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Abstract

Essays on Water Resource Economics and Agricultural Extension

by

Steven Charles Buck

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Co-Chair

Professor David Sunding, Co-Chair

This dissertation discusses topics in the microeconomics of water resource economics and agri-
cultural extension. In one chapter I use a hedonic model to explain the price of land transactions,
and from this an implied value of irrigation water is inferred. In a separate chapter I develop
measures of willingness-to-pay for water supply reliability measures, and estimate how consumers
respond to changes in the price of residential water. My final chapter develops a model of a
farmer’s decision to invest in learning from agricultural technicians about a new integrated pest
management technology that improves yields and reduces agricultural run-off of pesticides into
surface waterways. Each chapter is grounded in microeconomic models of decision-making.

Chapter 2 presents a hedonic analysis of farmland values to recover a value of irrigation water.
Irrigation accounts for most freshwater diversions worldwide. Water available to farmers may
be reduced in the long run by climate change and other factors. We use differences in farmland
prices to value the availability of irrigation water. Using panel data on a set of farm parcels,
we estimate the value of irrigation water using a plot-level fixed effects design – an approach to
hedonic analysis that effectively controls for unobservable factors and may be useful in numerous
settings. Our results suggest that the value of water for irrigation is much larger than measured
in previous studies based on cross-sectional analysis. This finding has important implications for
the analysis of policies that influence water supply reliability, and for the assessment of climate
impacts.

Chapter 3 describes a method for evaluating consumer willingness-to-pay for water supply
reliability when fixed costs are a large portion of the marginal price of residential water. We show
that the willingness-to-pay for water supply reliability is determined by consumer demand for
water, how the utility covers its costs, and the source of unreliability. The framework is applied to
the case of 52 large urban water utilities in California covering the greater San Diego, Los Angeles,
and San Francisco Bay Areas. We estimate residential water demand using a panel dataset tracking
annual price and consumption data from 1994-2009 for 82 California water retailers. Based on our
estimated price elasticities along with observed rates and the marginal costs of supply, we calculate
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willingness-to-pay (WTP) measures for reliability improvements for segments of both Northern
and Southern California.

Chapter 4 uses a simple utility maximization model to examine how trust attitudes affect farmer
learning during an agricultural training. Using data originally collected in 2005 we examine if
trust conditions a farmer’s decision to learn during an agricultural training. We present a model
of farmer behavior during the agricultural training in order to link trust measures to behavior in
the field. We find evidence that farmers who trust agricultural technicians relatively more than
community farmers learn more during training. The results provide insight into the design of
agricultural extension services in Ecuador.
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Chapter 1

Introduction

Both the allocation of water and management of its quality are controversial issues confronting so-
cieties worldwide, and they will likely continue to be the cause of conflict for a long time to come.
Farmers in India overdraft their groundwater reserves; industrial activity in China pollutes their sur-
face and groundwater; drought, agriculture and environmental flows generate unrest in Australia’s
Murray-Darling Basin. In Africa water hungery fertilizer and new agricultural technologies such
as drought resistant crop varieties or irrigation systems are not widely used or are never adopted.
This dissertation adds to the literature on water resource economics with two chapters on valuing
water in California, and a third chapter that considers how Ecuadorian farmers learn about a new
agricultural technology which has benefits for surface water quality. All three of these chapters use
microeconomic models to generate hypotheses and motivate subsequent empirical analysis. In the
remainder of this introduction I provide a brief overview of each chapter.

Chapter 2 presents a hedonic analysis of farmland values to recover a value of irrigation water.
Irrigation accounts for most freshwater diversions worldwide. Water available to farmers may
be reduced in the long run by climate change and other factors. We use differences in farmland
prices to value the availability of irrigation water. Using panel data on a set of farm parcels,
we estimate the value of irrigation water using a plot-level fixed effects design – an approach to
hedonic analysis that effectively controls for unobservable factors and may be useful in numerous
settings. Our results suggest that the value of water for irrigation is much larger than measured
in previous studies based on cross-sectional analysis. This finding has important implications for
the analysis of policies that influence water supply reliability, and for the assessment of climate
impacts.

Chapter 3 describes a method for evaluating consumer willingness-to-pay for water supply
reliability when fixed costs are a large portion of the marginal price of residential water. We show
that the willingness-to-pay for water supply reliability is determined by consumer demand for
water, how the utility covers its costs, and the source of unreliability. The framework is applied to
the case of 52 large urban water utilities in California covering the greater San Diego, Los Angeles,
and San Francisco Bay Areas. We estimate residential water demand using a panel dataset tracking
annual price and consumption data from 1994-2009 for 82 California water retailers. Based on our
estimated price elasticities along with observed rates and the marginal costs of supply, we calculate
willingness-to-pay (WTP) measures for reliability improvements for segments of both Northern
and Southern California.

Chapter 4 uses a simple utility maximization model to examine how trust attitudes affect farmer
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learning during an agricultural training. Using data originally collected in 2005 we examine if
trust conditions a farmer’s decision to learn during an agricultural training. We present a model
of farmer behavior during the agricultural training in order to link trust measures to behavior in
the field. We find evidence that farmers who trust agricultural technicians relatively more than
community farmers learn more during training. The results provide insight into the design of
agricultural extension services in Ecuador.
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Chapter 2

The Economic Impact of Changes in the
Availability of Irrigation Water

Agriculture accounts for most freshwater diversions worldwide (Foley, 2005). Irrigation is es-
sential for crop production in arid parts of the developed and developing world. Changes in the
availability of irrigation water can have large welfare consequences since water is an important
input into agricultural production in these arid regions. Beyond natural fluctuations in precipita-
tion, water supply to agriculture can be affected by numerous factors. Climate change has emerged
as a significant threat to freshwater resources in many regions (McDonald, 2011). In California,
Hayhoe (2004) find that under certain scenarios climate change will reduce snow pack in the Sierra
Nevada mountains by 73-90%, thus, significantly reducing the main source of fresh water in the
state. Beyond climate change, environmental regulations can also impact the availability of water
for agriculture. For example, regulation under the Endangered Species Act has reduced the supply
of irrigation water to farmers in California, Arizona, Texas and other locations (Moore, Mulville,
and Weinberg, 1996). Reliable estimates of the economic impacts of expected reductions in irriga-
tion water supplies are of crucial importance to the design of efficient water policy.

The welfare implications of changes in water availability are difficult to observe directly since
water in agricultural settings is not allocated by a competitive price mechanism in the vast majority
of agricultural areas. While there is usually not a competitive market for water that establishes
a market-clearing price, there is a highly competitive market for farmland. This paper exploits
differences in observed transaction-based farmland values among parcels with differential access
to irrigation water deliveries to infer the value of water to producers. We base our analysis on
a dataset of farmland transactions in California’s San Joaquin Valley, one of the most important
agricultural areas in the world. We contribute to the larger hedonics literature, by estimating a
hedonic model using a plot-level fixed effects design to control for unobservable time-invariant
factors.

With cross-sectional data it is difficult to adequately control for unobserved variables that may
be correlated with the explanatory variable of interest and the outcome variable leading to biased
coefficients. Panel data on the repeated sale of the same parcel of farmland over time would allow
one to parse out any bias due to unobserved time-invariant characteristics. We make a first step in
this direction by constructing a small panel dataset to estimate the value of water availability while
controlling for unobservables at the parcel level.

Consistent with theory, the panel analysis suggests that the value of irrigation water in Califor-
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nia agriculture is higher than estimates obtained from the pooled cross-sectional analysis. Indeed,
the estimates from our panel analysis using a plot-level fixed effects design are several times the
size of cross-sectional estimates. We provide evidence that this result is not an artifact of a selection
process; we run the cross-sectional analysis on the same set of plots that appear in the panel anal-
ysis. We find results are similar to other studies and are consistent with the presence of important
unobservable cross-sectional variation that biases cross-sectional estimates of the value of irriga-
tion water supplies towards zero. Thus, farmers’ willingness-to-pay for an additional acre-foot of
water per acre appears to be much larger than prior estimates.

The hedonic approach is commonly used for evaluating environmental policies; examples in-
clude the Clean Air Act (Chong, Phipps, and Anselin, 2003; Chay and Greenstone, 2005) and the
Superfund program for cleanup of hazardous waste sites (Greenstone and Gallagher, 2008). The
approach is also used for valuing natural resources such as water quality (Leggett and Bockstael,
2000) and climate (Mendelsohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann, and Fisher,
2006). Other examples of the hedonic method applied to policy evaluation and resource valuation
are numerous. Kuminoff, Parmeter, and Pope (2010) point out that in the presence of omitted
variables the hedonic price function can produce severely biased estimates. Unobserved charac-
teristics that affect the sale price of a good may also be correlated with the explanatory variable
of interest; in this paper we make this point explicit. To do so, we evaluate the quality of hedonic
valuations of irrigation water supplies using cross-sectional estimates compared to panel estimates
using plot-level fixed effects.

Starting with Selby (1945) and most recently Petrie and Taylor (2007) empirical studies have
analyzed how access to irrigation water is capitalized into farmland value. Other examples include
Hartman and Anderson (1962), Crouter (1987), and Faux and Perry (1999). Most similar to this
study is the work of Schlenker, Hanemann, and Fisher (2007)—SHF henceforth, who use cross-
sectional data on self-reported plot-level land values from the June Agricultural Survey. The survey
is geo-referenced which allows them to match farm-level data on the value of a farm with climate
and soil databases. Their study takes place over a similar time period and location; therefore, their
results can be compared to ours.

The remainder of this chapter is organized as follows. In the next section we present a simple
economic model to motivate the empirical analysis. Section 2.2 describes the data sources. In
section 2.3 we present the main estimating equations. The subsequent section shares the estimation
results along with a discussion. The final section concludes and indicates areas for future work.

2.1 Economic Model
This section presents the economic logic of the hedonic price analysis for the valuation of irrigation
water supplies. Following Crouter (1987) and others, we introduce a model of farmland prices
applying Rosen’s theory of hedonic price functions (1974). Rosen’s theory allows one to infer
the market value of a good by examining the prices of a composite good which include the good
of interest. Applying the theory, we infer that there is an implicit market for irrigation water
deliveries that works through the explicit farmland market. The main economic concept exploited
in the hedonic price analysis is that the price of farmland equals the net-present value (NPV) of
economic rents expected from the farmland while the price of the differentiated attribute is the
shadow value of the attribute in terms of net present value.
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A potential buyer of a plot of farmland observes that the land comes with a quantity of expected
water availability and that this land and water may be combined with variable inputs to produce
output in year t. We define output in year t in terms of a production function, f (L,W,vt) where L
is land, W is water available to the plot and vt is some optimal quantity of a variable input in time
period t. The buyer assumes the price of the output is pt and the cost of the variable input to be ct
in period t; the cost of the land with its associated water supply is q(L,W ), which is the hedonic
price function. Based on these factors, the potential buyer considers the economic rents that may
be derived in a year by choosing the optimal level of vt given available land and water, and facing
prices pt , ct , and q(L,W ). Said differently, she solves the following profit maximization problem:

max
(vt)

Π =
∞

∑
t=0

δ
t(pt f (L,W,vt)− ctvt)−q(L,W ) (2.1)

The resulting Π∗ equals the expected economic rent to be obtained from the land. Next we consider
how to assess the shadow value of a permanent change in yearly water availability. First, we note
that a change in W will affect Π∗t ; this change in Π∗t is the shadow value of additional water in a
year of production, λ . The shadow value of a permanent change in yearly water availability is
the sum of discounted shadow values of additional water for each year. The NPV of a permanent
change in annual water supply can be written as: λW = ∑

∞
t=0 δ t ·λ . In this simple framework λW

is the value of an additional unit of irrigation water deliveries in perpetuity.
To complete this analysis we tie λW to changes in land prices associated with a unit change

in irrigation water deliveries. Because land markets are competitive, all economic rents will be
bid away—that is, the price of land will reflect the NPV of production on the land. Therefore,
any differences in land prices reflect differences in the NPV of the land. In summary, the partial
derivative of the hedonic price function with respect to W is equivalent to the shadow value of a
permanent increase in water availability:

∂q(L,W )

∂W
= λW =

∞

∑
t=0

δ
t ·λ (2.2)

Importantly, the aim of the empirical analysis is to recover a consistent estimate of λW .

2.2 Data
We gather data on sale prices of all land transactions in eight California counties between 2001 and
2008, water deliveries and land acreage for irrigation districts, groundwater depth measurements,
historical temperature and precipitation, soil quality measures, land classification codes, and mea-
sures of population density. All data resources are combined into a single dataset for analysis. This
final dataset is comprised of 8 counties, 19 hydrological unit areas, and 28 irrigation districts.

2.2.1 Outcome Variable: Farmland Sale Price Per Acre
The farmland price data were purchased from DataQuick, a private firm which collects data on
land sales, mostly from county court houses. Each observation is geo-referenced with latitude and
longitude, and both the street address and lot size are observed, which allows for clear identification
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of repeat observations. In addition to land prices and the aforementioned variables, the transaction
data include information on transaction characteristics such as whether the sale was a foreclosed
property. Characteristics related to structures on the property are in the dataset including whether
there is building on the property, total square footage of the building, the number of bedrooms,
and the number of bathrooms, as well as an estimate of the percentage improvements made to the
property. Other property characteristics include lot size and a approximate measure of the primary
use of the land according to a county administrator.

2.2.2 Explanatory Variable of Interest: Surface Water Delivery Right Per
Acre

In 1933 the State of California passed the Central Valley Project Act. This act authorized the
government to begin fundraising for the construction of water infrastructure such as reservoirs,
dams and canals to support irrigated agriculture. Due to the Great Depression, the federal gov-
ernment made several financial transfers to the State of California to complete the project. Today,
the United States Bureau of Reclamation is responsible for the administration of the Central Val-
ley Project (CVP) that delivers surface water to irrigation districts in California’s Central Valley.
Farmland within an irrigation district has a contractual right to buy a fixed amount of water in a
given year from the Bureau of Reclamation. However, due to changing hydrologic conditions and
other factors, the federal government does not guarantee that any specific amount of surface water
deliveries will be made in any given year. Therefore, farmers may use the current year’s surface
water deliveries as a best estimate of water rights entitled to a plot of land.

Surface water deliveries from the Central Valley Project account for a significant share of agri-
cultural water use in California. Data on federal surface water deliveries come from the Bureau
of Reclamation which records annual deliveries at the irrigation district level. We make the strong
assumption that the irrigation district level delivery is evenly divided among all land in the district.
Based on conversations with irrigation district managers this is a valid approach given that this is
how water rights are allocated. Hence, to compute a per-acre measure of surface water delivery
rights we divide the total quantity of surface water deliveries by the total amount of land in acres
within an irrigation district.

2.2.3 Control Variables
Other sources of surface water deliveries are the State Water Project and private projects which
are usually administered by local governments; both are observed in our dataset. The last major
source of water for agriculture is groundwater, which varies significantly across the State and
within our sample. We gather data on groundwater availability from the California Department
of Water Resources. They record approximated measures of groundwater levels in over 15,000
wells for several decades. Many wells are not measured regularly or during the sample period, and
the wells used for groundwater measurements are not evenly distributed across agricultural land.
Therefore, we use regional averages of groundwater availability to create plot-level measures of
groundwater availability; these are likely measured with error. Data on groundwater quality and
other hydrological characteristics such as groundwater flow direction are not easily collected and
so are unobserved in this analysis. However, hydrologists have surveyed California and defined
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areas with similar hydrological characteristics, we reference these as ‘hydrological units’. These
are contiguous areas smaller than a county, yet crossing county lines; the land transactions in the
sample are spread across 19 hydrological units.

