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Summary Introduction: Wild birds and especially migratory species can become long-distance
vectors for a wide range of microorganisms. The objective of the current paper is to summarize
available literature on pathogens causing human disease that have been associated with wild
bird species.
Methods: A systematic literature search was performed to identify specific pathogens known to
be associated with wild and migratory birds. The evidence for direct transmission of an avian
borne pathogen to a human was assessed. Transmission to humans was classified as direct if there
is published evidence for such transmission from the avian species to a person or indirect if the
transmission requires a vector other than the avian species.
Results: Several wild and migratory birds serve as reservoirs and/or mechanical vectors (simply
carrying a pathogen or dispersing infected arthropod vectors) for numerous infectious agents. An
association with transmission from birds to humans was identified for 10 pathogens. Wild birds
including migratory species may play a significant role in the epidemiology of influenza A virus,
arboviruses such as West Nile virus and enteric bacterial pathogens. Nevertheless only one case
of direct transmission from wild birds to humans was found.
Conclusion: The available evidence suggests wild birds play a limited role in human infectious
diseases. Direct transmission of an infectious agent from wild birds to humans is rarely identified.
Potential factors and mechanisms involved in the transmission of infectious agents from birds to
humans need further elucidation.
ª 2007 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
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Introduction

Free-living birds, including migratory species, can become
long-distance vectors for a wide range of microorganisms
that can be transmissible to humans.1 This creates the
potential for establishment of novel foci of emerging or
re-emerging communicable diseases along bird migration
routes.2 Certain pathogens are more often isolated in mi-
gratory birds in comparison to other animal species3,4 and
the potential for transport and dissemination of these
pathogens by wild birds is of increasing public health con-
cern stimulated by the recent spread of diseases like
highly pathogenic Avian influenza A (HPAI H5N1 Asian
lineage) and West Nile virus (WNV) infection.3,5 Avian
influenza A (HPAI H5N1 Asian lineage) and West Nile virus
infection, well known to affect birds for decades, have
been recently observed to affect areas far away from
the locations where they were originally identified, gener-
ating the hypothesis that migratory birds transported
these pathogens to new geographical locations.6 However
as is the case with the highly pathogenic avian influenza,
scientific data do not always support such hypotheses.7

Several factors affecting wild bird species including migra-
tory species such as increasing stress levels and crowding
potentially promote infectious disease transmission among
birds but available data supporting this are scarce or non-
existent.

The objective of this paper is to summarize available
literature on pathogens causing human disease that have
been associated with wild birds including wild migratory
bird species. Although wild bird borne infections can occur
at any spatial scale, from very localized, to short and long
distance, from an epidemiologic point of view the trans-
mission of pathogens from wild birds to humans over a long
distance is most important. Therefore, in the current
manuscript we focused more on the role of wild migratory
birds in the spread of certain pathogens. The paper
focuses on available evidence of transmission of avian
borne pathogens to humans. We speculated that such
evidence would originate from enhanced animal and
human surveillance and the application of advanced
molecular diagnostic testing during the recent years.
Furthermore, we attempted to identify factors potentially
contributing to such transmission from the available body
of science.

Methods

Two reviewers (TK and IK) independently performed the
literature search. The following terms were used in
searches of the PubMed database: ‘‘wild birds’’, ‘‘migra-
tory birds’’, ‘‘infection’’, and specific pathogens known to
be associated with wild and migratory birds e.g. ‘‘West
Nile virus’’, ‘‘avian influenza’’, ‘‘influenza A’’, ‘‘Lyme dis-
ease’’ and ‘‘arbovirus’’. We also screened articles related
to the initially identified publications to expand our data
sources. Despite the availability of scientific data on this
issue even before 19668,9 we focused in the modern area
where molecular diagnostics might enhance our ability to
study such interactions between birds and humans. Similar
searches were conducted for each individual migratory
bird species identified through a list provided by the
Royal Ornithological Society of Great Britain and World
bird databases (Avibase World List).10,11 We also used the
widely used Sibley and Monroe Classification for birds.12,13

To evaluate the role of recent diagnostic developments,
we also performed an additional search of the literature
by using the term polymerase chain reaction (PCR) and
‘‘migratory birds’’. Additional epidemiologic information
for the identified pathogens-diseases was obtained from
the websites of the United States Centers for Disease Con-
trol (CDC), World Health Organization (WHO), FAO, and
OIE.14,15
Study selection and data extraction

The role of wild and migratory birds in the transmission of
an infectious disease to humans was discussed in consensus
meetings where all authors participated. Transmission to
humans was classified as direct if there was evidence for
direct transmission of the pathogen from the avian species
to humans through direct contact with an infected bird and
genetic/serological evidence of the presence of a particular
pathogen in both the avian species and humans. Transmis-
sion to humans was classified as indirect if there was
evidence for transmission of the pathogen from the avian
species to humans through indirect contact with an in-
fected bird and genetic/serological evidence of the pres-
ence of the particular pathogen in both the avian species
and humans. We considered indirect ways of transmission,
those through contaminated water from feces of water-
fowls and through vectors that are carried by wild birds
such as mosquitoes and ticks (Table 1). Finally, we classi-
fied pathogens to be associated with a ‘‘theoretical risk
for transmission’’ when in the literature there were re-
ports that these pathogens were isolated both from humans
and wild birds, using microbiological, genetic or serological
methods, but there were no reports of actual direct/indi-
rect transmission of these pathogens from wild birds to
humans. Despite the lack of actual evidence in such cases,
the risk exists in theory e.g. through ingestion of water
contaminated from feces of wild birds or exposure to
inanimate surfaces contaminated by bird secretions or
droppings.

