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Abstract: Heavy QCD axions are well-motivated extensions of the QCD axion that ad-
dress the quality problem while still solving the strong CP problem. Owing to the gluon
coupling, critical for solving the strong CP problem, these axions can be produced in signif-
icant numbers in beam dump and collider environments for axion decay constants as large
as PeV, relevant for addressing the axion quality problem. In addition, if these axions have
leptonic couplings, they can give rise to long-lived decay into lepton pairs, in particular,
dominantly into muons above the dimuon threshold and below the GeV scale in a broad
class of axion models. Considering existing constraints, primarily from rare meson decays,
we demonstrate that current and future neutrino facilities and long-lived particle searches
have the potential to probe significant parts of the heavy QCD axion parameter space via
dimuon final states.
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1 Introduction

The quantum chromodynamics (QCD) axion was proposed to address the strong CP prob-
lem [1], which concerns the fact that the CP violation in the strong interactions is experi-
mentally constrained to be less than O(10−10) via the non-observation of neutron electric
dipole moment [2–5] as opposed to the theoretical expectation of O(1) [1]. In the Peccei-
Quinn (PQ) mechanism [6, 7], the QCD axion [8, 9] is coupled to the gluons, and upon
confinement the QCD dynamics generates a QCD axion potential with a CP-conserving
minimum and a mass ma ' 5.7 meV× (109 GeV/fa) [10, 11] with fa being the axion decay
constant. As the QCD axion relaxes to this minimum, the strong CP problem is solved
dynamically.

While this is an elegant mechanism to address the strong CP problem, in the minimal
realization it suffers from the axion quality problem [12–16]. To illustrate this, we can model
the axion a1 as a (pseudo) Nambu-Goldstone boson residing in the PQ field Φ ∼ faeia/fa ,
which is charged under a global and anomalous U(1)PQ symmetry. Since gravitational
effects are expected to break global symmetries [17–23], including U(1)PQ, we expect Planck

1From now on, we will use the phrase ‘axion’ to denote both the standard QCD axion and its heavier
variants. The phrase ‘axion-like particles’ (ALPs), on the other hand, will be reserved for pseudoscalars
not addressing the strong CP problem, as often done in the current literature.
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scale suppressed terms such as L ⊃ Φn/Mn−4
Pl to arise. Written in terms of the axion, we

then have L ⊃ fna cos(na/fa + ϕn)/Mn−4
Pl where ϕn is the complex phase of the coefficient

of this term. For n > 4, these contributions can potentially drive the axion away from the
CP-conserving minimum due to the random nature of the phases ϕn, and consequently
spoil the solution to the strong CP problem. The situation is exacerbated in minimal
scenarios with large values of fa, as is the case with the conventional QCD axion. This
scenario concerns ma . O(10) meV, which is very sensitive to the above corrections. Even
with the lowest decay constant fa allowed by astrophysical bounds [24–33], fa ' 108 GeV,
all Planck-suppressed operators up to dimension-8 have to be severely constrained to avoid
shifting the potential minimum by O(10−10). It is then vital to understand why the PQ
symmetry is of such a high quality.

This problem is significantly relaxed if the gravitational corrections are suppressed
and/or if the CP-conserving potential is strengthened so that the potential is more stable
against CP-violating corrections. The former is achieved by fa � 108 GeV, which then
requires ma & 100MeV to avoid various astrophysical bounds. The latter is the case if the
axion mass is much larger than that dictated by the strong dynamics — as in the so-called
heavy QCD axion models. The axion mass can be enhanced in ways that still preserve the
CP symmetry [34–51]. (See also [52–54] for early work on raising the axion mass.) In this
regime inspired by the axion quality problem where ma & 100 MeV and fa � 108 GeV,
the heavy QCD axions are more strongly interacting with the Standard Model and can
be produced and searched for in the collider and beam dump experiments. In this regard,
various approaches have been pursued at beam dump, flavor, and collider experiments [55–
74, 74–77], both for heavy QCD axions and more generally ALPs. Furthermore, heavy
QCD axions or ALPs can also play important roles in astrophysics and cosmology, such as
explaining the dark matter and baryon abundance [78–85].

In addition to the defining gluon coupling, the axion may couple universally to all
the other Standard Model (SM) gauge bosons as predicted by grand unification and also
to the SM fermions in a broad class of theories, including the DFSZ models [86, 87], or
to new heavy quarks as in the KSVZ models [88, 89]. The coupling to fermions implies
that the axion may dominantly decay into a pair of fermions when kinematically allowed,
opening the possibility of unique experimental signatures. Specifically, in this work, we
propose a search for heavy QCD axions, with masses above the dimuon threshold and
below the GeV scale, at various neutrino and beam dump experiments. For these masses,
axions may dominantly decay into a pair of muons, as we will describe in detail below.
As examples, we focus on neutrino experiments utilizing the liquid argon time projection
chamber (LArTPC) [90] technology, such as the Short-Baseline Near Detector (SBND) [91],
ICARUS [91] and Deep Underground Neutrino Experiment (DUNE) [92]. The dimuon final
state can be particularly useful from the background mitigation perspective, especially after
applying an invariant mass cut. While the dielectron final state can also be interesting, for
the benchmark models that we consider, the branching ratio to dielectrons is subdominant
compared to that into diphotons. Above the GeV range, axions would predominantly
decay hadronically and constitute a different class of signatures explored in [93] in the
context of DUNE. Therefore we focus on the mass range between the dimuon threshold

– 2 –



J
H
E
P
0
2
(
2
0
2
3
)
1
1
1

and O(GeV). Through the gluon coupling, the axions are produced via its mixing with
SM mesons produced when the beams hit the target or the absorber. The axions can then
propagate to and decay within the LArTPC of the experiments, where the muons will leave
two distinct minimally ionizing tracks. We also perform similar analyses with long-lived
particle searches in the context of SHiP [94] and FASER 2 [95–97].

Recently, such a search has been performed for the ArgoNeuT detector [98] using
data collected in 2009-2010 in the Neutrinos at the Main Injector (NuMI) beamline [99]
at Fermilab, and an important constraint in the axion parameter space is obtained in the
mass rangema between 0.2-0.9GeV for an axion decay constant fa around 10-100TeV [100].
The dimuon signatures have also been exploited in refs. [101, 102] for LHCb and ref. [103]
for CHARM, respectively, where axions are assumed to be produced from the coupling
with the top quark instead. Similarly, utilizing LArTPC but assuming the absence of the
axion-fermion coupling, ref. [93] analyzes the sensitivity of the DUNE detector with the
gluon coupling, and ref. [61] shows prospects for a DUNE-like detector without the gluon
coupling.

We illustrate the various experimental setups in figure 1. Three aspects characterize
this. Firstly, the axion production can be dominated by either the target or the absorber
located further downstream. While the absorber would receive less flux compared to the
target, due to the proximity of the absorber to the detector, it can dominate the experi-
mental sensitivity. This was found to be the case for the ArgoNeuT search in ref. [98].

Secondly, while each detector is typically on the same axis as its associated beam line,
sometimes a detector can be more sensitive if axions produced from a separate, simulta-
neously operating off-axis beam reach it [104, 105]. As an example, while the ICARUS
detector is nominally associated and on the same axis with the 8GeV Booster Neutrino
Beam (BNB), due to its large volume it can receive a large flux of axions produced as the
120GeV protons at the NuMI beam hit the NuMI target, even if the NuMI beam axis does
not pass through ICARUS directly. This increased sensitivity to NuMI beam compared
to BNB has to do with the fact that the 120GeV NuMI beam produces a larger flux of
axions and also the fact that ICARUS is not too off-axis to lose that flux. We will make a
quantitative comparison between the results with the two beams in section 3.

Thirdly, since our search strategy involves a dimuon final state and the produced muons
from axion decay are often very energetic, they can penetrate the earth/material before the
detector. Thus to consider such events, we include axion decays both inside and outside
of the detector. This increase in effective decay volume can have an important effect on
the experimental sensitivity, as we will illustrate in the context of DUNE near detector
in section 3. To give another example in this context, in the ArgoNeuT search [98], we
considered an extra decay length of 63 cm before the detector front panel.

