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ABSTRACT OF THE DISSERTATION

Elucidating mechanisms of transcriptional regulation at the genome-scale

by

Stephen A. Federowicz

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2014

Professor Bernhard Palsson, Chair
Professor Wei Wang, Co-Chair

Throughout the course of evolution, almost all organisms have generated complex,

hierarchical, and robust regulatory systems. One major component of these biological

regulatory systems is the transcriptional activation or repression of gene expression. This

regulation is carried out simultaneously across a genome by thousands of biological

components at thousands of individual promoters. The sum total of all of the regulatory

events and their interconnections or overlaps is commonly referred to as the transcriptional

regulatory network. The focus of this thesis is to determine the mechanisms or guiding

principles behind these transcriptional regulatory networks and to provide a basis upon

xv



which predictive mathematical models of these networks can be built. In the first section,

a reconstruction of the full transcriptional regulatory network for a model organism

is presented along with the OME software framework developed to handle the full

complexity of genome-scale datasets and models. In the second section, the mechanisms

of individual regulatory events are elucidated in a massively parallel fashion using ChIP-

exonuclease and the OME framework. This leads to fundamental insights into the nature

of transcriptional initiation complexes for canonical regulators. Finally, in the third

section, an effort is undertaken to determine systems level mechanisms which dictate

the coordinate regulation of hundreds of simultaneous regulatory events in response to

major physiological and metabolic perturbations. Here we show that the two principal

dimensions of a metabolic system, growth and the production of energy, drive not only

the organization of the metabolic network, but also the organization of the transcriptional

regulatory network.
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Chapter 1

Introduction

1.1 Overview

Biological systems, relative to our current understanding, are inherently complex.

Even in the most well studied model organisms, such as E. coli and S. cerevisiae,

many basic questions are unanswered. This lack of understanding is at both the level

of individual cellular components and at the level of overall cellular systems which

emerge from the interaction and networks of individual components. At the level of

individual components, unknowns include (to name a few) the allosteric regulatory sites

of many enzymes[1], the precise functioning of RNA polymerase[2], and the structure-

function relationship between small molecules and many proteins[3]. At the systems

level only basic understandings of pathway organization[4], metabolic fluxes[5], and

some regulatory features [6, 7] exist.

One success at the systems level has come in the field of constraint-based systems

biology for metabolic networks[8, 9, 10]. By reconstructing the precise stoichiometry of

every reaction in a cell and encoding it into a system of linear equations, the fluxes of

all reactions in a cell can be simulated through optimization techniques[11]. Recently,

1
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these basic techniques have been extended to include not just metabolic reactions, but

also the enzymes which catalyze each reaction[12]. These models, called ME models

(Metabolism, Expression) have proved to be incredibly powerful by accounting for the

cost of metabolic reactions (via protein biosynthesis through transcription and translation

reactions of each enzyme gene product) and subsequently improving the predictive power

of genome-scale models.

One long sought addition to metabolic network modeling has been the network of

transcriptional regulation [13, 14, 15, 16, 17, 18, 19] composed of the set of regulatory

proteins which sense internal or external signals and subsequently regulate the expression

levels of genes related to each signal. For three primary reasons, the modeling of this

transcriptional regulatory network has been difficult and remained infeasible outside

of statistical or non-mechanistic modeling approaches. The first main reason is a lack

of a comprehensive regulatory network reconstruction. The second is a lack of basic

knowledge about the process of regulation at individual promoters. The third is a lack of

systems level objectives and constraints which would enable a mathematical formulation

of a regulatory network at the genome-scale.

This thesis aims to address each of these three core issues. We first present two

characteristic works, Chapters 2 and 3, which demonstrate the process of reconstructing

a regulatory network and integrating it with an understanding of metabolic networks. We

then present a formalization of this process with the OME (operational, metabolic, ex-

pression) software framework that enables the reconstruction of full regulatory networks

to addres the first key issue. We next significantly advance the understanding of canonical

transcriptional acivation in Chapter 6 via a detailed analysis of ChIP-exonuclease and

RNA-seq data in E. coli. Finally, we take a few steps forward in our understanding of

the systems level features of regulatory systems in Chapter 7 by showing that the dimen-

sionality of metabolic networks is mirrored in the dimensionality of the transcriptional
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regulatory network.

Figure 1.1: Defining the OME model of a cell. From left to right, the OME model
of a cell starts with a genome sequence and corresponding genomic annotation. Ge-
nomic datasets measuring the transcriptome, transcription start sites, and proteomics
are then mapped onto the genome to generate a full genomic metastructure. From this
information a metabolic network reconstruction along with a full expression machinery
reconstruction is developed. Simultaneously a reconstruction of the transcriptional
regulatory network is developed. A synthesis of the O (operational for transcriptional
regulatory network), M (metabolic network reconstruction), and E (expression ma-
chinery reconstruction) generates the full OME model of a cell. Representing a fully
mechanistic whole cell model.

1.2 Global regulators in E. coli

Transcription factors represent one of the primary means by which an organism

can sense and respond to stimuli. This is done through the detection of intra or extra

cellular small molecules and metabolites which often directly bind a transcription factor
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or propagate a signal through two-component systems. The outcome is the direct and

indirect regulation of a large number or genes which in the case of global transcription

factors often represent a wide diversity of function. The patterns of regulation often

fall into patterns of connected feed-back and feedforward loops in which the levels of

a certain metabolite, element, or molecule will be kept in balance by the activation or

repression of genes which transport, biosynthesize, or utilize the given molecule. This

amounts to charting out the regulatory response in order to define what types of cellular

pathways are regulated.

We experimentally determined the network level mechanisms of transcriptional

response in E. coli by integrating genome wide binding analysis of five global transcrip-

tion factors with associated expression profiling and transcription start site information.

ChIP-chip experiments for ArcA, Fnr, FruR, Crp, Lrp, and ArgR revealed 143, 100, 45,

247, 144, and 61 unique binding regions, respectively. Binding peaks were mapped to

gene expression data generated between a wild type strain and a gene deletion strain for

each of the transcription factors to discern whether a binding event resulted in gene acti-

vation or repression. This allowed us to construct a functional network of transcriptional

regulation that elucidates the response to major environmental stimuli. This includes

the response to oxygen availability mediated by ArcA and Fnr, shifting carbon source

mediated by FruR and Crp, and primary nitrogen source mediated by Lrp and ArgR.

Subsequently, we were able to elucidate core connected feed back loops through which

regulatory information flows and gene expression is systematically controlled.

ArcA or anoxic redox control is intimately linked to the anaerobic response and

has been more recently shown to finely regulate micro-aerobic states[20]. Fnr named

for the fumarate and nitrite reduction mutant phenotype that marked its initial discovery

is also critical for the anaerobic response as it regulates the vast majority of transcripts

encoding enzymes for usage of nitrogen sources as a secondary electron acceptor. FruR
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initially named as a fructose repressor is also known as Cra, or catabolite repressor

activator. FruR was discovered as a cyclic AMP(cAMP) independent component of

catabolite repression. Crp or cAMP receptor protein is one of the most heavily studied

transcription factors in E. Coli which was initially found as the primary mode of catabolite

repression. In general Crp activates a large number of operons which encode pathways

for secondary usage of carbon compounds. While the cell is growing on a primary carbon

source it produces enough cya (adenylate cyclase) so that as soon the TCA cycles starts

to slow down due to a shift towards famine condition the free floating AMP can be turned

into cAMP and thus Crp can turn on the secondary catabolic systems.
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Figure 1.2: Overview of experiments for regulatory network reconstruction. The
overall experimental approach was to elucidate the mechanisms of transcriptional
regulation in response to three core physiological stimuli. This included carbon source,
nitrogen source, and oxygen availibility. These key environmental parameters are
sensed and mitigated by each of the transcription factors (TFs) under consideration.
Cra and Crp are two classically studied TFs which primarily regulate central carbon
metabolism and ensure optimality. ArcA and Fnr are also well studied TFs with central
roles in anaerobic metabolism. ArgR and Lrp are well known for regulation of amino
acid biosynthetic pathways. However, each TF also regulates large numbers of targets
which are seeminly unrelated to its primary roles hence giving them the title of global
regulators.
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1.3 Analogies for systems biology

One common analogy for constraint-based metabolic modeling is that of a net-

work of pipes, roads, or wires. To take the example of pipes, one can imagine the network

of water pipes which flow throughout a city and deliver water from a source in the

mountains to the sinks of each home. This network, even for a small city, will contain

thousands of pipes of various sizes and types that are all configured to carry out the task

of efficiently delivering water when needed. In a cell, this is analgous to the network of

metabolic reactions which exists amoung thousands of small molecule metabolites and

thousands of reactions which can transform one metabolite into another. In a cell the

inputs are nutrient sources (food) which first flow through the catabolic reactions (pipes)

of a cell before branching off into anabolic reactions (pipes) that result in growth, or into

reactions which ultimately produce energy.



Chapter 2

The PurR regulon in Escherichia coli

K-12 MG1655

2.1 Abstract

The PurR transcription factor plays a critical role in transcriptional regulation of

purine metabolism in enterobacteria. Here, we elucidate the role of PurR under exogenous

adenine stimulation at the genome-scale using high-resolution chromatin immunoprecipi-

tation (ChIP)chip and gene expression data obtained under in vivo conditions. Analysis

of microarray data revealed that adenine stimulation led to changes in transcript level of

about 10% of Escherichia coli genes, including the purine biosyn- thesis pathway. The

E. coli strain lacking the purR gene showed that a total of 56 genes are affected by the

deletion. From the ChIPchip analysis, we determined that over 73% of genes directly

regulated by PurR were enriched in the biosynthesis, utilization and transport of purine

and pyrimidine nucleotides, and 20% of them were functionally unknown. Compared to

the functional diversity of the regulon of the other general transcription factors in E. coli,

the functions and size of the PurR regulon are limited.

7
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2.2 Introduction

Metabolism enables a cell to assimilate exogenous nutrients both for energy

generation and for macromolecular synthesis. A set of metabolic pathways directs the

biosynthesis and utilization of nucleotides that is critical for virtually every aspect of

cellular life. Purine and pyrimidine nucleotides constitute a part of the nucleic acids,

cofactors in enzymatic reactions, intracellular and extracellular signals, phosphate donors

and the major carriers of cellular energy [21]. Since the biosynthesis and utilization

of the nucleotides is demanding of cellular resources and plays a broad role in cellular

processes, imbalances between the different nucleotide pools significantly perturb the

normal cellular functions(2,3).

In general, metabolism is tightly controlled by feedback inhibition of enzyme

activity by metabolites and by transcriptional regulation by DNA-binding proteins. The

regulatory action of DNA-binding proteins is also modulated by the exogenous nutrients

as stimuli. Therefore, there is great interest in not only elucidating the set of genes

under regulation by the same stimuli (defined as a stimulon), but also identifying the

collection of genes under regulation by the same regulatory protein (defined as a regulon).

In the case of purine nucleotide metabolism in Escherichia coli, purine repressor (PurR)

tightly regulates transcription of the enzymes involved in inosine 50-monophosphate

(IMP) biosynthesis and the conversion of IMP to adenosine monophosphate (AMP) and

guanosine monophosphate (GMP)(2). The regulatory action of PurR on target genes is

modulated by the binding of the small effector molecules [hypoxanthine (Hx) or guanine]

and in effect endows PurR with the ability to affect transcriptional regulation [22]. In

other words, upon availability of purine nucleotides from the environment, the activity of

PurR can be enhanced to repress the expression of target genes. However, little is known

about in vivo PurR-binding events and their causal relationships with gene expression at
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the genome scale in the presence or absence of purine nucleotides. Such information is

needed to reconstruct the PurR regulon and to understand purine metabolism.

The E. coli transcriptional regulatory network is believed to have a hierarchical

topology with several global transcription factors (TFs) at the top-level [23, 24, 25]. The

global TFs were specified by the multiple functional categories of the genes regulated.

By contrast, specific TFs restrict their target genes to the same metabolic pathways or

the same functional categories [24]. Previously, PurR was classified into the group of

general TFs; however, due to the lack of information on target genes in its regulon, the

understanding of the role of PurR is limited. In particular, it is unclear whether its effects

on E. coli metabolism are direct or indirect. If the effects are indirect, it is also unclear

whether the indirect effects are made through other TFs or other metabolites.

In this study, we obtain and integrate genome-scale data from chromatin im-

munoprecipitation (ChIP)chip and gene expression profiling to elucidate the regulatory

role of PurR at a genome scale. First, using changes in transcript levels on a genome

scale, we defined the adenine stimulon from comprehensively established sets of genes

differentially expressed in response to exogenous adenine. Second, we used the purR

deletion mutant to determine the PurR-dependent genes affected by the deletion mutant.

Third, we set out to comprehensively establish the PurR-binding regions on the E. coli

genome experimentally to further elucidate any DNA sequence motif correlated with the

PurR regulatory action. Fourth, we determined the regulatory action of PurR based on

the causal relationships between the association of PurR and changes in transcript levels.

In the end, the reconstruction of the regulatory network of PurR allows us to understand

the role of the PurR regulon as a part of the broader adenine stimulon. The results show

that the role of PurR regulon is locally acting but its effect on the entire metabolism is

critical in response to the exogenous purine stimulation.
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2.3 Results

2.3.1 Determination of gene expression changes to exogenous ade-

nine

To characterize the changes in gene expression with exposure to exogenous

adenine, global transcriptome analyses were performed using DNA microarrays. Es-

cherichia coli strain K-12 MG1655 (wild type) was grown in M9 medium supplemented

by 100mg/ml adenine. Samples were removed from the culture with and without adenine

stimulation and used for the extraction of total RNA. Analysis of the DNA microarray

datademonstrated that exogenous adenine stimulation led to changes in transcript level of

about 10% of E. coli genes (Supplementary Table S1). Those include the upregulation of

144 genes and downregulation of 255 genes with more than 2-fold expression change

and P-value ¡0.05. As previously well described (2), all of the genes associated with

the purine biosynthesis pathway were repressed by the addition of adenine. Among

them, purD encoding phosphoribosylamineglycine ligase showed the highest repression

factor (43.89-fold) (Supplementary Table S2). Interestingly, adenine addition led to

the high downregulation of several transporter genes, including codB, xanP, yeeF and

uraA encoding cytosine transporter (34.52-fold), xanthine NCS2 transporter (20.12-fold),

amino acid APC transporter (18.61-fold) and uracil NCS2 transporter (17.64-fold).

A significant portion of the genes downregulated by adenine addition is associated

with the pyrimidine and amino acid biosynthetic pathways. In particular, the downreg-

ulation of genes comprising the arginine biosynthetic pathway clearly demonstrates

that the purine metabolism links to the in vivo level of arginine in order to regulate the

biosynthesis of deoxyribonucleic and ribonucleic acid[26]. On the other hand, the highly

induced genes by adenine stimulation were involved in other various cellular processes

(Supplementary Table S2). Among them, ydhC encoding drug MFS transporter had the
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highest activation factor (193.55-fold). Of interest, two non-coding RNAs, gcvB and

rybB, were induced by a factor of 34.37 and 5.92, respectively. Previous studies showed

that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels

of alternate sigma factor, RpoS[27]. Another alternate sigma factor, RpoE-dependent

RybB, regulates the synthesis of major porins in E. coli[28]. Among genes in purine

salvage pathways, add encoding adenosine deaminase was induced by adenine as well

(17.61-fold) (2). The genes in thiamine and biotin biosynthesis pathways were also

induced by the exogenous adenine. These observations demonstrate that a large number

of the downregulated genes related with purine and pyrimidine biosynthesis and transport,

arginine biosynthesis and ATP synthesis coupled with proton transport form a major

portion (64%) of the adenine stimulon.

2.3.2 PurR-dependent transcriptome response to the exogenous ade-

nine

Next, we studied the global response of a purR deletion mutant to adenine

stimulation to identify PurR-dependent genes (Supplementary Table S1). To address this

issue, we isolated total RNA from the isogenic purR deletion mutant during exponential

growth phase and hybridized the cDNA obtained from the total RNA onto Affymetrix

microarrays. A comparison of the gene expression levels between cells grown in the

presence and absence of the PurR protein in response to the exogenous adenine revealed

that a total of 56 genes exhibit differential expression with more than 2-fold change and

a false discovery rate (FDR) value ¡0.05 (P-value = 0.0056) from analysis of variance

(ANOVA) analysis (Supplementary Table S3).

Nineteen genes (34%) showed increased transcript levels in response to the

exogenous adenine due to regulation by PurR (Supplementary Table S3). None of these

19 genes has been previously reported to be directly regulated by PurR. On the other
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hand, transcription of the 37 genes (66%) was repressed by PurR. Eleven genes of the

IMP (inosine 5-monophosphate) biosynthetic pathway from PRPP (5-phosphoribosyl-

1-pyrophosphate) clustered into this group. It has been previously determined that 10

of them were directly repressed by the PurR protein (1624). Eight genes in pyrimidine

bio- synthesis and transport pathways were directly or indirectly regulated by the PurR

protein, that include carA, carB, pyrB, pyrI, pyrC, pyrD, codA and codB. It has been

experimentally determined that four of them (carA, carB, pyrD and pyrC) were directly

repressed by the PurR [29, 30, 31, 32, 33]. Transcription of yieG (2.91-fold), xanP (30.82-

fold), and uraA (2.04-fold) encoding adenine, xanthine and uracil transporter, respectively,

were also affected by the purR deletion, indicating direct or indirect regulatory effect

of the PurR protein on the adenine and uracil transport systems [34]. Transcriptional

repression of genes in arginine biosynthesis pathway (argA, argB and argC) is potentially

mediated by the PurR protein. Interestingly, acid stress response genes (hdeB, hdeA and

hdeD) decreased expression in a purR deletion mutant. Consistent with this observation,

the level of messenger RNA (mRNA) transcript of gadY, a regulatory small RNA that is

highly upregulated by low pH [35], was affected by the purR deletion. A hallmark of the

E. coli response to the exogenous adenine is the rapid and strong repression of a set of

genes in purine biosynthesis pathway. The observed repression of all of these genes in

the wild-type strain, but not the purR deletion mutant, provided an internal validation of

the microarray experiment.

2.3.3 Genome-wide identification of PurR regulon

PurR-binding regions have been characterized by in vitro DNA-binding experi-

ments and mutational analysis; however, direct analysis of in vivo PurR binding is not

available. We thus employed the ChIP coupled with microarrays (ChIPchip) approach to

determine the in vivo PurR-binding regions in E. coli cells under either the presence or
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Figure 2.1: Genome-wide distribution of PurR-binding regions. (A) An overview
of PurR-binding profiles across the E. coli genome at exponential growth phase in
the presence (blue) or absence (red) of exogenous adenine. Black and white dots
indicate previously known and newly found PurR-binding regions, respectively. (B)
Determination of genuine PurR-binding regions on the selected regions. Promoter
regions of carAB, purC, yfgO/yfgC and purM are occupied by PurR at exponential state.
The peak height of the identified PurR-binding region is the log 2 enrichment ratio
calculated from Cy5 (IP DNA) and Cy3 (mock IP DNA) signal intensity of the probe
corresponding to the identified region. (C) Overlaps between PurR-binding regions of
exponential phase in the presence (blue) and absence (red) of adenine. (D) Sequence
logo representation of the PurRDNA binding profile. (E) Comparison of ChIPchip
results and gene expression profiles.
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the absence of exogenous adenine (Figure 1).

We performed a hybridization of the immunoprecipitated DNA (Cy5 channel)

and mock immunoprecipitated DNA (Cy3 channel) onto the high-resolution whole-

genome tiling microarrays, which contained a total of 371034 oligonucleotides with

50-bp tiles overlapping every 25bp on both forward and reverse strands [36, 37]. The

normalized log2 ratios obtained from the hybridization identify the genomic regions

enriched in the IP-DNA sample compared with the mock IP-DNA sample and thereby

represent a genome-wide map of in vivo interactions between PurR protein and E. coli

genome (Figure 1A). Using a peak finding algorithm, 35 and 13 unique and reproducible

PurR-binding regions were identified from the hybridizations in exponential phase in the

presence and absence of adenine, respectively (Table 1).

The genome-wide PurR-binding maps obtained from two different conditions, i.e.

exponential growth phase in the presence and the absence of exogenous adenine, indicated

that the PurR association on the E. coli genome is dramatically sensitive to the addition

of adenine. For instance, PurR occupancy for the promoter regions of carAB, purC and

purMN transcription units showed a great differential ratio between those two conditions

(Figure 1B, Table 1). At the previously characterized PurR-binding promoter regions

of pyrD, purB, purR, cvpA-purF-ubiX, guaBA, purL and purHD, we only observed the

PurR-binding in the presence of exogenous adenine. Only 37% of binding sites (13 of

35) overlapped under the conditions in the absence and presence of exogenous adenine,

and 62% of binding sites (22 of 35) were found in the presence of exogenous adenine

(Figure 1C). Adenine can be converted to IMP through the intermediate formation of

adenosine, inosine, and Hx catalyzed by purine nucleoside phosphorylase (deoD) and

adenosine deaminase (add)(2). Thus, this observation indicates that the addition of

exogenous adenine increased in the intracellular level of Hx, which led to the formation

of the PurRHx complex that functions in transcriptional regulation[22]. A total of 22
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new PurR-binding regions were identified in this study, whose roles were involved in

various cellular processes (Table 1). Prior to this study, 15 PurR-binding regions had been

characterized by DNA-binding experiments in vitro and mutational analysis in vivo, 87%

(13 of 15) of which were identified in this study (transcription units in bold characters in

Table 1). The exceptions were pyrC and glnB promoters, whose cellular functions are

related to the pyrimidine biosynthesis and nitrogen metabolism, respectively. It is unclear

why those PurR-binding regions were missed from our analysis.

We next assessed the locations of the PurR-binding regions against the current

annotated genome information[36]. The PurR-binding regions were observed only within

intergenic (i.e., promoter and promoter-like) regions. Therefore, there exists a strong

preference for the PurR-binding target to be located within the noncoding intergenic

regions, similar to that observed for Lrp-binding sites[37]. To identify common DNA

sequence motifs of the PurR-binding regions, we used the MEME suite tool[38]. The

sequences of PurR-binding regions were used to generate the position specific probability

matrix and to rescan the entire genome with the FIMO program. We then analyzed only

those sites which were located in the PurR-binding regions and fell below a stringent

cut-off (P-value ¡0.0001). This revealed a total of 28 conserved sequences spread across

35 binding regions (Table 1). The identified sequence motif (ACGNAAACGTTTGCNT)

was consistent with the previously characterized 16-bp palindromic binding site of the

PurR (Figure 1D) (2). Based on the fact that the increase in the intracellular adenine

levels enhances PurR binding to its DNA targets and the coverage of the known binding

regions in our data, we concluded that PurR-binding regions identified here are bona fide

binding sites.
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2.3.4 Genome-scale determination of causal relationship

Currently, a total of 22 genes have been characterized as members of PurR regulon

to be directly repressed by PurR (33). From our ChIPchip analyses, we significantly

expanded the size of the PurR regulon to comprise 53 target genes (Table 1). To determine

the causal relationships between the binding of PurR and the changes in RNA transcript

levels of genes in the PurR regulon, we integrated the information on the binding regions

of PurR with transcriptomic analysis. Among 53 target genes in PurR regulon determined

by ChIPchip analyses, we determined 23 genes (43%) differentially expressed in response

to the purR deletion and the addition of exogenous adenine with more than a 2-fold

change and an FDR value ¡0.05 (P-value=0.0056) from ANOVA analysis (Figure 1E

and Supplementary Table S4). The genes directly repressed by PurR in response to the

exogenous adenine (23 genes) include codB, codA, purT, xanP, yieG,pyrL, pyrB and pyrI

encoding cytosine NCS1 transporter, cytosine deaminase, phosphoribosylglycinamide-

formyltransferase, xanthine NCS2 transporter, adenine transporter, PyrL leader peptide,

aspartate carbamoyltransferase and aspartate carbamoyltransferase regula- tory subunit,

respectively, as newly found members.

The remaining 57% of the genes had a direct association with PurR, lacking

significant changes in RNA transcript levels. The cellular functions of most of the remain-

ing genes were not clustered in purine and pyrimidine metabolic pathways, indicating

that the changes in their transcript levels require additional regulatory signals such as

transcription factors. Surprisingly, none of the genes were directly activated by PurR.

On the contrary, PurR completely represses target genes involved in the IMP biosyn-

thetic pathway. This suggests that most of the repression is a direct interaction, but the

transcriptional activation is indirect (Supplementary Tables S1, S3 and S4).

In general, the PurR-binding sites are located in the promoter region between

position 35 and 10 promoter elements, indicating that the binding of PurR regulates
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transcription initiation (2). In the case of purB and purR, PurR binds to the open reading

frame so that it blocks transcription elongation[39]. Therefore, the binding position of

PurR is of great interest in order to understand its regulatory mechanism. We calculated

the distance between PurR-binding motifs and the transcription start sites (TSSs) based

upon the TSSs recently published[36]. Of 32 promoter regions directly regulated by

PurR, 14 regions (44%) include the PurR-binding motif between 10 and 35 promoter

elements.

A

B

C

D

Figure 2.2: Metabolic pathways directly regulated by PurR and its regulatory
motif. (A) Formation of PurRhypoxanthine complex. (B, C) The purine and pyrimidine
biosynthesis pathways. The genes directly regulated by PurR are depicted by bold
characters. Red arrows show the PurR-mediated repression. Broken arrows indicate the
transporters. (D) Schematic diagram for the regulatory motif reconstruction in feedback
loop.

2.3.5 Metabolic pathways directly regulated by PurR–Hx complex

Purine nucleotide metabolism plays a critical role in various cellular activities.