Compiled relevant bird species data (with formal avian
family names) are presented in the appendix. This appendix
further includes data on pathogens that are borne by wild
avian species that have not yet been associated with human
infection in published reports.
Results

Evidence for direct transmission

The systematic review of the literature review identified no
real evidence for direct wild bird to human transmission
with the only exception being the cluster of H5N1 human
cases in Azerbaijan where the affected patients were
plucking feathers from mute swans that had succumbed
to H5N1 infection.16



Table 1 Pathogens that have been reported to be indirectly transmitted from wild birds including migratory species to humans

Microorganism(s) Reported transmission to human
(indirect transmission) (n Z 10)

Migratory bird species (formal family
names for each bird species can be
found in the appendix)

Geographic
area

(I) Bacteria
Chlamydiaceae
Chlamydophila

psittaci
Ornithosis17e22 Egrets (Ardea Alba), grackles

(Quiscalus), gulls (Larus), migratory
waterfowl species (Anatidae),
passerines (Passeriformes), pigeons
(Columbidae), psittacine birds
(Psittaciformes), raptors (North
American raptors), shorebirds (North
American shorebirds), wild ducks
(Anatidae), and others

Worldwide

Enterobacteriaceae
Escherichia coli Bloody diarrhea [Vero cytotoxin-

producing E. coli O157, Shiga toxin stx2f-
containing E. coli O128 strain)23,24]25,26

Finches (Fringillidae), gulls (Larus),
pigeons (Columbidae), sparrows
(Passeridae), starlings (Sturnidae)

Worldwide

Salmonella
(enterica
typhimurium)

Salmonellosis (enteritis)27e30 Wild crows (Corvidae), ducks
(Anatidae), gulls (Larus), passerines
(Passeriformes), raptorial birds (North
American raptors), songbirds
(Passeriformes), terns (Sternidae),
waterfowls (Anatidae)

Worldwide

Mycobacteriaceae
Mycobacterium

(avium,
ulcerans)

Regarding M. avium it is generally
believed and occasionally reported that
man (especially immunocompromised,
elderly) can contract the disease from
birds, but this has not been fully
clarified.31e33

Crows (Corvidae), raptors (North
American raptors), rooks (Corvus
frugilegus), wild ducks (Anatidae),
wild pigeons (Columbidae)

Worldwide

Possible transmission of M. ulcerans to
humans through contaminated water
from feces of waterfowls (Anatidae)34

Spirochaetaceae Lyme disease30,35e41

Borrelia
burgdorferi
sensu lato
genomic species

American Robins (Turdus migratorius),
cardinals, songbirds (Passeriformes),
sparrows (Passeridae), thrushes
(Turdidae) and other ground foraging
birds, waterfowl (Anatidae)

North America,
Europe

(II) Fungi
Cryptococcus Yes (wild pigeons)42e46 Psittacine birds (Psittaciformes),

starling (Sturnidae), wild pigeons
(Columbidae)

Europe, South
America, Asia

(III) Viruses
Flaviviridae
West Nile virus Yes3,30,47e49 North American shorebirds, common

grackles (Quiscalus quiscula), doves,
hawks, house finches (Carpodacus
mexicanus), and house sparrows
(Passer domesticus), songbirds
(Passeriformes), raptors (North
American raptors), owls (Strigidae),
and various corvids (crows, jays,
Corvidae)

Africa Europe,
Asia, America

(continued on next page)
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Table 1 (continued)

Microorganism(s) Reported transmission to human
(indirect transmission) (n Z 10)

Migratory bird species (formal family
names for each bird species can be
found in the appendix)

Geographic
area

St. Louis
encephalitis
virus (SLEV)

Yes3,49e51 North American shorebirds, common
grackles (Quiscalus), doves, hawks,
house finches (Carpodacus mexicanus),
and house sparrows (Passer
domesticus), songbirds
(Passeriformes), owls (Strigidae), and
various corvids (crows, jays, magpies)

America

Western Equine
Encephalitis
virus (WEEV)

Yes49 North American shorebirds, quails
(Coturnix)

America

Orthomyxoviridae
Influenza A virus To date, only domestic poultry are

known to have played a major role in the
transmission cycle of the H5N1 virus from
animals to humans.52 However, there is
also the potential contribution of other
hosts like carnivores e.g cats to both
virus transmission and adaptation to
mammals.53,54 Dead or moribund cats
were found to be infected with H5N1
virus soon after the virus was detected in
wild birds in Germany.53 This suggests
that H5N1 virus can be transmitted from
wild birds to cats53 whereas in another
report avian influenza A virus subtype
H5N1 was transmitted to domestic cats
by close contact with infected birds.54

Dabbling ducks (e.g common Mallard-
Anas platyrhynchos), geese
(Anserinae), gulls (Larus), swans
(Cygninae), guillemots (Uria aalge),
mountain hawk eagles (Spizaetus
nipalensis) North American Blue-
winged Teal (Spatula discors),
shearwaters (Procellariidae), terns
(Sternidae). Wild aquatic birds are
regarded as the principal reservoir of
influenza viruses, and migrating ducks
(Anatidae) disseminate influenza
viruses worldwide

Worldwide

However, there has been no documented
case with wild migratory bird to human
transmission although the theoretical
risk exists.55

Serologic evidence of avian influenza
infection in 1 duck hunter and 2 wildlife
professionals with extensive histories of
wild waterfowl (Anatidae) and game bird
exposure has been reported.56

There is an association (not necessarily
causal) between recreational contact
with H5N1 contaminated water and the
onset of confirmed human H5N1 disease
in 3 cases.53,57,58 In one of these cases
asymptomatic ducks may have shed virus
into the pond.53

Possible direct transmission of highly
pathogenic avian influenza in family
cluster in Azerbaijan.16 Occupational
exposure to avian species may increase
veterinarians’ risk of avian influenza
virus infection.59

Transmission can cause: Respiratory
infection, keratoconjuctivitis, diarrhea,
encephalitis30,60e66

