and the road capacity when all
vehicles are autonomous, to mathematically characterize the impact of autonomous vehicles’
shorter headway on each road’s capacity. The shorter the headway of autonomous vehicles
is, the smaller the capacity asymmetry degree is. We then innovate the traditional trans-
portation models to investigate the potential of autonomous vehicles in future transportation
systems.

In Chapter 6, we consider a selfish routing game of mixed autonomy on a transportation
network where all roads share a uniform penetration rate of autonomous vehicles and capacity
asymmetry degree. A central authority exists and is able to dictate a prescribed longitudi-
nal headway for platooning autonomous vehicles on each road. Therefore, the centralized
authority can adjust the headway of autonomous vehicles on each road in the network. We
then study the impact of varying the headway of autonomous vehicles on the social delay
of the network at the resulting Wardrop routing equilibrium [45]. We prove that, for net-
works with a single origin-destination (O/D) pair, we can always decrease the social delay by
decreasing the headway until the allowable minimum headway. For networks with parallel
links, we provide an estimate of the greatest impact of autonomous vehicles on decreasing
social delay. However, for networks with multiple O/D pairs, when we decrease the headway
for autonomous vehicle platoons, we may end up worsening the social traffic conditions. We
show an example for illustration and then find an upper bound for the potential negative
impact of autonomous vehicles on social delay.

The selfish routing model is non-linear even with affine travel costs, thus it is crucial
to determine the stability of the equilibria from a dynamic perspective. Only when the
equilibria are stable, the analysis of static equilibria such as the impact of mixed auton-
omy discussed in Chapter 6 can effectively reflect the true results. In [64], a continuous
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day–to–day selfish routing model for homogeneous vehicles is proposed. In [65], a dynamic
selfish routing model for homogeneous human-driven vehicles which also considers queu-
ing dynamics and stabilizing responsive traffic signal controls, P0 policy, is proposed and
studied. In Chapter 7, we innovate the selfish routing model to consider mixed autonomy
transportation networks. We also consider the effect of movement–wise vehicle queuing at
the intersections in the dynamic routing model and analyze the impact of both fixed-time
and traffic-responsive intersection signaling. For the fixed-time signaling case, we are able to
characterize the resulting Wardrop equilibria with queueing using an optimization problem
with boundary flow constraints. We then analyse the stability of the equilibria via the use
of dissipativity analysis tools for population games [66]–[68] and provide stability proofs of
the resulting model equilibria for both fixed-time and a movement–wise extension of the P0

traffic responsive signalling policy introduced in [65].
However, the advantage of connected and autonomous vehicles that they can preserve

a shorter headway compared to human-driven vehicles, thus increasing road capacities, can
rely heavily on the organization of autonomous vehicles on the roads. Gathering autonomous
vehicles on the roads at a higher density will facilitate the platooning of autonomous vehicles
and also be safer due to the lack of disturbances from human-driven vehicles. Therefore, lane
policies for autonomous vehicles are of significant importance and can be decisive on the ef-
ficiency of employing autonomous vehicles. Currently, there are two major categories of lane
policies for autonomous vehicles. The first category is the integrated lane policy [15]. The
integrated lane policy indicates that autonomous vehicles travel along with human-driven
vehicles on the same group of lanes. Such policies are convenient but may compromise the
platooning ability and safety of autonomous vehicles. The second category of policies is
dedicated lane policies [69]–[71]. Under such policies, some lanes are reserved exclusively for
autonomous vehicles. Such policies are preferred considering the safety and easy organiza-
tion of autonomous vehicles. However, when the penetration rate of autonomous vehicles is
low, the employment of dedicated lanes shows adverse effects and compromises social mo-
bility [72], [73]. Further, in [74], autonomous vehicle toll lanes are studied, which admit
autonomous vehicles to travel freely but also allow human-driven vehicles to enter paying
a toll. As a result, when the penetration rate of autonomous vehicles is low, human-driven
vehicles can effectively use the toll lane and relieve congestion on regular lanes. However,
even when autonomous vehicles are prevalent and dedicated lanes are necessary in terms
of the safety and advantageous mobility, the implementation or construction of brand-new
lanes can be costly and time-consuming. Therefore, researchers have recently considered
converting other existing dedicated lanes such as high-occupancy vehicle lanes to dedicated
lanes for autonomous vehicles. For example, in [75], [76], simulations and experiments are
conducted to investigate the benefit of converting an existing high-occupancy vehicle lane to
a dedicated lane for autonomous vehicles. However, this would result in a loss of the benefits
of a dedicated high-occupancy vehicle lane, especially when a considerable proportion of
commuters choose to carpool.

Therefore, in Chapter 8, we try to capture the advantage of both dedicated high-occupancy
vehicle lanes and dedicated autonomous vehicle lanes. We consider the scenario where four
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classes of vehicles are sharing a segment of highway: human-driven vehicles with low oc-
cupancy, human-driven vehicles with high occupancy, autonomous vehicles with low occu-
pancy and autonomous vehicles with high occupancy. Autonomous vehicles are capable of
increasing traffic throughput by preserving a shorter headway than human-driven vehicles.
High-occupancy vehicles carry multiple commuters per vehicle and low-occupancy vehicles
carry a single commuter per vehicle. We propose a toll lane framework, where on the high-
way, a toll lane is reserved freely for autonomous vehicles with high occupancy, and the
other three classes of vehicles can choose to enter the toll lane paying a toll or use the other
regular lanes freely. We consider all vehicles to be selfish and only interested in minimiz-
ing their own travel costs (the sum of travel delay and the toll cost). We then explore the
resulting lane choice equilibria and establish properties of the equilibria, which implicitly
compare high-occupancy vehicles with autonomous vehicles in terms of their capabilities to
increase social mobility. We further show the various potential applications of this toll lane
framework that unites high-occupancy vehicles and autonomous vehicles in the optimal toll
design, the optimal occupancy threshold design and the policy design problems. To the best
of our knowledge, this is the first work that systematically studies a toll lane framework that
unites autonomous vehicles and high-occupancy vehicles on the roads.
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Chapter 2

Preview of the Thesis

2.1 Structure Overview

The dissertation is divided into four parts. Part I serves as the introduction. The main
contents of the study are presented in Part II and Part III. Part IV includes final remarks.

Part I provides an introduction to the dissertation, serving as a comprehensive guide
to the current state of mixed autonomy and the underlying logic that connects the various
chapters in the dissertation. The introduction is structured in two parallel parts, mirroring
the main contents of the dissertation: mixed autonomy’s decision-making behavior and its
headway in organizational contexts. The introduction sets the stage for the subsequent
chapters, offering a clear and cohesive framework for the reader to navigate the research
presented.

Part II consists of Chapter 3–5, proposes an approach to use autonomous vehicles as
altruistic decision-makers to improve social traffic conditions compared to selfish human-

Figure 2.1: Structure of the dissertation. Part II and Part III are parallel.



CHAPTER 2. PREVIEW OF THE THESIS 11

driven vehicles by examining the decision-making of human-driven and autonomous vehicles
in two typical scenarios: a diverge with a bifurcating lane and highway on-ramps. The
approach involves a unified game-theoretic framework to model selfish vehicles’ lane choices
as a Wardrop equilibrium and a systematic approach to configure and control autonomous
vehicles’ perceived cost to improve social traffic conditions. Partial contents in this part are
previously published in [77]–[79].

Part III containing Chapter 6–8 focuses on the headway of human-driven and au-
tonomous vehicles in the organization. Autonomous vehicles are able to maintain a shorter
longitudinal headway than human-driven vehicles’ spontaneous headway under proper con-
trol. A routing scenario is first examined where vehicles selfishly choose the fastest path
across a network. We show that reducing the headway of autonomous vehicles can decrease
the overall network delay for networks with a single origin-destination pair and further pro-
vide an estimated bound of the best improvement which can serve as a crucial metric in policy
design or evaluation. The stability of mixed autonomy’s dynamic routing and queuing are
further characterized using dissipativity tools. Moreover, a toll lane scenario is studied where
mixed autonomy and high-occupancy vehicles coexist. A systematic toll lane framework that
unites autonomous vehicles and high-occupancy vehicles is proposed and analyzed, and the
framework shows power in multiple application scenarios such as policy design and regulation
of autonomy. Partial results in this part are also included in [18], [80], [81].

Part IV serves as the concluding part of the dissertation. A summary of the contribu-
tions made in the previous parts of the dissertation is first presented, highlighting the main
research goal and findings throughout the dissertation. Further, a path forward is discussed
which briefly mentions potential topics for further research and development based on the
implications and limitations of current findings.

2.2 Highlights of Contributions

The dissertation is situated in the context of the rapid development of autonomous driv-
ing technologies, while application scenarios remain limited due to safety concerns and high
production costs. While the pursuit of “perfect” autonomy is a challenging goal, this disser-
tation aims to practically create the demand for autonomous vehicles by creating scenarios
that highlight their societal benefits.

Specifically, the dissertation discusses two approaches for the application of autonomous
vehicles:

• a systematic approach to employ and configure autonomous vehicles as altruistic decision-
makers

• a comprehensive evaluation of the headway control for autonomous vehicles in mixed
autonomy
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Alternatively, the dissertation can be viewed as a collection of scenario-based studies
that explore the impact of mixed autonomy on transportation systems, with a particular
emphasis on typical transportation scenarios:

• diverges with a bifurcating lane in the middle

• highway on-ramps

• vehicles’ routing on networks

• highway toll lanes

The ultimate goal of the dissertation is to address the following crucial challenges in
integrating autonomous vehicles into human-dominated transportation systems:

• accurately yet concisely modeling human behavior

• modeling multi-agent systems that incorporate the key features of autonomous vehicles

• developing suitable control and optimization strategies for societal benefits

Finally, the dissertation demonstrates that autonomous vehicles have various potentials
to serve for enhanced societal benefits while selfish drivers may exploit the benefits brought
by autonomous vehicles. Therefore, effective control and optimization methods are necessary
to assure the potential beneficial impact brought by vehicle autonomy and to pave the way
for a safer, more efficient, and more sustainable future transportation system. We hope that
the findings of this dissertation will stimulate further interest and exploration in the field
of mixed autonomy and contribute to the development of more efficient, sustainable, and
equitable transportation systems in the future.
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Part II

Decision Making Behavior
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Chapter 3

Selfish Lane Choice Behavior of
Human-Driven Vehicles at a Diverge
with a Bifurcating Lane in the Middle

3.1 Overview

As mentioned in the introduction (Section 1.1), considering the huge waste of resources
produced by daily traffic congestion induced by vehicles’ lane change maneuvers, it is crucial
for the research community to find ways to accurately model and examine human-driven
vehicles’ lane changes.

In this Chapter, we focus on a specific traffic diverging scenario: bifurcating lanes at
traffic diverges, which are commonly encountered in modern traffic networks and become a
frequent cause of traffic bottlenecks. Figure 3.1 illustrates this diverge scenario, where the
center lane “b” bifurcates such that vehicles in that lane must choose either to turn left or
right.

Vehicles targeting one of the two exit links of the diverge face two options. One is to
employ a feed-through lane lane (either lane ”a” or lane ”c” in Fig. 3.1), while the other is
to employ the bifurcating lane. With the reasonable assumption that drivers choose their
routes in a selfish manner in order to minimize their own travel time or effort, vehicles would
only employ the bifurcating middle lane in order to save time or effort, as compared to using
the exit’s respective feed-through lane, and vice versa. In this Chapter, we derive a model
that describes the decision making process encountered by drivers at such traffic diverges
and then we obtain the macroscopic lane choices made by drivers by solving the model’s
corresponding Wardrop equilibrium. The model can accurately predict the aggregate lane
choices of human-driven vehicles at the traffic diverges with a bifurcating lane in the middle
and the calibration of our model only requires traffic flow information, which is realistically
attainable.

The rest of the chapter is organized as follows. In Section 3.2, we first provide a detailed
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Figure 3.1: Problem setting: a traffic diverge with a bifurcating lane targeting two exit links.

description of the notation used throughout the chapter and subsequently derive a model that
describes the decision making process of drivers at traffic diverges with middle bifurcating
lanes. In Section 3.3, we establish the existence and uniqueness of the Wardrop equilibrium
introduced by our model. In Section 3.4, we describe our model calibration and validation
process using microscopic traffic simulation data. Finally, in Section 3.5, we summarize the
chapter.

3.2 The Model

In this chapter, we consider a vehicular traffic diverge with a middle bifurcating lane. Such
diverges are commonly used in a variety of modern transportation roadways, such as the
well–known MacArthur Maze (see Figure 1.1), in the San Francisco Bay Area. A schematic
of such a traffic diverge is shown in Figure 3.1. The diverge has two exit links, respectively
denoted as link 1 and link 2, each consisting of two lanes, and a single entry link with three
lanes respectively denoted by the letters a, b, and c. Vehicles traveling along feed-through
lanes a and c respectively exit directly to links 1 and 2. However, vehicles traveling along
the middle bifurcating lane b can exit to either link. Thus, drivers upstream of such a traffic
diverge need to decide between two options. They can either use the feed–through lane that
is designed to exclusively serve its corresponding destination link, or conversely they can use
the middle bifurcating lane, which targets both exit links and is shared by vehicles targeting
both exit links. For example, referring to Fig. 3.1, vehicles targeting link 1 may choose
to utilize feed–through lane a or the bifurcating lane b. To model lane changing behavior
upstream of this diverge, we consider 4 classes of vehicles. For either exit link, vehicles are
either feed–through lane users or bifurcating lane users.

Here, some key points should be clarified. First, in this chapter we model the macroscopic
lane changing behavior of a given vehicular flow, instead of attempting to model the decision
making process of individual vehicles. Thus, features related to individual vehicles’ choices
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are not considered. Second, we will set the flow demands of both exit links within a feasible
range, in order to exclude potential teleporting behavior of vehicles (i.e. vehicles disappear
at the upstream link and then re–appear at a link downstream of the diverge), which is
observed in several microscopic traffic models. Only bifurcating lane choice behavior will be
studied in this work. Third, we assume that the capacity of either exit link is large enough
to accommodate the corresponding demand. The impact of capacity drop downstream of
the diverge is not considered in this work.

Let I = {1, 2} be the index set of exit links at the diverge, and let L = {a, b, c} be the
index set of the entry link’s lanes. At the diverge in Figure 3.1, lane a is the feed–through
lane targeting exit link 1. Lane c is the feed–through lane targeting exit link 2. Lane b is the
middle bifurcating lane targeting both link 1 and 2. We assume that the total demand for the
diverge is fixed and given. For each exit link i ∈ I, let di be the demand of vehicles targeting
exit link i, and let qi :=

di∑
i∈I di

be the normalized demand of vehicles with destination link

i. We collect the normalized demands and let Q := (qi : i ∈ I) be the normalized demand
configuration vector. For a diverge with the exit index set I and the normalized demand
configuration vector Q, we should have

∑
i∈I qi = 1.

For each exit link i ∈ I, let nf
i be the exact flow of feed–through lane users with destina-

tion link i and let nb
i be the exact flow of bifurcating lane users with destination link i. For

each i ∈ I, let xfi :=
nf
i∑

i∈I di
be the proportion of feed–through lane users with destination

link i. Likewise, for each i ∈ I, we let xbi :=
nb
i∑

i∈I di
be the proportion of bifurcating lane

users with destination link i. We then collect the proportions of the four classes of vehicles
transiting through the diverge into the vector x := (xfi , x

b
i : i ∈ I). For a given normalized

demand configuration vector Q, we will use our model to predict the flow distribution vector
x. A flow vector x is feasible if it is non–negative and it satisfies flow conservation:

qi = xfi + xbi , ∀i ∈ I,

xfi ≥ 0, xbi ≥ 0, ∀i ∈ I.
(3.1)

We assume all vehicles are selfish in that drivers will choose the route that minimizes
their travel cost, which will be defined subsequently. That is to say, in this bifurcating
lane scenario, vehicles would only choose the bifurcating lane when the cost experienced
when traveling through the bifurcating lane is less than the cost experienced when traveling
through the feed–through lane. We assume that vehicles of the same class, which are vehicles
targeting the same destination link and utilizing the same entry lane, experience the same
cost. We now model the cost experienced by each class of vehicles. For each exit link i ∈ I,
let Jf

i denote the cost experienced by the feed–through lane users with destination link i,
let J b

i denote the cost experienced by the bifurcating lane users with destination link i. We
now postulate that

Jf
i (x) = Cf

i x
f
i . (3.2)
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For each exit link i ∈ I, we let Cf
i represent the cost incurred by feed–through lane users

targeting exit link i. For each exit link i ∈ I, we assume that Cf
i > 0 and it is a parameter

related to the intrinsic features of the utilized feed–through lane, including the geometry,
speed limits and other factors. To be specific in Figure 3.1, for exit link 1, Cf

1 should be
a parameter related to the intrinsic features of the feed–through lane a. For each exit link
i ∈ I, since the feed–through lane is only shared by the feed–through lane users that exit
through link i, the cost experienced by all users should be proportional to the proportion of
the feed–through lane users that exit through link i. Thus, for each exit link i ∈ I, we let
the cost, Jf

i , to be the product of Cf
i and xfi , as described by Eq. (3.2).

Let us now focus on the cost experienced by users of the middle bifurcating lane. For exit
links i ̸= j ∈ I, we model the cost experienced by the bifurcating lane users with destination
link i as

J b
i (x) = Cb

(
λix

b
i + µix

b
j

)
+ νxbix

b
j, (3.3)

where Cb is a parameter characterizing the cost incurred by bifurcating lane users targeting
either exit link. Likewise to feed–through lanes, we assume Cb > 0 and that it is a parameter
related to the intrinsic features of the bifurcating lane. Since the bifurcating lane is shared
by the bifurcating lane users for either exit link, the cost experienced by the users should
be proportional to the sum of the proportions of the bifurcating lane users for either exit.
Vehicles travelling along the bifurcating lane must take either of the two exit links at the
end of the diverge, which might give rise to a sudden capacity increase for the bifurcating
lane users targeting either exit link. This expected capacity increase would reduce the cost
experienced by the bifurcating lane users. To account for this phenomenon, we define for
each exit link i two positive parameters λi ≤ 1 and µi ≤ 1. These parameters respectively
characterize the possible capacity increase effect on bifurcating lane users targeting exit link
i incurred by bifurcating lane users with the same destination link and the effect incurred
by bifurcating lane users with a different destination link. If the effect is the same regardless
of the inconsistency of the destination link, we should have λi = µi; otherwise, λi ̸= µi. If
either of the capacity increase effect is negligible, we will have λi = 1 or µi = 1.

The second term in Eq. (3.3), which has the positive constant parameter ν is used to
account for the detrimental effect on travel cost induced by the destination heterogeneity of
the bifurcating lane users. This detrimental effect should increase when either of the two
bifurcating lane vehicular flows increase. Therefore, we utilize the product between the two
bifurcating lane proportions νxbix

b
j, i ̸= j ∈ I in this term.

Thus, Eqs. (3.2) and (3.3) for i ̸= j ∈ I, are used to describe the costs experienced by
vehicles traveling through the diverge. We collect these cost parameters in these equations,
and define C = (Cf

i , C
b, λi, µi, ν : i ∈ I) to be the cost coefficient vector characterizing the

diverge.
Having modeled the costs (3.2) and (3.3), we will model vehicles’ choice behavior on the

macroscopic level. We assume that once a lane choice is made by the vehicle, it stays on its
chosen lane. Since we have assumed that all vehicles are selfish, vehicles would only choose
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the bifurcating lane when the cost experienced by traveling on the bifurcating lane is smaller
than the cost experienced by traveling on the corresponding feed–through lane. Using the
notations in our model, we can say, at the equilibrium of vehicles’ choice behavior, if xbi > 0,
then we must have J b

i (x) ≤ Jf
i (x); likewise, if x

f
i > 0, then we must have Jf

i (x) ≤ J b
i (x).

Therefore, at an equilibrium of our model, if Jf
i (x) > J b

i (x), then x
f
i = 0; if Jf

i (x) < J b
i (x),

then xbi = 0; only if Jf
i (x) = J b

i (x), x
b
i and x

f
i may both be nonzero. These conditions can

be formulated as a Wardrop equilibrium [45]. Now, let C = (Cf
i , C

b, λi, µi, ν : i ∈ I) be the
cost coefficient vector and Q = (qi : i ∈ I) be the normalized demand configuration vector.
Let G = (Q,C) be a tuple configuring a traffic diverge in Figure 3.1, we interpret the above
equilibrium conditions of our model and give the formal definition of the equilibrium of our
model:

Definition 1. For a given G = (Q,C), a flow distribution vector x is an equilibrium if and
only if for every i ̸= j ∈ I, we have

xfi (J
f
i (x)− J b

i (x)) ≤ 0,

xbi(J
b
i (x)− Jf

i (x)) ≤ 0.
(3.4)

Now that we have modeled the cost experienced by each class of vehicles and model the
resulting choice equilibrium as a Wardrop equilibrium described in Definition 1, we can use
this model to predict the proportion of bifurcating lane users and feed–through lane users
for either exit link.

3.3 Equilibrium Properties

In this section, we will first establish the existence of the equilibrium induced by our model.
Then, we will derive the sufficient conditions under which the existing equilibrium is guar-
anteed to be unique. Therefore, once the sufficient conditions are met, our model could be
applied to the prediction of the proportions of bifurcating lane users and feed–through lane
users.

Equilibrium Existence

We will first directly give a proposition based on the existence theorem stated and proved
in [82].

Proposition 1. Given a tuple G = (Q,C) configuring a traffic diverge in Figure 3.1, for
each exit link i ∈ I, if each of the cost functions Jf

i (x), J
b
i (x) is continuous and monotone

in x, there exists at least one Wardrop equilibrium (as described in Definition 1) for G.

From Equations (3.2) and (3.3), we observe that J b
i (x) and J b

i (x) are both continuous
and monotone in the sense of non-decreasing in x. Thus, by Proposition 1, we conclude the
existence of the equilibrium described in Definition 1.
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Equilibrium Uniqueness

As for the uniqueness of the induced equilibrium, we will use a similar method as what is
stated in [44]. The basic idea is that we will first construct an equivalent Nash equilibrium
of our equilibrium model. Then we will prove under certain conditions the uniqueness of
the constructed Nash equilibrium. Therefore, the uniqueness of the Wardrop equilibrium
induced by our model is concluded by equivalence.

For any tuple G = (Q,C) configuring a traffic diverge in Figure 3.1, we construct a
two–player auxiliary game G̃ = ⟨I, A, (J̃i : i ∈ I)⟩. Here, I = {1, 2} is the index set of our
players. Let A = A1 × A2 be the action space, Ai = [0, qi] be the action set of player i, and
J̃i be the cost associated with each player i ∈ I. Let y = (yi, i ∈ I) be the vector of actions
taken by the players of the game G̃. To further build the correspondence, for each player
i ∈ I, we let

yi = xbi . (3.5)

Then, for the cost associated with each player i, we define

J̃i(y) :=
(
Jf
i (x)− J b

i (x)
)2
. (3.6)

Next, we employ the definition of the constructed Nash equilibrium stated in [44]:

Definition 2. For the auxiliary game G̃, y = (yi : i ∈ I) is a pure Nash equilibrium if and
only if for every i ̸= j ∈ I,

yi = Bi(yj)

= argminyi∈[0,qi]J̃i(y),
(3.7)

where Bi is the best response function of player i.

Now that we have constructed a Nash equilibrium, we will use the following lemma to
establish the equivalence between the Wardrop equilibrium of G and the Nash equilibrium
of G̃.

Lemma 1. A flow distribution vector x = (xfi , x
b
i : i ∈ I) is a Wardrop equilibrium for G if

and only if y = (xbi , i ∈ I) is a pure Nash equilibrium for G̃.

Proof. First, using flow constraints (3.1), let us write Jf
i (x) and J

b
i (x) in terms of variables

xbi . For each exit link i ∈ I, we have

Jf
i (x) = Cf

i (qi − xbi), (3.8)

J b
i (x) = Cb

(
λix

b
i + µix

b
j

)
+ νxbix

b
j. (3.9)
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Then, for each exit link i ∈ I, we calculate the derivatives of the costs with respect to xbi :

∂Jf
i

∂xbi
= −Cf

i , (3.10)

∂J b
i

∂xbi
= Cbλi + νxbj. (3.11)

Notice that in Equation (3.10) and (3.11), given all coefficients are positive, for each exit

link i ∈ I,
∂Jf

i

∂xb
i
is always negative and equals to a constant, i.e., Jf

i (x) is a linear function of

xbi with a negative slope. For each exit link i ̸= j ∈ I, due to the flow constraints (3.1), xbj

is always nonnegative, thus
∂Jb

i

∂xb
i
is always positive and increases as xbj increases.

We now will show sketches of Jf
i (x) and J

b
i (x) in the region of xbi ∈ [0, qi]. There are 3

possible cases of the sketch and we draw each possibility in Figure 3.2. We then complete
the proof of equivalence case by case.

• Case (a): In this scenario, for every xbi ∈ [0, qi], we have Jf
i (x

b
i) > J b

i (x
b
i). To min-

imize the cost associated with player i in Equation (3.6), we have yi = qi at the
constructed Nash equilibrium. Since we let yi = xbi , we have xbi = qi. Then due to
flow constraints (3.1), we have xbi = qi, x

f
i = 0, where Jf

i (x
b
i) > J b

i (x
b
i). This meets the

conditions in Definition 1, thus the constructed Nash equilibrium leads to the Wardrop
equilibrium. At a Wardrop equilibrium where Jf

i (x
b
i) > J b

i (x
b
i), we can conclude that

xfi = 0, xbi = qi. This leads to yi = qi. From plot (a), we can see that, the cost
associated with player i is minimized. Therefore, the Wardrop equilibrium is also a
constructed Nash equilibrium. In this case, the Wardrop equilibrium is equivalent to
the constructed Nash equilibrium.

• Case (b): In this case, Jf
i (x

b
i) and J

b
i (x

b
i) have an intersection. Let us denote the xbi at

the intersection as x̄bi . Then we have Jf
i (x̄

b
i) = J b

i (x̄
b
i). At the Nash equilibrium, we let

yi = x̄bi , therefore the minimum possible cost associated with player i is reached, which
is 0. At this time, Wardrop conditions in Definition 1 are tight and met. Therefore,
the constructed Nash equilibrium is also the Wardrop equilibrium. Reversely, when
Jf
i (x

b
i) = J b

i (x
b
i) at the Wardrop equilibrium, from plot (b), xbi could only equal to

x̄bi . This results in a zero cost, which is the minimum possible value of the cost.
Therefore, a Nash equilibrium is reached. The equivalence of Wardrop equilibrium
and its constructed Nash equilibrium is established for this case.

• Case (c): This case is similar to case (a). For every xbi ∈ [0, qi], we have J
f
i (x

b
i) < J b

i (x
b
i).

To minimize the cost associated with player i in Equation (3.6), we have yi = 0 at the
constructed Nash equilibrium. Since we let yi = xbi , we have xbi = 0. Then due to
flow constraints (3.1), we have xbi = 0, xfi = qi, where J

f
i (x

b
i) < J b

i (x
b
i). This meets the

conditions in Definition 1, thus the constructed Nash equilibrium leads to the Wardrop
equilibrium. At a Wardrop equilibrium where Jf

i (x
b
i) < J b

i (x
b
i), we can conclude that
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xbi

Jfi (xbi )
Jbi (xbi )

(a) Jf
i (x

b
i) > Jb

i (x
b
i)

xbi

Jfi (xbi )
Jbi (xbi )

(b) Jf
i (x

b
i) and Jb

i (x
b
i) intersect

xbi

Jfi (xbi )
Jbi (xbi )

(c) Jf
i (x

b
i) < Jb

i (x
b
i)

Figure 3.2: Three possible sketches of Jf
i (x

b
i) and J

b
i (x

b
i) in the region of xbi ∈ [0, qi].
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xfi = qi, x
b
i = 0. This leads to yi = 0. From plot (c), we can see that the cost

associated with player i is minimized. Therefore, the Wardrop equilibrium is also a
constructed Nash equilibrium. In this case, the Wardrop equilibrium is equivalent to
the constructed Nash equilibrium.

