
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Second-order perturbative correction to state-specific, excited-state mean field theory

Permalink
https://escholarship.org/uc/item/9xw9t0ns

Author
Clune, Rachel

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9xw9t0ns
https://escholarship.org
http://www.cdlib.org/


Second-order perturbative correction
to state-specific, excited-state mean field theory

by

Rachel A. Clune

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Eric Neuscamman, Chair
Professor Eran Rabani

Professor Burkhard Militzer

Spring 2023



Second-order perturbative correction
to state-specific, excited-state mean field theory

Copyright 2023
by

Rachel A. Clune



1

Abstract

Second-order perturbative correction
to state-specific, excited-state mean field theory

by

Rachel A. Clune

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eric Neuscamman, Chair

Obtaining predictions for the energies of electronic excited states, especially charge transfer
states, is still a challenge in the field of electronic structure theory. Charge transfer states
often play an important role in the function of solar cells and organic semiconductors, and
having an accurate computational model for their energetics that is not computationally
expensive is crucial for the development of new technologies that rely on the existence of
these states. In this dissertation, two contributions towards this goal are discussed. First,
the formulation of a state-specific perturbative method with a relatively low computational
complexity of O(N5) is described. The approximations made to reduce the scaling from
its original complexity of O(N7) had very little impact on the results of the method and it
was shown that it provided accurate energetic predictions for valence and charge transfer
excitations of small molecules. Next, this perturbative method was analyzed for its accuracy
using a benchmarking set of 105 singlet valence excited states. Through this study it was
found that, with regularization, the method can perform even better than many higher-
scaling theories and can provide a warning for when a state being studied cannot be mainly
described by single excitations. The demonstrated accuracy of the method combined with
its relatively low computational cost makes it a promising theory that will be useful in its
own right and which can act as a springboard for the development of even more sophisticated
excited-state-specific correlation methods.
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Chapter 1

Introduction

1.1 Motivation

Understanding the properties of electronic excited states is crucial for many aspects of sci-
ence such as photochemistry and predicting chemical spectra.[1, 2] Theoretical models are
necessary for understanding the underlying aspects of these chemical processes and can be
used in conjunction with experimental data to give a more complete view of what is being
studied. However, while a robust hierarchy of methods to study the ground states of sys-
tems exists – and will be discussed in more detail later on – excited states pose additional
challenges. First, the change in electron density that comes from an electronic transition
can cause the orbitals in the system to relax, a process that must be accounted for in order
to obtain accurate results.[3] Second, determining the basic structure of an excited state
can be difficult, as the molecular orbital picture of chemistry is just a model. As will be
seen repeatedly in this thesis, electronic excitations, even ones dominated by singly excited
character, are often best described as a linear combination of different configurations. For
example, an excited state that is dominated by a HOMO/LUMO excitation can mix with
the HOMO-1/LUMO+1 transition, meaning that a combination of both configurations is
necessary to fully represent the state. Finding the linear combination of these configurations
can be a daunting optimization problem. Having a hierarchy of excited state methods that
fully account for orbital relaxations, can reliably find representations for specific vertical ex-
citations while maintaining the computational complexity of their ground state counterparts,
and can account for electron correlation effects would be an incredibly useful tool for the
chemistry community.

In particular, modeling the properties of charge transfer states still poses a large challenge
for the theoretical chemistry community.[4, 5] These states occur in materials being studied
for their use in solar cells [6, 7] and in organic semiconductors, such as the well-studied
DMABN molecule.[8] Methods that are more computationally complex (those that scale as
O(N6) and higher) can be fairly accurate for these states, as will be discussed, but their high
cost makes using them prohibitive for modeling realistic systems.[9] Lower scaling methods,



CHAPTER 1. INTRODUCTION 2

such as time-dependent density functional theory, while more tractable, tend to have issues
with accuracy even with state-of-the-art exchange correlation functions.[5, 10] In this work,
a method is presented that is capable of achieving accurate energies for valence and charge
transfer excited states at O(N5) scaling: excited-state-specific Møller-Plesset perturbation
theory.[11, 12]

1.2 Underlying principles of electronic structure

theory

To create these theoretical models that can describe molecular systems, we start with finding
the solutions to

ih̄
∂

∂t
Ĥ |Ψ⟩ = Ĥ |Ψ⟩ (1.1)

known as the time-dependent Schrödinger equation. However, since the eigenstates of the
Hamiltonian that control most molecular properties are stationary in time, we can instead
focus on solving the time-independent Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ (1.2)

where E is the energy of the system, |Ψ⟩ is the corresponding eigenvector state, and Ĥ is
given by

Ĥ =
∑
pq

∑
σ∈{α,β}

hpqp̂
†
σ q̂σ +

1

2

∑
pqrs

∑
σ,τ∈{α,β}

⟨pq|rs⟩ p̂†σ q̂†τ ŝτ r̂σ (1.3)

in the syntax of second quantized algebra. Here p, q, r, s range over all one-electron basis
functions used to approximately represent |Ψ⟩, σ and τ denote spin up/down, operators of
the form p̂† are creation operators that place electrons in the spatial orbital ϕp, and operators
of the form q̂ are destruction operators that remove electrons from spatial orbital ϕq. The
first term is a one-body operator in that it only depends on the position of one electron can
contains information about the electronic kinetic energy and electron-nuclear interaction:

hpq ≡ ⟨p| ĥ |q⟩ =

∫
ϕ∗
p(r⃗)

(
−1

2
∇2 −

Nnuc∑
M

Zm

r⃗ − R⃗M

)
ϕq(r⃗)dr⃗ (1.4)

where Nnuc is the number of nuclei in the system, r⃗ is the position of a given electron, and
RM is the location of nuclei M . The second term in Equation 1.3 is a two-body describing
electron-electron interactions where the integrals are given by

⟨pq|rs⟩ ≡ ⟨pq| Ô2 |rs⟩ =

∫ ∫
ϕ∗
p(r⃗1)ϕ

∗
q(r⃗2)

1

|r⃗1 − r⃗2|
ϕr(r⃗1)ϕs(r⃗2)dr⃗1dr⃗2 (1.5)

This is considered a two-body operator (Ô2) as these integrals depend on the positions of
two electrons in the system. The nuclear-nuclear interactions are not considered because we
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have adopted the Born-Oppenhiemer approximation. In this approximation it is assumed
that the motion of the nuclei can be treated separately from that of the electrons because
they are so much more massive, and thus move more slowly.[13]

The solutions to the time-independent electronic Schrödinger equation are the ground
and electronic excited states of the system, within the basis set we are using to represent Ψ.
These basis sets are typically a collection of Gaussian functions that are meant to recreate
the atomic orbital shapes. Gaussians are chosen due to the existence of an analytical form for
their integral expressions.[13] However, for many-body systems, the size of the basis becomes
large very quickly, as functions are needed to describe the atomic orbitals on each individual
atom in a system. For example, the cc-pVDZ basis set, which is typically not regarded as
quite large enough to give chemically accurate results for many systems,[14, 15] needs 24
basis functions for a single water molecule. Extrapolating to systems such as a solute in a
cluster of water molecules, it is easy to imagine modeling systems that would need thousands
of basis functions. As the many-body basis grows exponentially with the number of electrons
and orbitals, directly diagonalizing the Hamiltonian to obtain eigenfunctions and eigenvalues
becomes computationally intractable for systems of this size, so in order to obtain results
one must begin implementing approximations.