To identify the metabolic pathways regulated by PurRHx complex, the members of

PurR regulon were functionally classified and further mapped to the E. coli metabolic

pathways (Figure 2). The genes with direct PurR association lacking changes in tran-



18

script levels were classified into other cellular functions. However, the genes directly

repressed by PurR in response to the exogenous adenine clustered mainly into purine and

pyrimidine metabolic pathways. First, PurR directly autoregulates itself and generates

PurRHx complex in the presence of Hx or adenine (Figure 2A). Second, PurR completely

regulates purine transport, biosynthesis, salvage and interconversion pathways (Figure

2B). Interestingly, PurR directly regulates serine transport and metabolic pathways to

produce N10-formyltetrahydrofolate (N10-FTHF), which is an intermediate for the IMP

biosynthetic pathway. In addition, we found that PurR directly represses xanthine (xanP),

purine nucleoside (tsx) and adenine (yieG) transporters. Although the transporter for Hx

is currently unknown, xanthine transporter is unable to transport Hx [40]. Lastly, PurR

downregulates the genes in pyrimidine biosynthetic and transport pathways (Figure 2C).

Most of the genes having direct PurR association with differential gene expression were

enriched into purine and pyrimidine metabolic pathways. Interestingly, none of genes

involved with purine utilization, such as apt, deoD and add, are directly regulated by

PurR.

2.4 Discussion

We determined the PurR regulon in E. coli in response to the exogenous adenine

stimuli by integrating genome-scale location analysis and gene expression profiles. The

genome-wide map of PurR-binding sites presented here not only confirms previously

characterized binding sites (15 regions) but also expands the number of known binding

sites (35 regions) to a genome-wide assessment; similar to what we previously reported

for Lrp- and Fis-binding sites [41, 37]. From the genome-wide mapping results, we

were also able to show that: (i) a total of 35 PurR-binding regions were identified, all of

which were located within noncoding regions, showing the strong binding preference of
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PurR-binding to the promoter and promoter-like regions; (ii) only 37% of binding sites

(13 of 35) overlapped under the conditions in the absence and presence of exogenous

adenine, indicating that PurR bindings to the E. coli genome are dramatically sensitive

to the addition of exogenous adenine (or hypoxanthine); (iii) the integration of these

results with mRNA transcript level information indicates that the functional assignment

of the regulated genes is strongly enriched in the purine and pyrimidine metabolism-

related functions. In addition, most of the genes were thoroughly repressed by PurR.

Interestingly, the other genes directly bound by PurR lacking differential expression

in response to the purR deletion or the exogenous adenine were functionally diverse;

and (iv) the PurR-binding motifs were observed at the regions of 10 and 35 promoter

elements, indicating PurR regulates transcription initiation.

We discovered PurR-binding regions from the promoter regions of codBA, purT,

xanP, yieG and pyrLBI with the differential gene expression. First, PurR directly regulates

the de novo biosynthesis of pyrimidine. Among the genes in the biosynthetic pathway,

codB and codA encode a cytosine transporter belonging to the NCS1 family of purine

and pyrimidine transporters and a cytosine deaminase metabolizing cytosine to uracil

and ammonia, respectively. In addition, PurR directly regulates pyrB and pyrI, encoding

catalytic and regulatory subunits of aspartate transcarbamylase (ATCase), respectively,

catalyzing the first reaction of the de novo biosynthesis of pyrimidine nucleotides. Con-

sidering that PurR represses carA, carB, pyrC and pyrD, the very early steps of de novo

pyrimidine biosynthesis and transport are tightly regulated by PurR in response to exoge-

nous adenine. Interestingly, RutR, the uracil responsive transcription factor, binds to the

promoter region of carAB[42]. Although Shimada and co-workers demonstrated that the

RutR binding site plays little or no role in the regulation of transcription, it may have an

additional regulatory role along with other proteins. In the carAB promoter, at least five

regulatory proteins (IHF, PepA, PurR, RutR and ArgR) are involved in the purine, pyrim-
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idine and arginine-specific control of the promoter activity [32]. The complexity of the

multicomponent regulatory mechanisms modulating carAB transcription shows the need

for a cellular balance between the synthesis of pyrimidine and purine residues. Second,

PurR directly regulates the transport of purine nucleotides. We observed PurR-binding

peaks at the upstream regions of xanP, mdtL and yieG with differential gene expression

in response to the exogenous adenine. Interestingly, PurR-binding peaks were observed

for xanP and mdtL in the absence of exogenous adenine but not for yieG, suggesting that

the yieG encodes a high-affinity transport system for adenine, which is dispensable in the

presence of excess substrate. It has been suggested that another adenine transport system

close to the genomic position of yieG operates at low affinity and is not energy dependent

[34]. However, it has not been discovered which gene has the adenine transport function

with low affinity. Here, we found that mdtL encoding drug MFS transporter is directly

repressed by PurR and located close to yieG (4.5 kb), indicating that mdtL might be

responsible for the low-affinity adenine transport. Thus, the purine transport system of

the PurR regulon can be composed of two high-affinity transporters (xanP and yieG) and

one low-affinity transporter (mdtL).

Transcriptional regulatory systems often regulate the formation rates and the

concentration of small molecules by feedback loops that regulate the transport, biosyn-

thesis and metabolic enzymes [36, 43]. Since adenine can be utilized by apt, encoding

adenine phosphoribosyl-transferase, we were able to connect transport, biosynthesis and

metabolic feedback loop pairs (Figure 2D). In the left loop, PurRHx complex represses

the transcription of the transport proteins (T) for purine (xanP and yieG) and pyrimidine

(codB), and biosynthetic proteins (B) for IMP (purEK, purB, purT, purF, purC, purMN,

purl and purHD) and UMP (carAB, codA, pyrBI and pyrCD), reducing the influx of the

purine or pyrimidine molecules (Pin) from the media (Pout) and precursors (Ppre). In the

right loop, metabolic enzyme (U) responsible for converting Pin into metabolites (M)
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is not directly regulated by PurRHx complex; however, its transcript level is reduced

by the exogenous adenine. Thus, the logical structure of the connected feedback loop

(CFL) motif described by a notation that uses three signs indicating repression (R) or

activation (A) for each of T, B, and U can be R-R-R. In the previous studies[37, 43], the

B component (i.e. biosynthesis) was not included in the logical structures. The R-R-R

motif demonstrates that the influx and efflux are repressed for flow homeostasis[43],

which means that the exogenous adenine cannot be utilized as nutrient molecules. In the

case of nutrient molecules and homeostasis, the logical structures of CFL would have

been A-A/R-A and R-A/ R-A, respectively[43]. Since the R-R-R motif is uncommon

for the regulation of small molecules in living cells, transcriptional regulatory networks

for maintaining the levels of the purine and pyrimidine molecules may be more complex

than previously thought.

Previously, the PurR was classified into the group of general TFs based on the

functional diversity of the genes in its regulon[24]. Compared to the other general TFs in

E. coli such as Fnr [44], Crp[45] and Lrp[37], the functions and size of the PurR regulon

are limited. However, cellular functions of the genes are highly enriched into the purine

and pyrimidine transport and biosynthesis, indicating that the direct effect of PurR on

the E. coli metabolism is local, but via the balance of cellular purine content, it plays a

critical role in metabolism. Now we may need to select a new list of global transcription

factors in E. coli.

2.5 Materials and Methods

2.5.1 Bacterial strains and growth conditions

All strains used are E. coli K-12 MG1655 and its derivatives. The E. coli strain

harboring PurR-8myc was generated as described previously [46]. Deletion mutant (purR)



22

was constructed by a Red and FLP-mediated site-specific recombination system [47].

Glycerol stocks of E. coli strains were inoculated into M9 minimal medium supplemented

with 2 g/l glucose and cultured overnight at 37C with constant agitation. The cultures

were inoculated into 100 ml of the fresh M9 minimal medium in either the presence or

absence of 100 mg/ml adenine and continued to culture at 37C with constant agitation to

mid-log phase.

2.5.2 Transcriptome analysis

Samples for transcriptome analyses were taken from exponentially growing cells.

From the cells treated by 2 vol of RNAprotect Bacteria Reagent (Qiagen), total RNA

was isolated using RNeasy kit (Qiagen) with DNaseI treatment in accordance with

manufacturers instruction. AffymetrixGeneChipE. coli Genome 2.0 arrays were used

for genome-scale transcriptional analyses. Complementary DNA (cDNA) synthesis,

fragmentation, end-terminus biotin labeling and array hybridization were performed as

recommended by Affymetrix standard protocol. Raw CEL files were analyzed using

robust multi-array average for normalization and calculation of probe intensities.

2.5.3 ChIP and microarray analysis

To identify PurR-binding regions in vivo, we isolated the DNA bound to PurR

protein by ChIP. Cultures at mid-log phase were cross-linked by 1% formaldehyde at

room temperature for 25min. After cell lysis and sonication, the cross-linked DNA-

PurR complex was immunoprecipitated by using the specific antibody against myc-tag

(9E10, Santa Cruz Biotech) and Dynabeads Pan Mouse IgG magnetic beads (Invitrogen)

followed by stringent washings as described previously[41]. After reversal of the cross-

links by incubation at 65C overnight, the samples were treated by RNaseA (Qiagen) and



23

proteaseK (Invitrogen) and then purified with a PCR purification kit (Qiagen). Then,

the amplified ChIP DNA samples were labeled and hybridized onto whole-genome tiled

microarrays (Roche-NimbleGen).

2.5.4 Data analysis

To identify PurR-binding regions, we used the peak finding algorithm built into

the NimbleScanTM software. Processing of ChIPchip data was performed in three

steps: normalization, IP/mock-IP ratio computation (log base 2), and enriched region

identification. The log2 ratios of each spot in the microarray were calculated from the

raw signals obtained from both Cy5 and Cy3 channels, and then the values were scaled

by Tukey bi-weight mean. The log2 ratio of Cy5 (IP DNA) to Cy3 (mock-IP DNA) for

each point was calculated from the scanned signals. Then, the bi-weight mean of this

log2 ratio was subtracted from each point. Each log ratio dataset from triplicate samples

was used to identify PurR-binding region using the software (width of sliding window

= 300 bp). Our approach to identify the PurR-binding regions was to first determine

binding locations from each data set and then combine the binding locations from at least

five of the six data sets to define a binding region[36].

2.5.5 Motif searching

The PurR-binding motif analysis was completed using the MEME and FIMO

tools from the MEME software suite[38]. We first determined the proper binding motif

and then scanned the full genome for its presence. The elicitation of the motif was done

using the MEME program on the set of sequences defined by the PurR-binding regions.

Using default settings, the previously determined PurR motif was recovered and then

tailored to the correct size by setting the width parameter to 16bp. We then used these
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motifs and the PSPM (position specific probability matrix) generated by MEME to rescan

the entire genome with the FIMO program.
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Chapter 3

Deciphering the transcriptional

regulatory logic of amino acid

metabolism

3.1 Abstract

Although metabolic networks have been reconstructed on a genome-scale, the

corresponding reconstruction and integration of governing transcriptional regulatory

networks has not been fully achieved. Here we reconstruct such an integrated network for

amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression

data for the transcription factors ArgR, Lrp, and TrpR showed that 19/20 amino acid

biosynthetic pathways are either directly or indirectly controlled by these regulators.

Classifying the regulated genes into three functional categories of transport, biosynthesis,

and metabolism leads to elucidation of regulatory motifs constituting the integrated

networks basic building blocks. The regulatory logic of these motifs was determined

based on the relationships between transcription factor binding and changes in transcript

25
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levels in response to exogenous amino acids. Remarkably, the resulting logic shows how

amino acids are differentiated as signaling and nutrient molecules, and thus revealing the

overarching regulatory principles of this stimulon.

3.2 Introduction

Transcriptional regulatory networks (TRN) in bacteria govern metabolic flexibility

and robustness in response to environmental signals[48]. Thus, causal relationships

between transcript levels for metabolic genes and the direct association of transcription

factors (TFs) at the genome-scale is fundamental to fully understand bacterial responses

to their environment [14, 37]. In particular, the molecular interaction between small

molecules ranging from nutrients to trace elements and TFs governs the TRN and

ultimately regulates the related metabolic pathways. From the causal relationships, a

small set of recurring regulation patterns, or network motifs [37, 49] were identified

and reconstructed to describe the design principles of complex biological systems. One

primary discovery from this effort was the connected feedback circuit which coordinates

influx (biosynthesis and transport) and efflux (metabolism) pathways that are jointly

regulated by a TF sensing the relevant small molecule[37]. For example, a part of the

global TRN is comprised of certain TFs (ArgR, Lrp, and TrpR) that sense the presence of

exogenous amino acids (arginine, leucine, and tryptophan, respectively) and, in response,

regulate the expression of a number of target genes5. Upon addition of these amino

acids to the environment, the TFs exhibit enhanced, reversed, or unaffected regulatory

modes[37, 50, 51, 52]. These TF responses make these amino acids not just nutrients but

also signaling molecules[53].

Previously discovered network motifs[37, 49] represent a significant step forward

in our understanding of complex biological behavior. However, they fail to appropri-
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ately elucidate the system wide response since they were either based upon incomplete

information[49], or were only specific to a single transcription factor and regulon[37].

This has resulted in an inability to appropriately understand complex regulatory phe-

nomena existing across multiple transcription factors and regulatory signals. Hence, it is

necessary to achieve a full elucidation of these interactions with systematic and integrated

experimental analysis.

Comprehensive elucidation of the causal relationships between transcription

factors and genes is achievable by integrated analysis of expression data obtained from

microarray or sequencing (e.g., RNA-seq)[54] with direct TF-binding information from

chromatin immunoprecipitation coupled with microarrays or sequencing (ChIP-chip

or ChIP-seq)[37, 55]. Here we obtain and integrate genome-scale expression profiling

and ChIP-chip for each TF to reconstruct regulons involved in amino acid metabolism

at the genome-scale. The elucidated regulatory logic falls into two categories that

differentiate the role of amino acids as signaling and as nutrient molecules. Therefore,

the reconstruction of the regulatory logic of the network motif allows us to establish the

physiological role of each TF regulon and to determine how they govern amino acid

regulation in E. coli. The integration of these multiple regulons into a unified network

led to the first full bottom-up genome-scale reconstruction of a stimulon.

3.3 Results

3.3.1 Genome-wide identification of TF-binding regions

ArgR, Lrp, and TrpR are TFs involved in amino acid metabolism in E. coli[50,

51, 56] responding to arginine, leucine, and tryptophan, respectively. The binding of the

small effector molecule (here being the amino acids) to these TFs carries out the genomes

regulatory code by enhancing or decreasing the TFs affinity for a specific genomic
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region and concurrently modulating the transcription of downstream genes. In the case

of Lrp, the direct analysis of in vivo binding was fully described[37] using chromatin

immunoprecipitation coupled with microarrays (ChIP-chip) experiments. A total of 141

binding regions were analyzed, representing coverage of 74% of the previously identified

regions[37]. However, similar genome-scale data for the other two major TFs in amino

acid metabolism, ArgR and TrpR were unavailable. To determine their binding regions

on a genome-wide level in an unbiased manner, we employed the ChIP-chip approach

to E. coli cells harboring 8myc-tagged ArgR or TrpR protein[46]. The resulting log2

ratios obtained from the ChIP-chip experiments identify the genomic regions enriched in

the IP-DNA sample compared with the mock IP-DNA sample and thereby represent a

genome-wide map of in vivo ArgR- and TrpR-binding regions (Fig. 1a).

Using a previously described binding region detection algorithm[36] 61 and 8

unique and reproducible ArgR- and TrpR-binding regions were identified, respectively

(Supplementary Table 1 and Supplementary Table 2). The 61 ArgR-binding sites detected

included 13 sites previously characterized by DNA-binding experiments in vitro and

mutational analyses in vivo[57, 58]. For example, the ArgR-arginine complex transcrip-

tionally represses gltBD, artPIQM operon, and artJ gene encoding arginine transport

systems[59, 60]. Our results confirmed that the ArgR-arginine complex binds to each of

these promoter regions (Fig. 1b). In addition, the ArgR occupancy level at the promoter

of the artJ gene is greater than that of artPIQM operon in the presence and absence of

exogenous arginine (Supplementary Table 1). This result is in good agreement with the

de-repression/repression ratio of 28 for PartJ and 3.2 for PartP previously reported for

repressibility of the artJ and artP promoters18. Also, this result is consistent with recent

microarray and qPCR experiments showing a significant arginine and ArgR-dependent

down-regulation of both the artJ (about 50-fold) and artPIQM mRNA levels (about three

to six-fold)[59]. In the case of TrpR, a total of five associations have been determined by
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DNA-binding experiments in vitro and mutational analyses in vivo[51, 61] all of which

were also identified in our study (Fig. 1a and Supplementary Table 2). For instance,

TrpR directly binds to the promoter regions of aroH and mtr involved in biosynthesis and

transport of aromatic amino acids (Fig. 1b). Against the current genome annotation[36],

all of the ArgR- and TrpR-binding regions were observed within intergenic regions, i.e.,

promoter and promoter-like regions. The same preference was observed for Lrp-binding

sites (Supplementary Table 1 and 2)[37]. DNA sequence motifs for each of the transcrip-

tion factors were also re-derived based solely upon the ChIP binding regions and were in

full agreement with previously described motifs (Supplementary Fig 2). Based on the

fact that the increase in the intracellular arginine and tryptophan levels enhances ArgR

and TrpR binding to its DNA targets 20 [62], the confirmation of previously discovered

sequence motifs, and the full coverage of the known binding regions in our data we

concluded that ArgR- and TrpR-binding regions identified here are bona fide binding

sites.

Interestingly, as with gltBD, artPIQM, potFGHI, and mtr (Fig. 1b), we observed

that Lrp directly binds to nine ArgR- and one TrpR-binding regions (Fig. 1c and Supple-

mentary Fig. 1). For example, the direct binding of Lrp to the promoter region of the

gltBD operon encoding glutamate synthase resulted in the activation of its transcription.

In contrast, the role of ArgR-binding represents the negative regulation of the operon.

Integrating binding regions and changes in transcript levels, the reciprocal mode3 in the

transcriptional regulation of ArgR and Lrp was observed for cellular functions including

putrescine transport (potFGHI), arginine transport (artPIQM), leucine response protein

(lrp), arginine biosynthesis and utilization (argA and astCADBE), the formation of nu-

cleoid (stpA), as well as glutamate biosynthesis and transport (gltBD and gltP). While

Lrp activates the tryptophan transport (mtr), TrpR represses its transcription. In addition

to confirming previously identified ArgR- and TrpR-binding regions, we found 48 and 3
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Figure 3.1: Genome-wide distribution of ArgR- and TrpR-binding regions (regu-
latory code analysis). (a) an overview of argR- and TrpR-binding profiles across the E.
coli genome in the presence of exogenous arginine (blue track) and tryptophan (yellow
track). Enrichment fold on the y axis was calculated from Cy5 (IP Dna) and Cy3 (mock
control) signal intensity of each probe and was plotted against each location on the 4.64-
Mb E. coli genome. Circles indicate previously identified (black) and newly determined
(white) binding regions. Bold targets indicate previously identified binding regions. (b)
Examples of genuine argR- (blue track), TrpR- (yellow track) and lrp-binding (green
track) areas on the selected regions. The gltBD operon is regulated by both argr and lrp,
whereas the aroH gene is regulated solely by TrpR, and mtr by both TrpR and lrp. Both
argr and lrp regulate the potFGHI and artPIQM operons; however, only argr regulates
artJ. (c) overlaps between argR-, lrp- and TrpR-binding regions.
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novel ArgR- and TrpR-binding regions, which include the promoter region of potFGHI,

encoding putrescine ABC transporter (Fig. 1b).

3.3.2 Identification of regulons: topological analysis

A regulon is defined as a group of genes whose transcription is controlled by

a transcriptional regulator. The arginine regulon describing the genetic and regulatory

organization of the genes involved in arginine biosynthesis in E. coli was used as an

example in proposing the definition of the regulon in 1964 [59, 63]. However, it has not

been included in the definition of regulon whether each regulation is direct or indirect. So

far, a total of 37, 56, and 10 genes have been characterized as members of regulons directly

regulated by ArgR, Lrp, and TrpR, respectively[57][58]. Based upon regulatory codes

described above, we significantly extended the size of these regulons and obtained 140,

283, and 15 target genes for each regulon. Since ArgR directly controls the transcription

of lrp, the regulon size of each transcription factor can be described as ArgR (423) ¿ Lrp

(283) ¿ TrpR (15). These regulons represent a hierarchical structure that can be used to

identify the indirect effect of the TFs. For example, thrLABC operon involved in the

threonine biosynthesis is directly activated by Lrp, either in the absence or presence of

exogenous leucine. We observed that ArgR indirectly represses this operon in response

to exogenous arginine; i.e., transcriptional repression without the direct binding of ArgR.

It is therefore possible to partially elucidate the indirect regulation by ArgR based on the

hierarchical regulatory network. ArgR represses Lrp leading to the indirect repression

of the thrLABC operon. As shown in this example, integrated analysis of ChIP-chip

and expression profiles allows us to fully understand the hierarchical TRN including the

indirect regulatory effects.

Next, we classified the 438 target genes based on their functional annotation and

found that most of these functions (8̃2%) were assigned to amino acid metabolism and



32

Amino acid metabolism

0 40 80 120

Membrane transport
Carbohydrate metabolism

Energy metabolism

Glycan biosynthesis and metabolism
Nucleotide metabolism

Metabolism of cofactors and vitamins
Lipid metabolism

Biosynthesis of other secondary metabolites

Signal transduction
Translation

Others

82%

Xenobiotics biodegradation and metabolism

Gene

Fig. 2

Figure 3.2: Functional classification of genes directly regulated by ArgR, Lrp
and TrpR. The functions of regulon members are strongly enriched in amino acid
metabolism, carbohydrate metabolism, membrane transport (mostly amino acid related)
and energy metabolism (yellow bars).
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transport, as well as carbohydrate, nucleotide, and energy metabolism (Fig. 2). We are

then able to show (Fig. 3) that 19/20 amino acid biosynthetic pathways are directly or

indirectly controlled by these three TFs. To do this we first mapped the directly regulated

genes to known amino acid biosynthetic pathways and transport systems to determine

their direct metabolic roles (Fig. 3a, b). ArgR directly regulates the transcription of all

genes involved in the biosynthesis of arginine and histidine. It also regulates gltBD, aroB,

aroK, and dapE involved in glutamate, aromatic amino acids, and lysine biosynthesis,

respectively. The genes encoding the enzymes for the biosynthesis of branched chain

amino acids are comprehensively regulated by Lrp, which also controls the transcrip-

tion of gltBD and gdhA encoding glutamate synthase and glutamate dehydrogenase

(glutamate biosynthesis), serC and serB encoding phosphoserine transaminase and phos-

phatase (serine biosynthesis), thrABC operon for aspartate kinase, homoserine kinase,

and threonine synthase (threonine biosynthesis), argA for N-acetylglutamate synthase

(arginine biosynthesis), and aroA for 3-phosphoshikimate-1-carboxyvinyltransferase

(the chorismate formation for aromatic amino acid biosynthesis). TrpR regulates the

transcription of genes involved in tryptophan biosynthetic pathway (trpLEDCBA operon),

as well as aroH and aroL. In addition, it has been determined that TyrR directly regulates

several genes in the aromatic amino acid biosynthesis (aroF, aroG, aroK, aroA, tyrA,

and tyrB) in response to exogenous tyrosine[57, 58]. Taken together, these four TFs

control the biosynthesis of 12 amino acids. Furthermore, the biosynthesis of proline,

glutamine, glycine, cysteine, and methionine is through branched biosynthetic pathways

of glutamate, serine and aspartate (Fig. 3a). The remaining three amino acids (i.e.,

alanine, aspartate, and asparagine) are synthesized from glutamate as an amino donor

(green dots in Fig. 3a). Therefore, biosynthetic pathways for all amino acids are directly

or indirectly controlled by these four TFs.

Next, we classified the amino acids into ten groups based on the substrate speci-
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ficity of each transport system, which are A (tyrosine, phenylalanine, tryptophan), B

(arginine, histidine, lysine), C (glutamate, aspartate), D (leucine, isoleucine, valine), E

(alanine, serine, glycine, threonine), F (proline), G (methionine), H (cysteine), I (as-

paragine), and J (glutamine) (Fig. 3b). This was done based on the primary literature and

EcoCyc[58]. As expected, the amino acids in the same group have a similar chemical

structure, e.g. aromatic amino acids and branched chain amino acids in group A and

group D, respectively. Transport systems for groups G-J are highly specific and were

therefore classified into individual groups.

3.3.3 Determination of causal relationships: functional analysis

In general, genes for amino acid biosynthesis are repressed by each corresponding

TF, whereas catabolic operons such as astCADBE, tdh-kbl, and gcvTHP are induced

in response to the exogenous amino acids[56, 64]. To determine the causal relation-

ships between binding of a TF and the changes in RNA transcript levels of genes in

the regulons, we integrated the binding regions of ArgR, TrpR, Lrp, and TyrR with the

publicly available transcriptomic data (Fig. 4)[37, 59]. We then determined activation

or repression based upon the regulatory modes described previously[37]. Among genes

in the ArgR regulon, about 18% genes were directly activated in response to the exoge-

nous arginine, which include aroP and gltP genes encoding aromatic amino acids and

glutamate/aspartate transporters. On the other hand, ArgR represses about 70% of its

regulon members, including potFGHI, artJ, artPIQM, and hisJQMP encoding putrescine,

arginine, lysine, ornithine, and histidine ABC transporters (Fig. 4). ArgR represses

genes involved in the arginine and glutamate biosynthesis pathways, and unexpectedly,

it directly down-regulates genes involved in histidine, aromatic amino acids, and lysine

biosynthesis pathways. In case of amino acid utilization, ArgR induces astCADBE and

puuEB operons encoding the metabolic pathways for arginine and putrescine, respec-
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tively. The remaining 12% of its regulon members had a direct association with ArgR

without differential gene expression. Most of the remaining genes are currently annotated

as genes of unknown function (Supplementary Table 1).
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Figure 3.3: Delineation of amino acid biosynthetic pathways and transport sys-
tems in E. coli (topological analysis). (a) The amino acid biosynthetic pathways. The
genes are directly regulated by argr (blue), lrp (green) and Trpr (red), respectively. The
genes shown in bold black (gltB and gltD in glutamate biosynthesis and argA in arginine
biosynthesis) are regulated by both argr and lrp. orange dots indicate the biosynthetic
reactions, which use glutamate as an amino donor. (b) The amino acid transport systems.
The genes encoding each transport system can be classified into ten groups (aj) based
on amino acid specificity. The transport systems in orange are directly regulated by argr,
lrp or Trpr. For others (gray), the transcriptional regulation has not been determined.