We collect data on soil quality from the United States Department of Agriculture’s Natural
Resources Conservation Service which maintains both STATSGO and SSURGO2 soil databases.
Neither of these soil databases are ideal for plot-level analysis because, like the groundwater mea-
sures, they are a weighted average of soil type over large swaths of land; this implies significant
variation within each soil survey unit and non-trivial measurement error. This poses a problem if
the unmeasured component of soil quality is correlated with both deliveries and land price. For
example, there may be a particularly high quality piece of land within a low average soil quality
area. If the high quality land requires less irrigation water to effectively water plants, then this
source of measurement error would cause a downward bias in our point estimate on deliveries.

In addition to irrigation water availability and soil quality, climate is likely to be another impor-
tant determinant of farmland value. We use the same high-resolution temperature and precipitation
climate data that has been employed by others (Schlenker, Hanemann, and Fisher, 2006). These
climate data were organized by the Spatial Climate Analysis Service at Oregon State University for
the National Oceanic and Atmospheric Administration. Plot-level measures of climate are inter-
polated using the PRISM model also developed by researchers at Oregon State. We use thirty-year
historical annual rainfall and both maximum and minimum temperatures to control for climate in
our analysis. There is evidence that alternative climate measures such as degree days and rainfall
timing within a year as well as diurnal temperatures are more informative climate measures than
historical means. However, we only use climate measures in the cross-sectional analysis—the im-
pact of climate on farmland values will ultimately be parsed out in the panel data analysis because
climate does not vary in our sample time period.

Another important factor to control for in any analysis of farmland values is urban development
potential. Our approach to this problem is to create a five mile buffer zone around population
centers. Visual inspection of these buffer zones using ArcGIS confirms these are more densely
populated areas.

2.2.4 Sample Selection
We proceed with the criteria employed in sample selection. For inclusion in the final sample we
only use observations which satisfy several criteria. First, we drop all plots that also receive wa-
ter from the State Water Project (SWP). Deliveries from the SWP may be negatively correlated
with CVP deliveries and positively correlated with price. We do not observe the actual quantity
delivered from the SWP; in order to avoid omitted variable bias we exclude these observations.
Second, variation in urban development potential may still be significant even after controlling for
plots near population centers. Land prices over $20,000 per acre in year 1998 prices likely rep-
resent plots of farmland with urban development potential and so were removed from the sample.
For similar reasons we dropped land classified as rural residential by the California Department of
Conservation. We also drop plots sold more than three times in our sample period or sold twice
within the same year. The concern is that property with higher turnover may also signal urban
development potential, or other characteristics unique to properties which are sold more than three
times in a decade. Third, plots with houses and other significant infrastructure will greatly affect
the price per acre. Similar to urban development potential, plot attributes such as housing may
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dwarf variation in prices due to surface water deliveries. To address this issue we drop all obser-
vations with bedrooms, bathrooms or with buildings larger than 1500 square feet (this allows for
service sheds). We also had to drop sales whose recorded price included non-farmland parcels
because information on the non-farmland portion of the property were not reported in our data.
Finally, we drop plots of land that have relatively little use for irrigation water; farmland plots used
for timber, poultry or dairy production are removed. The admittedly small panel sample has 304
observations representing 146 parcels of farmland. In order to evaluate the external validity of our
panel estimates we compare these plots of farmland for which we have repeated observations to
all plots satisfying the described selection criteria; we reference the latter as the non-panel sample.
Table 1 reports the means and sample standard deviations for observable covariates by the non-
panel and panel samples. The samples are comparable although statistically significant differences
exist between them. The plots of land in the panel sample receive more rain, have higher average
maximum daily temperatures, and are at a higher elevation than plots of land in the non-panel
sample.
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Table 2.1: Comparison of plot characteristic means across samples

All Panel Only
Minimum Maximum Mean Mean P-value

Price per acre (dollars) 177 19921 7612 6195 0.000
(4540) (3848)

Deliveries in year of sale (acre-feet) 0 4.205 0.453 0.449 0.961
(.819) (.785)

Lot size (in thousands of acres) 0.003 0.640 0.05 0.04 0.852
(.06) (.07)

Building structure/storage shed (d) 0 1 0.10 0.08 0.422
(.29) (.26)

Square footage of building structure 0 14210 214.74 214.14 0.994
(916.3) (1252.25)

Private water deliveries access (d) 0 1 0.48 0.55 0.125
(.5) (.5)

No groundwater (d) 0 1 0.42 0.42 0.998
(.49) (.49)

Mean depth to groundwater (ft) 0 446 37.47 34.90 0.538
(48.35) (45.38)

Elevation (meters) 6.18 215.27 85.78 91.23 0.093
(37.53) (36.24)

Historical mean rainfall 0.016 0.048 0.03 0.03 0.051
(.01) (.01)

Historical mean max temp (◦C) 2.204 2.605 2.48 2.49 0.009
(.07) (.06)

Historical mean min temp (◦C) 0.823 1.195 0.92 0.93 0.021
(.04) (.03)

Storie Index for soil quality 0.000 0.098 0.06 0.06 0.613
(.03) (.03)

Orchards (d) 0 1 0.35 0.36 0.845
(.48) (.48)

Vinyards (d) 0 1 0.19 0.17 0.519
(.39) (.38)

Distance to freeway 0.000 0.035 0.01 0.01 0.538
(.01) (.01)

Rural residential buffer (d) 0 1 0.33 0.34 0.782
(.47) (.48)

Partial property sale (d) 0 1 0.03 0.01 0.343
(.16) (.12)

Total Observations 1537 146
Note: Sample standard deviations presented in parantheses.
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2.3 Empirical Research Design
The main empirical concern is that an unobservable plot characteristic is correlated with both water
deliveries and land prices. We describe this empirical challenge in more detail and justify the need
for panel data to address the potential problem of omitted variable bias. Then we indicate how we
will proceed with the empirical analysis and present the main estimating equations.

2.3.1 Empirical Challenge
To begin, we assume land and water are the only two factors of production and that land quality is
homogeneous. Therefore, the hedonic price equation may be estimated using:

price/acreit = β0 +β1deliveriesit + εit (2.3)

In this equation, i denotes the plot of land, the outcome variable is the price per acre of the
land sale, and ‘deliveries’ captures the expected stream of annual surface water to be delivered
in perpetuity to plot i. The parameter β1 can be interpreted as the shadow value of a permanent
shock to water deliveries supply (λW ); β1 is expected to be positive. If one observes land price
and volumetric water deliveries, then one can estimate β1 consistently if the following identifying
assumption holds:

E[εit |deliveriesit ] = 0 (2.4)

Assuming equation (2.4) holds then β1 can be estimated using Ordinary Least Squares to re-
cover the capitalized value of surface water deliveries. However, the identifying condition can be
violated in many ways. The most basic way is that there are unobservable environmental quality
characteristics of the plot that are correlated with deliveries so that:

εit = γ ·EQi +ηit (2.5)

where EQi is the underlying environmental quality of plot i. If EQi is observable then one can
consistently estimate the coefficient of interest if the following condition holds:

E[ηit |deliveriesit , EQi] = 0 (2.6)

This is the assumption maintained in pooled cross-sectional analyses such as in (SHF, 2007).
This identifying assumption is violated if there are plot specific unobservable characteristics, which
are correlated with either the other environmental quality measures or deliveries. That is, the error
term from equation (2.3) may take the form:

εit = θi + γ ·EQi +νit (2.7)

where,
E[θi|EQi, deliveriesit ] 6= 0. (2.8)

Relaxing the assumption of homogeneous land quality and assuming the expressions in equa-
tions (2.7) and (2.8) hold, then the only way to estimate β1 consistently is using a fixed effects
estimator, which requires repeat sales of the same plot.
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2.3.2 Estimating Equations
The empirical analysis can be divided into two parts. In the first part, following previous literature
we estimate the hedonic price function using a cross-sectional specification without plot-level fixed
effects. We also consider several cross-sectional specifications with various controls, and estimate
a model using a random effects specification clustering at the hydrological unit level as this is, in
general, a more efficient estimator than Ordinary Least Squares (OLS) when using clustered data.
Second, we estimate a model using plot-level fixed effects, and then run a Hausman test to evaluate
the consistency of the random effects estimator clustered at the plot-level. For all specifications
we measure expectations about the stream of future water deliveries using deliveries in the year of
sale1.

In the sub-sections that follow, we present the estimating equations and discuss advantages and
disadvantages of each specification.

Pooled Cross-Sectional Analysis

We first estimate the linear relationship between price per acre and acre-feet of water deliveries
per acre using OLS including controls for lot size, whether there is building on the property, the
building size, alternative surface water supply availability, groundwater depth, historical rainfall
and temperature, soil quality, crop production (orchards, vineyards and row crops/pasture land as
the excluded group) population density and transaction characteristics such as whether the sale was
a partial property sale. For a full list of the control variables see table 2.1.

In another specification we estimate a random effects model with spatial clustering at the hy-
drological unit level. As mentioned earlier, a hydrological unit is a region of land (smaller than a
county and larger than an irrigation district) with similar underlying hydrological characteristics.
Because hydrological characteristics are correlated with soil, land within the same hydrological
unit will likely have more similar soil than land across hydrological units. It is also true that plots
within the same hydrological units are likely to experience similar climates. If this is the case,
then the random effects model will produce inconsistent estimates. In a third specification, we
include hydrological unit fixed effects to account for groundwater availability, water quality and
flow direction common to all land within in the hydrological unit. In fact, the hydrological unit
fixed effects capture all characteristics common to all land within the hydrological unit. For these
reasons, hydrological unit fixed effects may be a better way to control for these important produc-
tion factors when using cross-sectional data. Perhaps the most compelling argument for this spatial
fixed effects estimator is that hydrological units cross over irrigation districts lines so that one can
compare a plot in an irrigation district (i.e., a plot that receives federal water deliveries) to a plot
that lies just outside the irrigation district but within the same hydrological unit. In this sense,
the estimation is similar to a border discontinuity design; however, we cannot explicitly employ a
regression discontinuity approach since we do not observe data delineating borders.

There is still the potential that we could be omitting variables that vary across time at the
hydrological unit level such as changing urban development potential that, in turn, affect farmland
prices. To partially control for this possibility, we estimate a fourth specification in which we

1We argue that current deliveries is the correct measures of future deliveries on the basis that water policy in
California is in a constant state of evolution, and that the recent past has been so unusual that it is a poor indicator of
water supply allocations.
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interact the hydrological unit fixed effects with a linear time trend. In a fifth specification we add
the set of hydrological unit fixed effects interacted with a quadratic time trend. This final estimating
equation is given by:

price/acrei jt = β1deliveriesit +β2Xi +β3Zit +µ j + τt +µ j · t +µ j · t2 + εi jt (2.9)

where i indicates the plot; j indicates the hydrological unit; t indicates the year; deliveriesit rep-
resents the water deliveries; Xi are time-invariant observables like historical mean temperature,
rainfall, and soil quality; Zit are time-varying transaction characteristics; µ j is the hydrological
unit fixed effect; τt is the year fixed effect; µt · t +µ j · t2 is the hydrological unit fixed effect inter-
acted with time trends. It is worth noting that the interpretation of β1 is that of λW from equation
(2.1), the capitalized value of an acre-foot of water in perpetuity.

The problem with OLS and the spatial fixed estimators such as the model described in equation
(2.9) is that they all ultimately rely on cross-sectional variation to identify the effect of irriga-
tion water availability on land price. However, none of these estimators do an adequate job of
addressing the main empirical challenge: accounting for unobservable cross-sectional variation.
Controlling for soil quality using SSURGO2 measures or through the use of spatial fixed effects is
not sufficient as soil quality measures are based on weighted averages over large areas and so, like
spatial fixed effects, assume homogeneous soil quality for large regions of land. Furthermore, hy-
drological units are large areas that encompass significant variation in environmental quality. Thus,
the use of hydrological unit spatial fixed effects does not satisfy the homogeneity assumption. As
already described, to overcome this one could collect plot-level measures of soil quality, although
if there are remaining time-invariant omitted variables then the estimates may still be biased. For
this reason, an estimator employing panel data is attractive.

Panel Analysis

Environmental quality is slow to change over time so one may consider it time-invariant over the
sample period; a plot-level fixed effects estimator will parse out all variation due to time invariant
plot-level characteristics. The estimating equation for the plot-level fixed effects analysis is given
by:

price/acrei jt = δ1deliveriesit +δ2Zit +θi + τt +µ j · t +µ · t2 + εi jt (2.10)

where i, j and t are as before; θi is the plot-level fixed effect and Zit are time-varying transaction
characteristics; δ1 is interpreted as λW from equation (2.1), the capitalized value of an acre-foot
of water in perpetuity. This specification will control for variation in the outcome variable due to
time-invariant characteristics including underlying environmental quality of the land. Similar to
the cross-sectional specification, we estimate a hydrological unit specific quadratic time trend to
account for time variant omitted variables which accounts for factors exhibiting a quadratic time
trend common within a hydrological unit.

Standard Error and Pivotal Statistic Adjustments

Statistical inference is complicated due to the clustered structure of the data. To address clustering
and within-cluster heteroskedasticity we compute robust standard errors clustered at the county
level (eight clusters). Bertrand, Duflo, and Mullainathan (2004) show that when there are a small
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number of clusters (ten or less), the performance of statistical inference using cluster-robust stan-
dard errors is unreliable. Cameron, Gelbach, and Miller (2008) find the same result and consider
a variety of standard error adjustments for clustered data and then evaluate which adjustments of-
fer reliable performance for statistical inference. They suggest using the wild cluster-bootstrap
method to obtain pivotal t-statistics as this offers asymptotic refinement. We follow their advice,
and compute a wild cluster-bootstrap pivotal t-statistic for each regression coefficient; then the
analytically computed cluster-robust standard error is used with the adjusted pivotal t-statistic to
perform hypothesis testing.

2.4 Results and Discussion
We begin with the results presented in table 2.2, which presents the results of the cross-sectional
analysis using the pooled non-panel sample. As we move across columns we see point estimates
from different regression specifications. In column (1) we present the simple OLS estimate of
$219 for the capitalized value of an acre-foot of water. In the second specification we present the
random effects model clustered at the hydrological unit level. Surprisingly, the random effects
point estimate is identical to the OLS estimate. This suggests that there is no dependence between
error terms within a hydrological unit (the level at which the random effects model is clustered).
Notably, this random effects specification is most similar to the specification employed by SHF
(2007). The point estimate of $219 is less than the point estimate of $656 obtained in their study;
however, differences between the samples may account for the observed difference in point es-
timates. Furthermore, the standard errors on point estimates from SHF and our cross-sectional
analysis are not small enough to reject the null hypothesis that they are identical.

In column (3) of table 2.2 we present the results from the hydrological unit fixed effects estima-
tion. The point estimate is slightly larger, although we cannot reject a Hausman test that the point
estimates from the random effects and fixed effects models are different. This evidence against
clustering is consistent with the findings of SHF’s results in which they favor a random effects
model over a fixed effects model, and with the result that the OLS and random effects point esti-
mates are identical. In subsequent columns we test if hydrological unit specific time trends affect
the point estimates and we find no significant differences.
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Table 2.2: Cross-sectional sample: Regress price/acre on federal water deliveries
Dependent variable: Price per acre-foot/acre of water (Mean: 9,521, S.D.: 5,802)

(1) (2) (3) (4) (5)
Capitalized value of one acre-foot/acre 219 219 368 411 415
federal surface water of ( λW ) (170) (170) (185) (175) (201)
# of observations 1,702 1,702 1,702 1,702 1,702
R2 0.302 0.302 0.3365 0.359 0.377
Year fixed effects Yes Yes Yes Yes Yes
Time variant controls Yes Yes Yes Yes Yes
Hydrological unit fixed effects No No Yes Yes Yes
Hydro. unit fixed effects*Linear Trend No No No Yes Yes
Hydro. unit fixed effects*Quadratic Trend No No No No Yes
Robust standard errors clustered at the county level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

In table 2.3 we see the results of the cross-sectional analysis using the panel sample. The
regression specifications in each column are the same as those in the corresponding columns of
table 2.2. The point estimates in the first two columns are identical, this is consistent with what
we observed in the previous table—there is little spatial dependence between observations within
a hydrological unit. The subsequent columns represent specifications including the hydrological
fixed effects. These models produce larger point estimates for the value of irrigation water, all
estimates are greater than $1,000. However, we cannot reject the Hausman test’s null hypothesis
that the random effects estimate is consistent. As before, this result corroborates previous evidence
that there is little spatial dependence across observations within a hydrological unit. Based on this
cross-sectional analysis, we have no evidence that the value of irrigation water is different than the
$656 estimate obtained by SHF (2007).