This work is organized as follows. In section 2 we review the axion quality problem
and motivate how heavy QCD axions can improve it. Then we describe the couplings of
the heavy QCD axion to the SM using an effective field theory (EFT) framework. After
describing the various decay modes of the axion, in section 3 we study the details of axion
production in various neutrino and beam dump experiments. With these results at hand,
we derive the projected reach that SBND, ICARUS, DUNE, FASER 2, and SHiP may
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Beam <latexit sha1_base64="LPHHp1hTJLX+QRj3nPRuvNiMn54=">AAAB+HicdVDLTgIxFO3gC/HBqEs3jcTE1WRmQMAd4sYlJvJIYEI6pUBDOzNpO0ac4I+4caExbv0Ud/6NHcBEjZ6kyck59+TeHj9iVCrb/jAyK6tr6xvZzdzW9s5u3tzbb8kwFpg0cchC0fGRJIwGpKmoYqQTCYK4z0jbn1ykfvuGCEnD4FpNI+JxNArokGKktNQ380lPcFjXifvzWypnfbNgW2fVsnvqQtuy7YpbLKfErZTcInS0kqIAlmj0zffeIMQxJ4HCDEnZdexIeQkSimJGZrleLEmE8ASNSFfTAHEivWR++Awea2UAh6HQL1Bwrn5PJIhLOeW+nuRIjeVvLxX/8rqxGla9hAZRrEiAF4uGMYMqhGkLcEAFwYpNNUFYUH0rxGMkEFa6q5wu4eun8H/Sci2nbDlXpUKtvqwjCw7BETgBDqiAGrgEDdAEGMTgATyBZ+POeDRejNfFaMZYZg7ADxhvnxpAk2Y=</latexit>

Beam Axis

<latexit sha1_base64="LPHHp1hTJLX+QRj3nPRuvNiMn54=">AAAB+HicdVDLTgIxFO3gC/HBqEs3jcTE1WRmQMAd4sYlJvJIYEI6pUBDOzNpO0ac4I+4caExbv0Ud/6NHcBEjZ6kyck59+TeHj9iVCrb/jAyK6tr6xvZzdzW9s5u3tzbb8kwFpg0cchC0fGRJIwGpKmoYqQTCYK4z0jbn1ykfvuGCEnD4FpNI+JxNArokGKktNQ380lPcFjXifvzWypnfbNgW2fVsnvqQtuy7YpbLKfErZTcInS0kqIAlmj0zffeIMQxJ4HCDEnZdexIeQkSimJGZrleLEmE8ASNSFfTAHEivWR++Awea2UAh6HQL1Bwrn5PJIhLOeW+nuRIjeVvLxX/8rqxGla9hAZRrEiAF4uGMYMqhGkLcEAFwYpNNUFYUH0rxGMkEFa6q5wu4eun8H/Sci2nbDlXpUKtvqwjCw7BETgBDqiAGrgEDdAEGMTgATyBZ+POeDRejNfFaMZYZg7ADxhvnxpAk2Y=</latexit>

Beam
Axis

<latexit sha1_base64="ftAyorJ60H6a2b0WX1WfSyAEI+4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoioj0WvHisYNpCG8tmu2mX7m7C7kYoob/BiwdFvPqDvPlv3KY5aOuDgcd7M8zMCxPOtHHdb6e0tr6xuVXeruzs7u0fVA+P2jpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hYye+L9PFiUK25dTcHWiVeQWpQoDWofvWHMUkFlYZwrHXPcxMTZFgZRjidVfqppgkmEzyiPUslFlQHWX7sDJ1ZZYiiWNmSBuXq74kMC62nIrSdApuxXvbm4n9eLzVRI8iYTFJDJVksilKOTIzmn6MhU5QYPrUEE8XsrYiMscLE2HwqNgRv+eVV0r6se9d17/6q1mwUcZThBE7hHDy4gSbcQQt8IMDgGV7hzZHOi/PufCxaS04xcwx/4Hz+AHizjm8=</latexit>

µ+

<latexit sha1_base64="pnq2Lv/kntchUyTx1/hxwpgsakg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyUR0R4LXjxWMG2hjWWz3bRLdzdhdyOU0N/gxYMiXv1B3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcjv3O09UaRbLBzNNaCDwSLKIEWys5PdF+ngxqNbcupsDrRKvIDUo0BpUv/rDmKSCSkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUSC6qDLD92hs6sMkRRrGxJg3L190SGhdZTEdpOgc1YL3tz8T+vl5qoEWRMJqmhkiwWRSlHJkbzz9GQKUoMn1qCiWL2VkTGWGFibD4VG4K3/PIqaV/Wveu6d39VazaKOMpwAqdwDh7cQBPuoAU+EGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AHu7jnE=</latexit>

µ�
<latexit sha1_base64="GBK9CdmWRKQSLQfBUpTIReiwl8A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1Xvpuo1ryv1Wh5HEc7gHC7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AwlOM4Q==</latexit>a

<latexit sha1_base64="ftAyorJ60H6a2b0WX1WfSyAEI+4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoioj0WvHisYNpCG8tmu2mX7m7C7kYoob/BiwdFvPqDvPlv3KY5aOuDgcd7M8zMCxPOtHHdb6e0tr6xuVXeruzs7u0fVA+P2jpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hYye+L9PFiUK25dTcHWiVeQWpQoDWofvWHMUkFlYZwrHXPcxMTZFgZRjidVfqppgkmEzyiPUslFlQHWX7sDJ1ZZYiiWNmSBuXq74kMC62nIrSdApuxXvbm4n9eLzVRI8iYTFJDJVksilKOTIzmn6MhU5QYPrUEE8XsrYiMscLE2HwqNgRv+eVV0r6se9d17/6q1mwUcZThBE7hHDy4gSbcQQt8IMDgGV7hzZHOi/PufCxaS04xcwx/4Hz+AHizjm8=</latexit>

µ+

<latexit sha1_base64="pnq2Lv/kntchUyTx1/hxwpgsakg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyUR0R4LXjxWMG2hjWWz3bRLdzdhdyOU0N/gxYMiXv1B3vw3btMctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcjv3O09UaRbLBzNNaCDwSLKIEWys5PdF+ngxqNbcupsDrRKvIDUo0BpUv/rDmKSCSkM41rrnuYkJMqwMI5zOKv1U0wSTCR7RnqUSC6qDLD92hs6sMkRRrGxJg3L190SGhdZTEdpOgc1YL3tz8T+vl5qoEWRMJqmhkiwWRSlHJkbzz9GQKUoMn1qCiWL2VkTGWGFibD4VG4K3/PIqaV/Wveu6d39VazaKOMpwAqdwDh7cQBPuoAU+EGDwDK/w5kjnxXl3PhatJaeYOYY/cD5/AHu7jnE=</latexit>

µ�
<latexit sha1_base64="GBK9CdmWRKQSLQfBUpTIReiwl8A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1Xvpuo1ryv1Wh5HEc7gHC7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AwlOM4Q==</latexit>a

<latexit sha1_base64="WgXrXz+AvPCeUr3Rj/2IoQkjrjU=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgxZKIqMeiF29WsB/QxrLZbtqlm03YnWhL6P/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwjY7zbeWWlldW1/LrhY3Nre2d4u5eXUeJoqxGIxGppk80E1yyGnIUrBkrRkJfsIY/uJ74jUemNI/kPY5i5oWkJ3nAKUEjPbSRDTG9lSdkyPW4Uyw5ZWcKe5G4GSlBhmqn+NXuRjQJmUQqiNYt14nRS4lCTgUbF9qJZjGhA9JjLUMlCZn20unVY/vIKF07iJQpifZU/T2RklDrUeibzpBgX897E/E/r5VgcOmlXMYJMklni4JE2BjZkwjsLleMohgZQqji5lab9okiFE1QBROCO//yIqmflt3zsnt3VqpcZXHk4QAO4RhcuIAK3EAVakBBwTO8wpv1ZL1Y79bHrDVnZTP78AfW5w/i1ZLE</latexit>