Now in all cases, we have proved the equivalence between the Wardrop equilibrium and
the constructed Nash equilibrium. Then, we use the following lemma to establish the unique-
ness of the constructed Nash equilibrium.

Lemma 2. For an auxiliary game G̃, the Nash equilibrium flow vector y in Definition 2 is
unique if for each player i ∈ I:

(λi − µi)C
b ≥ ν − Cf

i . (3.12)

Proof. At a Nash equilibrium, for each player i ̸= j ∈ I, we have

yi = Bi(yj). (3.13)

For each player i ̸= j ∈ I, we can rewrite (3.13) as

yi = Bi(Bj(yi)). (3.14)

Equation (3.14) indicates that y is an equilibrium if and only if for every i ̸= j ∈ I, yi is
a fixed point for function g(z) = Bi (Bj(z)). Thereby, the number of the fixed points of
function g(z) = Bi (Bj(z)) equals the number of equilibria. To guarantee the uniqueness of
the equilibrium, we have to guarantee the uniqueness of the fixed point of function g(z) =
Bi (Bj(z)). Notice that a fixed point z∗ of function g(z) must satisfy

g(z∗) = z∗. (3.15)

Therefore, the fixed point z∗ can be found by intersecting the identity function h(z) = z
and function g(z). Thus, the basic idea of the following proof is to show that under (3.12),
for every player i ̸= j ∈ I, the slope of function g(z) = Bi (Bj(z)) is always non-negative
and smaller than 1. Therefore, with yi ≥ 0, function g(z) = Bi (Bj(z)) can intersect the
identity function at most once, which will establish the uniqueness of the fixed point of
function g(z) = Bi (Bj(z)). Then we can conclude the uniqueness of the constructed Nash
equilibrium.

First, for each player i ̸= j ∈ I, we explore
dBi(yj)

dyj
. Back to the three cases when we

prove Lemma 1, for case (a) and case (c), yi = Bi(yj) is always equal to qi or 0 no matter
how yj changes, therefore, dBi

dyj
= 0. Then the slope of function g(z) = Bi (Bj(z)) is always

0. Thus we only need to explore
dBi(yj)

dyj
in case (b), where Jf

i (x
b
i) and J

b
i (x

b
i) intersect in the

region of xbi ∈ [0, qi]. Remember that, we let yi = xbi , for simplicity, we use xbi instead of yi
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in the following proof. Using the same notations as the proof of Lemma 1, in case (b), with
a given xbj, let J

f
i (x

b
i) and J

b
i (x

b
i) intersect at x̄

b
i(x

b
j) ∈ [0, qi]. For x̄

b
i(x

b
j), we must have

Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j) = 0. (3.16)

Using implicit differentiation of Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j) with respect to xbj, we have

∂

∂x̄bi

(
Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j)
) dx̄bi(xbj)

dxbj
+

∂

∂xbj

(
Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j)
)
= 0.

(3.17)

Using Equations (3.8) and (3.9), we have

∂Jf
i

∂xbj
= 0, (3.18)

∂J b
i

∂xbj
= Cbµi + νxbi . (3.19)

Since xbi ≥ 0, we can conclude that for every i ̸= j ∈ I,
∂Jf

i

∂xb
j
is always 0 and

∂Jb
i

∂xb
j
is always

positive. Therefore, we have

∂

∂xbj

(
Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j)
)
≤ 0. (3.20)

From Equations (3.10) and (3.11) , we have

∂

∂xbi

(
Jf
i (x̄

b
i , x

b
j)− J b

i (x̄
b
i , x

b
j)
)
≤ 0. (3.21)

Thus, using Equation (3.17), we conclude that

dx̄bi(x
b
j)

dxbj
≤ 0. (3.22)

Intuitively, from plot (b), when xbj increases, Jf
i (x̄

b
i , x

b
j) stays the same, whereas J b

i (x̄
b
i , x

b
j)

increases. The intersection climbs leftwards, therefore, x̄bi decreases.
To guarantee, for every player i ̸= j ∈ I, that the slope of g(z) = Bi (Bj(z)) is always

non-negative and smaller than 1, based on the chain rule, we have to guarantee that the

slope of Bi(yj) is always non-positive and bigger than −1, i.e., −1 ≤ dx̄b
i (x

b
j)

dxb
j

≤ 0. Now we

plug Equations (3.10), (3.11), (3.18) and (3.19) into Equation (3.17), we have(
−Cf

i − Cbλi − νxbj

) dx̄bi(xbj)
dxbj

+(
−Cbµi − νxbi

)
= 0.

(3.23)
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For each player i ̸= j ∈ I, to ensure −1 ≤ dx̄b
i (x

b
j)

dxb
j

≤ 0, we need to guarantee

Cf
i + Cbλi + νxbj ≥ Cbµi + νxbi . (3.24)

LetM(xbi , x
b
j) = Cf

i +C
bλi+νx

b
j−Cbµi−νxbi , we need to guarantee that minM(xbi , x

b
j) ≥ 0.

Since M(xbi , x
b
j) is negatively linear in xbi and positively linear in xbj, the minimum possible

value of M(xbi , x
b
j) must be greater than the value of the extreme point, M(1, 0) = Cf

i +
Cbλi − Cbµi − ν. Thus, we just need to guarantee that M(1, 0) ≥ 0, which is as we stated
in Lemma 2.

Thus, for every player i ̸= j ∈ I, under condition (3.12), the slope of g(z) = Bi (Bj(z))
is always nonnegative and smaller than 1. Therefore, with yi ≥ 0, g(z) = Bi (Bj(z)) can
intersect the identity line at most once, which establishes the uniqueness of the fixed point of
function g(z) = Bi (Bj(z)). Thus, we can conclude the uniqueness of the constructed Nash
equilibrium.

We then give the following theorem to establish the uniqueness of the Wardrop equilib-
rium as described in Definition 1.

Theorem 1. For a game G = (Q,C), the equilibrium flow vector x in Definition 1 is unique
if for each exit link i ∈ I:

(λi − µi)C
b ≥ ν − Cf

i . (3.25)

Proof. From Lemma 2, we know that the constructed Nash equilibrium in Definition 2
is unique under condition (3.25). By Lemma 1, we conclude that the constructed Nash
equilibrium is equivalent to the Wardrop equilibrium in the sense of Definition 1. Thus, we
can conclude that the Wardrop equilibrium as described in Definition 1 is unique.

Notice that Theorem 1 only gives a sufficient but not necessary condition of the uniqueness
of the equilibrium. This implies if condition (3.25) is met, we can guarantee the uniqueness of
the equilibrium; however, if condition (3.25) is not met, it is also possible that the Wardrop
equilibrium is unique.

3.4 Simulation Studies

Now that we have characterized the existence and uniqueness of the equilibrium induced by
our model, we are going to test the performance of our model in terms of how it accurately
describes steady state vehicular flow data generated by a micro-simulation flow model.

In this chapter, we generate vehicular steady state flow data for model calibration and
validation using the traffic microscopic simulation software SUMO [83], which is commonly
utilized by the transportation community. In the simulations, to ensure the reliability of
the generated data, we set the SUMO car following model to be the default Krauss model,
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Figure 3.3: An enlarged view of the traffic diverge with a bifurcating lane in SUMO.

which is also known as the stochastic version of the Gipps’ model. To be specific, the Krauss
model supports stochastic driving behavior by setting an imperfection parameter sigma. The
imperfection parameter sigma, which ranges from 0 to 1, represents the degree of randomness
of vehicles’ behavior. When sigma is set to nonzero, drivers will randomly vary their speed.
In the simulations, we set sigma to a default value of 0.5, in order to realistically mimic
vehicle randomness. An enlarged view of the established diverge in SUMO is shown in
Figure 3.3. To ensure that the data we collect truly reveals the equilibrium state, we set
the entry link to be sufficiently long and only recorded the proportions of different classes of
vehicles (x := (xfi , x

b
i : i ∈ I)), downstream of the diverge when the simulation has run for a

sufficiently long time to reach the steady state.

Model Calibration

Notice that the cost coefficient vector C = (Cf
i , C

b, λi, µi, ν : i ∈ I) is related to the intrinsic
features of a diverge. Thus, it is necessary to first calibrate the cost coefficient vector C in
the model for a given diverge before we use the model for prediction. For the diverge shown
in Figure 3.3, let the exit link index set be Iexit = {1, 2}. We define K to be the total number
of data points that we need for calibration. For each data point, we run the simulation once,
until it reaches an equilibrium state. We pick an appropriate total demand, D, of vehicles
entering the diverge and fix it for all K simulations. For every simulation, we randomize
the demand configuration for either exit link. In the kth simulation to generate the kth data
point, we let dk1 be the demand of vehicles targeting exit link 1 and similarly, let dk2 be the
demand of vehicles targeting exit link 2. For each 1 ≤ k ≤ K, we should have dk1 + dk2 = D.

Now, for each 1 ≤ k ≤ K, we define qk1 :=
qk1
D

and qk2 :=
qk2
D

to be the normalized demand for
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exit link 1 and exit link 2 and we should have qk1 + qk2 = 1. Then we let Qk := {qk1 , qk2} to
be the kth flow configuration vector for the kth simulation. After the simulation has reached
the equilibrium, for each exit link i ∈ Iexit, we record the proportions of the feed–through
lane users (xfi )

k and the bifurcating lane users (xbi)
k. For each 1 ≤ k ≤ K, we collect the

proportions in the flow distribution vector xk = {(xfi )k, (xbi)k : i ∈ Iexit}. Now, for each
1 ≤ k ≤ K, we define a tuple (Qk, xk). Then using these K tuples, we employ the method
developed in [44] for calibration, which we briefly describe below.

We want to find a cost coefficient vector C = (Cf
i , C

b, λi, µi, ν : i ∈ Iexit) that can enable
as many as possible of the K data points to meet the conditions in Definition 1. To deal
with the variational inequalities when encoding the conditions in Definition 1 for each data
point, for every 1 ≤ k ≤ K and i ∈ Iexit, we define binary variables (efi )

k and (ebi)
k as

(xfi )
k(Jf

i (x
k)− J b

i (x
k)) ≤ 0 ⇐⇒ (efi )

k = 0, (3.26a)

(xfi )
k(Jf

i (x
k)− J b

i (x
k)) > 0 ⇐⇒ (efi )

k = 1, (3.26b)

(xbi)
k(J b

i (x
k)− Jf

i (x
k)) ≤ 0 ⇐⇒ (ebi)

k = 0, (3.26c)

(xbi)
k(J b

i (x
k)− Jf

i (x
k)) > 0 ⇐⇒ (ebi)

k = 1. (3.26d)

This way, we use the binary variables (efi )
k and (ebi)

k to indicate for (xfi )
k and (xbi)

k in
each data point whether the conditions in Definition 1 are violated. To optimize for C, we
will minimize the sum of binary variables (efi )

k and (ebi)
k for all i ∈ Iexit and 1 ≤ k ≤ K.

Moreover, to solve the optimization problem, we transfer the constraints in Equations (3.26)
as in [84]. We set T as a large positive number, and we set ϵ as a small positive number
close to zero. Then the constraints in Equations (3.26) can be transferred as below:

(xfi )
k(Jf

i (x
k)− J b

i (x
k)) ≤ T (efi )

k − ϵ, (3.27a)

−(xfi )
k(Jf

i (x
k)− J b

i (x
k)) ≤ T (1− (efi )

k)− ϵ, (3.27b)

(xbi)
k(J b

i (x
k)− Jf

i (x
k)) ≤ T (ebi)

k − ϵ, (3.27c)

−(xbi)
k(J b

i (x
k)− Jf

i (x
k)) ≤ T (1− (ebi)

k)− ϵ. (3.27d)

Then we can find the calibrated cost coefficient vector C by solving the mixed–integer
linear program problem below:

minimize
C

∑
1≤k≤K

∑
i∈Iexit

(
(efi )

k + (ebi)
k
)

subject to Equations (3.27),

Cr ≥ 1.

(3.28)

In our simulation, the capacity per lane is 1100 vph (vehicles per hour). We pick the
total demand D as 3000 vph. We vary the demand for exit link 1 from 1150 vph to 1850 vph.
For each demand configuration, xf1 , x

b
1, x

f
2 , and x

b
2 are recorded. In our simulation, we set
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the intrinsic features of every entry lane to be uniform and the geometry of two exit links
to be symmetric. Thus we add the equality constraints below in our calibration process to
reflect the symmetry:

Cf
1 = Cf

2 = Cb,

λ1 = λ2,

µ1 = µ2.

(3.29)

After performing calibration process described above, we obtained the following cost coeffi-
cient vector C:

Cf
1 = Cf

2 = Cb = 1.45,

λ1 = λ2 = 0.87,

µ1 = µ2 = 0.69,

ν = 1.

(3.30)

Note that the obtained values of C satisfy (3.25), thus, with this C, we can predict the
unique equilibrium x for each flow configuration Q. Also, since for i ∈ Iexit, we have λi < 1
and µi < 1, the capacity increase effect on bifurcating lane users is validated.

Model Validation

Having obtained the calibrated cost coefficient vector C in (3.30), we proceeded to vali-
date our model using independently obtained simulation data from SUMO. We validate our
model under the total demand of 3200 vph. As Figure 3.4 shows, our model successfully
predicts the proportion of bifurcating lane users for either destination link. It is an obvious
linear relationship which is consistent with our intuition. When the normalized demand for
the same exit link increases, the proportion of bifurcating lane users increases due to the
increasing cost for taking the feed–through lane designed exclusively for the exit link. The
simulation results show an impressive accuracy of our model in the prediction of vehicles’
aggregate lane choice behavior. We also obtained similar results when the total demand was
varied.

3.5 Summary

This chapter examined human-driven vehicles’ selfish lane choice behavior at a commonly
encountered traffic diverge scenario. A macroscopic model of vehicles’ aggregating lane choice
behavior at diverges with a middle bifurcating lane is presented using Wardrop conditions.
We then proved the existence and uniqueness of the resulting Wardrop equilibrium. Next,
we used a microscopic traffic simulation software, SUMO, to generate data to calibrate and
validate our model. The calibration process is shown to be easy. In the end, the validation
results turned out to be promising and the model shows great potential in the application
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Figure 3.4: Model prediction of the proportion of bifurcating lane users, xbi is compared to
simulation generated data.

to other similar traffic scenarios such as left-turning slots, and highway on-ramps, which are
going to be discussed in the next chapter.
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Chapter 4

Selfish Lane Choice Behavior of
Human-Driven Vehicles at the
Vicinity of Highway On-Ramps

4.1 Overview

Besides the traffic diverge scenario with a bifurcating lane in the middle discussed in the
previous Chapter, another traffic scenario, which is significantly affected by vehicles’ lane
changes, is the highway on-ramp. Studies of the effects of lane changes at highway on-ramps
include [40], [41], [46], [85], [86]. In [41], it is argued that the complex lane-changing behaviors
in the on-ramp area contribute to the well-known “freeway capacity drop” phenomenon, and
therefore, lead to severe congestion.

In this Chapter, we model the aggregate lane choice behavior of mainline through vehicles,
particularly on the outermost lane (the lane closest to the on–ramp), while facing an on–
ramp ahead. Knowing that a number of on–ramp vehicles are going to merge into the
mainline traffic ahead, through vehicles on the outermost lane have two options. One is
to stay steadfast, i.e., to remain on the current outermost lane and merge with on–ramp
vehicles, while the other is to change to the adjacent lane away from the on–ramp and avoid
the merging with on–ramp vehicles. We are interested in the proportion of the total through
vehicles that choose to stay steadfast or to bypass the merging area facing an on–ramp ahead.

Similarly to the method employed in the previous chapter, we show that the aggregate
lane choice behavior of mainline through vehicles at the vicinity of a highway on-ramp can be
explained by a game-theoretic framework. We assume all vehicles are selfish so they only take
the option which costs themselves the least. Then we model the resultant vehicles’ aggregate
lane choice equilibrium as a Wardrop equilibrium [45]. We then conduct a simulation study
to illustrate the promising predictive power of our model.

U.S. right-of-way rules state that the vehicles already on the highway have absolute
priority, and that they have no obligation to make room for vehicles entering through the
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012
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Figure 4.1: Problem setting: a proportion of mainline through vehicles bypass the on–ramp
merging area.

on–ramp [87]. It is on–ramp vehicles’ responsibility to find an acceptable gap between
through vehicles and safely merge into the mainline traffic. However, should there be any
advice for through vehicles’ drivers so that the total traffic condition can be improved? To
answer this question, we further model the socially optimal lane choice behavior of mainline
through vehicles and we draw a conclusion that through vehicles, in order to improve the
social traffic conditions, should be encouraged to bypass the merging area by steering to a
neighboring lane instead of staying steadfast.

The chapter is organized as follows. In Section 4.2, we elaborate the mainline vehicles’
lane choice model we build for a basic highway on-ramp setting. In Section 4.3, the existence
and uniqueness of the resulting equilibrium of the lane choice model are concluded. In
Section 4.4, we use microscopic traffic simulation (Aimsun) data to validate our model.
Further, in Section 4.5, we model the socially optimal lane choice behavior of mainline
vehicles and compare it with vehicles’ user optimal behavior in reality. Finally, in Section 4.6,
we summarize this chapter.

4.2 The Model

In this chapter, we consider a basic version of highway on–ramps with two lanes in the
mainline as shown in Figure 4.1. We label the on–ramp lane as lane 0, the outermost lane
(the lane closest to the on–ramp) in the mainline as lane 1 and the innermost lane (the lane
furthest from the on–ramp) as lane 2. When on–ramp vehicles enter the highway through
the on–ramp lane 0, they travel along a buffer zone and in the end merge into lane 1 to
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join the highway mainline. Meanwhile, vehicles traveling on the outermost lane 1 have two
feasible actions facing this potential merge. On the one hand, they could stay on the current
outermost lane 1 and yet suffer the possible procrastination due to the merging with on–ramp
vehicles. We call the vehicles that choose to stay on the outermost lane 1 steadfast vehicles.
On the other hand, vehicles on lane 1 could dodge the merging with on–ramp vehicles by
changing to the neighboring lane further from the on–ramp, which is the innermost lane 2.
We call these vehicles that choose to steer to lane 2 bypassing vehicles. We assume that
all vehicles are selfish, i.e., a vehicle only chooses to be steadfast when staying steadfast is
less costly than performing bypassing behavior, and vice versa, without considering what
will benefit other vehicles. In this work, we focus on the aggregate lane choice behavior of
through vehicles on lane 1 instead of a single specific vehicle’s lane choice. Therefore, in
our model, we do not predict individual vehicles’ choices and instead predict proportions of
steadfast vehicles and bypassing vehicles among vehicles traveling along the outermost lane
1 as shown in Figure 4.1.

Let I = {0, 1, 2} be the lane index set for the highway on–ramp in Figure 4.1. Lane
0 is the on–ramp lane and lane 1 is the outermost lane in the mainline. The outermost
lane 1 is where vehicles’ bypassing behavior takes place, whereas lane 0 and lane 2 are two
neighboring lanes of lane 1. For every lane i ∈ I, let fi be the traffic flow on lane i. For lane
i ∈ {0, 2}, we let ni :=

fi∑
i∈{0,2} fi

be the normalized flow on lane i. For each lane i ∈ {0, 2},
normalized flow ni indicates the relative magnitude of flow on lane i among the neighboring
flows of lane 1. We should have n0+n2 = 1. In our model, we consider n0 and n2 are known
and static. We collect them in the flow configuration vector N := (n0, n2). For lane 1, let
f s
1 represent the flow of vehicles travelling on lane 1 that choose to stay steadfast, and let
f b
1 represent the flow of vehicles travelling on lane 1 and yet bypass the merging area. Then

we let xs1 :=
fs
1

f1
represent the proportion of steadfast vehicles on lane 1, and let xb1 :=

fb
1

f1
represent the proportion of bypassing vehicles on lane 1. Now we collect the proportions of
steadfast and bypassing vehicles on lane 1 in the flow distribution vector x := (xs1, x

b
1). A

flow distribution vector is feasible if and only if

xs1 + xb1 = 1,

xs1 ≥ 0, xb1 ≥ 0.
(4.1)

As for vehicles’ initiatives to bypass, we suppose all vehicles choose the option that costs
themselves the least. In other words, if being steadfast is less costly than bypassing, vehicles
would choose to be steadfast. On the contrary, if bypassing is less costly than being steadfast,
vehicles would bypass. Therefore, we model the cost vehicles experience under both options.
In this work, we consider the cost experienced by vehicles as the time delay, and thereby,
vehicles choosing the same option would experience the same cost. For lane 1, we let Js

1

denote the cost experienced by steadfast vehicles, and we let J b
1 denote the cost experienced

by bypassing vehicles. For steadfast vehicles, we propose

Js
1(x) = Ct

1µ(x
s
1 + n0) + Cm

1 x
s
1n0. (4.2)
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The first term represents the traversing cost that steadfast vehicles on lane 1 would experience
after the merging with on–ramp vehicles. For lane i ∈ {1, 2} in the mainline, we define Ct

i

to be a positive constant, denoting the unit cost for traversing lane i in the mainline. We
let µ to be a positive constant to characterize the discomfort when vehicles travel across the
on–ramp merging zone. If the discomfort is negligible, we should have µ = 1, otherwise,
µ > 1. Since the outermost lane 1, after the merging area, is shared by steadfast vehicles
travelling along lane 1 and on–ramp vehicles, the total traversing cost should be proportional
to the total flow on lane 1, which is xs1+n0. We then employ the product of Ct

1µ and xs1+n0

as the first term of traversing cost. The second term indicates the merging cost for steadfast
vehicles to merge with on–ramp vehicles on lane 1. For lane i ∈ {1, 2} in the mainline, we let
Cm

i to be a positive constant, denoting the unit cost incurred by the actual merging behavior
on lane i. This merging cost should be proportional to the number of either of the merging
parties. On lane 1, on–ramp vehicles are trying to merge with the steadfast vehicles along
lane 1, thus we take the product of Cm

1 and xs1n0 as the second term of the merging cost.
Similarly, for bypassing vehicles on lane 1, we propose

J b
1(x) = Ct

2

(
γxb1 + n2

)
+ Cm

2 x
b
1n2, (4.3)

which also includes the first term of traversing cost and the second term of merging cost.
The positive constant Ct

2, as described above, denotes the unit cost for traversing lane 2.
Innermost lane 2, after the merging area, is shared by bypassing vehicles from lane 1 and
vehicles traveling along lane 2, thus we multiply Ct

2 by the total flow xb1 + n2 to be the
traversing cost. The parameter γ is assumed to be a positive constant to characterize the
discomfort for bypassing vehicles from lane 1 to perform an extra lane–changing maneuver
than staying steadfast. If this discomfort is negligible, we should have γ = 1. Otherwise, we
have γ > 1. The positive parameter Cm

2 denotes the unit cost for merging on lane 2. On
lane 2, bypassing vehicles from lane 1 have to merge with through vehicles on lane 2, thus
we take the product of Cm

2 and xb1n2 to denote the merging cost. We now collect all the
defined parameters in the cost coefficient vector C := (Ct

i , C
m
i , µ, γ : i ∈ {1, 2}).

As what we have discussed, vehicles only choose the option with their own minimized
cost. With the costs we have modeled, at the equilibrium of through vehicles’ lane choices,
if bypassing is less costly, i.e., Js

1(x) − J b
1(x) > 0, all vehicles on lane 1 would choose to

bypass, i.e., xs1 = 0; if staying steadfast is less costly, i.e., J b
1(x)− Js

1(x) > 0, all vehicles on
lane 1 would choose to stay steadfast, i.e., xb1 = 0; if staying steadfast has the same cost as
bypassing, i.e., J b

1(x)− Js
1(x) = 0, there may be both steadfast and bypassing vehicles, i.e.,

xs1 and x
b
1 may both be nonzero. Reversely, if there are no bypassing vehicles, i.e., xb1 = 0, we

can conclude that bypassing is more costly than staying steadfast, i.e., J b
1(x)− Js

1(x) > 0; if
all vehicles bypass, i.e., xs1 = 0, we can conclude that staying steadfast is more costly than
bypassing, i.e., Js

1(x)−J b
1(x) > 0; if there are both steadfast and bypassing vehicles, we must

have J b
1(x) − Js

1(x) = 0. These sufficient and necessary conditions can then be encoded as
Wardrop conditions [45]. We thus give the formal equilibrium definition for our model. Let
a tuple G = (N,C) be the full configuration of the highway on–ramp in Figure 4.1, where
N is the static flow configuration vector and C is the cost coefficient vector.
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Definition 3. For a given G = (N,C), a flow distribution vector x is an equilibrium if and
only if we have

xs1(J
s
1(x)− J b

1(x)) ≤ 0,

xb1(J
b
1(x)− Js

1(x)) ≤ 0.
(4.4)

4.3 Equilibrium Properties

In this section, we prove the existence and uniqueness of the equilibrium described in Defi-
nition 3.

Equilibrium Existence

First, a proposition based on the existence theorem stated and proved in [82] is given as
follows.

Proposition 2. Given an on–ramp configuration G = (N,C), if both cost functions Js
1(x), J

b
1(x)

are continuous and monotone in x, there is at least one Wardrop equilibrium (as described
in Definition 10) for G.

Based on Equations (4.2) and (4.3), it’s obvious that Js
1(x) and J

b
1(x) are both continuous

and monotonically non-decreasing in x. Thus, by Proposition 2, the equilibrium described
in Definition 3 exists.

Equilibrium Uniqueness

Here we directly give the following uniqueness theorem and then elaborate its proof.

Theorem 2. For an on–ramp configuration G = (N,C), the equilibrium flow vector x in
Definition 3 is unique.

Proof. First, using flow constraints (4.1), we have

Js
1(x) = Ct

1µ((1− xb1) + n0) + Cm
1 (1− xb1)n0, (4.5)

J b
1(x) = Ct

2

(
γxb1 + n2

)
+ Cm

2 x
b
1n2. (4.6)

Then we have the derivatives of the costs with respect to xb1:

∂Js
1

∂xb1
= −Ct

1µ− n0C
m
1 , (4.7)

∂J b
1

∂xb1
= Ct

2γ + n2C
m
2 . (4.8)
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Given all coefficients are positive,
∂Js

1

∂xb
1
is a negative constant, i.e., Js

1(x) is a decreasing linear

function of xb1. Likewise,
∂Jb

1

∂xb
1
is a positive constant, i.e., J b

1(x) is an increasing linear function

of xb1.
Given a flow configuration (n0, n2) and a cost coefficient vector C := (Ct

i , C
m
i , µ, γ :

i ∈ {1, 2}), Js
1(x) and J b

1(x) in the region of xb1 ∈ [0, 1] must conform to one of the three
possibilities shown in Figure 4.2. The equilibrium uniqueness is then proved case by case.

• Case (a): For every xb1 ∈ [0, 1], Js
1(x

b
1) > J b

1(x
b
1) holds in this case. At a Wardrop

equilibrium defined by inequalities (4.4), for Js
1(x

b
1) > J b

1(x
b
1), we conclude that x

b
1 = 1,

xs1 = 0. Thus the equilibrium is unique.

• Case (b): In this case, Js
1(x

b
1) and J b

1(x
b
1) have an intersection. At the intersection,

assuming xb1 = x̄b1, we have Js
1(x̄

b
1) = J b

1(x̄
b
1). Only the flow distribution xb1 = x̄b1,

xs1 = 1− x̄b1 qualifies as a Wardrop equilibrium defined by inequalities (4.4). Thus, the
equilibrium is unique.

• Case (c): Similar to case (a), for every xb1 ∈ [0, 1], we have Js
1(x

b
1) < J b

1(x
b
1). At a

Wardrop equilibrium defined by inequalities (4.4), for Js
1(x

b
1) < J b

1(x
b
1), we conclude

that xb1 = 0, xs1 = 1. The equilibrium is unique.