86 S. Tsiodras et al.
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Evidence for indirect transmission or a theoretical
risk for transmission

Although a large number of avian borne pathogens have
been identified in the literature, we found relatively scarce
evidence for indirect transmission of avian borne pathogens
to humans (Table 1). Unfortunately, in the vast majority of
the reports reviewed herein, data were unavailable to fur-
ther characterize the way of transmission of certain patho-
gens beyond the stage of a speculative argument. This
would be expected for zoonoses which usually require am-
plification in an animal species cycle before spill-over to
humans. Nevertheless and based on our criteria several
avian borne bacterial, fungal, viral pathogens could be indi-
rectly transmitted or associated with a theoretical risk for
transmission to humans (Table 1). We identified 58 such
pathogens for which wild birds can serve as reservoirs, me-
chanical vectors, or both (Tables 1 and 2). However, the
paucity of available data did not allow us to make the dis-
tinction whether the involved species serve as reservoir or
vector in most of the cases.

Scarce microbiological, serological and epidemiological
data supported indirect transmission from wild birds to
human for 10 of these pathogens (Table 1). Application of
advanced molecular diagnostic testing during the recent
years has led to the isolation of these microbial agents
known to affect humans in birds. The examples include bac-
terial spp. like Escherichia coli,24,25 Borrelia Burgdorferi,37

Anaplasma phagocytophilum,87 Salmonella typhimurium,28

Campylobacter spp.,79 and Mycobacterium spp.,31e33 vi-
ruses like Influenza virus,56,60,61,64,65 West Nile virus,126

St. Louis encephalitis virus3,50,51 and Western Equine En-
cephalitis virus49 and fungi like Cryptococcus spp..43,44,46

These have been isolated from many wild birds using stan-
dard serological3,30,47,48,50,51,56,60,61,64,65,79 and microbio-
logical techniques.28,31e33,37,43,44,46,79,126,127 Moreover
vectors with the ability to carry pathogens have also been
isolated from wild birds.3,37,85,87 For example, ornithophilic
mosquitoes and ticks are the principal vectors of pathogens
like West Nile virus in the Old World, and B. burgdorferi, re-
spectively, and birds of several species, chiefly migrants,
appear to be the major introductory or amplifying hosts
of these vectors.3,37,85,87

Methods that have been used to confirm association of
microbial agents isolated from wild birds with infection in
humans include molecular methods like sequence analysis
for Ehrlichia85 and Mycobacterium species,32,33 phyloge-
netic analysis,25 pulsed-field gel electrophoresis,26 poly-
merase chain reaction,26 immunomagnetic separation
(IMS) for E. coli,25,26 serological methods for influenza
virus56,59 and psittacosis,17 and epidemiological methods
for Salmonella spp.,28,29 Borrelia spp.,36 West Nile vi-
rus,30,48,49,126 St. Louis encephalitis virus,49,51 and Western
Equine Encephalitis virus.49

However, in most scientific literature, there is no de-
tailed data regarding the detection and characterization of
pathogens and their relation to wild birds. In most of the
cases, it seems that wild birds serve as vectors of the
pathogen. In these cases, the indirect role of wild birds in
transmission of the infectious agents can be only specu-
lated and the implicated pathogens are classified as having
the theoretical risk of transmission from wild birds to
humans (Table 2).

Twenty-one wild avian family species were identified
that are reservoirs, mechanical vectors or both for in-
fectious agents that may affect humans (Listed with their
formal family names in the appendix according to the Sibley
and Monroe Classification for birds). A short description of
pathogens that may be transmitted from wild birds to
humans is outlined below.

Types of microorganisms carried by wild birds that
could affect humans (indirect transmission or
theoretical risk)

Bacteria
A range of bacterial pathogens affecting humans has been
associated with wild and migratory birds. An indirect
transmission to humans has been reported for some of
these such as the enteric pathogens E. coli24 and Salmo-
nella spp.28,29 Tick-borne pathogens such as Borrelia burg-
dorferi sensu lato species have been also associated with
human infection from wild migratory birds.35e38,85,87 A the-
oretical risk for transmission to humans has been reported
for other bacterial pathogens such as Yersinia spp.,76,128

Campylobacter jejuni77 and both cholera and non-cholera
Vibrio spp.92

Fungi
Yeasts and yeast-like fungi have been isolated from wild
and migratory birds such as Candida spp.,129,130 and hypho-
mycetes e.g. Aspergillus spp., Microsporum spp., Tricho-
phyton spp.,112 and cryptococci.43 A theoretical risk for
transmission to humans exists but scientific data to support
this are extremely scarce. Cryptococci that are quite ubiq-
uitous in nature have been reported to be transmitted to
humans indirectly from wild pigeons (Columbidae), occa-
sionally causing clinical infection, especially in immuno-
compromised patients.42

Viruses
Important viral species have been isolated from wild
migratory birds and can affect humans indirectly including
influenza A viruses,62,131 the West Nile virus (WNV),3,47 the
St. Louis encephalitis virus (SLEV).3,50,51 Several other viral
species can theoretically be transmitted from wild birds to
humans (Table 2).

Parasites
Wild and migratory birds can disperse in nature a diverse
number of protozoa such as Babesia and other haemopara-
sites. The potential for transmission exists for some para-
sitic species (Table 2).