On-axis

<latexit sha1_base64="oDG0hGgXb7RXGqLUUY+YNmadlS4=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAIXgy7Iuox6MWbEcwDkhBmJ7PJkNkHM72SuORLvHhQxKuf4s2/cZLsQRMLGoqqbrq7vFgKjY7zbeVWVtfWN/Kbha3tnd2ivbdf11GiGK+xSEaq6VHNpQh5DQVK3owVp4EnecMb3kz9xiNXWkThA45j3gloPxS+YBSN1LWLbeQjTO98/5SOhJ507ZJTdmYgy8TNSAkyVLv2V7sXsSTgITJJtW65ToydlCoUTPJJoZ1oHlM2pH3eMjSkAdeddHb4hBwbpUf8SJkKkczU3xMpDbQeB57pDCgO9KI3Ff/zWgn6V51UhHGCPGTzRX4iCUZkmgLpCcUZyrEhlClhbiVsQBVlaLIqmBDcxZeXSf2s7F6U3fvzUuU6iyMPh3AEJ+DCJVTgFqpQAwYJPMMrvFlP1ov1bn3MW3NWNnMAf2B9/gATo5Nd</latexit>

O↵-axis

<latexit sha1_base64="0XX5dnJMrEPS/sC31yfI+pgw3IU=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7Aroh6DevAYwTwgCWF20kmGzM4uM73issRf8eJBEa9+iDf/xsnjoIkFDUVVN91dQSyFQc/7dnIrq2vrG/nNwtb2zu6eu39QN1GiOdR4JCPdDJgBKRTUUKCEZqyBhYGERjC6nviNB9BGROoe0xg6IRso0RecoZW6brGN8IjZDXCWUqGM6MG465a8sjcFXSb+nJTIHNWu+9XuRTwJQSGXzJiW78XYyZhGwSWMC+3EQMz4iA2gZaliIZhONj1+TI+t0qP9SNtSSKfq74mMhcakYWA7Q4ZDs+hNxP+8VoL9y04mVJwgKD5b1E8kxYhOkqA9oYGjTC1hXAt7K+VDphlHm1fBhuAvvrxM6qdl/7zs352VKlfzOPLkkByRE+KTC1Iht6RKaoSTlDyTV/LmPDkvzrvzMWvNOfOZIvkD5/MHD+qVCg==</latexit>

Decay inside

<latexit sha1_base64="lUyD9MwVoPZf5O1fuzu6xCbLBQ8=">AAAB/XicbVDLSgNBEJz1GeNrfdy8DAbBU9gVUY9BPXiMYB6QhDA76SRDZmeXmV4xLsFf8eJBEa/+hzf/xkmyB00saCiquunuCmIpDHret7OwuLS8sppby69vbG5tuzu7VRMlmkOFRzLS9YAZkEJBBQVKqMcaWBhIqAWDq7FfuwdtRKTucBhDK2Q9JbqCM7RS291vIjxgeg2cDWmUoBEdGLXdglf0JqDzxM9IgWQot92vZifiSQgKuWTGNHwvxlbKNAouYZRvJgZixgesBw1LFQvBtNLJ9SN6ZJUO7UbalkI6UX9PpCw0ZhgGtjNk2Dez3lj8z2sk2L1opULFCYLi00XdRFKM6DgK2hEaOMqhJYxrYW+lvM8042gDy9sQ/NmX50n1pOifFf3b00LpMosjRw7IITkmPjknJXJDyqRCOHkkz+SVvDlPzovz7nxMWxecbGaP/IHz+QMAtZWV</latexit>

Decay outside

<latexit sha1_base64="q7RcL6Gy08OjRNuwqKpADNAqdhM=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hKqx6LXrxZxdpKG8pmu2mXbjZhdyKW0F/hxYMiXv053vw3btoIKvpg2cd7M8zM82PBNTjOh1VYWFxaXimultbWNza3yts7NzpKFGUtGolIdXyimeCStYCDYJ1YMRL6grX98Vnmt++Y0jyS1zCJmReSoeQBpwSMdNsDdg/pxdW0X644dt0xqGLHzv5aHedKHbszxXEqKEezX37vDSKahEwCFUTrruvE4KVEAaeCTUu9RLOY0DEZsq6hkoRMe+ls4Sk+MMoAB5EyTwKeqd87UhJqPQl9UxkSGOnfXib+5XUTCE68lMs4ASbpfFCQCAwRzq7HA64YBTExhFDFza6YjogiFExGJRPC16X4f3JTtd0j272sVRqneRxFtIf20SFy0TFqoHPURC1EUYge0BN6tpT1aL1Yr/PSgpX37KIfsN4+ATRokK4=</latexit>

OR
<latexit sha1_base64="q7RcL6Gy08OjRNuwqKpADNAqdhM=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hKqx6LXrxZxdpKG8pmu2mXbjZhdyKW0F/hxYMiXv053vw3btoIKvpg2cd7M8zM82PBNTjOh1VYWFxaXimultbWNza3yts7NzpKFGUtGolIdXyimeCStYCDYJ1YMRL6grX98Vnmt++Y0jyS1zCJmReSoeQBpwSMdNsDdg/pxdW0X644dt0xqGLHzv5aHedKHbszxXEqKEezX37vDSKahEwCFUTrruvE4KVEAaeCTUu9RLOY0DEZsq6hkoRMe+ls4Sk+MMoAB5EyTwKeqd87UhJqPQl9UxkSGOnfXib+5XUTCE68lMs4ASbpfFCQCAwRzq7HA64YBTExhFDFza6YjogiFExGJRPC16X4f3JTtd0j272sVRqneRxFtIf20SFy0TFqoHPURC1EUYge0BN6tpT1aL1Yr/PSgpX37KIfsN4+ATRokK4=</latexit>

OR
<latexit sha1_base64="q7RcL6Gy08OjRNuwqKpADNAqdhM=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hKqx6LXrxZxdpKG8pmu2mXbjZhdyKW0F/hxYMiXv053vw3btoIKvpg2cd7M8zM82PBNTjOh1VYWFxaXimultbWNza3yts7NzpKFGUtGolIdXyimeCStYCDYJ1YMRL6grX98Vnmt++Y0jyS1zCJmReSoeQBpwSMdNsDdg/pxdW0X644dt0xqGLHzv5aHedKHbszxXEqKEezX37vDSKahEwCFUTrruvE4KVEAaeCTUu9RLOY0DEZsq6hkoRMe+ls4Sk+MMoAB5EyTwKeqd87UhJqPQl9UxkSGOnfXib+5XUTCE68lMs4ASbpfFCQCAwRzq7HA64YBTExhFDFza6YjogiFExGJRPC16X4f3JTtd0j272sVRqneRxFtIf20SFy0TFqoHPURC1EUYge0BN6tpT1aL1Yr/PSgpX37KIfsN4+ATRokK4=</latexit>

OR

<latexit sha1_base64="o+/fyJrR8vnBUDYRkbqaIwQuYlM=">AAAB83icdZDLSgMxFIYzXmu9VV26CRbB1TBTWnVZ1IXLCvYCnaFk0jNtaOZCckYsQ1/DjQtF3Poy7nwb04ugogdCfr7/HHLyB6kUGh3nw1paXlldWy9sFDe3tnd2S3v7LZ1kikOTJzJRnYBpkCKGJgqU0EkVsCiQ0A5Gl1O/fQdKiyS+xXEKfsQGsQgFZ2iQ5yHcY34FnI0nvVLZsWuOqQp17OldrdEFqVF3RhynTBbV6JXevX7Cswhi5JJp3XWdFP2cKRRcwqToZRpSxkdsAF0jYxaB9vPZzhN6bEifhokyJ0Y6o98nchZpPY4C0xkxHOrf3hT+5XUzDM/9XMRphhDz+UNhJikmdBoA7QsFHOXYCMaVMLtSPmSKcTQxFU0IXz+l/4tWxXZPbfemWq5fLOIokENyRE6IS85InVyTBmkSTlLyQJ7Is5VZj9aL9TpvXbIWMwfkR1lvn5wskhE=</latexit>