Gene expression profiles validated that Lrp directly regulates 283 genes. 45% and

55% of the Lrp-regulated genes were repressed and activated in response to the addition
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of the exogenous leucine[37]. As expected, Lrp controls the transport, biosynthetic

and utilization pathways more globally than other transcription factors do. This is due

to its known role as a global regulator of metabolism and nucleoid structure[56]. Lrp

represses the transport systems for branched chain amino acids (brnQ, livKHMGF, and

livJ), dipeptides (dppABCDF), and lipoproteins (lolCDE) but it activates a whole set of

other transporters. Transporters that are activated by Lrp are aromatic amino acids (tyrP

and mtr), arginine (artMQIP), glutamate (gltP), alanine, serine, glycine and threonine

(cycA, tdcC, sdaC, and sstT), proline (proY), putrescine (potFGHI), dipeptide (dtpB),

and oligopeptides (oppABCDF) (Fig. 4). In terms of amino acid biosynthetic pathways,

Lrp represses all genes but the thrLABC operon for threonine biosynthesis. For amino

acid utilization, Lrp activates all pathways for aromatic amino acids, arginine, aspartate,

branched chain aromatic amino acids, alanine, glycine, serine, threonine, methionine,

and putrescine. In case of the TrpR regulon, a total of 15 genes are directly regulated,

of which 13 genes are repressed (Supplementary Table 2)[58, 65]. TrpR also represses

mtr encoding the tryptophan transporter as well as aroH, aroL, and trpABCDE involved

in the tryptophan biosynthesis pathway. While TyrR activates the transport systems for

aromatic amino acids (aroP, tyrP, and mtr), it represses tyrosine biosynthetic pathway

comprising of aroG, aroL, aroF, tyrA, and tyrB (Fig. 4).

3.3.4 Elucidation of regulatory logic

Based on the integrated analysis of TF-binding locations and gene expression

profiles, we were able to connect transport, biosynthesis, and utilization of amino acids,

and generate the connected bidirectional circuits (Fig. 5a). In the left feed-back circuit,

TF-amino acid (TF-AA) complexes regulate the transcription of the transporters (T) and

biosynthesis pathways (B), facilitating the influx of the amino acid molecules (AAin)

from amino acids in the media (AAout) and precursors (AApre). In the right feed-forward
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circuit, TF-AA complexes control transcription of utilization genes (U) responsible for

converting AAin into metabolites (M). Thus, the logical structures of the connected

bidirectional circuit motifs can be described by a notation that uses three signs indicating

repression (R) or activation (A) for each of T, B, and U (Fig. 5b). For example, the A-R-A

circuit motif indicates that the transcription of transport, biosynthesis, and metabolic

genes are activated, repressed, and activated, respectively, whereas the R-R-A circuit

motif demonstrates that the transcription of both transport and biosynthesis are repressed

and the metabolic genes are activated. The possible logical structures of the connected

circuit motifs can be characterized depending on how the TF-AA complex activates or

represses both influx (T and B) and efflux (U) in response to the exogenous amino acids.

Based on the connected circuit motifs, we analyzed the behavior of logical structures

of the transcription of transport, biosynthesis, and metabolic genes in responses to the

exogenous arginine and leucine (Fig. 5b).

Surprisingly, there are only three influx-efflux combinations found between amino

acid groups and TFs (Fig. 5c). For example, the connected circuit motif controlled by

ArgR-arginine complex shows the R-R-A logical structure for group B amino acids

(lysine, histidine, and arginine), whereas the logical structure of the motif is switched

to A-R-R for glutamate and aspartate and A-R-A for other amino acids. On the other

hand, the connected motif controlled by Lrp-leucine complex indicates the R-R-A logical

structure for group D (valine, leucine, and isoleucine) and is again switched to A-R-R for

glutamate and aspartate and A-R-A for other amino acids. For glutamate our primary

observation was that the utilization was repressed given its role as a substrate for nine

biosynthetic pathways (Fig. 3,4). However we acknowledge that the regulation is highly

complex and not universally repressed. This logically follows from the critical and

centralized role it plays throughout the metabolome[66]. Overall, we conclude that for

two global transcription factors (ArgR and Lrp) in amino acid regulation, the connected
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circuit motif has an R-R-A logical structure for signaling molecules (i.e., arginine for

ArgR and leucine for Lrp) and the A-R-A and A-R-R logical structures for other amino

acids (Fig. 5c).

3.4 Discussion

We reconstructed the regulons of ArgR, Lrp, and TrpR in E. coli individually and

then integrated them to form the first genome-scale reconstruction of a stimulon. First,

we set out to comprehensively establish the TF-binding regions on the E. coli genome

experimentally and furthermore to elucidate any DNA sequence motif(s) correlated with

the TF regulatory action. Second, we significantly extended the size of each regulon

and obtained 140, 283, and 15 target genes for each regulon. Third, using changes in

transcript levels on a genome-scale, we identified the regulatory modes for individual

gene governed by each TF in responses to exogenous arginine, leucine, and tryptophan.

The integrated analyses indicate that the functional assignment of the regulated genes

is strongly enriched in the amino acid metabolism-related functions. As suggested

previously, many of these genes are likely to be involved in the feast or famine adaptation

for survival in nutrient-rich or depleted environments [37, 53]. Fourth, we assigned

the regulated target genes to three functional categories; transport, biosynthesis, and

metabolism of amino acids. The classification allowed us to identify the connected circuit

motif as a basic building block of the integrated network. Finally, we determined the

regulatory logic of the connected circuit motif based on the causal relationships between

the association of TFs and changes in transcript levels. These fall into two categories

and thus allow for the differentiation between amino acids as signaling and nutrient

molecules.

In general, transport systems along with biosynthetic and metabolic pathways
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convert external resources to basic building blocks to sustain life. The coordinated

regulation of this primary process underlies expression of optimized metabolic states

under different external conditions. Thus, we examined the logical structures of the

metabolite-regulation connected circuit in response to the changes in the external amino

acid availability in the reconstructed stimulon. We uncovered three unique logical

structures that govern the amino acid biosynthesis and metabolism. The R-R-A logical

structure was observed for signaling molecules whereas the A-R-A and A-R-R logical

structures were determined for other amino acids severing as nutrient source (Fig. 5a, b).

In principle, every metabolic pathway that includes transport, biosynthesis, and utilization

functions could follow these logical structures. For example, the purine metabolism in E.

coli contains a wide range of genes whose functions are transport (yieG), biosynthesis

(cvpA-purF-ubiX, purHD, purMN, purT, purL, purEK, purC, hflD-purB, purA, and

guaAB), utilization (apt), and a transcriptional regulator (purR). The metabolic functions

of regulon members of PurR enriched into the purine metabolism and the connected

circuit motif indicated the logical structures for signaling molecule in response to the

exogenous purine[67]. It can be therefore envisioned that other potential metabolic

pathways follow similar logical structures as determined for the amino acid metabolism

in bacteria.

Bacterial cells import essential nutrients and inorganic ions such as galactose and

iron due to the absence of the biosynthesis pathway. It is therefore of interest that the

simple feedback circuit (SFL) motif, a connected circuit motif of transporter and utiliza-

tion pathway by TF, is often observed in the regulatory circuits for these molecules[43].

If we assume the feedback circuit composed of influx and efflux combination, the logical

structures of R-R-A, A-R-A, and A-R-R in the CFL motif can be reduced to R-A, A-A,

and A-R, respectively. In E. coli, the galactose metabolic pathway is controlled by the

galactose repressor (GalR) and galactose isorepressor (GalS), whereas iron homeosta-



41

sis is controlled by the ferric uptake regulator (Fur)[68, 69]. In the case of galactose

metabolism, both GalR and GalS directly repress the transcription of galP encoding galac-

tose permease. In a similar way, GalR partially represses the mglBAC operon encoding

high-affinity, ABC-type transport system. When galactose is available in the medium,

the DNA-binding by both GalR and GalS is inhibited, followed by the activation of

those genes along with the genes for galactose utilization[69]. Therefore, the SFL motif

exhibits the A-A logical structure, confirming the exogenous galactose as nutrient. In the

iron homeostasis system in E. coli, intracellular iron binds to Fur, forming the active TF

complex, which in turn activates the production of iron-using metabolic enzymes and also

shuts down expression of iron transporters. Interestingly, the SFL motif for Fur regulon

exhibits the R-A logical structure, similar to amino acids serving as signaling molecules

described above. Therefore, we can conclude that iron acts as signaling molecule rather

than nutrient.

In summary, we have described an integrative analysis of genome-scale data sets

to comprehensively understand the basic principles governing a stimulon in the TRN

of E. coli. The overarching regulatory principle elucidated enabled us to differentiate

between metabolites as signaling and nutrient molecules. This important distinction

between seemingly similar metabolites is non-intuitive and could only be determined

through genome-scale systems analysis. Similar analysis of other stimulons and large-

scale regulatory networks may reveal that this regulatory principle is general. Thus, this

approach to the analysis of regulation at the network level may reveal other fundamental

non-obvious regulatory principles at work in genome-scale regulatory networks.
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3.5 Methods

3.5.1 Bacterial strains and growth conditions

All strains used are E. coli K-12 MG1655 and its derivatives. The E. coli strains

harboring ArgR-8myc, Lrp-8myc, and TrpR-8myc were generated as described previ-

ously13. Glycerol stock of ArgR-8myc strains were inoculated into W2 minimal medium

containing 2 g/L glucose and 2g/L glutamine, and cultured overnight at 37 oC with

constant agitation30. The cultures were inoculated into 50 mL of the fresh W2 minimal

media in either the presence or absence of 1 g/L arginine and continued to culture at 37 oC

with constant agitation to an appropriate cell density. E. coli strains harboring Lrp-8myc

and TrpR-8myc were grown in glucose (2 g/L) minimal M9 medium supplemented with

or without 20 mg/L tryptophan or 10 mM leucine, respectively [37, 70].

3.5.2 Chromatin immunoprecipitation and microarray analysis

To identify ArgR-, Lrp-, and TrpR-binding regions in vivo, we isolated the DNA

bound to ArgR protein from formaldehyde cross-linked E. coli cells harboring ArgR-

8myc by chromatin immunoprecipitation with the specific antibodies that specifically

recognizes myc tag (9E10, Santa Cruz Biotech)[41]. Cells were harvested from the expo-

nential growth conditions in the presence or absence of exogenous arginine or tryptophan.

The immunoprecipitated DNA (IP-DNA) and mock immunoprecipitated DNA (mock

IP-DNA) were hybridized onto the high-resolution whole-genome tiling microarrays,

which contained a total of 371,034 oligonucleotides with 50-bp tiles overlapping every

25-bp on both forward and reverse strands[37, 36]. A ChIP-chip protocol previously

described was used[41, 71] and microarray hybridization, wash, and scan were performed

in accordance with manufacturers instruction (Roche NimbleGen).
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3.5.3 qPCR

To monitor the enrichment of promoter regions, 1uL immunoprecipitated DNA

was used to carry out gene-specific qPCR3. The quantitative real-time PCR of each

sample was performed in triplicate using iCycler (Bio-Rad Laboratories) and SYBR green

mix (Qiagen). The real-time qPCR conditions were as follows: 25uL SYBR mix (Qiagen),

1uL of each primer (10 pM), 1uL of immunoprecipitated or mock-immunoprecipitated

DNA and 22uL of ddH2O. All real-time qPCR reactions were done in triplicates. The

samples were cycled to 94 oC for 15 s, 52 oC for 30 s and 72 oC for 30 s (total 40 cycles)

on a LightCycler (Bio-Rad). The threshold cycle values were calculated automatically by

the iCycler iQ optical system software (Bio-Rad Laboratories). Primer sequences used in

this study are available on request.

3.5.4 ChIP-chip and expression data analysis

To identify TF-binding regions, we used the peak finding algorithm built into

the NimbleScanTM software. Processing of ChIP-chip data was performed in three

steps: normalization, IP/mock-IP ratio computation (log base 2), and enriched region

identification. The log2 ratios of each spot in the microarray were calculated from the

raw signals obtained from both Cy5 and Cy3 channels, and then the values were scaled

by Tukey bi-weight mean34. The log2 ratio of Cy5 (IP DNA) to Cy3 (mock-IP DNA)

for each point was calculated from the scanned signals. Then, the bi-weight mean of

this log2 ratio was subtracted from each point. Each log ratio dataset from duplicate

samples was used to identify TF-binding regions using the software (width of sliding

window = 300 bp). Our approach to identify the TF-binding regions was to first determine

binding locations from each data set and then combine the binding locations from at least

five of six datasets to define a binding region using the recently developed MetaScope
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software (Kim et al. Submitted). Raw gene expression CEL files were gathered from

GEO for ArgR with accession GSE4724 and for Lrp from a previous study3. They were

normalized using background corrected robust multi-array average implemented in the R

affy package. To detect differential expression between the wild type and TF deletion

strains we applied a two-tailed unpaired students t-test with Microsoft excel between the

experimental triplicates for the wild type and gene deletion strains. This was followed

by a false discovery rate39 adjustment using the R statistical software package. Before

performing the FDR correction we removed all genes which exhibited an expression level

below the background across all experiments. The background level was calculated as

the average expression level across all intergenic probes. We then only considered genes

meeting a 5% FDR (false discovery rate)-adjusted P-value cut-off to be differentially

expressed. To make calls for activation or repression we followed the methodology laid

out previously[37].

3.5.5 Motif searching

The ArgR-, Lrp-, and TrpR-binding motif analysis was completed using the

MEME and FIMO tools from the MEME software suiteBailey:2009eu. We first deter-

mined the proper binding motif and then scanned the full genome for its presence. The

elicitation of the motif was done using the MEME program on the set of sequences

defined by the ArgR-, Lrp-, and TrpR-binding regions respectively[72]. Using default

settings the previously determined ArgR[59], Lrp[37], and TrpR[51] motif were recov-

ered and then tailored to the correct size by setting the width parameter to 18-bp, 15-bp,

and 8-bp respectively. We then used these motifs and the PSPM (position specific proba-

bility matrix) generated for each by MEME to rescan the entire genome with the FIMO

program. The sequence logo generated from these sites.
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Chapter 4

The OME Framework for

genome-scale systems biology

4.1 Abstract

A central aim of systems biology is to elucidate emergent properties of living

organisms through data analysis and computational model simulations. However, it

remains challenging to manage and integrate data and models in workflows that extract

novel biological insights. Here we present the OME Framework (operational, metabolic,

expression) is a systems biology and bioinformatics software framework that helps to

enable a broad array of iterative and evolving systems biology workflows. The framework

consists of three core modules: models, components, and datasets. These modules are

defined by an underlying database schema, which is implemented into common Python

objects through the object-relation mapper (ORM) SQLAlchemy (sqlalchemy.org). The

models module stores, manages, and provides access to the rich structure of genome-scale

biological models. The components module stores and makes accessible a full spectrum

of biological parts, from metabolites and enzymes to genes and genomes. The datasets

46
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module provides a generic structure for storing any type of biological data that maps

to a given component or model. The key features of the OME Framework arise from

the interactions among these three modules; connected modeling integrates models with

detailed genomic and biochemical data, connected analysis integrates high-throughput

data analysis with the same set of genomic and biochemical data, and data-mapped

modeling provides an implicit mapping between experimental data and genome-scale

biological models. While the current implementation of the OME Framework exists in

Python with SQLAlchemy, the underlying schematics and software design can be seen

as an addition to the community of standards for systems biology. The OME Framework

makes many contributions including the simple handling of arbitrarily complex biological

models, a generic and extensible universal biological parts database, and an explicit

mapping between experimental data and computational models. Taken together, the

OME Framework takes a significant step in helping to reduce to practice the design-build-

test loop at a genome-scale. The code is fully open source and ready to be forked on

GitHub (http://github.com/SBRG/ome).

4.2 Introduction

The discipline of biological sciences is undergoing a continuous and accelerating

transformation with its merger into the computational and engineering sciences. The

biology that many in the field have been trained on may be hardly recognizable in

ten to twenty years. One of the major drivers for this transformation is the blistering

pace of advancements in DNA sequencing and DNA synthesis. This has resulted in

unprecedented amounts of new data, information, and knowledge.

Many software tools have been developed to deal with aspects of this transfor-

mation and each is sorely needed [73, 74, 75]. However, few of these tools have been
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forced to deal with the full complexity and scale of genome-scale models along with high

throughput genome-scale data. This particular situation represents a unique challenge,

as it is simultaneously necessary to deal with the vast breadth of genome-scale models

and the dizzying depth of high-throughput datasets. It has been observed time and

again that as the pace of data generation continues to accelerate, the pace of analysis

significantly lags behind[76]. It is also evident that, given the plethora of databases and

software efforts [77, 78, 79, 80, 81, 82, 3, 83], there is a significant challenge in working

with even genome-scale metabolic models, let alone next-generation whole cell models

[84, 12, 85]. We work at the forefront of model creation (ME model) and systems scale

data generation [86, 87, 88]. The OME Framework was borne out of a practical need to

enable genome-scale modeling and data analysis under a unified framework to drive the

next generation of genome-scale biological models.

Here we present the OME Framework exists as a set of Python classes. However,

we want to emphasize the importance of the underlying design as an addition to the dis-

cussions on specifications of a digital cell. A great deal of work and valuable progress has

been made by a number of communities [84, 89, 90, 91, 92, 93, 94] towards interchange

formats and implementations designed to achieve similar goals. While many software

tools exist for handling genome-scale metabolic models or for genome-scale data analysis,

no implementations exist that explicitly handles data and models concurrently. The OME

Framework structures data in a connected loop with models and the components those

models are composed of. This results in the first full, practical, implementation of a

framework that can enable genome-scale design-build-test. Over the coming years many

more software packages will be developed and tools will necessarily change. However,

we hope that the underlying designs shared here can help to inform the design of future

software.
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4.3 Implementation

The OME Framework is currently a set of Python classes that act as an object-

relational mapper (ORM) between Python objects and their corresponding relational

tables in the OME database. This is implemented almost fully with the SQLAlchemy

ORM (sqlalchemy.org) such that database table definitions are made through the Python

class attributes. This has the benefit of providing a clear and centralized location for the

database schema definition. It also enables the use of the framework across multiple

database backends, including but not limited to SQLite, PostgreSQL, MySQL, and Oracle

databases. This becomes important for rapid deployment and integration into existing

hardware setups where it may not be practical or desirable to install a new database.

The framework is semantically split into three major classes: models, components,

and datasets (Figure 1). It also contains a fourth class, base, which is necessary for

the usage of any individual class. The base class contains the database connection

information, configuration settings, and table definitions for elements that are common

across models, components, and datasets. This includes genome and chromosome tables,

a synonyms table, and the actual components table among others.

In practice, each module can be used independently without any need for the

other modules. However, upon installation, the OME database namespace will become

populated with all of the tables from each module. This is because the native install

currently contains example data, including genome-scale metabolic models for E. coli

(iJO1366) and S. cerevisiae (iMM904), the associated genbank genome annotation files,

and gene expression and ChIP-chip datasets[86]. If you drop the database and follow the

data loading examples you will be able to load any of the namespaces individually.
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OME Framework

Models

Components

Datasets

• Metabolites
• TUs
• Proteins
• Complexes
• DNA binding sites
• Genes
• Motifs
• RBS
• plasmid
• ....

• M models
• ME models
• Kinetic models
• O models
• OME models

• RNAseq
• Affy array
• ChIP-*
• Resequencing
• Ribo-profiling
• Proteomics
• Metabolomics

github.com/sbrg/ome

Data Information Knowledge

Figure 4.1: Birds eye view of the OME Framework. The OME Framework consists
of three core modules; datasets, components, and models. Raw and processed data from
experiments or analyses along with associated metadata are stored in the datasets module.
These data are automatically mapped to an array of stored biological components. These
biological components then form the basis as products and reactants in the reactions
that make up genome-scale models. Finally, through components, all experimental data
and analyses are implicitly mapped to genome-scale biological models. This overall
structure can also be seen to reflect the generic progression from data to information to
knowledge which itself mirrors the metabolic reconstruction process.
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4.3.1 Models

The models class (Figure 2) stores, manages, and provides access to the rich

structure of genome-scale biological models. The basic schema and design of the models

subsection aims to provide a few key elements.

The first is the storage and versioning of a large number of biological models.

The models table (Figure 2) and its resulting interconnections enable an arbitrarily

large number of models to be stored along with a corresponding time stamp to provide

appropriate versioning. This simple versioning is crucial to help ensure quality and

provide a scaffold for future libraries to implement a more rigorous tracking of model

changes and curation efforts.

The second is consolidation of redundant elements into universal reaction and

component tables. By separating out model reactions and model components from stan-

dalone reaction and component tables we can achieve the effect of universal metabolite

and reaction tables. These tables are crucial for reconstruction efforts and general utility.

The knowledge of the full number of unique metabolites or reactions in a given set of

models is often crucial information for various algorithms and design approaches.

The third is the ability to enable comparisons among stored models. The inherent

structure of the models schema enables an easy comparison among multiple models.

Part of this analysis comes part in parcel with the aforementioned universal reaction

and component tables. However, one can also easily write additional sets of queries to

determine outliers in specific models or to determine common reaction structures among

many models.

The fourth is the ability to store a wide variety of biological models without being

limited to constraint-based metabolic models. The key feature of the models schema is

the use of the reaction matrix table along with universal reactions and components tables.

Since a component is defined through the polymorphic star based schema introduced
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in (Figure 3). A reaction can contain any arbitrary type of component in any type of

arbitrary stoichiometry. This is a key feature that enabled earlier versions of the OME

framework to handle and manage the large and structurally diverse models, such as ME

models[14, 15].

Models Schema

Figure 4.2: Relational database schema for the datasets module. The datasets
module has a star based schema in which the core dataset table is the parent of any
individual dataset type. Each dataset has a strain, environment, and a datasource.
However, specific datasets, e.g. ChIPExperiment can also have specific values such as
the antibody or protocol used. In this fashion the appropriate metadata can be captured
for any specific datatypes without having to add the redundant information of strain,
environment, and and datasource for each new table. This also results in a simplified
mapping to components as a minimal number of tables can be used to link to datasets
without needing many individual tables linking to each individual datatype

4.3.2 Components

The components class (Figure 3) stores and makes accessible a full spectrum

of biological parts, from metabolites and enzymes to genes and genomes. The key

contribution in the architecture of the components module is the use of a Star Schema

that provides two crucial advantages.

The first is the ability of a component to be a complex (e.g., an enzyme complex

or ribosome), which enables the creation of complexes of arbitrary components. The
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result is a simple and generic structure upon which biological parts can be broken down

and aggregated into arbitrary modules and sub-modules. Standard and well-known

complexes like protein-protein and protein-dna complexes are of course stored. However,

GPRs (Boolean representations of gene-protein-reaction associations), which have been

previously stored in a string format can now be represented properly in a tree based

structure as components of components. While the SQL schema to enable complexes of

complexes (the complex composition table) is relatively succinct, the implementation

can quickly become unwieldy and impractical. However, SQLAlchemy can succinctly

enabling object based tree traversal. This is done by encapsulating the recursive SQL

queries in SQLAlchemy attributes, which allows them to be accessed as normal class

properties. The second is to drastically reduce the relational complexity in integrating

components with models and data. The most obvious way to design the models and

components aspects of the OME framework is to develop a large number of linker tables

that exist between each component and the table it belongs to. An example would be for

metabolites to have a table called metabolite reaction that would contain a reaction id

and a metabolite id and thus provide a normalized mapping between reactions and

metabolites. However, imagine you also wanted to include a protein into a reaction as

the enzyme to catalyze it. You could create another table called protein reaction and

again put the reaction id and the corresponding protein id into the table. However, this

strategy would lead to tables for rna reaction, dna reaction, etc., and the result would be

an inefficient and overly complex schema.

4.3.3 Datasets

The datasets class (Figure 4) provides a generic structure for storing any type of

biological data that maps to a given component or model. The design of the datasets

module is similar to that of the components module. A Star Schema is used with a
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Components Schema

Figure 4.3: Relational database schema for the components module. The compo-
nents module also has a star based schema in which the core components table is the
parent of any individual component type. Each component simply has a unique name
and an ID that is then inherited by each of the specific tables common biological parts.
The definition of a component is taken to be any physical entity within a cell. This
distinguishes a genome region from a component as the genome region is taken as a
piece of information describing the component of the underlying DNA strand. This
design decision simplifies model building because the only that are allowed to be part
of a reaction in a model are components.
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generic datasets object that is then inherited by each individual experiment or analysis

type. The first main advantage provided by the datasets module is the ability to store an

arbitrary array of experimental and computational datasets in a common schema. This

enables analysis and integration across diverse datatypes in a controlled and reproducible

manner. It also enables the storage of both experimental and computationally generated

data side by side. This particular use case is discussed further as a key result but in

short this provides for the rapid assessment of predictive computational algorithms.

