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Abstract

Modeling and simulation of particle doped composites for electromagnetic applications

by

Bhavesh Patel

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

Most modern electromagnetic devices consist of dielectric and magnetic particulate com-
posites, which are designed with specific properties for delivering optimal performance. Pre-
dicting the effective electric permittivity and effective magnetic permeability of the envi-
sioned composite is of great importance in validating the design for such applications. An-
alytical bounds to estimate these effective properties can be found in literature. However,
they often yield large solution ranges and do not account for the microstructure of the
composite. We present here a numerical method to estimate these effective electromagnetic
properties for any given composite microstructure. It consists of solving Maxwell’s equations
numerically using a particular Finite Difference Time Domain (FTDT) method, known as
Yee’s scheme, over a representative volume element of the composite of interest. It allows
capturing its electromagnetic response, and subsequently computing its effective electromag-
netic properties. Results obtained with this method show good agreement with analytical
bounds and experimental data. We also observe more accurate estimations than analytical
bounds. The method is then used to assess thermal influence on these effective electromag-
netic properties. A numerical design tool, that combines the optimization technique known
as genetic algorithm with the proposed numerical method for estimating effective electro-
magnetic properties, is also presented. It allows determining the required composition and
microstructure parameters for a particle doped composite in order to achieve the desired
effective electromagnetic properties.
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Chapter 1

Introduction

Composite materials are widely used in a variety of fields [24] mainly due to the flexibility
in properties they provide. Indeed, by appropriately choosing constituents and mixture pa-
rameters, such as materials volume fraction or filler size, it is possible to develop a material
with overall properties adapted to a specific application.

Their extensive use in manufacturing components of MEMS [6], [2, Chapter 4] was driven
by the requirement of better thermal properties than initially used raw materials - espe-
cially high thermal conductivity and low thermal expansion coefficient - along with adequate
electric properties. Following this trend, several studies are being conducted for the past
few years to extend the use of composites in manufacturing electromagnetic components
of MEMS such as dielectric with electric high permittivity for capacitors [27] or magnetic
core with high magnetic permeability for planar inductors [30]. It is also envisioned to use
the flexibility in properties provided by composites to develop material with simultaneously
high electric permittivity and high magnetic permeability to use a single material for both
applications [18].

Within the families of composites, particle doped composites have been determined to be
the most suitable for applications stated previously. These are made by embedding particles
into an easily moldable base material that is usually designated as the matrix material.
Particles with diameter ranging from nm to µm are sought for an overall composite material
in the µm tomm range. A schematic of the microstructure of such a particle doped composite
is shown in Figure 1.1.

These composites - like any other - have point wise variable properties: properties of
the particles if we are inside a particle, otherwise properties of the matrix material. This
description doesn’t give proper quantitative information about the overall characteristics
of the composite. Average properties obtained by homogenization, called effective proper-
ties [28], have been introduced for better characterization of the macroscopic response. For
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Figure 1.1: Schematic of the microstructure of a particle doped composite.

the electromagnetic device applications mentioned previously, estimating the effective elec-
tromagnetic properties of the composite, namely the effective electric permittivity and the
effective magnetic permeability, is of prime importance in predicting its behavior and assess-
ing the success of the newly designed composite.

Analytical bounds to the value of these effective electromagnetic properties exist. They
could be evaluated knowing the constitution of the composite. Initial bounds were derived
by Wiener in 1910 [29]. They allowed estimating a range for the effective electromagnetic
properties of any kind of composite knowing the parent materials’ properties and quantities.
Then, in 1962 Hashin and Shtrikman [9] derived tighter bounds in the specific case of a com-
posite made of two linear isotropic materials. The use of these bounds is however limited:
they provide large range and don’t take the microstructure of the composites into account.
Numerical methods to estimate effective properties were first developed for effective mechan-
ical properties - a detailed explanation can be found in [33]. Then, it was later extended
to the numerical estimation of effective electromagnetic properties of spherical particle com-
posites by Zohdi [34].

In the present study, we develop a numerical framework to estimate the effective elec-
tromagnetic properties for isotropic particulate composites in order to provide an accurate
tool during their design for electromagnetic applications. Following [33, 34], it consists of
building a numerical sample of the composite material of interest, and applying electromag-
netic (EM) field at its interface. Then, Maxwell’s equations [15] are solved numerically over
the sample to obtain its electromagnetic response. Subsequently, the computed fields are
averaged over the sample to estimate the effective properties using their definitions given
in expressions 3.4 and 3.8. This method is designed to handle composites consisting of any
number of isotropic phases and any particles shapes. The novelty also resides in the use
of a Finite Difference Time Domain (FDTD) method specifically designed for Maxwell’s
equations, known as Yee’s scheme [31]. Moreover, parallel implementation of the numerical
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solver is done for high performance in computation. The method is then used to assess the
thermal dependence of effective electromagnetic properties. A numerical design tool, that
allows determining the required mixture parameters for a composite to achieve desired effec-
tive electromagnetic properties, is also developed. Throughout the study, stress, strain, and
chemical effects are neglected, although the consideration of dynamic Maxwell’s equations
provide the possibility to consider these dynamic phenomena if required. Constituents and
resulting composites are assumed to be linear, isotropic and non-dispersive.

The organization of this dissertation is as follows. In Chapter 2 a review of the elec-
tromagnetic theory, essential for this study, is presented. The homogenization process is
discussed in chapter 3, where effective electromagnetic properties are introduced along with
the existing analytical estimations of their values. In Chapter 4, a numerical method to
compute the effective electromagnetic properties of a particle doped composites with known
composition is presented. The method is extended in Chapter 5 to account for thermal
effects. A numerical design tool that determines the required mixture parameters for a com-
posite in achieving the desired effective electromagnetic properties, is developed in chapter
6. Finally, the dissertation ends with closing comments on the overall work presented and
possible extensions to improve the method.
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Chapter 2

Review of electromagnetic theory

Electric field, magnetic field and their governing equations are of key importance in this
study. This chapter presents a review of electromagnetic theory. A detailed explanation on
the subject could be found in [13], [7], and [14].

2.1 Introduction to electric field
The electric field could be seen as a physical field present in the neighborhood of any

charged particle or time varying magnetic field. It is quantified by the electric field intensity
E. For convenience, the electric flux density D is often introduced.

2.1.1 Electric field intensity E

A charge q (steady or moving) in an electric field would be subjected to a force given by
Coulomb’s law

FE = qE (2.1)

where E is the electric field intensity, expressed in Newton per Coulomb (N/C) or equiv-
alently in V/m. The relation between electric field intensity, charge repartition and time
varying magnetic field is expressed by Faraday’s law and Gauss’ law, presented in section
2.3.

2.1.2 Electric field density D

In dielectric materials all charges are attached to a specific atom. When an electric field
is applied to it, the positive charges (nucleus) are pushed in the direction of the field and
the negative charges (electron) are pushed in the opposite direction. Equilibrium is rapidly
established between the field pushing the charges apart and their mutual attraction. The
atom is then polarized with positive charges on one side and negative charges on the other.
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We say that dielectrics polarize in response to an applied electric field. It is shown that the
effect of polarization is to produce charge density ρb called bound charge within the dielectric,
and surface charge λb called bound surface charge on its surface. At a macroscopic level,
a polarization field P that tends to oppose the applied field E is generated. This field is
simply the field due to the bound charges, such that

ρb = −∇ ·P (2.2)
λb = P · n (2.3)

where n is the unit normal vector at the surface of the matter.

It is convenient to introduce a new quantity called electric field displacement or electric
flux density, denoted D and expressed in C/m2, such that

D = ε0E + P (2.4)

where ε0 = 1
4π10−7c2

is the permittivity constant of free space expressed in F/m, with c being
the speed of light in free space. As we will see later, it allows expressing Maxwell’s equations
in term of the free charges only, which are known quantities.

2.2 Introduction to magnetic field
The magnetic field could be seen as a physical field present in the neighborhood of any

currents (moving charges) or time varying electric field. It is quantified by the magnetic flux
density B. For convenience, the magnetic field intensity H is often introduced.

2.2.1 Magnetic field density B

A charge q moving at velocity v and passing in a region where a magnetic field is present
would experience a force called Lorentz. It is given by

FB = q(v ×B) (2.5)

where B is the magnetic flux density, expressed in Tesla (T ). The relation between magnetic
flux density, current repartition and time varying electric field is expressed by Ampere’s law
and Gauss’ law for magnetism, presented in section 2.3.