The unique equilibrium in each case is indicated by a green dot in the sketches.

Based on the proofs above, we conclude that the equilibrium in our model exists and is
unique. We then evaluate the model performance using accessible simulation data.

4.4 Simulation Studies

In this chapter, we use the micro-scale traffic simulation software Aimsun to simulate a
highway on–ramp in Figure 4.1 and then validate our model using simulation–generated
data. The overview of the simulated highway on–ramp is shown in Figure 4.3. Lane 0 is
the on–ramp lane and lane 1 is the outermost lane. The length of the simulated highway
is set to be 1km to fully capture vehicles’ lane–changing behavior caused by the on–ramp
merging. The simulated highway segment consists of three zones, among which zone 2 is
a 100-metre-long buffer zone as shown in Figure 4.3. In this buffer zone, on–ramp vehicles
from lane 0 accelerate to a relatively high speed and wait for an acceptable gap to join the
mainline traffic safely. In zone 1 and zone 2, lane–changing vehicles from lane 1 to lane 2
are considered to be bypassing vehicles that intend to avoid the on–ramp merging. In the
simulation, the cooperation between vehicles is set high, which means for a lane–changing
vehicle, the vehicles in its target lane would give it a large enough gap and allow it to merge.
The capacity and the maximum speed of the highway mainline and the on–ramp are set
according to [88], [89]. Detailed parameter values are shown in table 4.1.
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Figure 4.2: Three possible sketches of Js
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b
1) and J

b
1(x

b
1) in the region of xb1 ∈ [0, 1].
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Figure 4.3: Enlarged view of the highway on–ramp in Aimsun.

Mainline On–ramp

Max Speed (km/h) 120 60
Capacity (veh/hr/lane) 1800 900

Table 4.1: Parameter settings in Aimsun.

To observe obvious lane–changing behaviors, the total demand of the outermost lane 1
and the on–ramp lane 0 should not be too small. If the total demand is too small, it’s possible
that the outermost lane 1 has enough vacant space that accommodates on–ramp vehicles
easily so through vehicles on lane 1 would not be affected by on–ramp vehicles significantly.
Moreover, the total demand of the highway should not greatly exceed the total capacity of
the highway. If the total demand is too high, traffic will be jammed with a large density
and it will be impossible for any vehicle to perform a lane–changing maneuver to any other
lanes because there is no acceptable gap. Therefore, we set the total demand to around 3500
vehicles per hour in the simulation.

Model Calibration

To test the performance of our model, we first calibrate the cost coefficient vector C. We
employ the optimization method described in [44], [90]. We generate 20 data points from
Aimsun. Each data point records the average equilibrium flow distribution vector x =
(xs1, x

b
1) of 5 simulation replications with one distinct flow configuration N. The duration

of each simulation is long enough to make sure that the traffic operates in a stable state.
With these data, we solve the optimization problem elaborated in [44], [90]. Since we assume
symmetric properties for lane 1 and lane 2, we add an equality constraint in the calibration
process:

Ct
1 = Ct

2. (4.9)

We then obtain the calibrated cost coefficients:

Ct
1 = Ct

2 = 1, Cm
1 = 21.3, Cm

2 = 1, µ = 2.4, γ = 8.6. (4.10)
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Figure 4.4: Model prediction of the proportion of bypassing vehicles is compared to simula-
tion generated data.

Model Validation

To test the prediction accuracy of our model, we generate data points from Aimsun simula-
tions with a different set of flow configurations and apply the calibrated model to this new
test dataset. We then compare the model predicted proportions of bypassing and steadfast
vehicles on lane 1 to the test simulation data. The test data are generated from simulations
with all parameters the same as the calibration process.

Figure 4.4 shows the validation results. Our model prediction coheres with the simulation
very well. The proportion of bypassing vehicles on lane 1 increases when the normalized on–
ramp flow increases. This agrees with our intuition: the disturbance that on–ramp vehicles
introduce increases with the on–ramp flow, therefore, more of through vehicles intend to gain
a higher speed or run more smoothly by steering to lane 2. However, it is worth noticing that
through vehicles become less sensitive to the disturbance introduced by on–ramp merging
when the on–ramp flow increases.

4.5 Socially Optimal Behavior

In our model, we assume that vehicles are selfish so they only choose the option that mini-
mizes their own cost. We call this behavior user optimal. However, this natural user optimal
behavior in the reality may not be the optimal behavior considering the social cost for the
total traffic. Should there be any advice or regulations for through vehicles’ drivers so that
the overall traffic condition can be improved? To answer this question, we first define a
social cost for the total traffic flow.

The total traffic flow consists of four parties of vehicles. They are bypassing vehicles
on lane 1, steadfast vehicles on lane 1, vehicles on lane 2 and on–ramp vehicles. We have
defined the costs for steadfast vehicles and bypassing vehicles on lane 1 in Equations (4.2)
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Figure 4.5: The socially optimal proportion of bypassing vehicles is compared to simulation
generated data.

and (4.3), and now we specify costs for vehicles on lane 2 and on–ramp vehicles. For on–
ramp vehicles, we let J0 denote the cost on–ramp vehicles experience. The traversing cost
and merging cost are both mutual and equal for on–ramp vehicles and steadfast vehicles,
thus from Equation (4.2), we propose

J0(x) = Ct
1µ(x

s
1 + n0) + Cm

1 x
s
1n0. (4.11)

For vehicles on lane 2, we let J2 denote the cost they experience. Similarly, it is reasonable to
expect that the traversing cost and merging cost are both shared by bypassing vehicles and
vehicles on lane 2, except that vehicles on lane 2 experience no discomfort for performing
extra lane–changing behavior. We then propose

J2(x) = Ct
2(x

b
1 + n2) + Cm

2 x
b
1n2. (4.12)

Thus we define the social cost of the total traffic flow to be

Jsoc(x) = xs1J
s
1(x) + xb1J

b
1(x) + n0J0(x) + n2J2(x). (4.13)

To obtain the mainline vehicles’ socially optimal lane choice behavior, we solve the fol-
lowing optimization problem with cost coefficients C calibrated in (4.10):

minimize
x

Jsoc(x)

subject to xs1 + xb1 = 1,

xs1 ≥ 0, xb1 ≥ 0.

(4.14)

Figure 4.5 compares the mainline vehicles’ user optimal lane choice behavior simulated
in Section 4.4 and the socially optimal lane choice behavior under our model. Ideally, to
improve the overall traffic condition, mainline through vehicles should be encouraged to
bypass and give away more space to on–ramp vehicles.
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4.6 Summary

In this chapter, we focused on mainline through vehicles’ aggregate lane choice behavior
facing a highway on–ramp ahead. We modeled vehicles’ aggregate lane choice behavior as a
Wardrop equilibrium and then validated our model using Aimsun data. The result shows the
promising predictive power of our model. We further compared mainline vehicles’ socially
optimal and user optimal lane choice behavior. We concluded that through vehicles should
be encouraged to bypass the on–ramp merging area instead of staying steadfast to improve
overall traffic conditions.
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Chapter 5

Employing Altruistic Vehicles at
On-Ramps to Improve Social Traffic
Conditions

5.1 Overview

Vehicles’ selfish lane choice behavior on transportation networks is regarded as one important
cause of traffic inefficiency. In the previous chapter, we discussed a highway on-ramp with
two lanes in the mainline as shown in Figure 4.1. Vehicles traveling along the on-ramp
lane 0 are trying to merge with mainline vehicles on lane 1. To minimize their own travel
delay, selfish mainline vehicles along lane 1 choose between two options. The first option is
to stay steadfast on the current lane 1 and merge with the on-ramp vehicles. The second
option is to switch to the neighboring lane 2 and bypass the merging with on-ramp vehicles.
We then modeled the aggregate choice behavior of selfish mainline vehicles as a Wardrop
equilibrium [45]. The results from simulations show that the selfish lane choice behavior
worsens the social delay and if properly more mainline vehicles bypass instead of staying
steadfast on the current lane, then the social traffic conditions can be improved.

In this chapter, we employ a proportion of altruistic vehicles in addition to selfish main-
line vehicles to improve the social traffic conditions of the highway on-ramp discussed in
Chapter 4. Selfish mainline vehicles choose to stay steadfast or bypass to minimize their
own travel delay, whereas altruistic vehicles make the decision to stay steadfast or bypass to
minimize their own altruistic cost, which is a weighted average of the travel delay and the
marginal cost [51], [52]. Altruistic vehicles are individual optimizers which require local delay
and cost information but no centralized coordination. With the presence of autonomous ve-
hicles, it is envisioned that connected and autonomous vehicles can be employed as altruistic
vehicles perceiving and minimizing configured altruistic costs. The weight configuration of
the altruistic costs indicates how altruistic vehicles are. Naturally, the first question arises:
will altruism improve social traffic conditions in the on–ramp lane choice scenario? To an-



CHAPTER 5. EMPLOYING ALTRUISTIC VEHICLES AT ON-RAMPS TO
IMPROVE SOCIAL TRAFFIC CONDITIONS 41

012

x̂s1x̂b1

Figure 5.1: Problem setting: mainline vehicles on lane 1 (both selfish and altruistic) choose
to stay steadfast on lane 1 or bypass the merging with on–ramp vehicles.

swer this question, we first consider the case when the altruistic costs are perfectly measured
by altruistic vehicles, and we find the conditions under which altruism helps to decrease or
optimize the social delay. These conditions indicate that altruism always improves traffic
conditions when altruistic vehicles are abundant. However, for the scenarios when altruistic
vehicles only have inaccurate estimates of the altruistic costs, how altruistic should vehicles
be? In this scenario, we then give the optimal weight configuration for altruistic vehicles
that minimizes the worst case social delay under such uncertainty.

The chapter is organized as follows. In Section 5.2, we introduce selfish and altruistic
mainline vehicles’ lane choice model. In Section 5.3, we give the conditions for altruistic
vehicles to improve or optimize the social delay when no uncertainty is present in the mea-
surements of costs. In Section 5.4, we consider inaccurate estimates of altruistic costs and
give the optimal configuration for altruistic vehicles to minimize the worst case social delay
under the uncertainty. Finally, in Section 5.5, we summarize the chapter.

5.2 The Model

Let I = {0, 1, 2} be the lane index set for the highway on–ramp in Figure 5.1, where lane 0 is
the on–ramp lane, lane 1 is the outermost lane in the mainline and vehicles on lane 1 make
decisions to stay steadfast or bypass. For lane i ∈ {0, 2}, we let ni be the normalized flow on
lane i, which indicates the relative magnitude of flow on lane i among the neighboring flows
of lane 1. Note that n0 + n2 = 1. We consider n0 and n2 to be known and static. We then
collect them in the neighboring flow configuration vector N := (n0, n2). For lane 1, let xs1
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(resp., x̃s1) represent the proportion flow of selfish (resp., altruistic) steadfast vehicles on lane
1, and let xb1 (resp., x̃b1) represent the proportion flow of selfish (resp., altruistic) bypassing
vehicles on lane 1. Now we collect the proportion flows on lane 1 in the flow distribution
vector x := (xs1, x

b
1, x̃

s
1, x̃

b
1). Let α ≥ 0 be the altruistic ratio, i.e., the proportion of altruistic

vehicles among all the vehicles. A flow distribution vector is feasible if and only if

xs1 + xb1 = 1− α, (5.1)

x̃s1 + x̃b1 = α, (5.2)

xs1 ≥ 0, xb1 ≥ 0, x̃s1 ≥ 0, x̃b1 ≥ 0. (5.3)

Selfish vehicles will only choose the option that can minimize their own travel delay. For
selfish vehicles, we employ the delay models that are calibrated and validated in our previous
chapter 4. Notice that the selfish flow proportions in the original delay models have to be
replaced by the total flow proportions including both selfish and altruistic vehicles choosing
the same option. For simplicity of future reference, we let x̂s1 := xs1 + x̃s1 and x̂b1 := xb1 + x̃b1
be the total proportion of steadfast and bypassing vehicles. Note that

x̂s1 + x̂b1 = 1. (5.4)

Let J s
1 denote the travel delay experienced by selfish steadfast vehicles, and Jb

1 denote the
delay experienced by selfish bypassing vehicles. We have

J s
1(x) = Ct

1µ(x̂
s
1 + n0) + Cm

1 x̂
s
1n0, (5.5)

Jb
1 (x) = Ct

2

(
γx̂b1 + n2

)
+ Cm

2 x̂
b
1n2. (5.6)

The cost coefficients are collected in the cost coefficient vectorC := (Ct
i , C

m
i , µ, γ : i ∈ {1, 2}).

The coefficients are all non–negative constants for an on–ramp, which need to be calibrated
for each on–ramp. The detailed explanation of the coefficients can be seen in Section 4.2.
For simplicity of reference, we rewrite the travel delay models for selfish vehicles:

J s
1(x) = Ksx̂s1 +Bs, (5.7)

Jb
1 (x) = Kbx̂b1 +Bb, (5.8)

where Ks := Ct
1µ + Cm

1 n0, B
s := Ct

1µn0, K
b := Ct

2γ + Cm
2 n2 and Bb := Ct

2n2 are all
non–negative constants for an on–ramp with a given neighboring flow configuration N. Es-
sentially, we care about the social traffic conditions, i.e., the social delay. We also employ
the delay models proposed in Section 4.2 for vehicles on lane 2 and on–ramp vehicles. Let
J0 denote the delay experienced by on–ramp vehicles and J2 denote the delay experienced
by vehicles on lane 2. We have

J0(x) = Ksx̂s1 +Bs, (5.9)

J2(x) = K2x̂
b
1 +Bb, (5.10)
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where K2 := Ct
2 + Cm

2 n2 is also a non–negative constant for an on–ramp with a given
neighboring flow configuration. Notice that vehicles choosing the same option experience
the same travel delay no matter whether they are selfish or altruistic. Therefore, the social
delay can be expressed as

Jsoc(x) = x̂s1J
s
1(x) + x̂b1J

b
1 (x) + n0J0(x) + n2J2(x), (5.11)

which is a convex function of x when N and C are given. Note that by Equation (5.4), we
always have x̂s1 = 1−x̂b1. In the later proofs, we tend to use x̂b1 instead of x as the self–variable
of the delay functions. Let Jopt := min

x̂b
1∈[0,1]

Jsoc(x) denote the optimal social delay. Ideally, for

an on–ramp with a given neighboring flow configuration, we aim to employ altruistic vehicles
to decrease the social delay to its minimum.

Altruistic vehicles also choose to stay steadfast or bypass to minimize their own cost.
However, to improve the social traffic conditions, they are configured to perceive an altruistic
cost which is different from the travel delay. We propose the altruistic cost to be the weighted
sum of the travel delay and the marginal cost (see [51], [52] for more details). Let J̃ s

1

denote the altruistic cost for altruistic steadfast vehicles, and J̃b
1 denote the cost for altruistic

bypassing vehicles. We have

J̃ s
1(x) = (1− β)J s

1(x) + β
∂Jsoc(x)

∂x̂s1
(5.12)

= J s
1(x) + βKs(x̂s1 + n0), (5.13)

J̃b
1 (x) = (1− β)Jb

1 (x) + β
∂Jsoc(x)

∂x̂b1
(5.14)

= Jb
1 (x) + β(Kbx̂b1 +K2n2), (5.15)

where 0 ≤ β ≤ 1 is the altruism level of the altruistic vehicles, which acts as the weight
configuration of the altruistic costs. The altruism level is assigned to the altruistic vehicles by
a central authority and can be interpreted as the propensity of altruistic vehicles to optimize
the social delay. When β = 0, altruistic vehicles behave exactly like selfish vehicles; when
the altruistic ratio α = 1 and altruism level β = 1, the resulting social delay is minimized.
In this work, we consider the altruism level to be the same for all altruistic vehicles at the
on–ramp. Note that altruistic vehicles are not explicitly coordinated, but are still individual
optimizers evaluating the altruistic cost instead of the travel delay. Therefore, just as the
selfish vehicles in [78], the equilibrium of the choice behavior of altruistic vehicles can be
formulated as a Wardrop equilibrium [45]. Let a tuple G = (N,C) be the full configuration of
a highway on–ramp shown in Figure 5.1, where N is the static neighboring flow configuration
and C is the cost coefficient vector. The resulting choice equilibrium of the mixed selfish
and altruistic vehicles is then defined below.
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Definition 4. For a given on–ramp configuration G = (N,C), a flow distribution vector x
is a choice equilibrium if and only if

xs1(J
s
1(x)− Jb

1 (x)) ≤ 0, (5.16a)

xb1(J
b
1 (x)− J s

1(x)) ≤ 0, (5.16b)

x̃s1(J̃
s
1(x)− J̃ b

1(x)) ≤ 0, (5.16c)

x̃b1(J̃
b
1(x)− J̃s

1(x)) ≤ 0. (5.16d)

The definition mathematically expresses that selfish vehicles only choose the option with
their own minimized travel delay, whereas altruistic vehicles choose the option with their
own minimized altruistic cost.

5.3 When No Uncertainty Exists

In this section, we consider the scenarios when no uncertainty lies in the measurements of
travel delay and altruistic costs. We aim to analyze the impact of the altruistic ratio α and
the altruism level β on the resulting social delay.

In the rest of the chapter, we only discuss a certain meaningful set of on–ramp configu-
rations. As discussed in Chapter 4, when all vehicles are selfish, properly encouraging the
bypassing behavior of mainline vehicles can improve the social delay. Thus in this work, we
only focus on the on–ramp configurations where selfish vehicles bypass less than the socially
optimal scenario. Moreover, when all vehicles are selfish, at the choice equilibrium, if all
the selfish vehicles are bypassing vehicles, we cannot decrease the social delay anymore by
letting more vehicles bypass even with altruistic vehicles; if all the selfish vehicles choose
to stay steadfast, as discussed in Chapter 4, for any xb1 ∈ (0, 1], we have J s

1(x
b
1) < Jb

1 (x
b
1).

Naturally, when there are altruistic vehicles, for any x̂b1 ∈ (0, 1], we have J s
1(x̂

b
1) < Jb

1 (x̂
b
1).

Therefore, xb1 = 0 for any altruistic ratio and any altruism level, and the choice equilibrium
is only dependent on altruistic vehicles’ choices. The choice equilibrium of a single class of
vehicles is then much the same as discussed in Chapter 4. Furthermore, consider the scenario
when all vehicles are bypassing vehicles at the socially optimal equilibrium, then to optimize
the social delay, we have to make sure all altruistic vehicles always choose bypassing, i.e.,
J̃ s
1(x̂

b
1) > J̃b

1 (x̂
b
1), for any x̂

b
1 ∈ [0, 1), thus the problem totally depends on the selfish vehicles’

choice, thus it becomes again very similar to what is discussed in Chapter 4.
Therefore, in the rest of the chapter, we only consider on–ramp configurations where we

are able to employ altruistic vehicles to move the less efficient interior equilibrium when all
vehicles are selfish to a socially optimal interior equilibrium with more bypassing vehicles.

Let Φ denote the bypassing flow at the interior equilibrium when all vehicles are selfish,
which satisfies J s

1(Φ) = Jb
1 (Φ). Solving the equation, we have

Φ =
Ks +Bs −Bb

Ks +Kb
. (5.17)
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Figure 5.2: Sketch of the travel delay and altruistic cost functions, where Φ is indicated by
the yellow dot and x̂b†1 is indicated by the pink dot.

Note that Φ is only dependent on the on–ramp configuration. For a specific on–ramp con-
figuration, Φ is a constant. Moreover, recalling Equation (5.11), the social delay Jsoc(x̂

b
1)

is a convex quadratic function of x̂b1. Let ∆ be the unique global minimization point of
the quadratic function, i.e., Jsoc(∆) = min

x̂b
1∈R

Jsoc(x̂
b
1). Note that ∆ is only dependent on the

on–ramp configuration. For a specific on–ramp configuration G, ∆ is a constant regardless
of any α or β and we always have Jsoc(∆) ≤ Jopt. If the social delay decreases when the
bypassing proportion increases for some on–ramp configurations, we must have Φ < ∆. Also,
to ensure at the social optimum, not all vehicles are bypassing vehicles, we must have ∆ < 1.

Let G be the meaningful set of on–ramp configurations, and we then have

G = {G : 0 < Φ < ∆ < 1}. (5.18)

We then are ready to give the first core result in this work, which establishes the conditions
for the altruistic vehicles’ configurations to improve the social conditions or to reach the
optimal social conditions.

Theorem 3. For a given on–ramp configuration G = (N,C) ∈ G with altruistic ratio α and
altruism level β.

• The social delay is decreased by altruistic vehicles , i.e., Jsoc(x̂
b
1) < Jsoc(Φ), if and only

if β > 0 and α ∈ A1, where A1 := (Φ, 1].

• The social delay is optimized by altruistic vehicles, i.e., Jsoc(x̂
b
1) = Jopt, if and only if

β = 1 and α ∈ A2, where A2 := [∆, 1].
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Proof. Let x̂b†1 be the total bypassing proportion flow at the intersection of the altruistic
steadfast and bypassing costs, i.e., J̃ s

1(x̂
b†
1 ) = J̃b

1 (x̂
b†
1 ). Solving the equation, we have

x̂b†1 =
1− β

1 + β
Φ +

2β

1 + β
∆. (5.19)

Notice that x̂b†1 is a function of the altruism level β for a certain on–ramp configuration.
When β = 0, the altruistic costs are exactly the same as the selfish delay. Therefore,
altruistic vehicles behave the same as selfish vehicles. Manipulating altruistic vehicles would
bring no change to the social delay. In the meaningful set G, we always have Φ < ∆. When
β > 0, we have Φ < x̂b†1 and x̂b†1 is always an increasing function of β. Note that x̂b†1 can be
seen as a weighted average of Φ and ∆. We always have x̂b†1 ≤ ∆ and when β = 1, we have
x̂b†1 = ∆. We then enumerate all the possible cases of the resulting equilibria when altruistic
vehicles are involved, i.e., α > 0 and the altruism level β > 0. See Figure 5.2 which sketches
the delays and altruistic costs, at the resulting equilibrium,

• Case (a): if x̂b1 ∈ [0,Φ), since the bypassing delay is smaller than the steadfast delay
and the bypassing altruistic cost is smaller than the steadfast altruistic cost, all vehicles
will choose bypassing, i.e., x̂b1 = 1. Since Φ < 1, the conclusion x̂b1 = 1 contradicts the
assumption that x̂b1 < Φ. Therefore, the equilibrium cannot lie in this case.

• Case (b): if x̂b1 = Φ, the bypassing altruistic cost is smaller than the steadfast altruistic
cost, thus all altruistic vehicles are bypassing vehicles, i.e., x̃b1 = α. Therefore, we have
xb1 = Φ− α. The requirement for this case to happen is xb1 ≥ 0, i.e. α ≤ Φ.

• Case (c): if x̂b1 ∈ (Φ, x̂b†1 ), the bypassing altruistic cost is smaller than the steadfast
altruistic cost, thus all altruistic vehicles choose bypassing, i.e., x̃b1 = α. However,
the bypassing delay is larger than the steadfast delay, thus all selfish vehicles will stay
steadfast, i.e., xb1 = 0. Therefore, we have x̂b1 = x̃b1 = α. Thus, the requirement of this
case is Φ < α < x̂b†1 .

• Case (d): if x̂b1 = x̂b†1 , the bypassing delay is larger than the steadfast delay, thus all
selfish vehicles will stay steadfast, i.e., xb1 = 0. Then we have x̂b1 = x̃b1 = x̂b†1 . The
requirement for this case is x̃b1 ≤ α, i.e., x̂b†1 ≤ α.

• Case (e): if x̂b1 ∈ (x̂b†1 , 1], since bypassing delay is larger than the steadfast delay and
the bypassing altruistic cost is larger than the steadfast altruistic cost, all vehicles must
stay steadfast, i.e., x̂b1 = 0. Since x̂b†1 > Φ > 0, the equilibrium cannot lie in this case.

Consider the altruism level β > 0 as fixed, and consider the altruistic ratio α as a variable.
Recall that when α = 0, all vehicles are selfish, and at the equilibrium, x̂b1 = Φ, we have the
social delay as Jsoc(Φ). We then only need to consider case (b), (c) and (d). In case (b), the
social delay remains the same as Jsoc(Φ), whereas in case (c) and (d), at the equilbrium, we
have Φ < x̂b1 ≤ ∆. Recall that the social delay function (5.11) is a convex quadratic function
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Figure 5.3: The social delay versus the altruistic ratio under different altruism levels. The on–
ramp cost coefficients are Ct

1 = Ct
2 = 1, Cm

1 = 21.3, Cm
2 = 1, µ = 2.4, γ = 8.6 (calibrated in

Section 4.4) and the neighboring flow configuration is n0 = 0.37. The on–ramp configuration
lies in the meaningful set G. As we can see, when altruistic vehicles are not abundant or the
altruism level is less than 1, the social delay improvement is compromised.

of x̂b1 with a minimization point ∆, thus we have Jsoc(x̂
b
1) < Jsoc(Φ). Since 0 < ∆ < 1, then

Jopt = Jsoc(∆), and therefore, the optimal social delay is only reached when x̂b1 = x̂b†1 = ∆,
i.e., β = 1 and the condition for case (c) is fulfilled.

In a nutshell, to decrease the social delay, we have to set β > 0 and α > Φ. Otherwise,
when β = 0, altruistic vehicles act exactly like selfish vehicles, making no change; when
α ≤ Φ, the equilibrium is always in case (b) and we always have x̂b1 = Φ. The social delay
remains the same as Jsoc(Φ). Since 0 < ∆ < 1, we must have Jopt = Jsoc(∆). Therefore,
to reach the optimal social delay, we have to let x̂b1 = ∆, which is only possible in case (d)
when x̂b†1 = ∆, i.e., β = 1. See Figure 5.3 as an example.

Theorem 3 shows that with slightly altruistic vehicles, the social conditions can be im-
proved as long as there are enough altruistic vehicles; however, to reach the optimal social
traffic conditions, we have to employ enough purely altruistic vehicles. The altruism level of
altruistic vehicles decides the best case of social delay we can do with abundant altruistic
vehicles.

Theorem 3 provides valuable insights that can inform policy design by offering an esti-
mate of potential expenses and benefits. It is worth noticing that it also demonstrates an
underlying message that the benefit brought by altruistic vehicles can be exploited by selfish
drivers. For instance, in a scenario where an altruistic vehicle altruistically changes lanes, a
selfish human-driven vehicle following it may choose to stay in the current lane instead of
originally intending to change lanes, taking advantage of the vacancy ahead.
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5.4 When Uncertainty Exists

In reality, measuring the travel delay could be relatively easy whereas having an exact
estimate of the altruistic part of the altruistic cost is hard. In this section, we assume
that travel delay can be perfectly measured whereas some error e ∼ E(eL, eU) is embedded
in the altruistic costs, where E(eL, eU) is some probability distribution with a lower bound
eL > 0 and an upper bound eU > eL. We assume all altruistic vehicles are affected by a
homogeneous error, then the actual altruistic costs perceived by altruistic vehicles are

J̃ s
1(x) = J s

1(x) + βeKs(x̂s1 + n0), (5.20)

J̃b
1 (x) = Jb

1 (x) + βe(Kbx̂b1 +K2n2). (5.21)

Without this uncertainty, we can easily use Theorem 3 to set β = 1 and when altruistic
vehicles are abundant, i.e., α ∈ A2, the social delay reaches optimal. However, with this
uncertainty, we may not optimize the social delay as we expected. Thus, we are interested
in the worst case social delay for different choice of altruism levels with the presence of the
uncertainty. In the end, we aim to find an optimal altruism level to minimize the worst
case social delay with respect to the cost uncertainty and level of on–ramp configuration
uncertainty. We first give the following definition of the generalized price of anarchy to
characterize the worst case social delay in our problem setting.