This will be crucial for systems-level biological engineering and the design-build-test

cycle. The second key advantage is that the use of a star based schema allows for a

large number of differing and diverse datatypes to be associated with a similarly large

number of components while requiring only three primary tables. These three linker

tables, genome data, reaction data, and metabolite data act as interface points for a

number of datasets on one end and components on the other end. In a traditional schema,

the addition of a new data type would require generating a new linking table for each

component type to be linked. With the current breadth available in the OME framework

(n=9 components, m=8 dataset types) this would require 72 linking tables, which are

instead represented with only 3.

4.4 Results and Discussion

The three main sets of features in the OME framework (Figure 5) lie along the

interactions of each of the models, components, and dataset classes. These features can

be utilized by a variety of different types of users (Figure 6).
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Dataset Schema

Figure 4.4: Relational database schema for the models module. The models module
has a simple schema which provides two crucial benefits. The first is the simple
architecture of the reaction matrix table which enables the storage of arbitrary reaction
types and stoichiometrys. The second is the division introduced between components
and reactions which belong to a model vs. those which are universal. The reaction
table and compartmentalized component table are Universal in the sense that they will
form a non-redundant set of reactions and components which are then used in the
model reactions and model compartmentalized component tables to specify the exact
content for a given model.
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Three key features
2. Connected modeling 
•All models are stored in the database
•All models are loaded from the database
• The model, and all of its components, 

are version controlled
•All components of the model are 

implicitly linked to all of the appropriate 
annotation data
•Gene mappings
•Gene - Protein mappings
•Gene - TU - Protein complex - Rxn

1. Connected analysis 
• All experimental data is in the 

database
• All experimental metadata is in the 

database
• All experimental data is implicitly 

mapped to the appropriate cellular 
components
•  Inherent functional annotation
•  Simple platform to develop 

complex queries and analysis
•  Required for an automated  

metastructure

3. Data mapped models 
• All components of the model 

are implicitly mapped to all of 
the experimental data for that 
component

Datasets Models

Components

Figure 4.5: The three primary features of the OME Framework arise from the
interactions of its parts. Connected analysis helps enables efficient and rapid analysis
of high throughput data by linking to relevant genomic and metabolic annotation
information. Connected modeling enables the use of the same detailed genomic and
metabolic annotation information alongside a metabolic model. Data-mapped modeling
used components as a bridge to provide implicit mappings between and gene, reaction,
or metabolite in a model with corresponding experimental or computational data.



58

4.4.1 Connected modeling

Connected modeling integrates genomic and biochemical annotation data with

constraint-based biological models to enable a vast array of tasks including model

curation, quality control, and systems analyses. Model curation workflows on top of the

OME framework include automated verification of reaction and metabolite IDs, along

with a universal reactions and metabolite database. Quality control of constraint-based

models is enforced genomically through strict gene-protein-reaction (GPR) mappings

to genbank sequence files along with mass and charge balance for individual reactions

and models via cobrapy[82] integration. Systems level analyses are enabled by the

connected modeling features, such as integration of protein complexes, transcription unit

architecture, and the simple but powerful integration of diverse annotation sources and

ID mappings for genes, reactions, and metabolites. Current import functions support

loading of various MetaCyc[94] and KEGG[92] datatypes if desired.

4.4.2 Connected analysis

Connected analysis integrates genomic and biochemical annotation data with a

rich variety of high and low throughput biological assays, providing the ability to carry

out highly complex analyses in a reproducible and efficient manner. The primary feature

of connected analysis is to provide ID mappings and standardization among experiments,

experiment metadata, and the annotation information of the biological parts relevant

to an experiment. The mechanism for dealing with a large array of components and

datasets without a code explosion lies in providing three primary links between biological

parts and experiments or analyses related to these parts; genome data, reaction data, and

component data. The wealth of available component information combined with the

huge quantities of experimental data make it possible to automate transcription unit and
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regulatory network annotation. The availability of well structured metadata alongside

component data also enables a wide array of machine learning and other data mining

based approaches in a reproducible and efficient manner.

4.4.3 Data-mapped models

Data mapped models provide a crucial practical link between large scale bio-

chemical models and high-throughput biological data. The current primary features

comes through the automated mapping of GPRs to the genome data table which enables

instant profiles of gene expression, differential gene expression, and gene regulation

data for a given reaction in a metabolic model. These can be accessed as class attributes

for a given reaction enabling researchers to rapidly probe and compare computed Flux

Balance Analysis (FBA) flux states through cobrapy[82] to experimentally measured

data. The datasets component of the framework is also designed to handle both real

experimental data, and simulated computational data. Most importantly, the design pro-

vides for experimentally-measured environmental conditions to be implicitly mapped to

the mathematical constructs used to represent that environment in-silico. This enables the

storage of many potentially computationally intensive simulations, relevant experimental

data, and seamless analysis and comparisons of the experimental data and the simulations.

The design of the framework also provides handling of reaction and metabolite data

to enable more direct comparison of stored fluxes and even concentrations of kinetic

models.

4.4.4 Polyomic data integration

The OME framework provides a number of highly common operations as database

views and convenience functions, including gene expression analysis and multi-omic
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integration. These views are demonstrated in the OME views examples. Please also refer

to the data loading examples for details on loading the data that comprises these views.

Note that the currently available metadata in these views and the database structure is

geared towards microbial cell culture. Future efforts will replace the current simplistic

metadata handling with the ISA (isatools.org)[95] standard. The first crucial database

view is GeneExpressionData which provides rapid and simple access to arbitrary volumes

of gene expression data. The GeneExpressionData view is currently defined by nine

columns that include the gene locus id, the gene common name, the type of gene

expression data (currently RNA-Seq or Affymetrix arrays), the average value across all

replicates, the standard deviation of this value across replicates, the strain used in the

experiments, the carbon source used in the experiments, the nitrogen source used in the

experiments, the electron acceptor used in the experiments, and finally any supplements

used in the experiments. The second common view is DifferentialGeneExpressionData

which builds off of the GeneExpressionData to present all possible pairs of pre-computed

differential expression statistics across environmental and genetic perturbations. The

columns of DifferentialGeneExpressionData mirror those for GeneExpressionData but

also include a Bonferroni corrected p-value and the log fold change calculated between

the expression profiles. This difference calculation is shown with a / on the given

column that is used for the differential (e.g. glucose/fructose) in the carbon source

column, corresponding to differential expression calculated between two samples in

which the first was grown with glucose as a carbon source and the second is grown

with fructose as a carbon source. The log2 fold change is then calculated as sample1-

sample2, in this case glucose-fructose. The third, fourth, and fifth common views

represent the integration of ChIP-chip, ChIP-seq, or ChIP-exonuclease data with genome

annotation and gene expression data. ChIPPeakGene first integrates ChIP binding

regions with the transcription unit architecture or gene annotation to provide a mapping
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between a ChIP peak and the genes it will regulate. This view is then extended and

combined with the previously discussed GeneExpressionData to provide another view,

ChIPPeakGeneExpression, in which quantitative information for any ChIP peak is paired

with the expression data for downstream genes. With this view a user can make instant

correlation plots to compare ChIP peak intensity with gene resultant expression. Finally

the same process as above is repeated with the only difference being the integration of

DifferentialGeneExpressionData with ChIPPeakGene instead of GeneExpressionData.

This highly useful view, ChIPPeakDifferentialGeneExpression view, comprises a data-

driven reconstruction of a regulatory network. This is accomplished via the automatic

integration of a ChIP peak with the differential gene expression that is caused by the

binding of that peak. This occurs because the only differential expression values shown

correspond to the difference between a wild type strain and a gene deletion strain for

the transcription factor that was responsible for the ChIP peak. This view is tailored for

paired ChIP* and transcription factor knock-out gene expression data. Example data are

included to enable this view and the data corresponding to Figure 4 of [87] and Fig 3

of[86].

4.4.5 Arbitrary creation and traversal of biological complexes and

modules

The OME framework can deal with arbitrary complexes that currently include,

but are not limited to, protein-protein complexes, DNA-protein complexes, protein-small

molecule complexes, and protein-RNA complexes. This is accomplished with the simple

architecture of the component composition table in Fig 3. The architecture of this table

enables the creation of components of components. Since a component can be any number

of physical biological entities, this results in the creation of arbitrary biological com-

plexes or modules. Practically, performing recursive SQL queries directly on a database
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can be difficult. However, the current implementation is able to harness the power of

SQLAlchemy to generate the effect of a graph-like object oriented tree structure. The

complexes example notebook (http://nbviewer.ipython.org/github/sbrg/ome/blob/master/

examples/complexes example.ipynb) illustrates these features. Essentially, every com-

ponent is given a parent and a child attribute which corresponds to the direct parent or

children components. A further recursive SQLAlchemy function is then written as a

function, all children, which can traverse the graph and return all children of a parent. In

this manner a full tree can be iteratively traversed or further recursive functions can be

written to speed the traversal.

4.4.6 Optional NoSQL data storage for extreme scalability

The OME framework has a distributed architecture that enables it to store and

analyze enormous quantities of data. It does this by simply leveraging NoSQL type

in-memory scalable databases alongside the rich relational ORM. The primary NoSQL

table is a simple genome data table that stores genomic position, an arbitrary numeric

value, and a dataset ID. The dataset ID can thus provide all of the necessary information

about the given piece of data through queries onto the datasets module. Users can thus

rapidly query out sets of experiments based upon well structured metadata and then use

the resulting dataset ID to pull out any genome data values corresponding to a genome

region of interest. This general pattern of Polyglot Persistence is becoming more and

more commonplace as an efficient solution to solve difficult heterologous data problems

[75](martinfowler.com/bliki/PolyglotPersistence.html).
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Figure 4.6: The OME Framework is designed to serve three overall use cases. (A)
The first three use cases rely to varying degrees on publicly provided data from UCSD.
The non-computational biologists can access much of the underlying data and features
through the next-gen BiGG website and corresponding BiGG APIs. The computationally
minded biologist can easily install a local copy of the OME Framework but rely heavily
on the public preformatted data files provided from the main BiGG hosted instance.
Finally, the bioinformatician can install a local copy along with large quantities of
private data, annotation information, or models.
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4.4.7 Use case I: Loading a metabolic model, genomic annotation,

and various genomic datatypes

The most basic use case is simply loading data into and out of a local ver-

sion of the OME Framework. This is demonstrated in the accompanying notebook

(http://nbviewer.ipython.org/github/sbrg/ome/blob/master/examples/data loading.ipynb)

which can be found in the examples directory. Once the framework is installed

(http://github.com/SBRG/ome/INSTALL.md) navigate to the ome data directory in your

home folder. Note that you can easily change the location or name of the ome data

folder by simply altering the settings.ini file as explained in the installation documenta-

tion. You will notice example data for S. cerevisiae and E. coli including representative

metabolic models in the models directory [96, 97] corresponding genbank genome an-

notation files in annotation/genbank, and a few RNA-Seq datasets in rnaseq/fastq and

rnaseq/bam. It is recommended to run through the loading of this test data before adding

your own data or including additional organisms. However, if you are feeling brave then

go ahead and start piling in your own datatypes. Note that even though folders exist

for metabolomics, fluxomics, motifs, and proteomics, each directory is currently empty

in the example installation. Currently supported datatypes are shown in the documen-

tation http://ome.readthedocs.org/en/latest/ome.html for datasets. Navigate back to the

data loading ipython notebook and begin following the instructions, based upon how and

what kind of a data you are loading. In general there are two ways to load data into and

out of the database. The first is to rerun the entire loading script called upon installation,

bin/load db.py. This will reliably scan each directory in the ome data folder and load

in any datasets, models, and annotation information that is found there. This is the

easiest and most simple way to load data into the OME database. This is the recommend

approach for new users. However, this can be very slow for experienced users who
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already have a large amount of data loaded in. This occurs because the loading functions

prevent duplication and thus are forced to check the existing database before attempting

to insert any new data. This checking of existing values to avoid duplications is generally

unavoidable given inherit redundancies and imperfections in biological annotation and

data sources.

4.4.8 Use case II: Data mining and machine learning across diverse

datatypes

The OME Framework can be easily used as a scaffold for machine learning

and data mining applications of diverse biological data sources. The advantages lie in

a native python implementation that results in grokking of the popular pandas library

and resultantly numpy, scipy, matplotlib, scikit-learn and the rest of the rich and ever

expanding python ecosystem. This is utilized in the accompanying data heatmaps

notebook in which the classic clustering of gene expression data use case is illustrated. In

the example, groups of genes are queried out based on the groups table, which can store

arbitrary collections of genome region objects. The automatically loaded gene groups

tables correspond to model subsystems in the example models. However, one can also

readily load KEGG pathways or other resources if available. The clustering is then done

with scipy and visualized interactively with D3 code based off of a common example

(http://bl.ocks.org/ianyfchang/8119685).

4.4.9 Use case III: Integration with Escher for data visualization on

metabolic maps

Escher is a web-based visualization tool for building, sharing, and embedding

metabolic maps [28]. Escher comes preloaded with numerous metabolic and also enables
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users to build their own metabolic maps for any organism. Escher also supports a

rich variety of options for visualizing datasets on top of metabolic maps, with support

for gene-, reaction-, and metabolite-associated data. The OME framework integrates

with Escher by associating any loaded dataset with the identifiers in any Escher map

for a given organism, so that visualizations can be generated immediately in a Python

session (via a web browser) or in the IPython notebook. As demonstrated here and in

the previous example, the OME Framework simplifies the generation of an array of

web-based visualization tools, and integration with the IPython notebook means that

code and visualizations can be executed in the same, simple interface.

4.4.10 Use as a scaffold for whole cell models

The OME framework can be used as a scaffold to construct whole cell biological

models. The original database design for the OME Framework happened in two highly

related but distinct software projects, which have both played a critical part in multiple

significant publications[12, 85, 86]. In particular, the OME Framework grew out of the

distinct effort to combine the original ME database which continues to power the ME

models, and the TRN database, which was designed to handle the ever increasing breadth

of genomic data types and resultant analyses. In this way the underlying schema and

design has (as indicated through its name) always held the primary intention of existing

as the backbone for the development of whole cell biological models.

4.5 Conclusion

The OME Framework is a systems biology and bioinformatics framework that

helps to enable a broad array of iterative and evolving systems biology workflows. Its key

features arise from the rich interaction among its constituent parts: models, components,
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and datasets. However, each individual module can be used in isolation without the

necessity to dive into the full feature set. For example, models can be used alongside

COBRApy as a model storage utility. Similarly, the datasets and components modules

can also be used individually to simply store and retrieve datasets or biological parts.

The structure of the OME Framework facilitates the transformation of data to

information to knowledge. After collection, data must be processed and integrated with

other data or broken down further until it becomes a piece of information. Information is

then assembled over time into larger constructs that represent fundamental knowledge

about a system. The OME Framework embodies this process at the genome-scale. As we

move towards ever more accurate and comprehensive digital representations of organic

systems, a key factor in the rate of this progress will be the ease and efficiency in which

the feedback loop between data generation and model consistency is closed.

Finally, most biological analyses and analysis tools are focused on working with

a relatively limited subset of data concerned with a specific study or question of interest.

However, as the sequencing and synthesis of DNA continues to surge ahead it becomes

clear that we will soon generate 10 replicates instead of 3, cross reference 10 historic

datasets instead of 1, and most importantly begin to get a level of quantitation that will

enable true biological engineering. The OME Framework is a small step towards a future

that amasses, manages, and processes biological data at a systems scale.
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Chapter 5

Integrated Analysis of Molecular and

Systems Level Function of Crp Using

ChIP-exo

5.1 Abstract

A fundamental challenge of systems biology is to unify detailed molecular mech-

anisms with genome-scale predictive models. Meeting this challenge for transcriptional

regulatory networks has proven difficult. Here, ChIP-exo, a derivative of ChIP-seq, is

applied to help bridge this gap for transcription initiation in bacterial systems. σ70

ChIP-exo profiles revealed patterns of DNA protection at genome-scale under in vivo

conditions that strongly corroborate in vitro DNA footprinting studies. Aligning and

orienting the ChIP-exo data relative to the TSS identified a unimodal distribution centered

at +20 on the template strand and multimodal distributions located between -35 and

+5. Both strands indicate the capture of stable intermediates of transcription initiation

that occur post-closed complex formation. Similar profiles are observed for ChIP-exo

69
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performed on activators but not for repressors. Activators are found to provide little

protection at the operator site whereas repressors are centered on them. Furthermore,

genetic perturbations of RNAP/Crp interactions highlight the importance of RNAP/Crp

interactions for stabilization of the ternary complex. This suggests that post-recruitment,

Crp is associated with RNAP but independent of the operator site. Finally we are able to

confirm recent physiological models of Crp regulation at the genome-scale and provide

an initial link between promoter level mechanisms and systems level regulation.

5.2 Introduction

A longstanding goal of molecular biology is to link structure with function. This

structure-function relationship plays out at many levels with one of the most complex

being the link between the structural attributes of proteins and the overall functions of

pathways or systems level features of a cell. This link proves especially difficult because

it comprises many smaller, yet equally important and difficult links. One crucial smaller

link is the relation between a proteins structure and its individual function [98] and

another is the link between the structure of a biomolecular network and its corresponding

function [99]. Thus, attempting to provide links and cohesion between the structure of

individual components of a cell and the complexes of those components with the overall

function of the cellular system as a whole will continue to be a grand challenge for many

years to come. Here, we seek to provide an initial link in that direction by synthesizing

protein structural level detail of transcriptional initiation complexes with systems level

features and physiological models of cellular behavior.

One crucial technique in biological sciences is chromatin immunoprecipitation

(ChIP) has been paired with microarrays (ChIP-chip) [100] and nextgen DNA sequencing

(ChIP-seq) [101] to comprehensively unravel the molecular networks of protein binding
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to DNA. This approach has proved to be highly successful and has resulted in an explosion

of knowledge about transcriptional regulation. However, both ChIP-chip and ChIP-seq

are limited to a resolution of the size of DNA fragments that are identified to about 50-100

nucleotides. ChIP-exonuclease [102] was developed in order to significantly increase this

resolution, reaching the level of a dozen or so nucleotides. By utilizing a 5 exonuclease

to chew down the ends of DNA not protected by a cross-linked transcription factor, it is

possible to achieve single nucleotide resolution binding profiles. While ChIP-exo has

been extensively deployed in mammalian systems [102], it has yet to be applied in detail

to transcriptional regulation in bacteria. Since much of the foundation of our knowledge

of transcriptional regulation comes from bacteria, and E. coli in particular, we sought to

assess whether or not ChIP-exonuclease would enable new or complementary insights

that could be based off the rich body of detailed structural and biochemical work in

bacteria.

One transcription factor in particular, Crp, has long been studied as the canonical

transcriptional activator in bacteria. Many detailed studies have shown precisely how

Crp carries out regulation at three separate classes of promoters [103]. Similarly, recent

work has also shown the precise physiological mechanisms by which Crp regulates

the entirety of metabolism and the cell [6]. We thus sought to provide a link between

this detailed structural knowledge and detailed systems knowledge by fully elucidating

the Crp regulatory network in precise chemical detail. Previous studies have been

carried out with transcriptomics [104, 105] ChIP-chip [45, 106], and genomic SELEX

[107]. However, none of these studies were able to assay a full range of physiologically

relevant conditions or pair in vivo ChIP measurements with expression profiling to

generate a full set of regulatory events. Similarly a vast array of studies has detailed

the individual architecture and structure-function relationship at a number of classically

studies promoters in E. coli [103, 108, 109, 110, 111, 112]. However, these studies
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did not enjoy the benefit of massively parallel assessment of detailed structural binding

information from ChIP-exonuclease.

In this study, we carry out ChIP-exonuclease for both σ70 and Crp for wild type

cells under glucose, fructose, and glycerol conditions. In addition we study the effects

of canonical Crp mutation in two crucial regions, Ar1 and Ar2, on ChIP-exo binding

profiles under glycerol conditions. We also carry out paired RNA sequencing across wild

type, ∆crp, and strains harboring Ar1 and Ar2 mutations to elucidate the full Crp regulon.

5.3 Results

5.3.1 ChIP-exo data provides in vivo mechanistic insights into bac-

terial activation

Applying the ChIP-exo technique to interrogate transcriptional mechanisms il-

lustrates the utility of this approach in providing genome-scale insights into promoter

activity in vivo. By trapping actively transcribing complexes, stable intermediates for a

given promoter are revealed on the path to transcriptional elongation. ChIP-exo results

for σ70 and for Crp, the classic model for transcription factor mediated activation, are

discussed.

5.3.2 ChIP-exo on sigma70 serves as a method for locating the TSS

The predecessors of ChIP-exo, ChIP-chip and ChIP-seq, are enriched at bacte-

rial promoters when the σ factor is targeted [113, 37, 114, 115, 116, 2, 117]. Ecocyc

annotated TSSs where checked for σ70 ChIP-exo enrichment within 200 bp for data

generated on three different substratesglucose, fructose, and glycerol (Fig. 1A and Fig.

S1). Like its predecessors, ChIP-exo peaks are consistently found near promoters but
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Figure 5.1: TSS aligned and oriented σ70 ChIP-exo data reveals DNA footprint
patterns consistent with stable transcription initiation intermediates. (A) ChIP-
exo peak regions were aligned and oriented relative to the TSS. The peak center (blue
bars) is shown to be to consistently downstream of the TSS with a median of 5 bp. The
mean distribution of the 5 position of reads (5 tags) is shown for both the template
and nontemplate. The template strand distribution shows a unimodal profile that spans
+207 bp and is consistent with in vitro footprinting studies characterizing the RPO, the
ITC, and the TEC stable intermediates. The nontemplate strand shows a multimodal
distribution with modes centered approximately +5 relative to the TSS (Group III),
upstream and over the -10 promoter element (Group II), and slightly downstream of
the -35 promoter element (Group I). (B) Examination of the distance between template
and nontemplate strand peak maximum shows that the footprint lengths are >40 bp, 21
to 40, <20 and for Group I, Group II, and Group III respectively. (C) A motif search
was performed for the -10 and -35 promoter elements for Group I, Group II, and Group
III promoters. All three show σ70-like promoter sequences but with slight differences.
Group I has a -35 motif that most closely resembles the consensus (TTGACA), has a
highly conserved -11A, and a partial TGn motif. Group III has the least conserved -35
promoter element and no extended -10 promoter element.
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only the single-nucleotide resolution of ChIP-exo provides the exact genomic location

bound by RNAP holoenzyme. Surprisingly, ChIP-exo data generated on σ70 is found to

be a better proxy for the TSS than it is for the -35 and -10 promoter recognition sequence

elements. The median position of the σ70 peak center is 5 bp downstream of the TSS for

all three carbon sources (Fig. 1A and Fig. S1). The spatial consistency of the σ70 peak

center demonstrates the utility of ChIP-exo to approximate TSSs to within base pairs

from where they exist and provides an orthogonal method to complement 5RACE-based

TSS detection.

5.3.3 Strand oriented σ70 ChIP-exo peak distributions reveal stable

intermediates in transcription initiation

The σ70 ChIP-exo peak distribution provides the bounds of protected DNA re-

gions on the template and nontemplate strand. By aligning to the TSS as a reference

position, we are able to determine the strand orientation for the σ70 ChIP-exo peaks.

ChIP-exo profiles across all binding sites were calculated for the template and nontem-

plate strand by first calculating the density of the 5 end of tags for each individual peak

region spanning 400 bp centered on the TSS. The strand orientated ChIP-exo profiles

for σ70 reveal significant distinctions between the template strand and the non-template

strand (Fig. 1A). The binding profiles show a unimodal distribution on the template

strand whereas a multimodal distribution is seen on the non-template strand. The width

of the peak regions was determined by calculating the distance between position of

maximum 5 tag count on the template strand relative to position of maximum 5 tag count

on the nontemplate strand (Fig. 1B). This corroborates the distribution profiles observed

on the two strands and indicates that most promoters have a σ70 ChIP-exo profile that

fall into one of these distances.

The activity of lambda exonuclease is 5 to 3 [118] and, as such, the protected
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region on the template strand is found downstream of the TSS. The unimodal ChIP-exo

distribution on the template strand has a maximum 5 tag density +20 bp downstream

of the TSS and approximately 30% of the mean 5 tag density is found between 207 bp.

The position of the unimodal distribution on the template strand is in strong agreement

with numerous in vitro footprinting studies characterizing the open complex (RPO) and

the intermediates preceding RPO formation, the initial transcribing complex (ITC) and

the transition to the ternary elongation complex (TEC). However, these results are not

reflective of footprinting studies capturing the closed promoter complex (RPC), which

typically protect promoter DNA from -5 to +5 [119]. Hydroxyl radical footprinting

studies on RPc formation in the T7A1 promoter showed that the short-lived RPc complex

protects DNA to approximately -5 bp [120, 121, 122]. Similar results were observed in

DNase footprinting of the T7A3 promoter, lacUV5, and rrnBP1 [123]. However, the

RPC complex was only observed when the temperature was dropped. The temperature

dependent capture of early closed complexes has been shown to be a result greater RPO

abundance at physiological temperatures [124, 121, 122]. Lastly, an RNAP mutant with

deficient open complex formation was found to have DNase I footprints that extend to

just +1 at the λPR promoter[125].

In agreement with the ChIP-exo data presented for the σ70 template strand,

in vivo footprinting studies performed on the isomerization intermediates converting

the RPc complex to RPO, the RPO complex, ITC, and early TEC uniformly conclude

that the downstream boundary of protected DNA extends +15-25 relative to the TSS.

Downstream boundaries centered on +20 have been observed in studies performed on the

intermediates leading to RPO and the PRO complex for the T7A1 promoter [120, 122],

the T7A3 promoter[123], the rrnBP1 promoter [126, 127, 128], the λPR promoter[124],

and the lacUV5 promoter [123, 129]. Furthermore, the ITC and the transition to the TEC

also have a downstream footprint boundary of +20-25. DNase footprinting of T7A1,
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tac, and lacUV5 promoters showed that the ITC has a slightly advanced footprint at +25

compared with +20 for RPO and the early TEC had a footprint at +30 [130, 131, 132].