2.2.2 Magnetic field intensity H

Inside an atom, electrons are orbiting with randomly oriented orbits, canceling out the
orbital dipole moment of the atom. In presence of a magnetic field, each electron experiences
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an extra force: Lorentz force. They thus pick up an extra dipole moment. We say that the
matter becomes magnetized, that is each atom acquires a dipole moment. It is described at
the macroscopic level by the magnetization field M. It is shown that the effect of magneti-
zation is to produce current density Jb called bound current within the matter, and surface
current jb , called bound surface current, on its surface. The magnetization field is then
simply the field due to this currents, such that

Jb = ∇×M (2.6)
jb = M× n (2.7)

where n is the unit normal vector at the surface of the matter.

It is convenient to introduce a new quantity called magnetic field intensity, denoted H
and expressed in A/m, such that

H =
B

µ0

−M (2.8)

where µ0 = 4π10−7 is the magnetic permeability constant of free space expressed in H/m.
As we will see later, it allows expressing Maxwell’s equations in term of the free currents
only, which are known quantities.

2.3 Maxwell’s equations
Maxwell’s equations are concise way to state the fundamentals of electromagnetism. They

are a set of four coupled partial differential equations derived empirically, relating the electro-
magnetic fields characteristic quantities (E, D, B, H) to the charge distribution and current
distribution in a system. They are presented next in their upmost general form: the integral
form.

For the next sections, we choose our domain of interest to be a randomly shaped material
of volume Ω. Then, C is a randomly chosen closed curve in Ω, Γ is a surface generated by C,
S is a randomly chosen closed surface in Ω, and V is the volume generated by S.

2.3.1 Faraday’s law

Faraday’s law expresses that a changing magnetic field induces an electric field:

˛

C

E · dl = −
¨

Γ

∂B

∂t
· dΓ (2.9)
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where dl = dlt with dl being an infinitesimal element of C oriented by the unit tangential
vector t, and dΓ = dΓn with dΓ being an infinitesimal element of Γ oriented by the outer
unit normal vector n. This is illustrated in Figure 2.1.

C

n

dl

dΓ
t

Γ

Figure 2.1: Illustration of the notations used for closed curve integrals.

2.3.2 Ampere’s law

Ampere’s law - with Maxwell’s fix - states that electric currents and changing electric
field induce a magnetic field:

˛

C

H · dl =

¨

Γ

(
Jf +

∂D

∂t

)
· dΓ (2.10)

where Jf , expressed in A/m2, represents the free currents in the matter.

2.3.3 Gauss’ law

Gauss’ law states that the total electric flux through any closed surface S is equal to the
free electric charge enclosed within S:

‹

S

D · dS = Qf (2.11)

where Qf (in C) represent the free charges included in the volume V generated by S, and
dS = dSn with dS being an infinitesimal element of S oriented by the outer unit normal
vector n. This is illustrated in Figure 2.2.
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S

n

dS

Figure 2.2: Illustration of the notations used for closed surface integral.

2.3.4 Gauss’ law for magnetism

The following law has actually no name, but is often referred to as Gauss’ law for mag-
netism. It states that the total magnetic flux through any closed surface S is always zero:

‹

S

B · dA = 0 (2.12)

2.4 Local form of Maxwell’s equations
It is possible to localize the previous integral equations to obtain the so-called local form

of Maxwell’s equations. They are much more convenient, especially for numerical analysis,
as they give a pointwise relation between the different electromagnetic quantities. They are
derived next. We will see that each integral equation gives two local equations that hold
alternatively: differential form when the fields are smooth enough, and jump or discontinuity
conditions when discontinuities in the fields occur.

2.4.1 Local Faraday’s law

Let’s assume first that E is spatially differentiable over the surface Γ. We can then apply
Stokes’ theorem to the left integral of equation 2.9:

˛

C

E · dl =

¨

Γ

(∇× E) · dΓ (2.13)

Plugging back into the original equation we get
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ˆ

Γ

(∇× E) · dΓ = −
ˆ

Γ

∂B

∂t
· dΓ (2.14)

Let’s assume that ∇×E and ∂B
∂t

are spatially continuous over Γ. As Γ is randomly chosen,
we can apply localization theorem to obtain the local relation at any point in space where
the previous differentiability and continuity assumptions hold:

∂B

∂t
= −∇× E (2.15)

This is derived assuming that the concerned fields are smooth enough, starting from the
electric field intensity E. Now assume that there exist a surface Σ in Ω where E is not
spatially differentiable (we don’t discuss the cause for this yet, this will be done later).
Then, we cannot apply Stokes’ theorem at Σ as ∇ × E is not defined there. To derive the
local relation at a point of Σ we proceed as following. We take a curve C around the surface
of discontinuity Σ with Γ being the surface generated by our curve. Then, we divide the
curve into two parts on both side of the surface Σ such that C = C− ∪ C+ and Γ = Γ− ∪ Γ+,
as shown in figure 2.3. We call γ the intersection between Σ and Γ. Let’s apply Faraday’s
law over each of these curves individually:

˛

C−∪ γ

E · dl = −
¨

Γ−

∂B

∂t
· dΓ

→
ˆ

C−

E · dl +

ˆ

γ

E− · tγdl = −
¨

Γ−

∂B

∂t
· dΓ (2.16)

˛

C+∪ γ

E · dl = −
¨

Γ+

∂B

∂t
· dΓ

→
ˆ

C+

E · dl +

ˆ

γ

E+ · (−tγ) dl = −
¨

Γ+

∂B

∂t
· dΓ (2.17)

Summing both gives

˛

C

E · dl−
ˆ

γ

(
E+ − E−

)
· tγdl = −

¨

Γ

∂B

∂t
· dΓ (2.18)
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Figure 2.3: Illustration of a curve C around a surface of discontinuity Σ.

From applying Faraday’s law to C we have

˛

C

E · dl = −
¨

Γ

∂B

∂t
· dΓ (2.19)

After subtracting 2.19 from 2.18 we are left with

ˆ

γ

(
E+ − E−

)
· tγdl = 0 (2.20)

Since C is randomly chosen, so is γ. Hence, we can conclude by localization that at any
point of a surface of discontinuity we have

(E+ − E−) · tγ = 0 (2.21)

We can always choose Γ such that tγ = nγ × nΣ where nγ is the unit normal to Γ at the
curve γ and nΣ is the unit normal to Σ at the curve γ pointing from the − side to the +
side. We then have

(E+ − E−) · (nγ × nΣ) = 0 (2.22)
→ nγ ·

(
nΣ × (E+ − E−)

)
= 0 (2.23)
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Finally

nΣ ×
(
E+ − E−

)
= 0 (2.24)

This tells us that even at a surface where E would be discontinuous, the components of E
tangential to this surface are always continuous. Hence, a potential discontinuity in E would
only come from its component normal to the surface of discontinuity.

2.4.2 Local Ampere’s law

The local forms of Ampere’s law are derived similarly. Let’s assume first that H is
spatially differentiable over the surface Γ. We can then apply Stokes’ theorem to the left
integral of equation 2.10:

˛

C

H · dl =

ˆ

Γ

(∇×H) · dΓ (2.25)

Plugging back into the original equations we get

ˆ

Γ

(∇×H) · dΓ =

¨

Γ

(
Jf +

∂D

∂t

)
· dΓ (2.26)

Let’s assume that ∇×H and ∂D
∂t

are spatially continuous over Γ. As Γ is randomly chosen,
we can apply localization theorem to obtain the local relation at any point in space where
the previous differentiability and continuity assumptions hold:

∂D

∂t
+ Jf = ∇×H (2.27)

To derive the local relation at a point of a surface of discontinuity we proceed exactly as for
Faraday’s law. An extra assumption is made: we assume that a free surface current jf is
going through the assumed surface of discontinuity Σ. Let’s apply now Ampere’s law over
each of the two curves individually:

˛

C−∪ γ

H · dl =

¨

Γ−

(
Jf +

∂D

∂t

)
· dΓ

→
ˆ

C−

H · dl +

ˆ

γ

H− · tγdl =

¨

Γ−

(
Jf +

∂D

∂t

)
· dΓ (2.28)
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˛

C+∪ γ

H · dl =

¨

Γ+

(
Jf +

∂D

∂t

)
· dΓ

→
ˆ

C+

H · dl +

ˆ

γ

H+ · (−tγ) dl =

¨

Γ+

(
Jf +

∂D

∂t

)
· dΓ (2.29)

Summing both gives

ˆ

C

H · dl−
ˆ

γ

(
H+ −H−

)
· tγdl =

¨

Γ

(
Jf +

∂D

∂t

)
· dΓ (2.30)

From applying Ampere’s law to C we have

˛

C

H · dl =

¨

Γ

(
Jf +

∂D

∂t

)
· dΓ +

ˆ

γ

jf · nγdl (2.31)

By subtracting 2.31 from 2.30 we get

ˆ

γ

(
H+ −H−

)
· tγdl =

ˆ

γ

jf · nγdl (2.32)