Table 2.3: Panel sample: Regress price/acre on federal water deliveries w/o plot-level fixed effects
Dependent variable: Price per acre-foot/acre of water (Mean: 9,339, S.D.: 5,779)

(1) (2) (3) (4) (5)
Capitalized value of one acre-foot/acre 226 226 1133 1137 1210
of federal surface water (λW ) (129) (129) (423) (573) (585)
# of observations 304 304 304 304 304
R2 0.382 0.382 0.44 0.485 0.545
Year fixed effects Yes Yes Yes Yes Yes
Time variant controls Yes Yes Yes Yes Yes
Hydrological unit fixed effects No No Yes Yes Yes
Hydro. unit fixed effects*Linear Trend No No No Yes Yes
Hydro. unit fixed effects*Quadratic Trend No No No No Yes
Robust standard errors clustered at the county level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
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We now turn to the results of the panel analysis using plot-level fixed effects. Table 2.4 presents
the results of these regressions. The first column presents a random effects specification with the
cluster at the plot-level. The point estimate is -$369, and has a large standard error, especially
given the large bootstrapped critical t statistic. Subsequent columns include plot-level fixed ef-
fects. The second column reports a point estimate of $2,655 and is significant at the 99% level;
we strongly reject the Hausman test. We obtain a similar result in column (3) when we control for
the percentage of capital improvements on the land. In the subsequent columns we add a hydro-
logical unit linear and quadratic time trends, respectively. Adding these region specific time trends
substantially increases the point estimate on deliveries to over $4,000. All of these estimates are
significantly different than zero at the 99% level when using the robust standard errors clustered at
the county level and our wild cluster bootstrapped critical t statistics for hypothesis testing. Based
on SHF (2007) we also consider the null hypothesis that the capitalized value of an acre-foot of
water is $656; we are able to reject the null at the one percent level for columns (2) and (3), and at
the five percent level for columns (4) and (5). Based on our own data, the largest cross-sectional
estimate for the capitalized value of an acre-foot of water is $1,210. If we test our point estimates
from the plot-level fixed effects models against this as the null hypothesis we still reject the null at
the one percent level for the specifications in columns (2) and (3). This indicates that if one believes
the plot-level fixed effects specification consistently estimates the shadow value of expected future
deliveries then the estimates from the cross-sectional analysis exhibit a large downward bias.

Table 2.4: Panel sample: Regress price/acre on federal water deliveries w/ plot-level fixed effects
Dependent variable: Price per acre-foot/acre of water (Mean: 9,339, S.D.: 5,779)

(1) (2) (3) (4) (5)
Capitalized value of one acre-foot/acre -336 2655*** 2603*** 4611*** 4286***
of federal surface water ( λW ) (369) (380) (379) (1680) (2029)

[4.59] [1.82] [1.74] [1.81] [1.69]
# of Observations 304 304 304 304 304
R2 0.759 0.759 0.793 0.838
Plot-level fixed effects (146 plots) No Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Controls No No Yes Yes Yes
Hydro. unit fixed effects*Linear Trend No No No Yes Yes
Hydro. unit fixed effects*Quadratic Trend No No No No Yes
Robust standard errors clustered at the county level in parentheses.
Wild cluster bootstrapped critical t-statistic for 99th percentile.
*** p<0.01, ** p<0.05, * p<0.1.

In terms of magnitude, our estimates of $2,603 to $4,611 per capitalized acre-foot of water
are two and a half to four times the size of the cross-sectional estimates using the same data.
The estimates are roughly the same degree of magnitude larger than those of SHF who put the
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capitalized value of irrigation water at $656 per acre-foot. Second, the average price of an acre of
land in our sample is $9,339 with the average plot receiving 0.444 acre-feet per acre. Our estimate
of $4,286 suggests that, on average, irrigation water rights account for approximately 20% of the
sale price. Taken together our results suggest 1) that farmers have a much higher willingness-to-pay
for water than previously thought, and 2) that this result plays a non-trivial role in the determination
of irrigated farmland prices.

One may wonder how climate change will affect landowners with rights to surface water. To
address this, we consider the work of Chung (2005) and Vicuna (2006) who use the CALSIM
2 simulation model to make predictions of the impact of climate change on CVP surface water
deliveries south of the Delta between 2035 and 2064, and between 2070 and 2099. Their analyses
are based on the A2 emission scenario modeled using the Geophysical Fluid Dynamics Laboratory
global climate model, details can be found in Hanemann et al. (2006) and Cayan et al. (2008).
Under the GFDL A2 emission scenario, Chung (2005) find that median expected CVP surface
water deliveries are 2,435 thousand acre-feet (TAF) between 2035 and 2064, 14.5% less than base
deliveries during the same time period. Using the same GFDL A2 emission scenario, Vicuna
(2006) finds median expected deliveries are 1,944 TAF, 31.4% less than base deliveries between
2070 and 2099. As an exercise, we assume these impacts are not currently capitalized into farmland
values and generate an estimate of the net present value (NPV) of climate change’s aggregate
impact via water reductions on landowners with rights to CVP water. We calculate:

4Welfare =
58

∑
t=24

δ
t ·λ · (Base TAF1−Reduced TAF1)+

88

∑
t=59

δ
t ·λ · (Base TAF2−Reduced TAF2)

(2.11)
In this welfare loss calculation δ is the discount factor and is based on a five percent discount

rate; λ is the implied value of an acre-foot of water. The change in welfare is the sum of losses from
the period 2035-2069 and the period 2070-2099; t represents the number of years from 2011 that
the loss will be realized. Based on a capitalized value for one acre-foot of $4,286, then assuming
a 5% discount rate, the implied value of an acre-foot of water, λ , is $204. The base allocation in
the period 2035-2069 is assumed to be 2,716 TAF while the reduced allocation is 2,435 TAF. The
base allocation in the period 2069-2099 is assumed to be 2,833 TAF while the reduced allocation is
1,944 TAF. A substitution of the relevant numbers into equation (2.11) indicates the climate change
aggregate welfare loss to California farmers due to reduced water deliveries is $460 million dollars.
Notably, this figure is based on the assumption that climate change has no impact on deliveries
until 2035. Nor does the calculation consider water reductions beyond 2099 although these may
be considerable. One final caveat is that these predictions are the outcome of one simulated climate
model and a particular discount rate, other scenarios will lead to different predictions.

2.5 Conclusions and Future Work
Using a small sample of repeated sales of agricultural land in California, we find evidence that
existing cross-sectional estimates of the value of water deliveries to agriculture are significantly
downward biased. Using a plot-level fixed effects estimation we account for unobserved factors
correlated with deliveries and farmland prices, and obtain novel estimates of the value of water
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deliveries in California agriculture. The estimated capitalized value of one acre-foot of water is
two and half to four times larger than the estimate obtained in the cross-sectional analysis. Based
on this result, changes in water availability are likely to induce larger changes in producer welfare
than previously thought. Finally, these findings inform policy analysis on issues related to water
infrastructure projects, the protection of habitat for endangered species and climate change.

There are several ways to extend the current work. One could explicitly incorporate ground-
water availability and crop choice into an agro-economic model to make predictions about how
the shadow value of surface water varies with these other sources of heterogeneity. It would also
be worthwhile to examine how buyers form expectations about future water deliveries—insight
would give us more confidence about the appropriateness of using deliveries in the year of sale a
measure of expectations of future water deliveries. Also, as Kuminoff, Parmeter, and Pope (2010)
recognize, the hedonic price equilibria may vary across time. If this is the case, then the implied
shadow value of water deliveries may not remain constant. One way to examine time-variant im-
plicit shadow values is to interact the explanatory variables with the year fixed effects; however,
with a small dataset this approach does not permit precise estimation. Future work with more
observations would allow for such tests of time-varying hedonic equilibria.
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Chapter 3

The Value of Supply Reliability in Urban
Water Systems

Water systems in many regions of the planet are vulnerable to supply fluctuations. Natural variation
in precipitation and runoff leads to contemporaneous changes in water supply that pose challenges
to urban water purveyors who seek to meet target levels of demand. In recent years, environmental
protections for endangered fish and aquatic habitats have increasingly impinged on the ability of
water managers to reliably divert water towards urban uses, for instance the pumping restrictions
placed on diversions to the California Aqueduct to protect the delta smelt under the “Wanger
decision” in December, 2010. Yet, despite these challenges to urban water supplies, urban water
demand in many parts of the United States continues to grow, and is projected to do so for decades
to come.

Taken together, the natural variation in water supply coupled with continued and often unabated
growth in water demand highlight the importance of understanding the economic losses that result
from periodic water shortages. This paper considers the economic dimensions of urban water
shortages by considering water supply disruptions of various levels. We consider water supply
disruptions mediated through the residential segment of the market, which accords with the typical
policy response of many water planners to water shortages in the range of 10-30 percent below
baseline levels of use. Our methodology extends readily to other potential urban water management
responses, for instance the rationing of commercial and industrial users.

We frame our analysis around regional residential water demand estimates in California. Our
demand estimates, which take into account time-invariant characteristics, are refined to the local
retailer level and increment on the methods employed by Renwick and Green (2000). The analysis
we produce is based on administrative data reporting market prices and consumption levels. Our
loss assessment has the advantage of being based on actual valuations of water units by residential
consumers as opposed to stated preferences or the results of hypothetical optimization scenarios.
In addition, the standard approach to measure welfare losses during shortage, the value of supply
reliability, only considers the loss of the consumer surplus triangle. However, demand-side infor-
mation does not provide sufficient information when prices correspond to average cost rather than
marginal costs and fixed costs are large.

Our approach to measuring the economic value of water supply reliability innovates on previ-
ous methods by addressing the financial structure of water agencies. In many urban areas, water
supply infrastructure involves a substantial fixed cost component. This distinction is essential for
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measuring welfare losses from water supply disruptions, because most water agencies are regu-
lated as natural monopolists under a profit (or net revenue) constraint that limits their ability to
set water prices. In many cases, a substantial share –often the largest share– of residential water
rates corresponds with fixed cost recovery rather than marginal cost pricing. Fixed costs, which are
sunk at the time of a water supply disruption, have no bearing on welfare outcomes. The welfare
loss from a supply disruption can be many times greater than the loss evaluated using standard
measures of compensating variation or equivalent variation in consumer utility functions.

The goal of this research is to measure the losses that will actually occur in urban parts of Cal-
ifornia under various levels of shortage, given existing institutions and rules for allocating water.
The California water system is highly fragmented with water provided to customers by over 400
major urban utilities. Partly as a result of this fragmentation, there is no single number for the eco-
nomic loss resulting from a water shortage that can be applied to all regions of California. Indeed,
we find substantial variation in the economic losses across regions depending on prevailing resi-
dential water prices, the financial structure of the urban utility, and the price elasticity of demand
for residential water. We calculate regional losses at the level of regional water purveyors using
regional price elasticities from our demand estimation model, and then aggregate regional losses
into measures of total economic loss and average loss per unit of supply disruption ($/AF) for both
Northern and Southern California.

The remainder of the paper is structured as follows. The next section lays out the conceptual
model underlying the loss analysis. We follow with a discussion of the empirical model for urban
residential water demand, a description of the data, and a presentation of our estimation results.
The penultimate section uses point estimates from our empirical model to calculate economic
losses from various levels of water supply disruptions for Northern and Southern California, and
the final section concludes.

3.1 Loss Framework
Our loss framework considers the economic impact of an urban water supply disruption. Water
shortages following a supply disruption have the potential to adversely affect economic outcomes
among several types of water users, including rural and agricultural users; however, we confine
our analysis to the case of urban water management. Specifically, we consider a drought response
framework for urban water suppliers in which water supply reductions of a given magnitude are
mediated through the residential segment of the market. A drought response framework that pri-
marily targets residential water use, for instance by imposing restrictions on outdoor irrigation,
corresponds to the typical urban water management response to supply disruptions of relatively
small magnitude and short duration.

We measure residential losses for the markets served by regional water purveyors in California
as the difference between the area under residential demand and the avoided cost of reduced water
service; these are the marginal costs of service delivery. Given that a substantial portion of the
cost of water service represents fixed cost, the vast majority of which is sunk, our methodology
represents a significant innovation over the more commonly used calculation of the consumer
surplus triangle as a measure of the economic loss of water supply disruptions. Our measure of
the economic loss reconciles with the consumer surplus measure when the avoided cost of reduced
water service is described by a constant unit cost function at the prevailing residential water rate,
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but differs, often substantially, from the consumer surplus measure under circumstances in which
residential water rates exist primarily for fixed cost recovery. Hence, our approach underscores the
novel and important insight that the method of financing by a water supplier, for instance the extent
to which fixed costs are recovered through fixed charges per household meter rather than through
market prices for water, is essential for calculating economic losses.

Figure 1 provides a graphical depiction of the economic loss in the case of constant unit cost of
water and volumetric pricing. The essential framework we employ for measuring economic losses
can be seen by considering a water supply disruption of dQ = QR−Q∗ units. The water supply
reduction rations price along the demand curve in the figure by dP = PR−P∗ units. Under a zero
profit constraint on water district pricing, which approximates the situation facing water purveyors
in California, the equilibrium price of water prior to the water shortage is P∗ = AC, which satisfies
P∗ > MC when fixed costs exist, so that the economic loss, shown as the shaded region in the
figure, is generally larger than the loss of consumer surplus.

Figure 3.1: Economic Losses Under Volumetric Prices and Constant Unit Cost

Economic losses are determined by both the magnitude and duration of the water supply dis-
ruption. Following Brozovic, Sunding, and Zilberman (2007), we define the severity of the water
supply interruption in region i at time t as zit ∈ [0, 1], where zit = 0 corresponds to a complete
outage and zit = 1 corresponds to the baseline level of service.

Let fit(zit) denote the probability density function of residential water disruption zit in region
i at time t and let Wi(zit) denote consumer willingness-to-pay to avoid a supply disruption zit in
region i at time t. For a period of duration T until baseline water service is reestablished, consumer
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willingness-to-pay to avoid a cumulative service disruption across I regions and T periods is given
by

W R =
T

∑
t=1

I

∑
i=1

ˆ 1

0
Wi(x) fit(x)dx. (3.1)

For a given region and time, the computation of Wi(zit) that underlies the loss framework in equa-
tion (3.1) involves integrating the area under a demand curve for a shortage level of zit . Specifically,
willingness-to-pay to avoid a supply disruption of magnitude zit in region i at time t can be defined
as:

Wi(zit) =

ˆ Q∗i

Qi(zit)
Pi(x)dx (3.2)

where Pi(Qi) is the (inverse) demand function for residential water in region i, Q∗i = Qi(zit = 1) is
the baseline quantity of water delivered to residences in region i prior to a supply disruption, and
Qi(zit) is the quantity of supply available after a water supply disruption in region i at time t.