Decay
<latexit sha1_base64="oHPWiVIm/R8LYRMlq8fKL8PdyGQ=">AAAB+HicdZDNSgMxFIUz9a/Wn466dBMsgqthprTqsujGhYsKthbaoWTStA3NTIbkjliHPokbF4q49VHc+TZm2hFU9ELI4Tv3kpsTxIJrcN0Pq7C0vLK6VlwvbWxubZftnd22lomirEWlkKoTEM0Ej1gLOAjWiRUjYSDYTTA5z/ybW6Y0l9E1TGPmh2QU8SGnBAzq2+UesDtIL+UCzPp2xXXqrqkqdp3srtVxTurYmxPXraC8mn37vTeQNAlZBFQQrbueG4OfEgWcCjYr9RLNYkInZMS6RkYkZNpP54vP8KEhAzyUypwI8Jx+n0hJqPU0DExnSGCsf3sZ/MvrJjA89VMexQmwiC4eGiYCg8RZCnjAFaMgpkYQqrjZFdMxUYSCyapkQvj6Kf5ftKuOd+x4V7VK4yyPo4j20QE6Qh46QQ10gZqohShK0AN6Qs/WvfVovVivi9aClc/soR9lvX0ClU2Tsw==</latexit>

Location

<latexit sha1_base64="b8qsfUx05RwLuBC1EO9ofy/fEp8=">AAAB+HicdVDLTgJBEJzFF+KDVY9eJhITT2SXgHok6sEjJoIkQMjs0MCE2Udmeo244Uu8eNAYr36KN//GWVgTNVrJZCpV3enu8iIpNDrOh5VbWl5ZXcuvFzY2t7aL9s5uS4ex4tDkoQxV22MapAigiQIltCMFzPck3HiT89S/uQWlRRhc4zSCns9GgRgKztBIfbvYRbjD5AIQOIZq1rdLTrnmGFSoU07/ao1mSo26c8VxSiRDo2+/dwchj30IkEumdcd1IuwlTKHgEmaFbqwhYnzCRtAxNGA+6F4yX3xGD40yoMNQmRcgnavfOxLmaz31PVPpMxzr314q/uV1Yhye9hIRRDFCwBeDhrGkGNI0BToQytwrp4YwroTZlfIxU4yjyapgQvi6lP5PWpWye1x2r6ql+lkWR57skwNyRFxyQurkkjRIk3ASkwfyRJ6te+vRerFeF6U5K+vZIz9gvX0ClqaTtA==</latexit>

Detector
<latexit sha1_base64="SYfMoQ+VngAgBDHLXlQctKBTKUo=">AAAB+3icdZBLS8NAEMc3Pmt9xXr0slgETyEprXosevFmBfuANpTNdtsu3TzYnUhLyFfx4kERr34Rb34bN2kEFR1Ydvj9Z2Zn/14kuALb/jBWVtfWNzZLW+Xtnd29ffOg0lFhLClr01CEsucRxQQPWBs4CNaLJCO+J1jXm11leveeScXD4A4WEXN9Mgn4mFMCGg3NygDYHJIbyVkAOUuHZtW2GraOGrat7K43cEEa2MmJbVdREa2h+T4YhTT29QQqiFJ9x47ATYgETgVLy4NYsYjQGZmwvk4D4jPlJvnuKT7RZITHodQnAJzT7x0J8ZVa+J6u9AlM1W8tg39p/RjGF27CgygGFtDlQ+NYYAhxZgQecckoiIVOCJVc74rplEhCQdtV1iZ8/RT/n3RqlnNmObf1avOysKOEjtAxOkUOOkdNdI1aqI0omqMH9ISejdR4NF6M12XpilH0HKIfYbx9AhsulSQ=</latexit>

Orientation

<latexit sha1_base64="wV+QKe2pI9UXxiGqOyX7KcmaAQM=">AAAB+nicdZDLSsNAFIYn9VbrLdWlm8EiuApJadVl0Y3LCrYV2lAmk0k7dHJh5kQtsY/ixoUibn0Sd76NkzaCih4Y5uf7z2HO/F4iuALb/jBKS8srq2vl9crG5tb2jlnd7ao4lZR1aCxiee0RxQSPWAc4CHadSEZCT7CeNznP/d4Nk4rH0RVME+aGZBTxgFMCGg3N6gDYHWRtGfspzdFsaNZsq2nrqmPbyu9GExekiZ05se0aKqo9NN8HfkzTkEVABVGq79gJuBmRwKlgs8ogVSwhdEJGrK9lREKm3Gy++gwfauLjIJb6RIDn9PtERkKlpqGnO0MCY/Xby+FfXj+F4NTNeJSkwCK6eChIBYYY5zlgn0tGQUy1IFRyvSumYyIJBZ1WRYfw9VP8v+jWLefYci4btdZZEUcZ7aMDdIQcdIJa6AK1UQdRdIse0BN6Nu6NR+PFeF20loxiZg/9KOPtE1X+lLU=</latexit>

Production
<latexit sha1_base64="oHPWiVIm/R8LYRMlq8fKL8PdyGQ=">AAAB+HicdZDNSgMxFIUz9a/Wn466dBMsgqthprTqsujGhYsKthbaoWTStA3NTIbkjliHPokbF4q49VHc+TZm2hFU9ELI4Tv3kpsTxIJrcN0Pq7C0vLK6VlwvbWxubZftnd22lomirEWlkKoTEM0Ej1gLOAjWiRUjYSDYTTA5z/ybW6Y0l9E1TGPmh2QU8SGnBAzq2+UesDtIL+UCzPp2xXXqrqkqdp3srtVxTurYmxPXraC8mn37vTeQNAlZBFQQrbueG4OfEgWcCjYr9RLNYkInZMS6RkYkZNpP54vP8KEhAzyUypwI8Jx+n0hJqPU0DExnSGCsf3sZ/MvrJjA89VMexQmwiC4eGiYCg8RZCnjAFaMgpkYQqrjZFdMxUYSCyapkQvj6Kf5ftKuOd+x4V7VK4yyPo4j20QE6Qh46QQ10gZqohShK0AN6Qs/WvfVovVivi9aClc/soR9lvX0ClU2Tsw==</latexit>

Location

Figure 1. In this schematic diagram, the three columns show possible production locations, beam
directions with respect to the detector, and decay locations. The axions can be produced from the
beam at the target or at the absorber. The detector, shown by the gray cylinder, may be on- or
off-axis from the beam. Lastly, the axion may decay inside or before entering the detector.

be able to achieve, and then summarize the existing constraints on the axion parameter
space coming mostly from rare meson decays. In section 4 we describe examples of UV
completions that can give rise to the axion EFT under consideration. We conclude in
section 5.

2 Heavy QCD axion EFT

We start our general analysis with an EFT approach, and we will present examples of UV
realization in section 4. After reviewing the role the heavy axions play in the context of
the quality problem, we describe the EFT and summarize the decay modes of the axion.