Definition 5. For a given on–ramp configuration G = (N,C) ∈ G with an altruism level β,
the price of anarchy (PoA) is defined as

PoA(G, β, E) := sup
e∼E(eL,eU)

sup
α∈A2

Jsoc(G, β, e, α)

Jopt(G)
. (5.22)

Note that the design goal is to optimize the social delay, therefore, the price of anarchy only
focuses on the altruistic ratios in the A2 range. Then we define the optimal altruism level
that we are trying to find.

Definition 6. For an on–ramp configuration G ∈ G, the optimal altruism level β∗ satisfies

β∗ = arg min
β≥0

PoA(G, β, E). (5.23)

Let Π := 1−Φ
2∆−Φ−1

. Note that in G, we always have 1 − Φ > 0, thus Π is nonzero. Let

G1 :=
{
G ∈ G : 0 < Π <

√
eU
eL

}
and G2 := {G ∈ G \ G1}. We are ready to give the following

theorem.

Theorem 4. For an on–ramp configuration G ∈ G1, the optimal altruism level β∗ = 1
eLΠ

;

for an on–ramp configuration G ∈ G2, the optimal altruism level β∗ = 1√
eLeU

.
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Figure 5.4: The social delay versus βe under different altruistic ratios. The on–ramp cost
coefficients are Ct

1 = Ct
2 = 1, Cm

1 = 21.3, Cm
2 = 1, µ = 2.4, γ = 8.6 (calibrated in

Section 4.4) and the neighboring flow configuration is n0 = 0.37. The on–ramp configuration
lies in the set G2. The worst case social delay happens on the pink curve. The optimal
altruism level satisfies β∗ = 1√

eLeU
.

Proof. In the choice model considering the uncertainty, we see the product of e and β as
the “effective” altruism level which corresponds to the altruism level in the cost models
considering no uncertainty. The cases of equilibria are then enumerated in the proof of
Theorem 3. Now consider the on–ramp configuration G, the altruistic ratio α and the error
bounds eL and eU are fixed and see the product of βe as a variable. Since in the definition
of PoA, α ∈ A2, we must have α > Φ. Therefore, we only need to consider case (c) and (d).
In a nutshell, when α ≥ x̂b†1 , at the equilibrium, x̂b1 = x̂b†1 , and the social delay is calculated
as Jsoc(x̂

b†
1 ); when α < x̂b†1 , at the equilibrium, x̂b1 = α, and the social delay is calculated

as Jsoc(α). Recall that x̂b†1 is a function of βe (see Equation (5.19)), we then may use the
notation x̂b†1 (βe). Now let us consider

• Case (A): Π < 0. In this case, the range A2 can be divided into two ranges.

– Case (A.1): For any α ∈ [∆, 2∆− Φ), the resulting equilibrium changes from
case (d) to case (c) when x̂b†1 (βe) = α. Let β̃ denote the transition point, where
x̂b†1 (β̃) = α. Solving the equation, we have β̃(α) = α−Φ

2∆−Φ−α
≥ 1, which is an

increasing function of α. For βe ≤ β̃, the equilibrium is at x̂b1 = x̂b†1 , and the social
delay can be calculated as Jsoc(x̂

b†
1 ). Since the social delay function is a convex

quadratic function of x̂b†1 , x̂b†1 is an increasing function of βe, and x̂b†1 (βe = 1) = ∆,
the social delay will first decrease, reaches optimal at βe = 1 and then increase
to Jsoc(α). For βe > β̃, the equilibrium remains at x̂b1 = α, and the social delay
remains the same at Jsoc(α). Note that when α increases, since we have α ≥ ∆,
Jsoc(α) increases.
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For clarity, Figure 5.4 gives an example of an on–ramp configuration satisfying
Π < 0. The blue curve (α = 0.63) corresponds to case (A.1).

– Case (A.2): When α ∈ [2∆− Φ, 1], for any βe ≥ 0, the equilibrium is at x̂b1 = x̂b†1 .
The social delay can be calculated as Jsoc(x̂

b†
1 ) and similarly to case (A.1), the

social delay will first decrease, reaches optimal at βe = 1 and then increase with
βe increasing.
The pink curve (α = 0.8) in Figure 5.4 corresponds to case (A.2).

The shape of the social delay function in case (A.2) can be seen as a whole curve
without the stage after β̃ in case (A.1). For the on–ramp configurations in case (A),
considering all α ∈ A2, the equilibrium with the worst case social delay happens at
case (A.2). Notice that the function Jsoc(x̂

b†
1 ) is a convex quadratic function of x̂b†1 and

x̂b†1 is an increasing function of βe. Therefore, to minimize the PoA, we let

x̂b†1 (β∗eU)−∆ = ∆− x̂b†1 (β∗eL). (5.24)

Thus, we have β∗ = 1√
eLeU

, and Jsoc(x̂
b†
1 (β∗eL)) = Jsoc(x̂

b†
1 (β∗eU)).

• case (B): Π > 0. In this case, for any α ∈ A2, similar to case (A.1), the resulting
equilibrium changes from case (d) to case (c) when x̂b†1 = α. As discussed in case (A.1),
for the on–ramp configurations in case (B), considering all α ∈ A2, the equilibrium
with the worst case social delay happens when α = 1. Note that Π = β̃(α = 1),
which is exactly the transition point when α = 1. Due to ∆ < 1 in G, we always have
Π > 1. The worst social delay function with respect to βe is then a combination of the
function Jsoc(x̂

b†
1 (βe)) and the constant stage Jsoc(1) starting at βe = Π. We thus have

to consider two scenarios. Letting βgm = 1√
eLeU

, if Jsoc(x̂
b†
1 (βgmeL)) = Jsoc(x̂

b†
1 (βgmeU)),

then the same as case (A), we have β∗ = βgm; if Jsoc(x̂
b†
1 (βgmeL)) > Jsoc(x̂

b†
1 (βgmeU)),

then the constant stage has been reached at the upper bound of the error, i.e., βgmeU >
Π. Therefore, we could care less about the upper bound but more about the lower
bound. To minimize the worst case social delay, instead of equalizing the social delay
on the upper bound and the lower bound, we equalize the social delay of the lower
bound and of the transition point Π. Therefore, we let

x̂b†1 (Π)−∆ = ∆− x̂b†1 (β∗eL). (5.25)

Thus, we have β∗ = 1
eLΠ

.

Summarizing the cases, only when βgmeU > Π is satisfied in case (B), i.e., 0 < Π <
√

eU
eL
, we

have β∗ = 1
eLΠ

; otherwise, we always have β∗ = 1√
eLeU

.

According to Theorem 4, when measurements are imperfect, we can configure the altru-
istic vehicles with the optimal altruism level to minimize the worst case social delay under
the uncertainty.
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5.5 Summary

In this chapter, we proposed to employ autonomous vehicles as altruistic vehicles among
the selfish mainline vehicles to improve the social traffic conditions of the on–ramps. We
gave the conditions of the altruistic ratio and altruism level for altruistic vehicles to decrease
or optimally decrease the social delay. Further, we assumed uncertainty in the altruistic
cost measurements and we gave the optimal altruism level to configure altruistic vehicles
which minimizes the worst case social delay under the uncertainty. It is worth noticing that
altruism is not limited to autonomous vehicles and in practice, autonomous vehicles can
serve as only one of the ways to achieve altruism.
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Part III

Headway in Organization
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Chapter 6

The Impact of Autonomous Vehicles’
Headway on the Social Delay of
Traffic Networks

6.1 Overview

Besides the altruistic decision-making discussed in Part II, another key advantage of auton-
omy is that connected and autonomous vehicles can form vehicle platoons (a fleet of vehicles
traveling with a predetermined headway). With fine tuned control, autonomous vehicles in
the platoon can preserve a shorter headway at a higher speed compared to human-driven
vehicles, and therefore, are able to increase road traffic capacities. Starting from this chap-
ter, we focus on the scenario where autonomous and human-driven vehicles are both selfishly
routing on the transportation networks, whereas autonomous vehicles can preserve a shorter
headway compared to human-driven vehicles.

In this chapter, we assume that a central authority will be able to dictate a prescribed
longitudinal headway for platooning autonomous vehicles on each link(road). We utilize
the concept of capacity asymmetry degree for each link, which is the ratio between the link
capacity when all vehicles are human-driven and the link capacity when all vehicles are au-
tonomous, to characterize and reflect the predetermined headway of autonomous vehicles on
each link. We consider transportation networks where all links share a homogeneous capacity
asymmetry degree, and we study the impact of varying the capacity asymmetry degree on
the social(overall) delay of the network at the Wardrop routing equilibrium. We prove that,
for networks with a single origin–destination (O/D) pair, we can always decrease the so-
cial delay by decreasing the capacity asymmetry degree. Specifically, for networks of parallel
links with affine delay functions, we provide an upper bound of the social delay improvement
brought by autonomous vehicles. However, for networks with multiple O/D pairs, when we
decrease the capacity asymmetry degree, i.e., decrease the headway for autonomous vehicle
platoons, we may end up worsening the social traffic conditions. We then give an upper
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bound for the potential negative impact on social delay of networks with multiple O/D pairs
brought by decreasing the headway for autonomous vehicles.

This chapter is organized as follows. In Section 6.2, we introduce the details of the models
we employ. In Section 6.3, we study the impact of varying autonomous vehicles’ headway
on networks with a homogeneous capacity asymmetry degree and a single O/D pair, and
deliver core results of this paper. In Section 6.4, we study the impact of varying autonomous
vehicles’ headway on networks with a homogeneous capacity asymmetry degree and multiple
O/D pairs. Finally, in Section 6.5, we summarize the chapter.

6.2 Network, Delay and Routing Models

In this section, we introduce a transportation network model, a travel delay model that
characterizes the delay experienced by human–driven and autonomous vehicles and a routing
model characterizes the selfish routing of both human–driven and autonomous vehicles.

The Network Model

In this chapter, we use a directed graph T = (N,L,D) to represent the topology of a
transportation network, where N indicates the set of nodes and L indicates the set of links.
Let D be the set of O/D pairs. For each O/D pair d ∈ D, we employ a set Pd to include
all the feasible paths(routes) of the O/D pair. We then let P = ∪d∈DPd to include all the
feasible paths on the transportation network.

Throughout this chapter, we assume that human–driven vehicles (HV) and autonomous
vehicles (AV) share the roads of the transportation network. Thus, for each O/D pair
d ∈ D, we let Rd represent the total demand of the O/D pair and let 0 ≤ αd ≤ 1 denote
the autonomy ratio (the penetration rate of autonomous vehicles) for the O/D pair. Then,
the demand of autonomous vehicles for the O/D pair d ∈ D can be calculated as Rdαd,
and the demand of human–driven vehicles for O/D pair d is Rd(1 − αd). Throughout this
chapter, we employ the superscript h to denote HV–related quantities and the superscript
a to denote AV–related quantities. Meanwhile, we use lowercase letters to represent link–
related quantities and uppercase letters for path–related quantities. To be specific, for each
link l ∈ L, we specify fl to be the total link flow, with fh

l and fa
l indicating the HV flow and

AV flow on the link respectively. We then vectorize the HV flows on all links by the vector
fh and vectorize the AV flows on all links by the vector fa. For each path p ∈ P , we let Fp

be the total path flow, with F h
p and F a

p indicating the HV flow and AV flow on the path
respectively. We also include the HV flows on all paths on the network in the vector Fh and
include the AV flows on all paths in the vector Fa.

The flow of human–driven vehicles follow the flow conservation constraints introduced
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by the topology of the transportation network. Thus, we have∑
d∈D

∑
p∈Pd:l∈p

F h
p = fh

l , ∀l ∈ L, (6.1)∑
p∈Pd

F h
p = Rd(1− αd), ∀d ∈ D. (6.2)

The flow conservation constraints also apply to autonomous vehicles:∑
d∈D

∑
p∈Pd:l∈p

F a
p = fa

l , ∀l ∈ L, (6.3)∑
p∈Pd

F a
p = Rdαd, ∀d ∈ D. (6.4)

Obviously, the total flow on each link/path equals the sum of HV and AV flow on each
link/path:

fh
l + fa

l = fl, ∀l ∈ L, (6.5)

F h
p + F a

p = Fp, ∀p ∈ P. (6.6)

Thus, combining Equations (6.2) and (6.4), we have∑
p∈Pd

Fp = Rd, ∀d ∈ D. (6.7)

The Delay Model

In this chapter, we use the Bureau of Public Roads (BPR) function [62] to quantify the
travel delay experienced by vehicles. Let ẽl denote the travel delay on link l ∈ L when all
vehicles are human–driven, and then the BPR delay function is expressed as:

ẽl(f
h
l ) = θl + γl

(
fh
l

mh
l

)βl

, ∀l ∈ L, (6.8)

where mh
l is the link capacity when all vehicles are human–driven. For any link l ∈ L,

parameters θl, γl, βl are non-negative. For link l ∈ L, when βl = 1, the link delay function
is affine in the link flow.

We assume autonomous vehicles can increase the capacity of the road by maintaining a
shorter longitudinal headway compared to human–driven vehicles [63]. For each link l ∈ L,
let ma

l be the link capacity when all vehicles are autonomous. For link l ∈ L, the shorter the
headway for autonomous vehicles is, the larger ma

l is. Thus, for each link l ∈ L, we denote

the variable µl :=
mh

l

ma
l
to be the link capacity asymmetry degree, which reflects the headway

of autonomous vehicles on the link. A centralized control authority can then dictate the
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capacity asymmetry degree of the links by prescribing the desired headway for platooning
autonomous vehicles on the links. For example, when the headway for human–driven vehicles
is fixed, we can decrease the capacity asymmetry degree by commanding the autonomous
vehicles maintain a shorter platoon headway. If autonomous vehicles are commanded to
maintain the exact same headway as human–driven vehicles, then the capacity asymmetry
degree will be exactly 1. In this chapter, we only consider the cases when autonomous
vehicles maintain headway shorter than or equal to human–driven vehicles’, i.e., we consider
the capacity asymmetry degree within the following range:

0 < µl ≤ 1, ∀l ∈ L. (6.9)

In practice, it is impossible to infinitely increase the road capacity considering the physical
length of the vehicles and the safe headway. Thus, we normally define a feasible lower bound
µmin > 0 for the capacity asymmetry degree. Then we have

µmin ≤ µl ≤ 1, ∀l ∈ L. (6.10)

To incorporate the influence of autonomous vehicles into the delay model, we refer to the
results from [63] and [15]. Let el denote the travel delay in mixed traffic on link l ∈ L, then
the delay of each link l ∈ L can be calculated as

el(f
h
l , f

a
l ) = θl + γl

(
fh
l

mh
l

+
fa
l

ma
l

)βl

. (6.11)

Let Ep denote the delay on path p ∈ P . Naturally, we have∑
l∈L:l∈p

el = Ep, ∀l ∈ L, ∀p ∈ P. (6.12)

In the networks, vehicles traveling along the same path experience the same delay, no matter
whether they are human–driven or autonomous. We then define the social delay of the
network as

J =
∑
p∈P

FpEp. (6.13)

The Routing Model

In this chapter, we assume that all vehicles act selfishly, i.e., vehicles only choose the path
with the shortest delay among all feasible paths. When drivers select their paths selfishly,
the network achieves the well-known Wardrop equilibrium as described in [45]. For two
paths p ∈ P, q ∈ P , we define the notation p ̸= q to indicate that the two paths are distinct
while joining the same O/D pair. Considering path p ̸= q ∈ P , at a Wardrop equilibrium,
if path p has longer delay than path q, then all of the vehicles, no matter whether they are
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human–driven or autonomous, will take path q instead of path p. Reversely, if path p has
shorter delay than path q, then all of the vehicles, no matter whether they are human–driven
or autonomous, will take path p instead of path q. Only when path p and path q share the
same delay, vehicles may take either of the paths. Thus, we formally define the Wardrop
equilbrium for a transportation network with both human–driven and autonomous vehicles:

Definition 7. A path flow vector (Fh,Fa) is a Wardrop equilibrium for a network T =
(N,L,D) in the mixed traffic, if and only if for any two paths p ̸= q ∈ P , we have

F h
p (Ep(F

h,Fa)− Eq(F
h,Fa)) ≤ 0, (6.14a)

F a
p (Ep(F

h,Fa)− Eq(F
h,Fa)) ≤ 0, (6.14b)

F h
q (Eq(F

h,Fa)− Ep(F
h,Fa)) ≤ 0, (6.14c)

F a
q (Eq(F

h,Fa)− Ep(F
h,Fa)) ≤ 0. (6.14d)

From the Wardrop conditions (6.14), we easily conclude the following remark, which is helpful
in the later derivation of the core results.

Remark 1. At a Wardrop routing equilibrium, for each O/D pair, the feasible paths with
nonzero path flow share the same path delay, which is the smallest path delay among all
feasible paths for the O/D pair.

In following sections, we investigate the networks where human–driven and autonomous
vehicles are selfishly routing with inelastic demands and analyze the impact of reducing
autonomous vehicles’ headway on the social delay. According to [15], selfish routing of
human–driven and autonomous vehicles on networks with heterogeneous capacity asymmetry
degrees results in multiple equilibria with distinct equilibrium social delays. Relatively,
for transportation networks with a homogeneous capacity asymmetry degree, there may
also be multiple distinct equilibria, but all equilibrium states share the same social delay
(see Theorem 1 in [15] for more details). Thus, it is reasonable to investigate the impact
of capacity asymmetry degree on the social delay only for networks with a homogeneous
capacity asymmetry degree. In the rest of this chapter, we discuss within only the category
of networks with a homogeneous capacity asymmetry degree.

6.3 Networks with a Single O/D Pair

For the networks with a single O/D pair (with a homogeneous capacity asymmetry degree),
the following theorem asserts that reducing the headway for the autonomous vehicles is
always instrumental to the social traffic conditions.

Theorem 5. Given a transportation network T = (N,L,D) with a single O/D pair and a
homogeneous capacity asymmetry degree µ, for any fixed demand R and autonomy ratio α,
the equilibrium social delay J(µ) is a continuous and non-decreasing function of µ.
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1 2 n1 − 1 n1

n1 + 1 n1 + n2

∑k−1
p=1 np + 1

∑k
p=1 np

Figure 6.1: A network of parallel links with a single O/D pair from A to B. There are k
feasible paths and path p (p = 1, 2, ..., k) has np links.

Proof. Theorem 5 is a straight forward extension of Theorem 1 in [15], if we regard the
autonomy ratio α as fixed and the homogeneous capacity asymmetry degree µ as a variable.
See [15] for further details.

Networks of parallel links with a single O/D pair

In this subsection, we investigate networks of parallel links with a single O/D pair. Let us
consider a general network of parallel links with a single O/D pair shown in Figure 6.1. In
the network, there are k feasible paths from the origin node A to the destination node B,
thus we have P = {1, 2, ..., k}. Each path p ∈ P is composed of np sequential links and each

link is only used in one path. The link set can be expressed as L = {1, 2, ...,
∑k

p=1 np}. We
also assume that the link delay functions in Equation (6.11) have affine configurations, i.e.,
βl = 1, ∀l ∈ L. We then define some path–related parameters only for a network of parallel
links. Let Vp be the freeflow delay on path p ∈ P , i.e.,

Vp =
∑
l∈p

θl, ∀p ∈ P. (6.15)

Moreover, for path p ∈ P , we define the positive parameters:

Wp =
∑
l∈p

γl
mh

l

, ∀p ∈ P. (6.16)

Furthermore, to deliver the core result in this subsection, we need to first establish two
lemmas of human–driven vehicles’ routing on networks of parallel links. When only human–
driven vehicles are routing on a network of parallel links, let S(R) be the set of occupied
paths at equilibrium when the demand is R. With the demand R known, S(R) can be easily
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calculated for networks of parallel links. Let M(R) := max
p∈S(R)

Vp to indicate the largest path

freeflow cost among all the occupied paths at demand R. We give the following lemmas.

Lemma 3. Consider a network of parallel links T = (N,L,D) with a single O/D pair. When
all vehicles are human–driven and selfishly routing at a demand R, if path p ∈ S(R), then
we have

q ∈ S(R), ∀q : Vq ≤ Vp. (6.17)

Proof. We prove the lemma by contradiction. Suppose at the equilibrium, there is a path q
which subjects to Vq ≤ Vp, but does not belong to S(R). Then the delay on path q, which is
Vq, must be smaller than the delay on the occupied path p, which is larger than the freeflow
cost Vp. This contradicts the Wardrop conditions (see Remark 1).

Lemma 4. Consider a network of parallel links T = (N,L,D) with a single O/D pair.
When all vehicles are human–driven and selfishly routing at the demand R, then M(R) is a
non–decreasing function of R.

Proof. We prove the lemma by contradiction. Suppose for the demand R̃ > R, we have
M(R̃) < M(R). If we use path p to refer to the path that subjects to Vp =M(R), then from
our assumption and Lemma 3, we have

p ∈ S(R), (6.18)

p /∈ S(R̃). (6.19)

When the demand is R, through Lemma 3, we conclude that {q, ∀q : Vq ≤ Vp} ⊆ S(R).
Also we have the equilibrium path delay Ẽ(R) that satisfies:

Ẽ(R) = Vq +WqF
h
q (R) > Vp, ∀q ∈ S(R). (6.20)

When the demand is R̃, through Lemma 3 and our assumption, we conclude that S(R̃) ⊆
{q, ∀q : Vq ≤ Vp} ⊆ S(R). Also we have the equilibrium delay Ẽ(R̃) satisfying:

Ẽ(R̃) = Vq +WqF
h
q (R̃) ≤ Vp, ∀q ∈ S(R̃). (6.21)

Comparing Equation (6.20) and (6.21), we have:

Vq +WqF
h
q (R̃) < Vq +WqF

h
q (R), ∀q ∈ S(R̃). (6.22)

Thus, we have

F h
q (R̃) < F h

q (R), ∀q ∈ S(R̃), (6.23)

R̃ =
∑

q∈S(R̃)

F h
q (R̃) <

∑
q∈S(R̃)

F h
q (R) < R. (6.24)

Therefore, we have R̃ < R, which violates our basic assumption. Note that even though
in this proof, we assume delays are affine of the flow, the proof is easily validated for any
increasing delay functions.
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Combining Lemma 3 and Lemma 4, we have the following proposition:

Proposition 3. Consider a network of parallel links T = (N,L,D) with a single O/D pair.
Assume all vehicles are human–driven and selfishly routing at a fixed demand. If the demand
R̃ ≤ R, we have S(R̃) ⊆ S(R).

With the lemmas ready, back to our mixed autonomy context, we consider autonomous
vehicles and human–driven vehicles are both selfishly routing on the road network. In the
later proofs, we frequently use the following proposition from [15] that gives an equivalent
routing equilibrium of human–driven vehicles to the selfish routing equilibrium of the mixed
autonomy (see the proof of Theorem 1 in [15] for further details).

Proposition 4. Consider a transportation network T = (N,L,D) with a single O/D pair
and a homogeneous capacity asymmetry degree µ. When autonomous and human–driven
vehicles route at a fixed demand R and autonomy ratio α, let (Fh,Fa) be an equilibrium path
flow vector of the network under the mixed autonomy, and let E(Fh,Fa) be the equilibrium
path delay under the mixed autonomy. Then F̃ := Fh + µFa is an equilibrium path flow
vector of the network when all vehicles are human–driven and route at a demand of R̃ :=
R(1 − α) + µRα. Further assuming Ẽ(F̃) is the corresponding equilibrium path delay when
all vehicles are human–driven, we have Ẽ(F̃) = E(Fh,Fa).

Combining Proposition 3 and 4, we propose:

Proposition 5. Consider that human–driven and autonomous vehicles are selfishly routing
at a demand R on a network of parallel links T = (N,L,D) with a single O/D pair and
a homogeneous capacity asymmetry degree µ. For a fixed autonomy ratio α and any µ, we
have S(R̃) ⊆ S(R), where R̃ := R(1− α) + µRα.

We then are ready to give the following theorem that bounds the social delay improvement
on the network of parallel links by reducing autonomous vehicles’ headway.

Theorem 6. Consider that human–driven and autonomous vehicles are selfishly routing on a
network of parallel links T = (N,L,D) with a single O/D pair and a homogeneous capacity
asymmetry degree µ. Assume for each link l ∈ L, the delay configuration is affine, i.e.,
βl = 1. For a fixed demand R and an autonomy ratio α > 0, with Ĵ denoting the equilibrium
social delay when µ = 1, we have

J(µ) = τ(α, µ)Ĵ , (6.25)

where 1− α(1− µ) ≤ τ(α, µ) ≤ 1, if the demand R satisfies:

R
∑

p∈S(R)\{q}

Wq

Wp

≤
∑

p∈S(R)

Vp
Wp

, (6.26)

where q := argmin
p∈P

Vp.
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Proof. Assume path q ∈ P is the path with the smallest freeflow cost. At an equilibrium,
according to Lemma 3 and Lemma 4, path q is occupied at all demands. Therefore, recalling
Remark 1 and Proposition 4, at a Wardrop equilibrium, for the fixed demand R and any µ,
we have:

Ep(F
h,Fa, µ) = Eq(F

h,Fa, µ), ∀p ∈ S(R̃), (6.27)

where R̃ := R(1−α)+µRα. Considering the topology of the network in Figure 6.1, we have∑
l∈p

el(F
h
p , F

a
p , µ) =

∑
l∈q

el(F
h
q , F

a
q , µ), ∀p ∈ S(R̃). (6.28)

From Proposition 4, we have∑
l∈p

ẽl(F̃p) =
∑
l∈q

ẽl(F̃q), ∀p ∈ S(R̃), (6.29)

where F̃p := F h
p + µF a

p , ∀p ∈ P . Assume an affine delay configuration for all links, together
with Equations (6.2) and (6.4), the k− 1 Equations (6.29) are easily solvable. We then have
the solution:

F̃q(R̃) =
R̃−

∑
p∈S(R̃)\{q}

Vq−Vp

Wp

1 +
∑

p∈S(R̃)\{q}
Wq

Wp

. (6.30)

Since delays are affine of the flow, considering the topology of the network, we have

Eq(F
h,Fa, µ) = Vq +WqF̃q(R̃). (6.31)

Recalling Remark 1, we can then express the social delay as

J(µ) = REq(F
h,Fa, µ). (6.32)

Therefore, we have

J(µ)

Ĵ
=
REq(F

h,Fa, µ)

REq(Fh,Fa, 1)
(6.33)

=
Vq +WqF̃q(R̃)

Vq +WqF̃q(R)
(6.34)

= 1− Wq(F̃q(R)− F̃q(R̃))

Vq +WqF̃q(R)
(6.35)

:= τ(α, µ). (6.36)
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According to Theorem 3 in [91], easily we have that for any p ∈ P , F̃p(R) is a non-
decreasing function of R. Thus, the increase of the flow on path q cannot exceed the increase
of the total demand, and we then have

F̃q(R)− F̃q(R̃) ≤ R− R̃. (6.37)

Thus, we have

τ(α, µ) ≥ 1− Wq(R− R̃)

Vq +WqF̃q(R)
(6.38)

= 1− WqR

Vq +WqF̃q(R)
α(1− µ). (6.39)

Plugging solution (6.30) back into Equation (6.39), as long as condition (6.26) holds, we
have τ(α, µ) ≥ 1−α(1− µ). Due to the positivity of Wp and Vp for any path p ∈ P , for any
autonomy ratio α > 0 and 0 < µ ≤ 1, we then have

1− α(1− µ) ≤ τ(α, µ) ≤ 1. (6.40)

Theorem 6 gives a bound of the improvement on the social delay by reducing autonomous
vehicles’ headway on a network of parallel links. The bound is dependent on both the
capacity asymmetry degree and the autonomy ratio. We will discuss the bound in details.