1.3 Ground state hierarchy of wave function methods

1.4 Hartree Fock

For calculating the properties of electronic ground states there exists a hierarchy of methods
that allows one to systematically improve the expected accuracy of the prediction, usually at
the cost of increased computational complexity. At the bottom of this hierarchy is Hartree
Fock (HF), a mean field theory that is based around the assumption that the ground state
of a system can be written as a single Slater determinant (SD):

|RHF ⟩ ≡ |ψ⟩ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r⃗1) ϕ2(r⃗1) · · · ϕN(r⃗1)
ϕ1(r⃗2) ϕ2(r⃗2) · · · ϕN(r⃗2)

...
...

. . .
...

ϕ1(r⃗N) ϕ2(r⃗N) · · · ϕN(r⃗N)

∣∣∣∣∣∣∣∣∣ (1.6)

where N is the number of electrons in the system, r⃗i are the locations of these electrons,
and ϕi(r⃗) are the molecular orbitals. The molecular orbitals are typically expressed as linear
combinations of atomic orbitals, expressed as χµ(r⃗), which are in turn expressed using a
(typically Gaussian) basis set, resulting in

ϕi(r⃗) =
∑
µ

cµiχµ(r⃗) (1.7)

The variational principle, which states that any expectation value of the Hamiltonian gained
from an approximate wave function must be greater than or equal to the lowest Hamiltonian
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eigenvalue, is used to determine the set of coefficients (cµi) via a minimization procedure.
Typically one does this by solving the self-consistent Roothaan-Hall equations [13, 16, 17]
given by

FC = SCϵ (1.8)

where F is known as the Fock matrix, C is the rotation matrix for converting the basis
functions into molecular orbitals, and {ϵ} are the Hartree Fock orbital energies. Using these
equations is referred to as ’self-consistent’ because the representation of the Fock matrix
depends on the molecular orbital shapes, which is information that is contained within C.
An iterative procedure must be used to slightly change the representation of the molecular
orbitals, determine the impact this has had on the Fock matrix, use the Fock matrix to
determine a new representation for the molecular orbitals, etc., until F and C change only
negligibly.[13] There are ways to increase the convergence of this iterative procedure, such
as using direct inversion of the iterative subspace (DIIS).[18] Direct minimization methods,
such as gradient descent, may also be used if the self-consistent procedure fails.[19]

While this method of obtaining a representation of the ground state typically recovers
around 99% of the total electronic energy for many systems, the remaining 1% of the en-
ergy, known as the correlation energy because it comes from effects beyond the statistically-
independent mean-field picture, is crucial for depicting many chemical properties.[20] For
an example of how large this 1% can be, comparing the reaction energy of the combustion
of methane calculated from Hartree Fock to the reaction energy from a high level method
such as CCSD(T) (this method is discussed in Section 1.4.3) shows that Hartree Fock errors
by 14 kcal/mol.[21] It is therefore crucial to recover the correlation energy, but, instead of
starting from scratch, we can use the Hartree Fock solutions as starting points for correlation
treatments.

1.4.1 Møller-Plesset perturbation theory

The first step beyond HF in the overall hierarchy of wave function methods is usually con-
sidered to be second-order Møller-Plesset (MP) perturbation theory.[13] This is a form of
Rayleigh-Schrodinger perturbation theory in which the zeroth order Hamiltonian is taken
to be the Fock operator (F ), as defined in Section 1.4. The perturbation is taken as the
difference between the Fock operator and the full Hamiltonian (H) defined in Section 1.2. In
order for the perturbation to be small, and thus the underlying assumption of any perturba-
tive method to be valid, the description of the ground state gained from Hartree Fock theory
must be fairly good. Typically this limits the usage of MP2 quite a bit as Hartree Fock can
only be trusted for systems that can be represented with a single Slater determinant. For
example, Hartree Fock in its restricted, spin-pure form fails qualitatively in the dissociation
of symmetric molecules like H2.[13, 22]

The perturbative equations are obtained by taking power series expansions in orders of
the perturbing operator of the exact energy and wave function. A full description of the
derivation can be found in Modern Quantum Chemistry by Szabo and Ostlund.[13] Largely
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following the notation used there, we will express the set of energy corrections as E(n) and
the set of wave function corrections as Ψ(n), where n is the order of the correction. The
equations used to determine these corrections are

E(0) |Ψ(0)⟩ = F |Ψ(0)⟩ (1.9)

(H − F − E(1)) |Ψ(0)⟩ = −(F − E(0)) |Ψ(1)⟩ (1.10)

E(2) |Ψ(0)⟩ = −(H − F − E(1)) |Ψ(1)⟩ − (F − E(0)) |Ψ(2)⟩ (1.11)

and so on, to infinite n. Equation 1.9 is just the Hartree Fock eigenvalue problem, where
|Ψ(0)⟩ is the Hartree Fock wave function and E(0) + E(1) is the Hartree Fock energy. This
comes from the fact that E(0) only includes the sum of the orbital energies. The Hartree
Fock energy also includes contributions from the one-electron pieces of the Coulomb and
exchange interactions, which happens to be retrieved by the first-order correction.[13] Since
the first order correction to the energy does not actually give any new information about the
system, one must go to the second order to obtain an estimate for the correlation energy.

In the ground state theory, an analytical form for the second order energy can be found
due to the diagonal form of the Fock matrix:

E(2) =
∑
ijab

| ⟨ij|ab⟩ − ⟨ib|ji⟩ |2

εi + εj − εa − εb
(1.12)

where a and b are indices of canonical virtual (unoccupied) molecular orbitals, i and j are
indices of canonical occupied molecular orbitals, and εk are the set of orbital eigenvalues
from Hartree Fock. It is important to note that while the summation in Equation 1.12 only
runs over four indices, second-order Møller-Plesset perturbation theory (MP2) is actually
O(N5), not O(N4) as this equation would make it seem, due to the transformation from
atomic to molecular orbitals that must take place to obtain the two-electron integrals (the
⟨pq|rs⟩ values) in Equation 1.12.[23]

One key feature of MP2 is that it is both size consistent and size extensive. If a method
is size consistent it means that the method can properly predict that the energy of two
infinitely separated systems treated together is the same as the sum of the energies of each
system treated individually.[13] Size extensivity is the property that a correlation method’s
correlation energy grows linearly with the number of electrons in the system, in the limit of
a large system.[24] Methods that are not size consistent and extensive will have increasing
accuracy issues as the studied systems become larger because there will be more long-range
interactions that will be incorrectly accounted for.