Unlike the template strand, the ChIP-exo 5 tag distribution for the nontemplate

strand is multimodal. This distribution marks the upstream boundary relative to the TSS.

The dominant mode accounts for 28% of the 5 tag density and is found between -18 and

-1. Therefore, promoters that belong to this mode have partial to complete protection of

the discriminator sequence, the -10 promoter element, and the TGn extended -10 element

but offer no protection to the -35 promoter element or any upstream promoter elements

(e.g. UP element). The -35 promoter element is partially protected by the mode farthest

upstream which accounts for 9% of the 5 tag density profile and spans -34 to -23 with

a maximum located at -28. The upstream boundary, -3, is located in the center of the

-35 element. The downstream mode accounts for 8% of the 5 tag density and is located

downstream of the TSS. The boundaries of this mode are between +4 and +12 with a

local maximum at +6.

The multimodal distribution on the nontemplate strand also reflects in vitro foot-

printing studies which find greater variability in the upstream protected region [119].

Like the template strand, the DNA protected regions of the different modes on the non-

template strand provide little to no support that recruitment and RPC complex formation

is being captured by these ChIP studies. The upstream boundary from footprinting

studies conducted on RPC show periodic protected regions extending upstream of the

-35 promoter element typically -55 to -12 but is highly dependent on the involvement

of transcription factors and the alpha subunit [124, 120, 122]. As noted previously,

the short-lived nature of RPC at physiological temperatures likely prevents its capture

during ChIP studies. Furthermore, there is evidence to support that these modes are

reflective of stable intermediates that occur post-recruitment and, in particular, the ITC

and transition to the TEC. A detailed study on the lacUV5 promoter using DNase I,
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methylation protection, and exonuclease III protection across transcription intermediates

showed that transitions from RPO to ITC undergoing abortive initiation retained strong

protection of a region between -24 and -6 to exonuclease III digestion that was reduced

to protection of the region downstream of -6 after escaping the abortive transcription

phase to produce longer transcripts[133]. This is further corroborated by a recent study

that showed the lacUV5 promoter has an upstream footprint boundary at -23 in the

presence of σ70 compared with -13/-14 for the σ70 lacking transcribing complex[134].

A study of the T7A1 promoter using exonuclease III showed a drastic movement in the

upstream-protected region from -43 to -3 in the transition from RPO to early transcribing

complexes (ITC or TEC)[135]. The differentiation between the ITC and TEC can further

be seen in the total length of the protected region (Figure 1B). Early TECs have been

found to have footprint regions spanning 30 bp whereas the ITC has a longer footprint

seen to be 50+ bp in length [136, 130, 133].

5.3.4 Promoter motif analysis of the σ70 ChIP-exo distributions

It is known that promoter sequence elements involved with RNAP holoenzyme

recruitment contribute to the post-recruitment kinetics of transcription initiation[119].

Thus we examined the -10 and -35 promoter elements for the different σ70 groups (Fig.

1C) as determined by the difference in peak-pairs (Fig. 1B). σ70-like promoter motifs

were found in all three groups. Though a detailed analysis of additional DNA sequence

elements (e.g. UP elements, transcription factor binding sites, nucleoid-associated protein

binding sits) could be more revealing, examination of just these two promoter elements

revealed subtle difference between the promoter elements of each groups. Group I,

having the longest distance between peak-pairs, has a motif that most resembles the -35

consensus sequence (TTGACA). Furthermore, the -10 promoter element has near perfect

consensus at the critical -11-A position and a partial TGn motif characteristic of the
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extended -10 promoter element. Conversely, Group III has the most divergent -35 motif

from consensus and no appreciable motif for the extended -10 promoter element.

5.3.5 ChIP-exo profiling of a canonical transcriptional activator: Crp

Transcription activation in bacteria was further studied by conducting ChIP-exo

studies on Crp, the most studied and best characterized transcription factor[137]. These

profiles revealed differences in the DNA protection patterns observed among the different

classes of Crp activators. Three representative examples of ChIP-exo profiles generated

on glycerol are shown for each of the three Crp Classes (Fig. 2A). The deoC promoter

is a Class III promoter with two Crp binding sites flanking a CytR regulatory site that

represses the activating action of Crp[138]. The ChIP-exo protected regions are in close

proximity with the three operator sequences with protected regions near -40 and -90 as

previously seen in vitro[138]. However, markedly different profiles are observed in the

Class I (tnaC) and Class II (gatY) promoters that often have no exonuclease protection to

the Crp binding site, but instead, have strong protection of the region surrounding the

TSS. In fact, these regions correspond greatly with the ChIP-exo profiles generated for

σ70 under the same condition but no observed σ70 ChIP-exo peak was detected for the

repressed deoC promoter.

The results for these individual promoters are consistent with those observed at

the genome-scale. Examination of the mean 5 tag distribution of Crp ChIP-exo data

oriented relative to the TSS illustrates that Class I and Class II activators have a peak

center that aligns greatly with the TSS and not the Crp binding site (Fig. 2B). To confirm

that ChIP-exo was enriching Crp regulated promoters, the predicted Crp binding sites

were oriented and aligned relative to the TSS (Fig. 2B). This shows three regions of

elevated Crp operator sequence centered at -41.5, -61.5, and -93.5 bp upstream of the TSS

corresponding with the expected positions of Class II, Class I and Class III promoters
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respectively[137]. Similar ChIP-exo profiles were obtained when wild type E. coli was

grown on fructose, a Crp activating condition, but when grown on glucose, a repressing

condition for Crp, few binding sites were detected (Fig. S2). We further verified that these

results where not artifacts attributed to the anti-Crp antibody used to perform ChIP-exo

by generating data on a ∆crp strain and no correlation was observed between biological

replicate datasets indicating minimal impact due to non-specific binding (Fig. S3).

The ChIP-exo 5 tag density profile for Crp was also compared with that generated

for σ70 (Fig 2C). The ChIP-exo 5 tag density for all identified Crp peak regions for

cultures grown on glycerol were processed and oriented as described previously for σ70.

These density profiles were then compared to the σ70 density profiles determined across

the same set of peak regions. Strand orientated Crp density profiles reveal a unimodal

distribution on the template strand and a multimodal distribution on the nontemplate

strand analogous to those found for σ70. The template strand strongly overlaps the

one observed for σ70 with a downstream boundary of protected DNA centered on +20

accounting for 33% of the aggregate density profile. However, the Crp nontemplate

density profile has distinctive features. First, there is increased DNA protection on the

nontemplate strand between the -93.5 and -61.5 markers. This region encompasses 13%

of the total 5 tag density profile. These positions signify the center position of many

Class III and Class I Crp operator sequences respectively [137]. Furthermore, Group I,

Group II, and Group III modes have relative ratios of 2.5:3.3:1 compared with 1.1:3.5:1

for the same regions in the σ70 ChIP-exo 5 tag density profile. The Crp promoter bound

regions appear to have a larger relative fraction of DNA protected as far upstream as the

center of the -35 box. However, none of these regions indicates protection of the Crp

operator sequences found for Class I and Class III promoters and only partial protection

for Class II promoters due to the overlap with the -35 box.

Rifampicin (rif) prevents transcription elongation beyond 2-3 nt in length[139]
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and, in doing so, leaves the transcription machinery unable to advance beyond the ITC.

Therefore, ChIP-exo was performed on cultures treated with rif prior to harvest followed

by immunoprecipitation of Crp. The resulting mean 5 tag density profile generated on

both the template and nontemplate strand closely resembles that obtained in the non-rif

treated sample (Fig. S4). Therefore, this chemical perturbation of the transcriptional state

had no impact on the Crp ChIP-exo distribution and no additional upstream protection

of the Crp binding site was observed. This indicates that the exonuclease footprints are

occurring on initiation complexes occurring prior to the TEC. This observation coupled

with the evidence against the short-lived RPC complex strongly suggests that the Crp

promoters studied here are being captured at stable intermediates associated with RPO

formation or the ITC.

5.3.6 Distinct ChIP-exo profiles for transcriptional activators and

repressors

Previously, applications of ChIP-exo have demonstrated binding events centered

on the binding motifs in eukaryotic systems [102, 140]. We have previously applied

the ChIP-exo protocol to characterizing the transcriptional repressor Fur in E. coli and

observed similar binding profiles. To further examine the distinctions between ChIP-exo

profiles of transcriptional activators and repressors, ChIP-exo was performed on c-Myc

tagged strains of ArcA (repressor) and Fnr (activator) grown anaerobically on glucose

minimal media. The data generated was then processed, aligned, and oriented relative to

the nearest TSS (Fig. 3). ArcA which typically binds near the TSS [86] has no defined

ChIP-exo 5 tag distribution on either strand though there is a noticeable increase in the 5

tag density around the TSS (Fig 3A). In contrast, Fnr demonstrates a similar 5 tag density

profile as was seen for Crp and σ70 with a strong unimodal distribution on the template

strand at +20 and a less defined modal distribution on the nontemplate strand (Fig. 3B).
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The ArcA ChIP peak regions were aligned relative to the peak center position (Fig 3C).

This yields a uniform distribution of 5 tag density with sharp peaks on the forward

(+) strand and the reverse strand (-). Furthermore, plotting the predicted binding sites

shows that the protected regions are centered on the ArcA motif. Lastly, the peak-pair

differences for ChIP-exo profiles of ArcA and Fnr are shown (Fig. 3D). This reveals that

the footprint obtained for the repressor is approximately 30 bp while the activator has a

much broader footprint distribution extending to 80 bp.

5.3.7 Genetic perturbation of RNAP holoenzyme/Crp interactions

The activating properties of Crp and many transcription factors is through stabi-

lizing interactions with RNAP holoenzyme at the promoter [137]. Molecular characteri-

zation studies and mutational analysis of Crp has revealed three activating regions (Ars)

that make protein/protein interactions at specific positions in RNAP holoenzyme[141].

The first, Ar1, Crp interacts with either of the subunit at the C-terminus and the HL159

mutation to Crp prevents this interaction from forming[142][143]. This region is in-

volved with activation at Class I and Class II promoters. The second region, Ar2, is only

associated with Class II promoters and binds to the N-terminus of the subunit. This bond

was shown to be severely disrupted by introduction of two mutations to Crp, KE101 and

HY19. Lastly, a weaker interaction was found to occur at Ar3 between Crp and the σ

factor.

We next sought to determine the impact of genetic perturbations to the RNAP

holoenzyme/Crp interactions at Ar1 and Ar2. HL159, KE101+HY19, and HL159+KE101

mutation were introduced to create an Ar1, Ar2, and Ar1+Ar2 deficient mutant in Crp

respectively (Fig 4A). From this point forward the mutants will be referred to as delAr1,

delAr2, and delAr1delAr2. ChIP-exo was performed on these mutant strains with glycerol

s the sole carbon source. In comparison with the wild type, each mutant resulted in the
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loss of peak regions (Fig 4B). The most drastic effect was observed in the delAr1delAr2

mutant which retained 40% of the peaks in the wild type strain. This result indicates the

importance of these Ar regions on the stabilization of both Crp and RNAP holoenzyme at

the promoter site. Furthermore, the characteristic ChIP-exo 5 tag density profiles (see Fig.

2C) on both strands were systematically degraded with each mutation resulting in profiles

that no longer aligned well to the TSS (Fig. S5). To determine which peak regions were

lost as a result of these genetic perturbations, the distribution of peak region centers was

analyzed (Fig. 4C). The mutations predominantly result in a loss of peak-regions where

the peak center was located near the TSS (-10 to +20 bp) and peak centers farther away

from the TSS were less impacted. Lastly, the distribution of predicted binding sites were

examined in the context of the different mutant strains (Fig. 4D). In agreement with

expectation, modulation of Ar1 results in a drop in the predicted binding sites observed

near -61.5, the typical Class I promoter distance from the TSS. This drop near -61.5 was

partially recovered in the Ar2 mutant but a severe drop in the -41.5 centered binding sites

occurred. This distance upstream of the TSS is associated with Class II promoters. The

delAr1delAr2 mutant has a loss in peak regions with Crp binding sites matching those of

Class I and Class II promoters. However, the peak regions of Class III found near the

-93.5 position are unaffected by mutations in Ar1, Ar2, or both.
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86

5.3.8 ChIP-exonuclease coupled with RNAseq delineates the full Crp

regulon

In addition to the ChIP-exonuclease assays we also performed paired RNA

sequencing for the wild type and a delta-crp strain under batch glucose, fructose, and

glycerol conditions. We further performed RNA sequencing for the delAr1, delAr2,

and delAr1delAr2 on glycerol conditions. An overview and compilation of this data

is shown in fig5. We show a 91% (21/23) overlap with experimentally validated crp

binding sites[106] and a 79% (23/29) overlap with previous ChIP-chip measurements

that occurred in characterized Crp binding sites[45]. We further see a 65% overlap

(317/486) with all reported crp targets in regulonDB[144] and a conservatively estimated

75% overlap (317/421) with binding sites that are found under similar environmental

conditions. As shown in Figure 5, many of the genes that Crp regulates are carbon

catabolic operons that are each specific to different utilizable carbon source. Since many

of these specific operons are only activated under the presence of the exact carbohydrate

that they degrade, they cannot be expected to be active or regulated by Crp under the

experimental conditions used here. We thus conservatively removed only 65 of the 486

total crp targets in regulonDB to determine that 317/(486-65) 75% of comparable targets

in RegulonDB are found in this study.

The organization of figure 5 is assembled based upon the two principal dimensions

of metabolism[145, 146, 86], production of biomass (growth) and the production of

energy (chemiosmosis). This organization is nearly identical to the classic and familiar

categories of catabolism and anabolism. Each of the three subcategories of catabolism,

anabolism, and chemiosmosis are then broken down further into the specific functions

of which they are composed. Catabolism thus contains the transport genes to bring in

catabolites, along with the recycling or secondary metabolic enzymes to break them
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down along with the central catabolic machinery to complete the degradation process.

Anabolism contains both macromolecular synthetic reactions composed of transcription

and translation along with biosynthetic reactions composed of specific pathways for

carbohydrates, amino acids, and lipids. Chemiosmosis contains any gene responsible for

maintaining the electrochemical gradient and subsequent energy supply of the cell. It is

thus composed of the ETC, fermentation machinery, and any ion pumps. The most well

known and considered regulatory targets of Crp lie in the catabolic sector of metabolism

and contain a vast number of transport genes and recycling or secondary metabolic

enzymes. We found a total of 97 regulated catabolic genes of which 30 represented novel

findings. While we primarily confirm crp regulation of transport genes, we also discover

15 novel transport gene regulation events. One such discovery is ptsP, the nitrogen PTS

system, which exists as a completely independent PTS [147] to the main ptsGHI which is

also shown to be regulated by crp. Interestingly, pstGHI is seen to be upregulated whereas

ptsP is repressed, identifying an isozyme tradeoff enforced by crp regulation. Much of

the rest of the crp regulation fills gaps in our knowledge for carbohydrate transporters

but also highlights crp regulation of amino acid transporters, in particular metNIJ for

methionine, sdaC for serine, and livB for branched chain amino acids. We also confirm

crp regulation of recycling and secondary metabolic enzymes but again add 10 novel

regulatory targets. In particular, regulation of the clpAS protease, sdaC serine degradation

enzyme, and fruK fructose kinase broaden the scope of crp regulation.

A lesser studied but still crucially important swath of crp regulatory targets lie

in the anabolic sector of metabolism. Here we found 47 regulatory targets of which 33

represent novel discoveries. While many ribosomal genes were already known to be

regulated by Crp, we discover 7 additional translation associated regulation targets. Of

particular interest is tufB which carries aminoacylated tRNAs to the ribosome and is

one of the most highly expressed [148] proteins in the cell. We also discover extensive
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regulation of amino acid, nucleotide, and lipid biosynthetic pathways. Activation of

arginine and leucine production is complemented by activation of purine and pyrimidine

production. One important novel finding is the repression of glnB which plays a crucial

role in nitrogen metabolism by regulating the activity of glutamine synthetase. Crp

repression of glnB is consistent with its role in regulating both catabolic production and

anabolic demand. Additionally, crp is known to regulate rpoS, rpoH, argR, and itself.

However, we also show here regulation of rpoD expression underlining crps role as

globally decisive transcription factor.

Additionally, many crp regulatory targets lie in the chemiosmotic sector of

metabolism including key components of the ETC and fermentation machinery. Here

we see 29 regulatory targets of which 14 represent novel findings. Two crucial novel

regulatory targets are the primary NADH dehydrogenase, nuoA-N, along with one of

the primary fermentation enzymes, adhE, which acts as an alcohol dehydrogenase. Ac-

tivation of nuoA-N again underlines how Crp acts as a global regulator. Necessarily

regulating the high flux backbone throughout catabolism, anabolism, and the energy

generation pathways. Similarly, regulation of adhE can enable Crp to control one of the

other major routes for generation of membrane potential, especially as Crp responds to

the flow of carbon through central metabolism.

It is also important to note that another 60 regulatory events correspond to genes

of unknown function and were not included in figure 5. This brings the total of crp active

regulatory targets to 174 across the glycerol, fructose, and glucose conditions studied

here. It also highlights that 35% of all active crp regulatory targets occur on genes of

completely unknown function which concurs with previous reports [104].
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5.3.9 Genome-scale analysis of crp regulon confirms physiological

models

In order to understand systems level principles of Crp regulation we sought to

characterize the Crp regulon in terms of recent physiological models of Crp regulation

[6] and qualitative models of global regulation in microbes [86]. You et al. [6] recently

elucidated the physiological function of crp at the systems scale. In particular, this

development shows how crp senses carbon flow through central metabolism, and corre-

spondingly up or down regulates the catabolic input or anabolic demand. A strong linear

increase was observed between decreasing growth rates due to poorer carbon sources and

the expression of catabolic genes. Similarly, a strong linear decrease was also observed

among anabolic genes, presumably balancing proteome constraints among the catabolic

and anabolic sectors. Here we sought to determine if the broad patterns described by the

physiological model would be consistent at the genome-scale. We first grouped genes

based on their classification from Figure 5 and then plotted relative expression levels

across each carbon source in Figure 6. The median expression levels and quartile distri-

butions markedly shift from glucose to fructose to glycerol conditions for catabolic and

chemiosmotic genes. The same plots for strains lacking crp show unaffected expression

levels across the same three substrates. This strong positive relation is also observed on

historical microarray data across glucose, fructose, and acetate conditions (supplement).

Further, the total number of genes which are differentially expressed at an FDR p-value ¡

.05 are shown in Figure 6d. A total of 73 catabolic genes are significantly activated and

only 8 are significantly repressed between glucose and glycerol conditions. Similarly

68 catabolic genes are significantly activated and only 8 are repressed between glucose

and fructose conditions. This analysis provides strong confirmation for the physiolog-

ical model of You et al. by recreating their observed C-line at the genome-scale and
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extends its scope to include energy generation pathways. One key set of genes driving the

chemiosmotic trend is the NADH dehydrogenase nuoA-N. This activation of the NADH

dehydrogenase is consistent with a strategy in which Crp up regulates both catabolism

and energy generation on poor carbon sources to maintain normal cell function at the

expense of a higher growth rate via anabolic activity. Further, given its role as the primary

dehydrogenase and a high flux backbone for energy generation, this discovery highlights

the value in unbiased genome-scale assays.

Anabolic genes, in line with the same physiological model, do not increase in

expression levels in response to poorer carbon sources. In the physiological model,

a negative linear relation is observed for the anabolic gene sector. While we do not

see a negative linear relation, we do see a clear flatlining and lack of clear response

in the delta-crp strain. Some anabolic genes likely do respond along the c-line, but

many do not. Part of the reason for this may lie in compensation by other transcription

factors or cellular machinery at key promoters. Notably, rplM, rlmA, yrbN, and yciH

are all important ribosome related genes which display very large ChIP-binding peaks,

and differential expression under a delAr2 strain. However, these genes do not exhibit

differential expression under the full delta-crp strain. In cases where a full crp deletion

does not affect expression levels, but the Ar2 genetic perturbation clearly does, we can

conclude that some form of compensation must have occurred at those promoters in the

full crp deletion strain. In addition, biosynthetic genes across the amino acid, nucleotide,

and lipid categories which include thrABC, metH, pyrF, purHD, ddlA, and elbB all

indicate a form of compensation and hence explain the flatlining of overall expression

for anabolic genes regardless of crp activity.

ArgG, ilvBN, cysJI, and cysM activation consistent with increased serine uptake

through elevated transporter expression sdaC and upregulation of tsr for serine sensing.

upregulation of cysteine also concomitant with tnaA activation for cysteine degradation.
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Figure 5.6: Distribution of expression levels for catabolic, anabolic, and chemios-
motic genes reflects physiological models of Crp regulation. Boxplots display the
quartiles and median distributions of all genes in each of the categories defined in Figure
5. (A) Overall expression levels are seen to increase from glucose to fructose to glycerol
conditions in wild type strains. The same transition from glucose to fructose to glycerol
conditions in δcrp strains results in constant expression levels. (B) A similar trend
as observed for catabolic genes is also observed for chemiosmotics genes. This trend
is driven in part by novel discovery of the regulation of the NADH dehydrogenase,
nuoA-N that exists as a high flux backbone for the E. coli electron transport chain. (C)
Anabolic genes do not exhibit the same increase in expression across conditions. This is
in line with previous observations and physiological models You, 2013. (D) The number
of differentially expressed genes between glucose and fructose or glucose and glycerol
are shown for wild type and δcrp strains. In general, the observation that a vast majority
(e.g. 67/75 for catabolism glucose/fructose) of the differentially expressed genes at an
FDR p-value ¡ .05 between glucose and fructose are being activated indicates that the
differences in the boxplot medians are significant. Similarly, this fraction drops off, e.g.
10/27 are activated for anabolic genes between glucose and fructose conditions.
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Crp tries to redirect serine to pyruvate to generate extra energy on poorer carbon sources.

Repressing transport and biosynthesis of some branched chain amino acids (leu, ile, val)

and methionine

5.3.10 Genetic perturbations provide link between promoter mech-

anisms and systems level regulatory features

Mutations in the functional units of Crp at the Ar1 and Ar2 regions have clear

effects on Crp regulation at both the individual promoter level, and overall systems level.

We showed in figure 3 how open promoter complexes are destabilized at individual

promoters resulting in fewer binding peaks when the functional Ar1 and Ar2 contacts

are perturbed. Interestingly, these same Ar1 and Ar2 genetic perturbations also exhibit

systems level effects via the overall lessening of Crps ability to regulate the catabolic,

anabolic, and chemiosmotic sectors of metabolism Fig 7c. This clear linear decrease

across the catabolic and chemisomotic sectors again highlights and solidifies Crps role

in activating catabolic genes along the C-line[6]. It also provides a link between the

promoter level mechanisms and the systems level regulatory features.

5.4 Conclusion

In conclusion, we have shown that ChIP-exonuclease is able to provide an un-

precedented window into bacterial transcriptional activation and that this information

can be coupled with systems analysis. This study thus makes a significant contribution

towards the longstanding goal of linking structure with function in biological sciences.

We first show a striking trimodal distribution for rpoD binding on the lagging strand and

a sharp unimodal distribution on the leading strand. This trimodal distribution is shown

to correspond to three different groups of promoters with differing motifs and differing
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functional properties at the systems level. This ultra-high resolution view is also shown

to be in solid agreement with structural and biochemical knowledge. In particular, the

-19 bp position of the unimodal leading peak aligning perfectly with the onloading of

active transcription complexes.

We then repeated ChIP-exonuclease for the canonical activator in E. coli, Crp.

Surprisingly the Crp binding profiles showed a remarkable degree of similarity with the

rpoD binding profiles. This led us to determine that at Class I and Class II crp promoters

in which Crp is known to make direct contacts with rpoD, the full crp-rpoD complex is

pulled down and footprinted. This initially surprising result is in clear alignment with

structural studies of crp activation and simply highlights that at base pair resolution, ChIP-

exonuclease is able to assist in unraveling the dynamics and structure of nucleoprotein

complexes. We are also able to show that in Class III cases where Crp does not contact

rpod as well as for a transcriptional repressor, ArcA, the footprint occurs perfectly in line

with the underlying sequence motif.

At the systems level we are able to confirm recent physiological studies which

unraveled the true systems level function of Crp. The model of You et al. showed a

feedback mechanism from central metabolism to the catabolic and anabolic genes which

Crp regulates. We first confirm this model at the genome-scale by showing that the

distribution of expression values for catabolic, anabolic, and chemiosmotic genes in the

Crp regulon obey the same trend as the C-line. We then extend this model by showing

clear and significant regulation of the energy generating high flux backbone of the cell in

the form of the NADH dehydrogenase.
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5.5 Materials and Methods

5.5.1 Strains and Culturing Conditions

Escherichia coli MG1655 cells and derivatives thereof were used for all experi-

ments performed in this study. Crp-8-myc, Fnr-8-myc, and ArcA-8-myc tagged strains

were those previously constructed and described in [46]. The ∆crp strain was generated

using the method described. Briefly, the crp gene was deleted from start codon to stop

codon using the λred, FLP-mediated site-specific recombination method and replaced

with a gene conferring kanamycin resistance. The ∆crp was transformed with pKD46

and used as a basis for constructing the delAr1, delAr2 and delAr1delAr2 mutant strains

using the λred, FLP-mediated site-specific recombination method. Plasmids carrying the

different Ar mutant sequences were de novo synthesized using GeneArt with restriction

sites at the 5 and 3 end of the gene. Linear PCR constructs carrying a homologous region

upstream of the original crp start codon location, the AR mutant crp gene, an FRT site,

the chloramphenicol resistance gene, the second FRT, and a second homology region

targeting the region downstream of the crp stop codon were electroporated into the ∆crp

pKD46 transformed cells. The chloramphenicol resistance gene was then removed from

strains with a confirmed insertion of the mutated crp gene by transformation of pCP20 as

previously described Datsenko, 2000. The delAr1 mutant introduces a mutation to the

Ar1 region, HL159, previously determined to break the contacts between Ar1 and the

subunit of RNAP Rhodius, 1997;West, 1993 . The delAr2 mutant does the same for Ar2

but introduces two mutations, KE101 and HY19 Rhodius, 1997. The delAr1delAr2 strain

carries the HL159 mutation and the KE101 mutation. M9 minimal media was used for

all cultures with 2 g/L of either glucose, fructose or glycerol depending on the conditions

tested. For σ70, Crp, Crp8myc, ∆crp, delAr1, delAr2, and delAr1delAr2 experiments,

cultures were grown aerobically in shake flasks. Rifampicin conditions were incubated in
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the presence of rifampicin (50 g/mL final concentration) for 20 min prior to crosslinking

as previously described Cho, 2009. Fnr and ArcA experiments were conducted similarly

but grown under anaerobic conditions.