When α > 0, the bound 1 − α(1 − µ) is a strictly increasing function of µ and reaches
1 when µ = 1. Therefore, we have τ(α, 1) = 1. Increasing the capacity asymmetry degree
µ indicates that autonomous vehicles’ headway increases. Therefore, the positive impact
of autonomous vehicles on the social delay is compromised. Autonomous vehicles make no
difference to the social delay if they increase no road capacity by maintaining the same
headway as human–driven vehicles.

When µ is fixed, the bound 1 − α(1 − µ) is a strictly decreasing function of α. When
µ approaches 0, the bound 1 − α(1 − µ) approaches 1 − α. For any 0 < µ ≤ 1, we have
1 − α < τ(α, µ) ≤ 1. With the autonomy ratio increasing, we are able to manipulate
more autonomous vehicles and therefore improve the social delay to a better level. In the
most extreme scenario, we let all autonomous vehicles “vanish” by assigning them infinite
capacity–increasing ability.

As for the sufficient condition (6.26), when only the path with the least freeflow cost
is occupied at the demand R, condition (6.26) is always satisfied; for the other cases, the

condition can be expressed as R ≤
∑

p∈S(R)
Vp
Wp∑

p∈S(R)\{q}
Wq
Wp

, the right hand side of which can then

be intuitively seen as a weighted sum of link capacities when all vehicles are human–driven
across the network. Thus, condition (6.26) can be mild considering the topology of networks
of parallel links where the demand usually does not exceed the sum of the path capacities too
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A B
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1

23

Figure 6.2: A simple network with multiple O/D pairs. Three O/D pairs are (A,C), (A,B)
and (B,C). O/D pair (A,C) has two feasible paths, i.e., P(A,C) = {{1, 2}, {3}}. The other
two O/D pairs have one feasible path each, i.e., P(A,B) = {{1}} and P(B,C) = {{2}}.

much. After all, Condition (6.26) is a sufficient but not necessary condition. For cases when
condition (6.26) is not satisfied, the core result may still hold. As a specific example, we
give the following proposition for networks of parallel links with equal freeflow path delays,
where the core result holds without any conditions for the demand.

Proposition 6. Consider a network of parallel links T = (N,L,D) with a single O/D
pair and a homogeneous capacity asymmetry degree µ. Assume for each link l ∈ L, the
delay configuration is affine, i.e., βl = 1 and the freeflow delay for all paths are equal, i.e.,
Vp = Vq, ∀p, q ∈ P . For a fixed demand R and an autonomy ratio α > 0, with Ĵ denoting
the equilibrium social delay when µ = 1, we have

J(µ) = τ(α, µ)Ĵ , (6.41)

where 1− α(1− µ) ≤ τ(α, µ) ≤ 1.

Proof. We simply follow the proof of Theorem 6, whereas we plug solution (6.30) directly
into Equation (6.34). Since all path freeflow delays are equal, all paths are employed at any
demand, therefore, we always have S(R̃) = S(R). With slight algebraic transformation, we
conclude the result under no conditions.

6.4 Networks with Multiple O/D Pairs

For transportation networks with multiple O/D pairs, Theorem 5 does not necessarily hold.
Reducing the headway of autonomous vehicles may worsen the social delay for certain cases.
A simplest possible example is the same as the example network in [15].

Example 1. Consider the example network in Figure 6.2 with three O/D pairs. Relevant
delay parameters are set as {θ1 = θ2 = 0, θ3 = 10, γ1 = γ2 = γ3 = β1 = β2 = β3 = 1}. The
capacity parameters are set as {mh

1 = mh
2 = mh

3 = 1}. The demands for each O/D pair
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Figure 6.3: The equilibrium social delay J(µ) is not a monotone increasing function of the
homogeneous capacity asymmetry degree µ as we may expect.

are set as {R(A,B) = 1, R(B,C) = 10, R(A,C) = 0.9, α(A,B) = 0.9, α(B,C) = 0, α(A,C) = 0}. We
specify the feasible region of µ in this example as [0.1, 1]. The resulting equilibrium social
delay is not an increasing function of capacity asymmetry degree as shown in Figure 6.3.
The social delay reaches minimum when µ = 0.89 and reaches maximum at µ = 0.1.

Intuitively, for a network with multiple O/D pairs that have shared roads, decreasing the
homogeneous capacity asymmetry degree implies improving the capacity–increasing ability
of individual autonomous vehicles on each link. However, the actual capacity increase effect
on each link is also decided by the autonomous vehicle flow on the link (the number of
autonomous vehicles we can manipulate). Considering the topology of the network, the
configuration of demands and distinct autonomy ratios for O/D pairs, some links may gain
a limited capacity increase effect due to the scarce autonomous flow on the link but receive
more selfish vehicles due to the decreased capacity asymmetry degree. Therefore, vehicles
traveling along such links would suffer a longer equilibrium delay and the social delay may
deteriorate as shown in Example 1.

However, with rapidly developing technologies, the transportation networks will inevitably
be shared by human–driven and autonomous vehicles in the near future. Thus we are in-
trigued to quantify or even bound the potential adverse effect on social delay induced by
autonomous vehicles’ ability to increase road capacity. We give the following theorem to
bound the potential degradation on social delay induced by autonomous vehicles.

Theorem 7. Consider a transportation network T = (N,L,W ) with a homogeneous capacity
asymmetry degree. For each O/D pair w ∈ W , let Rw be the fixed demand and αw ≥ 0 be
the fixed autonomy ratio. (At least for one O/D pair w, αw > 0.) Let Ĵ be the equilibrium
social delay when µ = 1. For any capacity asymmetry degree 0 < µ ≤ 1, we have

J(µ) ≤ (1− λ(ẽl))
−1Ĵ , (6.42)

where 0 < λ(ẽl) < 1 is a parameter defined for delay functions (6.8).
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Proof. The proof of Theorem 7 can be extended from the proof for Theorem 2 in [15].

6.5 Summary

In this chapter, we focused on transportation networks of mixed autonomy with a homo-
geneous capacity asymmetry degree. We have proved that for such networks with a single
O/D pair, we can always improve the social traffic conditions by reducing the headway for
autonomous vehicles. We also provided an upper bound for the social delay improvement
brought by autonomous vehicles on networks of parallel links with affine delay functions.
However, for networks with multiple O/D pairs, things become more complex and reducing
the headway for autonomous vehicles may worsen social traffic conditions even in simple
topology networks.
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Chapter 7

Dynamic Routing and Queuing for
Mixed Autonomy with Traffic
Responsive Intersection Signaling

7.1 Overview

In the previous chapter, we have shown that in mixed autonomy transportation networks
where roadways are shared by human–driven and autonomous vehicles, both of which are
selfishly routing, it is always possible to decrease the overall or social network delay at
equilibrium for series parallel networks with a single origin-destination pair and affine delay
functions by reducing autonomous vehicle headway. In this chapter, we continue our discus-
sion in a dynamic context. We also consider the effect of movement–wise vehicle queuing
at the intersections in the dynamic routing model and analyze both fixed-time and traffic
responsive intersection signalling. For the fixed-time signaling case, we are able to charac-
terize the resulting Wardrop equilibria using an optimization problem with boundary flow
constraints. We then analyse the stability of the equilibria via the use of dissipativity anal-
ysis tools for population games [66]–[68] and provide stability proofs of the resulting model
equilibria for both fixed-time and a movement–wise extension of the P0 traffic responsive
signalling policy introduced in [65]. We also present a simple numerical example to illustrate
the derived stability results and the advantage of using the P0 traffic responsive signal policy
over a fixed-time policy.

The chapter is organized as follows. In Section 7.2, we give detailed descriptions of
the routing model, the queuing delay model and the signaling controls we use for mixed
autonomy. In Section 7.3, we characterize the resulting Wardrop equilibria under fixed-
time signaling. In Section 7.4, we use dissipativity tools for population games to establish
the stability of the resulting model equilibria under both fixed-time and responsive signal
controls. In Section 7.5, we use a numerical example to testify the stability results. Finally,
in Section 7.6, we conclude this chapter.
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7.2 Dynamic Routing and Queuing Models

Let V be the origin–destination (O/D) pair set and for each O/D pair v ∈ V , we introduce a
set Pv that includes all the feasible paths for the O/D pair. Combining we have P :=

⋃
v∈V

Pv

including all the feasible paths across the network. Let L be the link set and M ⊆ L×L be
the movement set for the network. A movement (i, j) ∈M refers to the movement of leaving
link i and entering link j, where link i, j ∈ L are two consecutive links. A path can be seen
as a set of consecutive links or consecutive movements. For example, in Figure 7.1, the path
containing link 1, 2, 4, 6, 7 can also be seen as a set of movements (1, 2), (2, 4), (4, 6), (6, 7).
At the end of each link, there may be multiple movements targeting different downstream
links.

Both human-driven and autonomous vehicles are routing under inelastic demands. For
O/D pair v ∈ V , let Γh

v be the demand of human-driven vehicles for the O/D pair and Γa
v be

the demand of autonomous vehicles. We then have the demand vector Γh :=
(
Γh
v , v ∈ V

)
and

Γa := (Γa
v, v ∈ V ). For each path i ∈ P , we let F h

i (resp., F a
i ) indicate the human–driven

(resp., autonomous) vehicle flow on the path. We then have the path flow vector Fh :=(
F h
i , i ∈ P

)
and Fa := (F a

i , i ∈ P ) for human–driven and autonomous vehicles respectively.
For each link i ∈ L, we let fh

i and fa
i be the human–driven and autonomous vehicle flow on the

link respectively. We then have the link flow vector fh :=
(
fh
i , i ∈ P

)
and fa := (fa

i , i ∈ P )
for human–driven and autonomous vehicles respectively. All the flows rates in this chapter
are in the same unit of vehicles per unit time. Let R ∈ R|P |×|L| be the link–path transition
matrix, where Rij = 1 if path i contains link j, otherwise, Rij = 0. Let matrix O ∈ R|V |×|P |

be the path-O/D-pair transition matrix, where Oij = 1 if path j joins OD-pair i and Oij = 0
otherwise. According to the law of flow conservation, we have

fh = RTFh, fa = RTFa, (7.1)

OFh = Γh, OFa = Γa. (7.2)

Since queues may accumulate on certain movements, and not accumulate on others, the
accuracy of the model can be much improved by differentiating the queuing effect on different
movements. For each movement (i, j) ∈ M , we let q(i,j) be the queuing delay (in units of
time) on the movement. We then define the queuing delay vector q :=

(
q(i,j), (i, j) ∈M

)
and an ordering o :M 7→ Z+, so that q(i,j) = ql, where l = o((i, j)). Let Q ∈ R|P |×|M | be the
movement–path transition matrix, where Qil = 1 if path i contains the lth element of the
queuing delay vector q, otherwise, Qil = 0.

Usually vehicles at the intersections also follow certain signal control policies. Let K be
the set of traffic intersections. In one cycle of the signaling at intersection k ∈ K, there are
multiple stages, each assigned with a portion of green time. A stage is a set of simultaneous
movements. Multiple movements belonging to the same stage share the same green time. For
each intersection k ∈ K, we include all the stages at the intersection in the set Tk. Together
we have T :=

⋃
k∈K

Tk including all the stages across the network. Assuming the cycle time
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Figure 7.1: An illustration of paths, links and movements. The path containing link
1, 2, 4, 6, 7 can also be seen as a set of movements (1, 2), (2, 4), (4, 6), (6, 7).

is fixed, let gi indicate the green ratio for each stage i ∈ T , which is the ratio between the
green time allocated to the stage and the cycle time. We collect all the stage green ratios in
the vector g := (gi, i ∈ T ). The green ratios should satisfy∑

i∈Tk

gi = 1, ∀k ∈ K. (7.3)

Let g(i,j) be the green ratio for movement (i, j) ∈M . If movement (j,m) belongs to stage i,
we have

g(j,m) = gi. (7.4)

In this section, we assume all intersections are under fixed-time signal controls, i.e., for any
stage i ∈ T , the green ratio gi is a constant. Evidently, for any movement (i, j) ∈ M , the
green ratio g(i,j) is a constant.

The dynamic routing model

We consider transportation networks where human–driven vehicles and autonomous vehicles
are selfishly routing, i.e., both human–driven and autonomous vehicles revise their paths
only to shorten their own path delay. Vehicles traveling along the same path share the same
delay no matter whether they are human–driven or autonomous vehicles. However, the
participation of autonomous vehicles influences the path delay by increasing road capacities.

Let µ ∈ (0, 1] be the homogeneous capacity asymmetry degree, which is defined as the
ratio of the link capacity when all vehicles are human–driven to the link capacity when
all vehicles are autonomous across the network. When the headway of autonomous vehicles
decreases, the capacity asymmetry degree µ decreases. To quantify the impact of autonomous
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vehicles, we treat autonomous vehicles as human-driven vehicles with a shorter headway. For
path i ∈ P , we define the effective total vehicle flow on the path to be

F̃i := F h
i + µF a

i . (7.5)

Similarly, we define the effective total vehicle flow on the link to be

f̃i := fh
i + µfa

i . (7.6)

Collecting the flows in vectors, we have the effective path flow vector F̃ :=
(
F̃i, i ∈ P

)
and

the effective link flow vector f̃ :=
(
f̃i, i ∈ P

)
. According to the flow conservation in (7.1),

we have

f̃ = RT F̃. (7.7)

Throughout this chapter, we use the effective flows to explore the system equilibria and
dynamics. For i ∈ I, let ci(·) be the traversing delay function among the class of volume
delay functions [92] (e.g. BPR functions [62]). We can express the traversing delay of link
i for both human–driven and autonomous vehicles as ci(f̃i) in unit time. (see [15] for the
detailed derivation). For path i ∈ P , let di refer to the path delay. Aside from the traversing
delay on each link, vehicles traveling along the path may experience an additional queuing
delay on each movement. Thus for each path i ∈ P , we propose

di =
∑

j∈L:j∈i

cj(f̃j) +
∑

(j,m)∈M :(j,m)∈i

q(j,m). (7.8)

where q(i,j) is the queuing delay of movement (i, j), which will be further discussed in section
7.2.

Dynamically within the same O/D pair, vehicles would always transfer to a feasible path
with a shorter delay until a Wardrop equilibrium [45] is reached. The dynamic routing model
for human–driven vehicles has been discussed from a macroscopic viewpoint in [64]. Here
we further explore the model in [64] for human–driven vehicles and extend it to account
for autonomous vehicles. Under inelastic demands, the effective total vehicle flow on each
feasible path satisfies:

˙̃Fi(t) =
∑
j∈Pv

[
F̃j(t)ϕj (dj(t)− di(t))

−F̃i(t)ϕi (di(t)− dj(t))
]
, i ∈ Pv, v ∈ V, (7.9)

where, as previously defined, F̃i is the effective vehicle flow of the path i joining OD pair
v ∈ V , i ∈ Pv ⊂ P . Pv is the set of all paths joining joining OD pair v, while P is the
set of all feasible paths of the network. The functions ϕi for each path i ∈ Pv are Lipschitz
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continuous, non–negative, non–decreasing and satisfy ϕi(x) = 0, when x ≤ 0. Henceforth,
we refer to functions with these properties as class–S functions.

Note that according to (7.9), the effective total vehicle flow on the more costly path should
decrease while the effective total vehicle flow on a less costly path should increase until the
system reaches an equilibrium, if one exists. The magnitude of the flow exchange between
two paths is related to the delay difference between the two paths and also the current flow
on the path from which vehicles are switching and which is currently experiencing the longer
delay. For simplicity and space saving, we omit the time argument t in subsequent equations.

The dynamic queuing model

From the dynamic perspective, the queuing delay in a movement increases when the input
flow exceeds the output flow, and decreases when the output flow exceeds the input flow. At
an equilibrium, the input flow remains equal to the output flow. For movement (i, j) ∈ M ,
let fh

(i,j) and fa
(i,j) be the human–driven and autonomous vehicle flow on the movement.

Similarly, to quantify autonomous vehicles’ impact, for movement (i, j) ∈ M , we define the
effective movement flow as

f̃(i,j) := fh
(i,j) + µfa

(i,j). (7.10)

Therefore, following [65], we define the variable queue pressure pq(i,j) to represent the move-
ment’s effective input-output flow difference

pq(i,j) = f̃(i,j) − sh(i,j)g(i,j), (i, j) ∈M, (7.11)

where sh(i,j) is the human-driven vehicle saturation flow rate on movement (i, j) (in vehicles

per unit time). Notice that, when pq(i,j) > 0 (pq(i,j) < 0), the movement’s queue q(1,j) increases

(decreases until it reaches 0), since sh(i,j)g(i,j) represents the maximum queue discharge rate.

Consequently, we utilize the link–wise bottleneck model in [65] and adapt it to account for
movement–wise queuing delays.

q̇(i,j) = γ(i,j)
(
q(i,j)

)
ϕq
(i,j)

(
pq(i,j) − 0

)
− ψ(i,j)

(
q(i,j)

)
ϕq
(i,j)

(
0− pq(i,j)

)
, ∀(i, j) ∈M, (7.12)

where for movement (i, j) ∈M , the function ϕq
(i,j) belongs to class–S. The functions ψ(i,j) for

each movement (i, j) ∈M are Lipschitz continuous, increasing sigmoid functions that satisfy
ψ(i,j)(0) = 0 to ensure q(i,j)(t) ≥ 0 for any movement (i, j) ∈ M . The functions γ(i,j) ≥ 0
for each movement (i, j) ∈ M are Lipschitz continuous, decreasing functions that satisfy
γ(i,j)(q̄(i,j)) = 0, where q̄(i,j) > 0 is some estimated maximum queuing delay for movement
(i, j) ∈ M . The purpose of function γ(i,j) is to theoretically guarantee that q(i,j)(t) ≤ q̄(i,j).
In practice, q̄(i,j) > 0 can be set large enough to reflect the potential congestion scenarios.
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7.3 Equilibrium Analysis

In this section, we analyze how the equilibria of mixed autonomy’s routing and queuing
under fixed-time signalling can be characterized from a static perspective, which facilitates
our study of employing responsive signal controls in the dynamic routing and queuing of
mixed autonomy.

As studied in [65], we give the following definition of the equilibria of the dynamic routing
and queuing system.

Definition 8. A vector of effective flows and queuing delays is an equilibrium of the dynamic
routing and queuing system if and only if the following conditions hold:

(a) for any two path i, j ∈ Pv joining the same O/D pair v ∈ V , if F̃i > 0, then∑
l∈i

cl(f̃l) +
∑

(l,m)∈i

q(l,m) ≤
∑
l∈j

cl(f̃l)) +
∑

(l,m)∈j

q(l,m), (7.13)

(b) for any movement (l,m) ∈M ,

q(l,m) > 0 ⇒ f̃(l,m) = sh(l,m)g(l,m), (7.14)

f̃(l,m) < sh(l,m)g(l,m) ⇒ q(l,m) = 0. (7.15)

We define a vector s̃ := {sh(i,j)g(i,j), (i, j) ∈ M}, where the movements are listed in the same

order o as in q. Similar to the spirit in [93], where the authors considered the routing equi-
librium of human-driven vehicles under bounding flow constraints, we present the following
proposition:

Proposition 7. Let F̃∗ be the optimal solution and λ+ be the optimal dual variables for
inequalities (7.17) of the following optimization problem:

min
F̃

∑
i∈L

∫ f̃i

0

ci(x)dx ∥f̃=RT F̃ (7.16)

s.t. QT F̃ ≤ s̃ (7.17)

F̃ ≥ 0 (7.18)

OF̃ = Γh + µΓa (7.19)

Then (F̃∗,λ+) are equilibria defined in Definition 8 with λ+ regarded as the queuing delay
vector.

Proof. Let λ− be the optimal dual variables for inequalities (7.18), and let ν be the optimal

dual variables for equations (7.19). Since the objective function
∑

i∈L
∫ f̃i
0
ci(x)dx∥f̃=RT F̃ is
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a convex function of F̃ and Slater’s condition holds, (F̃∗,λ+) should satisfy the following
Karush–Kuhn–Tucker(KKT) conditions:

λ+(l,m)(f̃
∗
(l,m) − sh(l,m)g(l,m)) = 0, ∀(l,m) ∈M, (7.20)

λ−i F̃
∗
i = 0, ∀i ∈ P, (7.21)

Rc(f̃∗) +Qλ+ − λ− +OTν = 0, (7.22)

where c(f̃∗) := (ci(f̃
∗
i ), i ∈ L). Now KKT condition (7.20) is equivalent to conditions (7.14)

and (7.15). We therefore need to demonstrate that KKT conditions (7.21) and (7.22) are
sufficient for the Nash equilibrium condition (7.13) to complete the proof. For any path i
joining O/D pair v, the KKT condition (7.22) yields∑

l∈i

cl(f̃
∗
l ) +

∑
(l,m)∈i

λ+(l,m) = λ−i − νv. (7.23)

If F̃ ∗
i > 0, then according to KKT condition (7.21), λ−i = 0. Consider any other path j ∈ Pv,

λ−j ≥ 0. Considering that ∑
l∈j

cl(f̃
∗
l ) +

∑
(l,m)∈j

λ+(l,m) = λ−j − νv, (7.24)

we have ∑
l∈i

cl(f̃
∗
l ) +

∑
(l,m)∈i

λ+(l,m) ≤
∑
l∈j

cl(f̃
∗
l ) +

∑
(l,m)∈j

λ+(l,m), (7.25)

which is equivalent to condition (7.13).

7.4 Signaling and Stability Analysis

Fixed-time signalling policies

Consider the case when the signaling control is fixed-time. We now provide the following
theorem that establishes the stability convergence of vehicles’ routing and queuing under
fixed-time signaling to the equilibria calculated in section 7.3.

Theorem 8. The equilibria of the dynamic model specified by equations (7.9) and (7.12) are
globally asymptotically stable.

Proof. The proof of this theorem is a simplified case of the proof of Theorem 9, which will
be presented in section and is omitted due to space constraints.
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Traffic-responsive signaling policies

Traffic responsive signaling policies have been proposed and implemented as an alternative
to fixed-time policies in order to improve mobility. In this section, we will present a traffic
responsive policy similar to the ones presented in [7], [8], which balances the queuing of
different movements at intersections. Such policies have been shown to reduce queuing delays
and guarantee stability of the traffic management system under feasible inelastic demands.

Following [65], for stage i ∈ T , we define the stage’s green ratio pressure, pgi as

pgi =
∑

(j,m)∈M :(j,m)∈i

sh(j,m)q(j,m), ∀i ∈ T, (7.26)

which indicates the how much increase in throughput can be achieved at the intersection by
clearing this stage.
We now introduce the stage version of the P0 signalling policy proposed in [65]:

ġi =
∑
j∈Tk

[
gjϕ

g
i

(
pgi − pgj

)
− giϕ

g
j

(
pgj − pgi

)]
, (7.27)

∀i ∈ Tk, ∀k ∈ K,

where, as previously defined, gi is the green ratio of the stage, k ∈ K is the intersection
where stage i belongs to and Tk is the set of all stages at intersection k. Thus, i ∈ Tk ⊂ T .
Functions ϕg

i belong to class–S.
Notice that this policy follows a game theoretic structure where the green ratios are

treated as agents that aim to balance the green ratio pressures of all the movements at an
intersection, so that no movement has an unduly large queuing delay.

We now analyze the stability of the traffic network equilibria consisting of vehicles’ routing
flows and intersection movement queues, under the P0 signalling policy given in (7.27). To
do so, we use dissipativity tools [66]–[68] for population games and first investigate the
δ–dissipativity of the overall traffic flow and queuing dynamics.

We define the full state vector y :=
(
F̃,q,g

)
and show δ–dissipativity (defined below)

for the subsystems for F̃,q and g by treating as their inputs the negative path delays,
the queue pressures and the green ratio pressures respectively. That is, the inputs are

p̃ := (−di, i ∈ P ), pq :=
(
pq(i,j), (i, j) ∈M

)
and pg := (pgi , i ∈ T ), combined into the full

input vector p := (p̃,pq,pg). We rewrite the routing dynamics in equations (7.9) succinctly

as ˙̃Fi := η̃i(F̃, p̃), i ∈ P . Therefore, η̃(F̃, p̃) = (η̃i(F̃, p̃), i ∈ P ). Recalling the queuing
dynamics in equations (7.12), for (i, j) ∈ M , let q̇(i,j) := ηq(i,j)(q,p

q). Therefore, ηq(q,pq) =

(ηq(i,j)(q,p
q), (i, j) ∈ M). Recalling the signaling dynamics in equations (7.27), for i ∈ T ,

let ġi := ηgi (g,p
g). Thus we have ηg(g,pg) = (ηgi (g,p

g), i ∈ T ). We then give the following
definition of the δ–dissipativity from [68].
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Definition 9. A dynamic model ẋ = η(x,u), with state x ∈ X ⊆ Rn, and input u ∈ Rn is
δ–dissipative characterized by Π = ΠT ∈ R2n×2n if there exists a continuously differentiable
nonnegative storage function S : X×Rn 7→ R≥0 and a nonnegative function σ : X×Rn 7→ R≥0

that satisfy the following inequality for all x ∈ X,u ∈ Rn, r ∈ Rn:

∂S(x,u)

∂x
η(x,u) +

∂S(x,u)

∂u
r ≤

− σ(x,u) +

[
η(x,u)

r

]T
Π

[
η(x,u)

r

]
, (7.28)

where S and σ must satisfy:

S(x,u) = 0 ⇐⇒ η(x,u) = 0, (7.29)

σ(x,u) = 0 ⇐⇒ η(x,u) = 0. (7.30)

With Definition 9, we give the following lemmas to establish the δ–dissipativity of the
routing, queuing and signaling dynamics.

Lemma 5. The dynamic routing model of mixed autonomy specified by equations (7.9) is

δ–dissipative characterized by Π̃ =

[
0 1

2
I |P |

1
2
I |P | 0

]
, with the choice of the functions:

S̃(F̃, p̃) :=
∑
v∈V

∑
i∈Pv

∑
j∈Pv

F̃i

∫ di−dj

0

ϕi(z)d(z), (7.31)

σ̃(F̃, p̃) := −
∑
v∈V

∑
i∈Pv

∑
j∈Pv

η̃i(F̃, p̃)

∫ di−dj

0

ϕi(z)d(z). (7.32)

Proof. For path i ∈ P , let r̃i = ˙̃pi. Thus, we have r̃ = ( ˙̃pi, i ∈ P ). Also note that for any
path i ∈ P , we have (

∂S̃(F̃, p̃)

∂p̃

)
i

=
∑
j∈Pv

[
F̃jϕ

h
j (dj − di)− F̃iϕi (di − dj)

]
(7.33)

= η̃i(F̃, p̃). (7.34)
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Thus, we have

∂S̃(F̃, p̃)

∂F̃
η̃(F̃, p̃) +

∂S̃(F̃, p̃)

∂p̃
r̃

=
∑
v∈V

∑
i∈Pv

∑
j∈Pv

η̃i(F̃, p̃)

∫ di−dj

0

ϕi(z)d(z)

+
∑
v∈V

∑
i∈Pv

η̃i(F̃, p̃)r̃i (7.35)

= −σ̃
(
F̃, p̃

)
+

[
η̃(F̃, p̃)

r̃

]T
Π̃

[
η̃(F̃, p̃)

r̃

]
. (7.36)

The nonnegativity of the functions and conditions (7.29) and (7.30) can then be shown. See
Remark 4 in [68] for more details.