Consumer willingness-to-pay to avoid a (contemporaneous) water supply disruption of a given
magnitude in equation 3.2 is calculated for each agency by constructing an aggregate demand curve
to represent the residential water segment. For agencies in which residential customers pay volu-
metric water rates, P∗i = Pi(Q∗i ) is the volumetric rate paid by residential consumers under baseline
conditions prior to the water supply disruption in region i. For agencies with an inclining block
pricing structure, P∗i = Pi(Q∗i ) is the marginal rate paid by a representative residential consumer on
the highest tier of consumption under baseline conditions in region i. Integrating losses in equation
3.2 over the probability distribution of outcomes and the duration of the water supply disruption
results in the consumer surplus loss measure described by equation 3.1.

Economic losses that result from water shortage in a given market are mitigated to the extent
that delivering a smaller quantity of water reduces the system-wide cost of water service. The
economic loss that occurs in region i following a water supply disruption is therefore the difference
between the consumer surplus loss in equation 3.2 and the avoided cost of service. If water service
is characterized by constant unit cost at the prevailing baseline price level, P∗i , then the avoided
cost of service is P∗i (Q

∗
i −Q(zi j)), and the net economic loss following a water supply disruption

of a given magnitude reduces to the consumer surplus triangle.
For most urban water suppliers, the cost of water service includes a large fixed cost component

for elements of the water distribution network related to infrastructure, repair and maintenance of
water lines, metering service, and public administration. To the extent that fixed costs facing water
purveyors are sunk, the avoided cost of water service corresponds to the reduction in variable cost
in region i for the duration of the water supply disruption. The variable cost of water supply include
the energy and chemical costs of treating water and conveyance and distribution costs. The avoided
cost of water service encompasses the reduction in these variable cost components in response to
reduced water deliveries.

The avoided cost of service depends on the water portfolio of a given region and on the dis-
tribution of the water supply disruption across water sources within the portfolio. A disruption of
relatively high-cost imported water supplies would entail a larger avoided cost of service compo-
nent than a disruption of local water supplies by more greatly reducing procurement costs of water
in the system. Given the variation in the water portfolios of regional purveyors, the avoided cost
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of service for units of water no longer delivered in response to a residential supply disruption can
vary considerably across water agencies.

Let ci(zit) denote the avoided unit cost of service in region i at time t. Accordingly, the con-
temporaneous economic loss in region i of a given magnitude water supply disruption is

Li(zit) =

ˆ Q∗i

Qi(zit)
(Pi(x)− ci(x))dx. (3.3)

Notice that the contemporaneous welfare loss in equation 3.3 corresponds with a consumer surplus
measure in the case where cit(zit) = P∗i . In this case, equation 3.3 reduces to

Li(zit) =

ˆ Q∗i

Qi(zit)
Pi(x)dx−P∗i (Q

∗
i −Q(zi j)). (3.4)

.
For a period of duration T until baseline water service is reestablished, the economic loss

resulting from a cumulative service disruption across I regions and T periods is given by

LR =
T

∑
t=1

I

∑
i=1

ˆ 1

0
Li(x) fit(x)dx (3.5)

where Li(zit) is defined in equation 3.3.
In the next section, we describe our econometric methods for estimating regional demand func-

tions. The economic loss from a water supply disruption is then calculated using a parameterized
loss measure similar to equation 3.5 for one period and regional estimates of demand conditions
facing various water purveyors in California.

3.2 Residential Water Demand Estimation
An important factor determining economic losses in the residential sector is the elasticity of de-
mand. The elasticity of demand is a parameter that summarizes how the willingness-to-pay of
consumers to avoid a water service disruption changes with the level of water consumption. Specif-
ically, the price elasticity of demand for water at any price P and consumption quantity Q is given
by ε = (dQ/DP)(P/Q), which represents the percentage change in willingness-to-pay for a per-
centage change in water deliveries. Our annual consumption data is aggregated at the retailer level.
The choice of price index for our demand analysis is an important one. If all retailers used a uni-
form price then the choice of a price index would be a simple one. However, many retailers used
a tiered rate structure, usually increasing rate block schedules. There are theoretical arguments for
one price index versus another, but we have to rely on the data available for our analysis. From
our data sources we have a measure of the average price paid by consumers in each retailer across
years, and for this reason we use consumer response to average price as the relevant price elasticity.

3.2.1 Econometric Specification
Our basic estimating equation is:

ln(qit) = α1ln(p̄it)+µi + τt + εit (3.6)
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where qit is the single family residence average monthly consumption for retailer i and year t;
p̄it is the average price per ccf of residential water; µi is a retailer fixed effect; τt is a year fixed
effect; and εit captures all unobserved factors affecting the dependent variable. This specification
will capture all unobserved time-invariant retailer specific characteristics.

However, the specification will fail to capture any time-variant retailer specific characteristics.
To partially control for this we estimate retailer specific time trends, which will capture character-
istics that display a common linear or quadratic trend across time within a retailer. For example,
changes in technology or social norms might be captured by these retailer-specific time trends.
Finally, for the welfare analysis we would like to account for spatial heterogeneity in price elas-
ticities, especially between disparate regions of California like the San Francisco Bay Area and
Southern California. To address this, we capture heterogeneity of the price elasticity across space
by interacting our price variables with an indicator variable for Southern California. Our preferred
specification can be written as:

ln(qit) = β1ln(p̄it)+β2ln(p̄it) ·SoCali +µi +µi · t +µi · t2 + τt + εit (3.7)

3.2.2 Data
The price elasticity of demand for water is estimated using single-family residential annual aver-
age price and consumption data from urban water retailers in the San Francisco Bay Area and in
the Metropolitan Water Disctrict of Southern California (MWD). Average monthly consumption,
average price, and customer data for water retailers in the San Francisco Bay Area were recorded
from the Bay Area & Water Supply Conservation Agency Annual Surveys from 1994-2009; sim-
ilar data for water retailers in the MWD service area was obtained by directly contacting water
retailers. The final sample of retailers used to estimate our econometric model includes 26 retailers
from in the San Francisco Bay Area and 56 retailers from within the MWD service area. In total,
the sample contains 1050 observations spanning 82 water retailers.

Average annual single-family household consumption levels for each water retailer was cal-
culated by dividing the total single-family residential consumption level for the fiscal year by the
number of single-family residential accounts for that fiscal year. A monthly average consumption
level was created by dividing the yearly average by twelve. The equilibrium price of water for the
typical user in each region was assumed to be equal to the average price charged ($/ccf) to a res-
idential customer, and in practice this measure is likely to be very close the marginal price facing
residential consumers.

3.2.3 Estimation Results
Table 3.1 presents the results for three variations of the empirical model. In column (1) we present
the results of our basic estimating equation, 3.6, which includes both retailer and year fixed ef-
fects. Under this specification we obtain a precisely estimated elasticity of -0.091; a result slightly
smaller than previous studies. In column (2) we add retailer specific linear and quadratic time
trends. The point estimate changes to -0.238, this suggests a trending omitted variable which is
correlated with both consumption and price. The result is generally consistent with other estimates
in the academic literature, although somewhat more elastic. Column (3) is identical to the spec-
ification in column (2) except we have introduced some heterogeneity into the price elasticity by
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interacting price with an indicator denoting Southern California. With a price elasticity of -0.149
water consumers in Northern California are more price inelastic than their Southern Californian
counterparts who have a significantly lower price elasticity of -.308. These results make intu-
itive sense: residential consumers in the Southern California service areas we consider have more
outdoor water use than those considered in Northern California.

Table 3.1: Residential water demand estimation
(1) (2) (3)

ln(price) -0.091*** -0.238*** -0.149**
(0.019) (0.056) (0.050)

ln(price)*Southern California -0.159**
(0.057)

Observations 1050 1050 1050
R-squared 0.9525 0.9818 0.9819
Retailer fixed effects (m=82) Yes Yes Yes
Year fixed effects (n=15) Yes Yes Yes
Retailer specific quadratic time trend No Yes Yes
Standard errors clustered at county level reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

One concern with these specifications is that we do not account for deviations from typical
weather patterns within a retail service area. However, in our sample we believe it is rare for retail-
ers to adjust prices to contemporaneous weather patterns. To examine if excluding weather biases
our price elasticities we consider a subset of retailers for which we have annual weather data. We
re-run the specifications presented in table 3.1 with the addition of temperature and precipitation
weather controls. The results are presented in table 3.2. Although the coefficient on price interacted
with Southern California is different from table 3.1, we observe that the inclusion of weather does
not significantly change the estimated price coefficients in columns (2) and (3) relative to columns
(1) and (2). This is consistent with our prior thought that retailers rarely respond to contemporane-
ous weather patterns by adjusting price. We have evidence that the price elasticities shown in table
3.1 are not biased due to omitted weather control variables.
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Table 3.2: Controlling for weather in the residential water demand estimation
(1) (2) (3) (4)

ln(price) -0.159** -0.158** -0.144** -0.143**
(0.043) (0.042) (0.050) (0.048)

ln(price)*Southern California -0.080 -0.081
(0.138) (0.136)

Average max. summer temperature 0.015 0.016
(0.013) (0.013)

Total annual precipitation 0.007 0.006
(0.044) (0.041)

Observations 488 488 488 488
R-squared 0.9872 0.9872 0.9872 0.9872
Retailer fixed effects (m=82) Yes Yes Yes Yes
Year fixed effects (n=15) Yes Yes Yes Yes
Retailer specific quadratic time trend Yes Yes Yes Yes
Standard errors clustered at county level reported in parentheses
*** p<0.01, ** p<0.05, * p<0.1

3.3 Economic Losses of a Water Supply Disruption
In this section, we estimate welfare losses for Northern and Southern California in their respective
residential sector during times of shortage.

3.3.1 Parameterizing the Loss Function
We assume a constant elasticity of demand specification:

Pi = AiQ
1
εi
i (3.8)

for i = 1,..., n, where εi is the elasticity of water demand in region i and Ai is a constant. Let Pi
and Q∗i respectively denote the retail water price and quantity of water consumed by residential
households in region i under baseline conditions. For a given water shortage with an available
level of water given by Qi(zit)< Q∗i , it is helpful to define the relationship between these quantities
in terms of the percentage of water that is rationed in region i at time t, rit , as:

Qi(zit) = (1− rit)Q∗i . (3.9)

Making use of equations 3.8 and 3.9, the economic loss following a supply disruption of magnitude
zit in region i at time t can be calculated from equation (3.4) as:

Li(zit) =
εi

1+ εi
P∗i Q∗i [1− (1− rit)

1+εi
εi ]−

ˆ Q∗i

Qi(zit)
ci(x)dx (3.10)
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3.3.2 Data for Calculation of Losses
Using equation (3.10) losses are calculated for each agency with estimated residential water de-
mand parameters from our econometric model. The resulting agency-level values are used to cal-
culate the total economic losses in Nothern and Southern California by summing across agencies.

The loss of being short an additional unit of water is the difference between consumer’s
willingness-to-pay for the unit, and the marginal cost of the unit. The former is equivalent to

the first term in equation 3.10, εi
1+εi

P∗i Q∗i [1− (1− rit)
1+εi

εi ], and is calculated based on observed
consumption, prices, shortage scenarios and estimated price elasticities. The avoided marginal
costs of water delivery is based on reports from water district engineers.

We develop loss estimates due to water shortages for SFPUC, BAWSCA, Santa Clara Valley
WD, and East Bay MUD in Northern California; and MWDSC in Southern California. As previ-
ously noted, losses also depend on regional prices, baseline demand, demand shortages, and prices.
Estimates for all of the information required for the loss calculation are publicly available except
for the price elasticities; these were generated based on the residential water demand estimation.

Baseline demand data is recorded from FY 2009-2010 Urban Water Management Plans for
each water agency included in the analysis. The price data is acquired from separate sources for
Northern and Southern California. The Northern California price data is the 2009 median rate
reported in the BAWSCA survey, or as recorded from agency websites. From these we calculate a
quantity-weighted average for the price index to be used in the loss analysis. The calculation of the
Southern California data is slightly more complicated because not all MWD member agencies are
retailers, some of them are wholesalers who sell to retailers. We use FY 2009-2010 Urban Water
Management Plans to calculate median rates for all retailers within each member agency. The
MWD member agency average price we use in the loss analysis is a quantity-weighted average of
the average prices for retailers residing in an MWD member agency’s service area.

The demand estimation suggests that the price elasticity of water is significantly different be-
tween Southern and Northern California; however, we do not have evidence that there is statis-
tically significant variation within these two regions. For the loss analysis, we assume one price
elasticity for each of these two regions based on the results of column (3) in table 3.1. We assume
all regions in Northern California have a single family residential price elasticity of demand equal
to -.149 MWDSC we assume a price elasticity of -.308. In terms of the residential loss functions,
the impact of regional demand elasticity values is to raise economic losses from water service
disruptions when demand is relatively inelastic and to lower economic losses in regions where
demand is more elastic. Predictions of residential water shortages in California reflect consider-
able uncertainty, and have a wide range. Thus, we calculate losses due to 10, 20, and 30 percent
shortages.

The final piece of information required to calculate losses due to a shortage is the marginal cost
of service delivery. The marginal cost of supply depends on the supply source. For simplicity, in
Northern California we assume Hetch Hetchy reservoir is the relevant supply source. Communica-
tion with water managers in the San Francisco Bay Area suggest the marginal cost is $50/AF. For
the MWD member agencies, the Delta water from the State Water Project is the relevant supply
source. Communication with water managers in the MWD service area suggest the marginal cost
is $225/AF.
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3.3.3 Results of the Loss Analysis
Table 3.3 reports the results of the loss analysis for shortage scenarios of 10%, 20% and 30% for
the Northern and Southern Californian service areas considered in our study. We present welfare
losses under different assumptions about the marginal costs of service delivery; welfare losses are
equivalent to willingness-to-pay for water supply reliability. Row one in each panel presents results
under the assumption that marginal costs are zero. In this instance, the loss experienced is exactly
consumer willingness-to-pay for the water. In the second row of each panel we present the results
under the assumption that marginal costs are $50/AF for Northern California regions and $225/AF
for Southern California regions. The third row presents losses under the assumption of marginal
cost pricing—losses are equivalent to the consumer surplus triangle. The latter is often used as a
measure of WTP for water supply reliability.

Table 3.3: Welfare losses due to shortages of 10%, 20% and 30%
Panel A: Northern California

Price Index: $1,501/AF; Total M&I Demand: 911,969; Elasticity: -0.149
10% disruption 20% disruption 30% disruption

WTP for water not delivered (MC = 0)
Total $197,801,573 $617,566,589 $1,598,202,006

Average $2,169 $3,386 $5,842
Estimated Losses due to a shortage (0 < MC <p*)

Total $193,241,728 $608,446,899 $1,584,522,471
Average $2,119 $3,336 $5,792

Consumer surplus triangle (MC = p*)
Total Loss $60,918,733 $343,800,909 $1,187,553,487
Average $668 $1,885 $4,341

Panel B: Southern California
Price Index: $1,267/AF; Total M&I Demand: 3,796,681; Elasticity: -0.308

10% disruption 20% disruption 30% disruption
WTP for water not delivered (MC = 0)

Total $571,840,667 $1,393,703,383 $2,630,423,148
Average $1,506 $1,835 $2,309

Estimated Losses due to a shortage (0 < MC <p*)
Total $486,415,344 $1,222,852,738 $2,374,147,181

Average $1,281 $1,610 $2,084
Consumer surplus triangle (MC = p*)
Total Loss $90,801,184 $431,624,417 $1,187,304,700
Average $239 $568 $1,042

For each magnitude of supply disruption, the total economic loss is the average loss ($/AF)
multiplied by the decrease in total M&I deliveries. The lower bound for economic losses ranges
from $239/AF for a 10% supply disruption in Southern California with marginal cost pricing to

27



$5,842/AF for a 30% supply disruption with zero marginal costs in Northern California. At all
levels of supply disruption, the difference between the lower bound value and upper bound value
of economic losses in each region is given by the price index.