Factors potentially contributing in transmission

The issue of the transmissibility of various pathogens from
wild birds including migratory species to humans is fairly
complex. Several factors determine the possibility of such
a spread. Some factors relate to the affected species
including the birds themselves (e.g. the avian species
involved, susceptible local vertebrate recipients or



Table 2 Pathogens with theoretical risk for transmission (but no reports of actual direct/indirect transmission) from wild birds including migratory species to humans

Microorganism(s) Potential for transmission to humans exists (n Z 50) Migratory bird species Geographic area

(I) Bacteria
Gram-positive cocci
Enterococcus Possible spread through polluted water67,68;

transmission has been reported from other birds69e71
Ducks (Anatidae), seagulls (Larus), waterfowls
(Anatidae) and other migratory birds such as quails
(Coturnix)

Worldwide

Staphylococcus Possible through faecal pollution of environmental
water samples72

Ducks (Anatidae), mallards (Anas platyrhynchos),
passerines (Passeriformes), seagulls (Larus), and
other migratory birds including quails (Coturnix),
raptors (North American raptors)

Worldwide

Gram-positive rods
Clostridium perfringens Possible through accidental ingestion of

contaminated water73; food-borne enteritis has been
reported from non-migratory birds74

Crows (Corvidae), ducks (Anatidae), gulls(Larus),
Pelicans (Pelecanus) and marine birds, raptors (North
American raptors), shorebirds (North American
shorebirds), waterfowls (Anatidae)

Europe, Asia

Listeria monocytogenes Possible through accidental ingestion of
contaminated water75

Crows (corvus), gulls (Larus), rooks (Corvus
frugilegus) and other migratory birds

America, Asia

Enterobacteriaceae Enteritis30,76 Crows (corvus), ducks (Anatidae), gulls (Larus),
magpies, (Corvidae) pigeons (Columbidae),
pheasants, starlings (Sturnidae), terns (Sternidae),
wagtails (Motacilla), waterfowls (Anatidae) and other
migratory species

Worldwide
Yersinia species

Campylobacteraceae
Campylobacter jejuni Intestinal campylobacteriosis.30,77,78 Whether

waterfowl (Anatidae) have a role in the dissemination
of Campylobacter spp. that results in increased
human disease is likely to be elucidated through
development and greater use of typing methods.79

Typing might allow links to be established between
isolates of avian, environmental, and human origin.79

Migrating ducks (Anatidae), passerine birds e.g.
crows (corvus), pigeons (Columbidae) and seagulls
(Larus), sparrows (Passeridae)

Europe, North America,
Asia

Helicobacter spp. Enteritis (Helicobacter canadensis).80,81 Geese (Anserinae), gulls (Larus), passerines
(Passeriformes), terns (Sternidae), various wild birds

North America, Europe,
AustraliaPossible transmission of H. pylori by contaminated

water from feces of waterfowls (Anatidae)82

Other gram negative
bacilli (Pseudomonas,
Aeromonas, etc.)

Possible through faecal pollution of environmental
water samples72,83

Geese (Anserinae), gulls (Larus) Worldwide

Anaerobic bacteria Possible through faecal pollution of environmental
water samples e.g. gulls (Larus)84

Geese (Anserinae), seagulls (Larus), swans
(Cygninae), wild ducks (Anatidae)

Worldwide

Anaplasmataceae Human granulocytic ehrlichiosis85e87 Passerine birds (Passeriformes) American Robins
(Turdus migratorius), robins, songbirds
(Passeriformes) veery (Catharus fuscescens),
American warbler

North America, Europe,
AsiaAnaplasma

phagocytophilum
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Mycobacterium species Tuberculosis.88 Possible transmission of
mycobacterium from humans to birds has been
reported through close contact between humans and
pet birds but it is not known if humans can acquire
the infection from birds.88

Green-winged macaw, psittacines
(Psittaciformes)88,89M. tuberculosis

Rickettsiaceae Possible through ticks 90,91 Pigeons (Columbidae) Europe, Asia
Coxiella burnetii

Vibrionaceae
Vibrio cholerae Cholera, non-cholera Vibrio infections92,93 Wild aquatic birds (Anatidae), gulls (Larus) North America

(II) Viruses
Bunyaviridae Possible transmission through ticks and transmission

has been reported for other birds94,95
Crows (Corvidae), wild aquatic birds (Anatidae),
passerines (Passeriformes), rooks, (Corvus frugilegus)

Europe, Asia, Africa
Nairoviruses: Crimean-

Congo haemorrhagic
fever (CCHF)

Coronaviridae Serological evidence in humans exposed to birds has
been reported96

Passerines (Passeriformes), pheasants (Phasianidae) Worldwide
Avian infectious

bronchitis virus, other
coronaviruses

Flaviviridae Worldwide
Japanese encephalitis

virus (JEV)
Yes97e99 Colonial ardeids (Ardeidae), herons (Ardeidae),

marsh birds, quails (Coturnix)
Other flaviviruses

Murray Valley
encephalitis virus
(MVEV), Usutu virus
(USUV)

Yes (MVEV)100,101 Blackbirds (Turdus merula), wading birds, crows and
magpies (Corvidae) (Usutu virus), Pelecaniformes
(MVE virus)

NR (USUV)

Sindbis virus Ockelbo disease,102,103 Pogosta disease,104 plus
possible transmission to humans as migratory birds
are hosts of mosquitoes which are vectors for these
viruses

Blackbird (Turdus merula), carrion crow (Corvus
corone), passerine birds (Passeriformes) wild grouse
(Tetraonidae), wild ducks (Anatidae)

Tick-borne Encephalitis
virus (TBE)

Possible through ticks 105e108 Blackbirds (Turdus merula), sandpipers
(Scolopacidae), wild mallards (Anas platyrhynchos),
wild grouse (Tetraonidae), other wild birds

Europe, America

Herpesviridae Marek’s virus (transported by wild birds) has been
associated with multiple sclerosis in humans.109,110

Japanese quails (Coturnix coturnic japonica),
passerines (Passeriformes), pigeons (Columbidae),
raptors (North American raptors), wild anseriforms
(Anatidae), geese (Anserinae), swans (Cygninae)

Europe, Asia, North
America, and AfricaAnatid herpesvirus 1,

(duck plague virus),
Marek virus

Paramyxoviridae
Newcastle disease virus

(NDV, avian
parainfluenza virus 1,
paramyxovirus-1)