1.4.2 Configuration interaction (CI)

Starting from the Hartree Fock molecular orbitals, a complete basis for the many-body Fock
space can be formed from all possible configurations of the electrons within the orbitals.
Typically these configurations are identified by their difference from the aufbau filling of
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orbitals and grouped by how many of the electron placements differ. These are denoted
singles if one electron differs from the aufbau filling, doubles if two, and so on. As this forms
a complete basis, the exact wave function for a system can then be written as

|Ψ⟩ = c0 |ψ⟩ +
∑
ia

cai |ψa
i ⟩ +

∑
ijab

cabij |ψab
ij ⟩ +

∑
ijkabc

cabcijk |ψabc
ijk ⟩ + . . . (1.13)

where the same notation from the previous section for occupied an virtual orbitals is used
and |ϕa

i ⟩ represents a configuration where an electron has been moved from the ith occupied
orbital in the aufbau filling to the ath virtual orbital. The c coefficients are the weight each
of these configurations has in the representation of the wave function. For small systems,
the full expansion can be used to gain an exact energy, or at least exact up to the basis
set limit, resulting in a method called full CI (FCI). However, this method has exponential
scaling, so using CI on larger systems requires truncating the wave function expansion.
This results in methods such as CIS, CID, CISD, etc., where the wave function has been
truncated to include only singly excited configurations, doubly excited configurations, both
singly excited and doubly excited configurations, etc., respectively.[23] The accuracy and
computational complexity of the methods typically increases as the number of configurations
in the expansion increases. Truncated configuration interaction methods are not extensive
nor size consistent, leading to a degradation in accuracy as the system size increases, even
when the size increase is from a far-away inert molecule.[24]

1.4.3 Coupled cluster

Similar to configuration interaction, coupled cluster improves on Hartree Fock by including
configurations created by promoting electrons into higher orbitals. However, unlike configu-
ration interaction, it has an exponential wave function ansatz:

|Ψ⟩ = eT |ψ⟩ (1.14)

where T is the cluster operator that produces a linear combination of configurations when
acted on the reference (Hartree Fock) wave function. The operator can be expanded as

T = T1 + T2 + T3 + · · · (1.15)

where T1 is the operator that creates single excitations from the reference,

T1 =
∑
ia

cai a
†i (1.16)

T2 is the operator that creates double excitations from the reference,

T2 =
∑
ijab

cabij a
†b†ji (1.17)
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and so forth. See Section 1.2 for the second quantization notation used here. Just as was the
case for CI methods, the wave function must be truncated for the method to be tractable.
For example, coupled cluster singles and doubles (CCSD) truncates T at the doubly ex-
cited operator. Truncating the cluster operator at higher orders creates a more accurate
approximation to the exact energy, but also increases the computational complexity of the
method.[25] Configurations can also be included perturbatively, such as in the CCSD(T),
where the T in parentheses means that the triples configurations are approximated using a
perturbative method based on the singles and doubles parameters from the converged CCSD
wave function.[26] This can result in highly accurate methods, as can be seen from the anal-
ysis of CCSD(T) results where one study on the interactions of small molecule clusters found
that the average error of the method was only 1.5% of the interaction energy.[27] The major
difference between CI and CC methods is that CC methods are size consistent and extensive
even after truncation, while truncated CI methods are not.[28, 25]

1.4.4 Complete active space methods

Complete active space methods allows one to choose which orbitals will be used to create
the electronic configurations, in the same ways as discussed in Section 1.4.2, instead of
using truncation to make the method computationally tractable like in the CI and CC
methods.[29, 30] Within the ’active space’ of chosen orbitals, the full number of configurations
is created and treated like FCI. The energy is then minimized by varying the weights of
these configurations and the molecular orbital shapes, usually in a self-consistent procedure,
leading to the complete active space self consistent field theory (CASSCF) method. The
remaining occupied and virtual orbitals that were not chosen to be in the active space are
assumed not to play an important role in the calculation as they are either doubly occupied
or empty in all configurations.[29] While this method is exponentially scaling in the number
of active orbitals and requires quite a bit of knowledge to use correctly, it is accurate in
strongly correlated situations such as bond dissociation where other methods often break
down, as was discussed in Section 1.4.[25]

1.4.4.1 CASPT2

While the mutli-reference nature of the CASSCF wave function allows for the study of
electronic correlation that cannot be captured by a single reference method, known as strong
correlation, the lack of inclusion of other electronic configurations outside the active space
in its wave function ansatz leads to a lack of dynamic electron correlation.[31, 32] A typical
way to correct for this is to add a second-order perturbative correction to CASSCF, known
as CASPT2.[32] In this method the zeroth order Hamiltonian is given by

Ĥ0 = PFP +QFQ (1.18)

where F is the Fock operator built from the CASSCF density matrix, P is the projection
operator to the CASSCF reference, and Q = 1 − P . This form ensures that the CASSCF
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wave function is an eigenfunction of Ĥ0. Due to the nonzero off-diagonal elements in this
zeroth order Hamiltonian, an analytical form for the second order energy correction cannot
be found, unlike what was discussed in Section 1.4.1. Instead, |Ψ(1)⟩ is found by numerically
solving the linear equation in Equation 1.10, with the perturbation still being Ĥ − Ĥ0.
The resulting set of first order amplitudes can be used to evaluate the second-order energy
correction in Equation 1.11.[23]

1.4.5 Regularization

Perturbation theories, including MP2 and CASPT2, have a common ”intruder state” issue
which is perhaps easiest to see in the second order energy expression shown in Equation
1.12.[33] If the denominator in this expression becomes too close to zero, which often hap-
pens when the quality of the zeroth-order model provides a poor description of the system,
the terms in the sum become artificially large leading to large errors in the perturbative
energy correction. Regularization schemes can be implemented to mitigate this issue, the
simplest being to add a constant, called the level shift parameter, to the denominator to
bring these tiny energy differences away from zero. In theories like CASPT2, where there
is no straightforward denominator, an equivalent regularization scheme can be implemented
by shifting the diagonal of the zeroth order Hamiltonian.[34]

While the intruder state effect is clearly detrimental for the energy prediction, it also has
a silver lining. If there are many portions of the sum that are large it offers a clear warning
that the perturbation likely cannot be considered small and thus the method should not
be used. An example of this will be seen in Chapter 3 where these warnings were shown
to correspond with the onset of doubly excited character in the electronic excited states of
many molecules.

1.4.5.1 Other regularization schemes

There are many other ways to mitigate the issue of intruder states beyond the addition of
a level shift as described in the previous section. This level shifting procedure does not
discriminate between large and small denominators very well[35] leading to attempts to use
an imaginary level shift technique in methods such as CASPT2.[36] The Head-Gordon group
has proposed exponential regularization schemes labeled by κ and σ that more selectively
changes the weight of the terms in the MP2 energy expression,[37, 38] has also been imple-
mented for CASPT2.[35] An example of a method that instead avoids intruder states via
changing the structure of the zeroth-order Hamiltonian is driven similarity renormalization
group, in which the Hamiltonian is continuously transformed to energetically separate nearly
degenerate states.[39]
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1.5 Overview of other existing excited state methods

To place the methods discussed in the body of this thesis in perspective an overview of other
methods capable of calculating excited state energies will be given. While there are too
many methods to even list here, the next few sections will given a description of some of the
more prominent methods in this field.

1.5.1 Time-dependent density functional theory

The most widely used method to compute properties of excited states is time-dependent
density functional theory (TD-DFT).[40] The main attraction of this method is its relatively
low scaling of between O(N3) and O(N5), depending on the choice of functional.[41, 42] It
does very well at predicting the energies of valence excitations and has the ability to predict
the whole spectrum of singly excited states at once, instead of having to build it state by
state.[4] However, TD-DFT faces many challenges. First, it takes quite a bit of expertise
to use correctly, as results are sensitive to the choice of exchange-correlation functional so
prior knowledge and expertise about the functional and molecules in question is necessary.[5]
Second, while our own ESMP2 method also performs poorly for states with significant doubly
excited character (see Chapter 3), in ESMP2 the first-order wave function amplitudes provide
a warning that this breakdown is occurring. TD-DFT, under the standard approach of the
adiabatic approximation, typically has no such warning system, and cannot even predict
the existence of doubly excited configurations.[5] The final issue I want to discuss here
is TD-DFT’s difficulties in predicting the energies of charge transfer states. While range-
separated hybrid functionals fix some of the local exchange issues that are otherwise inherent
to TD-DFT, large changes in the distribution of electron density can still cause problems.[5]
Mid-range charge transfer excitations also still pose a problem, as it is an area that even
the range-separated hybrid functionals are not formally well-suited for, as the distance over
which their exchange switches to full HF exchange may coincide with the charge transfer
distance.[4] ESMP2’s relatively black-box set up and suitability for charge transfer states at
all ranges, see Chapters 2 and 3, makes it a promising alternative in this area where TD-DFT
struggles.