2.1 Axion quality problem and heavy QCD axions

As alluded to in the introduction, the axion quality problem is that U(1)PQ breaking
contributions could generally arise from gravitational corrections. Such corrections can
give rise to new CP non-conserving minima, and as the axion dynamically relaxes to such
a minimum, the strong CP problem reappears. To be quantitative, we first consider the
case of the standard QCD axion which couples to QCD as

L ⊃ αs
8π

(
a

fa
+ θ̄

)
GaµνG̃

a,µν . (2.1)

Upon QCD confinement this gives rise to an axion potential [106, 107]

VQCD(a) = −m2
πf

2
π

√√√√1− 4mumd

(mu +md)2 sin2
(
a

2fa
+ θ̄

2

)
. (2.2)

Here mπ, fπ are the pion mass and decay constant, and mu,md are up and down quark
masses, respectively. This determines the QCD axion mass to be,

mQCD
a ≈

√
mumd

mu +md

mπfπ
fa

≈ 5.7
(

109 GeV
fa

)
meV. (2.3)
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To see how the axion quality problem arises in this context, consider the case where the
axion is a pseudo-Nambu-Goldstone boson of a spontaneously broken U(1)PQ symmetry.
The axion can then be written as the phase residing in the PQ scalar, Φ ∼ fae

ia/fa .
Gravitational violation of this global PQ symmetry effects would then imply Lagrangian
terms like

Φn

Mn−4
Pl

⊃ fna
Mn−4

Pl
cos

(
na

fa
+ ϕn

)
(2.4)

would be present, and they would give rise to extra contributions to the axion potential.
Now a variety of astrophysical constraints on the QCD axion imply fa & 108 GeV [24–33].
Given the light axion mass dictated by eq. (2.3), we then see that unless we forbid all higher
dimensional operators up to n = 8, the gravitational contributions would move the axion
away from the CP conserving minima, spoiling the solution to the strong CP problem.

To contrast this scenario, we now focus on heavy QCD axions. As an example for this
class of models, consider the scenario where the axion couples to a dark gauge group that
confines at a scale ΛD � ΛQCD. As a result, the axion obtains a potential of the type,

VD(a) ' Λ4
D cos

(
a

fa
+ δ

)
. (2.5)

Due to the fact that ΛD � ΛQCD, the dynamical relaxation of the axion is mostly dictated
by this potential, rather than eq. (2.2). Because of the structure of the theory, such as the
presence of an additional Z2 mirror symmetry [35–38, 40, 47] or embedding of SU(3)c into
larger gauge groups [34, 39, 42, 43, 49, 50], the axion can still solve the strong CP problem
while being heavier than the QCD axion.

Now the situation is quite improved from the perspective of the quality problem.
Through eq. (2.5), the axion mass is given by ma ' Λ2

D/fa and is much larger than that
from eq. (2.2) for identical values of fa. Existing constraints on such heavier axions can
be much weaker compared to the QCD axion. In particular, as the axion mass becomes
larger than O(100)MeV, the astrophysical and cosmological constraints can weaken and
parameter space with fa � 108 GeV is then allowed by the current set of constraints. Con-
sequently, these smaller values of fa reduce the strength of the gravitational contributions
seen in eq. (2.4) and correspondingly, the axion potential becomes robust against such
corrections. In particular, for some of the ma and fa values we consider in the rest of this
work, one needs to forbid only the dimension-5 term in eq. (2.4). This, therefore, reduces
the severity of the quality problem.

2.2 Lagrangian and low energy effective theory

Generic ALPs can couple to the SM in a variety of ways. However, the heavy QCD axions
that we focus on in this work have a defining coupling to QCD since that is essential for
solving the strong CP problem. At the same time, motivated by gauge coupling unification,
we focus on a class of EFTs where axions also couple to SU(2)L and U(1)Y gauge bosons.
Therefore, we consider the following gauge sector coupling,

Lgauge = c3
αs

8πfa
aGG̃+ c2

α2
8πfa

aWW̃ + c1
α1

8πfa
aBB̃. (2.6)
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This particular set of couplings also appears in the context of KSVZ axions. In the fol-
lowing, we will set c3 = c2 = c1 = 1. Along with the gauge coupling, axions can also
couple to fermions. In the present work, we consider only flavor-diagonal lepton couplings
of the axion. The motivation is two-fold. First, since the axion does not couple to quarks
and also does not give rise to flavor-changing processes at the tree level, we can focus on
a parameter space that is not strongly constrained by existing searches, such as those of
rare meson decays (see, e.g., [108] for a recent summary). This then lets us focus on a
complementary part of the parameter space. Second, given the leptonic coupling of the
axion, it can dominantly decay into a pair of muons. As we will discuss later, the resulting
dimuon signature can be a powerful discovery channel for GeV-scale axions. Therefore, we
consider a lepton sector coupling,

Llepton =
∑

`=e,µ,τ
c`
∂µa

2fa
¯̀γµγ5`. (2.7)

As we will show in section 4, such a scenario can naturally arise in UV complete models.
To summarize, the axion EFT in our scenario is given by,

Laxion = 1
2(∂µa)2 − 1

2m
2
aa

2 + Lgauge + Llepton, (2.8)

at some UV scale Λ ∼ 4πfa. Below Λ, various other operators are introduced via renormal-
ization group (RG) evolution. We follow refs. [109, 110] to account for the RG evolution
and compute the axion couplings below the GeV scale.

2.3 Axion decay

Given the EFT in eq. (2.6) and eq. (2.7), the axion dominantly decays into three classes of
final states: (a) diphotons, (b) dimuons, and (c) hadrons. We discuss each of them briefly
now.

Photons: the width for an axion decaying into two photons is given by,

Γa→γγ = α2|cγ |2m3
a

256π3f2
a

. (2.9)

Here cγ is determined in terms of the EFT coefficients appearing in eqs. (2.6) and (2.7)
as [67, 111, 112],

cγ = c3

(
−1.92 + 1

3
m2
a

m2
a −m2

π

+ 8
9
m2
a − 4

9m
2
π

m2
a −m2

η

+ 7
9
m2
a − 16

9 m
2
π

m2
a −m2

η′

)
+ 5

3c1 + c2

+ 2
∑

`=e,µ,τ
c`B(4m2

`/m
2
a),

(2.10)

and α the fine-structure constant. Here B(x) = 1− xf(x)2 and

f(x) =

sin−1
(

1√
x

)
if x ≥ 1

π
2 + i

2 log
(

1+
√

1−x
1−
√

1−x

)
if x < 1

. (2.11)

For our choices of ci, the diphoton mode dominates below the dimuon threshold.
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Figure 2. The relative contributions of various decay channels to the total width of the axion for
c` = 1/36 (left) and c` = 1/100 (right). For 2mµ < ma . 0.8GeV, the axion dominantly decays
into a pair of muons.

Muons: the axion width into muons is given by,

Γa→µµ =
c2
`mam

2
µ

8πf2
a

√
1−

4m2
µ

m2
a

. (2.12)

Here and in the following, we will use c` to denote all the lepton couplings, i.e., assuming
them to be flavor-diagonal. Soon above the kinematic threshold, the muon decay modes
dominate over the diphoton channel, except in regions where the axion resonantly mixes
with SM pseudoscalar mesons.

Hadrons: below the QCD scale, the axion also couples to various hadrons, thanks to the
axion-gluon coupling. For ma .GeV, the dominant decay channels are into πππ, ηππ, ππγ.
We use the results of ref. [111] to take these decays into account. The relative importance
of these modes compared to the dimuon mode depends on the values of c`, and we consider
two benchmark scenarios c` = 1/36 and c` = 1/100 to illustrate the differences. As will be
discussed in more detail in section 4, the coefficient c` roughly corresponds to a mixing angle
squared θ2

mix in one UV completion that we will focus on. Thus the choices c` = 1/36, 1/100
originate from θmix ' 1/6, 1/10, respectively.

The relative contributions to the decay width of the photon mode (dotted), muon mode
(dashed), and hadronic modes (dot-dashed) for the two benchmark choices are shown in
figure 2.

3 Beam dump considerations

In this section, we discuss some of the details of axion production in a beam dump envi-
ronment in the presence of a gluon coupling. We consider several neutrino experiments:
ArgoNeuT [98], SBND [91], ICARUS [91] and DUNE [92] for which axions are produced
when a proton beam hits a stationary target (or an absorber placed downstream). While a
similar setup is also true for SHiP [94], we also study the discovery capabilities of FASER 2
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for which axions would get produced in 14TeV pp collisions at the LHC. The axions pro-
duced in the forward direction can then travel to the FASER 2 detector.