As C is randomly chosen, so is γ. Hence, we can conclude by localization that at any point
of a surface of discontinuity we have

(H+ −H−) · tγ = jf · nγ (2.33)

By proceeding as previously we get

nΣ × (H+ −H−) = jf (2.34)

This tells us that the components of H tangential to a surface where a free surface current is
present are discontinuous. Across a surface where no such current is present the components
of H tangential to this surface are always continuous.
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2.4.3 Local Gauss’ law

Assuming a volume distribution ρf of free charge over the volume V , Gauss’ law integral
form 2.11 can be written as

‹

S

D · dS =

˚

V

ρfdV (2.35)

Let’s assume that D is spatially differentiable over the volume V . We can then apply
divergence theorem to the left integral of equation 2.35:

‹

S

D · dS =

˚

V

∇ ·D dV (2.36)

Plugging back into the original equations we get

˚

V

∇ ·D dV =

˚

V

ρfdV (2.37)

Let’s assume that∇·D and ρf are continuous over V . As V is randomly chosen, we can apply
localization theorem to obtain the local relation at any point in space where the previous
differentiability and continuity assumptions hold:

∇ ·D = ρf (2.38)

This is derived assuming that the concerned fields are smooth enough, starting from the
electric field density D. Now assume - as previously - that there exist a surface Σ in Ω where
D is not smooth i.e. where it is not differentiable. Then, we cannot apply the divergence
theorem at Σ as ∇ ·D is not defined there.

To derive the local relation at a point of the surface of discontinuity we proceed as following.
Let’s assume there exist a free surface charge distribution λf over Σ. Let’s take a surface S
around the surface of discontinuity Σ. Then, let’s divide the surface into two parts on both
side of Σ such that S = S− ∪ S+ and V = V− ∪ V+, as shown in figure 2.4. We can apply
Gauss’ law over each of these surfaces individually

‹

S−∪ a

D · dS =

˚

V−

ρfdV

→
¨

S−

D · dS +

¨

a

D− · nΣdS =

˚

V−

ρfdV (2.39)
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‹

S+∪ a

D · dS =

˚

V+

ρfdV

→
¨

S+

D · dS +

¨

a

D+ · (−nΣ)dS =

˚

V+

ρfdV (2.40)

Summing both gives

¨

S

D · dS−
¨

a

(
D+ −D−

)
· nΣdS =

˚

V

ρfdV (2.41)

From applying Gauss’ law to S we have

‹

S

D · dS =

˚

V

ρfdV +

¨

a

λfdS (2.42)

By subtracting equation 2.42 from 2.41 we get

¨

a

(
D+ −D−

)
· nΣdS =

¨

a

λfdS (2.43)

As S is chosen randomly, so is a. Thus, we have by localization

(D+ −D−) · nΣ = λf (2.44)

This tells us that the component of D normal to a surface where a free surface charge
distribution is present is discontinuous. Across a surface where no such charge distribution
is present the component of D normal to this surface is always continuous.
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Figure 2.4: Illustration of a volume V around a surface of discontinuity Σ.

2.4.4 Local Gauss’ law for magnetism

We proceed as previously to obtain the differential form of equation 2.12. In the case B
is smooth we have locally

∇ ·B = 0 (2.45)

Similarly as for Gauss’ law we obtain at a point on a surface of potential discontinuity

(B+ −B−) · nΣ = 0 (2.46)

This tells us that the component of B normal to any surface is always continuous. Any
potential discontinuity in B at a surface is due to its components tangential to such surface.

2.5 Hidden charge conservation law
A fundamental assumption in electromagnetism is that electric charges are conserved. In

other word if the total charge in a region has changed, it is because charge has passed out of
the region or entered into it through the bounding surface. This is expressed mathematically
by the charge conservation law

∂Qf

∂t
= −
‹

S

Jf · dS (2.47)

where Qf (in C) represent the total free charges included in the volume V generated by S.
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It turns out that the charge conservation law is included into Maxwell’s equations. To show
this, let’s take the time derivative of the Gauss’ law in integral form 2.11

∂

∂t

‹

S

D · dS =
∂Qf

∂t
(2.48)

As no deformation are considered we can move the time derivative inside the integral

‹

S

∂D

∂t
· dS =

∂Qf

∂t
(2.49)

Using Ampere’s law in integral form 2.10, we have

˛

CS

H · dl−
‹

S

Jf · dS =
∂Qf

∂t
(2.50)

where CS is the closed curve generating S. As S is a closed surface, this curve is the zero
curve. Hence, we obtain the charge conservation law

∂Qf

∂t
= −
‹

S

Jf · dS (2.51)

Thus, for any electromagnetism problem it is sufficient to solve only Maxwell’s equations as
the charge conservation is incorporated in them.

2.6 Remark on interconnection between the Maxwell’s
equations

Let’s first take the divergence of the differential Faraday’s law

∇ ·
(
∂B

∂t

)
= −∇ · (∇× E) = 0 (2.52)

→ ∂

∂t
(∇ ·B) = 0 (2.53)
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Hence, Gauss’ law for magnetism is time independent: if satisfied initially it is always satis-
fied.

Similarly let’s take the divergence of the differential Ampere’s law

∇ ·
(
∂D

∂t

)
= ∇ · (∇×H− Jf ) = −∇ · Jf (2.54)

→ ∂

∂t
(∇ ·D) = −∇ · Jf (2.55)

From the charge conservation law

∂

∂t
(∇ ·D) =

∂ρf
∂t

(2.56)

→ ∂

∂t
(∇ ·D− ρf ) = 0 (2.57)

Hence, Gauss’ law is time independent: if satisfied initially it is always satisfied.

This shows that when solving Maxwell’s equations numerically - as we will do in chapter
4 - it is enough to solve only the time dependent equations if the divergence equations are
satisfied as initial conditions. Of course, all the interface conditions must be implemented
properly when required.

2.7 Linear isotropic materials

2.7.1 Electric permittivity

For many materials, commonly designated as linear isotropic, the polarization P is pro-
portional to the electric field intensity E, such that

P = ε0χeE (2.58)

The constant χe is called the electric susceptibility of the material (dimensionless). It indi-
cates the degree of polarization of a material in response to an applied electric field.

The electric displacement for such material is expressed as

D = ε0E + P = ε0(1 + χe)E (2.59)
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Hence, D is also proportional to E. We introduce the constant of proportionality ε, expressed
in F/m such that

ε = ε0(1 + χe) (2.60)

It is called the electric permittivity of the material. Note that it does carry the same
information as χe: it measures the resistance that is encountered when forming an electric
field inside a material. Either one of them is given for a material. Most often, the relative
electric permittivity is listed

εr =
ε

ε0
= 1 + χe (2.61)

2.7.2 Magnetic permeability

Similarly, for most materials, designated again as linear isotropic, the magnetization M
is proportional to the magnetic field density H such that

M = χmH (2.62)

The constant χm is called the magnetic susceptibility of the material (dimensionless). It
indicates the degree of magnetization of a material in response to an applied magnetic field.

The magnetic displacement for such material is expressed as

B = µ0 (H + M) = µ0(1 + χm)H (2.63)

Hence, B is also proportional to H. We introduce the constant of proportionality µ, expressed
in H/m such that

µ = µ0(1 + χm) (2.64)

It is called the magnetic permeability of the material. Note that it does carry the same
information as χm: it measures the ability of a material to support the formation of a
magnetic field within itself. Either one of them is given for a material. Most often, the
relative magnetic permeability is listed

µr =
µ

µ0

= 1 + χm (2.65)
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2.7.3 Electric conductivity

We assume is this study that the only free currents we have are conductive currents.
Assuming Ohm’s law hold, we have for linear isotropic materials

Jc = σE (2.66)

where σ is the electric conductivity, expressed in S/m.

2.8 Summary
We will work next assuming that the material we are working with are linear isotropic.

Moreover, no free surface charges or free surface currents would be considered. Under those
assumptions we can express Maxwell’s equations only in terms of E and H. We have in case
of smooth fields

∂ (µH)

∂t
= −∇× E (2.67)

∂ (εE)

∂t
+ σE = ∇×H (2.68)

∇ · (εE) = 0 (2.69)

∇ · (µH) = 0 (2.70)

At point of a surface with potential discontinuities we have

n×
(
E+ − E−

)
= 0 (2.71)

n× (H+ −H−) = 0 (2.72)(
(εE)+ − (εE)−

)
· n = 0 (2.73)(

(µH)+ − (µH)−
)
· n = 0 (2.74)

where n is the normal at the surface of discontinuity.