1.5.2 Configuration Interaction

As discussed in Section 1.4.2 for the ground state, linear combinations of Slater determinants
with different occupation patterns can also be used to study excited states. The inclusion
of excited electronic configurations allows one to approximate (though it would be exact
in the FCI limit) the representation of an electronic excited state as a linear combination
of these configurations. To model excited states in CI theory, one can simply converge
additional low-lying roots to the CI eigenvalue problem via a multi-root Davidson approach
or some similar method.[43] However, as was mentioned previously, orbital relaxation can
be incredibly important for modeling excited states, which CI does not include, though it
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can be added.[44] The theory that comes from the lowest-level truncation of this method,
CIS, also neglects almost all electronic correlation,[45] so while it can give a depiction of
the excited states of a system, it cannot be expected to be accurate, especially for charge
transfer states.[46] One of the reasons it is still used for the starting point of excited state
methods is that it is size intensive, meaning that the excitation energies for two systems
treated individually are correctly reproduced in a calculation that treats the two systems
together, as long as those systems do not interact.[47] This level of truncation also results
in a method is also relatively low scaling with a computational complexity of O(N4).[13]
Taking a slightly further step in the truncation to obtain CISD, which increases the scaling
to O(N6), also remove the size intensive property, making CIS the optimal starting point for
higher-level excited state methods.[47]

1.5.3 Coupled cluster

1.5.3.1 Equation of motion coupled cluster

Equation of motion coupled cluster methods (EOM-CC) start with the ground state coupled
cluster theory and level of truncation, as discussed in Section 1.4.3. The equation of motion
approach is a type of linear response theory that can predict the energies and wave functions
of excited states and via the linear excitation operator R̂:

R̂ = 1 +
∑
ia

rai a
†i+

1

4

∑
ijab

rabij a
†b†ji+ · · · (1.19)

see Section 1.3 for more information on the notation used here. Acting this operator on the
ground state coupled cluster wave function effectively allows excitations out of the EOM-CC
ground state:

|ΨEOM⟩ = R̂eT |RHF ⟩ (1.20)

where T is the cluster operator defined in Section 1.4.3. While EOM-CC methods can be
truncated to any level, similarly to their ground state counterparts EOM-CCSD and EOM-
CCSD(T) are particularly widely used.[15, 48] However, EOM-CCSD and EOM-CCSD(T)
are O(N6) and O(N7) scaling methods, respectively, making them too computationally ex-
pensive for large systems.[25] EOM-CC methods also only have a limited ability to include
orbital relaxations,[49] which can be incredibly important for some excitations, especially
charge transfer and core excitations.[50]

1.5.3.2 Approximate coupled cluster methods

Second-order approximate singles and doubles coupled cluster theory (CC2) and its extension
to triples (CC3) can also be used to study the excited states of molecules. One obtains these
methods by starting with the ground state coupled cluster theory truncated to the same
level. For example, for CC2, one can start by looking at the CCSD energy expression:

E = ⟨ψ| Ĥ exp
[
T̂1 + T̂2

]
|ψ⟩ (1.21)
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The amplitudes for T̂1 and T̂2 can be gained from the equations

⟨k1| Ĥ +
[
Ĥ, T̂2

]
|ψ⟩ = 0 (1.22)

⟨k2| Ĥ +
[
Ĥ, T̂2

]
+

1

2

[[
Ĥ, T̂2

]
, T̂2

]
|ψ⟩ = 0 (1.23)

where k1 and k2 represent the single and double excitation manifolds, respectively. If instead
the doubles are approximated

⟨k2|
[
F̂ , T̂2

]
+ Ĥ |ψ⟩ (1.24)

where F̂ is a Fock matrix, but the singles are still treated fully, the formulation for CC2
is obtained, which due to the lack of the last term in Equation 1.23, is O(N5) scaling.[51]
The formulation of CC3 is similar, only the singles and doubles are treated fully, while the
triples are further approximated compared to CCSDT.[52] The linear response excited state
incarnations of these methods are lower-scaling than their EOM counterparts,[51] however
they still only treat orbital relaxations approximately, CC2 still does not reach chemical
accuracy for many excited states, and CC3, while fairly accurate, scales as O(N7), making
it intractable for larger systems.[15]

1.6 Excited state-specific hierarchy of wave function

methods

One of the overarching goals of the research being done in the Neuscamman group is to
create a hierarchy of excited-state-specific correlation methods analogous to the ground state
methods described in Section 1.3. While members of the group are actively working on
excited state versions of coupled cluster theory[53] and complete active space methods[54,
55, 56], the work in this thesis is focused on the second rung of the hierarchy, namely an
excited-state-specific version of second-order Møller-Plesset perturbation theory (ESMP2).
Thus, only ESMP2 and it’s reference method, excited state mean field theory (ESMF), will
be discussed in detail.

1.6.1 Excited state mean field theory

ESMF is the lowest rung on this excited state hierarchy of methods and parallels Hartree
Fock in many ways.[57, 58] First, while the ESMF wave function is a bit more complicated
than Hartree Fock,

|ESMF ⟩ = |Φ⟩ = eX̂

(
c0 |ψ⟩ +

∑
ia

cai |ai ⟩ +
∑
īā

cāī |
ā
ī ⟩

)
(1.25)

where the absence/presence of bars on top of the orbital indices is used to denote spin
up/down, this wave function, like Hartree Fock, defines a mean field theory that leads to
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an effective one-electron equation.[58] In a sense, it is also minimally correlated similar
to Hartree Fock: in Hartree Fock that minimum amount of correlation within the spatial
distribution of electrons comes from enforcing the Pauli exclusion principle, in ESMF the only
additional correlations are open-shell-singlet recoupling correlation and the correlation from
the superposition of the different singly excited configurations. As these are both crucial for
describing the qualitative structure of singly excited states they are necessarily included in
the ESMF wave function ansatz, but further correlations are not in order to keep the theory
as close to a mean-field approximation as possible. Second, the ESMF solutions are energy
stationary points corresponding to specific electronic excited states, just as the Hartree Fock
solution is the energy stationary point corresponding to the ground state. As mentioned in
Section 1.4, Hartree Fock converges to the ground state by making use of the variational
principle and a self-consistent procedure. ESMF states can be converged to via a similar self
consistent method [58] or via the use of a generalized variational principle [59] that allows one
to target a specific excited sate using approximate excitation energies, Mulliken populations,
and several other state-specific properties. The exponential term multiplying the CIS wave
function allows for orbital relaxation via the X operator,

X̂ =
∑
p<q

Xpq

(
p†q − q†p

)
(1.26)

which allows for a more accurate representation of an excited state as the movement of
electron density in a system will naturally induce a relaxation of molecular orbital shapes.
Whether by a self-consistent iteration or the generalized variational principle, the ESMF
solution is found by making the ESMF energy stationary with respect to the CI coefficients
c and the orbital rotation parameters Xpq.

Using this wave function ansatz provides a state-specific energy and wave function that
provides a good qualitative characterization of the targeted excited state, provided the state
has singly excited character. Like with Hartree Fock, correction schemes will need to be used
on top of these results to gain quantitatively accurate information.