Notice that the average economic loss is rising in the magnitude of the supply disruption. The
reason is that consumer willingness-to-pay for an incremental unit of water is decreasing in the
level of water consumption as the value of water applied to various end-uses declines with the total
level of supply. In response to a water supply disruption, residential consumers select the least
costly conservation activities before dispensing with higher valued uses of water.

Basing the loss calculation on the typical water use level of residential households in the service
territory of each member agency implicitly assumes that a water supply disruption of a given
magnitude is met with proportionate rationing on each tier of the pricing structure. For member
agencies that meet a supply reduction by raising water rates predominantly on the higher tiers of
the pricing structure, the actual economic losses would be larger than the losses described above.

There are at least two important points to be taken away from table 2. First, the source of
unreliability can greatly affect the size of the loss according to the marginal costs of service delivery
from the supply source. For example, notice that losses (the value of supply reliability) in Southern
California under a 10% shortage when marginal costs are close to zero is roughly six times the size
of losses under marginal cost pricing. Failure to distinguish between the marginal costs of service
delivery from different supply sources in Northern and Southern California would distort the value
of supply reliability. Second, heterogeneity in the price elasticity has a huge impact on losses
across regions. Under a 30% shortage the losses per acre foot in Northern California are two to
four times the size of average losses in Southern California. In other words, if we applied the same
price elasticity of -0.15 to Southern California as we did in Northern California, then this could
quadruple the value of water supply reliability. This is not inconsequential as such a difference
in value could influence the economic viability of large infrastructure projects designed to secure
water supply reliability.

3.4 Conclusions
We estimate welfare losses to residential water consumers during water supply shortages, and in
doing so generate a value of water supply reliability. In the economics of water utilities a simple,
yet often overlooked fact, is that utilities load a large share of the high infrastructure costs onto
the unit price of water they charge their customers. Therefore, the consumer surplus triangle
which is often used to determine welfare losses due to supply shortages is theoretically incorrect.
Said differently, fixed costs are sunk at the time of a water supply disruption and so have no
bearing on welfare outcomes. The welfare loss from a supply disruption, accordingly, can be
many times greater than the loss evaluated using standard measures of compensating variation or
equivalent variation in consumer utility functions. Consistent with this, our loss analysis shows
large differences in welfare losses depending on the marginal cost of service delivery.

Germane to the discussion is the fact that there is regional variation in the marginal cost of ser-
vice delivery; hence, regional data on these marginal costs should be an object of interest for water
managers and policy-makers alike. Further, marginal costs relate explicitly to the source of supply.
If a region has multiple supply sources then water managers and policy-makers must consider the
supply source facing unreliability when evaluating the benefits of investing in a reliable alternative
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supply.
A final point this paper makes relates to the estimation of price elasticities. Our work em-

pirically demonstrates that the price elasticity of residential water demand displays statistically
significant spatial variation. Accounting for this variation is essential for accurately assessing wel-
fare losses, and evaluating reliability infrastructure investments. Understanding spatial variation in
price elasticities will also aid water managers when allocating water shortages across space.

Our analysis offers useful guidance for those interested in more accurate assessments for the
value of water supply reliability. However, there are several fronts for future research. To our
knowledge, water managers in California or their offices do not keep detailed records on the
marginal costs of service delivery. Our research suggests they would be wise to do so, and if
collected, the data could inform subsequent research on the value of water supply reliability. Data
limitations exist; for example, our demand estimation relies on consumption data aggregated to the
retailer level. Administrative records can provide household level measures of consumption, and
would significantly improve the demand estimation. Absent such micro-level data, information on
the distribution of consumption within a retailer could be combined with retailer specific tiered
rate structures to compute the theoretically correct price index for estimating price elasticities of
demand using retailer-level household consumption averages. It may also be possible to intro-
duce heterogeneity into price elasticities at a more disaggregate level than Northern and Southern
California. Finally, while a panel of price and consumption data is preferable to cross-sectional
data, our demand specification may still suffer from omitted variable bias or simultaneity issues.
For instance, conservation practices such as ordinances to curtail outdoor water use or conserva-
tion campaigns may vary across time within a district and so would not be accounted for using
retailer fixed effects. These retailer-level conservation efforts may be correlated with both price
and consumption, and so would bias our estimation results. Data collection efforts for retailer level
information on conservation efforts would allow one to address this form of omitted variable bias.
Likewise, if retailers are easily able to update prices to reflect changes in demand or anticipated
demand then our estimates would be biased. A more complete picture of how prices are set would
be informative when choosing a specification to estimate demand.
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Chapter 4

Agricultural Extension, Trust and Learning

Technical change in agriculture is an important engine of poverty-reducing growth in developing
countries. Transmission of knowledge about technical alternatives is, however, costly and gov-
ernments are increasingly seeking cost-effective means of spreading information (Godtland et al.,
2004). An important determinant of cost-effectiveness is farmer learning. Adegbola and Garde-
broek (2007) and Moser and Barrett (2006) study how farmers learn about agricultural technologies
from agricultural technicians (extension agents) and community farmers. They find differences
in adoption depending on the information source, although there is scant evidence about factors
that account for such differences. An important, yet understudied, determinant of uptake of new
knowledge may be the recipient’s trust in the motives of the information source. Because they may
question underlying motives, farmers do not value all sources of agricultural information equally.
Some farmers may trust neighboring farmers while others, if given the opportunity, may be more
inclined to trust agricultural technicians.

Few studies have tried to address the causal effect of trust on behavior in the field environment;
notable exceptions are that of Bouma, Bulte, and Van Soest (2008) and Tu and Bulte (2010).
We study how trust attitudes affect learning in the context of agricultural extension training for
naranjilla farmers in the Amazon region of Ecuador. Naranjilla is a solanaceous fruit used mainly
for juices and its farmers face severe pest and disease problems, such as fruit worms, borer beetles,
and fungi (Ochoa et al., 2001). Anecdotal evidence from technicians and farmers indicates the
most common management tool is the application of agrochemicals; Andrade (2005) confirms
this observation. Compared to their use on other crops, agrochemicals are relatively ineffective
at managing naranjilla pest and disease problems (Baez, Ochoa, and Ellis, 2003; Gallegos et al.,
2003); these chemicals also cause environmental damage and pose long-term human health risks
(Zilberman and Castillo, 1994).

Cost-effective integrated pest management (IPM) techniques have been developed to help
naranjilla farmers (Shiki et al., 2003), yet Andrade (2005) finds IPM adoption has been slow. IPM
messages tend to be complex and uptake usually requires extensive learning (Norton, Heinrichs,
and Luther, 2005). In Ecuador, transmission of complex messages to naranjilla farmers is compli-
cated due to their physical isolation and the absence of public agricultural extension since the early
1990s (Alwang et al., 2005). Ecuadorian policy-makers are now planning to re-invest in public
agricultural extension services and are seeking efficient models for information transfer. While
supplying naranjilla farmers with information exposes them to IPM practices, farmers may ignore
it or put less effort into learning if they do not trust the information source. Farmers may wonder
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if financial, political or environmental objectives underlie the advice technicians provide. Farm-
ers report they are skeptical of outside technicians who bring new agricultural technologies; they
question if these technicians are promoting these technologies for personal financial gain indepen-
dent of whether the product is appropriate. Other farmers suspect that the promises of successful
new technologies come from technicians representing political agendas. The appearance of service
delivery agents such as agricultural technicians, especially near elections, may be rewarded in the
ballot box although technicians’ advice may later be found to produce little value. Some farm-
ers report that technicians have tried to convince them to reduce tree-cutting, which is viewed by
farmers as a strategy to conserve natural resources at the expense of reducing harvests. Similarly,
farmers may question whether IPM practices truly increase yields or if they are a strategy to pre-
vent chemical run-off into surface waterways. From the farmer’s perspective, technicians who are
perceived to have environmental or other objectives, rather than farmer welfare as an objective, are
self-regarding technicians. Accordingly, such technicians would prefer to devote resources towards
consuming environmental services (or another competing objective) rather than on consumption
that improves farmer welfare. Thus, naranjilla farmers may suspect the motives of technicians.

This problem is not unique to naranjilla farmers in Ecuador; substantial evidence shows that
development agents often face incentives that are not aligned with the objectives of those they
serve. Chaudhury et al. (2006) survey evidence in India showing that rural school teachers and
healthcare providers are consistently absent from work; Easterly (2009) finds similar evidence
in Africa. Labie, Méon, and Szafarz (2009) investigate how incentives may lead credit officers in
microfinance institutions to discriminate against minority loan applicants despite a mission to serve
minority populations. In addition to pecuniary benefits, our experience in the field suggests that
program mission and other nonpecuniary motivations are present among agricultural technicians
in Ecuador. In our framework we let service recipients recognize the different motivations service
delivery agents may have. In particular we let farmers condition their effort to learn during an
agricultural training on their trust in the motivations of information sources.

Our work also contributes to the growing literature on agricultural technology adoption. Re-
cent work in the adoption literature has taken advantage of advances in behavioral economics and
experimental methods to investigate psychological explanations of adoption behavior. Liu (2010)
tests the role of prospect theory in the adoption of biotech rice in China by capturing experimen-
tal measures of risk preferences among farmers. Using a randomized intervention Duflo, Kremer,
and Robinson (2009) test whether farmers in Kenya are present-biased as a reason for the slow
adoption of fertilizer. Most closely related to our work is that of Cole et al. (2009) in India; they
test whether trust in an insurance product representative affects adoption of rainfall insurance. In
an ideal experiment, trust would be randomly assigned, but this is impossible. Absent this exper-
iment, Cole et al. randomly vary whether the insurance product representative is endorsed by a
local microfinance customer service agent. They also run an experiment in which insurance flyers
are randomly assigned endorsements using references to Hindu or Muslim faith. While both en-
dorsement treatments have positive impacts on insurance product uptake, the authors do not have
a revealed measure of trust in the messenger. It is also not clear if these endorsements only confer
trust or something additional such as authority or group membership. Our study complements their
work in three ways. First, we use revealed measures of trust in information sources, the messenger.
Second, we consider the role of trust via learning in adoption of an agricultural cultivation tech-
nology rather than a financial product. Finally, we consider how trust in the messenger relative to
trust in other information sources affects adoption as opposed to only the importance of absolute
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trust in the messenger.
We hypothesize that learning from a technician, and adoption behavior more broadly, will de-

pend on a farmer’s trust in technicians and other community farmers. Using a stylized model as
our guide, we consider measures of absolute and relative trust in technicians compared to com-
munity farmers to empirically test our thesis. We find evidence that farmers who attend a training
and who trust technicians relatively more than community farmers score significantly higher on an
exam based on the training than other farmers. We find no evidence that farmers’ trust attitudes
are related to factors that make them more or less knowledgeable ex-ante about the exam material;
trust measures are not significantly correlated with exam scores for farmers who take the exam
without the benefit of the training.

Based on our estimates the impact of trust on learning during training is relatively large; for
example, farmers who trust technicians more than community farmers score almost one standard
deviation higher on the exam than others. This result is timely given that Ecuador is moving
forward with a renewed public agricultural extension system. Our finding suggests that the channel
by which information is delivered is an important determinant of learning and acceptance. And
while we say nothing about how learning translates into behavioral change, incorporating new
information and updating beliefs is a necessary, if not sufficient, condition for such change.

The remainder of this chapter is organized as follows. We start with a brief discussion of how
we define trust. Then we develop a simple model of farmer behavior and learning during training.
Subsequently, we describe the data sources and the empirical framework. The article concludes
with a discussion of results and conclusions.

4.1 Defining Trust
Following Gambetta (1988) and Schechter (2007) trust is defined as an individual’s subjective
probability that another person is motivated to perform an action beneficial to her. Said differ-
ently, trust in another person is the belief that an informal contract with him or her is incentive
compatible. For clarity throughout the remainder of the paper, we reference someone who has
motives to perform an action beneficial to a farmer as other-regarding behavior. We reference the
absence of such motives as self-regarding behavior. In our framework both other-regarding and
self-regarding individuals are pursuing their self-interests. However, for other-regarding individu-
als their interests include the pay-outs to farmers, while for self-regarding individuals their interests
do not include the pay-outs of farmers, although they may include rewards from environmental,
political or personal financial outcomes.

Next we distinguish between trust in motives and trust in competence. Trust in motives refers
to an individual’s beliefs that another individual is other-regarding or not. Trust in competence
refers to an individual’s beliefs that another person has credible expertise. By way of example,
suppose Sam just bought a car from her grandparents and they told her they just replaced the brake
pads. Now suppose Sam goes to change the oil and the mechanic says she needs new brake pads. It
is doubtful that Sam will get new brake pads. It is not because Sam does not trust that the mechanic
knows when brake pads are worn thin; it is because Sam does not trust the mechanic’s motives,
rather Sam trusts her grandparents’ other-regarding motives.

Both farmer trust in the motives and in the competence of information sources may condition
from whom she accepts agricultural advice, although we view the latter as less relevant to our
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study. We believe there to be insignificant variation among farmers with respect to their trust in
the competence of technicians. Absent data on trust in competence we cannot empirically test this
claim. Nonetheless, casual observation indicates that in our study area, and throughout Ecuador,
higher education is uniformly held in high-esteem. Agricultural technicians have advanced training
in agronomy, and so it is likely that farmers’ respect the competence of technicians in agronomic
matters. However, as we have already described, some naranjilla farmers may question the motives
of technicians; hence, our interest is in how trust in motives impacts learning about technology.

4.2 The Trust Game
Measures of trust were obtained from a dataset originally collected in 2005 to study the correlates
of trust attitudes. Trust measures are based on the investment game, also commonly called the trust
game (Berg, Dickhaut, and McCabe, 1995), in which there are two players, an investor and trustee.
The investor starts with a given endowment. The investor decides to send part, all or none of her
endowment to an anonymous person, the trustee. Any money the investor passes to the trustee is
tripled. The trustee has the opportunity to return part, none or all of the money to the investor.
None of these plays are observed by participants; in addition, the investors do not know how much
money is returned to them from the trustees until after all plays have been made.

Since the trustee’s play is anonymous and the game is not repeated, we expect the trustee
to return nothing to the investor under the assumption that individuals are self-interested. From
backward induction the investor identifies the trustee’s ‘return nothing’ strategy. Hence, the only
sub-game perfect Nash Equilibrium is that the investor sends nothing because she expects the
trustee to return nothing. In laboratory experiments, participants rarely play according to this
strategy (Barr, 2003; Glaeser et al., 2000; Karlan, 2005; Schechter, 2007). Investors typically send
money. Social scientists often attribute this deviation from expected play to trust (Camerer, 2003).
Farmers play the trust game as the investor against community farmers and against agricultural
technicians. Since the farmers know which class of trustee (community farmer or technician), but
not the specific individual with whom they are playing, measures of trust in community farmers
and trust in technicians are obtained1. We employ the trust game with anonymous partners because
it mimics the interactions that often typify relationships between naranjilla farmers and agricultural
technicians in Ecuador. Under the current extension system a technician might visit a community
for a one time training and never return.

4.3 Modeling Farmer Behavior in the Agricultural Training
To motivate and direct our empirical tests we develop simple models of farmer behavior during the
training session. Like all models, the ones we present are incomplete, but we find ours informative

1Recently social scientists have questioned whether the action of the sender in the investment game is a measure of
trust or just a measure of the propensity to gamble. In a laboratory setting, Eckel and Wilson (2004) find that experi-
mental measures of trust are not correlated with experimental or survey measures of risk; however, in lab experiments
taken to the field, both Karlan (2005) and Schechter (2007) present evidence that experimental trust measures are
partially determined by, or at least associated with, risk behavior. To address this we control for risk in the regression
analysis.