Finally we show that the C-line can also be reproduced via analysis of the Ar1 and

Ar2 regions. This data shows that the same mutations which destabilize complexes at the

level of an individual promoter are responsible for carrying out systems level regulatory

features in a consistent and coherent manner.

5.5.2 ChIP Experiments

The ChIP-exo protocol was adapted based on the method described by Rhee et

al. and adapted for the Illumina platforms with the following modifications[102]. DNA

crosslinking, fragmentation, and immunoprecipitation were performed as previously

described[37]. Briefly, cells were crosslinked in early exponential phase in 1% formalde-

hyde for 30 min at room temperature. This was followed by a 5 min quenching of the

crosslinking reaction by addition of glycine to a final concentration of 125 mM. Cells

were then washed 3X in ice-cold TBS. Cells were lysed as previously described in the

presence of protease inhibitors. Clarified lysate was then continuously sonicated at 4 C

using a sonicator bell (6W) for 30 min. Cells were then immunoprecipitated with an

appropriate antibody. Antibodies used in this study (all mouse derived) are: anti-Crp

(Neoclone N0004), anti-σ70 (Neoclone WP004), anti-Myc (Santa Cruz Biotechnology

sc-40). Immunocomplexes were captured using Pan Mouse IgG Dynabeads (Life Tech-

nologies). At this point the procedures for ChIP-chip and ChIP-seq deviate the ChIP-exo

protocol. ChIP-chip was carried out as detailed in[37] while ChIP-seq undergoes end-

repair, dA tailing, adaptor ligation, and PCR enrichment as is done for ChIP-exo. For

ChIP-exo, the following steps were performed while the protein/DNA/antibody com-

plexes where bound to the magnetic beads: end repair (NEB End Repair Module), dA
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tailing (NEB dA-Tailing Module), adaptor 2 ligation (NEB Quick Ligase), nick repair

(NEB PreCR Repair Mix), lambda exonuclease treatment (NEB), and RecJf exonuclease

treatment (NEB). A series of step-down washes were performed between all steps using

buffers previously described. Strand regeneration and library preparation followed the

approach of Rhee et al. [102] with the exception of a 3 overhang removal step after the

first adaptor ligation and prior to PCR enrichment by treating with T4 DNA Polymerase

for 20 min at 12 C. Libraries were sequenced on an Illumina MiSeq. Reads were aligned

to the NC 000913.2 genome using bowtie2 Langmead, 2012 with default settings. Peak

calling was performed using GPS in the GEMS analysis package [149] with the following

parameter settings. Note that GPS was used over GEMS because GEMS peak boundaries

are influenced by motif identification whereas GPS is not. ChIP-peak calls were manually

curated for anti-Crp conditions on all substrates and rifampicin treated cultures. A super-

set of GPS peak calls across all anti-Crp conditions was analyzed for presence/absence

in each individual condition. Data for ArcA and Fnr were also manually curated.

5.5.3 Gene Expression

Gene expression analysis was performed on RNA-seq data. Briefly, total RNA

was isolated and purified using the Qiagen Rneasy Kit with on-column DNase treatment.

The quality of the total RNA was assessed using an Agilent Bioanalyzer. Paired-end,

strand specific RNA-seq libraries were constructed using the dUTP method. Briefly, total

RNA was first depleted of ribosomal RNAs using Epicentres RiboZero rRNA removal

kit for gram negative bacterial. rRNA depleted RNA was then primed using random

hexamers and reverse transcribed using SuperScript III (Life Technologies). Second

strand was synthesized using E. coli DNA Polymerase, Rnase H, and E. coli DNA Ligase

and with dNTPs with dUs replacing dTs. Sequencing library construction followed with

end-repair, dA tailing, adaptor ligation, removal of the second strand carrying dUs, and
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PCR enrichment. Sequencing was performed on an Illumina MiSeq. Reads were mapped

to the NC 000913.2 reference genome using the default settings in bowtie2[150].
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Chapter 6

Determining the control circuitry of

redox metabolism at the genome-scale

6.1 Abstract

Determining how facultative anaerobic organisms sense and direct cellular re-

sponses to electron acceptor availability has been a subject of intense study. However,

even in the model organism Escherichia coli, established mechanisms only explain a

small fraction of the hundreds of genes that are regulated during electron acceptor shifts.

Here we propose a qualitative model that accounts for the full breadth of regulated genes

by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense

key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic,

and energy generation pathways. We first fill gaps in our knowledge of this transcrip-

tional regulatory network by carrying out ChIP-chip and gene expression experiments to

identify 463 regulatory events. We then interfaced this reconstructed regulatory network

with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate

¿ 80% of total metabolic flux and 96% of differential gene expression across fermentative

100
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and nitrate respiratory conditions. Based on the data, we propose a feedforward with

feedback trim regulatory scheme given the extensive repression of catabolic genes by

ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated

this regulatory scheme by showing a 0.71 r2 (p ¡ 1e-6) correlation between changes

in metabolic flux and changes in regulatory activity across fermentative and nitrate

respiratory conditions. Finally, we are able to relate the proposed model to a wealth

of previously generated data by contextualizing the existing transcriptional regulatory

network.

6.2 Author Summary

All heterotrophic organisms must balance the deployment of consumed carbon

compounds between growth and the generation of energy. These two competing objec-

tives have been shown, both computationally and experimentally, to exist as the principal

dimensions of the function of metabolic networks. Each of these dimensions can also be

thought of as the familiar metabolic functions of catabolism, anabolism, and generation

of energy. Here we detail how two global transcription factors (TFs), ArcA and Fnr

of Escherichia coli that sense redox ratios, act on a genome-wide basis to coordinately

regulate these global metabolic functions through transcriptional control of enzyme and

transporter levels in changing environments. A model results from the study that shows

how global transcription factors regulate global dimensions of metabolism and form a

regulatory hierarchy that reflects the structural hierarchy of the metabolic network.
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6.3 Introduction

Regulation of metabolism in response to shifting availability of electron acceptors

is a fundamental process in all of biology and is a critical subject for the understanding

of pathogenesis, cancer metabolism, and industrial biotechnology. However, even in the

model organism Escherichia coli, the regulatory network for this fundamental metabolic

function has not been fully elucidated. It has long been known that facultative anaerobes

will hierarchically utilize external electron acceptors relative to the free energy change

provided by each [151, 152]. Oxygen exists at the top of the hierarchy, electron acceptors

like NO3 in the middle, and lactate or acetate or other fermentation products are at the

bottom[153, 154, 155]. Many detailed studies have determined that the transcription

factors (TFs) ArcA and Fnr are the key players in managing this hierarchy through the

activation or repression of the electron transport chain (ETC) machinery specific to an

available electron acceptor[156, 157, 158, 20, 159, 160]. It is also largely understood

how ArcA senses redox via the flow of reducing equivalents through the ETC, and how

Fnr directly senses levels of dissolved O2[161, 162, 163] and glutathione [164]. However,

it is not clear how these two TFs work together and more importantly why they regulate

hundreds of gene products that lie outside of the ETC and energy metabolism [153, 155]?

Even though many biochemical details of redox regulation have been elucidated

[156, 158]park, systems level principles for the global regulatory response throughout the

anaerobic shift remain elusive. An important missing piece is a clear framework, or design

principle, that elucidates how hundreds of transcriptionally regulated gene products are

coordinately regulated to produce the necessary quantitative shifts in metabolic flux

states. On the purely metabolic side, certain design principles have emerged through the

analysis of stoichiometric models that identified growth and energy generation as the two

principal dimensions of metabolic network function[145, 146, 165][17-19]. It was further
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shown that linear combinations of these two dimensions could account for observed flux

patterns throughout nutrient limitations and the anaerobic shift[146, 166]. A question

now becomes, what are the corresponding global TFs and how do they coordinately

regulate all the gene products which enable the metabolic flux map to shift from one

optimal state to another?

Here we show how the global TFs ArcA and Fnr coordinately regulate the primary

metabolic dimensions of growth and energy generation. We integrated polyomic data

sets and used genome-scale metabolic models to enable a mechanistic understanding of

hundreds of simultaneous and individual regulatory events. This analysis subsequently

provides a link between global regulatory circuits and global optimality in microbial

metabolism.

6.4 Results

6.4.1 Genome-scale identification of TF regulatory events

We first identified individual TF regulatory events at the genome-scale. Side-by-

side measurements of RNA transcript abundance and TF binding were carried out to

determine the structure and causality in E. colis transcriptional regulatory network (TRN).

ChIP-chip assays for ArcA and Fnr were performed under both fermentative and nitrate

respiratory conditions (Figure 1A). Gene expression measurements were then used to

determine causality of activation or repression for each ArcA or Fnr binding site under

these same two conditions (see Figure 3 legend, Figure S1). We found 102, and 86 (and

143 and 132) binding regions and 58 and 54 (and 95 and 55) causal regulatory events

for ArcA and Fnr under fermentation (and nitrate respiration) conditions, respectively

(Figure 1A, Tables S1-S4). We then compiled the set of genomic sequences underlying

these binding regions for each of the TFs and used the MEME program[38] to recover
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previously identified binding motifs [167, 168] (Figure 1B, Tables S5-S6). We confirmed

180 of 216 (83%) previously known regulatory events[57] and discovered 132 new

binding regions relative to RegulonDB (Figure 1A), representing an increase of 74% over

current knowledge of the regulatory functions of these two TFs. We further performed

a detailed comparison of our results to recently published works parkmyers [16,25] to

determine a 78% overlap in ArcA binding sites and a 50% overlap in Fnr binding sites

under fermentative conditions (Figures S5-S7). In addition, we report 88 novel binding

sites for ArcA and 52 novel binding sites for Fnr under nitrate respiratory conditions

highlighting plasticity of the network throughout shifting external electron acceptors.

We then integrated transcription start sites (TSS)[58] with TF binding regions

to identify promoter architectures[169]. The location of TF binding motifs within

experimentally determined binding regions were used to prepare histograms of the

frequency of TF binding relative to the TSS (Figure 1B). This analysis showed that ArcA

spans the TSS or -35 box region and represses transcription while Fnr spans the -41.5

or alpha carboxy terminal domain and activates transcription[169]. While each of these

regulatory strategies have been shown previously, here can we show that each strategy is

ubiquitous at the genome-scale.

6.4.2 Transport coupled redox balancing

The NADH/NAD+ redox pair is critical because a high concentration of NAD+

is absolutely necessary to run glyceraldehyde 3-phosphate dehydrogenase and allow

glycolysis to proceed. If the ratio of the NADH/NAD+ becomes too high then the

cell will not be able to run glycolysis and perish. Thus a careful system of redox

balancing has evolved in which respiratory metabolism is focused on the transfer of

reducing equivalents through NADH and under conditions in which respiration becomes

impossible the reducing equivalents are dumped onto glycolytic intermediates in the
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Figure 6.1: ChIP-chip reveals hundreds of new binding regions and regulatory
mechanisms. (A) Triplicate averaged tracks of ChIP-chip intensity plotted along the
length of the genome for ArcA and Fnr under fermentation. We show 83% of previously
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process of fermentation. While the general principle of redox balancing has been widely

disseminated and utilized[154] and even hypothesized to be mediated by ArcA or Fnr it

was not previously possible to mechanistically determine how this phenomena proceeds

at the systems level. We took a genome-scale model of E. coli metabolism and sampled

it using Monte Carlo methods to determine flux range distributions for all reactions under

both fully anaerobic and anaerobic with the addition of nitrate. We then looked at every

reaction which utilized NADH/NAD+ and found that 14/19, and 30/35 genes encoding

reactions under anaerobic and nitrate conditions were directly regulated by ArcA or Fnr.

Drilling down into the 5 unregulated genes (same in both conditions) we found that one

encoded fre, a constitutively expressed NAD generation enzyme, and the other four, serA,

tyrA, metF, and hisD all encoded amino acid metabolic enzymes. We then took into

consideration a puzzling finding of newly discovered and highly significant (fold change

regulation of amino acid transporters for serine, tyrosine, methionine and histidine. We

noticed that for serA and tyrA in particular, the NADH generating reactions were the

subject of end product inhibition by serine and tyrosine. Thus we can hypothesize that

activation of the uptake transporters for these amino acids will cause feedback inhibition

of the enzymes and thus maintain the expression of critical metabolic enzymes while

simultaneously modulating their redox related contributions (Fig. S4).

6.4.3 Discovery of transcription factor mediated bidirectional tran-

scription

Novel cases of divergent transcriptional regulation were found in this data. The

integration of binding regions with gene expression data revealed 42 regions where two

divergent transcriptional units (TUs) were simultaneously regulated by a single binding

event. Divergent transcriptional regulation has been observed previously [28] and is

known to be mediated by transcription factors in certain cases. However, systematic
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regulation by global TFs has only been observed in limited cases [170] [29]. We observe

a total of 19 inverse, 16 dual activation, and 13 dual repression events for a total of 48

events spread across the 42 regions as some recur under different experimental conditions.

Two examples (Figure 1C) highlight this hard coupling of the transcriptional reg-

ulation of seemingly unrelated but contextually dependent pathways. The acs-nrfABCDE

system represents a lowest common denominator coupling between acetyl-coA syn-

thetase (acs) acetate scavenging to acetyl-coA and usage of acetyl-coA via the TCA cycle

and nrfABCDE nitrite reductase. Similarly the aroP-pdhR system couples the transport

of aromatic amino acids to the regulation of pyruvate that acts as their principal precursor

molecule.

The link between the acs and nrfABCD systems has been inferred/suggested in

previous work which attempted to understand how E. coli could survive on acetate as a

sole carbon source under anaerobic conditions [171]. In particular, E. coli cannot utilize

acetate under fully anaerobic conditions because acetate must be scavenged into acetyl-

coA via acs and then utilized by the TCA cycle. Anaerobically the TCA cycle cannot be

used unless there is an electron acceptor in the ETC to enable oxidative phosphorylation.

Thus, some usage of the TCA cycle via an alternative electron acceptor such as nitrite

or nitrate is necessary for E. coli to utilize acetate and acetyl-coA anaerobically. This

metabolic feature is physiologically crucial in the gut environment that is rich in fatty

acids that cannot be used if E.coli does not utilize alternative electron acceptors like nitrite.

Hence, the direct coupling of acs and nrfABCD through bidirectional transcriptional

regulation is consistent with the necessity of a flux through the nrfABCD system in order

for the acetyl-coA formed by acs to be utilized. The transcriptional coupling acts as

bidirectional gate controlled by ArcA and the redox state of the cell to coordinate this

evolutionarily crucial metabolic capability.

Similarly the aroP-pdhR system couples the transport of aromatic amino acids
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to the regulation of pyruvate that acts as their principal precursor molecule through the

action of Fnr. To understand the network level connection between the aromatic amino

acid transporter (aroP) and the pyruvate dehydrogenase repressor TF (pdhR) one can

examine Figure 2, which shows the connection between catabolic biomass precursors

and biosynthetic pathways. Tyrosine and tryptophan are both made directly from PEP

that is rapidly dephosphorylated into pyruvate. The corresponding activation of aroP and

repression of pdhR is consistent with an increased need for amino acid transport when

the precursors for biosynthesis (PEP) are critical to maintain cellular energy levels. This

characteristic is supported by a dampening of the switch upon the transition to nitrate

respiration, resulting in decreased transporter expression when less pyruvate is needed

for fermentation and can thus be shuttled to amino acid biosynthesis. In general, pdhR

acts as a classic repressor that pops off of its binding site in the presence of pyruvate

and hence allows expression of pyruvate dehydrogenase and other oxidative enzymes.

Anaerobically pyruvate dehydrogenase (aceEF-lpd) is repressed regardless of pdhR by

ArcA and Fnr and given that there is also a higher concentration of pyruvate it would

presumably not be active. Thus, while this switch is highlighted anaerobically in that full

repression of pdhR is concomitant with aroP activation its physiological significance is

more prevalent under nitrate or even fully aerobic conditions in which it can function

to directly couple and balance the catabolic and anabolic demands around pyruvate

which acts as a critical second messenger in the aerobic-anaerobic shift[156]. It is very

insightful to view such a switch as it is ramped fully up under anaerobic conditions and

then turned down under nitrate respiration to maintain a physiologically crucial metabolic

balance.
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6.4.4 Ubiquitous regulation of the principal dimensions of meta-

bolism by ArcA and Fnr

Previous work has identified biomass production and energy production as the

two principal dimensions characterizing the overall function of metabolic networks[145,

146, 165]. This duality in function is conceptually equivalent to considering heterotrophic

metabolism as the standard combustion equation (Figure 2) in which an electron donor

(glucose) is broken apart with an electron acceptor (oxygen, nitrate, etc.) to form biomass,

energy, waste and heat. Here we use the terms catabolism to describe oxidation of the

electron donor, anabolism to describe biomass formation, and chemiosmosis to describe

energy generation. The genes in each of these categories were determined by a manual

curation of the E. coli metabolic model[97] and associated literature sources [154, 58].

Catabolic genes correspond to nutrient transporters, recycling machinery, and central

catabolic machinery. Anabolic genes correspond to biosynthetic and macromolecular

synthesis pathways. Chemiosmotic genes correspond to the electron transport chain

(ETC), fermentation pathways, and ion pumps (Figure 3).

From the data sets described above, the regulation of these three classes of genes

by ArcA and Fnr can be analyzed using their metabolic functions as context. ArcA and

Fnr directly regulate a total of 127 catabolic genes including 49 transporter genes, 38

recycling or secondary catabolic enzymes, 33 central metabolic genes, and 7 associated

TFs (Figures 2,3). In particular, recovery of all of the classic targets of ArcA and Fnr is

complemented by the simultaneous discovery of transporter genes and recycling enzymes

like peptidases and proteases (Figure 3). It can also be recognized that there existed many

classically unknown glycolytic targets along with generally unrecognized activation of

the glucose transporter ptsG. Activation of ptsG by Fnr is consistent with the fact that

cells nearly double their uptake of carbon during fermentative growth compared with
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aerobic growth.

In anabolism, ArcA and Fnr directly regulate 54 genes including 34 metabolite

synthesis genes, 14 macromolecular synthesis genes, and 6 TFs. Broad trends of nu-

cleotide biosynthesis activation and amino acid biosynthetic activation of nucleotide

precursors is consistent with redox related demands. However, perhaps the most im-

portant of these findings is the regulation of both transhydrogenases (sthA, pntAB) in

E. coli. Previous work has shown that a large portion of the NADPH used for biosyn-

thetic reactions comes from the membrane bound transhydrogenase PntAB[172] and

that the soluble SthA is used for re-oxidation of NADPH under aerobic growth with

excess glucose. Our data shows that ArcA activates pntAB and represses sthA in a

redox-dependent fashion consistent with an increased need for NADPH under nitrate

respiration relative to fermentation (Figure 3). This regulatory shuttling of reduction

equivalents thus plays a critical role in maintaining the balance between growth and

energy generation by increasing growth only once when energy demands are satisfied.

In the chemiosmotic category we observe regulation of 120 genes including 83

genes of the ETC, 6 for fermentation, 21 for ion pumps, 2 for motility, and 8 TFs. Nearly

all of the regulation can be shown to coincide with redox related demands including

regulation of ion pumps which coincides with an increased need to maintain a positive

electrical gradient across the inner membrane to make up for the diminished proton

gradient. We also observed strong regulation of the flhDC, gadW, and appY transcription

factors. The flhDC system is a master regulator for the motility and flagellum apparatus

of the cell that feeds off the chemiosmotic gradient in search of nutrients. appY and gadW

are key regulators of cytochromes and acidic tolerance, respectively. After including

regulation through appY we can conclude that ArcA and Fnr exhibit control either directly

or indirectly over 15 out of the 16 known dehydrogenase and oxidoreductase reactions in

E. coli[173] (Figures 2,3).



112

fadIJ
fadD
fadE

fadBA
fadH

thiEFSG

mglBAC
ugpBAEC

kgtP
lldP

exuT
focA
uraA
ptsG
dcuA

potB
metNIQ

aroP
dppABCDF
oppABCDF

sstT
hisJQMP
potFGHI

argT
cycA
putP
gabP
tyrP

nupC

fadL

Tr
an

sp
or

t
Re

cy
cl

in
g

AA

CH

LP

envC
mltA
pldA

ugpQ
mhpF

arnA

CH

LP

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

clpAS
ygjG

pepN
pepQ
ybiS

yhbU
rnpA
gcvA
gcvB

astCADBE

AA

NA
ET

C

fdnGHI
fdoGHI

hybO-G
nuoA-N

lldD
mdh

sdhCDAB

lhgO
mqo

frdABCD
dmsABC
ynfEFGH

nirBDC
nrfABCDEFG

narGHJI
cyoABCDE

cydAB
hcr

msrB
glpEGR

fhuF
ynjE

moaBCDE
nikABCDE

hcp
D

eh
yd

ro
ge

na
se

s
Re

du
ct

as
es

A
cc

es
so

ry �hDC

p�B
y�D
pta

ackA
adhE
focA

m
ot

ili
ty

Io
n 

pu
m

ps

hemG
dcuB

cydDC
ompC

kdpFABC
pitA

narK
narGHJI

osmY
cirA

feoABC
mntH

gsiD

dsbB
gadW

glpR
narXL

nikR
rstAB

TF

Fe
rm

en
ta

tio
n

Catabolism Chemiosmosis

aer
lldR

mhpR
glcC

puuR
pdhR

caiF

TF

dhaKLM
gapA

gpmM
pykA
aceEF
adhE

lpd
acs

G
ly

co
ly

si
s

gltA
acnB

icd
sucABCD
sdhCDAB
frdABCD

fumA
mdh

glcDEFG
aldA

TC
A

sthA
pntB
pncB
purA
purN

guaB
ravA
katG

pyrD
carA

thiC
gabDT

puuD
putA

mhpD
thrA
gltB

argG
speA

Bi
os

yn
th

es
is

NA

AA

tpx
ndk

nudE
nrdA
nrdD

upp
ung

dbpA
rimP
rplY

rpsU

ddlA
uspA
uspB
bssR
uspF
rcsD

M
ac

ro
m

ol
ec

ul
ar

 sy
nt

he
si

s

TF

Anabolism
: Amino Acids

: Nucleic Acids

: Lipids

: Carbohydrates

AA

NA

CH

LP

-8 -4 4 80

Log fold change

ChIP enrichment

80 0

appY

0

3

6

9

12

15

bssR yliLrimOyliF dacC

f(x)

a b

∫ f(x) dx
a

b

=

WT ∆arcA WT ∆fnr

= WT ∆fnr-

: Discovered
: Novel

argR

: Trans. FactorTF

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

Δ
ar

cA
  0

2 

Δ
ar

cA
  N

O
3

Δ
fn

r  
0 2

Δ
fn

r  
N

O
3

glpD
ndh

Figure 6.3: Integration of ChIP-chip, gene expression, and biological context. Spe-
cific regulation of each gene product by ArcA or Fnr under strictly anaerobic and nitrate
respiratory conditions are shown as columns. Each box is the result of integration
between ChIP-chip and gene expression data in which a TF binding peak was identi-
fied and gene expression microarrays showed differential expression upon knockout
of the transcription factor in matched conditions. The genes are grouped biologically
according to the principal dimensions described in figure 2. Immediate broad trends
that emerge are catabolic repression by ArcA and chemiosmotic and anabolic activation
by Fnr.
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6.4.5 High-level architecture of the metabolic-regulatory network

Enumerating regulatory events is informative, but how do they all together form

a coherent regulatory logic that produces meaningful physiological states? Network

analysis of these regulatory interactions reveals a qualitative feedforward and feedback

flow-based model of the primary metabolic dimensions (Figure 4A). The model input

is the total set of catabolites (glucose or electron donor) available to the cell that are

oxidized based on the availability of an electron acceptor into a ratio of reduced to

oxidized components. These components (primarily NADH/NAD and NADPH/NADP)

are then used by the anabolic machinery to generate biomass, or by the chemiosmotic

machinery to generate energy as outputs. The ratio of reduced-to-oxidized components

is sensed by ArcA and Fnr[151], and they can feedback and feedforward regulate the

catabolic, anabolic, and chemiosmotic processes in a coordinated fashion to maintain

the ratio. Consistent with this schema, it has been shown that TFs are ideal flux sensors

[174].