1.6.2 Second-order excited state Møller-Plesset perturbation
theory (ESMP2)

An example for such a correction is ESMP2, which – just as ESMF was designed to have
strong parallels to HF – was purposefully designed to be very similar in formulation to MP2
theory.[57] The derivation of ESMP2 starts with finding a zeroth operator, Ĥ0 for which the
ESMF state is an eigenfunction. The perturbation is then defined as the difference between
the full Hamiltonian, Ĥ, and Ĥ0. Ĥ0 has a slightly more complex form than the ground
state Fock operator, but still gives the property that the zeroth order energy obtained from
this operator, E(0), needs to be added to the first order energy correction, E(1), to obtain
the ESMF energy, just like is the case for the Hartree Fock. The zeroth order operator for
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the perturbation theory, denoted H0, can be written as

Ĥ0 = R̂
(
F̂ − Ĥ

)
R̂ + P̂ ĤP̂ + Q̂F̂ Q̂ (1.27)

where F̂ is the Fock operator built from the ESMF one-body density matrix, R̂ = |Φ⟩ ⟨Φ|, P̂
is the projector to the space spanned by the aufbau and singly excited configurations in the
ESMF orbital basis, and Q̂ = 1 − P̂ .[57] This choice of zeroth-order operator also preserves
the property that

Ĥ0 |Φ⟩ = E0 |Φ⟩ = ⟨Φ|F̂ |Φ⟩ |Φ⟩ (1.28)

in the same way as CASPT2, as discussed in Section 1.4.4.1. Also like CASPT2, it is
important to point out that while the HF Fock matrix formed from the Hartree Fock one-
body density matrix is diagonal, the ESMF Fock matrix is not, meaning that an analytical
form for the second order energy correction, like that shown in Equation 1.12, is not possible
for the excited state case. This means that the first order wave function must be found
using Equation 1.10 in order to substitute it into Equation 1.11, as is the same for CASPT2.
However, unlike CASPT2,[23] the choice of zeroth order Hamiltonian in ESMP2 leads to
rigorously size intensive excitation energies.[57, 11]

The first order correction to the wave function in ESMP2 can be written as a linear
combination of configurations of the arrangement of electrons in the ESMF orbitals, similar
to the expansion shown in Equation 1.13:

|Ψ(1)⟩ =
∑
ijab

tabij |ψab
ij ⟩ +

∑
ijkabc

tabcijk |ψabc
ijk ⟩ + . . . (1.29)

Note that the coefficients have been labeled with t’s to purposefully distinguish them from
the expansion coefficients in the ESMF wave function, which are optimized during the ESMF
procedure. The aufbau state and singly excited configurations formed from the ESMF molec-
ular orbitals are not part of this expansion since those contributions are included in the zeroth
order (ESMF) wave function. However, like with coupled cluster and configuration interac-
tion methods, this wave function must be truncated in order to create a computationally
tractable method. Fortunately, a natural truncation to include only the doubles and triples
configurations occurs due to the nature of the operators in the zeroth order and full Hamilto-
nians. The zeroth order Hamiltonian is a one-electron operator while the full Hamiltonian is
at most a two-electron operator, so solving the first order amplitude equations in Equation
1.10 will only give nonzero amplitudes for the doubles and triples. However, a straight-
forward implementation of the method results in an O(N7) scaling method[57] due to the
manipulations that would need to be done on the triples pieces of the first-order correction
to the wave function. Chapter 2 describes how the theory can be slightly modified to reduce
the computational complexity of the method to match that of the ground state MP2 without
significantly affecting the results. Chapter 3 then establishes the accuracy of this approach
through a study of its performance in predicting the energies of electronic excitations in a
collection of organic compounds.



CHAPTER 1. INTRODUCTION 14

1.7 Outline

This thesis is the culmination of work on the first wave-function-based rung in this hierarchy
beyond mean field theory: fully excited-state-specific second-order perturbation theory.

Chapter 2 details how the original ESMP2 method can be reformulated to reduce the
computational complexity of the method to O(N5) to match that of MP2. This work has
been published in the article ”An N5-scaling excited-state-specific perturbation theory” J.
Chem. Theory Comput. 16, 6132 (2020).

Chapter 3 shows the accuracy of this approach in comparison to other ab intio methods
on a large set of electronic excitations in various types of organic molecules. This work has
been accepted for publication in J. Chem. Phys. under the title ”Studying excited-state-
specific perturbation theory on the Thiel set.” Finally, Chapter 4 summarizes the impacts
of and work done on this state-specific perturbative method.
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Chapter 2

An N5-scaling excited-state-specific
perturbation theory

2.1 Abstract

We show that by working in a basis similar to that of the natural transition orbitals and
using a modified zeroth order Hamiltonian, the cost of a recently-introduced perturbative
correction to excited state mean field theory can be reduced from seventh to fifth order
in the system size. The (occupied)2(virtual)3 asymptotic scaling matches that of ground
state second order Møller-Plesset theory, but with a significantly higher prefactor because
the bottleneck is iterative: it appears in the Krylov-subspace-based solution of the linear
equation that yields the first order wave function. Here we discuss the details of the modified
zeroth order Hamiltonian we use to reduce the cost as well as the automatic code generation
process we used to derive and verify the cost scaling of the different terms. Overall, we
find that our modifications have little impact on the method’s accuracy, which remains
competitive with singles and doubles equation-of-motion coupled cluster.

2.2 Introduction

Although mean field methods like Hartree-Fock (HF) theory often succeed in making qual-
itatively correct predictions about how electrons distribute themselves within a molecule,
making quantitative energetic predictions at the precision necessary to aid in designing and
interpreting experiments usually requires grappling with the finer-grained wave function de-
tails that arise from electron correlation. In many contexts, especially when considering
ground states in closed-shell molecules, density functional theory (DFT) fills this role at a
relatively low computational expense. However, even in these DFT-friendly systems, there
are areas – such as the treatment of weak intermolecular interactions [60] – where more
expensive wave-function-based methods remain essential to, for example, help choose which
empirical functional to trust. In electronically excited states, open-shell character is the
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norm, and in practice DFT faces serious challenges and is less predictive than in ground
states. These challenges include both the inability of time-dependent DFT (TD-DFT) to re-
lax the shapes of orbitals not directly involved in the excitation [61, 62, 63] and the tendency
of self-consistent DFT, as used for example in the restricted open-shell Kohn Sham (ROKS)
[64, 65] method, to over-delocalize [66, 67] unpaired electrons or holes. Although the latter
issue can be mitigated by using hybrid and range-separated functionals, [68] it nonetheless
persists. [69] If wave-function-based methods are to help make up for DFT’s difficulties in
this area, it is highly desirable that they overcome these challenges while retaining electron
correlation corrections that are as computationally affordable as possible. In this study,
we take a step in this direction by reformulating a second-order perturbative correction to
excited state mean field (ESMF) theory [57, 59, 69] so that its asymptotic cost scaling can
reach parity with its ground state counterpart.