33



as a guide to the economic logic that inspired the empirical analysis.
We consider two sources of information: technicians and community farmers. Also, we let

agricultural information sources be of two types: those who care about farmers (other-regarding)
and those who care about a personal interest (self-regarding). An other-regarding farmer may be
willing to trade-off a personal pay-out to increase the pay-out of another farmer. For example,
one can imagine an other-regarding farmer foregoing a day of work in his or her own field to help
her neighbor learn how to use a new pesticide. Self-regarding farmers would not be willing to
make such as sacrifice; in fact, a self-regarding farmer might withhold information about a new
technology from others in order to reduce competition. We argue that such people would return
less money to the investor while playing as the trustee in the trust game. Similarly, compared to the
self-regarding technician, an other-regarding technician naturally has objectives that are relatively
well-aligned with farmers. He or she learns and teaches practices that are of high-value to farmers.
However, a self-regarding technician who cares about other objectives, for example, financial,
political or environmental objectives, has incentives that are not as well-aligned with the farmer.
He or she learns and teaches practices that are of relatively low-value to farmers. Similarly, the
other-regarding farmer offers advice that is of relatively high-value, while the self-regarding farmer
may offer low-value advice that lets him free-ride on other farmers’ investments in pest and disease
reduction.

We let each farmer i form a subjective probability θ s
i ∈ [0, 1] that a given information source

is other-regarding, and 1− θ s
i that a given information source is self-regarding; s denotes if the

information souce is a technician (t) or farmer ( f ).

4.3.1 Model of Learning from Community Farmers and Technicians

The value of advice, v, varies across information sources and assumes values vt
H , vt

L v f
H , or v f

L. The
superscript on v indicates whether the source is a technician (t) or farmer ( f ), while the subscript
indicates whether the source is other-regarding (H) or self-regarding (L). As already suggested
other-regarding information sources offer relatively high-value advice and self-regarding informa-
tion sources offer relatively low-value advice; hence, we assume vt

H > vt
L and v f

H > v f
L.

The return to effort when learning from a given information source s can be written as vs ·g(e)
where e is cumulative effort. We assume there is overlap between advice offered by community
farmers and in the training; the return to effort in the training is likely diminished as a consequence
of past effort. Therefore, e is the sum of effort exerted learning from community farmers prior
to the training and from technicians during the training, e = e f + et . We suppose diminishing
marginal returns to learning in effort (g′(ei) > 0, g′′(ei) < 0) for farmer i. Also, we let effort be
costly and the marginal cost of effort during the training to be increasing in effort (c′′(et

i) > 0)
where the superscript t indicates effort exerted during the training. We assume farmers are utility
maximizing with respect to effort. Absent technicians, farmer i chooses the optimal level of effort
to exert learning from community farmers by solving:

max
e f

i

(θ
f

i v f
H +(1−θ

f
i )v

f
L)g(e

f
i )− c(e f

i ). (4.1)

Note that the first term captures the expected benefits of information offered by community farmers
which is scaled by effort, and the second term captures the cost of exerting effort to learn from
community farmers.
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Now suppose an agricultural technician makes an unexpected visit to the community and pro-
vides an agricultural training. Farmer i has already solved the problem described in expression
(4.1) and exerted effort e f∗

i learning about naranjilla cultivation from community farmers; hence,
due to diminishing marginal returns to effort it is less worthwhile to exert additional effort during
the training. Formally, farmer i’s maximization problem in the training is:

max
et

i

(θ t
i vt

H +(1−θ
t
i )v

t
L)g(e

t
i + e f∗

i )− c(et
i). (4.2)

Again, note that g(et
i + e f∗

i ) captures the fact that after already exerting effort to learn from
community farmers the return to effort during the training is diminished (i.e., g′(e f∗

i ) > g′(et
i +

e f∗
i )). Taking the derivative of expression (4.2) with respect to et

i we obtain the following first
order condition:

(θ t
i vt

H +(1−θ
t
i )v

t
L)g
′(et

i + e f∗
i )− c′(et

i) = 0. (4.3)

Totally differentiating equation (4.3) with respect to et
i and θ t

i we find:

[(θ t
i vt

H +(1−θ
t
i )v

t
L)g
′′(et

i + e f∗
i )− c′′(et

i)]det
i +[(vt

H− vt
L)g
′(et

i + e f∗
i )]dθ

t
i = 0. (4.4)

Similar to before, re-arranging the expression we find:

det
i

dθ t
i
=−

(vt
H− vt

L)g
′(et

i + e f∗
i )

(θ t
i vt

H +(1−θ t
i )v

t
L)g′′(e

t
i + e f∗

i )+(−c′′(et
i))

> 0. (4.5)

It is easy to verify det
i

dθ t
i
> 0; both factors in the numerator are positive; and both terms in the

denominator are negative. Applying the negative sign to their ratio yields the observed inequality.
An additional interesting feature of this model is that because e f∗

i is a function of θ
f

i we can

solve for det
i

dθ
f

i
. We totally differentiate our first order condition with respect to et

i and θ
f

i to obtain:

[(θ t
i vt

H +(1−θ
t
i )v

t
L)g
′′(et

i + e f∗
i )− c′′(et

i)]det
i +[(θ t

i vt
H +(1−θ

t
i )v

t
L)g
′′(et

i + e f∗
i )(

de f
i

dθ
f

i

)]dθ
f

i = 0.

(4.6)
Re-arranging this expression we find:

det
i

dθ
f

i

=−
(θ t

i vt
H +(1−θ t

i )v
t
L)g
′′(et

i + e f∗
i )(

de f
i

dθ
f

i
)

(θ t
i vt

H +(1−θ t
i )v

t
L)g′′(e

t
i + e f∗

i )+(−c′′(et
i))

< 0. (4.7)

It is easy to verify det
i

dθ
f

i
< 0; the first and last factors in the numerator are positive while the middle

factor (g′′(et
i + e f∗

i )) is negative so that the numerator is negative; in the denominator the first term
is negative while the second term is negative; hence, the denominator is also negative. Applying a
negative sign yields the observed inequality.

If effort to learn from farmers enters into the farmer’s decision problem as described then
effort in the training increases with trust in technicians and decreases with trust in community
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farmers. Combining these results also delivers the result that effort in the training increases as
the difference between trust in technicians and community farmers widens. This occurs because
as trust in farmers (θ f

i ) increases then effort to learn from farmers (e f∗
i ) also increases, which

decreases the value of effort to learn during the training (et
i); at the same time as trust in technicians

(et
i) increases then so does effort during training (et

i). Together these results imply: det
i

d(θ t
i−θ

f
i )

> 0.

4.3.2 Relative Trust & Selection into Learning Regimes
Farmers in the Pastaza province of the Ecuadorian Upper Amazon Basin are not unfamiliar with
naranjilla cultivation–there exist profit-maximizing agricultural practices that account for the vari-
ety of plant pests and diseases a naranjilla farmer may face. When alternative practices are intro-
duced, these practices may be at odds with this optimal mix; otherwise, there would be no reason
to introduce outside practices. Our second model of farmer learning during training highlights
this point. Trust in agricultural technicians relative to community farmers may affect decisions
about how much effort to exert at learning during training, this is because agricultural advice from
different sources of information are some times at odds.

In the empirical analysis we consider advice on the uses of agrochemicals as an illustration of
this tension: neighboring farmers may advise that a particular agrochemical is useful for control-
ling nematodes while the technician may argue that the agrochemical is ineffective at controlling
nematodes (or vice versa). In this extreme scenario, the farmer can only accept the advice of one
information source, although the farmer does not know which is the more valuable advice. We
assume farmers who are faced with conflicting advice in the training rely on the advice of the more
trusted information source and forgo the advice of the other information source.

To address this possibility, we endogenize the choice of selecting into learning from community
farmers versus learning from technicians. Farmer i’s choice of learning regime depends on the
expected value of advice from community farmers compared to the expected value of advice from
technicians. Formally, farmer i compares the following expected values:

E(Advice from farmers) = θ
f

i v f
H +(1−θ

f
i )v

f
L (4.8)

E(Advice from technicians) = θ
t
i vt

H +(1−θ
t
i )v

t
L. (4.9)

In this framework farmer i chooses to learn from the information source offering the greater of the
values expressed in equations (4.8) and (4.9)2. We derive a threshold, θ̄i(vt

H , vt
L, v f

H , v f
L, θ

f
i ), θ̄i

henceforth, at which farmer i switches learning regimes if θ t
i > θ̄i. That is, θ̄i is the point when

farmer i decides to opt for the advice from technicians and forgo the advice of his or her fellow
farmers. For example, farmers who came to the field day for the promised financial compensation
and are untrusting of technicians are likely to value the advice of community farmers more than
technicians; farmers attracted to the field day for the technician’s training rather than the financial
compensation are likely to value the advice of technicians more than community farmers. We write

2Farmer i may anticipate the cost of effort as well as how the level of effort during training will scale learning; if
so, then these should appear in equations (4.8) and (4.9). However, we choose to suppress these effects of effort under
the assumption that farmers employ a non-standard decision-making process in which they first choose who to trust,
and then choose the optimal level of effort.
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down the necessary inequality using equations (4.8) and (4.9):

θ
t
i vt

H +(1−θ
t
i )v

t
L > θ

f
i v f

H +(1−θ
f

i )v
f
L. (4.10)

Collecting like terms on both sides of the inequality we obtain:

θ
t
i (v

t
H− vt

L)+ vt
L > θ

f
i (v

f
H− v f

L)+ v f
L. (4.11)

Subtracting vt
L from both sides of the inequality and then dividing both sides by (vt

H−vt
L) we find:

θ
t
i >

θ
f

i (v
f
H− v f

L)+ v f
L.− vt

L

(vt
H− v f

L)
(4.12)

Re-arranging the right-hand side of the inequality we identify our threshold as:

θ̄i =
v f

L− vt
L

vt
H− vt

L
+

v f
H− v f

L
vt

H− vt
L
·θ f

i = β0 +β1 ·θ f
i (4.13)

To avoid unnecessary quantitative complication, our approach is to assume different qualitative
cases for (vt

H , vt
L, v f

H , v f
L), always preserving vH > vL independent of the information source. As

a baseline we assume the value of advice from farmers and technicians to be identical (vt
H = v f

H
and vt

L = v f
L). In this case we observe θ̄i = θ

f
i so that the comparison between (4.8) and (4.9)

simplifies to comparing θ
f

i and θ t
i ; this is the previously described scenario where farmers rely on

the advice from the information source they trust the most. In the jackknife case when θ
f

i = θ t
i

we assume farmers accept the advice of farmers and ignore the advice of technicians (i.e., exert no
effort during training) since they have already sunk costs into learning from farmers. Clearly, θ̄i

will vary according to the values of (vt
H , vt

L, v f
H , v f

L, θ
f

i ). Our insight is that farmers with θ t
i > θ̄i

exert effort and behave according to the model described in section 4.3.1.
To summarize, relative trust attitudes govern a selection process whereby farmers decide whether

to listen to community farmers or technicians. As in the previous model, the inequalities (4.5) and
(4.7) indicate farmers exert more effort as trust in technicians increases and less effort as trust in
community farmers increases. Combining these results as in the end of section 4.3.1, we predict
that if θ t

i > θ̄i, then as the absolute difference between trust in technicians and community farmers
increases so does effort in the training and thus learning; if θ̄i ≥ θ t

i , the farmer exerts no effort.

4.4 Data

4.4.1 Background
Data was orginally collected in 2005 as part of study examining the correlates of trust, and the
dataset contains no personal identifiers. The sample of participants came from five communities
in two adjacent counties in the Pastaza Province of the Ecuadorian Upper Amazon Basin. We
highlight features that are unique to this field data. In July 2005 local leaders informed farmers that
there would be a training to help combat naranjilla pests and diseases as well as an activity in which
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farmers would earn roughly 5-15 dollars; flyers were distributed with the same information. So
many farmers participated in each field day that it was necessary to divide farmers into two groups.
One group attended a training session given by a technician, participated in the trust games and
then completed a short survey; we reference this group as the treatment group. The other group
participated in the trust games, completed the short survey and then attended the training; we
reference this group as the control group. A short exam was administered during the survey based
on material presented in the training. The farmers in the treatment group completed the exam after
the training, while the farmers in the control group completed the exam without the benefit of the
training. The final sample used in our analysis is composed of 140 naranjilla farmers.

We also point out that farmers participated in multiple trust games. Each farmer participated in
three separate trust games, each with a different anonymous partner, and each with the following
order. Farmers played as the investor partnered with an anonymous farmer; as the investor part-
nered with an anonymous technician; and as the trustee partnered with an anonymous farmer. It is
important to note that farmers made each decision without any knowledge of the outcomes from
the other games. That is, there was no feedback to farmers between plays so that no income effects
or learning were possible from observed outcomes.

An obvious concern with the ordering of the field day events is that the agricultural training
was given by an agricultural technician; this may have affected trust attitudes towards technicians
which were subsequently measured. We address this concern in the empirical section.

4.4.2 Sample Summary
The sample of farmers is diverse in age, education, wealth, family size, and landholdings and a
significant portion were female (26 percent), indigenous (31 percent), Catholic (28 percent), or
immigrants into the community (9 percent). About 18 percent of our sample reported having
adopted agrochemicals based on advice received from a technician in the past. Current use of
methamidophos pesticide was reported by 38 percent of participants; 26 percent reported current
use of carbofuran pesticide; 11 percent reported use of chlorothalonil fungicide; and 8 percent
reported use of 2, 4-D butyl ester herbicide. If assignment into the ’treatment’ and ’control’ groups
was as good as randome then the two groups should not differ systematically. Table 4.1 presents the
means and standard deviations of the covariates for the two groups. We observe that randomization
was reasonably successful, although with a small sample size it is difficult to detect differences
in means. Significantly more immigrant farmers are found in the control group, but the other
covariates are relatively similar. Noteably, in both groups, just under 20 percent reported that they
adopted use of a pesticide from a technician in the past. In addition, farmers in both groups appear
to have similar risk attitudes as was measured in a simple betting game. We also see that farmers
in both groups returned just under 40 percent of what they received as trustee in the trust game;
close to 70 percent of farmers in both groups reported volunteering in the community.
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Table 4.1: Summary statistics for control and treatment groups
Control Treatment

Variable Mean S.D. Mean S.D. P-Val.
Demographic and Household Controls
Education (highest grade completed) 6.76 (3.39) 6.36 (2.91) 0.455
Completed primary school (d) 0.8 (0.048) 0.8 (0.048) 1.00
Age 37.71 (14.36) 40.23 (13.15) 0.282
Male (d) 0.79 (0.41) 0.70 (0.46) 0.249
Indigenous (d) 0.37 (0.49) 0.26 (0.44) 0.147
Catholic (d) 0.26 (0.44) 0.30 (0.46) 0.575
Immigrant (d) 0.14 (0.35) 0.04 (0.20) 0.045
Total household members 6.46 (3.05) 6.07 (2.86) 0.442
Wealth index (integers 0-5) 2.66 (1.79) 2.90 (1.73) 0.416
Farm Controls
Reported owning land (d) 0.53 (0.50) 0.66 (0.48) 0.123
Farm size (hectares) 45.21 (29.40) 40.62 (29.69) 0.360
Previous adoption from technician (d) 0.16 (0.37) 0.20 (0.40) 0.511
Reported methamidophos use (d) 0.41 (0.50) 0.34 (0.48) 0.387
Reported carbofuran use (d) 0.31 (0.47) 0.20 (0.40) 0.124
Reported chlorothalonil use (d) 0.11 (0.32) 0.11 (0.32) 1.000
Reported 2, 4-D butyl ester use (d) 0.04 (0.20) 0.11 (0.32) 0.118
Risk, Altruism and Experiment Controls
Bet in risk game (integers 0-5) 2.27 (1.46) 2.56 (1.44) 0.247
Average share returned in trust game 0.38 (0.13) 0.38 (0.15) 0.979
Reported volunteering in community (d) 0.65 (0.06) 0.72 (0.05) 0.362
Experiment session size 18.21 (5.19) 19.52 (5.18) (0.136)
Technician to farmer ratio 0.48 (0.16) 0.44 (.14) (0.121)
Observations 70 70

Note: (d) indicates a dummy variable. The first and second columns present the mean and stan-
dard deviation of the control sample; the third and fourth columns present the mean and standard
deviation of the treatment sample. The fifth column reports the p-value from a simple comparison
of means t-test.