3.1 Production

The theory of axion production in the presence of gluon couplings is an active area of
research. Along with axion production in meson mixing or gluon fusion for higher masses,
axion production in proton bremsstrahlung can also be an important contribution. For
scalars, this was computed in refs. [113–115], while for the case of pseudoscalars, there are
subtleties. These subtleties [115] include the axion flux dependence on the exact form of
quasi-real approximation, the interference between initial state radiation and final state
radiation, the comparison of the proton bremsstrahlung calculation and the hadronization
contribution in the regime of concern, as well as the exact order of mass expansion and
momentum expansion. Some of these subtitles arise because the phase space of interest
involves scales comparable to the axion mass and the CP nature of the axion-fermion cou-
pling, and because the formalism itself is only an approximation heavily dependent on the
matching procedure and scheme at a fixed order. Given all these subtleties, we still approx-
imate the axion production rate by the SM pseudoscalar production rate multiplied by the
square of the axion-pseudoscalar mixing angle, as is widely done in the current literature.
Since these mixing angles depend on the axion-quark coupling, a field rotation-dependent
quantity [115, 116], such an approximation needs to be improved. Furthermore, this ap-
proximation also heavily relies on the SM QCD production of mesons, and involves an
unphysical, ad hoc assignment of the SM meson four momentum to the axion four momen-
tum. This approximation also ignores the interference effects from different axion-meson
contributions to the production. Hence, future improvement in the axion flux prediction
would be highly desirable. With these caveats in mind, we now estimate the flux of axions
produced only via meson mixing.

The mixing production is primarily driven by axion mixing with the Standard Model
mesons π, η, and η′. In a convenient choice of basis, the corresponding mixing angles are
given by [67, 93, 117],

θaπ = 1
6
fπ
fa

m2
a

m2
a −m2

π

, θaη = 1√
6
fπ
fa

m2
a − 4m2

π/9
m2
a −m2

η

, θaη′ = 1
2
√

3
fπ
fa

m2
a − 16m2

π/9
m2
a −m2

η′
.

(3.1)
Using Pythia8 [118, 119], we determine how many mesons are produced per proton col-
lision by turning on the “SoftQCD:all = on” option. This is dependent on the energy
of the incoming beam. We show the results below for the 8GeV Booster Neutrino Beam
(BNB) [120], 120GeV NuMI proton beam, 400GeV SPS beam and finally 14TeV LHC,

Nproc
axions = NPOT ×



0.82|θaπ|2 + 0.072|θaη|2 + 0.0038|θaη′ |2 for 8 GeV BNB
2.9|θaπ|2 + 0.33|θaη|2 + 0.034|θaη′ |2 for 120 GeV NuMI beam
4.0|θaπ|2 + 0.46|θaη|2 + 0.049|θaη′ |2 for 400 GeV SPS beam
33|θaπ|2 + 3.8|θaη|2 + 0.48|θaη′ |2 for 14 TeV LHC

,

(3.2)
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where NPOT is the number of protons on target (POT). Following their production, axions
travel a macroscopic distance to reach the detector and can subsequently give a displaced
decay signal.

3.2 Detection

The produced axions will travel to the detector and decay to various final states. We will
show prospects for SBND, ICARUS, DUNE, SHiP, and FASER 2 on detecting these decays.
We specifically search for the signatures associated with the dimuon final states. LArTPCs
identify muons by the profile of the energy loss per unit track length dE/dx, as a function
of the residual range, defined as the distance to the particle’s stopping point. The pair
of muons will leave either one or two distinct minimally ionizing tracks depending on the
opening angles and the detector’s angular resolution. The SHiP experiment has a dedicated
muon detector composed of three layers of scintillators with iron absorbers in between and is
located at the most downstream location [121], before which the hadron calorimeter would
stop most of the hadrons. The FASER 2 experiment utilizes an emulsion detector [122] with
silver bromide crystals dispersed in gelatin media, and muons are identified by the track
lengths [123]. Among these detectors, the magnetic field in DUNE, SHiP, FASER 2, and
potentially also ICAURS [124], would play an important role in increasing the separation
between the two muon tracks. Correspondingly, the invariant mass of the dimuon system
can serve as a useful handle in background mitigation.

In table 1, we summarize the detector specifications. Here Ep refers to the energy of
the proton beam on target, NPOT is the total number of protons on target, d is the distance
from the target to the detector, L is the length of the detector along the beam direction,
while w × h is the width and height of each detector.

In deriving the experimental prospects, we will approximate any rectangular cross
section by a disk with radius shown as reff , while FASER 2 has a circular cross section
r = 1 m. DUNE near detector (ND) complex consists of a gaseous argon and a liquid
argon time projection chamber along the beam direction; both chambers have length 5
m, while the gaseous (liquid) argon chamber has a circular (rectangular) cross section of
(effective) radius (reff = 2.6 m) r = 2.5 m. ICARUS has two modules of the same size
next to each other; therefore, the effective cross section is multiplied by 2 in the table. For
ICARUS, we will show the results for the protons from both the off-axis, 120GeV NuMI
beam and the default on-axis, 8GeV BNB since the former has a better prospect for our
search. For SBND we will show only the results for 8GeV BNB, which may achieve a better
reach compared to the NuMI beam.2 While we will not show the results for MicroBooNE
explicitly, we have checked that it performs similarly to the other SBN experiments in our
analysis.

Using the above details for axion production and detector dimensions, we can compute
the energy distributions of axions both at the production point and at the detector. In
figure 3 we show these results for the DUNE ND (left) and FASER 2 (right). For both the

2We thank Ornella Palamara for providing the relevant beam and luminosity information for the off-axis
usage of these experiments.
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Experiments Ep (GeV) NPOT d (m) L (m) w × h (m×m)
DUNE [125, 126] 120 1.47× 1022 574 5 + 5 7× 3 (reff = 2.6 m)

SBND [127]
{

BNB
NuMI

8
120

6.6× 1020

3× 1021
110
410

5 4× 4 (reff = 2.3 m)

MicroBooNE [127, 128]
{

BNB
NuMI

8
120

1.32× 1021

3× 1021
470
685

10.4 2.6× 2.3 (reff = 1.4 m)

ICARUS [127]
{

BNB
NuMI

8
120

6.6× 1020

2.5× 1021
600
790

19.9 (3.9× 3.6)× 2 (reff = 2.1 m)

SHiP [129] 400 2× 1020 70 50 5× 10 (reff = 4.0 m)

FASER 2 [96, 97] 14000 1.1× 1016 (LHC Run 3)
2.2× 1017 (HL-LHC)

480 5 r = 1 m

Table 1. Detector specifications for various experiments. For DUNE, we have combined the
lengths of the gaseous multi-purpose detector (5 m) and LArTPC (5 m). SBND, MicroBooNE, and
ICARUS can serve as useful facilities as off-axis detectors with respect to the NuMI beam, along
with the default on-axis BNB. Therefore, we record the locations and geometries for both beams.
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Figure 3. The differential energy distribution of the axions at production (in teal) and at the
detectors (for various values of fa in other colors and line styles). We fix c` = 1/36 and ma =
0.8GeV.

panels, we see that the spectrum at production peaked at low energies as expected, with
the axions at FASER 2 being more energetic than at DUNE ND due to larger incoming
beam energies. The axions that decay inside the detector need sufficient energy so that
their lab-frame lifetime is long enough to reach the detector. We see this explicitly in
figure 3—for smaller fa, the rest-frame lifetime is shorter, and correspondingly, the axions
need to be more energetic with a large Lorentz factor γ. This is why the distributions move
towards higher energies as fa decreases.

3.3 Enhanced effective detector length

The axion to dimuon decay channel not only has the feature of being clean and highly
identifiable but also can allow for an enhancement in the decay volume. These high-energy
muons can penetrate air and rocks without significant loss in energy and deflection. In this
section, we take the geometry of DUNE ND as an example and show the interplay between
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Figure 4. The signal axion decay geometrical acceptance, as a function of decay location before
the front panel of the detector (upstream) for various axion masses and energies. Depending on the
background rejection requirement and the actual performance of the detector, one might require
a certain track length for the dimuon signals. As most of the axions are boosted, the decay is
forward, so most of the signal will penetrate the whole detector. We show the acceptance fraction
by requiring both the muons to arrive at least 1 meter (upper panel), which is equivalent to a track
length of more than 1 meter, 3 meters (lower left panel), and 5 meters (lower right panel). The red,
blue, and yellow curves correspond to axion energy of 5, 10, and 40GeV, respectively. The dashed,
solid, and dot-dashed curves correspond to axion masses of 0.3, 0.5, and 0.7GeV.

enhanced decay volume and signal efficiency, with their dependence on the axion mass and
energy.