6.4.6 Feedforward with feedback-trim architecture regulates the a-

naerobic shift

Analyzing the regulatory events within the context of the qualitative flow-based

model reveals a feedforward with feedback-trim architecture of the overall regulatory

logic. Counting the number of genes that are activated or repressed (Figure 3) provides a

measure of the extent of feedforward or feedback regulation exerted (Figure 4B). Under

fermentation ArcA represses 70 catabolic genes and Fnr activates 75 chemiosmotic

genes. Under nitrate respiration ArcA represses 73 catabolic genes and Fnr activates 61

chemiosmotic output genes. A similar trend is observed for regulation of the anabolic

circuitry in which Fnr activates 14 and 11 genes under fermentation and nitrate respiration.
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This circuitry is consistent with fast sensing of oxygen by Fnr and slow but continuous

sensing of redox flow through the ETC by ArcA[175].

The regulatory architecture revealed by this qualitative model is comprehensive

and novel, but primarily topological. To more quantitatively assess the functions of

the observed transcriptional regulatory architecture on the metabolic network that it

regulates we sampled all allowable network flux states of a highly curated genome-

scale metabolic model of E. coli metabolism[97] under both fermentative and nitrate

respiratory conditions. This sampling of allowable flux states of the metabolic network

was then integrated with the experimentally determined regulatory architecture to discern

the amount of total flux (sum of flux loads across all reactions) regulated by ArcA and

Fnr under each of the conditions studied. This calculation revealed that 60% and 57%

(and 88% and 80%) of all metabolic flux is directly (and indirectly) controlled by ArcA

and Fnr under fermentative and nitrate respiratory conditions respectively (Tables S7,

S8). We further show that 69% and 62% of the catabolic fluxes producing each of the

redox molecules and biomass precursors along with 71% and 69% of the downstream

anabolic and chemiosmotic fluxes are directly regulated under fermentative and nitrate

respiratory conditions respectively (Figure S3, Table S9-S10). From a gene level we

find that 246 genes are differentially expressed (fdr < .05, fold change > 2) between

fermentative and nitrate respiratory conditions and that 236/246 or 96% of the genes are

directly (73) or indirectly (163) regulated by ArcA or Fnr (Table S12). Taken together,

these measurements quantify the global metabolic regulation of flux by ArcA and Fnr and

provide further evidence towards the proposed feedforward with feedback-trim regulatory

architecture.

To provide more validation for the feedforward with feedback-trim architecture at

the genome-scale we first assessed the set of 91 reactions that significantly differed (flux

cutoff of 0.25 mmol /gDW-1 -h-1) between fermentation and nitrate respiration; gDW is
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denotes grams dry weight. We were then able to show that 89 of the 91 reactions were

regulated directly (40 reactions) or indirectly (49 reactions) by ArcA or by Fnr (Table

S11). We then calculated the change in flux for each of these 89 reactions between the

two conditions along with the change in regulatory strength for the genes encoding these

89 reactions across the same conditions (Table S11). We plotted the change in flux versus

the change in regulation (Figure 5A) and calculated an r2 correlation value of 0.71 (p ¡

1e-6) for the directly regulated genes. This correlation provides quantitative evidence for

the logic of the regulatory circuit in the transition from fermentation to nitrate respiration.

The linear positive slope shows not only that the reactions responsible for the redox shift

are regulated, but also that these reactions are quantitatively regulated to help minimize

the redox ratio in concert with the quantitative model predictions. Most of the ArcA

regulated reactions are de-repressed, as indicated by the lightening shade of blue under

nitrate respiration (Figure 5B). Most of the Fnr regulated reactions are de-activated as

highlighted by the lightening shade of yellow under nitrate respiration (Figure 5B). The

broad repression of crucial catabolic genes by ArcA and activation of chemiosmotic

genes by Fnr is also shown through analysis of C-13 MFA data generated between wild

type and ∆fnr or ∆arcA strains (Figure S8). This trend of redox ratio minimization was

so strong that the only outliers resulted in identification of new biology in the form of

transport-coupled redox balancing for allosterically regulated amino acid biosynthetic

reactions (Figure S4, Text S1).

We then sought to show that this quantitative regulatory model was truly redox

dependent and not just fermentative/nitrate respiration specific. We thus took C-13

measured flux data[176] [35] for E. coli grown aerobically in batch under either fully

respiratory galactose conditions or partially fermentative glucose conditions. Even

though both conditions are aerobic, we hypothesized that a similar shift in the redox ratio

as observed between fully fermentative and nitrate respiration would occur given the
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comparison between a partially fermentative and fully respiratory condition. We made

the same plot (Figure 5C) as in Figure 5a and even used regulatory strengths taken from

the fermentative/nitrate shift. Only 16 flux measurements could be mapped of which

only 9 showed any difference between glucose and galactose conditions. Of those 9

fluxes we were able to see a clear correlation for 7 and an overall weak but significant

r2 correlation value of .26 (p = .079). This plot again shows genes regulated by ArcA

being de-repressed and genes regulated by Fnr being de-activated upon the shift to more

oxidative conditions (Figure 5D).

6.4.7 Hierarchy of the joint metabolic-regulatory network

An expansion of the top-level of the flow-based model contextualizes the function

of the hundreds of individual gene products and provides a window into the structure

of the full metabolic-regulatory network (Figure 6A). Each different type of catabolite

(Figure 3, Figure 4A, Figure 6A) is maintained via production fluxes (transport or

recycling) and consumption fluxes (secondary catabolism or central catabolism). The

catabolism specific production set consists of genes for amino acid, carbohydrate, lipid,

and nucleic acid transport and recycling. The same expansion can be performed for

anabolism and chemiosmosis. For anabolism, the total biomass is a result of the sum of

the rate of metabolite biosynthesis plus the rate of macromolecular synthesis[12] minus

the rate of dilution and recycling. For chemiosmosis, the total gradient is a sum of protons

pumped across the inner membrane via the ETC, proton equivalents pumped across the

inner membrane via fermentation, and ions translocated across the inner membrane minus

the usage of the gradient for ATP production, nutrient transport, and motility[177].

This expansion also accounts for the classically observed hierarchy[178] of the

TRN via sensing of lower level metabolites and subsequent regulatory control of the

TFs themselves or of the production or consumption pathways for sensed metabolites
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and chemiosmosis into a single process. The ratio of reduced to oxidized molecules
is then sensed by ArcA and Fnr to elicit corresponding feedforward and feedback reg-
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the regulation of gene products (Figure 3) for each branch of the circuit reveals a broad
trend of feedforward with feedback-trim regulation. Under fermentative conditions the
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output to bring the ratio down. Under nitrate respiration, the ratio drops and the circuit
maintains a similar number of connections but is shown to decrease in gross activity
levels.
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tions with the change in level of regulation across the same conditions. (B) Overlaying
information for the specific regulators shows that ArcA is involved in the derepression
of key reactions going from fermentation to nitrate respiration and Fnr is involved in
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the respiratory shift from fully fermentative to nitrate respiratory conditions. C-13
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the same regulatory strengths between fully fermentative anaerobic cultures and nitrate
respiring cultures. (D) One can again see that key ArcA regulated genes are de-repressed
whereas Fnr regulated genes are de-activated.
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(Figure 6B). A full tracing of the TRN to explain the effects of the global TF deletion is

consistent with 69% of observed differential expression (Figure S2).

6.5 Discussion

This work presents a systems level and genome-scale mechanism for the coor-

dinate action of global transcription factors throughout an electron acceptor shift. Our

mechanism accounts for the previously unexplained genes regulated by ArcA and Fnr, it

predicts changes in flux patterns, and perhaps most importantly shows that the classically

observed hierarchy of transcriptional regulation mirrors the hierarchy of dimensions

in the metabolic network. By basing our work off of the extensive body of detailed

biological literature and the more recent work of principal dimensionality in metabolic

networks we are able to present a systematic and remarkably consistent genome-scale

mechanism.

At the local level, we first greatly expanded the number of cases of promoter

architectures[137]. This validates and highlights the importance of understanding initia-

tion mechanisms, as they may be extendable to a systems level in future development of

computational models. We were then able to make the novel discovery that 42 regions

across the genome contained divergently transcribed TUs controlled by a single global

TF binding region. We recognize that due to ChIP-chip resolution it is possible (and even

likely) that multiple binding sites exist under the larger ChIP peak, however the local

proximity still affords the same hard-coupling within the regulon. This hard coupling

suggests switch like mechanisms in which sets of seemingly unrelated genes are jointly

regulated to obey non-obvious systems level constraints. We identify two such cases of

this in the acs-nrfABCDE operon and the aroP-pdhR operon.

To understand systems level mechanisms of transcriptional regulation we turned to



120

RED
OX

BP
+

(+,-)

(+,-)

(+,-)

Cin CP

TF R
O

TF CP

CinTF

C

B

B

Cex

B

RED
OX

ATP
ATPvrecycling 

vutilization 
vtransport 

vmacromolecular  

vmetabolite vdilution 

vrecycling Cin

Cin

vETC 

vfermentation 

vIon pumps vmotility

vtransport

vATP synthesis

ATP

CP

TF B

synthesis  

vchemiosmosis

vanabolism

vcatabolism

synthesis  

Catabolism
Anabolism

Chemiosmosis

Catabolism + Anabolism

Catabolism + Chemiosmosis

TF # Catabolic genes # Non-Catabolic genes
Catabolism + Anabolism + 

Chemiosmosis

TF # Chem. genes # Non-Chem. genes

# Non-* genes

NarL
NarP
FhlA

AppY

TrpR
DnaA
ArgP
MetR
BirA
AsnC
FabR

ArgR
Lrp
PurR

RutR
CytR

MetJ

DpiA
TyrR

CysB

NagC

GntR

GalR

FadR
GalS

PaaX
MalT

AraC
CdaR

NanR
UlaR
DeoR
GlcC
IdnR

HycA

MhpR
UxuR
XylR

Crp
ArcA
Fnr

Cra
PdhR

TF # Cat. genes # Ana. genes # Chem. genes

TF # Cat. genes # Ana. genes

CaiF
GlpR
DcuR
LldR

23
12
11
10
10
9
9
9
9
8
6
6
6
6
6
6
5
5

0

5

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

13
8
6
5
5
3

41
44
20

9
9

3
3
2

AllR

253
97

69 42
55 68

33 44 76

29 8 12
16 21 8

55
40
25

4
2

9
7
8

TF # Catabolic genes # Chemiosmotic genes

TF # Anabolic genes # Non-Anabolic genes

2

1
1
1
0
0
0
0

11
4
0

2
0

0
0
1

LysR 1 0

101
47
29

9
1

10
0
0

0
0

7
5
3
1

4
4
4
1

16 TFs* 40 0

Fur 51 10 32

Nac 7 7 0 ModE 12 34

IscR 24 1

020

NtrC 32 1

B

A

Figure 6.6: Topological organization of the joint metabolic-regulatory network.
(A) Qualitative model where levels of the hierarchy represent a coarse graining of the
total metabolic network around pools of key metabolites. Each metabolite has mass
balanced production and consumption fluxes and often a corresponding TF sensor that
can regulate the input and output fluxes. (B) Quantitative assessment of this regulatory
scheme done by curation and classification of the regulatory targets for every TF known
to sense a metabolite in the iJO1366 model (Table S13). The main point is that the
hierarchy of the regulatory network does in fact mirror the hierarchical dimensionality
of the metabolic network. Regulators which sense a catabolite only regulate catabolic
genes, regulators which sense an anabolite only regulate anabolic genes, and regulators
which sense a chemiosmotic component only regulate chemiosmotic genes. However,
metabolites that exist as both a catabolite and anabolite, or as both a catabolite and
chemiosmotic component, tend to have regulators which regulate genes in each of the
given categories. Similarly, TFs which sense molecules that are biomass precursors
and energy precursors will necessarily globally regulate metabolic genes in all three
categories.
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and metabolic analysis.
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Figure 6.8: Regulation of fluxes around key metabolic intermediates I. Twenty-
four different metabolites are profiled, including 12/13 biomass precursors, 9/9 primary
electron donors, and the three primary electron carriers, H+, NADH, and NADPH. Each
node map diagram shows the split between the amount of regulated vs. unregulated flux
that goes into the production or consumption of each metabolite. The notable pattern is
repression of the consumption and often production upon a shift to nitrate respiratory
conditions. This occurs primarily as a means of negative feedback on the flux through
these core nodes. In fact these diagrams fail to show that under fermentative conditions
these same fluxes through core nodes are even more highly repressed. This occurs
because the metabolic network at optimality is already in line with the regulation, and
hence does not carry flux through many of the reactions that are shown to be repressed
under nitrate respiratory conditions. This result led us to make the scatter plot of Figure
5A which more clearly displays the higher degree of repression in fermentation vs.
nitrate respiratory conditions along with deactivation through the shift. All data tables
and associated code is available at http://nbviewer.ipython.org/ea455904c0d7cda4bfba.
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Figure 6.9: Regulation of fluxes around key metabolic intermediates II. Twenty-
four different metabolites are profiled, including 12/13 biomass precursors, 9/9 primary
electron donors, and the three primary electron carriers, H+, NADH, and NADPH. Each
node map diagram shows the split between the amount of regulated vs. unregulated flux
that goes into the production or consumption of each metabolite. The notable pattern is
repression of the consumption and often production upon a shift to nitrate respiratory
conditions. This occurs primarily as a means of negative feedback on the flux through
these core nodes. In fact these diagrams fail to show that under fermentative conditions
these same fluxes through core nodes are even more highly repressed. This occurs
because the metabolic network at optimality is already in line with the regulation, and
hence does not carry flux through many of the reactions that are shown to be repressed
under nitrate respiratory conditions. This result led us to make the scatter plot of Figure
5A which more clearly displays the higher degree of repression in fermentation vs.
nitrate respiratory conditions along with deactivation through the shift. All data tables
and associated code is available at http://nbviewer.ipython.org/ea455904c0d7cda4bfba.
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Figure 6.10: Regulation of fluxes around key metabolic intermediates III. Twenty-
four different metabolites are profiled, including 12/13 biomass precursors, 9/9 primary
electron donors, and the three primary electron carriers, H+, NADH, and NADPH. Each
node map diagram shows the split between the amount of regulated vs. unregulated flux
that goes into the production or consumption of each metabolite. The notable pattern is
repression of the consumption and often production upon a shift to nitrate respiratory
conditions. This occurs primarily as a means of negative feedback on the flux through
these core nodes. In fact these diagrams fail to show that under fermentative conditions
these same fluxes through core nodes are even more highly repressed. This occurs
because the metabolic network at optimality is already in line with the regulation, and
hence does not carry flux through many of the reactions that are shown to be repressed
under nitrate respiratory conditions. This result led us to make the scatter plot of Figure
5A which more clearly displays the higher degree of repression in fermentation vs.
nitrate respiratory conditions along with deactivation through the shift. All data tables
and associated code is available at http://nbviewer.ipython.org/ea455904c0d7cda4bfba.
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Figure 6.11: C-13 MFA data for ArcA/Fnr regulation targets. We compared C-13
MFA derived flux values [36] gathered for wild type strains and ∆fnr or ∆arcA strains
under partially fermentative glucose batch growth. It can be seen that deletion of arcA
does cause de-repression of the key catabolic fluxes of the TCA cycle. This causes less
flux to be directed towards the fermentative chemiosmotic pathways ultimately wasting
energy.
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Figure 6.12: Transport coupled redox balancing. After sampling the metabolic
model and determining all reactions that produce or consume NADH, we identified
only 5 reactions that carried flux and were not regulated by ArcA of Fnr. We found
that one encoded fre, a constitutively expressed NAD generation enzyme, and the other
four, serA, tyrA, metF, and hisD all encode amino acid biosynthetic enzymes. We then
took into consideration a puzzling finding of newly discovered and highly significant
regulation of amino acid transporters for serine, tyrosine, methionine and histidine. We
noticed that for serA and tyrA in particular, the NADH generating reactions were the
subject of end product inhibition by serine and tyrosine. Thus we can hypothesize that
activation of the uptake transporters for these amino acids will cause feedback inhibition
of the enzymes and thus maintain the expression of critical metabolic enzymes while
simultaneously modulating their redox related contributions.
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Figure 6.13: Causative classification of genes differentially expressed log two fold
between a wild type and ∆arcA or ∆fnr strain under fully fermentative conditions.
After deletion of the arcA and fnr transcription factor genes, 148 and 169 genes are
differentially expressed under anaerobic conditions. We then trace the regulatory
network to explain the regulation of these genes. 63 and 47 are shown to be directly
regulated through binding of the TFs in the ChIP-chip data. Another 48 and 60 genes
are indirectly regulated via secondary network effects (Regulation by a local TF that
is directly regulated by ArcA or Fnr). Finally the last three categories represent genes
involved in the stress response, genes of unknown function, and other metabolic genes.
Differentially regulated genes that are primarily stress response genes may represent
variability in culture conditions or unknown regulatory interactions. Uncharacterized
and metabolic genes likely represent unknown regulatory links.
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previous work that showed the principal dimensions of a metabolic space were biomass

and energy generation. We hypothesized that global regulators must play a role in

regulating globally decisive metabolic dimensionality. This hypothesis is supported by

broad regulation across all of these main categories and the abilities of ArcA and Fnr to

sense the molecules that govern the branch point between the two dimensions.

Although we were able to make an unbiased characterization of the genes in

each of the categories using the iJO1366 model we were still unsatisfied with such

a coarse grained approach and sought to understand the composition of each of the

categories. This led us to a hierarchical expansion and classification of pathways around

key metabolic intermediates. Going on in this fashion led us to realize that the global

transcriptional regulatory hierarchy plays out not only on the level of TF-TF regulation,

but perhaps more importantly at the level of global TFs regulating the production or

consumption fluxes of lower level metabolites which are correspondingly sensed by other

intermediate regulators. In essence, the regulatory network is shaped by the underlying

metabolite pools and vice versa.

After determining the broad circuitry of the metabolic-regulatory network we

mapped our data onto it and discovered that a strong feedforward with feedback trim

architecture dominates at the genome scale. This occurs via ArcAs strong repression of

input catabolic circuits coupled with Fnrs strong activation of downstream chemiosmotic

and anabolic circuitry. This circuit is corroborated by Fnrs ability to sense oxygen[163]

which will diffuse quickly whereas ArcA will more continuously sense the flow of

reducing equivalents through the ETC by sensing of the ratio of reduced to oxidized

quinones[162]. This pattern of a fast component feeding forward for downstream plan-

ning coupled with a slower but continuous feedback sensor is a common pattern in

basic process control schemes[179][40]. If coupled with other common process control

patterns such as hierarchical and PID control one can envision a process control based
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model for the entire joint metabolic-regulatory network.

This work presents a formal integration and reconstruction of over 50 years

of research on E. coli metabolism and its transcriptional regulation. The result is a

detailed and coherent hierarchical view of the regulation of the principal dimensions of

metabolism through a critical environmental shift. We find that the mathematical notions

of optimality in metabolic functions are in line with our observations of global regulation.

TRNs are not just TF-gene networks but rather TF-gene-enzyme-reaction flux networks,

that are tightly integrated as levels or ratios of metabolites can drive TF activity[180][181].

The full elucidation of an electron acceptor response in the important model organism,

E. coli, may have implications for similar metabolic responses in other organisms. For

cancer, recent focus has shifted towards an understanding of the metabolic drivers and

Warburg effect, where the hypoxia inducible factor (HIF) [182] senses the redox ratio and

feedforward or feedback regulates genes producing or consuming reduction potential.

Taken together, we are able to show how the two principal dimensions of

metabolism are controlled in a shifting environment by global TFs through the use

of polyomic data sets and genome-scale metabolic models. This study is likely to

be useful as a guide for similar studies in other organisms where the same tools for

experimentation and analysis are available.

6.6 Methods

6.6.1 Bacterial strains and growth conditions

All strains used in this study were E. coli K-12 MG1655 and its derivatives.

The E. coli strains harboring Fnr-8myc and ArcA-8myc were generated as described

previously[46]. The deletion mutants (∆fnr and ∆arcA) were constructed by a red and

FLP-mediated site-specific recombination method. Glycerol stocks of E. coli strains
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were inoculated into M9 minimal medium containing 0.2% (w/v) carbon source (glucose)

and 0.1% (w/v) nitrogen source (NH4Cl), and cultured overnight at 37 C with constant

agitation. The cultures were diluted 1:100 into fresh minimal medium and then cultured

at 37 C to an appropriate cell density with constant agitation. For the anaerobic cultures,

the minimal medium were flushed with nitrogen and then continuously monitored using a

polarographic-dissolved oxygen probe (Cole-Parmer Instruments) to ensure anaerobicity.

For nitrate respiration 20 mmol potassium nitrate was added.

6.6.2 ChIP-chip

To identify Fnr and ArcA binding regions in vivo, we used the ChIP-chip approach

as described previously[37, 46]. Briefly, cells at appropriate cells density were cross-

linked by 1% formaldehyde at 20 C for 25 min. Following the quenching of the unused

formaldehyde with a final concentration of 125 mM glycine at 20 C for 5 min, the cross-

linked cells were harvested and washed three times with 50 ml of ice-cold Trisbuffered

saline. The washed cells were resuspended in 0.5 ml lysis buffer composed of 50mM

Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM EDTA, 1 g/ml RNaseA, protease inhibitor

cocktail (Sigma) and 1 kU Ready-Lyse lysozyme Epicentre). The cells were incubated at

37 C for 30 min and then treated with 0.5 ml of 2 IP buffer with the protease inhibitor

cocktail. The lysate was then sonicated four times for 20s each in an ice bath to fragment

the chromatin complexes using a Misonix sonicator 3000 (output level, 2.5). The range

of the DNA size resulting from the sonication procedure was 300-1,000 base pairs (bp).

The specific antibodies that specifically recognizes myc tag (9E10, Santa Cruz Biotech)

were used to immunoprecipitate each chromatin complex, respectively. For the control

(mock-IP), 2 g of normal mouse IgG (Upstate) was added into the cell extract. The

remaining ChIP-chip procedures were performed as described previously. The high-

density oligonucleotide tiling arrays used to perform ChIP-chip analysis consisted of
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371,034 oligonucleotide probes spaced 25 bp apart (25 bp overlap between two probes)

across the E. coli genome (Roche NimbleGen). After hybridization and washing steps,

the arrays were scanned on an Axon GenePix 4000B scanner and features were extracted

as a pair format by using NimbleScan 2.4 software (RocheNimbleGen).

6.6.3 qPCR

To monitor the enrichment of promoter regions, 1 L immunoprecipitated DNA

was used to carry out gene-specific qPCR. The quantitative real-time PCR of each sample

was performed in triplicate using iCycler (Bio-Rad Laboratories) and SYBR green mix

(Qiagen). The real-time qPCR conditions were as follows: 25 L SYBR mix (Qiagen),

1 L of each primer (10 pM), 1 L of immunoprecipitated or mock-immunoprecipitated

3DNA and 22 L of ddH2O. All real-time qPCR reactions were done in triplicates. The

samples were cycled to 94 C for 15s, 52 C for 30s and 72 C for 30s (total 40 cycles) on a

LightCycler (Bio-Rad). The threshold cycle values were calculated automatically by the

iCycler iQ optical system software (Bio-Rad Laboratories). Any primer sequences used

were described previously[46].

6.6.4 Transcriptome analysis

Samples for transcriptome analysis were taken from exponentially growing cells.

From the cells treated by RNAprotect Bacteria Reagent (Qiagen), total RNA samples

were isolated using RNeasy columns (Qiagen) in accordance with manufacturers instruc-

tion. Total RNA yields were measured using a spectrophotometer (A260), and quality

was checked by visualization on agarose gels and by measuring the sample A260/A280

ratio (¿1.8). Affymetrix GeneChip E. coli Genome 2.0 arrays were used for genome-scale

transcriptional analyses. cDNA synthesis, fragmentation, end-terminus biotin labeling,
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and array hybridization were performed as recommended by Affymetrix standard proto-

col. Raw CEL files were analyzed using robust multi-array average for normalization

and calculation of probe intensities. The processed probe signals derived from each

microarray were averaged for both the wild type and deletion mutant strains.

6.6.5 ChIP-chip and expression data analysis

To identify TF-binding regions, we used the peak finding algorithm built into

the NimbleScan software. Processing of ChIP-chip data was performed in three steps:

normalization, IP/mock-IP ratio computation (log base 2), and enriched region identi-

fication. The log2 ratios of each spot in the microarray were calculated from the raw

signals obtained from both Cy5 and Cy3 channels, and then the values were scaled

by Tukey bi-weight mean. The log2 ratio of Cy5 (IP DNA) to Cy3 (mock-IP DNA)

for each point was calculated from the scanned signals. Then, the bi-weight mean of

this log2 ratio was subtracted from each point. Each log ratio dataset from duplicate

samples was used to identify TF-binding regions using the software (width of sliding

window =300 bp). Our approach to identify the TF-binding regions was to first deter-

mine binding locations from each data set and then combine the binding locations from

at least five of six datasets to define a binding region using the MetaScope software

(http://sbrg.ucsd.edu/Downloads/MetaScope). Raw gene expression CEL files were

normalized using background corrected robust multi-array average implemented in the

R affy package. To detect differential expression between the wild type and TF dele-

tion strains we applied a two-tailed unpaired students t-test between the experimental

triplicates for the wild type and gene deletion strains. This was followed by a false

discovery rate adjustment. Before performing the FDR correction we removed all genes

that exhibited an expression level below the background across all experiments. The

background level was calculated as the average expression level across all intergenic
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probes. We then only considered genes meeting a 5% FDR (false discovery rate)-adjusted

P-value cut-off to be differentially expressed. ChIP binding tracks for Figure 1a and

the heatmap for Figure 3 were generated using D3[183]. Related code is available at

http://nbviewer.ipython.org/gist/steve-federowicz/7cceedba73982c0ae995. All raw and

processed data have been deposited in NCBI/GEO under accession number GSE55367

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55367).