4.4.3 Summary Statistics of Trust Measures
The trust game results from the data used in this paper are similar to those of Schechter (2007),
who played the same trust and risk games in Paraguay. An important difference between these two
studies is that the Ecuador study has farmers play the trust game with technicians in addition to
playing the trust game with members of their own community. In the Paraguay study, investors
sent about 46 percent of their initial endowment, while in the Ecuador study the investors sent
about 45 percent of their initial endowment to other community farmers and about 46 percent to
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technicians. Schechter’s study, like in Ecuador, found that trust did pay; trustees returned about 38
percent of what they received. A Wilcoxon-Signed Rank Test fails to reject the null hypothesis that
the median value sent to community members in this experiment was identical to the median value
sent to technicians; however, we find that only 32 percent of the farmers played the trust game
the same with a technician as they did with a farmer from their community. Moreover, an Epps-
Singleton (Epps and Singleton, 1986) test indicates that the difference in distribution of money
sent is significant at the 5 percent level (p-value 0.023). This suggests that farmers do not view the
trust game against community farmers as the same as the trust game against technicians.

Table 4.2: Description of trust measures
Measures of trust Description of variable Control Treatment P-Val.
Trust in community Amount sent by the investor to 2.13 2.39 0.21
farmers (0-5) an anonymous community farmer. (1.10) (1.32)
Trust in technicians Amount sent by the investor to 2.19 2.41 0.36
(0-5) an anonymous technician. (1.50) (1.73)
Conditional trust in Trust in community farmers if 0.60 0.47 0.47
community farmers trust in technician is more (1.03) (1.07)
(0-5) than in community farmers;

otherwise, zero.
Conditional trust in Trust in technicians if 1.23 1.10 0.68
technicians (0-5) trust in technician is more (1.83) (1.83)

than in community farmers;
otherwise, zero.

Difference in Trust in technicians minus 0.057 0.028 0.92
trust (-5-5) trust in community members. (1.74) (1.79)
Conditional Trust in technicians minus 0.63 0.63 0.99
difference trust in community members if (1.18) (1.13)
in trust trust in technician is more
(-5-5) than in community farmers;

otherwise, zero.
Trust technicians A dummy variable equal to 1 if 0.34 0.29 0.47
more than the investor sent more to (0.48) (0.46)
farmers technician than to the
(0-1) community farmer; 0 otherwise.

Notes: We report the range of values the given trust measure may assume in parantheses next to the
variable name. We report the mean value for each trust measure according to control and treatment
groups. Sample standard deviations are reported in parantheses beneath the mean values. The final
column reports the p-value from a comparison of means t-test between the control and treatment
groups.

In table 4.2 we see farmers sent slightly more in the trust game in the treatment group than in
the control group, that is, after attending the training with the agricultural technician and farmers.
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This difference in play between treatment and control observations is not statistically significant.
Furthermore, this difference in play between treatment and control groups is observed both when
farmers played with technicians and with other farmers. If there is an undetectable effect of treat-
ment on play as investor in the trust game, then the effect does not appear different for investor play
with technicians compared to play with other farmers. We also explore the relationship between
trust attitudes and treatment status using regression, none of the trust attitudes show a statistically
significant relationship with treatment status. This is evidence that trust attitudes were not affected
by the treatment, and the treatment can thus be used to identify the effect of trust on learning during
training.

However, only comparing means across treatment and control groups can be misleading since
there could be a heterogeneous response to training. For example, some farmers may find the
training very useful, which may increase their trust in technicians. Other farmers may be dissat-
isfied with the training and trust technicians less. As a result we may observe no differences in
trust levels between treatment and control groups. One test for a mean preserving heterogeneous
response to treatment is to compare variances in trust levels across treatment groups. If we observe
significantly different variances this may suggest heterogeneous responses. Figure 4.1 presents
histograms of trust measures we use in our subsequent analysis. The bars in these histograms rep-
resent the distributions of trust attitudes for the whole sample (all). The solid lines represent the
distributions of trust attitudes for the treatment group and the dashed lines represent the distribu-
tions for the control group. Figure 4.1: 1(a) depicts the distribution of trust in technicians, and
indicates that 19 percent of investors sent nothing to technicians in the trust game while 10 percent
sent their entire endowment to technicians. Figure 4.1: 1(b) shows the distribution of the farmers’
difference in trust between technicians and community farmers, and provides evidence that farm-
ers did not treat the two trust games identically. As mentioned before, only 32 percent of investors
played identically in the two games and just over 30 percent had a difference in play of two dollars
or more. Figure 4.1: 1(c) indicates that 70 percent of investors sent at least as much to community
farmers as they sent to technicians; 30 percent trusted technicians more than community farmers.
In figure 4.1: 1(d) we see the distribution of what we call the conditional difference in trust; con-
sistent with 1(c), 70 percent of investors sent as much to community farmers in the trust game as
they sent to technicians. About 15 percent of investors sent one more dollar to technicians than to
community farmers; just under 10 percent of investors sent two more dollars to technicians in the
trust game than to community farmers.

In summary, figures 4.1: 1(a)-1(d) show that the distributions of different trust measures are
similar across treatment and control groups; and in table 4.1 the means are not statistically different
in the treatment and control groups, and the variances are nearly identical. Taken together, we have
evidence that this one training interaction with an agricultural technician did not have an effect on
the farmers’ trust attitudes.
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Figure 4.1: Histograms of trust measures
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4.4.4 Summary of Exam Scores
Methamidophos and carbofuran (pesticides), chlorothalonil (fungicide) and 2, 4-D butyl ester (her-
bicide) are the four most common chemicals used in the area. In the 2005 survey, farmers were
asked twenty-four yes or no questions about these four agrochemicals. We computed an exam
score for each farmer based on the number of answers consistent with the information presented in
the training. The average exam score was 48.2 percent (s.d. 16.9 percentage points); the average
exam score for those in the treatment group was 49.7 percent (s.d. 18.4 percentage points ) and the
average exam score for those in the control group was 46.5 percent (s.d. 15.3 percentage points ).
A simple comparison of means t-test shows that the treatment was not successful on its own (with
a p-value of 0.263), although this does not preclude treatment effects for specific sub-groups such
as farmers with more trust in technicians.
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4.5 Empirical Framework

4.5.1 Estimation Strategy
Our first empirical prediction is that farmers choose their optimal level of effort to learn during
training depending on their trust in technicians. Due to diminishing marginal returns to effort,
learning during training may also depend on how the farmer trusts other farmers. Accordingly,
the first testable hypotheses are that conditional on being in treatment, a farmer’s absolute trust in
technicians has a positive effect on exam scores; a farmer’s absolute trust in community farmers has
a negative effect on exam scores3. Furthermore, in a placebo-type exercise we test that absolute
trust in either technicians or community farmers has no effect on exam scores for those in the
control group. Absolute trust in technicians (“Trust in technicians”) is measured by the amount of
money a farmer sends to the technician in the trust game; absolute trust in community farmers is
measured in a similar way.

However, since community farmers and technicians may offer advice that is at odds, learning
during training may depend on whether a farmer i’s trust in technicians, represented by θ t

i , is
greater than some threshold θ̄i. With θ̄i = θ

f
i , trust attitudes affect learning during training if

farmer i trusts technicians more than community farmers. To test this empirically we interact each
of our trust measures with an indicator variable for whether the farmer trusts technicians more than
community farmers; we reference these as the conditional trust measures. Conditioned on trusting
technicians more than community members, trust in technicians should increase learning and trust
in farmers decrease learnining. As a sensitivity analysis we re-do the analysis letting θ̄i assume
different values.

We use Ordinary Least Squares (OLS) estimation to test our hypotheses. To test each of our hy-
potheses we take advantage of the control group to form the counterfactual of how, ceteris paribus,
farmers with similar trust attitudes would have scored had they not been treated (i.e., attended the
training provided by the technician prior to responding to the questions in our survey).

Our main estimating equation is:

Examik = α0 +α1Ti +α2T̃rusttech
i +α3Ti · T̃rusttech

i +α4T̃rust f arm
i +α5Ti · T̃rust f arm

i +ηk + εik.
(4.14)

where Ti takes on 1 if the farmer i is in treatment and zero otherwise. T̃rustsi represents the trust
measures of interest with i indicating the farmer and s indicating the information source, and ηk is
a community-level fixed effect.

The measures we obtain from the trust game are likely imperfect since they probably measure
idiosyncrasies specific to each farmer. In this case our trust measures can be written as the sum of
farmer i’s true underlying trust in trustee s and an idiosyncratic component specific to farmer i, µi,
yet common across play with technician and farmer trustees. Our measure of farmer i’s trust in a
trustee can be written as T̃rustsi = Trustsi +µi. Also, there may be a component common to both trust
in technicians and community farmers, νl , due to the ordering of events for treatment and control
groups. For instance, farmers may have behaved in a slightly more trusting fashion later in the
day as is suggested by the data so that T̃rustsi = Trustsi + µi + νl . If µi and/or νl are uncorrelated

3One can argue that total knowledge will be increasing in trust in peers because farmers who have learned from
their peers are likely to have higher levels of knowledge. However, we assume an empirical measure of knowledge
that is specific to the intervention so that past learning is not tested.
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with the outcome variable as is likely the case, then our estimates from equation (4.14) will be at-
tenuated and imprecise. While measurement error in an independent variable attenuates the point
estimate in the bivariate case, this may not be borne out if there are multiple independent vari-
ables; however, the standard errors will necessarily increase when measurement error is present.
Fortunately, our theoretical model also delivers the result that as difference in trust increases then
so should learning during training, and we use this fact to sharpen our analysis. Taking the dif-
ference in trust between technicians and community farmers eliminates µi and νl so that we have:
T̃rusttech

i − T̃rust f arm
i = Trusttech

i +µi +νl−Trust f arm
i −µi−νl = Trusttech

i −Trust f arm
i . Based on

this we estimate equation (4.14) using difference in trust, Trusttech
i −Trust f arm

i , rather than esti-
mating trust in technicians and community farmers separately; this estimation should address the
described measurement error. The drawback to this approach is that estimating the relationship
between difference in trust and learning during training is more restrictive since it implies a linear
relationship in trust in technicians that is equal and opposite in sign to that of trust in community
farmers. We will see the data indicate such a restriction is plausible.

4.5.2 Sensitivity analysis and sources of potential bias
To probe the sensitivity of our results, we run numerous robustness checks. Of particular concern
is that trust attitudes may be correlated with an omitted variable such as ability to learn during
training. However, our results are not sensitive to the inclusion of educational attainment in our
regression analysis, which is arguably a good proxy for ability to learn in a training setting4. We
also estimate alternative specifications of equation (4.14) that include demographic and household
controls: farmer’s age, age squared, gender, membership to an indigenous group, membership to
the Catholic church, immigrant status, household size, and a wealth index. In addition,we control
for farm characteristics such as whether or not the farmer reports owning land, the amount of
land in hectares, pesticide-use controls including whether the farmer reported adopting a pesticide
from a technician in the past, and whether the farmer reported currently using the agrochemicals
mentioned on the exam. Next, we add measures of risk (amount bet in the risk game) and altruism
(average share returned as the second mover in the trust game and volunteerism in the community).
Finally, we control for characteristics of each experimental session, such as session size and the
ratio of technicians to farmers.

Our list of control variables is, of course, not exhaustive. For instance, trust in the competence
of an information source, as discussed earlier, is also likely to affect a farmer’s decision on who
they should rely for advice. Our argument is that trust in competence is highly correlated with
education level. Since there is little variation in education level among technicians and because
each community only has one aggregate educational endowment we we assume farmers have ho-
mogeneous trust in competence for each information source. However, if trust in competence is
heterogeneous and is both positively correlated with learning during training and trust in motives
(as measured by the trust game), then our point estimates on trust will likely be upward biased. We
know of no evidence suggesting that investor play in the trust game measures trust in competence

4We consider two measures of educational attainment in the regression analysis: 1) An indicator variable denoting
whether the farmer completed primary schooling (6th grade), and 2) a finer measure, the highest grade level completed.
Because of measurement error in the second measure we only present results using the first measure; however, the main
results are invariant to the education variable used.
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rather than or in addition to trust in motives. Furthermore, anecdotal observation suggests there
are all types of people in the world: competent people steal and so do incompetent ones; similarly,
incompetent people return lost wallets and so do competent ones. Nonetheless, if we do not believe
homogeneity of trust in competence for our sample or orthogonality of trust in motives and trust in
competence then our estimation strategy is still vulnerable to omitted variable bias.

Finally, two concerns with the research design which we have yet to address relate to the or-
dering of trust games and the fact that the technicians who participated in the experiment were
not physically present. Studies in experimental economics have shown that the ordering of games
can affect decision-making as can other details of the research design. If either the ordering of the
games or the physical absence of participating technicians affects play then there is measurment
error in our measure of trust in technicians. However, it is reasonable to assume that any measure-
ment error induced by these design details are unrelated to underlying trust attitudes or learning
during training. If the described measurement error exists then it would attenuate our point esti-
mates on trust and increase the standard errors–these would work against finding a positive result.

4.5.3 Standard Error and Pivotal Statistic Adjustments
Statistical inference is complicated due to the clustered structure of the data. Observations with-in
a training session may be correlated so that it is important to account for the possibility of intra-
cluster correlation. Per Bertrand, Duflo, and Mullainathan (2004) clustering the standard errors is
the common way to address this concern; however, they show that when there are a small number
of clusters (ten or less), the performance of statistical inference using cluster-robust standard errors
is unreliable. Cameron, Gelbach, and Miller (2008) find the same result and try a variety of ad-
justments to standard errors in a monte carlo simulation, including several bootstrapping methods,
to evaluate which adjustments offer reliable performance when making statistical inference. They
suggest using the wild cluster-bootstrap method to obtain pivotal t-statistics as this offers asymp-
totic refinement. We follow their advice, and compute a wild cluster-bootstrap pivotal t-statistic
for each regression coefficient; then the analytically computed cluster-robust standard error is used
with the adjusted pivotal t-statistic to perform hypothesis testing.

4.6 Results and Discussion
Our results are presented in tables 4.3 and 4.4; the dependent variable for all regressions is “Exam
score”. Point estimates for the covariates of interest are presented, while the results of the numerous
control variables are suppressed. The cluster-robust standard errors are presented in parantheses
beneath the point estimates and the wild cluster-bootstrap pivotal statistics used for hypothesis
testing at the 95% confidence level are presented in square brackets beneath these standard errors.
If we replace these with heteroskedastic-consistent robust standard errors and our usual t-statistics
the results reported in tables 4.3 and 4.4 are similar. In table 4.3 we present the results from
regressing the exam score on trust in technicians and trust in community farmers, while in table 4.4
we look at the difference in trust or a dummy variable indicating if the farmer trusted technicians
more than community farmers in the trust game.