For axion decay before the detector, several physics effects must be considered. One
is geometric acceptance: the further the decay location away from the detector, the lower
the geometric acceptance. This is because the geometric acceptance would be proportional
to the area divided by the distance. Thanks to the boosted kinematics of the beam dump
experiments and the forward physics at colliders, the penalty is reduced by the fact that
axions are already focused towards the target after getting boosted from an isotropic dis-
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tribution in their rest frame. The second factor one needs to consider is the change in
the signal-to-background ratio. Because the decay location is outside the detector, the
vertex cannot be directly reconstructed within the detector volume and hence typically
would have larger uncertainties in its location. In this sense, other muons, such as those
generated through various nuclear interactions of the beam remnants can contribute to the
background. To avoid complexities, we conservatively require both of the muons from the
axion decay to arrive at the detector. The third factor is that the muons lose energy and
slightly change their momentum direction while passing through matter. One can estimate
the typical energy loss and deflection for the minimally ionizing muons and see that for
typical high-energy muons from the axion decays with tens of GeV of energies passing
through 100 meters of dirt, these effects are small [130].3 Again being conservative, we do
not consider the decay location more than 100 meters before the detector front panel.

Each experiment is conducted in a different setup; the amount of shielding varies, and
the material before the detector varies (they can be air, dirt, or even another detector).
However, the effective gain of the decay volume in the muon mode is a common feature.
To concretely demonstrate this effective volume increase, we use the DUNE ND setup
and simulate axion decay acceptance as a function of axion mass, energy, and muon track
reconstruction requirement (track length) and show them in figure 4. As expected, the
acceptance decreases as one increases the separation between the axion decay location
and detector location. Still, for most signals, one can achieve more than 50% acceptance
even for decays occurring 30 meters before the detector. We can see that decays from
heavier axions have lower acceptance for fixed axion energy. These observations lead to
our discussion and presentation of projected sensitivities in the following subsection.

3.4 Results

In this subsection, we show the results of our projection study and our re-interpreted limits
from existing experiments on heavy axions in the mass range under consideration.

3.4.1 Future projections

For future projections, we analyze several neutrino experiments: SBND, ICARUS, and
DUNE, as well as collider experiments searching for long-lived particles: FASER 2 and
SHiP. The main idea is that the axion production would happen at the beam dump or at
the primary interaction point. Subsequently, the axion would travel to the decay volume of
the detector and dominantly decay into a pair of muons. For our final projections, we will
assume a 90% reconstruction efficiency of the muons along with a negligible background.

While an actual µ+µ− background would be reducible, in LArTPCs charged pions
can mimic muons, giving rise to background events. In ref. [100], such backgrounds were
mitigated via matching track information in ArgoNeuT with MINOS near detector, along
with restrictions on track length. This latter restriction helped since pions tend to produce
shorter tracks compared to muons at energies relevant to that search. A similar approach

3See ref. [131] for approximate formulae for the energy loss and angle deflection with the charge parameter
ε = 1 for muons.
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could be taken up at DUNE with the help of its multipurpose near detector to mitigate
such backgrounds. Furthermore, in the case of magnetized detectors, the invariant mass
would serve as a powerful discriminator as well. Dedicated simulations by experimental
collaborations would be necessary to settle these aspects conclusively. Keeping this in
mind, we show results for signal flux at various detectors in figure 5, for several choices
of ma. This can then be used to obtain more conservative projections for a search with
non-negligible number of background events.

To this end, we first compute the number of signal events produced at the detectors
of interest. For some benchmark choices of ma we show the results for SBND, ICARUS,
DUNE ND, and FASER 2 in figure 5 as a function of fa. The number of axions reaching
the detector can be roughly estimated as4

Naxions ∼ NPOT ×Nproc
axions × BR × acceptance×

(
e
− d
γβcτ − e−

d+L
γβcτ

)
. (3.3)

Here Nproc
axions is the number of axions at production given in Eq. (3.2). A fraction, denoted

by ‘acceptance’, of the produced axions are in the direction of detector which decay inside
it with a probability

(
e
− d
γβcτ − e−

d+L
γβcτ

)
into dimuons with a branching ratio ‘BR’. Here τ

is the rest-frame lifetime of the axions, γ is the Lorentz factor, and β is the dimensionless
velocity. Based on eq. (3.3), we see for very small values of fa, although more axions
are produced via the mixing factor (fπ/fa)2, the axions are too short-lived to reach the
detector, γβcτ � d. As a result, the number of signal events gets exponentially suppressed.
As γβcτ ∼ d, the signal turns on, and eventually for large enough fa, γβcτ � d. In this
large lifetime regime, the signal decreases as Naxions ∝ L/f4

a , as can be seen via figure 5
and eq. (3.3).

To derive the maximal sensitivity, we show the reach curves on the axion parameter
space assuming 3 signal events for various experiments in figure 6. Similar reach curves
requiring a larger number of signal events, in the event of non-negligible backgrounds,
can be obtained from figure 5. We see that among the neutrino experiments, DUNE ND
would be able to provide the strongest probe, thanks to its large NPOT and decay volume.
However, overall, SHiP would provide the best sensitivity. This is due to its larger beam
energy, proximity to the target, as well as larger decay volume. While ICARUS with its on-
axis BNB would constrain novel parameter space, it can operate even more powerfully via
the off-axis NuMI beam due to a larger beam energy which is not completely compensated
by a larger distance. This is labeled as ICARUS* in figure 6. In the context of DUNE
ND, we also show the result of including a distance of 30 m before the front detector panel
as part of the decay volume, as discussed in section 3.3. This is labeled as ‘DUNE+’ in
figure 6. While in the small lifetime, i.e., small fa regime, the gain is not significant, in the
large lifetime regime the sensitivity to fa increases as ∝ L1/4, as expected from eq. (3.3)
above.

4In our numerical study we included detailed resonance effects as discussed in section 3.1.
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Figure 5. The expected number of events at DUNE ND, FASER 2, SBND, and ICARUS in which
the axion decays into dimuons within the detector, as a function of the decay constant fa. Different
curves are for different axion masses ma as labeled. We fix c` = 1/36.

3.4.2 Existing constraints

The strongest constraints on the parameter space come from some of the rare meson decay
searches which we now describe.

NA48/2 K± → πµµ search [132]: in the presence of the axion-gluon coupling, flavor
changing couplings get induced at loop-level. For example, an axion-gluon coupling induces
flavor-diagonal couplings to quarks, which then can give rise to flavor-changing processes
through the CKM couplings. As a result, processes such as K → πa with a decaying
into µ+µ− can take place. We use the results of refs. [109, 110] to first compute K → πa

amplitude. Subsequently, we use the results of ref. [132], where upper limits on BR(K± →
π±X(µ+µ−)) were derived for various lifetimes of an unstable resonance X, to arrive at
the constraints shown in blue in figure 6.

LHCb B0 → K∗0µµ search [101]: above the kinematic threshold of (mK −mπ), rare
B decays become the dominant probe of our scenario. Similar as above, we use the results
of ref. [109] to first compute the rate for B0 → K∗0a amplitude, and then use the upper
limits on BR(B0 → K∗0X(µ+µ−)) from ref. [101] for different lifetimes of X, to arrive at
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the constraints shown in olive in figure 6. A similar bound was also derived in ref. [133]
using rare B-decays for DFSZ-style axion couplings.