We can now clearly identify these potential causes of discontinuity in this particular case.
We can see from 2.71 that the tangential components of E at any surface are always contin-
uous. However, we see from 2.73 that the component of E normal to an interface between
two materials with different electric permittivity ε would be discontinuous. Hence, equations
2.67 and 2.69 involving spatial derivatives of E don’t apply at such location, we should rather
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use the corresponding interface conditions 2.71 and 2.73.

Similarly we see from 2.72 that the tangential components of H at any surface are always
continuous. However, we see from 2.74 that the component of H normal to an interface be-
tween two materials with different magnetic permeability µ would be discontinuous. Hence,
equations 2.68 and 2.70 involving spatial derivatives of H don’t apply at such location, we
should rather use the corresponding interface conditions 2.72 and 2.74.
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Chapter 3

Effective electromagnetic properties

Homogenization and effective properties are of key importance in this study. Homog-
enization process is presented first in this chapter. Then, the two effective properties of
interest are defined: the effective electric permittivity and the effective magnetic permeabil-
ity. Analytical bounds available to their values are introduced. Finally, their limitations and
the requirements for better estimation are discussed.

3.1 Homogenization and effective properties
If we look at sufficiently fine scale all materials are heterogeneous, made of individual

atoms, which are themselves made of electrons, neutrons and protons. To characterize a
material exactly, the effect of each of these individual entities and their interaction should
be taken into account. Given their uncountable number, this would be an impossible task.
To overcome this difficulty, the hypothesis of continuous material has been introduced. This
hypothesis proposes a notion of average properties in which the actual constitution of the
material is idealized by considering the material to be continuous. A homogeneous medium
is then characterized by properties that are identical at every point.

The same homogenization process is used to characterize particle doped materials. The
properties of a composite are point wise variable. For instance, if we are looking at a prop-
erty P , the composite will have the property Pp of particles at location where particles are
present and property Pm of matrix material otherwise. However this does not give a proper
quantification of the overall composite vis-à-vis the property P . To obtain a better char-
acterization, we assume a homogenous form at macro level and define average properties
that are identical at every point. This homogenization process is illustrated in Figure 3.1.
The average properties are usually designated as effective properties and denoted using the
superscript "∗". We refer to [28] for a meticulous explanation of the topic.

In the next sections we discuss about the two effective properties of interest: the effective
electric permittivity ε∗, and the effective magnetic permeability µ∗.
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Figure 3.1: Homogenization of particle doped composites.

3.2 Effective electric permittivity
For a linear isotropic composite the effective permittivity, denoted as ε∗, is defined as

following

〈D〉Ω = ε∗〈E〉Ω (3.1)

where Ω is the volume of the composite material, and 〈D〉Ω and 〈E〉Ω are respectively the
average electric flux density and average electric field intensity over the volume Ω. The
averaging operator 〈.〉Ω applies to each component of D and E. It is defined for any function
f as

〈f〉Ω =
1

|Ω|

ˆ
Ω

fdΩ (3.2)

Taking the dot product of the left and right hand side in equation 3.1, leads to

〈D〉Ω.〈D〉Ω = (ε∗)2(〈E〉Ω.〈E〉Ω) (3.3)

We can then extract the effective electric permittivity as

ε∗ =

√
〈D〉Ω.〈D〉Ω
〈E〉Ω.〈E〉Ω

(3.4)
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The relative effective electric permittivity is often used which is expressed as

ε∗r =
ε∗

ε0
(3.5)

3.3 Effective magnetic permeability
For a linear isotropic composite the effective magnetic permeability, denoted as µ∗, is

defined as following

〈B〉Ω = µ∗〈H〉Ω (3.6)

where Ω is the volume of the composite material, and 〈B〉Ω and 〈H〉Ω are respectively the
average magnetic flux density and average magnetic field intensity over the volume Ω.

Taking the dot product of the left and right hand side by themselves in equation 3.6, leads
to

〈B〉Ω.〈B〉Ω = (µ∗)2(〈H〉Ω.〈H〉Ω) (3.7)

We can then extract the effective magnetic permeability as

µ∗ =

√
〈B〉Ω.〈B〉Ω
〈H〉Ω.〈H〉Ω

(3.8)

The relative effective magnetic permeability is often used, given by

µ∗r =
µ∗

µ0

(3.9)

3.4 Analytical estimations
Analytically evaluating the effective properties of a composite material is not an easy

task, even when its constitution is known. Several attempts have been made to derive ana-
lytical approximation. The most widely used analytical bounds are introduced next.

The subscript m designates a property of the matrix material, whereas p designates a prop-
erty of the particles.
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3.4.1 Wiener bounds

The widest bounds are the so-called Wiener bounds [29], developed in 1910. It was
shown that the weighted average of the individual properties of each constituent gives an
upper bound and their harmonic average gives a lower bound to the value of the effective
properties. General formulations were derived for bounds valid for any type of linear compos-
ites. Their formulation in the case of a composite made with two linear isotropic materials
is given below.

For the effective electrical permittivity ε∗ we have

(
vm
εm

+
vp
εp

)−1

≤ ε∗ ≤ vmεm + vpεp (3.10)

Similarly, for the effective magnetic permeability we have

(
vm
µm

+
vp
µp

)−1

≤ µ∗ ≤ vmµm + vpµp (3.11)

where vm and vp refers to the volume fractions of the matrix and particles respectively.

3.4.2 Hashin and Shtrikman bounds

Improved bounds, valid only in the case of linear isotropic materials, were developed in
1962 by Hashin and Shtrikman [9]. Their formulations are as follow

ε1 +
vε2

1
ε2−ε1 +

1−vε2
3ε1

≤ ε∗ ≤ ε2 +
1− vε2
1

ε1−ε2 +
vε2
3ε2

(3.12)

µ1 +
vµ2

1
µ2−µ1 +

1−vµ2
3µ1

≤ µ∗ ≤ µ2 +
1− vµ2
1

µ1−µ2 +
vµ2
3µ2

(3.13)

where, for each property, the subscript 2 refers to the material with the higher property (for
instance, if particles have higher permittivity than matrix then ε2 = εp, vε2 = vp and ε1 = εm).
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3.4.3 Limitations

To visualize the approximations given by the bounds, we plot two graphs. In the first
one, given in Figure 3.2, we show the evolution of the bounds with respect to the volume
fraction of the particles. We use the following relative electric permittivity as test parame-
ters: εr,m = 1, εr,p = 10. In the second plot, given in Figure 3.3, we show the variation of
the the ratio εp

εm
for εr,m = 1 and a volume fraction of particles vp = 0.5.

We observe that the bounds give a range that increases as the difference between εm and
εp increases. Although tighter, Hashin and Shtrikman bounds still give a wide range for
large differences in material properties. Hence, these bounds are clearly not handy when a
composite made with large difference in properties is studied. Moreover they don’t take into
account for the microstructure of the composite. For instance they are independent of the
shape or size of the particles.

Next, we propose a numerical method to estimate more accurately the effective electro-
magnetic properties. It takes the microstructure of the composite into account.
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Figure 3.2: Evolution of the analytical bounds versus particle volume fractions for the test case
with εr,m = 1 and εr,m = 10.



3.4. ANALYTICAL ESTIMATIONS 26

0 20 40 60 80 100
0

10

20

30

40

50

60

Ratio ¡p/¡m

Bo
un

ds
 fo

r r
el

at
iv

e 
ef

fe
ct

iv
e 

pe
rm

itt
iv

ity
 ¡* r

 

 

 Voigt −
 Voigt +
Hashin −
Hashin +

Figure 3.3: Evolution of the analytical bounds versus εp
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for for εm,r = 1 and vp = 0.5.
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Chapter 4

Numerical estimation of effective
electromagnetic properties

The proposed numerical method to estimate the effective electric permittivity ε∗ and the
effective magnetic permeability µ∗ of a particle doped material is presented in this section.
Knowing the microstructure of the envisioned particle doped composite (constituents volume
fraction, particles geometry) and the electromagnetic properties of matrix and particles, this
method would allow to estimate the effective electromagnetic properties of the composite.
The overall method is presented first. Then, a boundary value problem is slowly built by
describing the domain used, the equations considered, the numerical implemented to solve
them and the boundary conditions applied. A detailed flow chart of the method is given.
Finally some test simulations and results are shown to validate the method.

4.1 Overall method
The overall method to estimate the effective electromagnetic properties numerically con-

sists of building a numerical sample of the composite material of interest, imposing some
electromagnetic field at its interface, then solving over it Maxwell’s equations numerically
to get its electromagnetic response. The fields are then averaged appropriately to estimate
the effective properties using their definition given in 3.4 and 3.8. An illustrative flowchart
of the method is presented in Figure 4.1. A detailed explanation of each steps involved in
the method is given in the next sections.
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Build a
numerical sample
of the composite

Solve numerically
Maxwell’s equations over
it to obtain the electro-

magnetic fields of interest:
D, E, B, H

Compute the
effective properties

ε∗ =

√
〈D〉Ω.〈D〉Ω
〈E〉Ω.〈E〉Ω

µ∗ =

√
〈B〉Ω.〈B〉Ω
〈H〉Ω.〈H〉Ω

Figure 4.1: Flowchart of the overall method to estimate the effective electromagnetic properties ε∗

and µ∗ numerically.