Lemma 6. The dynamic queuing delay model of mixed autonomy specified by equations (7.12)

is δ–dissipative characterized by Πq =

[
0 1

2
I |M |

1
2
I |M | 0

]
, with the choice of the functions:

Sq(q,pq) :=
∑

(i,j)∈M

[
γ(i,j)

(
q(i,j)

) ∫ pq
(i,j)

−0

0

ϕq
(i,j)(z)d(z)

+ψ(i,j)

(
q(i,j)

) ∫ 0−pq
(i,j)

0

ϕq
(i,j)(z)d(z)

]
, (7.37)

σq(q,pq) : = −
∑

(i,j)∈M

[
ηq(i,j)(q,p

q)
(
ψ

′

(i,j)

(
q(i,j)

)
∫ 0−pq

(i,j)

0

ϕq
(i,j)(z)d(z)

+γ
′

(i,j)

(
q(i,j)

) ∫ pq
(i,j)

−0

0

ϕq
(i,j)(z)d(z)

)]
. (7.38)

Proof. For movement (i, j) ∈ M , let rq(i,j) = ṗq(i,j). Thus, we have rq = (ṗq(i,j), (i, j) ∈ M).
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Therefore, we have

∂Sq(q,pq)

∂q
ηq(q,pq) +

∂Sq(q,pq)

∂pq
rq

=
∑

(i,j)∈M

ηq(i,j)(q,p
q)

(
ψ

′

(i,j)

(
q(i,j)

) ∫ 0−pq
(i,j)

0

ϕq
(i,j)(z)d(z)

+γ
′

(i,j)

(
q(i,j)

) ∫ pq
(i,j)

−0

0

ϕq
(i,j)(z)d(z)

)
(7.39)

+
∑

(i,j)∈M

rq(i,j)

[
γ(i,j)

(
q(i,j)

)
ϕq
(i,j)

(
pq(i,j) − 0

)
−ψ(i,j)

(
q(i,j)

)
ϕq
(i,j)

(
0− pq(i,j)

)]
(7.40)

= −σq (q,pq) +

[
ηq(q,pq)

rq

]T
Πq

[
ηq(q,pq)

rq

]
. (7.41)

Since for any movement (i, j) ∈M , ψ(i,j) (·) is a sigmoid function, thus we have ψ
′

(i,j) (·) > 0.

Also, we have γ
′

(i,j) (·) < 0. We can then easily verify the nonnegativity of the functions and

that conditions (7.29) and (7.30) hold.

Lemma 7. The dynamic signaling model specified by equations (7.27) is δ–dissipative char-

acterized by Πg =

[
0 1

2
I |M |

1
2
I |M | 0

]
, with the choice of the functions:

Sg(g,pg) =
∑
k∈K

∑
i∈Tk

∑
j∈Tk

gi

∫ pgj−pgi

0

ϕg
j (z)d(z), (7.42)

σg(g,pg) := −
∑
k∈K

∑
i∈Tk

∑
j∈Tk

ηgi (g,p
g)

∫ pgj−pgi

0

ϕg
j (z)d(z). (7.43)

The proof for Lemma 7 is analogous to the proof for Lemma 5, thus omitted here. We then
are ready to investigate the stability of the model equilibria via dissipativity tools.

Recall equations (7.8), (7.11) and (7.26). The input vectors are functions of the full state
vector. We let

p =

 p̃
pq

pg

 =

 H̃(y)
Hq(y)
Hg(y)

 := H(y). (7.44)

Generalizing Corollary 1 in [68], we give the following proposition for the global convergence
in our setting.
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Proposition 8. The equilibria of the dynamical model described by equations (7.9), (7.12), (7.27)
is globally asymptotically stable if the following condition holds:

W
∂H(y)

∂y
+

(
∂H(y)

∂y

)T

W ≤ 0, ∀y, (7.45)

where W =

I |P | 0 0
0 wqI |M | 0
0 0 wgI |T |

, for some positive scalars wq and wg.

We thus give the following theorem:

Theorem 9. The set of the equilibria of the dynamic model specified by Equations (7.9), (7.12)
and (7.27) is globally asymptotically stable.

Proof. For the simplicity of future reference, we first define the following matrices.

• Let G ∈ R|T |×|M | be the movement–stage transition matrix, where Gij = 1 if stage i
contains the jth movement in q, otherwise, Gij = 0.

• Let C ∈ R|L|×|L| be a diagonal matrix, where Cii :=
∂ci(x)
∂x

≥ 0, i ∈ L.

• Let Z ∈ R|M |×|M | be a diagonal matrix, on the diagonal of which are the human–driven
vehicle saturation rates on each movement in the same order o as in q.

We thus have

∂H̃(y)

∂y
=
[
−RCRT −Q 0

]
, (7.46)

∂Hq(y)

∂y
=
[
QT 0 −ZGT

]
, (7.47)

∂Hg(y)

∂y
=
[
0 GZ 0

]
. (7.48)

Combining we then have

∂H(y)

∂y
=

−RCRT −Q 0
QT 0 −ZGT

0 GZ 0

 . (7.49)

Choosing W =

I |P | 0 0
0 I |M | 0
0 0 I |T |

, we have

W
∂H(y)

∂y
+

(
∂H(y)

∂y

)T

W ≤ 0. (7.50)

According to Proposition 8, we conclude the global asymptotic stability of the resulting
equilibria of the model.
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Theorem 8 and 9 justifies the stability of the model equilibrium points and therefore, the
significance to study the properties of the model equilibria from a static perspective as in
Section 7.3.

7.5 A Simple Numerical Example

To illustrate the efficacy of the P0 traffic responsive signaling policy and the overall conver-
gence, we employ a numerical example shown in Figure 7.2.

1

2

3

BA C

Figure 7.2: A numerical example. All vehicles travel from A to C through one of the two
paths. At intersection B, there is a either a fixed-time or a P0 traffic responsive signalling
policy implemented.

In this example, all vehicles including human-driven and autonomous vehicles are trav-
eling from node A to node C. They can travel either on the path containing link 1 and
2 (i.e. movement (1, 2)) or the path containing link 1 and 3 (i.e. movement (1, 3)). At
intersection B, vehicle flow is regulated by a signalling policy with two stages. The fist stage
is for movement (1, 2) while the second is for movement (1, 3). Therefore, in this example,
the movement green ratios are regulated directly.

Since the only O/D pair is from A to C, we omit the subscript for O/D pairs. The
relevant model parameters are {Γh = 3,Γa = 4, µ = 0.25, sh(1,2) = 4, sh(1,3) = 6}, and for link

i ∈ {1, 2, 3}, we let the traversing delay functions be ci(f̃i) = f̃i.
We first simulate a fixed-time signalling policy and arbitrarily assign the green time

ratios to be {g(1,2) = 0.25, g(1,3) = 0.75} (as shown in Figure 7.3). From the simulation, we

have that, at the equilibrium, {f̃(1,2) = 1, f̃(1,3) = 3} and {q(1,2) = 2, q(1,3) = 0} (as shown
in Figure 7.5). The equilibrium flows and queuing delays can also be obtained by solving
the optimization problem in section 7.3, and the solutions are equivalent to the simulation
results. Under this fixed-time signalling policy, vehicles queue up on movement (1, 2) and
induce a considerable queuing delay. At the equilibrium, each vehicle experiences a path
delay of 7, and therefore the total network delay is 49.

Secondly, the P0 traffic responsive signalling policy described by (7.27) is simulated, with
initial green time ratios equal to the previously selected fixed time policy ratios. As shown in
Figure 7.3), the green ratio for movement (1, 2) converges to a larger value, while the green
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Figure 7.3: Green signalling ratios under fixed-time and traffic responsive signalling policies.

ratio for movement (1, 3) decreases correspondingly ({g(1,2) = 0.6, g(2,3) = 0.4} to balance out
the green pressures at the intersection. As a result, at the equilibrium the previously existing
queue is dissipated {q(1,2) = 0, q(1,3) = 0} (as shown in Figure 7.5) and the flows converge

to {f̃(1,2) = 2, f̃(1,3) = 2}. As a consequence at the equilibrium, each vehicle experiences a
path delay of 6, and therefore the total network delay is 42, which is lower than the total
network delay under the fixed-time signalling policy. This is a typical example in which the
P0 traffic-responsive signalling policy can tune the allocation of the green time ratios of the
different movements to balance the queuing delay of the movements and therefore effectively
improve traffic mobility.

Figure 7.4: Traffic flow responses under fixed-time and traffic responsive signalling policies.
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Figure 7.5: Queuing responses under fixed-time and traffic responsive signalling policies.

7.6 Summary

In this chapter, we proposed a continuous–time dynamic routing and queuing model of mixed
autonomy (human-driven/autonomous vehicles) with stabilizing signal controls. In the mod-
els, autonomous vehicles are configured with a shorter headway compared to human–driven
vehicles and therefore, increase the road capacities. We accounted for the capacity–increasing
effect of autonomous vehicles on the selfish routing and movement–wise queuing dynamics.
We examined the equilibria under fixed-time signal controls from a static perspective and
then established the global asymptotic stability of the resulting model equilibria under fixed-
time and responsive signal controls via dissipativity tools for population games.
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Chapter 8

A Unified Framework for Designing
Tolls on Freeways with Autonomous
and High-Occupancy Vehicles

8.1 Introduction

As we have discussed in the previous chapters, connected and autonomous vehicles can
be formed into platoons with a shorter headway compared to human-driven vehicles, and
therefore, increase the traffic throughput. Thus, the corresponding advantages of connected
and autonomous vehicles rely heavily on the organization of autonomous vehicles on the
roads, such as whether there are dedicated lanes for autonomous vehicle lanes, just as existing
dedicated lanes for high-occupancy vehicles. In this chapter, we try to capture the advantage
of both dedicated high-occupancy vehicle lanes and dedicated autonomous vehicle lanes.
We consider the scenario where four classes of vehicles are sharing a segment of highway:
human-driven vehicles with low occupancy, human-driven vehicles with high occupancy,
autonomous vehicles with low occupancy and autonomous vehicles with high occupancy.
Autonomous vehicles are capable of increasing traffic throughput by preserving a shorter
headway than human-driven vehicles. High-occupancy vehicles carry multiple commuters per
vehicle and low-occupancy vehicles carry a single commuter per vehicle. We propose a toll
lane framework, where on the highway, a toll lane is reserved freely for autonomous vehicles
with high occupancy and the other three classes of vehicles can choose to enter the toll lane
paying a toll or use the other regular lanes freely. We consider all vehicles to be selfish and
only interested in minimizing their own travel costs (the sum of travel delay and the toll cost).
We then explore the resulting lane choice equilibria and establish properties of the equilibria,
which implicitly compare high-occupancy vehicles with autonomous vehicles in terms of their
capabilities to increase the social mobility. We further use numerical examples to clarify the
various potential applications of this toll lane framework that unites high-occupancy vehicles
and autonomous vehicles in the optimal toll design, the optimal occupancy threshold design
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AV, LOHV, LO

AV, HOHV, HO

Lane 1

Lane 2

Figure 8.1: Problem setting: all autonomous vehicles with high occupancy travel freely on
lane 1, whereas the other three classes of vehicles either pay a toll to travel on lane 1 or
travel on lane 2 freely.

and the policy design problems. In order to effectively decrease the total commuter delay,
we propose an algorithm that configures various classes of vehicles with differentiated tolls
and we examine the potential misbehavior of various classes of vehicles, i.e, vehicles use the
toll lane paying a smaller toll than the designed toll, and counter-intuitively find out that
lane delays can remain robust to vehicles’ misbehavior under certain conditions. To the best
of our knowledge, this is the first work that systematically studies a toll lane framework that
unites autonomous vehicles and high-occupancy vehicles on the roads.

The chapter is organized as follows. In Section 8.2, we give detailed descriptions of
the toll lane framework and vehicles’ lane choice model. In Section 8.3, we establish the
properties of the resulting lane choice equilibria. In Section 8.4, we clarify how the toll
lane framework can be used to find the optimal toll/occupancy threshold/lane policy that
minimizes the total commuter delay. In Section 8.5, we propose an efficient method to
decrease the total commuter delay by differentiating the tolls. In Section 8.6, we examine
the potential misbehavior of vehicles and discuss the impact of vehicles’ misbehavior on the
total delay of all commuters. Finally, in Section 8.7, we summarize this chapter.

8.2 The Model

Let I = {1, 2} be the lane index set for a segment of highway shown in Figure 8.1, where lane
1 is the reserved toll lane (or toll lanes), and lane 2 is a regular lane (or regular lanes) that can
be used by any class of vehicles freely. We consider that four classes of vehicles are sharing the
roads: human-driven vehicles with low occupancy (HV,LO), human-driven vehicles with high
occupancy (HV,HO), autonomous vehicles with low occupancy (AV,LO) and autonomous ve-
hicles with high occupancy (AV,HO). We denote P := {HV,LO;HV,HO;AV,LO;AV,HO}
to be the set of all classes of vehicles. We assume high-occupancy vehicles have n ≥ 2
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commuters per vehicle and low-occupancy vehicles have only one commuter per vehicle.
Throughout this work, we assume the commuter demands are inelastic. Let dp ≥ 0, be the
fixed demand of commuters who either individually drive, use or commute in a vehicle of
class p ∈ P . We collect the commuter demands in the vector d ∈ R4

+:

d :=
(
dHV,LO, dHV,HO, dAV,LO, dAV,HO

)
. (8.1)

Therefore, on the segment of highway, we have dHV,LO human-driven vehicles with low occu-
pancy, dHV,HO

n
human-driven vehicles with high occupancy, dAV,LO autonomous vehicles with

low occupancy, and dAV,HO

n
autonomous vehicles with high occupancy.

We also assume in this chapter that autonomous vehicles can preserve a shorter headway
than human-driven vehicles and can therefore increase the commuter capacity of the lanes
that they transit on. To quantify such capability of autonomous vehicles, we will employ the
concept introduced and studied in [15] and [78], the capacity symmetry degree µ ∈ (0, 1),
which is the ratio between the maximum vehicle density of a lane, when it is only transited
by human-driven vehicles, and the maximum vehicle density of the same lane, when it is only
transited by autonomous vehicles. Thus, the smaller µ, the larger the lane capacity increase
effect in a lane due to autonomous vehicles and, as µ approaches 1, autonomous vehicles will
have almost the same headway as human-driven vehicles and will barely increase the lane
capacity.

In this chapter, we will also use volume-capacity delay models, such as BPR functions [62],
in which the travel delay is a continuous and increasing function of the flow-capacity ratio
and will assume that autonomous vehicles share a uniform and fixed capacity asymmetry
degree µ on both lanes on the highway. Based on these assumptions, we can define δp to be
the effective demand for vehicles of class p ∈ P and collect them in the effective vehicle
demands vector δ ∈ R4

+:

δ := (δHV,LO, δHV,HO, δAV,LO, δAV,HO)

=

(
dHV,LO,

dHV,HO

n
, µdAV,LO, µ

dAV,HO

n

)
. (8.2)

Notice that δp describes the substantive impact of the demand of class p vehicles on the traffic
delay at the segment of highway. The ratio between the commuter and the effective vehicle
demand νp := dp

δp
for each class of vehicles p ∈ P will be denoted as the mobility degree. It

indicates the benefit that high-occupancy, autonomous driving and the combination of both
have in mitigating traffic congestion and enhancing mobility. Consequentially, we have

νHV,LO = 1 <

{
νHV,HO = n, νAV,LO =

1

µ

}
< νAV,HO =

n

µ
. (8.3)

Notice that we do not make an a-priori assumption regarding whether the mobility degree of
human driven, high occupancy vehicles is larger than that of autonomous vehicles with low
occupancy (i.e. νHV,HO > νAV,LO), or vice-versa, and will consider both cases individually.
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Autonomous vehicles with high occupancy (AV,HO) have the largest increased mobility
degree and, as a consequence, the best capability to increase the overall capacity of the
freeway segment among all four classes of vehicles because they carry multiple commuters
per vehicle and maintain a shorter headway than human-driven vehicles. Therefore, we will
allow autonomous vehicles with high occupancy (AV,HO) to transit freely (without paying
a toll) on lane 1. Moreover, since the concentration of autonomous vehicles increases safety
and makes it easier for them to form platoons, we will assume in this chapter that all
autonomous vehicles with high occupancy (AV,HO) will be exclusively routed
on lane 1. (We will discuss this assumption again in the next section and show that it is
a reasonable assumption.) The other three classes of vehicles can then choose to either pay
a toll and enter lane 1, or travel freely on lane 2. We therefore will denote

P̄ := {HV,LO;HV,HO;AV,LO} ⊂ P (8.4)

to be the set of decision making vehicles, which can either choose to travel freely in lane
2, or pay a toll to travel on lane 1. Notice that we are excluding autonomous vehicles with
high occupancy, (AV,HO), from this set, since we assume that they will always travel in lane
1.

Given lane i ∈ I, we denote fp
i as the flow of vehicles of class p ∈ P̄ on that lane. We

then define the flow distribution vector f of decision making vehicles as follows:

f := (f1, f2) ∈ R6
+,

f1 :=
(
fHV,LO
1 , fHV,HO

1 , fAV,LO
1

)
∈ R3

+, (8.5)

f2 :=
(
fHV,LO
2 , fHV,HO

2 , fAV,LO
2

)
∈ R3

+.

The elements of the flow distribution vector f must satisfy:∑
i∈I

fHV,LO
i = dHV,LO,

∑
i∈I

fHV,HO
i =

dHV,HO

n
, (8.6)∑

i∈I

fAV,LO
i = dAV,LO,

fHV,LO
i ≥ 0, fHV,HO

i ≥ 0, fAV,LO
i ≥ 0, ∀i ∈ I.

Notice that we do not treat the flow of autonomous vehicles with high occupancy as a
variable, since we are assuming that fAV,HO

1 = dAV,HO/n always. We now consider the
effective vehicle flow in each lane to account for the substantive impact of autonomous
vehicles maintaining a smaller headway than human driven vehicles on the travel delay. For
lane i ∈ I, we denote ϕi to be the effective vehicle flow on that lane, specifically, we have

ϕ1 := fHV,LO
1 + fHV,HO

1 + µfAV,LO
1 + δAV,HO,

ϕ2 := fHV,LO
2 + fHV,HO

2 + µfAV,LO
2 . (8.7)
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Naturally, we have

ϕ1 + ϕ2 =
∑
p∈P

δp. (8.8)

Also, the effective flows are bounded as follows:

ϕ1 ∈

[
δAV,HO,

∑
p∈P

δp

]
and ϕ2 ∈

[
0,
∑
p∈P

δp − δAV,HO

]
, (8.9)

where the effective vehicle demand vector δ and its components were defined in Eq.(8.2).
We assume that all vehicles behave selfishly by always choosing the lane that minimizes

their travel cost (except for autonomous high occupancy vehicles, which are all exclusively
routed on lane 1). The travel cost takes into account the travel delay and any toll expense
that exists. We first assume that a uniform toll price τ > 0 is charged to low occupancy
autonomous vehicles and all human driven vehicles that choose to travel on lane 1, while
no toll is assigned to vehicles traveling on lane 2. Thus, for lane 1, the travel cost equals
the sum of the travel delay in that lane and the toll, whereas for lane 2, the travel cost is
equal to the travel delay. For lane i ∈ I, we denote Ci as the travel cost, and Di as the
travel delay. Recall that in this chapter, we use volume-capacity delay models, such as BPR
functions [62], in which the travel delay on lane i, Di is a continuous and increasing function
of the effective vehicle flow ϕi. We then have

C1(f) = D1(ϕ1) + τ,

C2(f) = D2(ϕ2). (8.10)

Let the tuple G = (D,d, τ, n, µ) represent a segment of highway shown in Figure 8.1 with
the delay models D := (Di, i ∈ I = {1, 2}), commuter demands d, a uniform toll price τ , an
occupancy threshold n for high-occupancy vehicles and a capacity asymmetry degree µ for
autonomous vehicles. The selfish lane choice equilibrium of the three classes of vehicles can
then be modeled as a Wardrop equilibrium [45] as shown below.

Definition 10. For a segment of highway G = (D,d, τ, n, µ), a feasible flow distribution
vector f is a lane choice equilibrium if and only if for any vehicle class p ∈ P̄ , we have

fp
1 (C1(f)− C2(f)) ≤ 0, (8.11a)

fp
2 (C2(f)− C1(f)) ≤ 0. (8.11b)

The definition presents sufficient and necessary conditions for the choice equilibrium. Specif-
ically, at the choice equilibrium, if the travel cost of lane 1 is higher than the travel cost of
lane 2, then all of the three classes of vehicles would travel on lane 2; if the travel cost of
lane 1 is lower than the travel cost of lane 2, then all of the three classes of vehicles would
choose to pay the toll and travel on lane 1; if the travel cost of lane 1 is equal to the travel
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cost of lane 2, then any vehicle of the three classes of vehicles could travel either on lane 1
or on lane 2. Reasoning reversely, if any of the three classes of vehicles are on lane 1, then
the travel cost of lane 1 cannot be higher than the cost of lane 2; if any of the three classes
of vehicles are on lane 2, then the travel cost of lane 2 cannot be higher than the cost of lane
1; if the any class of vehicles use both lane 1 and lane 2, then the travel cost of lane 1 and
lane 2 must be equal.

A selfish lane choice equilibrium described in Definition 10 is usually not socially optimal.
The metric we use in this framework to evaluate the social mobility is the total delay of all
commuters, which can be calculated as follows:

J(f) =

[
fHV,LO
1 + fAV,LO

1 + n

(
fHV,HO
1 +

dAV,HO

n

)]
D1(ϕ1)

+
(
fHV,LO
2 + fAV,LO

2 + nfHV,HO
2

)
D2(ϕ2). (8.12)

8.3 Equilibrium Properties

In this section, we establish crucial properties of the resulting lane choice equilibria under
the framework described in Definition 10. According to the core theorem in [82], we give the
following proposition without proof.

Proposition 9. For a segment of highway G = (D,d, τ, n, µ), there always exists at least
one lane choice equilibrium as described in Definition 10.

The next theorem states that the resulting lane choice equilibrium is generally only unique
if at the equilibrium, all of the three classes of vehicles simultaneously choose to travel on
the same lane or there is simply one homogeneous class of vehicles making the lane choices.

Theorem 10. For a segment of highway G = (D,d, τ, n, µ), the lane choice equilibrium as
described in Definition 10 is unique if and only if at least one of the following conditions
hold:

1) τ ≥ D2

(∑
p∈P δ

p − δAV,HO
)
−D1

(
δAV,HO

)
,

2) τ ≤ D2 (0)−D1

(∑
p∈P δ

p
)
.

3) At most one class of vehicles p ∈ P̄ has a positive commuter demand, i.e., dp > 0.

Proof. The travel cost on lane 1, C1(f) is a continuous, increasing function of ϕ1, and there-
fore can be written as a function of the lane 1’s effective flow ϕ1, C1(ϕ1). Similarly, C2(f)
is a continuous, increasing function of ϕ2. According to Equation (8.8), with slight abuse
of notation, we can also treat the travel cost on lane 2, C2(f) as a continuous, decreasing
function of the lane 1’s effective flow ϕ1, written as C2(ϕ1). Three possible sketches of C1(ϕ1)
and C2(ϕ1) for ϕ1 ∈ [δAV,HO,

∑
p∈P δ

p] are shown in Figure 8.2. In case (a), C1(ϕ1) ≥ C2(ϕ1)
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(c) C1(ϕ1) ≤ C2(ϕ1), ∀ϕ1 ∈
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Figure 8.2: Possible sketches of the travel cost on both lanes. Resulting lane choice equilibria
are indicated by the green dots. Non-unique equilibria only exist in case (b).

for any possible ϕ1 ∈ [δAV,HO,
∑

p∈P δ
p], thus all of the three classes of vehicles would use lane

2, and the lane choice equilibrium is unique at f1 = (0, 0, 0). In case (c), C1(ϕ1) ≤ C2(ϕ1)
for any possible ϕ1 ∈ [δAV,HO,

∑
p∈P δ

p], thus all of the three classes of vehicles would use

lane 1, and the lane choice equilibrium is unique at f1 =
(
dHV,LO, dHV,HO

n
, dAV,LO

)
.

In case (b), the resulting lane choice equilibria are in general not unique. Possible lane
choice equilibria in case (b) that satisfy Definition 10 must satisfy

C1(ϕ
∗
1) = C2(ϕ

∗
1), (8.13)

where ϕ∗
1 ∈ (δAV,HO,

∑
p∈P δ

p) is the value of ϕ1 at the equilibria, which can be solved by
a golden-section search algorithm given the highway tuple G. Thus according to Equa-
tion (8.7), the resulting equilibria must satisfy

fHV,LO
1 + fHV,HO

1 + µfAV,LO
1 = ϕ∗

1 − δAV,HO,

fHV,LO
2 + fHV,HO

2 + µfAV,LO
2 =

∑
p∈P

δp − ϕ∗
1. (8.14)

All resulting equilibria should also satisfy the feasibility conditions. Therefore, the resulting
equilibria lie in a simplex S ⊂ R6

+ which can be characterized as

S := {f ∈ R6
+ : f satisfies (8.14) and (8.6)}. (8.15)

If there are at least two classes of vehicles p ∈ P̄ that possess a positive commuter demand,
i.e., dp > 0, S contains at least two distinct equilibria.
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As described in the proof of Theorem 10, for a segment of highway G = (D,d, τ, n, µ),
the resulting lane choice equilibrium is generally only unique if the toll is either too large or
too small so that all three classes of vehicles (HV,LO/HV,HO/AV,LO) choose the same lane.
Otherwise, we can characterize the lane choice equilibria by the simplex S in Equation (8.15),
and notice that the simplex S can be fully characterized by the highway segment tuple G.

However, the total commuter delay at the equilibrium can be ambiguous if there are
multiple equilibria. Therefore, in this chapter, we mainly study the multiple equilibria in
the simplex S and in the following theorem we will characterize the multiple equilibria in
the simplex S that respectively yield the largest and lowest total commuter delays. This will
be helpful for future analysis. Also notice that, at the equilibria in the simplex S, according
to Equation (8.13), where τ > 0, the travel delay on lane 1 is strictly smaller than the travel
delay on lane 2. Therefore, all AV,HOs will naturally accumulate on lane 1 even if we don’t
deliberately route them.

Theorem 11. For a segment of highway G = (D,d, τ, n, µ) with non-unique lane choice
equilibria as described in Definition 10, let f+ ∈ S be the worst-case equilibrium with the
highest total commuter delay, i.e.,

J (f) ≤ J
(
f+
)
, ∀f ∈ S, (8.16)

and let f− ∈ S be the best-case equilibrium with the lowest total commuter delay, i.e.,

J (f) ≥ J
(
f−
)
, ∀f ∈ S, (8.17)

where f , as defined in Eq. (8.5), is any equilibrium flow, J (f) is given by Eq. (8.12) and the
simplex S is defined in Eq. (8.15).

1) If n > 1
µ
, i.e., the required number of passengers for a vehicle to qualify as high-occupancy

is larger than the inverse of the capacity asymmetry degree of autonomous vehicles
and, as a consequence, human-driven vehicles with high-occupancy (HV,HO) have a
larger mobility degree than autonomous vehicles with low occupancy (AV,LO), i.e.,
νHV,HO > νAV,LO, we have

f+1 =

(
max
f∈S

fHV,LO
1 , min

f∈S
fHV,HO
1 , ∗

)
, (8.18a)

f−1 =

(
min
f∈S

fHV,LO
1 , max

f∈S
fHV,HO
1 , ∗

)
. (8.18b)

2) Conversely, if n < 1
µ
and, as a consequence, νHV,HO < νAV,LO, we have

f+1 =

(
max
f∈S

fHV,LO
1 , ∗, min

f∈S
fAV,LO
1

)
, (8.19a)

f−1 =

(
min
f∈S

fHV,LO
1 , ∗, max

f∈S
fAV,LO
1

)
. (8.19b)



CHAPTER 8. A UNIFIED FRAMEWORK FOR DESIGNING TOLLS ON
FREEWAYS WITH AUTONOMOUS AND HIGH-OCCUPANCY VEHICLES 89

3) Finally, if n = 1
µ
and, as a consequence, νHV,HO = νAV,LO, we have

f+1 =

(
max
f∈S

fHV,LO
1 , ∗, ∗

)
, (8.20a)

f−1 =

(
min
f∈S

fHV,LO
1 , ∗, ∗

)
. (8.20b)

Notice that ∗ in the above equations indicates that the quantity can be any value that
fulfills that f+ ∈ S and f− ∈ S, where S is defined in Eq. (8.15).