Other searches: searches for K → π + inv. [134] are also applicable when axion decays
invisibly due to its large lifetime. For our scenario, however, this constraint is applicable
only for ma < 2mµ, since otherwise, axion would promptly decay into dimuons. Searches
for exotic B decays such as B → KηX(ηππ) [135] where ηX is one of the excited states of
η, η′ mesons, can also be used to constrain processes such as B → Ka(ηππ) [136]. These are
mostly subdominant in our parameter space and are not shown in figure 6. Searches from
NuCal beam dump experiment are important for axion masses below 100MeV [137, 138].
A recent CMS search [139] for long-lived particles decaying into muon pairs can also be
relevant in a similar parameter space covered by the LHCb search for B0 → K∗0µ+µ−.
This would require a dedicated recasting as appropriate for gluon-coupled axions, such as
production simulation using gluon fusion and applying their kinematic selection criteria,
and we do not carry that out here.

Along with these constraints from rare meson decay searches, we show in the gray-
shaded region the recent ArgoNeuT constraint [100] that the ArgoNeuT collaboration and
the present authors obtained. In this case, following their production in the beam dump,
the axions would travel to the ArgoNeuT detector and dominantly decay into a pair of
muons. We consider only the axions produced by the protons that reach the hadron
absorber located 318 m upstream of ArgoNeuT, which is about 13% of the total NPOT
collected during its run. The axions produced by the rest of the protons that hit the
target located 1033 m upstream of the ArgoNeuT detector give a subdominant sensitivity
compared to the absorber-produced axions we consider. By searching for such muon pairs,
with information from both the ArgoNeuT and MINOS near detector, we could place new
constraints as shown in figure 6.

4 Examples of UV completion

In this section, we describe some examples of UV models to show how the axion couplings
in eqs. (2.6) and (2.7) can arise. We pay particular attention to models that generate
the small axion-lepton couplings, compared to gauge boson couplings, considered in the
previous section.

A particularly simple possibility is where c` is zero at tree-level but radiatively induced
by the coupling of the axion with the gauge bosons. The contributions to the axion-lepton
coupling from one-loop radiative corrections with c1, c2, and c3 are given in ref. [140] for
fa = 1 TeV as

c` ' (0.05c1 + 0.22c2 + 0.37c3)× 10−3. (4.1)

The coefficients depend on the renormalization scale but may only increase by a factor
of O(3) for fa ' O(107) GeV. Therefore, to obtain c` ' 1/100 that is of interest in
the previous section, one needs c1,2 = O(10), and therefore a small hierarchy from c3 is
necessary since c3 is conventionally normalized to unity for QCD axions. This is the case
if there are more heavy fermions charged under U(1)Y and SU(2)L that generate c1,2 than

– 16 –



J
H
E
P
0
2
(
2
0
2
3
)
1
1
1

Field SU(3)c SU(2)L U(1)Y U(1)PQ

Li 1 � +1/2 −1
Lci 1 � −1/2 +1
Ei 1 1 −1 −1
Eci 1 1 +1 +1
Q � � +1/

√
2 −1/2

Qc �̄ � −1/
√

2 −1/2
Φ 1 1 0 +1
li 1 � −1/2 0
ei 1 1 +1 0

Table 2. Charge assignment for the UV model

those under SU(3)c for c3. Some examples of enhancing certain axion couplings this way
include the Kim-Nilles-Peloso mechanism [141] and the clockwork axion [142–146].

To generate an axion-lepton coupling larger than the one-loop contributions, we now
describe a model based on ref. [147], where the coupling arises from the mixing of SM
leptons with new heavy fermions. The model has a SM singlet PQ scalar Φ, heavy vector-
like leptons Li, Lci , Ei, Eci , and heavy vector-like quarks Q,Qc. The index i = 1, 2, 3 runs
over the SM flavor indices. The charge assignments for the left-handed fields are as given
in table 2.

With this choice, the Lagrangian can be written as

L ⊃ yLiLiliΦ + yEiEieiΦ + yQQQ
cΦ +MLLiL

c
i +MEEiE

c
i + h.c.. (4.2)

HereML andME are vector-like masses for heavy leptons. The PQ scalar Φ has a potential
suitable for symmetry breaking and we parametrize the axion as Φ = ((fa + ρ)/

√
2)eia/fa .

For ML,ME � fa, we can integrate out the heavy leptons at tree level to obtain their
equations of motion,

Lci = − yLi
ML

liΦ, Ec
i = − yEi

ME
eiΦ. (4.3)

Substituting this into the kinetic term for Lci , we get

iLc†i σ̄
µ∂µL

c
i → i

|yLi |2

M2
L

l†iΦ
†σ̄µ∂µ(liΦ) ⊃ i |yLi |

2

M2
L

l†iΦ
†σ̄µli∂µΦ + · · · . (4.4)

Here in the last relation, we have dropped a correction to the SM fermion kinetic term.
We can carry out the above steps for ei as well. Consequently, in the EFT below ML,ME ,
we have

L ⊃ i |yLi |
2

M2
L

l†iΦ
†σ̄µli∂µΦ + i

|yEi |2

M2
E

e†iΦ
†σ̄µei∂µΦ + yQQQ

cΦ + · · · . (4.5)

Below the scale fa, we can integrate out the radial mode ρ to arrive at,

L ⊃ −1
2
|yLi |2fa
M2
L

l†i σ̄µli∂µa−
1
2
|yEi |2fa
M2
E

e†i σ̄µei∂µa+ 1√
2
yQfaQQ

ceia/fa + · · · . (4.6)
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We can remove the axion in the phase of the heavy quark mass term by doing a rotation,
Q → Qe−ia/(2fa), Qc → Qce−ia/(2fa) which generates the axion-gauge boson couplings via
the anomaly. With the specified quantum numbers for Q,Qc, these couplings correspond
to c1 = c2 = c3 = 1 in eq. (2.6). Thus the axion couplings after integrating out Q,Qc are
given by,

L ⊃ −1
2
|yLi |2fa
M2
L

l†i σ̄µli∂µa−
1
2
|yEi |2fa
M2
E

e†i σ̄µei∂µa+ αs
8πfa

aGG̃+ α2
8πfa

aWW̃ + α1
8πfa

aBB̃.

(4.7)
We can write this in terms of the Dirac spinors to relate to eq. (2.7),

c` = 1
2

(
|yLi |2f2

a

M2
L

+ |yEi |
2f2
a

M2
E

)
. (4.8)

In the context of this UV completion, we see that the leptonic coupling of the axion can
naturally be suppressed, consistent with our assumption of fa � ML,ME for integrating
out the heavy leptons. This then serves as an example for our choice of c` = 1/36, 1/100� 1
as the benchmark leptonic couplings.

5 Conclusion and outlook

The QCD axion is a well-motivated extension of the Standard Model that can address the
strong CP problem and other open questions in astrophysics and cosmology. A heavy QCD
axion is especially appealing from the viewpoint of the axion quality problem. In this work,
we analyze the discovery potential of the heavy QCD axions in neutrino experiments and
long-lived particle searches. We exploit the unique signals and low backgrounds associated
with the dimuon final states. We focus on models where the axion is coupled to leptons in
addition to its universal coupling to gauge bosons, which can arise in a large class of axion
models. The axion mass range of interest is above the dimuon threshold, and below the
GeV scale, so the decay to dimuons is the dominant channel.

Assuming negligible background, which we argue might be achieved by additional
measurements of particle track lengths and invariant masses, we show projected sensitivity
curves for FASER 2, SHiP, DUNE, SBND, and ICARUS in figure 6. Both DUNE and SHiP
provide the best sensitivity for probing large decay constants fa ' 106-7 GeV depending
on the leptonic coupling constant c`. Larger decay constant leads to overly suppressed
production rates. On the other hand, FASER 2 and SHiP offer the best opportunities in
probing smaller decay constants fa ' 103-4 GeV. Smaller decay constants result in axion
decays too rapid for the axions to reach the detectors, but such a small fa is anyway
excluded by existing constraints from rare meson decay searches. Lastly, the coverage for
SBND and ICARUS centers around fa ' 104.5-6 GeV. These promising projections call for
dedicated simulations by the experimental collaborations to estimate the background and
place important constraints on the motivated parameter space of heavy QCD axions.
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