4.2 Representative volume element

4.2.1 Definition

Solving Maxwell’s equations numerically using any techniques would require some type of
meshing of a sample of the particle doped composite of interest. To take the microstructure
into account properly, a fine enough mesh would be required to capture the particles. This
is illustrated in Figure 4.2. For instance, for a composite with spherical particles, a general
rule of thumb is that a mesh size of a tenth of a particle diameter is necessary to accurately
capture the presence of a particle numerically. Due to the scale difference between the overall
composite - in the µm to mm range - and the particles - diameter in the nm to µm range
- this would result in an enormous amount of degrees of freedom to solve for. For instance,
let’s assume we are using a regular cubic grid. For a particle of size 1µm, a mesh size of
0.1µm would be adequate, resulting for an overall composite of dimension 1mm3 in a total
number of (104)3 = 1012 nodes!
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Figure 4.2: Schematic of mesh refinement around particles. Clearly a fine enough mesh is required
to incorporate accurately the presence of the particles.

To overcome this problem the notion of representative volume element (RVE) has been
introduced. Basically a RVE could be seen as a small representative piece of the actual
composite material. It is small enough so that efficient computation could be carried, but
big enough to properly represent the microstructure. A schematic of the different scale
involved is shown in Figure 4.3. In order for the calculation made at the micro level to be
valid at the macroscale, the RVE must satisfy certain conditions:

• It should be small enough to be assimilated as a continuum material point so that the
effective property estimated over it can be assimilated as a material point property:
l� L.

• It should be big enough so that the microstructure of the composite is properly captured
in order for the estimated effective properties to be independent of the microstructural
variations i.e. RVE independent: l� d.

Additionally, it should have the same volume fraction of both materials as in the actual
composite to represent it properly. Also, the particles must be randomly distributed in order
to simulate isotropic nature of the composite (no distinctive direction). More explanation
on the RVE and its size requirement could be found in [20] and [5].
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Figure 4.3: Different scales involved in RVE size estimation.

4.2.2 Numerical size estimation

The conditions mentioned previously provide only vague indications on the size of the
RVE, without giving quantitative dimensions. The usual way to estimate the appropriate size
is to start with an arbitrary initial size, estimate effective properties over it, then increase the
size and repeat until the results stop varying significantly. This can be exposed as following:

1. Start with a RVE of size l big enough to satisfy l� d and estimate effective property
denoted P ∗0 over it.

2. Increase the size of the RVE and estimate again effective property over it denoted now
P ∗1 .

3. Repeat until the difference between RVE q and q − 1 fall within a chosen tolerance

P ∗q − P ∗q−1

P ∗q−1

≤ tolS (4.1)

4. The RVE for which convergence within the required tolerance is obtained is then con-
sidered to be the appropriate size. Results over it are considered to be the final results.
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4.2.3 Averaging

For each size l during the size estimation process, computation of effective properties
over several random RVEs is necessary to take into account for the randomness of the
repartition of the particles inside the actual composite. The average effective properties
are then considered for size convergence analysis. The average effective property P ∗ over M
random RVEs samples of a specified size l is defined as

P ∗M,l =
1

M

M∑
k=1

P ∗k,l (4.2)

No actual condition is prescribed on the number M of RVEs to consider. The bigger it is,
the better randomness of the particle repartition in the actual composite would be taken
into account. Evaluation over each RVE is an independent process that is parallelized in
the proposed method for improved performance. Computation over up to Mc number of
RVEs is conducted simultaneously, whereMc would be set based on the number of cores and
processors available.

4.3 Numerical method for Maxwell’s equations
We now focus on the equations we have to consider to estimate the electromagnetic fields

of interests and discuss about the numerical scheme we use to solve them.

4.3.1 Equations of interest

Let designate by Ω the total volume of the RVE that is considered. Let Ωm be the volume
of matrix material and Ωp the volume of the particles, such that Ω = Ωm ∪ Ωp. Also, let’s
designate by Γ any particle/matrix interface. This is illustrated in Figure 4.4.

Based on the discussions in section 2.8, the system of equations governing the electro-
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magnetic field we have to consider over our RVE is as follow

In Ωm ∪ Ωp :

∂ (εE)

∂t
+ σE = ∇×H (4.3)

∂ (µH)

∂t
= −∇× E (4.4)

at Γ :

n× (E(m) − E(p)) = 0 (4.5)

n× (H(m) −H(p)) = 0 (4.6)(
(εE)(m) − (εE)(p)

)
· n = 0 (4.7)(

(µH)(m) − (µH)(p)
)
· n = 0 (4.8)

where the unit normal n at Γ is oriented from Ωp to Ωm (particles to matrix).

These coupled partial differential equation are obviously not solvable analytically over a
random RVE. Thus, we present a numerical method to solve them.

Γ

n

Interface

Ωm

Ωp

Γ

Ω
Figure 4.4: Domain repartition on a RVE.

4.3.2 Yee’s scheme

Yee’s scheme [31] is implemented to solve the previous system of equations. The advan-
tages of this method are its second order accuracy in time and space. Moreover, its explicit
format in time makes it very efficient computationally. It also satisfies exactly the divergence
equation once they are set initially. A meticulous explanation on the method and general
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computational electrodynamics discussions are available in [25] and [19].

This finite difference scheme uses a particular discretization where alternation in space and
time occurs between the components of E and H. The spatial discretization in 3D is made
using the so-called Yee’s cell that is presented in Figure 4.5.

For the rest of the dissertation, we call ∆x, ∆y, and ∆z the spatial discretization step size in
direction x, y and z, respectively. Let ∆t be the temporal discretization size. We introduce
for any function f(x, y, z, t) the notation fni,j,k = f(i∆x, i∆y, i∆z, n∆t).

The following discretization of equations 4.3 and 4.4 are used in Yee’s scheme

Hx|n+ 1
2

i,j+ 1
2
,k+ 1

2

=Hx|ni,j+ 1
2
,k+ 1

2
+
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)
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It is important to mention that Yee’s scheme converges to the actual solution only when
the CFL condition is met, which translate into the following restriction on the time step

∆tY ee ≤ ∆tCFL =
min(∆x,∆y,∆z)√

3cmax
(4.15)

where cmax =max{cp, cm}, with cp = 1√
µpεp

and cm = 1√
µmεm

being respectively the velocity
of the wave in the particles and the matrix material.

4.3.3 Problems at material interfaces

In Yee’s scheme, material properties can be specified only at each nodes of the cells.
Hence, the particles are approximated with a step like shape as shown in Figure 4.6. The in-
terface conditions 4.5 to 4.8 are then enforced automatically on this approximation. This will
introduce an error known as stair case error [8] as the numerical solution would be obtained
for a stepped particle instead of a spherical particle. Novel numerical schemes have been
introduced to overcome this problem, as in [4] and [1]. They usually involve changing the
coefficients for nodes near the actual material interface in order to reduce the error. However
their implementation could be arduous and they often lose ease of setup and computational
efficiency provided by Yee’s scheme.
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Figure 4.5: Schematic of a Yee cell.

From an engineering point of view we can deal with this problem in two ways. We can
assume that particles are not going to be properly spherical in the actual material, due to
manufacturing errors, and live up with the stair case approximation. It is also possible to
assume that there is no hard jump in properties in the actual composite but rather a smooth
variation due to built up material at the interface that is a mix of matrix and particle
material. This is taken into account numerically by using Laplacian property smoothing [34]
at the interface, where any property P is replaced by a smooth spatial representation P S as

P S
i,j,k =

1

6
(Pi+1,j,k + Pi−1,j,k + Pi,j+1,k + Pi,j−1,k + Pi,j,k+1 + Pi,j,k−1) (4.16)

This omits the presence of hard jump in material properties at material interface, and re-
move the requirement to take into account for interface conditions. We implement both
possibilities here and comparison in the results is done in section 4.5.

4.3.4 Boundary conditions on RVE

Yee’s scheme requires to specify on the RVE initial conditions for E and H, and boundary
conditions for three of the six total components of E and H combined. Initial condition is
simply a no field state. The boundary conditions are required to satisfy certain condition in
order for the results computed on the RVE to be valid on the actual macroscale composite.
This is derived by imposing energy conservation between the two scales as explained originally
in [11] for mechanics and extended to electromagnetism in [32]. It is shown that boundary
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Figure 4.6: Illustration of ideal and approximated particle/matrix interface for a matrix with
εr,m = 1 and particle with εr,p = 5.

conditions linearly growing in time satisfy this condition and are used here. We impose
boundary conditions on the components of E by locating them on the outer side on the
Yee’s cell having an interface at the boundary. Boundary values are increased at slow linear
rate in order to avoid introduction of oscillating fields. Notice that the magnitude of the
boundary conditions should not influence the final estimation of the effective properties that
are supposed to be constants of the composite.