Theorem 11 explicitly compares the capabilities of AV,LO and HV,HO to decrease the
total commuter delay. When νHV,HO > νAV,LO, HV,HO are more capable than AV,LO
in decreasing total commuter delay. Therefore, among the multiple equilibria, the best-
case equilibrium that minimizes the total commuter delay happens when we prioritize high-
occupancy vehicles instead of autonomous vehicles on the toll lane 1. Conversely, when
νHV,HO < νAV,LO, HV,HO are less capable than AV,LO in decreasing total commuter delay,
and therefore, among the multiple equilibria, the best-case equilibrium that minimizes total
commuter delay happens when we prioritize autonomous vehicles with low occupancy instead
of high-occupancy vehicles on the toll lane 1. In all cases, the vehicles that take the most
space per commuter are HV,LO, whch have the smallest mobility degree νHV,LO = 1. Thus
the worst-case equilibria that maximize total commuter delay happen when we prioritize
HV,LO on toll lane 1.

Proof. We will only provide a detailed derivation for f+ in Eq. (8.18a), when n > 1
µ
. Similar

calculations can be used to prove the other results in the theorem, and are omitted due to
space constraints.

Assume that n > 1
µ
, f = (f1, f2) ∈ S, f+ =

(
f+1 , f

+
2

)
∈ S and f ̸= f+. Let

f+1 =

(
max
f∈S

fHV,LO
1 , min

f∈S
fHV,HO
1 , f+AV,LO

1

)
and f+2 =

(
f+HV,LO
2 , f+HV,HO

2 , f+AV,LO
2

)
.

From Eq. (8.12) we have

J(f)− J(f+) =
[
fHV,LO
1 + fAV,LO

1 + nfHV,HO
1

]
D1(ϕ

∗
1) +

(
fHV,LO
2 + fAV,LO

2 + nfHV,HO
2

)
D2(ϕ

∗
2)

−
[
max
f∈S

fHV,LO
1 + f+AV,LO

1 + nmin
f∈S

fHV,HO
1

]
D1(ϕ

∗
1)

−
(
f+HV,LO
2 + f+AV,LO

2 + nf+HV,HO
2

)
D2(ϕ

∗
2). (8.21)

Since both f and f+ satisfy Equation (8.14), we have

fAV,LO
1 − f+AV,LO

1 =
1

µ

[(
max
f∈S

fHV,LO
1 − fHV,LO

1

)
+

(
min
f∈S

fHV,HO
1 − fHV,HO

1

)]
,

fAV,LO
2 − f+AV,LO

2 =
1

µ

[(
f+HV,LO
2 − fHV,LO

2

)
+
(
f+HV,HO
2 − fHV,HO

2

)]
.
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Furthermore, from Eqs. (8.6), we have

fHV,LO
2 − f+HV,LO

2 = max
f∈S

fHV,LO
1 − fHV,LO

1 ,

fHV,HO
2 − f+HV,HO

2 = min
f∈S

fHV,HO
1 − fHV,HO

1 .

Therefore,

J (f)− J
(
f+
)

=

[
fHV,LO
1 −max

f∈S
fHV,LO
1 − 1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
D1 (ϕ

∗
1)

−
[
fHV,LO
1 −max

f∈S
fHV,LO
1 − 1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
D2

(∑
p∈P

δp − ϕ∗
1

)
(8.22)

=

[
fHV,LO
1 −max

f∈S
fHV,LO
1 − 1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)](
D1 (ϕ

∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

))
(8.23)

=

[(
1− 1

µ

)(
fHV,LO
1 −max

f∈S
fHV,LO
1

)
+

(
n− 1

µ

)(
fHV,HO
1 −min

f∈S
fHV,HO
1

)](
D1 (ϕ

∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

))
. (8.24)

According to Equation (8.13), we have

D1 (ϕ
∗
1) + τ = D2

(∑
p∈P

δp − ϕ∗
1

)
.

Since τ > 0, we have

D1 (ϕ
∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

)
< 0. (8.25)

Also, according to the conditions of the theorem, we have 1 − 1
µ
< 0, n − 1

µ
> 0, fHV,LO

1 −
max
f∈S

fHV,LO
1 ≤ 0 and fHV,HO

1 −min
f∈S

fHV,HO
1 ≥ 0. Therefore, we can conclude that

J (f)− J
(
f+
)
≤ 0.
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To complete the proof, we have to also show that f+ ∈ S exists. To show this, we prove
that there exists some flow f+AV,LO

1 that both satisfies condition (8.14) and (8.6), i.e., there
exists some flow f+AV,LO

1 that satisfies

max
f∈S

fHV,LO
1 +min

f∈S
fHV,HO
1 + µf+AV,LO

1 = ϕ∗
1 − δAV,HO, (8.26)

0 ≤ f+AV,LO
1 ≤ dAV,LO. (8.27)

Equivalently, we want to show that

0 ≤ ϕ∗
1 − δAV,HO −max

f∈S
fHV,LO
1 −min

f∈S
fHV,HO
1 ≤ µdAV,LO. (8.28)

We first prove the left-side inequality of Eq. (8.28). Let f̃HV,HO
1 be any flow of human-driven

vehicles with high occupancy on lane 1 at any f ∈ S given that the flow of human-driven
vehicles with low occupancy on lane 1 equals max

f∈S
fHV,LO
1 . According to Equation (8.14), we

must have

f̃HV,HO
1 ≤ ϕ∗

1 − δAV,HO −max
f∈S

fHV,LO
1 . (8.29)

Due to min
f∈S

fHV,HO
1 ≤ f̃HV,HO

1 , we have

min
f∈S

fHV,HO
1 ≤ ϕ∗

1 − δAV,HO −max
f∈S

fHV,LO
1 , (8.30)

which proves the left-side inequality of Eq. (8.28).
We now prove the right-side inequality. Let f̃HV,LO

1 be any flow of human-driven vehicles
with low occupancy on lane 1, at any f ∈ S, when the flow of human-driven vehicles with
high occupancy on lane 1 equals min

f∈S
fHV,HO
1 . According to Equation (8.14), we must have

ϕ∗
1 − δAV,HO −min

f∈S
fHV,HO
1 = f̃HV,LO

1 + µf+AV,LO
1 . (8.31)

Since f̃HV,LO
1 + µf+AV,LO

1 ≤ max
f∈S

fHV,LO
1 + µdAV,LO, we have

ϕ∗
1 − δAV,HO −min

f∈S
fHV,HO
1 ≤ max

f∈S
fHV,LO
1 + µdAV,LO, (8.32)

which proves the right-side inequality of Eq. (8.28). Thus the proof is complete.

Theorem 10 provides the conditions under which there is a unique equilibrium, while
Theorem 11 allows us to determine the best and worst case equilibria, in terms of the total
commuter delay, when the conditions in Theorem 10 do not hold.
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Example 2. We now provide a numerical example to illustrate how the results of theorems
10 and 11 can be used to characterize worst and best cases of the total commuter delay,
J(f) in Eq. (8.12), when a uniform toll is imposed on all vehicles traveling on lane 1, except
for autonomous vehicles with high occupancy (AV,HO). Let d = {dAV,HO = 4, dAV,LO =
3, dHV,HO = 4, dHV,LO = 5} (in unit of passengers/minute). Assume the delay functions as
BPR functions [62] in the form:

Di(ϕi) = θi + γi

(
ϕi

mi

)βi

, ∀i ∈ I, (8.33)

with parameters D = {θi = 3(in minutes), γi = 1, βi = 1, mi = 10(in vehicles/minute) :
i ∈ I = {1, 2}}. When {n = 4, µ = 0.5}, the lane choice equilibrium always exists and is
unique when τ ≥ 0.7. Setting τ = 0.5, the resulting equilibria form a simplex. The best-case

equilibrium in terms of the total commuter delay is
(
fHV,LO
1 = 0, fHV,HO

1 = 1, fAV,LO
1 = 0

)
,

and the worst equilibrium lies at
(
fHV,LO
1 = 1, fHV,HO

1 = 0, fAV,LO
1 = 0

)
. When {n =

2, µ = 0.4}, the equilibrium is unique when τ ≥ 0.74. Setting τ = 0.5, we have the

best equilibrium at
(
fHV,LO
1 = 0, fHV,HO

1 = 0, fAV,LO
1 = 3

)
, and the worst equilibrium at(

fHV,LO
1 = 1.2, fHV,HO

1 = 0, fAV,LO
1 = 0

)
. All the vehicle flows are in unit of vehicles/minute.

Notice that in order to mimic the real world scenario, the demands and delay parameters
come with certain units, however, the validity of the examples are independent of the units
of choice.

8.4 Design Applications

In this section, we explore and present several fields of application where the toll lane frame-
work can be employed to facilitate the decision and optimization process such as to find
the optimal toll/occupancy threshold/lane policy that minimizes the total commuter delay
under a mixed autonomy.

Determining an appropriate uniform toll τ

One important transportation policy problem is to determine an appropriate toll, which
ideally induces the Wardrop equilibrium to approximate a socially optimal one. The opti-
mization problem can be formulated as

min
τ≥0

J(f)

subject to Conditions (8.6)− (8.11).

Usually, these type of optimization problems with equilibrium conditions are difficult to solve.
However, with the characterization of the equilibria in section 8.3, we propose a simple but
effective algorithm to find the optimal toll that minimizes the total commuter delay.
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At each toll value, according to Theorem 10, the equilibrium is either unique or in the
simplex S in Eq. (8.15). The simplex is fully characterized by solving the single variable
equation (8.13). Moreover, according to Theorem 11, the best and worst case equilibria,
in terms of the total delay, can be easily selected from the contour of S. Therefore, at
each toll value, the total delay or the best/worst case total delays can be obtained and the
toll optimization problem becomes a one dimensional search problem, which can be readily
solved by well established algorithms such as golden section search.
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Figure 8.3: The best/worst-case total commuter delay versus different toll values, when a
uniform toll is imposed on all vehicles traveling on lane 1, except for autonomous vehicles
with high occupancy (AV,HO) (Examples 2 and 3).

Example 3. Consider again the numerical example described in Example 2 where {n =
4, µ = 0.5}. The plot of the best/worst case total delay at different toll values is shown in
Figure 8.3. As shown in the figure, the worst case total delay increases as the toll increases
until the equilibrium becomes unique when τ ≥ 0.7. In contrast, the best case total delay
first decreases with the increasing toll until it reaches a global minimum at τ = 0.25, and
then increases. We may choose the toll to be τ = 0 to minimize the worst case total delay
or we may choose the toll to be around τ = 0.25 to minimize the best case total delay.

Determining the HOV passenger occupancy threshold n

Another interesting problem is to determine the passenger occupancy threshold n, at which a
vehicle is considered a high occupancy vehicle (HOV). Given fixed total commuter demands,
policy designers may want to set the value of n to be as high as possible to encourage a
higher occupancy of vehicles. However, requiring occupancy level higher than n = 2, tends
to disincentivize commuters from carpooling. To study this trade-off, in this section, we
assume that the demand of commuters that take human-driven or autonomous vehicles are
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fixed, and are respectively denoted by dHV and dAV. We also assume that, for an occupancy
threshold n ≥ 2, the probability of a commuter to carpool, u(n) ∈ [0, 1], is the same for
human-driven and autonomous vehicles, and u(·) is a non-increasing function. Thus, we
have

dHV,HO = dHVu(n) and dHV,LO = dHV(1− u(n)),

dAV,HO = dAVu(n) and dAV,LO = dAV(1− u(n)). (8.34)

To find the optimal passenger occupancy threshold n, we need to solve the optimization
problem:

min
n≥2

J(f)

subject to Conditions (8.6)− (8.11) and (8.34).

Similar to the toll design problem, we propose a simple solution algorithm with no convexity
requirements on the delay functions. At each value of n, we either obtain the unique total
delay for pure strategy equilibrium or, conversely, we obtain the best/worst case total delays,
by utilizing Theorems 10 an 11. Thus, the passenger occupancy threshold optimization
problem becomes a one-dimensional search, which can be solved by algorithms such as golden
section search. Notice that the proposed approach can be used with any candidate range of
n values, including a set of discrete integer values.

Example 4. We employ the following numerical example to illustrate the proposed passenger
occupancy threshold optimization approach. Let {dAV = 7, dHV = 9, µ = 0.5, τ = 0.5}.
Assume that the delay functions are given by the BPR function in Eq. (8.33), with parameters
D = {θi = 3, γi = 1, βi = 1, mi = 10 : i ∈ I}. We assume that the probability of a
commuter to carpool is given by u(n) = 1

n
for any n ∈ [2, 4]. The corresponding best/worst

case total delay estimates for each value of n is shown in Figure 8.4. For this example,
increasing the HOV occupancy threshold n does not significantly decrease the best case
total commuter delay, whereas the worst case total commuter delay increases evidently.

Comparing the use of lanes reserved for high-occupancy vehicles
with lanes reserved for autonomous vehicles

Currently many transit agencies have policies that allow high-occupancy vehicles (HOV) to
travel freely on a dedicated HOV lane, while allowing other vehicles to travel on the HOV
lane by paying a toll (henceforth referred to as the dedicated HOV lane (DHOVL) policy).
With the upcoming deployment of autonomous and connected driving technologies that
enable autonomous vehicles to transit with increased vehicle densities, it is interesting to
compare the mobility efficiency gains that result from utilizing a dedicated HOV lane policy
as opposed to using that lane to allow autonomous vehicles to transit freely on a dedicated
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Figure 8.4: The best/worst case total commuter delay versus different values of the HOV
occupancy threshold n in Example 4.

lane while charging a toll to other vehicles traveling in that lane (henceforth referred to as
the dedicated autonomous vehicle lane (DAVL) policy). We can perform this comparison
easily within the modeling framework proposed in the previous section.

The DHOVL policy can be modeled within our framework by setting all HOV flow to
be in lane 1. Since we assume by default that all autonomous high occupancy vehicles are
traveling on lane 1, we simply need to further set fHV,HO

1 = dHV,HO

n
.

Conversely, the DAVL policy can be modeled within our framework by setting fAV,LO
1 =

dAV,LO and allowing the two human-driven vehicle classes (low occupancy and high occu-
pancy) to make lane choices regarding which lane to travel. (Again, the implicit assumption
is that toll lane 1 is capable enough to accommodate the prioritized vehicles free of toll, i.e.,
at least one of the tolled classes of vehicles pays a toll to join lane 1.) The properties of
the resulting equilibria for either policy can be investigated using the results of theorems 10
and 11.

Example 5. Here we compare the DHOVL and the DAVL policies. Let {dAV,HO = 4, dAV,LO =
3, dHV,HO = 4, dHV,LO = 5, n = 4, µ = 0.5}. Assume the delay functions as BPR functions
with parameters D = {θi = 3, γi = 1, βi = 1, mi = 10 : i ∈ I}. The best/worst case
total commuter delay for each of the two policies is shown in Figure 8.5. For this highway
configuration and any toll value, the dedicated HOV lane (DHOVL) policy outperforms the
dedicated autonomous vehicle lane (DAVL) policy.

8.5 Differentiated Tolling

In this section we consider the scenario where each of the three tolled classes of vehicles
is assigned with a distinct value of toll. We define the heterogeneous toll vector τ ∈ R3

+
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Figure 8.5: The best/worst case commuter total delay versus toll under the dedicated au-
tonomous vehicle lane (DAVL) policy, or the dedicated HOV lane (DHOVL) policy in Ex-
ample 5.

containing the tolls for the three tolled classes of vehicles as

τ :=
(
τHV,LO, τHV,HO, τAV,LO

)
, (8.35)

where for any class of vehicles p ∈ P̄ , τ p > 0, and for p ̸= q ∈ P̄ , τ p ̸= τ q.
Correspondingly, we let J(τ) be the total commuter delay under the heterogeneous toll

vector τ . Let Cp
1 be the travel cost for vehicles of class p ∈ P̄ on lane 1. Thus we have

Cp
1 (f) = D1(ϕ1) + τ p, p ∈ P̄ . (8.36)

The travel cost for vehicles on lane 2 remains unchanged:

C2(f) = D2(ϕ2). (8.37)

Therefore, the lane choice equilibrium of the three classes of vehicles with differentiated tolls
can then be modeled as a Wardrop equilibrium as follows.

Definition 11. For a segment of highway G = (D,d, τ, n, µ) with differentiated tolls defined
in Eq. (8.35), a feasible flow distribution vector f is a lane choice equilibrium if and only if,
for all vehicles of class p ∈ P̄ ,

fp
1 (C

p
1 (f)− C2(f)) ≤ 0,

fp
2 (C2(f)− Cp

1 (f)) ≤ 0. (8.38)

When tolls are heterogeneous, the toll optimization problem as described in Section 8.4
is a nontrivial bi-level multi-dimensional optimization problem with equilibrium constraints,
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which may potentially be solved by iterative optimization algorithms. However, iterative
algorithms may take a long time to converge and for non-convex delay configurations, the
convergence is not guaranteed. Therefore, we propose the following approach to effectively
decrease the total commuter delay using differentiated tolling: first, assume uniform tolling
and find the optimal uniform toll which produces the smallest best case total commuter delay
according to the method described in Section 8.4. Subsequently, if the optimal uniform toll
is non-zero and there are multiple equilibria, determine the heterogeneous toll vector that
will induce the best case equilibrium under the optimal uniform toll. Specifically, we can
determine the required heterogeneous toll vector τ in Eq. (8.35) according to the following
proposition.

Proposition 10. For a segment of highway G = (D,d, τ ∗, n, µ), where τ ∗ > 0 is a prede-
termined optimal uniform toll that induces non-unique equilibria and let ϕ∗

1 be the effective
vehicle flow in lane 1 at the equilibria. Let J∗(τ ∗) be the best total commuter delay under
the uniform toll τ ∗. Further, let τ− > 0 be any toll value satisfying τ− < τ ∗ and τ+ > 0 be
any toll value satisfying τ+ > τ ∗. Then, an heterogeneous toll vector τ in Eq. (8.35) can be
determined as follows that results in J (τ) = J∗ (τ ∗):

1) If n ≤ 1
µ
, i.e., the required number of passengers for a vehicle to qualify as high-occupancy

is smaller than the inverse of the capacity asymmetry degree of autonomous vehicles
and, as a consequence, human-driven vehicles with high-occupancy (HV,HO) have a
smaller mobility degree than autonomous vehicles with low occupancy (AV,LO), i.e.,
νHV,HO < νAV,LO,

a) if ϕ∗
1 ≤ δAV,LO + δAV,HO, then set τ = (τ+, τ+, τ

∗) ,

b) if δAV,LO + δAV,HO < ϕ∗
1 ≤ δHV,HO + δAV,LO + δAV,HO, then set τ = (τ+, τ

∗, τ−),

c) if ϕ∗
1 > δHV,HO + δAV,LO + δAV,HO, then set τ = (τ ∗, τ−, τ−).

2) Conversely, if n > 1
µ
, and as a consequence, νHV,HO > νAV,LO,

a) if ϕ∗
1 ≤ δHV,HO + δAV,HO, then set τ = (τ+, τ

∗, τ+),

b) if δHV,HO + δAV,HO < ϕ∗
1 ≤ δAV,LO + δHV,HO + δAV,HO, then set τ = (τ+, τ−, τ

∗),

c) if ϕ∗
1 > δAV,LO + δHV,HO + δAV,HO, then set τ = (τ ∗, τ−, τ−).
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The general idea of this toll design proposition is to first identify the best equilibrium
among all equilibria under a homogeneous toll, and then assign the optimal homogeneous
toll τ ∗ to the vehicle class that uses both lanes under the best equilibrium, a toll higher than
τ ∗ to the vehicle classes with a smaller mobility degree, and a toll lower than τ ∗ to vehicle
classes with a larger mobility degree. We present a sketch of the proof below.

Proof. We give the detailed explanation for the first sub-case a) when n ≤ 1
µ
. According to

Theorem 11, when n ≤ 1
µ
and consequently all autonomous vehicles, including those with

low occupancy, have a higher mobility degree than high occupancy human-driven vehicles,
i.e. νAV,LO > νHV,HO, we should first prioritize autonomous vehicles with low occupancy on
lane 1. When ϕ∗

1 ≤ δAV,LO + δAV,HO, the best equilibrium under the optimal uniform toll

would be f1 = (0, 0,
ϕ∗
1−δAV,HO

µ
). One can check that f1 = (0, 0,

ϕ∗
1−δAV,HO

µ
) is an equilibrium

and is the only equilibrium that fulfills Definition 11 when tolls are selected as τ . The proofs
for the other cases follow a similar logic and are thus omitted.

8.6 Effect of Vehicle Misbehavior

According to the previous section, the total commuter delay in a freeway segment can be sig-
nificantly decreased by setting differentiated tolls for distinct classes of vehicles if they choose
to enter the toll lane. However, the effectiveness of differentiated tolls may be undermined in
real world scenarios because of deliberate vehicle misbehavior (i.e. toll cheating). For exam-
ple, many toll-collection agencies determine whether a vehicle is either a high-occupancy or
a low-occupancy vehicle via the signal transmitted by the toll collection transponder in the
vehicle, which is often set by commuters themselves. Since toll-collecting agencies will not
always validate the occupancy signals that they receive from vehicle transponders and may
not consistently enforce fines to violating vehicles, some low-occupancy vehicles may decide
to deceitfully send a high-occupancy transponder signal and enter the toll lane while paying
the lower toll designed for high-occupancy vehicles. In this section, we will explore the im-
pact of such misbehavior on the overall transportation system. Without loss of generality,
we assume that misbehavior may take place among all classes of vehicles except autonomous
vehicles with high occupancy (AV,HO), which are allowed to travel freely on the toll lane.

We will still consider inelastic commuter demands dp and corresponding effective demand
δp for every class of vehicles p ∈ P . As in the previous section, we allow autonomous vehicles
with high occupancy (AV,HO) to travel on the toll lane freely whereas differentiated nonzero
tolls τ as defined in (8.35) are charged to the other three classes of vehicles.

Let us now consider the possibility that a portion of misbehaving human-driven or
low-occupancy autonomous vehicles may decide to travel on lane 1, without paying their
prescribed toll. Denoting 0 ≤ αp

m ≤ 1 as the proportion of misbehaving vehicles of class
p ∈ P̄ , we define the misbehaving proportion vector αm ∈ R3

+ as

αm :=
(
αHV,LO
m , αHV,HO

m , αAV,LO
m

)
. (8.39)
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These portions of misbehaving vehicles choose to travel on lane 1, without paying their
assigned toll, at the risk of being caught by law enforcement and paying a fine.

Considering misbehaving vehicles, a feasible and meaningful flow distribution vector of

honest vehicles f̂ :=
(
f̂1, f̂2

)
∈ R6

+ , where f̂i :=
(
f̂HV,LO
i , f̂HV,HO

i , f̂AV,LO
i

)
∈ R3

+ for lane

i ∈ I, must satisfy ∑
i∈I

f̂HV,LO
i = dHV,LO(1− αHV,LO

m ),

∑
i∈I

f̂HV,HO
i =

dHV,HO

n
(1− αHV,HO

m ), (8.40)∑
i∈I

f̂AV,LO
i = dAV,LO(1− αAV,LO

m ),

f̂p
i ≥ 0, ∀p ∈ P̄ .

We also define ϕ̂i as the effective vehicle flow on lane i ∈ I, accounting for misbehaving
vehicles:

ϕ̂1 := f̂HV,LO
1 + f̂HV,HO

1 + µf̂AV,LO
1 + δAV,HO +

∑
p∈P̄

δpαp
m, (8.41)

ϕ̂2 := f̂HV,LO
2 + f̂HV,HO

2 + µf̂AV,LO
2 ,

where we remind the reader that δp is the effective inelastic demand of vehicles of class
p ∈ P , as defined in Eq. (8.2). The travel delays Di for lane i ∈ I, is then a continuous

and increasing function of ϕ̂i, where we have ϕ̂1 ∈
[
δAV,HO +

∑
p∈P̄ δ

pαp
m,
∑

p∈P δ
p
]
, and

ϕ̂2 ∈
[
0,
∑

p∈P̄ δ
p(1− αp

m)
]
, where

∑
p∈P̄ δ

pαp
m is the effective total demand of misbehaving

vehicles.
As in the previous section, let τ be the vector of differentiated tolls, as defined in Eq.

(8.35). Therefore, the travel cost experienced by honest vehicles, respectively traveling on
lane 1 and 2 is given by

Cp
1 (f̂) = D1(ϕ̂1) + τ p, (8.42)

C2(f̂) = D2(ϕ̂2). (8.43)

Let the tuple Ĝ = (D,d, τ, n, µ,αm) represent a segment of highway shown in Figure 8.1
with the delay models D, commuter demands d, toll prices τ , an occupancy threshold n
for high-occupancy vehicles, a capacity asymmetry degree µ for autonomous vehicles and
misbehavior proportions αm. The lane choice equilibrium for honest vehicles can be modeled
by the following conditions.
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Definition 12. For a segment of highway Ĝ = (D,d, τ, n, µ,αm) with differentiated tolls
and misbehaving vehicles, a feasible honest vehicle flow distribution vector f̂ is a lane choice
equilibrium if and only if, for any vehicle class p ∈ P̄ , we have

f̂p
1 (C

p
1 (f̂)− C2(f̂)) ≤ 0, (8.44)

f̂p
2 (C2(f̂)− Cp

1 (f̂)) ≤ 0.

The total delay experienced by all commuters at a lane choice equilibrium f̂ can be calculated
as

J(f̂) =
(
f̂HV,LO
2 + f̂AV,LO

2 + nf̂HV,HO
2

)
D2(ϕ̂2) +

[
f̂HV,LO
1 + f̂AV,LO

1 + dHV,LOαHV,LO
m

+dAV,LOαAV,LO
m + n

(
f̂HV,HO
1 +

dHV,HO

n
αHV,HO
m +

dAV,HO

n

)]
D1(ϕ̂1). (8.45)

Notice that, in the extreme case where there exists no vehicle misbehavior, i.e. αp
m = 0 for

all p ∈ P̄ , the lane choice equilibrium in Definition 12 will be the same as the lane choice
equilibrium in Definition 11.

We intuitively expect that misbehavior of vehicles may deteriorate the traffic condition on
the toll lane 1 since excessive demands of vehicles join lane 1. Furthermore, such misbehavior
of vehicles may harm the traffic conditions of the whole transportation system. However,
does such misbehavior actually always harm the traffic conditions? We will first discuss the
impact of vehicle misbehavior on lane delays via the following theorem:

Theorem 12. Consider a segment of highway Ĝ = (D,d, τ, n, µ,αm) with differentiated
tolls as given by Eq. (8.35), and proportions of misbehaving vehicles given by Eq. (8.39).
The lane delays at the lane choice equilibrium f̂ , as described in Definition 12, will remain
the same as the lane delays of the lane choice equilibrium f without any vehicle misbehavior
as described in Definition 11, if the following two conditions hold:

1) At the lane choice equilibrium f without any vehicle misbehavior, there exists a class of
vehicles g ∈ P̄ that travel on both lanes, i.e., vehicles of class g experience the same
travel cost on toll lane 1 and the regular lane 2. As a consequence, at the lane choice
equilibrium f , the effective total vehicle flow ϕ∗

1 can be determined by the following
equation:

D1(ϕ
∗
1) + τ g = D2

(∑
p∈P

δp − ϕ∗
1

)
, (8.46)

where τ g is vehicle class g’s assigned toll.

2) Misbehaving vehicle proportions αm satisfy∑
p∈P̄\Qg

−

δpαp
m ≤ ϕ∗

1 − δAV,HO −
∑
q∈Qg

−

δq, (8.47)
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where the set Qg
− ⊂ P̄ contains all vehicle classes assigned a nonzero toll smaller than

τ g, and P̄ \ Qg
− ⊂ P̄ contains all vehicle classes with a toll larger than or equal to τ g.