In the world of closed-shell ground states, the simplest and usually the most affordable
approach to electron correlation aside from DFT is second-order Møller-Plesset perturbation
theory (MP2). [70] In a canonical implementation, the asymptotic scaling of this method
is N2

oN
3
v , where No and Nv denote the number of occupied and virtual orbitals in the HF

reference, respectively. [71] Note that, for simplicity, we will throughout this paper consider
Nv to be interchangeable with N , the total number of molecular orbitals, when discussing
asymptotic scaling. Although significantly higher than the cost scaling of many widely
used density functionals, the cost of MP2 is significantly lower than the sixth-order cost of
coupled cluster theory with singles and doubles (CCSD), positioning it as the least expensive
wave-function-based ground state correlation method in wide use. The excited-state-specific
ESMP2 theory [57] that we focus on in this study was designed to closely mirror MP2 theory,
correcting ESMF in the same way that MP2 corrects HF, achieving rigorous size intensivity,
and working in an uncontracted first order interacting space. Unfortunately, the fact that
the ESMF reference already contains single excitations means that this interacting space
now includes both the doubles and triples excitations. Acting the zeroth order Hamiltonian
in this space thus involves contracting a two-index Fock operator with a six-index amplitude
tensor, leading to seventh order scaling with the system size and a theory that is decidedly
less practical than the ground state theory that it seeks to mimic.

To overcome this difficulty, we exploit the fact that a wave function that is a linear combi-
nation of singles excitations, such as configuration interaction singles (CIS), can be written as
a sum of just No configuration state functions (CSFs) under a particular occupied-occupied
and virtual-virtual rotation of the orbital basis. Working in this basis — which for CIS itself
is the natural transition orbital basis [72] but for ESMF will be slightly different due to
its excited-state-specific orbital relaxations — the coulomb operator no longer connects the
singly excited reference function to the whole triples space. Separating the triples in to those
that connect with the reference and those that do not, one expects the unconnected triples
(which are by far the larger group) to be less important, and so a more aggressive approx-
imation of the zeroth order Hamiltonian in that space is somewhat justified. In particular,
we will approximate the Fock operator in the unconnected space by its diagonal (note that,
unlike for a HF reference, the Fock operator derived from the ESMF one-body density matrix
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is not diagonal) at which point the unconnected triples no longer contribute to the theory at
all, as they have no direct connection to the reference through the coulomb operator and no
connection to the first order wave function through the zeroth order Hamiltonian. As we will
discuss, this step immediately drops the scaling to sixth order. To drop the scaling further,
we note that, in the vast majority of low-lying excitations in weakly correlated molecules,
only a small number out of the No singly excited CSFs in the ESMF reference are expected
to have large coefficients. By extending the diagonal approximation of the zeroth order
Hamiltonian into the space of all triples that only connect to small parts of the reference, a
reduction to N2

oN
3
v cost scaling is achieved. Again, as these triples are less important, this

approximation is not expected to make much difference, and indeed this expectation is con-
firmed by a comparison to results from the seventh-order parent method. Thus, by working
in a particular orbital basis and slightly modifying the zeroth order Hamiltonian, the cost
scaling of ESMP2 can be brought in line with that of MP2, even if the prefactor remains
higher due to the off-diagonal zeroth order Hamiltonian and thus a need to iteratively solve
a linear equation.

Although ESMP2, in either its original or its more efficient form, is similar to a number
of other excited state perturbation theories, it also possesses important differences. When
compared to CIS(D), which uses the HF orbitals and derives its triples amplitudes from
the ground state MP2 doubles, [73] ESMP2 is instead wholly excited-state-specific: the
orbitals are relaxed variationally for the excited state at the ESMF level, and the triples
are derived via the excited state’s first order wave function equation. In comparison to the
recently-introduced driven similarity renormalization group VCIS-DSRG-PT2 approach, [74]
ESMP2 again enjoys orbitals that are relaxed for the excited state, and it does not require
the choice of an active space, making it easier to apply in a black-box manner. Finally, in
contrast with complete active space second order perturbation theory (CASPT2), [75, 76] N-
electron valence perturbation theory (NEVPT2), [77] and VCIS-DSRG-PT2, ESMP2 sticks
to an uncontracted and thus orthonormal first order interacting space, which circumvents
the need to address the potential for linear dependencies. That said, ESMP2 has much in
common with CASPT2, and as we will see in the results, often hews rather closely to CASPT2
when it comes to predicting excitation energies. Again, ESMP2 achieves this without using
an active space, which offers significant simplicity at the cost of being inappropriate for
strongly correlated systems.

This paper is organized as follows. We begin by discussing the ESMF reference and
how it can be simplified by working in a particular orbital basis, after which we discuss the
first order wave function and the newly-modified zeroth order Hamiltonian. We then briefly
discuss the automated approach we employ for term derivation and code generation, which
allows us to make a detailed investigation of each term’s scaling, the outcomes of which we
present in the first subsection of the results. We then delve into the method’s accuracy, first
in a set of small molecules that are mostly single-CSF in character and then in a collection
of ring excitations, in which multi-CSF character is more prevalent. We end our results
section with an explicit test of size intensivity before concluding with a summary and a brief
discussion of possible future directions.
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2.3 Theory

To simplify our implementation, we have chosen to work with a slightly simplified version of
the ESMF ansatz

|Ψ0⟩ = eX̂
∑
ia

Cia

(
â+a↑âi↑ ± â+a↓âi↓

)
|Φ⟩ (2.1)

in which we have set the coefficient on the un-excited closed-shell reference determinant |Φ⟩
to zero. This simplification avoids a significant number of terms in the perturbation theory,
but it does mean that we are assuming that the closed shell determinant is unimportant in
the excited state, which is not universally true. Here the ± sign is plus (minus) for singlet
(triplet) states, C is the matrix of single-excitation configuration interaction (CI) coefficients,
X̂ is an anti-Hermitian one-electron operator responsible for excited-state-specific orbital
relaxations, and we adopt the convention of referring to occupied and unoccupied (virtual)
orbitals in |Φ⟩ by the indices i,j,k,l and a,b,c,d, respectively. After relaxing X̂ and C to find
the energy stationary point corresponding to the excited state in question (which may for
example proceed by guessing the CIS wave function and applying a generalized variational
principle [59]), we take a singular value decomposition of the rectangular matrix C

C = UΛV + (2.2)

where, if we assume that there are more virtual than occupied orbitals, Λ is the No × No

diagonal matrix of singular values. Now, note that the Hamiltonian can be transformed into
an orbital basis that eliminates U and V and thus renders the reference wave function in a
particularly simple form.

ĤHF → e−Ẑe−Ŷ e−X̂ĤHFeX̂eŶ eẐ (2.3)

Here we have started in the HF orbital basis (as indicated by the Hamiltonian ĤHF), rotated
via X̂ into the ESMF orbital basis, and then rotated via the one-electron anti-Hermitian
operators Ŷ and Ẑ, which perform occupied-occupied and virtual-virtual rotations, respec-
tively. The Ŷ rotation can be chosen so as to eliminate U , and likewise the Ẑ rotation can
be used to eliminate V , leaving us with a greatly simplified CI expansion

|Ψ0⟩ →
∑
i

Λii

(
σ̂+
i↑τ̂i↑ ± σ̂+

i↓τ̂i↓
)
|Φ⟩ (2.4)

involving a sum over the singular values of C. The corresponding virtual-orbital creation
operators σ̂+ and occupied-orbital destruction operators τ̂ now come in pairs, one for each
occupied orbital. We refer to each of these pairs as a transition orbital pair (TOP), and note
that, if the optimal ESMF orbitals were the same as the RHF orbitals, the TOPs would be
equivalent to the natural transition orbital (NTO) pairs. [72] It is important to emphasize
that Eqs. (2.1) and (2.4) refer to exactly the same zeroth order wave function, they simply
express it in different orbital bases. We now turn to the definition of our first order wave
function, where the TOP basis will allow for useful groupings of the triples excitations into
separate categories that we will exploit in order to achieve a lower asymptotic cost scaling.
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2.3.1 First Order Wave Function