Serological evidence in humans exposed to migratory
birds has been reported.96 Can cause self-limiting
conjunctivitis as occupational exposure to affected
poultry

Cormorants (Phalacrocoracidae), gulls (Larus),
passerines (Passeriformes), pelicans (Pelecanus),
raptors (North American raptors), waterfowls
(Anatidae)

Worldwide

(continued on next page)
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Table 2 (continued)

Microorganism(s) Potential for transmission to humans exists (n Z 50) Migratory bird species Geographic area

Other Paramyxoviridae
(pneumoviruses)

NR Gulls (Larus), waterfowl (Anatidae) Europe, Africa, Asia

Picornaviridae
Egg drop syndrome virus Possible through faecal pollution of environmental

water samples with wildfowl droppings111,112
Coots (Fulica), grebes (Podicipedidae), herring gulls
(Larus argentatus), migratory ducks (Anatidae), owls
(Strigidae), storks (Ciconiidae), swans (Cygninae)

Worldwide

Foot-and-mouth disease
virus

NR but according to some studies birds do not have an
important role in the transmission of enteroviruses113

House-sparrows (Passer domesticus), seagulls
(Laridae), starlings (Sturnidae)

Europe

Reoviridae Not reported but evidence for transmission to
mammals111,114e116

Wild geese (Anserinae), wild woodcocks (Scolopax) Asia, Africa, Europe,
AmericaAvian rotavirus, orbivirus

and other spp.

Togaviridae
Eastern (EEE ) and

Western (WEE ) equine
encephalitis viruses

Possible through mosquitoes that are vectors for
these viruses117,118

Cliff swallows (Petrochelidon pyrrhonota), finches
(Fringillidae), American Robins (Turdus migratorius,
smaller species of Passeriformes, several trans-Gulf
migrant starlings (Sturnidae), waterbirds (Anatidae)

America

Venezuelan equine
encephalitis virus
(VEE)

Possible through mosquitoes that are vectors for
these viruses 119,120

Nestling birds such as Cliff swallows, North American
shorebirds, songbirds (Passeriformes), wild ducks
(Anatidae)

South to Central America

(III) Parasites
Coccidia (Eimeria) Possible through contamination with faecal

material121
Cranes (Gruidae), owls (Strigidae), wild pigeons
(Columbidae), waterfowls (Anatidae)

North America,
Asia, Africa

Cryptosporidium Has been reported for other non-migratory birds122 Cranes (Gruidae), exotic seagulls (Larus), wild
anseriforms: ducks (Anatidae), geese (Anserinae),
swans (Cygninae) and wild birds (order
Passeriformes, Phasianidae, Fringillidae, and
Icteridae), waterfowl species (Anatidae)

America, Africa, Asia

Helminths parasites Possible food-borne through eating small water
fish.123

Gulls (Larus), ducks (Anatidae), passerines
(Passeriformes), waterfowl species (Anatidae)

Australia, Europe,
Africa, Asia, America

Cercarial dermatitis (swimmer’s itch) due to
exposure to marine schistosomes124

Sarcocystis Possible through contaminated water125 Cowbirds (Molothrus), exotic birds, mallards (Anas
platyrhynchos), passerines (Passeriformes), wading
birds, wild anseriforms (Anatidae), geese
(Anserinae), swans (Cygninae)

America, Africa, Europe
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invertebrate vectors), others to the pathogen itself (e.g.
stability of the agent in the environment), and lastly some
factors relate to the environment (e.g. temperature,
humidity). Studies of certain pathogens like influenza virus
illustrate the interaction of factors that limit the trans-
mission and subsequent establishment of an infection in
a novel host species and may help us in understanding how
and why some pathogens become capable of crossing host
species barriers.132
Factors relating to the implicated pathogen and the
affected species
Pathogens associated with wild and migratory birds may be
transmitted to humans via several routes. Generation of
contaminated aerosols by waterfowl flocks may result in
respiratory infections through inhalation of dust or fine
water droplets generated from infected bird feces or
respiratory secretions in the environment (e.g. Newcastle
Disease or chlamydiosis).30 Birds can contaminate water
with feces, nasal discharges, and respiratory secretions
(e.g. influenza A virus, Enterobacteriaceae) resulting in
a waterborne human infection after direct contact with
aquatic environments.30 Recently, the European CDC con-
cluded that the bathing risk in the case of waters contam-
inated with the H5N1 virus cannot be excluded and should
be assessed on a case by case basis even though the chance
of such an event is highly unlikely.133 Food-borne infections
may result after consumption of infected carcasses of wild
birds or raw or undercooked blood, organs, or meat, e.g.,
WNV, avian influenza A (H5N1), M. avium, Clostridium
spp., Sarcocystis, Frenkelia.52,63,134 Infections may lastly
result after direct contact with the skin, feathers, external
lesions or droppings of infected wild birds (e.g. avian pox,
WNV encephalitis, H5N1, mycoplasmal conjunctivitis). A
major source of wild birdehuman contact is hunting and
the cleaning of killed birds. Often birds are field-dressed
by hunters with minimal protection bringing them in con-
tact with blood, organs and feces.30 Serologic evidence of
avian influenza infection in hunters and wildlife profes-
sionals has been reported.56 In addition, occupational expo-
sure to avian species (e.g veterinarians) may increase risk
of infections like avian influenza virus infection. Indirect
infection may occur through the same routes if wild birds
transmit the infection to domestic animals, e.g. poultry
or via exposure to inanimate surfaces contaminated by
bird secretions or droppings. Transfer of infected material
can happen with shoes, clothing or other inanimate objects.