4.4 Detailed flowchart
A detailed flowchart of the numerical method is given in Figure 4.7. First, composite

parameters are specified: number of phases, material properties, material volume fractions
and the shape of particles. Then, a starting number of particles Np is indicated, and the
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associate RVE size l required to satisfy the specified volume fractions is determined by

l =
(
NpΩp
vp

) 1
3 . As mentioned previously, estimations of effective electromagnetic properties

over several RVEs with random arrangement of particles (we call M total number of RVEs
considered) are required to obtain statistically representative results. Computation of several
RVEs is done in parallel fashion: up to Mc computations are carried out simultaneously.
The RVEs are divided into Yee cells, and the E and H fields are computed over each by
solving Maxwell’s equations using Yee’s scheme based on specified boundary conditions.
Constitutive laws are used simultaneously to compute the D and B fields. At each time step
these fields are averaged over the considered RVE in order to compute ε∗ and µ∗. When their
values become steady, the process is stopped. Once results over all M number of RVEs are
available, they are averaged. We then increase Np while keeping volume fractions vp fix, to
obtain RVEs of bigger size. The process is stopped when difference in the average effective
properties over two successive sizes vary within a specified tolerance, tolS.
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Figure 4.7: Flowchart of the overall numerical method proposed to estimate the effective
electromagnetic properties.

4.5 Simulation and results

4.5.1 Validation with analytical bounds

We check first the validity of the proposed numerical method by verifying that the results
on a model problem fall between the corresponding analytical bounds. A two-phase com-
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posite is considered, made of matrix and spherical non-overlapping particles. The following
parameters are used

1. Matrix properties

• Relative electric permittivity εr,m = 1

• Relative magnetic permeability µr,m = 1

• Electric conductivity σm = 0 S/m

2. Particles properties

• Relative electric permittivity εr,p = 10

• Relative magnetic permeability µr,p = 5

• Electric conductivity σp = 0 S/m

3. RVE parameters

• Particle diameter d = 2µm

• Total number of RVEs is M = 30

• Simultaneous computation over MC = 8 RVEs
• Number of particles Np = 50 initially, then increased by 50 until convergence

criteria is met
• Tolerance on size tolS = 3%

• Volume fraction of particle vp is varied to obtain different results

• The RVE size is then chosen such that l =
(
Np(4/3)π(d/2)3

vp

) 1
3

4. Numerical solver parameters

• Mesh size ∆x = ∆y = ∆z = d
10

• ∆t = ∆tCFL

5. Electromagnetic field

• Electric field: E = (0, 0, 0) V/m at t = 0 and linearly growing with time on the
side of the RVE with normal ey and −ey until E = (1000, 1000, 1000) V/m over
1000 time step
• Magnetic field: H = 0 A/m at t = 0
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Materials with fairly close electromagnetic properties are used on purpose in order to have
tighter range in the bounds and validate the method properly. We considered cases with
and without property smoothing at matrix/particles interface in order to test the validity of
both. Multiple results are presented next.

In Figure 4.8 the evolution of ε∗r and µ∗r for one RVE is shown. The parameters used are
Np = 200 particles and vp = 0.2. We see that the effective properties values vary at first
as the fields settle, then reach a steady value. The result with properties smoothing fall in
between the bounds for both ε∗r and µ∗r. We notice that the result without smoothing fall
outside the Hashin-Shtrikman bounds for µ∗r where the bounds are tighter.

Once a steady value is captured for the effective properties the simulation is stopped. We
move on to the next RVE of the same size. The results over 30 randomly generated RVE of
same size are shown in Figure 4.9. The results vary within a range that is very narrow and
a better estimation than the bounds is obtained.

The evolution of the relative effective properties averaged over 30 RVEs for different RVE
size is shown in Figure 4.10. The initial sample has parameters Np = 50, vp = 0.2. Then
Np is increased keeping vp constant in order to obtain bigger RVE size l. We observe that
a certain convergence in numerically estimated effective properties occur for a RVE with
Np = 200 particles in this particular case.

Finally we show in Figure 4.11 evolution of average effective properties for different volume
fraction of particles vp.

The material parameters were intentionally chosen to obtain a very small range for the
Hashin-Shtrikman bounds. We observe that results without smoothing fail to pass the
bounds test in the case of µ∗r, which has very tight bounds. On the other hand, all of the
results with smoothing successfully fall inside those bounds. Hence, the property smoothing
technique is used for all the simulations next.
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Figure 4.8: Evolution of the relative effective electric permittivity ε∗r (top) and relative effective
magnetic permeability µ∗r (bottom) versus time step number for one simulation, along with

analytical bounds.
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Figure 4.9: Relative effective electric permittivity ε∗r (top) and relative effective magnetic
permeability µ∗r (bottom) over different random RVE of similar size, along with analytical bounds.
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Figure 4.10: Evolution of average relative effective electric permittivity ε∗r (top) and relative
effective magnetic permeability µ∗r (bottom) over different size RVE, along with analytical bounds.
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Figure 4.11: Evolution of average relative effective electric permittivity ε∗r (top) and relative
effective magnetic permeability µ∗r (bottom) for different volume fraction of particles, along with

analytical bounds.
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4.5.2 Comparison with experimental results

Experimental estimations for the effective electric permittivity of a composite made by
doping polyethylene (PE) with BaTiO3 particles are presented in [26]. The results pro-
vided are used to observe the accuracy of the proposed numerical method. The following
parameters are specified in [26]

1. PE

• Relative electric permittivity εr,m = 2.5

2. BaTiO3

• Particle size d ≈ 100µm

• Relative electric permittivity εr,p = 72.5

All other parameters are similar to previous the section. Numerical computation of the
effective electric permittivity is conducted using these parameters. Comparison between
experimental and numerical results is shown in Figure 4.12. We observe better estimation
than analytical bounds. However, difference in the results is still noticeable, especially at
higher volume fraction. This could be due to several factors. We list the most prominent
below:

• the property smoothing technique provides only an approximation without taking ac-
tually into account exactly for the particles’ spherical shape, this could introduce errors
in computing the effective properties,

• external factors such as temperature variation could influence the results but is not
taken into accounting in the numerical model,

• the particle size provided in [26] is only approximate, it is possible that variable size
particles were used in the experiment.
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Figure 4.12: Evolution of the numerical effective electric permittivity ε∗r along with analytical
bounds and experimental results from [26].

4.5.3 Particle size influence

In this section influence of particle size on the effective electromagnetic properties is
assessed. To do so, the following parameters are used

1. Matrix material properties

• Relative electric permittivity εr,m = 1

• Relative magnetic permeability µr,m = 1

• Electric conductivity σm = 0 S/m

2. Particles material properties

• Relative electric permittivity εr,p = 70

• Relative magnetic permeability µr,p = 40

• Electric conductivity σp = 0 S/m

3. RVE parameters

• Particle diameter is varied
• Total number of RVEs is M = 30

• Simultaneous computation over MC = 8 RVEs
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• Number of particles Np = 200

• Volume fraction of particle vp = 0.2

• The RVE size is then chosen such that l =
(
Np(4/3)π(d/2)3

vp

) 1
3

4. Numerical solver parameters

• Mesh size ∆x = ∆y = ∆z = d
10

• ∆t = ∆tCFL

5. Electromagnetic field

• Electric field: E = (0, 0, 0) V/m at t = 0 and linearly growing with time on the
side of the RVE with normal ey and −ey until E = (1000, 1000, 1000) V/m over
1000 time step
• Magnetic field: H = 0 A/m at t = 0

We show in Figure 4.13 the evolution of the effective properties with particles diameter
varying from 5µm to 10µm. We observe that, for this particular range, a bigger particle size
is recommended for higher effective permittivity ε∗. On the other hand, a smaller particle
size is recommended for higher effective permeability µ∗.
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Figure 4.13: Evolution of effective electric permittivity ε∗r (top) and relative effective magnetic
permeability µ∗r (bottom) for different particle size.