To begin, let us specify the language we will use for describing excitations as well as the
the different orbital labels that we employ when working in the TOP orbital basis. First,
throughout this paper, we will refer to excitation levels relative to the closed shell. In this
language, our reference is a superposition of single excitations, and our first-order interacting
space consists of double and triple excitations. As for how we label orbitals, let us adopt an
orbital ordering in which the spatial orbitals are numbered 1 through N . In addition to the
occupied orbitals with destruction operators τ̂i (with i allowed to range from 1 through No)
and the corresponding TOP virtual orbitals whose creation operators are σ̂+

a (with a allowed
to range from No + 1 through 2No), there are additional virtual orbitals (AVOs), whose
creation operators we will denote by ν̂+a (with a allowed to range from 2No + 1 through N).
When necessary, we will denote virtual orbitals that may be either TOP virtuals or AVOs
using the creation operators ŵ+

a , where a can range from No + 1 through N . Finally, when
we denote a TOP virtual orbital using an occupied index, as for example in the operator σ̂+

i↑
in Eq. (2.4), this implies the TOP virtual orbital with index a = i + No that is the partner
of the ith occupied orbital in the TOP orbital basis representation of |Ψ0⟩.

With these orbital definitions in hand and working in the TOP orbital basis, we now
point out that while the Hamiltonian, through its two-electron part, can connect the singly-
excited wave function |Ψ0⟩ to the full space of doubly excited determinants, it only connects
|Ψ0⟩ to a subset of the triply excited determinants. In particular, the matrix element

Habc
ijk = ⟨Ψ0| τ̂+k τ̂

+
j τ̂

+
i ŵaŵbŵcĤ |Ψ0⟩ (2.5)

will only be nonzero if there is at least one TOP amongst the occupied and virtual orbitals
i,j,k,a,b,c. Put another way, this matrix element is zero if d ̸= l+No for all d ∈ {a, b, c} and
l ∈ {i, j, k}, as a nonzero element is only possible if one of the three excitations was already
present in |Ψ0⟩, and |Ψ0⟩ only contains TOP excitations. In contrast, this matrix element
can be nonzero if d = l+No for at least one d,l pair from d ∈ {a, b, c} and l ∈ {i, j, k}. Thus,
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in our first order wave function

|Ψ1⟩ =
∑
ijab

T ab
ij ŵ

+
a↑ŵ

+
b↑τ̂j↑τ̂i↑ |Φ⟩

+
∑
ijab

T ab
ij ŵ

+
a↓ŵ

+
b↓τ̂j↓τ̂i↓ |Φ⟩

+
∑
ijab

Sab
ij ŵ

+
a↑ŵ

+
b↓τ̂j↓τ̂i↑ |Φ⟩

+
∑
ijkabc

T abc
ijk ŵ

+
a↑ŵ

+
b↑ŵ

+
c↑τ̂k↑τ̂j↑τ̂i↑ |Φ⟩

+
∑
ijkabc

T abc
ijk ŵ

+
a↓ŵ

+
b↓ŵ

+
c↓τ̂k↓τ̂j↓τ̂i↓ |Φ⟩

+
∑
ijkabc

Sabc
ijk ŵ

+
a↑ŵ

+
b↓ŵ

+
c↓τ̂k↓τ̂j↓τ̂i↑ |Φ⟩

+
∑
ijkabc

Sabc
ijk ŵ

+
a↓ŵ

+
b↑ŵ

+
c↑τ̂k↑τ̂j↑τ̂i↓ |Φ⟩ (2.6)

we set to zero the values of all same-spin (T abc
ijk ) and mixed-spin (Sabc

ijk ) triples coefficients
whose indices do not contain at least one TOP. As we will choose our zeroth order Hamil-
tonian to be diagonal in the space of triples excitations that contain no TOPs (which we
define as the N-triples space), setting these coefficients to zero is not an approximation, but
merely the natural consequence of their Eq. (2.5) matrix elements being zero and Ĥ0 not
connecting them to any other parts of |Ψ1⟩. Instead, the new approximation, and the key
difference from our previous N7-scaling excited-state-specific perturbation theory, [57] comes
in the definition of Ĥ0, to which we now turn our attention.

2.3.2 Zeroth Order Hamiltonian

In our previous N7-scaling version of the theory, we chose the zeroth order Hamiltonian to
have the following form.

Ĥ0 = R̂(F̂ − Ĥ)R̂ + P̂ ĤP̂ + Q̂F̂ Q̂ (2.7)

Here, we will retain this form, but make some modifications in the triples space to improve
efficiency. As before, we take F̂ to be the Fock operator constructed from the one-body
density matrix of |Ψ0⟩, R̂ = |Ψ0⟩ ⟨Ψ0| to be the projector on to the zeroth order wave
function, P̂ to be the projector on to the span of the closed shell determinant |Φ⟩ and all
singly excited determinants, and Q̂ = 1− P̂ . The difference between the present theory and
our previous approach is that, in the present theory, we work in the TOP orbital basis and
modify the Q̂F̂ Q̂ term so that it is diagonal in some parts of the triples space. To see how,
let us first organize the triply excited determinants into three groups: the N-triples whose
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six indices i,j,k,a,b,c do not contain any TOPs, the L-triples that contain at least one TOP
whose singular value from Eq. (2.4) is large (above a threshold η), and the S-triples that
contain at least one TOP but whose TOPs all have small singular values (below η). With
the triples organized into these three groups, we make the modification

Q̂F̂ Q̂ →
(
Q̂D + Q̂L

)
F̂
(
Q̂D + Q̂L

)
+
(
Q̂S + Q̂N

)
F̂ (diag)

(
Q̂S + Q̂N

)
(2.8)

in which F̂ (diag) is the Fock operator with its off-diagonal terms set to zero and Q̂D, Q̂L, Q̂S,
and Q̂N project on to the doubles, the L-triples, the S-triples, and the N-triples, respectively.
As shown in Figure 2.1, we are making Ĥ0 diagonal for the presumably less important
S-triples and N-triples, whereas our previous approach left it off-diagonal for all triples.

How much efficiency is gained by this approach depends on how one chooses to divide
the TOP-containing triples between the large and small L-triples and S-triples spaces. In
the η = 0 extreme, in which all the TOP-containing triples are placed in the L-triples
space, the cost of forming the right-hand-side of and solving the usual Rayleigh-Shrödinger
linear equation for |Ψ1⟩ grows as N6. The reduction from the N7 scaling of our previous
approach comes from eliminating the N-triples, which as discussed in Section 2.3.1 have no
Eq. (2.5) matrix elements and thus can only contribute to the theory by coupling through
Ĥ0 to other parts of |Ψ1⟩, which is prevented by our modification in Eq. (2.8). In the other
extreme, when only triples that contain the TOP with the largest singular value are placed
in the L-triples space and all other TOP-containing triples are placed in the S-triples space,
the cost of setting up and solving the linear equation for |Ψ1⟩ grows as only N5. Note
that, as we explain in Section 2.4.2, we have explicitly verified these scalings (the lower of
which is actually N2

oN
3
v ) by log-log regressions on the floating-point operation counts of each

individual term entering in to the setup and iterative solution of the linear equation.
To put these extremes in to perspective, we note that for a size-intensive excitation, by