The above theorem describes the conditions under which lane delays are unaffected by
vehicle misbehavior, as long as the number of misbehaving vehicles remains sufficiently small.
The underlying reason for the robustness is that, as the number of misbehaving vehicles
entering toll lane 1 increases, honest vehicles will sense the potentially increased congestion
in that lane, and will choose to travel on lane 2 instead. Thus, the selfish lane choices of
all vehicles counter-intuitively are able to tolerate a certain amount of vehicle misbehavior,
mitigating its resulting negative impact on lane delays.

Proof. We prove by contradiction that, under conditions (8.46) and (8.47), the effective total
flow on lane 1 remains the same, i.e., ϕ̂1 = ϕ∗

1 and as a consequence, the lane delays remain
the same.

Assume first that ϕ̂1 > ϕ∗
1. Since Cg

1 (ϕ1) are increasing functions of ϕ1 and Cg
2 (ϕ1) are

decreasing functions of ϕ1, we conclude that it must be the case that Cg
1 (ϕ̂1) > Cg

1 (ϕ
∗
1) and

Cg
2 (ϕ̂1) < Cg

2 (ϕ
∗
1). According to condition (8.46), since Cg

2 (ϕ̂1) < Cg
1 (ϕ̂1), all class g vehicles

must be traveling on lane 2. Correspondingly, all the other classes of vehicles, which are not
misbehaving and whose assigned toll on lane 1 is larger than or equal to the toll assigned to
vehicles of class g, must also be traveling on lane 2. Therefore, at the equilibrium f̂ described
by Eq. (8.44), we have

ϕ̂1 ≤
∑

p∈P̄\Qg
−

δpαp
m + δAV,HO +

∑
q∈Qg

−

δq, (8.48)

since some vehicles belonging to Qg
− could also be traveling on lane 2. However, due to

condition (8.47), (8.48) implies that ϕ̂1 ≤ ϕ∗
1, which contradicts our assumption.

Assume now that ϕ̂1 < ϕ∗
1 and, as a consequence, Cg

1 (ϕ̂1) < Cg
1 (ϕ

∗
1) and C

g
2 (ϕ̂1) > Cg

2 (ϕ
∗
1).

According to condition (8.46), we have Cg
2 (ϕ̂1) > Cg

1 (ϕ̂1). Thus, all honest vehicles of class
g must be traveling on lane 1. Correspondingly, all the other honest vehicles whose toll is
smaller than τ g, the toll assigned to vehicles of class g, must also be traveling on lane 1.
Therefore, at the equilibrium f̂ , we have

ϕ̂1 ≥ δAV,HO +
∑
q∈Qg

−

δq(1− αq
m) +

∑
q∈Qg

−

δqαq
m + δg(1− αg

m) + δgαg
m, (8.49)

since there are cheating vehicles belonging to the other classes traveling on lane 1. However,
at equilibrium f described in (8.44) when there are no misbehaving vehicles, we have

ϕ∗
1 ≤ δAV,HO +

∑
q∈Qg

−

δq + δg, (8.50)

since vehicles of class g are traveling on both lanes. Therefore, it must be the case that
ϕ̂1 ≥ ϕ∗

1, which contradicts our assumption. This proves that, Under conditions (8.46)
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and (8.47), the effective total flow on lane 1 remains the same, i.e., ϕ̂1 = ϕ∗
1, and the lane

delays remain the same.

In spite of the fact that, under the conditions of Theorem 12, lane delays remain un-
changed under moderate vehicle cheating, the total commuter delay may still vary. This
result is formalized in the next theorem.

Theorem 13. Consider a highway segment Ĝ = (D,d, τ, n, µ,αm) outlined in Theorem 12.
Let Qg

+ ⊂ P̄ be the set that contains all vehicle classes with an assigned nonzero toll that is
higher than τ g and let M := {p ⊆ P̄ : αp

m > 0} be the set that contains the vehicle classes in
which misbehaving occurs.

Assuming that conditions 1) and 2) in Theorem 12 hold,

a) if Qg
+ ∩M = ∅, then the total commuter delay of the lane choice equilibrium f̂ described

in Definition 12, which results as a consequence of vehicle misbehavior, is larger than
the total commuter delay of the lane choice equilibrium f , which occurs without any
vehicle misbehavior as described in Definition 11, i.e.,

J(f̂) = J(f). (8.51)

b) if Qg
+ ∩M ≠ ∅ and every vehicle class s ∈ Qg

+ ∩M has a mobility degree νs < νg, then

J(f̂) > J(f). (8.52)

c) if Qg
+ ∩M ≠ ∅ and every vehicle class s ∈ Qg

+ ∩M has a mobility degree νs > νg, then

J(f̂) < J(f). (8.53)

Condition a) in Theorem 13 emphasizes that the total commuter delay is not affected by
vehicle misbehavior if there are no cheating vehicles with an assigned toll that is higher than
τ g. The reader is reminded that vehicles belonging to class g experience the same travel cost
whether they travel on toll lane 1 or on the regular lane 2, under the lane choice equilibrium
f , which occurs under no vehicle misbehavior, as described in Condition 1) in Theorem 12.

Condition b) in Theorem 13 corresponds to the situation when tolls are applied rationally.
It is rational to assign a larger toll than τ g to a vehicle class that has a mobility degree that is
lower than the mobility degree of class g vehicles. Under rational tolling, the total commuter
delay deteriorates with vehicle misbehavior, even if the amount of misbehavior is moderate
as described in Eq. (8.47) in Theorem 12.

Proof. By Theorem 12 and its proof, the lane delays that result under a lane choice equi-
librium f̂ (with vehicle misbehavior) will remain the same as the lane delays that result
under the lane choice equilibrium f (without vehicle misbehavior). Specifically, for any lane
i ∈ I = {1, 2}, we have

ϕ∗
i = ϕ̂i and Di (ϕ

∗
i ) = Di

(
ϕ̂i

)
,
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where ϕ̂i is the effective total flow on lane i at the lane choice equilibrium f̂ with vehicle

misbehavior. Therefore, we have D1

(
ϕ̂1

)
+τ g = D2

(
ϕ̂2

)
, which implies that class g vehicles

may possibly occupy both lanes, while vehicles that are charged a toll lower than τ g will
choose to travel on lane 1, and honest vehicles that are charged with a toll larger than τ g

will choose to travel on lane 2.
From Eqs. (8.12) and (8.45) we have

J (f)− J
(
f̂
)
=

∑
q∈Qg

−

dq + nf g
1 + dAV,HO

D1 (ϕ
∗
1) +

∑
q∈Qg

+

dq + nf g
2

D2

(∑
p∈P

δp − ϕ∗
1

)

−

 ∑
s∈M∩Qg

+

αs
md

s +
∑
q∈Qg

−

dq + αg
md

g + nf̂ g
1 + dAV,HO

D1 (ϕ
∗
1)

+

∑
q∈Qg

+

dq −
∑

s∈M∩Qg
+

αs
md

s + nf̂ g
2

D2

(∑
p∈P

δp − ϕ∗
1

) , (8.54)

where readers are reminded that the set M contains all misbehaving vehicles, i.e., for any
vehicle class s ∈ M, αs

m > 0. Moreover, if class g vehicles are low occupancy vehicles, we
just let n = 1 within this proof. Rearranging terms in (8.54), we have

J (f)− J
(
f̂
)
=

nfg
1 −

∑
s∈M∩Qg

+

αs
md

s − αg
md

g − nf̂g
1

D1 (ϕ
∗
1)

+

nfg
2 +

∑
s∈M∩Qg

+

αs
md

s − nf̂g
2

D2

∑
p∈P

δp − ϕ∗
1

 . (8.55)

Flow conservation implies that

f̂ g
1 + αg

mδ
g + f̂ g

2 = f g
1 + f g

2 , when g = HV,HO or HV,LO, (8.56)

or

µf̂ g
1 + αg

mδ
g + µf̂ g

2 = µf g
1 + µf g

2 . when g = AV,LO, (8.57)

Multiplying νg on both sides of either Eq. (8.56) or (8.57), we have nf̂ g
1 + αg

md
g − nf g

1 =
nf g

2 −nf̂ g
2 , where ν

g is the mobility degree for vehicle class g defined in Eqs. (8.2) and (8.3).
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Thus, we have

J (f)− J
(
f̂
)
=

nf g
1 −

∑
s∈M∩Qg

+

αs
md

s − αg
md

g − nf̂ g
1

D1 (ϕ
∗
1)

+

nf̂ g
1 + αg

md
g +

∑
s∈M∩Qg

+

αs
md

s − nf g
1

D2

(∑
p∈P

δp − ϕ∗
1

)

=

nf g
1 −

∑
s∈M∩Qg

+

αs
md

s − αg
md

g − nf̂ g
1

(D1 (ϕ
∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

))
.

(8.58)

According to condition 1) and Eq. (8.46) in Theorem 12,

D1 (ϕ
∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

)
< 0. (8.59)

Moreover, since ϕ∗
1 = ϕ̂1, we have

f g
1 − αg

mδ
g − f̂ g

1 =
∑

s∈M∩Qg
+

αs
mδ

s, when g = HV,HO or HV,LO, (8.60)

or

µf g
1 − αg

mδ
g − µf̂ g

1 =
∑

s∈M∩Qg
+

αs
mδ

s, when g = AV,LO. (8.61)

Multiplying νg on both sides of Eq. (8.60) or (8.61), we obtain nf̂ g
1 + αg

md
g − nf g

1 =
νg
∑

s∈M∩Qg
+
αs
mδ

s. Thus,

J (f)− J
(
f̂
)
=

νg ∑
s∈M∩Qg

+

αs
mδ

s −
∑

s∈M∩Qg
+

αs
md

s

(D1 (ϕ
∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

))
.

(8.62)

As described in Theorem 13, if M ∩ Qg
+ = ∅, we have J (f) − J

(
f̂
)

= 0. Otherwise if

M∩Qg
+ ̸= ∅, for every vehicle class s ∈ M∩Qg

+ we have ds = νsδs and

J (f)− J
(
f̂
)
=

(νg − νs)
∑

s∈M∩Qg
+

αs
mδ

s

(D1 (ϕ
∗
1)−D2

(∑
p∈P

δp − ϕ∗
1

))
. (8.63)

If νs < νg, by Eqs. (8.63) and (8.59), J (f)−J
(
f̂
)
< 0. Conversely, if νs > νg, J (f)−J

(
f̂
)
>

0.
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Theorem 12 states that lane delays are unaffected by vehicle misbehavior under moderate
vehicle cheating volumes if the assumptions stated in the theorem apply. Theorem 13 states
that the total travel cost becomes an increasing function of the proportion of vehicle toll
violations, when rational tolling policies are utilized.

Example 6. We illustrate the above results with a simple scenario in which differentiated
tolling is applied and vehicle misbehavior takes place. Consider a highway segment with the
following commuter demands {dAV,HO = 20, dAV,LO = 30, dHV,HO = 48, dHV,LO = 36}, a
vehicle occupancy of n = 2 to qualify as a high-occupancy vehicle, and an autonomy capacity
asymmetry degree of µ = 0.3. With these parameters, the class of autonomous vehicles with
high occupancy (AV,HO) has the largest mobility degree given by νAV,HO = n

µ
≈ 6. These

vehicles travel freely on the toll lane 1. The other three classes of vehicles will be tolled while
traveling on lane 1. Of these, the class of autonomous vehicles with low occupancy (AV,LO)
has the largest mobility degree given by νAV,LO = 1

µ
≈ 3, followed by the class of human-

driven vehicles with high occupancy (HV,HO) with a mobility degree νHV,HO = n = 2. The
class of human driven vehicles with low occupancy (HV,LO) has the smallest mobility degree
νHV,LO = 1.

A rational differentiated tolling policy should assign progressively higher tolls to vehicles
as their mobility degrees decrease. Thus, in this example we assign the following tolls:
τHV,LO = 0.3, τHV,HO = 0.12 and τAV,LO = 0.05. The delay functions used in this example
are the BPR functions in Eq. (8.33) with parameters D = {θi = 3, γi = 1, βi = 1, mi =
100 : i ∈ I = [1, 2]}.

From Eq. (8.46) in Condition 1) of theorem 12, we can determine that the class of
HV,HO vehicles will be traveling on both lanes at the lane choice equilibrium, when no
vehicles misbehave, i.e. g = HV,HO. Correspondingly, according to the toll configuration,
we have Qg

− = {AV,LO} and Qg
+ = {HV,LO}.

In this example, we consider the case when only human-driven vehicles with low occu-
pancy (HV,LO) misbehave i.e., αHV,LO

m > 0, while αHV,HO
m = αAV,LO

m = 0. We then gradually
increase the proportion of misbehaving HV,LO vehicles and plot the tendency curve of lane
delays and the total commuter delay in Figure 8.6.

Fig. 8.6a plots lane delays as the proportion of misbehaving HV,LO vehicles, αHV,LO
m ,

increases from 0 to 1. As expected from the results of Theorem 12, lane delays remain robust
to moderate levels of cheating vehicles until the proportion of cheating vehicles exceeds the
bound given by Eq. (8.47), which in this example is αHV,LO

m = 0.5. When bound (8.47) is
exceeded, lane delays indeed vary.

Fig. 8.6b plots the total commuter delay J(f̂) in Eq. (8.45) as αHV,LO
m , increases from 0

to 1. Notice that condition b) in theorem 13 is satisfied. Therefore, as expected from the
results of this theorem, the total delay increases as αHV,LO

m increases, until bound (8.47) is
exceeded when αHV,LO

m = 0.5 and the total commuter delay J(f̂) is no longer guaranteed to
be a monotonically increasing function of αHV,LO

m .

Figs. 8.6a and 8.6b also show that, when the proportion of human driven vehicles with
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(a) Delays on lane 1 (blue) and lane 2 (yellow)
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(b) Total commuter delay

Figure 8.6: The lane delays and the total commuter delay as a function of the proportion
of misbehaving human driven vehicles with low occupancy (HV,LO) αHV,LO

m , as described
in Example 6. While the conditions in Theorem 12, 13 and Proposition 11 hold, the total
commuter delay increases as αHV,LO

m increases, while lane delays remain constant. As long as
the toll design is rational, the minimum total commuter delay occurs when vehicles do not
misbehave.

low occupancy toll violations, αHV,LO
m , increases beyond the bound given by Eq. (8.47), lane

travel delays no longer remain constant and the total commuter delay may in fact temporarily
decrease as the number of toll violations increases. This undesirable phenomenon persists
until another robust region is reached (αHV,LO

m ∈ [0.6, 0.85] in Fig. 8.6a), in which lane
delays again remain constant and the total commuter delay becomes an increasing function
of the number of toll violations. The above results are formally described in the following
proposition.

Proposition 11. Consider a highway segment Ĝ = (D,d, τ, n, µ,αm) as outlined in The-
orem 12. Assume that, Condition 1) in Theorem 12 holds and there exists a vehicle class
g− ∈ Qg

−, i.e., τ
g− < τ g, then the lane delays remain constant when the misbehaving vehicle

proportions αm lie in the following region:

ϕ̃1 − δAV,HO −
∑

q∈Qg−
−

δq − δg−(1− αg−
m ) ≤

∑
p∈P̄\Qg−

−

δpαp
m ≤ ϕ̃1 − δAV,HO −

∑
q∈Qg−

−

δq, (8.64)

where the set Qg−
− ⊂ P̄ contains all vehicle classes whose assigned toll in lane 1 is smaller

than τ g−, and the value ϕ̃1 of the effective flow in lane 1 is determined by the following
equation:

D1(ϕ̃1) + τ g− = D2(
∑
p∈P

δp − ϕ̃1). (8.65)
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Furthermore, let Qg−
+ ⊂ P̄ be the set that contains all vehicle classes with an assigned

toll higher than τ g− and consider the total commuter delay J(f̂) as a function of α̃ :=∑
p∈Qg−

+
δpαp

m (the total number of cheating vehicles with a toll larger than τ g−). We also

remind the reader that the set M := {p ⊆ P̄ : αp
m > 0} contains all misbehaving vehicle

classes.

a) If Qg−
+ ∩M = ∅, then J(α̃) remains constant within the region characterized by Eq. (8.64).

b) If Qg−
+ ∩M ̸= ∅ and every vehicle class s ∈ Qg−

+ ∩M, has a mobility degree νs < νg−,
then J(α̃) is an increasing function within the region characterized by Eq. (8.64).

c) If Qg−
+ ∩M ≠ ∅ and every vehicle class s ∈ Qg−

+ ∩M, has a mobility degree νs > νg−,
then J(α̃) is a decreasing function within the region characterized by Eq. (8.64).

Proof. The proof of the proposition can be obtained by replacing vehicle class g with vehicle
class g− within the proof of Theorem 12 and 13. Thus the proof is omitted here.

Example 7. We continue our analysis of the results in Example 6, when the proportion of
cheating vehicles αHV,LO

m is larger than bound (8.47) in theorem 12, i.e. αHV,LO
m > 0.5, and

we use the results in proposition 11 to determine the robust region αHV,LO
m ∈ [0.6, 0.85] in

which lane delays again remain constant.
Since Qg

− = {AV,LO}, we have only one vehicle class g− = AV,LO (autonomous vehicles
with low occupancy) and only expect one additional robust region. We first determine the
value ϕ̃1 = 33.5 of the effective flow in lane 1 using Eq. (8.65), and then obtain the lower and
upper bounds of the robust region αHV,LO

m ∈ [0.6, 0.85] by calculating the respective lower
and upper bounds in Eq. (8.64). Correspondingly, lane delays remain constant withing this
region, as shown in Fig. 8.6a. Finally, since Condition b) in Proposition 11 is satisfied, the
total commuter delay monotonically increases as a function of αHV,LO

m within this region, as
shown in Fig. 8.6b.

Notice that the undesirable and somewhat counter-intuitive phenomenon observed in the
intervals αHV,LO

m ∈ (0.5, 0.6) and αHV,LO
m ∈ (0.85, 1] in Fig. 8.6b, where the total commuter

delay decreases as the proportion of cheating vehicles increases, cannot be predicted by the
results contained in the theorems and propositions presented in this chapter. However, in
this somewhat simple example, this phenomenon can be explained as follows. As the number
of cheating vehicles traveling on toll lane 1 increase, the other vehicle classes, which rightfully
can travel on lane 1, choose instead to travel on lane 2, as their cost of traveling on lane 1
becomes larger than their cost of traveling in lane 2. The two critical proportions of vehicle
misbehavior αHV,LO

m = 0.5 and αHV,LO
m = 0.85 observed in Fig. 8.6b, when total travel time

becomes a local maximum function of vehicle misbehavior, occur when all honest vehicles
of a certain vehicle class are driven out of lane 1. Thus, in this example all vehicles of class
HV,HO are driven out of lane 1 when αHV,LO

m = 0.5, while all vehicles of class AV,LO are
driven out of lane 1 when αHV,LO

m = 0.85. When this occurs, the decrease in the delay of
the lane 2, due to cheating vehicles choosing to use lane 1, becomes the dominant factor
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affecting the change of total commuter delay, causing its downward slope as a function
of vehicle cheating proportion. We also stress that, even though increase cheating locally
improves total commuter delay, it is still larger than the total delay under no cheating and
vehicle cheating results in revenue loss on the part of the toll-collecting agencies.

8.7 Summary

We proposed a toll lane framework where four classes of vehicles are sharing a segment of
highway with a restricted/tolled lane. In our framework autonomous vehicles with high
occupancy, which have the largest mobility index and as a consequence have the largest
impact in increasing commuter density in a lane, travel freely on the restricted/tolled lane.
The other three classes of vehicles, human-driven vehicles with high occupancy, autonomous
vehicles with low occupancy and human-driven vehicles with low occupancy, can choose
to enter the restricted/tolled lane by paying a toll or instead use the regular lanes without
paying a toll. We assume that all vehicles are selfish and will always minimize their own travel
costs. We established desirable properties of the resulting lane choice Wardrop equilibria, by
comparing high-occupancy vehicles with autonomous vehicles in terms of their capabilities
to increase lane commuter densities, and establishing rational tolling policies accordingly.
We also developed a framework for analyzing and designing a number of toll lane policies
including the selection of an optimal uniform toll, the determination of the optimal vehicle
occupancy threshold for classifying vehicles as high occupancy, and design parameters for
guaranteeing that a differentiated tolling policy will minimize the total commuter delay
in the freeway segment. We also considered the effects of toll violation by various classes
of misbehaving vehicles on the lane and total commuter delays. Our analysis shows that,
under rational tolling policies and moderate quantities of vehicle toll violations, lane delays
remain unaffected but total commuter delay increases. However, when the number of vehicle
toll violations increases beyond a prescribed bound, the total commuter delay may possibly
decrease under increased vehicle toll violations under certain circumstances.
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Part IV

Conclusions and Future Directions
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Chapter 9

Conclusions

The rapid advancement of autonomous driving technology in both academic and industrial
settings has spurred a widespread belief that autonomous vehicles will significantly transform
future transportation systems. Nonetheless, the integration of autonomous vehicles into cur-
rent transportation systems necessitates a comprehensive examination of their limitations
and potential impacts. While aiming for “perfect” autonomous vehicles that can excellently
perform any task on the roads is a less realistic goal, it is even more crucial to explore how
specific features of autonomy can be applied in certain transportation scenarios to define the
demand for autonomous vehicles. Therefore, the essence of this dissertation is to investigate
the application of particular features of autonomous vehicles in specific transportation sce-
narios in order to induce societal benefits. The scenario-based control design for autonomous
vehicles aims to address the potential benefit of autonomy while minimizing the dependence
on “perfect” autonomy.

One novel approach proposed in the dissertation (Part II) is to utilize autonomous vehicles
as altruistic decision-makers in traffic networks to address the issue of inefficiency and con-
gestion, which is in contrast to the selfish behavior of human-driven vehicles. A systematic
macroscopic behavioral model for human-driven vehicles is proposed to effectively and effi-
ciently predict human-driven vehicles’ selfish lane choice behavior in various transportation
scenarios, such as traffic diverges with an upstream bifurcating lane in the middle targeting
two exit directions (Chapter 3), and highway on-ramp areas (Chapter 4), and examine the
level of inefficiency and congestion induced by human-driven vehicles’ selfish behavior. To
leverage the potential of autonomous vehicles as altruistic decision-makers, an approach is
proposed to configure the local cost that autonomous vehicles evaluate in local scenarios to
make it relevant to social efficiency (Chapter 5). This approach enables autonomous vehicles
to make decisions that are aligned with the goal of enhancing social mobility, ultimately
leading to a reduction in congestion and improved social traffic conditions.

Another approach investigated in the dissertation is to decrease the headway of au-
tonomous vehicles on the roads. The potential of autonomous vehicles to increase road
capacities by preserving a shorter headway compared to human-driven vehicles has been
widely validated by previous literature and experiment results. Part III in the dissertation
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examines the impact of autonomous vehicles’ shortened headway in various transportation
scenarios with a focus on the interaction between human-driven and autonomous vehicles
in the mixed autonomy transportation system. The scenario where vehicles selfishly choose
their route across a traffic network is first examined. In Chapter 6, a theoretic guarantee is
established for traffic networks with a single origin-destination pair that better social traffic
conditions can be obtained by decreasing autonomous vehicles’ headway. A closed-form up-
per bound of the impact induced by autonomous vehicles’ shortened headway related to the
penetration rate and headway of autonomous vehicles is proved for networks with parallel
roads. This proof has significant implications for policymakers and engineers, as it provides
an important expectation for the potential impact of autonomous vehicles on traffic net-
works. Policymakers and engineers can better anticipate and evaluate the potential benefits
and challenges of autonomous vehicles’ integration into transportation systems and make
informed decisions. Further in Chapter 7, the stability of the dynamic mixed autonomy sys-
tem with queuing and signal controls is analyzed using dissipativity tools from population
games. Chapter 8 presents an analysis of a typical toll lane scenario under mixed auton-
omy. In this scenario, autonomous vehicles and high-occupancy vehicles share the road,
which leads to indeterminate and uncontrollable lane choice equilibria. To address this is-
sue, a comprehensive study of the best and worst-case lane choice equilibria is conducted and
an effective differentiated tolling scheme is proposed to enforce the appearance of the best
lane choice equilibrium. The proposed toll lane framework provides an effective mechanism
for comparing autonomous vehicles to high-occupancy vehicles in enhancing social mobility
and transitioning established policies for high-occupancy vehicles to policies for autonomous
vehicles.

Overall, this dissertation contributes to the understanding of how autonomous vehicles
can be utilized in various specified transportation scenarios to enhance societal benefits and
particularly emphasizes the crucial challenge in integrating autonomous vehicles into human-
dominated transportation systems: developing suitable control and optimization strategies
considering selfish human drivers’ interaction and exploitation. The dissertation provides
a theoretical and practical foundation for future studies in the application of autonomous
vehicles and can assist policymakers in formulating effective regulations that promote a
sustainable and efficient mixed autonomy transportation system.
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Chapter 10

Future Directions

The application of autonomous vehicles in future transportation systems is a wide-ranging
and interdisciplinary field that presents numerous challenges and opportunities across various
research domains. These include but are not limited to human behavior modeling, multi-
agent system modeling, and control and optimization. As a final remark, I would like to
suggest several potential avenues for further exploration that could expand upon the findings
of this dissertation.

A Unified Behavioral Modeling Framework. The lane choice modeling framework
introduced in Part II is applicable to various scenarios, including traffic diverges with a
bifurcating lane in the middle, highway on-ramps, and human drivers’ crafty bypassing be-
havior at the end of diverges [44]. Although these scenarios share similar lane choice decision
models, their cost functions have unique structures. Our current approach employs itera-
tive design, whereby we propose cost functions, calibrate and validate them until satisfactory
results are obtained. The framework shows a potential in the prediction of lane choice behav-
ior in other gaming scenarios in traffic networks such as roundabouts and median U-turns.
However, in more and more complex scenarios, discovering suitable cost functions becomes
increasingly challenging, as the structure of cost functions can become less intuitive. As a
result, it is beneficial and necessary to explore a unified model that is capable of learning the
cost functions from human drivers’ demonstrations either in a specified scenario or across
multiple scenarios.

Human Agents’ Bounded Rationality. The underlying assumption of this disserta-
tion is that humans are inherently selfish, meaning that they strive to maximize their own
benefits, which demonstrates rational behavior. However, it is important to acknowledge
that in reality, humans have limited rationality. For instance, when selecting a route, hu-
mans may choose a familiar one without considering the possibility of traffic congestion. This
type of behavior is known as heuristics. In modeling and control design, it is essential to con-
sider the impact of heuristics, as they can drastically alter how humans react to autonomous
agents. Therefore, it is imperative to consider human agents’ heuristics and bounded ratio-
nality when designing future transportation systems that incorporate autonomous vehicles,
and ensure the robustness and resilience of the control and the system.
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Network Level Incentive Design. In Chapter 5, we have explored how autonomous
vehicles can be programmed to make altruistic decisions, reducing system-level congestion.
However, it is essential to consider the fairness and realism of such approaches, particularly
at a larger scale network level. It may not be appropriate to always exploit the benefits from
a certain subset of vehicles. Therefore, we must consider how we can motivate autonomous
vehicles to align with social objectives more effectively. For instance, a certain subset of
autonomous vehicles could sacrifice their interests in certain scenarios such as highway on-
ramps but gain benefits elsewhere such as rewarded by reduced pricing in toll lanes. By
considering the network-level altruism distribution and incentive design, we can create more
equitable and efficient transportation systems.

An Even Broader Picture. The process of reshaping daily transportation requires in-
put from multiple stakeholders, including the user market, public or private transit agencies,
and authorities. However, in many cases, stakeholders may have different or even conflicting
interests or goals. Therefore, it is necessary to account for interactions of different stake-
holders and find solutions that align goals of various parties when designing policies and
reforming the system. Various mechanisms in the interaction, collaboration and commu-
nication between stakeholders, shall be properly designed in order to create transportation
systems that are more efficient, reliable, equitable, and sustainable.
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