Wild birds when serving as reservoirs exhibit multiplica-
tion of the pathogen within their organism. Aggregations of
bird species that occur during certain periods within the
avian annual cycle may enable transmission of pathogens
between individuals. Extreme examples for such aggrega-
tions can be found at moulting and staging areas of eared
grebes Podiceps nigricollis,135,136 at roosting sites for Euro-
pean starlings Sturnus vulgaris, at landbridges between
continents (e.g. Gibraltar, Bosporus) widely used by soaring
and gliding species like larger birds of prey and white storks
Ciconia ciconia and at breeding sites of many seabirds. In
terms of numbers, the vast amount of migratory birds do
migrate solitarily in ‘broad front’ and therefore do not en-
counter an increased risk of pathogen transmission, while
some species travel hundreds to thousands of kilometres
from their breeding grounds and re-fuel at distinct stopover
sites.137 These ‘‘staging areas’’ provide the opportunity for
close intermingling of species that are otherwise widely
separated during the major part of the year.35,138 Thus,
the theoretical opportunity for exchange of pathogens is in-
creased among avian species, which make use of the same
stopover sites. In such instances duration and concentration
of the agent in the blood or the gastrointestinal tract of mi-
grating birds are important for the subsequent infection of
another competent vector that feeds or gets exposed in
crowding situations or during stopover e.g. a tick. Several
studies have recorded infections e.g. B. burgdorferi and
human granulocytic ehrlichiosis (HGE) in ticks removed
from birds.36,37,87 Ticks commonly infest a wide range of
avian species, especially, sparrows (Passeridae), thrushes
and other ground foraging birds.30,36,37,139,140 Although
a wide range of tick species has been reported to parasitize
wild birds, Ixodes spp. are the most likely ones to carry in-
fections (e.g. B. burgdorferi) especially in Europe and
North America. Ixodid ticks often attach to hosts for 24e
48 hours while acquiring a blood meal. In tick-borne vi-
ruses, bacteria, and protozoa, the infectious larval or
nymphal tick may remain attached to the body of a migra-
tory bird for several days and then deposited during migra-
tion in a new geographic area. During migration, there is
sufficient time for some birds to travel hundreds or even
a few thousand miles before ticks complete feeding and
drop off. Even if these birds have small tick burdens, their
large numbers could result in substantial contributions to
local tick populations in coastal areas.40 There is even evi-
dence of transhemispheric exchange of spirochete-infected
ticks by seabirds indicating the capacity for wild birds to
carry infected ticks for long distances.141 Moreover, birds
can carry infections in their bloodstream which is intro-
duced to local population of ticks at other sites. Therefore,
birds play an important role not only in maintaining infections
such as B. burgdorferi sensu lato in areas of endemicity, in ad-
dition some of them, through their migration, also play a role
by spreading ticks within and between continents.36,139,142,143

Exposure to tick-borne diseases is primarily peridomestic,
so the contribution to tick related human infection of avian
ticks relative to mammalian ticks around dwellings is criti-
cal.38 Birds that are implicated in peridomestic transmission
of tick related infections to humans, especially in North
America, include American robins (Turdus migratorius),
northern cardinals (Cardinalis cardinalis), and song sparrows
(Melospiza melodia) that frequently use backyard environ-
ments and some of which are commonly seen at bird feeders.
Therefore, they are likely to drop engorged larvae in perido-
mestic environments like lawns and gardens,40 where ticks
are less common than in woods and at wood edges but
more likely to encounter people.38,144 Even though the sur-
vival of nymphs is low in open habitats, the contribution of
birds to human infection in the peridomestic environment
could be substantial and deserves further study.40

An additional factor is the physiologic stress that wild
migratory birds suffer with migration, a risk factor for
immunosuppression and increased susceptibility to infec-
tious diseases. Avian species may exhibit an increased
susceptibility to certain pathogens (e.g. West Nile virus)
compared to other vertebrate groups.3,4 Changes and
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adaptations occur in migratory birds during long-distance
migration.63 For some birds, the stress of migration can
lead to reactivation of otherwise latent infections.145

West Nile virus was isolated from migrating birds that
were under migratory stress.146 However, an opposing
argument is that infected migratory birds could not survive
long-distance travel; thus their role in transmitting commu-
nicable diseases is of less importance.147 For example, in
the case of avian influenza most outbreaks in wild birds
seem to reflect local acquisition of infection from a contam-
inated source, followed by rapid death nearby.148 There is
only limited evidence that some wild birds can carry the virus
asymptomatically, and no evidence from wild bird outbreaks
that they have done so over long distances during seasonal
migration.148

Understanding the balance between the changes and
adaptations that occur in migratory birds during long-
distance migration is important to comprehend susceptibil-
ity of certain migratory birds to develop infections. Similar
factors e.g. age and bird gender may in addition influence
migratory patterns leading to spread of diseases in novel
geographical areas.3

Factors relating to the implicated pathogen and the
environment
Migrants of most bird species in the New World seldom use
the same stopover sites on northward, spring migration as
they do on southward, fall migration. This is because
migration routes are determined by complex interactions
of environmental factors such as direction of prevailing
winds, weather patterns, location of available food re-
sources and geographical barriers (e.g. large bodies of
water, deserts and mountains). These factors seldom
combine to favour the same route in different seasons.3

Seasonality is a significant factor influencing both, wild
birds (wild resident and migratory species) and other vec-
tors e.g. mosquitoes, ticks leading to changes in transmis-
sion dynamics.149e151 For mosquitoes, a spring population
peak in Europe and North America occurs during the spring
migration of birds.146e148 The effect of seasonality in the
flyway patterns of major migratory birds was observed for
certain diseases such as West Nile virus encephalitis. The
incidence of West Nile virus disease is seasonal in the tem-
perate zones of North America, Europe, and the Mediterra-
nean Basin, with peak activity from July through
October.152 Both avian and human infection rates drop to
near zero as winter approaches and mosquitoes become
dormant.153 Season is important for some non-vector-borne
pathogens, as well. For example, influenza A viruses remain
infectious in water at lower ambient temperatures and at
the same time major congregations of migratory waterfowl
occur, increasing the likelihood of transmission among
birds. Furthermore, numerous bird species (e.g. crows
and gulls) are attracted to untreated sewage, garbage
dumps, manure, and other sources of enteric pathogens
that can then be transmitted to humans. These areas
should be appropriately covered and not open to the access
of wild migratory birds.