4.5.4 Influence of inclusions shape

Although spherical particles are preferred in the applications of interest due to ease of
manufacturing at small scales, various shapes could be envisioned for the inclusions [12]. In
this section, we assess the effect of different shape of ellipsoid on the effective electromagnetic
properties to illustrate the capabilities of the proposed method to work with any particle
shape. Ellipsoid are described by the following equations

(x− x0)2

a2
+

(y − y0)2

b2
+

(z − z0)2

c2
= 1 (4.17)
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where (x0, y0, z0) are the coordinates of the center of the ellipsoid, and a, b, c are the length
of the semi-principal axes. The choice of ellipsoid inclusions here is based on its ability to
represent variety of shape depending the selection of parameters a, b, and c. Different shapes
are shown in Figure 4.14 for a = b = rp and variable values of c.

Figure 4.14: Various ellipsoids for a = b = rp = 1 and variable c.

The numerical method described in the flow chart 4.7 is applied to different shape of ellipsoid,
and effective electromagnetic properties are computed for each of them. The parameters a, b
and the volume fraction of inclusion vp are kept constant. Results are computed for different
values of c. Random orientation of all 3 axis is imposed for each ellipsoid added to an RVE
in order to obtain random orientation and simulate overall isotropy and randomness in the
actual composite.

The complete list of parameters used is given below

1. Matrix material properties

• Relative electric permittivity εr,m = 1

• Relative magnetic permeability µr,m = 1

• Electric conductivity σm = 0 S/m

2. Particles material properties

• Relative electric permittivity εr,p = 200
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• Relative magnetic permeability µr,p = 100

• Electric conductivity σp = 0 S/m

3. RVE parameters

• Ellipsoid semi-principal axis a = b = rp = 1µm, c is varied
• Total number of RVEs is M = 30

• Simultaneous computation over MC = 8 RVEs
• Number of particles Np = 200

• Volume fraction of inclusions vp = 0.1

• The RVE size is then chosen such that l =
(
Np(4/3)πabc

vp

) 1
3

4. Numerical solver parameters

• Mesh size ∆x = ∆y = ∆z = d
10

• ∆t = ∆tCFL

5. Electromagnetic field

• Electric field: E = (0, 0, 0) V/m at t = 0 and linearly growing with time on the
side of the RVE with normal ey and −ey until E = (1000, 1000, 1000) V/m over
1000 time step
• Magnetic field: H = 0 A/m at t = 0

Evolution of the effective electromagnetic properties for different values of c is shown
in Figure 4.15. We observe that shape influence their value. Although variations for this
particular simulation are in a small range, we can see that shape other than spherical could
deliver higher values. We find here that the highest value for ε∗ is obtained for c = 0.9rp and
the highest value for µ∗ is obtained for c = 0.5rp.

For the rest of the dissertation we consider again only spherical particles.
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Figure 4.15: Relative effective electric permittivity ε∗r (top) and relative effective magnetic
permeability µ∗r (bottom) for different ellipsoid shapes with parameters a = b = rp and variable c.

Note that results for c = rp correspond to spherical particles.
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Chapter 5

Thermal effects on effective
electromagnetic properties

In this chapter we assess thermal dependence of the effective electromagnetic properties.
The importance of thermal effects for the applications of interest is discussed first. Then,
the effects of temperature on electric permittivity and magnetic permeability are explored.
Finally we introduce a numerical method to predict the variation of effective electromagnetic
properties with temperature.

5.1 Importance of thermal effects
For the applications of interest, namely dielectrics in capacitors and magnetic cores in

planar inductors, the composite material is expected to evolve in an environment where a
strong electromagnetic field is present. Thus, a temperature increase via Joule heating is
to be expected [10]. It is also shown that variation in temperature affects the value of the
electric permittivity ε and magnetic permeability µ of most materials [21], [16], [22]. Hence,
we have a two way coupling as illustrated in Figure 5.1.

Temperature variation would certainly affect the properties of the individual materials a
particle composite is made of, affecting subsequently its effective electromagnetic properties.
Assessing the effect of temperature variation on the effective electromagnetic properties is
thus key for designing a viable composite for the applications of interest. We propose here
a numerical method to do so.



5.2. THERMAL DEPENDENCE OF ELECTROMAGNETIC PROPERTIES 53

Electromagnetic field Temperature

Joule effect

µ(θ), ε(θ)

Figure 5.1: Illustration of the two way electromagnetic-thermal coupling.

5.2 Thermal dependence of electromagnetic properties
The electromagnetic properties of most materials are thermally dependent, as discussed

in depth in [21] and [16] for the electric permittivity, and in [22] for the magnetic permeabil-
ity. These behaviors are usually determined experimentally when required.

Generally speaking, no predictable behavior is observed: the variations are highly material
dependent. Many analytical models have however been proposed, such as the one listed in
[23], [17], [17], and [34].

5.3 Numerical estimation of the thermal dependency of
effective electromagnetic properties

5.3.1 Overall method

We assume the variation with temperature of the electromagnetic properties of each
individual material constituting the particle doped composite of interest is known either
empirically or via analytical model. Then, the proposed method consists of evaluating these
properties for different temperature and using for each temperature the numerical method
presented in section 4.4 to evaluate the corresponding effective properties. The flow chart of
the method is presented in Figure 5.2.

5.3.2 Results on test problem

We apply the method to a test problem. We assume for this that the electromagnetic
properties of the matrix material are thermally independent. For simulation purposes, sig-
moid type behavior for the electric permittivity and magnetic permeability of the particle
material is considered [34]
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Select starting temperature θ

Evaluate εm(θ), µm(θ),
εp(θ), and µp(θ)

Use previously intro-
duced numerical method
to evaluate ε∗ and µ∗

Final
temperature
reached?

Increment θ

Obtain ε∗(θ) and µ∗(θ)

no

yes

Figure 5.2: Flow chart of the numerical method to estimate thermal behavior of effective
electromagnetic properties.
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εr(θ) = 1 + εsrFs

(
αε,

θ − θ0

θ0

)
(5.1)

µ(θ) = 1 + µsrFs

(
αµ,

θ − θ0

θ0

)
(5.2)

In this model, εsr, αε, µsr, and αµ are assumed empirically determined material properties, θ is
the current temperature, and θ0 is a reference temperature. Here, Fs designates the sigmoid
function defined by

Fs(α, x) =
1

1 + e−αx
(5.3)

An illustration of the function is given in Figure 5.3. Basically εsr and µsr are thresholds to
the variation of ε and µ. The parameters αε and αµ are positive for increasing property with
temperature, otherwise they are negative.
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Figure 5.3: Plot of the evolution of the sigmoid function Fs for α = 1 and α = −1.

The following parameters are considered for the test simulation

1. Matrix material properties (assumed thermally independent)
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• Relative electric permittivity: εr,m = 1

• Relative magnetic permeability: µr,m = 1

• Electrical conductivity: σm = 0 S/m

2. Particles material properties

• Relative electric permittivity: εsr,p = 38, αεp = −2

• Relative magnetic permeability: µsr,p = 18, αµp = −2.5

• Electrical conductivity: σp = 0 S/m

• Reference temperature: θ0 = 303K

3. RVE parameters

• Particle diameter d = 2µm

• Total number of RVEs is M = 30

• Simultaneous computation over MC = 8 RVEs
• Number of particles Np = 200

• Volume fraction of particle vp = 0.2

• The RVE size is then chosen such that l =
(
Np(4/3)π(d/2)3

vp

) 1
3

4. Numerical solver parameters

• Mesh size ∆x = ∆y = ∆z = d
10

• ∆t = ∆tCFL

5. Electromagnetic field

• Electric field: E = (0, 0, 0) V/m at t = 0 and linearly growing with time on the
side of the RVE with normal ey and −ey until E = (1000, 1000, 1000) V/m over
1000 time step
• Magnetic field: H = 0 A/m at t = 0

Results are shown in Figure 5.4. We observe that the effective properties decrease with
temperature following the trend imposed by the variation of the properties of the particles.
Then they become steady as the properties of the particle reach their constant threshold.
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This model simulation shows the advantage of a particle doped composite over a raw
material having decreasing properties with temperature. Indeed, making particles from this
raw material and using them to manufacture a particle doped composite employing a ma-
trix material with thermally independent properties would allow for higher electromagnetic
properties at high temperature.

Also, it is possible to use such predictions to carry out coupled electromagnetic-thermal
simulations over the actual macro composite material. Assuming effective thermal properties
are known, one could now simultaneously solve Maxwell’s equations and the heat equation
while taking into account pointwise variations of the effective electromagnetic properties due
to local temperature variations.
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Figure 5.4: Evolution of relative effective electric permittivity ε∗r (top) and relative effective
magnetic permeability µ∗r (bottom) as a function of temperature for the test problem.
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Chapter 6

Numerical design of particle doped
composite for electromagnetic
applications

In this chapter we propose a numerical method that allows to answer the following ques-
tion: "If I desire to manufacture a particle doped composite with effective electromagnetic
properties ε∗D and µ∗D, what mixing parameters should I use?"