6.6.6 Motif searching

The ArcA and Fnr binding motif analysis was completed using the MEME and

FIMO tools from the MEME software suite[38]. We first determined the proper binding

motif and then scanned the full genome for its presence. The elicitation of the motif

was done using the MEME program on the set of sequences defined by the ArcA and

Fnr binding regions respectively. Using default settings the previously determined ArcA

and Fnr motifs were recovered and then tailored to the correct size by setting the width

parameter to 18-bp and 16-bp respectively. We then used these motifs and the PSPM

(position specific probability matrix) generated for each by MEME to rescan the entire

genome with the FIMO program.

6.6.7 Promoter architecture determination

We integrated transcription start sites (TSS) with our TF binding regions to

identify promoter architectures genome wide[169, 141]. We first determined the location

of motif binding sites within experimentally determined binding regions. We then

calculated the distance between motif center position and previously determined TSS

locations[58]. Finally, we prepared a histogram of the number of motifs that occur at

varying distances relative to the TSS (Figure 1B) and included the gene expression data
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to determine the regulatory outcome of each binding event. The results showed that ArcA

spans the TSS or -35 box region and represses transcription while Fnr spans the -41.5

or alpha carboxy terminal domain[141] and activates transcription. The histograms also

reveal the previously reported trend[184] of motif frequency oscillation at a roughly 10.5

bp interval consistent with helical phasing of the DNA strand.

6.6.8 Genome-scale metabolic sampling

To perform sampling we first generated pFBA[185] constrained models of the

iJO1366[97] metabolic model corresponding to fermentative and nitrate respiratory

conditions. Fermentative conditions were simulated by setting the lower bound of

the oxygen exchange reaction (EX o2) to zero. Nitrate respiratory conditions were

simulated by setting the lower bound for nitrate uptake (EX no3) to -20 mmol gDW-1

h-1 (mirroring experimental addition of 20 mmol KNO3) along with the lower bound

of EX o2 set to zero. pFBA constrained models were generated by first using the

convertToIrreversible() function of the COBRA toolbox[186] followed by a standard

FBA for growth rate. This growth rate was then imposed as a constraint in a subsequent

optimization that found the minimum sum of flux able to achieve that growth rate.

Finally, using the gpSampler()[186] method we sampled each of the pFBA constrained

models. All sampling runs were for a full 24 hours to ensure a mixing fraction below

.55. After sampling was performed we took the average across the 7046 sampling points

(2n where n = 3,523 reactions in the metabolic model). Sampling results were then

interfaced with the regulatory network and metabolic model via the COBRApy project

(http://opencobra.sourceforge.net/openCOBRA), iPython notebook[187], and in-house

databases.
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Chapter 7

Conclusion

In conclusion, the regulatory networks of a cell are dense, and often extremely

complicated. However, when studying first the individual components and then the

symphony of these components among the full network of regulation, one can begin

to see broad patterns emerge. Many of the principles seen in the individual study of

regulatory networks or metabolism, such as robustness, hierarchy, feedback, and temporal

positioning are clear in the joint metabolic-regulatory network. Yet, many more principles

emerge when studying the joint network. Three key principles covered throughout this

thesis are the congruence between optimal metabolic flux states and observed regulation

data, the shared dimensionality among metabolic and regulatory networks, and the

segregation of the targets of the regulatory network relative to metabolic function.

This work seeks to present one of the first full in-vivo integration and analyses of

multi-factor global regulatory circuits across well-defined physiological shifts. Being able

to determine the primary inputs and outputs for the quantity being sensed and controlled

allows one to assess the global feedforward and feedback circuits that act to maintain

homeostasis upon small perturbations and drive a state change when necessary. Doing the

genome scale integration can also bring out novel regulatory mechanisms and solidifies

136
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our primary knowledge for downstream engineering. Going forward it will be possible

to stoichiometrically account for every single binding site, the physiological state of the

TF (ligand bound, phosphorylated etc) at that binding site, the nucleoprotein complexes

formed by these TFs at each promoter, and the initiation or repression characteristics

of the promoter given these constraints. This will enable an unbiased and ultimately

parameter free assessment of the circuit integration or logic capacities at each individual

promoter. When this is coupled to an appropriate objective function it will be possible to

almost fully predict the thermodynamic and evolutionary constraints which have shaped

an organism.

7.1 Transcriptional regulation of metabolism as a pro-

cess control problem

To shed further light on the control circuitry presented in Chapters 2, 3, 5, and

6, we sought to classify the individual elements based upon standard control principles.

The first and most striking is the maintenance of a common ratio that finds a perfect

analogy with the widely studied class of ratio controllers. In practice a ratio controller

often occurs in chemical plants or other settings in which two feeds (or pipes) are being

combined together at a specified ratio. In practice, the simplest configuration is to have a

sensor for each incoming flow, a logic controller that combines the sensory information,

and then a single control valve that adjusts the flow of one of the pipes such that the ratio

of the two is kept constant. While this is the simplest and ultimately linear configuration it

is often the case that the control circuitry is made to be more complicated than necessary

by adding in a second control valve such that the logic controller is able to control each

of the flows independently. As it turns out being able to tweak both flows, instead of

just one, becomes a complicated mathematical problem and can result in weird and
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unexpected behavior in the face of large perturbations. In our system we similarly have

two flows, the flow of reduced carbon, and the flow of an electron acceptor. The ratio of

these two must be kept within some range and since in this case it is either not possible

or very difficult to control the flow of the electron acceptor we find that the reduction

flow is primarily controlled. To make a nearly perfect analogy, we have two sensors, Fnr

that senses the levels of molecular oxygen and ArcA that senses the level of reduction

potential flowing through the ETC and both then work to regulate the reduction flow in a

potential evolutionary selection for a simple and robust control system. We also noticed

that a similar phenomenon[188] that the same type of setup appears to occur between

two electron transferring Geobacter species in which the species that acts as the electron

acceptor is forced to change its genome whereas the species that acts as the electron

donor is able to shift is reduction delivering capacity with the regulatory circuits it has

already evolved.

While the ratio controller is certainly a part of the system in question we realized

that our observed system is actually much more complicated and involves a number of

other common control architectures. In fact of the commonly applied control architectures

including feedforward with feedback trim, cascading, and PID controllers we can classify

our system as a ratio-feedforward with feedback trim-cascading PID controller. Aside

from the ratio the cascading control architecture is particularly relevant to our system.

As developed in figure 3b the hierarchical nature of the system in question in which

subsystems of each larger flow contain there own internal controls such that minor internal

perturbations are buffered from the larger system. This is in fact a very commonly used

control architecture in which systems that do not or should not respond on slow time

scales are separated allowing for local systems to be controlled separately. This is

beneficial because it allows each of the larger and smaller systems to focus on their own

individual control problems rather than being forced to have an unnecessary or unrealistic



139

Carbon sources

Nitrogen sources

Electron acceptors

(Glucose, ammonia, aerobic)

Equilibrium

(CO2, N2, aerobic)

(Acetate, glutamine, nitrate)

TF

TF

Figure 7.1: Flow based model of the metabolic-regulatory network explains regu-
lation throughout the anaerobic shift. Throughout evolution bacteria have evolved
two broad levels of transcription factors, transitional and homeostatic. Transitional
regulators sense the external environment and cause an organism to undergo a large
physiological shift whereas a homeostatic regulator will sense the internal environment
and work to keep multiple cellular systems functioning around a steady state.
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range of sensitivity and specificity as having one large system controlling the whole thing

would force those individual components to be both incredibly sensitive and incredibly

specific which is perhaps not possible. To draw on an another analogy we can look to

the classic failure of a so called micro-manager who can enjoy great success in the early

stages of an organization when there are only a few members but are soon swamped and

inevitably inefficient or detrimental once an organization grows too large in size.

Another common class of controllers is comprised of those exhibiting primarily

feedforward control while maintaining a feedback trim. This is in fact incredibly relevant

to our current system as the classically observed points of control for ArcA and Fnr have

always been the ETC and utilization of the redox ratio given that their effects are most

dominant in this area. While the negative feedback is strong onto the catabolic circuits it

can be likened to a trimming effect in that glycolysis and most of the TCA are not fully

shut down but rather ratcheted down to lower the overall flow rate. In contrast elements

of the ETC are fully shut down and completely replaced by other components. Also from

an evolutionary perspective feedforward control represents the anticipatory response that

is hardwired into every cell[?]. It is through this internal model that the cell has been

able to continually adapt and survive in ever more ingenious ways.

In essence biology has evolved to use an incredibly intricate and robust system

that certainly encapsulates and likely will far surpass our current linear and mathematical

understandings of control. The fact global transcription factors regulate a large number

of other transcription factors and that this forms a hierarchy is indisputable. However, the

reason why global transcription factors are global is not because they are hubs in a network

but rather because they are linked to the most high flux and central thermodynamic drivers

of the cell. The fact that they are hubs of a regulatory network is a side effect of their

fundamental regulatory role in attempting to maintain homeostasis or drive a state

transition of the quantity in which they are sensing. The classically observed regulatory
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hierarchy is an outcome of the fundamental timescales and thermodynamic properties of

the chemical reactions in a cell.

7.2 Alteration of the Minspan algorithm to provide a ba-

sis for genome-scale metabolic regulatory models

Usage of an altered version of the minspan algorithm[4] to develop a mathemati-

cal basis for computational models of metabolism coupled to transcriptional regulation.

This work will be fully disclosed in my graduate thesis and has been previously described

as part of my official advancement to candidacy. The invention includes determining

the sparsest possible matrix N which exists as a null space of a stoichiometric metabolic

network with the added criterion that each column vector of N contains reaction entries

for at least one of the major flux routes (> 5% of sum total production or consumption

flux) for one or more of the 12 primary biomass precursors or one or more of the 9

primary electron donors as defined in Fig 2. of Federowicz, et al. [86]. This altered null

space matrix results in a set of pathway vectors that traverse the metabolic network and

simultaneously adhere to the primary global dimensions of metabolic networks which

exist as biomass production and energy production. This set of precursor included span-

ning vectors (bowspans) are then agglomeratively clustered with the distance metric as

the angle of obliqueness which can be formalized as the cosine similarity. The resulting

clustering will generate two primary clusters corresponding to the primary dimensions

of biomass and energy production along with a hierarchical tree that reconstructs the

metabolic network couplings such that a branch point in the hierarchical tree will cor-

respond to one or more intermediate regulatory proteins, regulatory nucleic acids, or

regulatory small molecules that carry out transcriptional, translational, or allosteric regu-

lation on the enzymes which exist as part of the bowspans that comprise the portion of the
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Figure 7.2: Flow based model of the metabolic-regulatory network explains regu-
lation throughout the anaerobic shift. (A) Considering a mass balance around the
ratio of reduced to oxidized molecules allows the unification of catabolism, anabolism,
and chemiosmosis into a single process. The ratio of reduced to oxidized molecules
is then sensed by ArcA and Fnr to elicit corresponding feedforward and feedback reg-
ulatory circuitry which allows the cell to maintain this critical ratio. (B) Mapping of
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output to bring the ratio down. Under nitrate respiration, the ratio drops and the circuit
maintains a similar number of connections but is shown to decrease in gross activity
levels.
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hierarchical tree below a given branch point. This full hierarchical tree will thus represent

the full hierarchy of the regulatory network of a cell. Once bowspans are calculated they

can be used to create a process control model of the joint metabolic-regulatory network.

This is done by developing a model in which feedforward or feedback regulatory terms

or equations are added to a stoichiometric metabolic model such that the feedforward

or feedback regulation acts on the reactions upstream or downstream of the metabolite

which is being sensed and exists along the bowspan or set of bowspans. Often times the

branch points will correspond directly to the metabolites being sensed and corresponding

regulatory structure of the model. The key advance is that by knowing the hierarchy and

the input/output relationships it will be possible to significantly reduce the dimensionality

of the metabolic- regulatory model. This can result in a metabolic-regulatory model

generated automatically based off of a stoichiometric metabolic reconstruction and pa-

rameterized on 20-30 terms corresponding to the global and intermediate regulators of a

cell and their regulation response times following increase or decrease of the metabolite

concentration which they sense along with the regulatory reconstruction of the genes or

enzymes which they affect transcriptionally, translationally, or allosterically.

7.3 Using the linkage number of DNA as an equality

constraint for transcription

The heightened resolution of ChIP-exo will allow for the observation of multiple

binding sites occurring at the same promoter which reflect the 3-D topology of the

genome. This occurs when dimers or tetramers of certain transcription factors form

and result in multiple binding sites spread out by 100-200bp. Perhaps the best example

comes from the E. coli malKp promoter in which two distally spaced Crp binding sites

are replaced by one IHF binding site to recover transcriptional activation [189]. This is
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remarkable as crystal structures for both Crp and IHF show that a single Crp binding site

will bend DNA at an angle of approximately 90 whereas an IHF site will bend DNA at an

angle of 180. Thus two 90 bends can be replaced by a single 180 bend and the promoter

is unaffected. We view this level of integration of structural information as an achievable

and exciting avenue going forward. In particular we hope to be able to use the linkage

number as an equality constraint in models of promoter or genome organization.

The linkage number (L) defined as L = T + W where T indicates the number of

twists and W indicates the number of writhes that exist on a strand of DNA can be used

as a global equality constraint. As a strict equality this constraint can be applied on top

of genome-scale models of metabolism and macromolecular synthesis by constraining

the solution space available for the rates of transcription initiation. The DNA double

helix must be unwound or untwisted for transcription to initiate. Transcription factors are

known to bind DNA, inducing bends or writhes in the strand which allow neighboring

areas on the DNA strand to untwist and thus allow transcription to initiate. A global

reconstruction of every possible transcription factor binding site on a strand of DNA

coupled with structural knowledge indicating the degree of bending induced by each

transcription factor can allow for a global constraint to be applied on top of joint models

of metabolism, regulation, and macromolecular synthesis. This insight can also be

applied to individual DNA plasmids or vectors in which transcription factor binding sites

for transcription factors that have known structural bending profiles are engineered at

precisely spaced distances to finely tune transcriptional rates.
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metabolomic measurements to intracellular flux states in yeast,” BMC Systems
Biology, vol. 3, no. 1, p. 37, 2009.

[97] J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist, and
B. Ø. Palsson, “A comprehensive genome-scale reconstruction of Escherichia coli
metabolism—2011,” Molecular systems biology, vol. 7, Oct. 2011.

[98] H. Hegyi and M. Gerstein, “The relationship between protein structure and func-
tion: a comprehensive survey with application to the yeast genome.,” Journal of
molecular biology, vol. 288, pp. 147–164, Apr. 1999.

[99] J. S. Fraser, J. D. Gross, and N. J. Krogan, “From systems to structure: bridging
networks and mechanism,” Molecular cell, 2013.

[100] T. H. Kim, L. O. Barrera, M. Zheng, C. Qu, and M. A. Singer, “A high-resolution
map of active promoters in the human genome,” Nature, 2005.

[101] T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, and E. Lieberman, “Genome-wide
maps of chromatin state in pluripotent and lineage-committed cells,” Nature, 2007.

[102] H. S. Rhee and B. F. Pugh, “Comprehensive genome-wide protein-DNA inter-
actions detected at single-nucleotide resolution.,” Cell, vol. 147, pp. 1408–1419,
Dec. 2011.

[103] S. Busby and R. H. Ebright, “Transcription activation by catabolite activator
protein (CAP).,” Journal of molecular biology, vol. 293, pp. 199–213, Oct. 1999.

[104] G. Gosset, Z. Zhang, S. Nayyar, and W. Cuevas, “Transcriptome analysis of Crp-
dependent catabolite control of gene expression in Escherichia coli,” Journal of
. . . , 2004.

[105] K. C. Kao, L. M. Tran, and J. C. Liao, “A global regulatory role of gluconeogenic
genes in Escherichia coli revealed by transcriptome network analysis.,” The Jour-
nal of biological chemistry, vol. 280, pp. 36079–36087, Oct. 2005.

[106] D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, “Identification of
the CRP regulon using in vitro and in vivo transcriptional profiling,” Nucleic acids
research, vol. 32, pp. 5874–5893, Jan. 2004.

[107] T. Shimada, N. Fujita, K. Yamamoto, and A. Ishihama, “Novel Roles of cAMP
Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon
Sources,” PLoS One, vol. 6, p. e20081, June 2011.

[108] J. Germer, G. Becker, M. Metzner, and R. Hengge-Aronis, “Role of activator
site position and a distal UP-element half-site for sigma factor selectivity at a
CRP/H-NS-activated sigma(s)-dependent promoter in Escherichia coli.,” Molecu-
lar microbiology, vol. 41, pp. 705–716, Aug. 2001.



155

[109] H. H. Kristensen, P. Valentin-Hansen, and L. Søgaard-Andersen, “Design of CytR
regulated, cAMP-CRP dependent class II promoters in Escherichia coli: RNA
polymerase-promoter interactions modulate the efficiency of CytR repression.,”
Journal of molecular biology, vol. 266, pp. 866–876, Mar. 1997.

[110] C. L. Lawson, D. Swigon, K. S. Murakami, and S. A. Darst, “Catabolite activator
protein: DNA binding and transcription activation,” Current opinion in . . . , 2004.

[111] H. Pedersen, J. Dall, and G. Dandanell, “Gene-regulatory modules In Escherichia
coli: nucleoprotein complexes formed by cAMP-CRP and CytR at the nupG
promoter,” Molecular . . . , 1995.

[112] R. M. Williams, V. A. Rhodius, A. I. Bell, and A. Kolb, “Orientation of func-
tional activating regions in the Escherichia coli CRP protein during transcription
activation at class II promoters,” Nucleic acids . . . , 1996.

[113] B.-K. Cho, D. Kim, E. M. Knight, K. Zengler, and B. Ø. Palsson, “Genome-scale
reconstruction of the sigma factor network in Escherichia coli: topology and
functional states.,” BMC biology, vol. 12, no. 1, p. 4, 2014.

[114] C. D. Herring, M. Raffaelle, T. E. Allen, E. I. Kanin, R. Landick, A. Z. Ansari,
and B. Ø. Palsson, “Immobilization of Escherichia coli RNA polymerase and loca-
tion of binding sites by use of chromatin immunoprecipitation and microarrays.,”
Journal of bacteriology, vol. 187, pp. 6166–6174, Sept. 2005.
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[173] G. Unden and P. Dünnwald, “The Aerobic and Anaerobic Respiratory Chain of
Escherichia coli and Salmonella enterica: Enzymes and Energetics,” Ecosal, Mar.
2008.

[174] K. Kochanowski, B. Volkmer, L. Gerosa, B. R. H. van Rijsewijk, A. Schmidt,
and M. Heinemann, “Functioning of a metabolic flux sensor in Escherichia coli,”
Proceedings of the . . . , vol. 110, pp. 1130–1135, 2013.



161

[175] J. D. Partridge, G. Sanguinetti, D. P. Dibden, R. E. Roberts, R. K. Poole, and
J. Green, “Transition of Escherichia coli from Aerobic to Micro-aerobic Conditions
Involves Fast and Slow Reacting Regulatory Components,” Journal of Biological
Chemistry, vol. 282, pp. 11230–11237, Feb. 2007.

[176] H. van Rijsewijk Bart R B, A. Nanchen, S. Nallet, R. J. Kleijn, and U. Sauer,
“Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory
and fermentative metabolism in Escherichia coli,” Molecular systems biology,
vol. 7, pp. 1–12, Mar. 2011.

[177] T. A. Krulwich, G. Sachs, and E. Padan, “Molecular aspects of bacterial pH
sensing and homeostasis,” Nature Reviews Microbiology, vol. 9, pp. 330–343, Apr.
2011.

[178] M. Cosentino Lagomarsino, P. Jona, B. Bassetti, and H. Isambert, “Hierarchy
and feedback in the evolution of the Escherichia coli transcription network.,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 104, pp. 5516–5520, Mar. 2007.

[179] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and I. Francis J Doyle, Process
Dynamics and Control. Wiley, Apr. 2010.

[180] K. Patil and H. Nielsen, “Uncovering transcriptional regulation of metabolism
by using metabolic network topology,” Proceedings of the National Academy of
Sciences, vol. 102, pp. 2685–2689, Feb. 2005.

[181] N.-M. Gruning, H. Lehrach, and M. Ralser, “Regulatory crosstalk of the metabolic
network,” Trends in Biochemical Sciences, vol. 35, pp. 220–227, Apr. 2010.

[182] G. Semenza, “Hypoxia-Inducible Factors in Physiology and Medicine,” Cell,
vol. 148, pp. 399–408, Feb. 2012.

[183] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-Driven Documents,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301–
2309, 2011.

[184] E. Sharon, Y. Kalma, A. Sharp, T. Raveh-Sadka, M. Levo, D. Zeevi, L. Keren,
Z. Yakhini, A. Weinberger, and E. Segal, “Inferring gene regulatory logic from
high-throughput measurements of thousands of systematically designed promoters,”
Nature Biotechnology, vol. 30, pp. 521–530, May 2012.

[185] N. E. Lewis, K. K. Hixson, T. M. Conrad, J. A. Lerman, P. Charusanti, A. D.
Polpitiya, J. N. Adkins, G. Schramm, S. O. Purvine, D. Lopez-Ferrer, K. K. Weitz,
R. Eils, R. König, R. D. Smith, and B. Ø. Palsson, “Omic data from evolved E.
coli are consistent with computed optimal growth from genome-scale models,”
Molecular systems biology, vol. 6, July 2010.



162

[186] J. Schellenberger, R. Que, R. M. T. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C.
Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. Ø.
Palsson, “Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2.0.,” Nature protocols, vol. 6, pp. 1290–1307,
Sept. 2011.

[187] F. Perez and B. E. Granger, “IPython: A System for Interactive Scientific Comput-
ing,” Computing in Science & Engineering, vol. 9, no. 3, pp. 21–29, 2007.

[188] A. M. Feist, H. Nagarajan, A.-E. Rotaru, P.-L. Tremblay, T. Zhang, K. P. Nevin,
D. R. Lovley, and K. Zengler, “Constraint-based modeling of carbon fixation and
the energetics of electron transfer in Geobacter metallireducens.,” PLoS Computa-
tional Biology, vol. 10, p. e1003575, Apr. 2014.

[189] L. S.-A. E Richet, “CRP induces the repositioning of MalT at the Escherichia coli
malKp promoter primarily through DNA bending.,” The EMBO journal, vol. 13,
p. 4558, Oct. 1994.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Overview
	Global regulators in E. coli
	Analogies for systems biology

	The PurR regulon in Escherichia coli K-12 MG1655
	Abstract
	Introduction
	Results
	Determination of gene expression changes to exogenous adenine
	PurR-dependent transcriptome response to the exogenous adenine
	Genome-wide identification of PurR regulon
	Genome-scale determination of causal relationship
	Metabolic pathways directly regulated by PurR–Hx complex

	Discussion
	Materials and Methods
	Bacterial strains and growth conditions
	Transcriptome analysis
	ChIP and microarray analysis
	Data analysis
	Motif searching

	Acknowledgements

	Deciphering the transcriptional regulatory logic of amino acid metabolism
	Abstract
	Introduction
	Results
	Genome-wide identification of TF-binding regions
	Identification of regulons: topological analysis
	Determination of causal relationships: functional analysis
	Elucidation of regulatory logic

	Discussion
	Methods
	Bacterial strains and growth conditions
	Chromatin immunoprecipitation and microarray analysis
	qPCR
	ChIP-chip and expression data analysis
	Motif searching

	Acknowledgements

	The OME Framework for genome-scale systems biology
	Abstract
	Introduction
	Implementation
	Models
	Components
	Datasets

	Results and Discussion
	Connected modeling
	Connected analysis
	Data-mapped models
	Polyomic data integration
	Arbitrary creation and traversal of biological complexes and modules
	Optional NoSQL data storage for extreme scalability
	Use case I: Loading a metabolic model, genomic annotation, and various genomic datatypes
	Use case II: Data mining and machine learning across diverse datatypes
	Use case III: Integration with Escher for data visualization on metabolic maps
	Use as a scaffold for whole cell models

	Conclusion
	Acknowledgements

	Integrated Analysis of Molecular and Systems Level Function of Crp Using ChIP-exo
	Abstract
	Introduction
	Results
	ChIP-exo data provides in vivo mechanistic insights into bacterial activation
	ChIP-exo on sigma70 serves as a method for locating the TSS
	Strand oriented 70 ChIP-exo peak distributions reveal stable intermediates in transcription initiation
	Promoter motif analysis of the 70 ChIP-exo distributions
	ChIP-exo profiling of a canonical transcriptional activator: Crp
	Distinct ChIP-exo profiles for transcriptional activators and repressors
	Genetic perturbation of RNAP holoenzyme/Crp interactions
	ChIP-exonuclease coupled with RNAseq delineates the full Crp regulon
	Genome-scale analysis of crp regulon confirms physiological models
	Genetic perturbations provide link between promoter mechanisms and systems level regulatory features

	Conclusion
	Materials and Methods
	Strains and Culturing Conditions
	ChIP Experiments
	Gene Expression

	Acknowledgements

	Determining the control circuitry of redox metabolism at the genome-scale
	Abstract
	Author Summary
	Introduction
	Results
	Genome-scale identification of TF regulatory events
	Transport coupled redox balancing
	Discovery of transcription factor mediated bidirectional transcription
	Ubiquitous regulation of the principal dimensions of meta- bolism by ArcA and Fnr
	High-level architecture of the metabolic-regulatory network
	Feedforward with feedback-trim architecture regulates the a- naerobic shift
	Hierarchy of the joint metabolic-regulatory network

	Discussion
	Methods
	Bacterial strains and growth conditions
	ChIP-chip
	qPCR
	Transcriptome analysis
	ChIP-chip and expression data analysis
	Motif searching
	Promoter architecture determination
	Genome-scale metabolic sampling

	Acknowledgements

	Conclusion
	Transcriptional regulation of metabolism as a process control problem
	Alteration of the Minspan algorithm to provide a basis for genome-scale metabolic regulatory models
	Using the linkage number of DNA as an equality constraint for transcription

	Bibliography