Migratory bird flyways and transmission
Long-distance migration is one of the most demanding
activities in the animal world and several studies demonstrate
that such prolonged, intense exercise leads to immunosup-
pression exacerbating the possibility of spreading infec-
tions. On the other hand, infected symptomatic wild birds
may act as vectors over shorter distances.154 Understanding
bird migration, avian migration patterns and infectious dis-
eases of birds would be useful in helping to predict future
outbreaks of infections due to emerging zoonotic pathogens
and can provide important information that could explain
the pattern of spread of certain infectious agents. Numer-
ous variations in flyways exist. For some ocean migratory
wild birds, a nomadic wandering that can appear random
is probably related to poorly understood weather or ocean
conditions.155,156 Major migratory flyways, especially be-
tween continents are known to be used by migratory birds
when commuting between breeding and wintering areas
and vice versa. Nevertheless, these flyways are only used
by a fraction of the existing species on the move, predom-
inately by waterfowl and soaring and gliding migrants like
large raptors and storks which aggregate and follow fairly
easily defined routes.

The complex overlapping of major flyways and the lack
of information on migratory species potentially involved in
the spread of disease make simple association of wild
migratory flyways with outbreaks of certain infections
extremely difficult despite the significant amount of liter-
ature on the subject. For example, in Alaska, there is
a notable overlap between the Pacific and East Asia/
Australasia flyways through which scientists believe avian-
flu-infected migrating birds, such as the bar-tailed godwit
(Limosa lapponica), dunlin (Calidris alpina), and red knot
(Calidris canutus), will transfer the Asian strains of H5N1 in-
fluenza virus to North American birds over the next few
months14 although this was not confirmed in a recent
study.157 On the other hand, other more local migratory
bird routes have been described in association with West
Nile virus outbreaks.3
Societal factors
Furthermore, societal factors like captivation of wild birds
in zoos and importation and sale of wild birds as pets should
also be considered as important factors which can enhance
the spread of pathogens from wild birds to humans. Crypto-
sporidium has been reported to be transmitted from some
non-migratory birds in zoos to humans.122 A theoretical sim-
ilar risk for avian influenza exists as avian influenza was re-
cently isolated from a wild swan in the Dresden zoo in
Germany.157 Similar risk can be encountered in bird parks
since outbreaks of infections related to birds like psittaco-
sis have occurred.17 Finally, the international trade of
exotic pet birds carrying influenza A viruses enhances the
risk of worldwide dissemination of potentially virulent influ-
enza A virus and may pose a serious health threat to
humans.158
Limitations of the current literature review

There are several limitations of this work and clearly
further work is necessary. Some of the identified agents
are quite ubiquitous in the environment raising the question
about how to quantify the additional impact wild resident
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and migratory birds may have on transmission. There is still
scientific debate over the actual role migratory birds might
play in the transmission of certain communicable diseases.
In support of this argument we did not find any evidence for
direct transmission from wild and migratory birds to
humans for any of the identified pathogens the only
exception being the cluster of H5N1 human cases in
Azerbaijan.16 In addition, in many cases, there was no fur-
ther available information that would allow further elucida-
tion of the real epidemiological role played by wild birds in
the ecology of the considered infections, especially in un-
derdeveloped countries. Many reports do not exactly clarify
how the birds are implicated in the transmission of these in-
fections and in the majority of cases this transmission could
not be established by adequate scientific methods. Thus, in
many of the reports reviewed herein, there were no data
regarding serologic assays or molecular diagnostic tech-
niques used to detect and characterize pathogens and iden-
tify birds as vectors of disease. In these cases only
associations of these infections with migratory birds could
be made (Table 2).

The evidence reviewed herein suggests that many
pathogens can infect multiple host bird species and that
these pathogens in theory could be responsible for emerg-
ing infectious disease outbreaks in humans and wildlife.
However, the ecologic and evolutionary factors that con-
strain or facilitate such emergences are poorly understood.
In the literature, a different terminology is used to describe
the interaction between hosts, including wild birds, and
pathogens. Terms such as multihost pathogens, reservoir
hosts, and spill-overs are frequently used, but often such
different terms are used to describe the same phenome-
non. There is a need for a single, standardised comprehen-
sive framework that characterizes disease outcomes based
on biologically meaningful processes. An example of such
conceptual framework is based on the pathogen’s between-
and within-species transmission rates and can be used to
describe possible configurations of a multihostepathogen
community.159 In particular, the much-overused terms res-
ervoir and spill-over can be seen to have explicit defi-
nitions, depending on whether the pathogen can be
sustained within the target host population.159 However,
the paucity of available published data did not allow us
to determine whether the involved species of certain wild
birds serve as reservoir or spill-over. Finally, only few stud-
ies have reviewed the role of migratory birds in transmis-
sion of all different infections and these studies remain
descriptive.112

Migratory birds cannot be blamed for recurrent out-
breaks at the same geographical location over subsequent
years unless there is in an introduction of the pathogen to
known or novel avian or other animal reservoir hosts and
vectors. Furthermore, for some viruses that are considered
to be transmitted by wild migratory birds (e.g. West Nile vi-
rus), duration of high levels of viremia for most species
tested has been found to be limited and usually less than
24 hours. However, exceptions to that rule exist. The house
sparrow (Passer domesticus) has demonstrated WNV vire-
mia of sufficient duration to indicate its ability to serve
as a competent host for WNV.3

Furthermore, other modes of transmission such as the
import of infected products may be of equal importance in
the spread of diseases like avian influenza and scientists
are still debating the evidence of the role of migratory birds
in the wide geographical spread of the influenza A (H5N1)
virus. Highly pathogenic avian influenza viruses have been
isolated rarely from wild birds and, apart from a single
case in common terns in South Africa,160 when they have,
it has usually been in the vicinity of outbreaks of highly
pathogenic avian influenza virus in poultry or geographi-
cally and chronologically close to known outbreaks in poul-
try. In fact the de novo generation of highly pathogenic
avian influenza virus strains (restricted to subtypes H5
and H7) so far has been described to have occurred only
in domestic poultry and the occurrence of highly patho-
genic avian Influenza viruses in wild birds is most likely
the result from spill-overs from the poultry population.