When interpreting the regression coefficients the total effect of trust on learning is given by the
sum of the point estimate on trust and on trust interacted with treatment. However, from the policy
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perspective we are interested in the coefficient on trust interacted with treatment alone to assess
potential policy impacts. The coefficient on trust by itself is only a check that those with high levels
of trust did not have greater knowledge on material tested in the exam before attending the field
day. Furthermore, we do not believe an exogenous shock to farmers’ trust attitudes would impact
knowledge of agricultural practices without the opportunity to excercise trust. For example, if an
extension office were to randomly assign a technician to attend community festivals in community
X then this may likely increase trust in the attending technician. However, the technician’s mere
trust-inducing presence at the festival would have no effect on knowledge. On the other hand, if an
opportunity to discuss agrochemicals were to arise between a technician and a community farmer
at the community festival then increased trust may lead to more knowledge transfer. With this in
mind we turn our attention to a more detailed discussion of tables 4.3 and 4.4.

Moving across the columns in table 4.3, we see models with different sets of covariates and
different measures of trust. We first consider the point estimates on “Treatment”. Consistent with
our comparison of means t-test for exam scores between treatment and control groups, the point
estimates on “Treatment” are largely insignificant. Some of the point estimates on “Treatment”
appear negative and large in size, although this is artificial since increases in the treatment point
estimate are almost perfectly off-set by the point estimate of education interacted with treatment.
We now draw attention to the point estimates on “Trust in technicians” and “Trust in farmers”.
We see that these trust attitudes by themselves are not significantly related to performance on
the exam. This result indicates that trust attitudes are not proxying for prior knowledge of exam
material; more trusting farmers do not come to the field day with significantly higher or lower
levels of knowledge. Therefore, we have evidence against reverse causality; it is an unlikely story
that past experiences with technicians presenting the same exam material affected trust attitudes.
Consistent with this finding, farmers reported that they had not been to a similar naranjilla training
in the past.

Next we direct our attention to the point estimates associated with the variable label “Trust
in tech*Treatment” in table 4.4. The first three columns (A.1)-(A.3) of table 4.3 test the model
described in section 4.3.1 based on unconditional trust attitudes. We see in column (A.1) that the
coefficient estimates are of the expected sign; positive for “Trust in tech*Treatment” and negative
for “Trust in farm*Treatment”. The point estimate on “Trust in tech*Treatment” is significant
at the 95% level. Moving across the columns we check if our results are sensitive to adding
covariates. In column (A.2) the coefficient on “Trust in tech*Treatment” is significant at the 95%
level; however, in our preferred specification shown in column (A.3), which controls for relevant
observables, this significance is lost. In column (A.3) we see a point estimate of 3.339 on “Trust in
tech*Treatment” and -2.942 on “Trust in farm*Treatment”, which are opposite and approximately
equal in sign. Hence, assuming an empirical model replacing these two trust measures with their
difference imposes a plausible linear restriction. If there is measurement error in our trust measures
as described in section 4.5.1 then re-estimating columns (A.1)-(A.3) may improve the precision of
our estimates.
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Table 4.3: Regress exam score on trust measures
Dependent variable: Exam Score (Mean: 48.15, S.D.: 16.93)

Trust Measure A: Unconditional Trust B: Conditional Trust
(A.1) (A.2) (A.3) (B.1) (B.2) (B.3)

Treatment .336 -9.522 -5.773 -1.098 -11.851 -9.976
(8.405) (10.615) (12.015) (1.033) (7.195) (7.781)
[2.384] [2.432] [2.599] [2.128] [3.816] [2.242]

Trust in technicians -1.338 -1.386 -.824 -.740 -.886 -.266
(.629) (.566)∗∗ (.822) (1.314) (1.163) (1.083)

[3.616] [2.334] [2.079] [1.664] [1.526] [1.736]

Trust in tech*Treatment 3.177 3.479 3.339 2.876 4.050 3.993
(1.777)∗ (1.795)∗ (2.414) (2.004) (1.833)∗∗ (1.546)∗∗
[1.879] [2.024] [2.263] [2.355] [1.875] [2.051]

Trust in farmers -.471 -.483 -.409 -.835 -.766 -1.519
(2.117) (2.193) (1.954) (2.530) (2.425) (2.056)
[3.858] [3.562] [3.244] [1.919] [1.802] [1.893]

Trust in farm*Treatment -1.922 -2.041 -2.942 1.586 -.453 -.562
(2.571) (2.525) (1.871) (3.509) (3.277) (3.642)
[2.619] [2.574] [2.327] [2.550] [2.188] [2.500]

Completed primary school -1.351 -4.597 -2.012 -5.199
(3.159) (6.082) (3.291) (5.987)
[1.326] [2.031] [2.881] [2.551]

Primary edu*Treatment 11.845 13.411 13.078 14.387
(8.182) (9.261) (8.843) (9.969)
[3.852] [2.782] [5.051] [2.280]

P-val.–tot. effect of trust in tech 0.319 0.271 0.237 0.210 0.061 0.036
Obs. 140 140 140 140 140 140
R2 .157 .188 .262 .167 .199 .265
Community FE Yes Yes Yes Yes Yes Yes
Demo. and HH controls No No Yes No No Yes
Farm controls No No Yes No No Yes
Risk and altruism No No Yes No No Yes
Session controls No No Yes No No Yes
Notes: The dependent variable in each regression is exam score. Moving across the columns, we
present models with different sets of covariates and different measures of trust. Columns (A.1)-
(A.3) test the model described in section 4.3.1 based on unconditional absolute trust attitudes.
Subsequent columns test the model described in section 4.3.2 based on conditional absolute trust
attitudes. The “Education” measure used in these regressions is a indicator variable denoting
completion of 6th grade (primary schooling). Robust standard errors clustered at the experiment
session level are reported in parantheses beneath the reported coefficient estimates; wild cluster-
bootstap pivotal t-statistics are reported in square brackets beneath the reported standard errors.
*-significance at the 90% confidence level, **-significance at the 95% confidence level and ***-
significance at the 99% confidence level.
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Subsequent columns test the model described in section 4.3.2 based on conditional trust atti-
tudes. The magnitude of the coefficients on “Trust in tech*Treatment” are slightly larger and are
more precisely estimated than the point estimates from the first three columns; the point estimate
in our preferred specification (B.3) is significant at the 95% level. The point estimate on “Trust
in farm*Treatment” in our preferred specification is negative but close to zero. This result could
be an artifact of the selection process: trust in farmers is on average less for farmers who trust
technicians more than community farmers. According to our model, farmers who trust community
farmers less would exert less effort to learn from them. Depending on the shape of the relationship
between trust and effort, any negative effect of trust in community farmers on effort to learn during
training that is observed in columns (A.1)-(A.3) table 4.3 may be diminished for the subsample
of farmers who trust technicians more than community farmers. We would not necessarily expect
the point estimates for “Trust in tech*Treatment” and “Trust in farm*Treatment” to be equal in
magnitude; this is inconsistent with using the difference in trust specification. However, the point
estimates on “Trust in farm*Treatment” are unstable and imprecisely estimated, which may be due
to the sparsity of data in the subsample of farmers who trust technicians more than community
farmers, rather than representing true differences in the magnitudes of the effects between “Trust
in tech*Treatment” and “Trust in farm*Treatment”. If this is the case, then re-estimating columns
(B.1)-(B.3) using the conditional difference in trust measure may yield more precise estimates; we
will check this in the next table of results.

Table 4.4 reports the results using the relative trust measures. In columns (A.1)-(A.3) we see
the point estimates from regressing the exam score on the unconditional difference in trust. The
point estimate on “Relative trust*Treatment” is more precisely estimated than the corresponding
two estimates on the unconditional trust attitudes from table 4.3. Indeed, the point estimate is
significant at the 95% level in all specifications, and the point estimates increase in magnitude as
we add covariates. Columns (B.1)-(B.3) of table 4.4 show the point estimates from regressing the
exam score on the conditional difference in trust. These estimates are slightly larger and more
precisely estimated than those for the unconditional difference in trust. Together, columns (A.1)-
(B.3) are consistent with our thoughts on measurement error in the trust variables.

In the final three columns we replace our relative trust measure with an indicator variable de-
noting whether a farmer trusted technicians more than farmers in the trust game. If we believe
measurement error remains in our trust measures then this is arguably the simplest measure we can
construct to consider relative trust attitudes, and so may remove noise from our explanatory vari-
able. This measure of relative trust is also appealing because of its comparability to our indicator
variable denoting whether a farmer completed primary education. We observe that farmers who
trust technicians more than community farmers score approximately 15 percentage points higher
on the exam. These point estimates are precisely estimated and significant at the 95% confidence
level.

We note that the point estimates between the difference in trust measures and the indicator
variable denoting more trust in technicians than community farmers are different in size; this makes
sense because these measures take on different ranges of values. After normalizing the results, the
point estimates are all of a similar magnitude. Furthermore, the effect of these trust attitudes on
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learning during training is large in magnitude; for example, farmers who trusted technicians more
than community members scored almost one standard deviation higher on the exam after attending
the training than other farmers.

One may wonder how the choice of threshold affects our results related to the conditional
trust measures. Recalling the threshold equation (4.13), we assume different values of β0 and β1
and re-estimate our regressions using the conditional trust measures. We obtain results that are
qualitatively consistent with those presented in tables 3 and 4, although there are differences in
magnitude and standard errors. For example, when we use a threshold based on β0 = −1 and
β1 = 1, using the specification with fixed effects and controls we find a coefficient on conditional
trust in technicians of 4.68 with a t-statistic of 2.46 and a coefficient on trust in farmers of -4.23
with a t-statistic of 2.18. These estimates are consistent with the validity of using the conditional
difference in trust measure which imposes a linear restriction. Replacing the conditional trust
measures in technicians and farmers with conditional difference in trust we find a point estimate
of 5.37 with a t-statistic of 5.80; if we include the direct effect of trust then the total effect is
still significant at the 95% level. As we would expect, the magnitudes of the point estimates on our
conditional trust measures change depending on the threshold; however, the qualitative relationship
between trust attitudes and learning during training remains robust during this excercise.

Our focus has been on the point estimates of our trust attitudes interacted with treatment. This
reflects the fact that farmers were tested on material presented in the training only, rather than
knowledge previously obtained from technicians. Once again, a random shock to trust in techni-
cians would not alone change knowledge about agrochemicals–there must be an opportunity for
farmers to [not] place trust in a technician’s advice. Nonetheless, one might argue that the point
estimate of trust attitudes without the interaction should be included when calculating the impacts
of trust, especially since the point estimates on the different trust measures without the interaction
are generally negative. If the correlation between trust attitudes alone and exam scores is consid-
ered a direct effect then it may negate the benefits of trust during training. To investigate this we
test whether the sum of the direct effect of trust plus the effect of trust interacted with treatment
is significantly different from zero. The p-values from these tests are presented at the bottom of
tables 4.3 and 4.4; we observe that the results remain significant even when taking into acount the
possibility of negative direct effects.

Overall, the result is robust, although our finding may still be vulnerable to the criticism of
omitted variable bias. Also, given the timing of the trust games relative to treatment there exists the
possibility of reverse causality; however, as shown in section 4.4.3 the evidence indicates treatment
did not induce differences in play during the trust games.

Finally, there is evidence that those who completed their primary schooling scored higher on
the exam after having attended the training. The point estimates on “Edu.*Treatment” in table 4.3
and table 4.4 range from 11.31 to 14.99 depending on the specification, but these point estimates
are all imprecisely estimated with none being significant at the 90% confidence level. The effect
of completing primary schooling on learning during training is not identified since it is impossible
to distinguish between this measure of educational attainment and ability. Nonetheless, the sign of
this measure (whether it is capturing education or ability) interacted with treatment is as we would
expect; and interestingly, is of a similar (though slightly smaller) magnitude relative to the point
estimates on our relative trust measures interacted with treatment. This suggests that while human
capital may help a farmer learn, its effect may be more than off-set when the farmer does not trust
the institutional environment and those affiliated with it.
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4.7 Conclusions
Naranjilla farmers in Ecuador may question the motives of agricultural technicians and community
members. Trust in the provider of information may play an important role in knowledge spread
particularly in cases where the message is complex. To generate testable predictions, we develop
a simple model of farmer learning during agricultural training. Our results are consistent with the
theory that trust impacts farmer learning. If valuable information is delivered via institutions or
persons in which potential beneficiaries have low trust, then the information dissemination effort
may be ineffective.

This finding has two policy implications for a renewed public agricultural extension system
in Ecuador. First, effort can be made to identify trusted sources of agricultural information. For
example, in the initial phase of renewed extension services, program designers can undertake case
studies to gauge the relative trust potential beneficiaries place in various channels by which in-
formation could be delivered. Our results indicate that dual information dissemination channels
may be preferred to single channels. Using both technicians and community farmers to spread
new information may be a good strategy as some farmers will want to learn from technicians while
others will prefer to learn from community members. Second, effort can be made to build trust in
those channels by which information or services will be delivered. Information delivery programs
might be structured to build trust gradually over time. For example, messages that have large and
relatively certain impacts on incomes should be delivered first; more risky and complex messages
could be delayed until trust grows. The presence of the technician in an area over time should also
build trust.

A problem with stationing technicians over many years in remote villages throughout Ecuador
is the prohibitive cost. However, new technology may allow agricultural extension services to over-
come both trust and cost concerns. For example, in India, Gandhi, Veeraraghavan, and Toyama
(2009) report that the non-governmental organization Digital Green is using low-cost digital video
recording devices and community-mediated instruction for technology dissemination and training.
Digital Green’s method is to use a participatory approach for content production and to create lo-
cally generated digital video databases featuring trained agricultural technicians and community
farmers. Furthermore, in each community a trusted farmer is employed to mediate and encourage
discussion of the locally generated training videos. Finally, when Digital Green enters a commu-
nity they use a carefully devised training schedule to initiate the process; they usually start with
relatively simple technologies that provide immedate pay-offs and then move to more complex
technologies that have long-term returns (Gandhi, Veeraraghavan, and Toyama, 2009). The advan-
tage is that the local participatory approach fosters trust, while the use of low cost digital video
recording devices keeps costs reasonable. Of course, this is a single example of how trust might be
addressed, and evidence is required to evaluate effectiveness before a program’s method is widely
used. Agricultural extension services in Ecuador would be wise to consider piloting training pro-
grams before scaling-up operations.

At the present, indications are that local governments in Ecuador will take an increased role
in providing agricultural extension services (Barrera et al., 2008), and this may help strengthen
trust in the messenger. For the success and longevity of a public agricultural extension system
in Ecuador and elsewhere, the importance of installing faith in the renewed system should not be
underestimated–it is essential that those who deliver agricultural information are trusted sources.

There are useful ways to build on this current work. Our main dependent variable, knowledge
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about agrochemical use, is an intermediate input to the production process. It would be interesting
to see if trust attitudes and attending training actually changed use of physical inputs, that is,
whether knowledge led to action. In addition, it may be worthwhile to collect data that helps trace
out the relationship between trust and effort, and then effort to learning and adoption.

Our results are of interest to policy-makers in a wide variety of poverty-reduction programs
where trust in program messengers is essential for success; these include projects related to agri-
cultural extension efforts to public health interventions to microfinance programs. Although the
ability to make specific policy recommendations from this study is limited, the evidence is provok-
ing and warrants follow-up in the field. Thus, another way to build upon this work is through a
randomized field experiment that rolls out agricultural extension via different information sources.
This type of research design would have more exacting implications for who should disseminate
information (technician versus community farmer) and would help answer other policy relevant
questions such as the optimal timing and frequency of visits.
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