6.1 Motivation
In the previous sections we proposed a numerical method to estimate the effective electro-

magnetic properties of a particle doped composite with known mixing parameters. During
the design process of such a composite, it is often the reverse problem that is encountered:
the desired effective properties are known and we are to determine the appropriate mixing
parameters for the composite to achieve these desired properties. The following parameters,
identified previously as having influence on the effective electromagnetic properties, must be
optimized:

• The electric permittivity of matrix material εm and particles εp

• The magnetic permeability of matrix material µm and particles µp

• The volume fraction of the particles vp

• The diameter of the particles d

Any other parameters that may affect the effective properties are neglected in this study.
Range restrictions may be specified on some or all of these parameters. Also, it is possible
to fix some parameters, for instance the properties of the matrix material, in case such re-
strictions apply.
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An optimization technique using Hashin-Shtrikman bounds has been developed in [32].
Following the same technique we present a method to optimize these parameters using the
previously introduced numerical method to estimate effective electromagnetic properties in-
stead of Hashin-Shtrikman bounds.

6.2 Numerical method

6.2.1 Test Function

A test function is to be introduced first. This is the function we want to optimize.
Let λ = (εm, εp, µm, µp, vp, d) the vector of parameters to be optimized. Following [32] we
introduce the test function

F (λ) = wε

∣∣∣∣ε∗(λ)− ε∗D
εD

∣∣∣∣+ wµ

∣∣∣∣µ∗(λ)− µ∗D
µD

∣∣∣∣ (6.1)

where ε∗D and µ∗D are the desired effective properties, and ε∗(λ) and µ∗(λ) are the terms we
are trying to optimize in order to minimize F i.e. bring it as closer to zero as possible. The
parameters wε and wµ are positive weights that are adjusted depending on the importance
of each of the effective properties.

A desired tolerance tolD is often specified on the value of F such that the search for the
optimizing λ is stopped when F ≤ tolD.

6.2.2 Genetic algorithm

We want to use the numerical method introduced in Chapter 4 to evaluate the effective
properties ε∗(λ) and µ∗(λ) for λ. Due to the complexity brought on by the test function,
it is decided to use the optimization technique known as genetic algorithm. It is a popular
technique to optimize non-linear systems with large numbers of variables. We refer to [3] for
a detailed explanation of the method and its various applications.

The method consists of generating a set of Ns random strings λi, called population. Then,
they are plugged into the test function. The value Fi of the test function corresponding to
λi is commonly designated as the fitness of λi. If one of the fitness meets the specified
tolerance, we stop. Otherwise we repeat with Ns new random strings until tolerance is met.
To accelerate the process the Ntop top performing strings are often kept and each successive
two top strings are linearly combined to produce "child" strings

λchild j
k = αkλ

parents i
k + (1− αk)λparents i+1

k (6.2)
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where the subscript k indicates the component of λ (for instance k = 1 designates εm), the
superscript j designates the jth child, and the superscript i designates the ith top parent
string. Here αk is a random number between 0 and 1. In this case, the Ntop parent strings
and Nchild children per couple are kept for the new population, and more strings are randomly
generated to obtain a population of size Ns. Once again, the process is repeated until the
convergence criterion is met. This is described properly in the flowchart given in the next
section.

6.2.3 Flow chart

We give in Figure 6.1 a detailed flowchart of the numerical method proposed to optimize
mixing parameters of a composite to achieve desired properties. Computation of effective
properties for each string being an independent process, it is parallelized in the proposed
method.

Randomly generate a
population of Ns strings �i

Compute ✏⇤1 = ✏⇤(�1) and
µ⇤

1 = µ⇤(�1) numerically
... Compute ✏⇤Ns

= ✏⇤(�Ns)
and µ⇤

Ns
= µ⇤(�Ns)

Evaluate fitness of string
�1: F1 = F (✏⇤1, µ

⇤
1)

Evaluate fitness of string
�Ns : FNs = F (✏⇤Ns

, µ⇤
Ns

)

min
i

(Fi) 
tolD?

Minimizing
�i is our
optimizer

Take Ntop best strings and
mate the successive top 2
to produce Nchild per cou-
ple by linear interpolation

Add new randomly
generated strings
to make a new

population of Ns strings

yes

no

Parallel computation

1

Figure 6.1: Flowchart of the overall numerical method proposed to estimate the effective
electromagnetic properties.
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6.3 Results on a test simulation
The method is applied to a test problem. We assume that the properties of the ma-

trix material are known. We are looking for the appropriate particle material properties εr,p
and µr,p, its quantity vp and its diameter d to achieve desired effective electric permittivity ε∗.

The following parameters are used

1. Matrix material properties

• Relative electric permittivity: εr,m = 1

• Relative magnetic permeability: µr,m = 1

2. Desired properties

• Relative effective electric permittivity: ε∗r,D = 10

3. Genetic algorithm parameters

• Ns = 20

• Ntop = 4

• Nchild = 2

• Tolerance on fitness tolD = 2× 10−4

• Range on relative electric permittivity of particle: 50 ≤ εr,p ≤ 400

• Range on relative magnetic permeability of particle: 40 ≤ µr,p ≤ 200

• Range on particle volume fraction: 0.05 ≤ vp ≤ 0.2

• Range on particle diameter: 2µm ≤ d ≤ 10µm

• Weights: wε = 1, wµ = 0

4. Numerical solver parameters

• Mesh size ∆x = ∆y = ∆z = d
10

• ∆t = ∆tCFL

5. Electromagnetic field

• Electric field: E = (0, 0, 0) V/m at t = 0 and linearly growing with time on the
side of the RVE with normal ey and −ey until E = (1000, 1000, 1000) V/m over
1000 time step
• Magnetic field: H = 0 A/m at t = 0
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The results are shown next. We show in Figure 6.2 the fitness of best performing string per
population. We see that the tolerance is reached after 58 populations (although we let the
code run for 70 populations). The evolution of the parameters for the best performing string
per population is shown in Figure 6.3. Finally Table 6.1 lists the top 5 strings from the final
population along with their fitness.

The parameters suggested by the method are obviously not realistic. For instance, a material
with suggested εr and µr might not exist. However, the method provides a target range for
these parameters. A post processing work is still required to determine any existing material
with characteristics closest to the one specified by this method. A final numerical evaluation
of effective electromagnetic properties with the material selected would be required to check
that the desired effective electromagnetic properties are indeed achieved.
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Figure 6.2: Evolution of the fitness for the best performing string per population. Tolerance for
the fitness is met with population number 58.

String number εr,p µr,p vp d (µm) ε∗r Fitness (10−4)
1 235.8586 127.8108 0.14555 3.3301 10.0018 1.8521
2 238.3521 127.5618 0.1456 3.3302 9.9980 1.9599
3 238.6493 127.5157 0.1456 3.3321 10.0050 5.0412
4 234.9355 128.2741 0.14554 3.3251 10.0083 8.3800
5 237.08350 127.7310 0.14555 3.3301 10.14577 145.7823

Table 6.1: Parameters from the top 5 best performing string from the final population.
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Figure 6.3: Evolution of the suggested parameters by the best performing string per population.
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Chapter 7

Closing comments

Driven by applications to electromagnetic components of MEMS, the focus of this work
was on estimating the effective electromagnetic properties of particle doped composites.

After reviewing the theory of electromagnetism, the concept of homogenization and ef-
fective properties were introduced. Some popular analytical bounds for the effective electric
permittivity and effective magnetic permeability were presented. Observing their limita-
tions, a numerical method to estimate these effective properties was proposed.

A numerical method using Yee’s scheme to solve dynamic Maxwell’s equations was devel-
oped. The method was applied to a test problem and numerical results were validated with
analytical bounds. The results were also compared to some experimental data available. A
noticeable difference was observed. The main source of error was identified as being the
incapacity of the numerical method to capture exactly the spherical shape of the particles.
Improved numerical scheme able to capture special features could be implemented to improve
the accuracy of the results. Still, a better performance than the analytical bounds available
was shown by the numerical method. The capacity of the method to work for various shapes
of particle has also been shown.

The model was then extended to predict the thermal variation of the effective properties.
The results could be used to conduct coupled EM-thermo simulation by solving simulta-
neously Maxwell’s equations and the heat equation on the actual macro composite using
effective properties (assuming effective thermal properties are known). One could then track
the point wise variation of effective electromagnetic properties due to local change in tem-
perature.

Finally a numerical optimization method was introduced to estimate optimal parameters
for a particle doped composite to achieve desired effective electromagnetic properties. The
method combined genetic algorithm with the numerical method previously proposed to es-
timate effective electromagnetic properties. The scheme showed good performance on a test
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problem.

Considerations for future work mainly include implementation of an improved scheme for
Maxwell’s equations to capture exactly the spherical shape of the particles.
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