Another important limitation is that there is no way to
predict whether the comprehensive lists presented in this
paper may expand in the near future. Moreover, the fact
that a lot of the pathogens carried by wild and migratory
birds that are presented in Table 2 have not been associ-
ated with human infection does not mean that these path-
ogens cannot cause human infection through routes
presented for other pathogens in the same table.
Future directions

Identifying links between environmental factors and in-
fectious disease risk is essential to understanding how
human-induced environmental changes will affect the
dynamics of human and wildlife diseases. Studying large
wetland areas, and by extension, intact wetland bird
communities, may represent a valuable ecosystem-based
approach for controlling infections caused by migratory
birds including WNV.161 Recent evaluations suggesting links
between high biodiversity among wild birds and reduced
vector-borne disease risk, such as WNV, may lead to a better
understanding of distribution patterns of such diseases.48

Recent findings on the origin of the WNV infections suggest
a single species to act as a super spreader and the transmis-
sion of WNV appears in new light.162 These recent findings
demonstrate imposingly how important detailed studies
on contact rates between vectors and host species are
and how careful interpretations need to be made before
drawing any conclusions. Estimation of the infection rate
of wild bird populations with human pathogens or with
other vectors carrying pathogens is clearly an indicated fu-
ture challenge required to judge the possibilities of bird to
human transmission of pathogens. The same accounts for
the transmission between and within bird species. Recent
investigations indicate the influence of social and sexual
behaviours and their seasonal components on intra-specific
transmission,163,164 while the inter-specific transmission
rate remains speculative. Birds are considered to show be-
havioural changes due to pathogen infection, which will
considerably influence transmission rates.163 Furthermore,
accurate data on the speed and direction of migratory birds
may enable us to predict the timing of bird migration in
more detail; this will assist in monitoring the risk of infec-
tions that may be caused by wild birds. While this knowl-
edge is available for larger bird species due to the use of
satellite tracking, only limited data are available on the
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individual level for some North American songbirds with the
use of radio-telemetry tracking.165 Producing maps depict-
ing the ecology of the vectors including mosquitoes and
ticks ecology in combination with maps of migratory routes
of wild birds along with access to real time climatic data
could be the key for developing a real time early warning
system for forecasting vector-borne disease outbreaks.166

The spatial and temporal pattern of migration of wild
birds as well the spatial distribution throughout the annual
cycle can provide further insight. Application of stable
isotope analysis has already resulted in new insights where
bird populations spend the time between the seasonally
reoccurring breeding events,167 a knowledge which can be
of great importance for future predictability of disease
outbreaks.

Human medicine often does not delve deeply into the
role of animals in the transmission of zoonotic agents and
veterinary medicine does not cover the clinical aspects of
human disease. However, to effectively and completely
cover the area of infections associated with wild birds
would require involvement of both physicians and veteri-
narians especially those dealing with avian species.168

Unfortunately, one recent study demonstrated that com-
munication between physicians and veterinarians about
zoonotic diseases is largely absent.168 Therefore, one im-
portant factor that could potentially explain the paucity
of available data regarding the transmission of pathogens
from wild birds to humans could be the lack of communica-
tion between physicians and ornithologists. To most effec-
tively decrease the risk of infections associated with wild
birds, the public health and animal health sectors must col-
laborate in developing strategies to decrease human expo-
sure to pathogens carried by wild birds.

An effective public educational campaign could also put
in perspective and clarify myths and realities about the risk
of acquiring infections associated with wild birds. Activities
near geographical areas with extensive wild bird activity
really carry minimal risk especially if people take personal
protective measures for high risk activities such as handling
dead wild waterfowl. Normal behaviour that complies with
general hygienic standards should suffice.
Conclusions

We attempted to summarize the published scientific evi-
dence regarding the direct and indirect roles of wild birds in
transmission of certain infections to humans. Although we
could not fully define this role and it appears that further
research is necessary, several conclusions can be made.
First, there is no real evidence for direct wild birdehuman
transmission besides rare examples occurring under excep-
tional circumstances. Several human infections can theo-
retically be transmitted from wild and migratory birds
although the scientific base for most of the associations
remains speculative. These findings are expected for
zoonoses, which usually require the amplification in an
animal species cycle before spill-over to humans. Wild and
migrant birds are most important in seeding pathogens into
these amplification systems. This explains why most of the
association with transmission from bird to human may
only occur indirectly. On the other hand, there is strong
evidence for the dispersal of pathogens to new geograph-
ical locations by migrating birds but it is largely unknown
how this will affect transmission to humans. The recent
emergence of infections like West Nile virus and influenza
A in various parts of the world is a prominent example of
how rapidly and widely a migratory bird associated disease
can spread. The potential factors and mechanisms involved
in the transmission of such infectious agents from birds to
humans need further elucidation. An in-depth comprehen-
sion of avian migration routes as well as further research
using advanced molecular testing of the prevalence, patho-
genesis, and clinical associations of several pathogens that
are transmitted to humans from the various migratory bird
species would lead to a better understanding of the transmis-
sion dynamics of diseases carried by avian species helping to
predict future outbreaks of relevant human infections.
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