which we mean one whose spatial extent does not grow indefinitely as the system is enlarged,
the number of non-zero singular values in Eq. (2.4) will be constant with system size in the
large system limit. This implies that for size-intensive excitations, setting η to a small
but non-zero threshold will result in both a size-intensive excitation energy (a property we
verify explicitly below) and N5 scaling. Note that this efficiency gain is not due to assuming
anything about the locality of electron correlation (which if exploited as in some ground state
methods [78] could perhaps further lower the method’s scaling) but instead comes from the
natural tendency of molecular excitations to be localized. Of course, in practice, the length
scale needed to see this benefit may be much larger than the simulation in a particular
system, so let us make a more concrete statement about the scaling. If one limits |Ψ0⟩
to have only NTOP nonzero singular values regardless of the system size, then the method
has an N5 scaling. The obvious practical case where this approach should be useful is for
excitations that are dominated by a single configuration state function (CSF), and thus for
which only one singular value is nonzero anyways.
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Figure 2.1: Block structure of the zeroth order Hamiltonian. The matrix is zero in the dotted
regions and non-zero in the blue regions, including on the diagonal of blocks S and N. The
blocks are labeled as R for |Ψ0⟩, D for double excitations, L for triple excitations containing
at least one TOP with a large singular value, S for all other triple excitations containing at
least one TOP, and N for the triple excitations that contain no TOPs. Note that no singly
excited states are included in our first-order interacting space, on the theory that the effects
of these states have already been included by the variational optimization of the reference.

2.3.3 Automated Implementation

For the construction and solution of the linear equation for |Ψ1⟩, we have written a simple
for-loop generator. The approach is to start with a symbolic representation of the for-loops
belonging to each orbital index, and then to use Wick’s theorem to derive the different con-
traction schemes that connect indices and thus eliminate for-loops via the resulting Kronecker
delta functions. This entire process is automated and includes the detailed logic needed to a)
identify which triples reside in the L-triples space and thus must be included in the iterative
solution of the linear equation (triples in the S and N spaces are not part of the iterative
solver, as their part of the linear equation is diagonal and can be inverted directly) and b)
avoid double counting redundant terms, such as T abc

ijk and T bac
jik . Of course, the result is a code

build of “dumb” loops, which will not be cache-optimal, but does provide us with a correct
reference implementation to start from. Further, it allows us to automatically implement
careful operation counting, such that each contraction can have its cost scaling analyzed
independently. Having thus identified the most expensive term (which turns out to be a
contraction between the mixed-spin-L-triples and the Fock operator) we have verified that
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by hand-coding this term in terms of dense linear algebra, the cost can be reduced by more
than an order of magnitude. In future, we will work to convert all other contractions whose
cost is not trivial into dense linear algebra. In the present study, however, our focus is not
on a production-level code, but instead on completing a detailed analysis of the cost-scaling
as well as the accuracy of the new N5 approach.

For an example of how the code generation works, consider how the Fock operator might
map double excitation coefficients to L-triples excitation coefficients in the case where all
orbitals are spin up. The corresponding tensor contractions come from the different ways of
contracting the indices in∑

pq

∑
i′j′a′b′

FpqT
a′b′

i′j′ ⟨Φ| τ̂+k τ̂
+
i τ̂

+
j ŵbŵaσ̂câ

+
p âqŵ

+
a′ŵ

+
b′ τ̂j′ τ̂i′ |Φ⟩ , (2.9)

where the L-triple’s indices are i,j,k,a,b,c and we assume, without loss of generality, that c
and k form a TOP such that c = k +No (at least one TOP must be present as this is an L-
triple). The automatically generated code for one of the contractions resulting from Eq. (2.9)
is seen in Figure 2.2, where we see explicitly in the second line of code the simplification
and lower scaling that comes if we fix the number NTOP of large TOPs. This particular
term has N2

oN
2
v scaling if the number of large-singular-value TOPs is fixed, or N3

oN
2
v if

it grows with system size (e.g. if all TOPs are considered large). Across all the different
pieces needed to construct the linear equation’s right-hand-side and to operate by Ĥ0, the
automated generator found 185 contractions with non-zero contributions. When NTOP is set
to one, only 18 of the contractions involving triples showed fifth-order cost-scaling, and only
9 of those showed the most expensive N2

oN
3
v scaling, suggesting that converting the worst

terms to hand-coded dense linear algebra (i.e. BLAS) should be feasible in future work. See
section 2.4.2 below for a more detailed cost scaling analysis.

2.4 Results

2.4.1 Computational Details

For ESMP2, we used the iterative conjugate-gradient algorithm to solve the linear equation
for |Ψ1⟩. The EOM-CCSD and δ-CR-EOM-CC(2,3) [79, 80, 81, 82] calculations were per-
formed with GAMESS,[83, 84] whereas CIS and TDDFT calculations were performed with
QChem. [85] CASPT2 calculations for the ring excitations were performed with Molpro. [86,
87, 88] Note that, although some CASPT2 calculations relied on state-averaged CASSCF
reference functions, the CASPT2 calculations themselves were single-state. In the pyrrole
molecule, CASSCF was performed with a (10o,6e) active space, in which an equal-weight
4-state state-average was employed, with 2, 1, and 1 states from the A1, A2, and B2 rep-
resentations, respectively. Note that pyrrole’s 21A1 excitation was not stable in CASPT2
without a level shift, and so in this molecule a level shift of 0.2 Eh was used for all states. In
the rest of the ring excitations, CASPT2 was stable without a level shift, and so no shift was



CHAPTER 2. AN N5-SCALING EXCITED-STATE-SPECIFIC PERTURBATION
THEORY 24

for ( int k = 0; k < nocc; k++ ) {
if ( k >= ntop ) continue;
const int c = (k+nocc);
for ( int i = 0; i < nocc; i++ ) {

if ( i == k ) continue;
for ( int j = i+1; j < nocc; j++ ) {

if ( j == k ) continue;
for ( int a = nocc; a < norb; a++ ) {

if ( a == c ) continue;
if ( a == i + nocc && i <= k ) continue;
if ( a == j + nocc && j <= k ) continue;
for ( int b = a+1; b < norb; b++ ) {

if ( b == c ) continue;
if ( b == i + nocc && i <= k ) continue;
if ( b == j + nocc && j <= k ) continue;
const int ip = i;
if ( ip >= nocc ) continue;
const int jp = j;
if ( jp <  ip+1 ) continue;
if ( jp >= nocc ) continue;
const int ap = a;
if ( ap <  nocc ) continue;
const int bp = b;
if ( bp <  ap+1 ) continue;
const int p = c;
const int q = k;
out(k,i,j,a,b) += fm(p,q) * in(ip,jp,ap,bp);

}  }  }  }  }

Figure 2.2: The generated code for the δaa′δbb′δii′δjj′δkqδcp contraction resulting from Eq.
(2.9). Note the second line, where the scaling is explicitly reduced if the number NTOP of
TOPs that are considered large does not grow with system size.

used in other molecules. For pyridine, CASSCF employed an (8o,10e) active space and four
separate state averaging calculations, one in each representation of its C2v point group. No
level shift was necessary for stability in pyridine, but each of these four calculations used an
equal-weight 3-state state average, which was necessitated by the fact that at the CASSCF
level the 11B2 and 21B2 states come first and third in the energy ordering of the 1B2 states.
For benzene, CASSCF employed a (6o,6e) active space for an equal-weight 6-state state-
average with two states each in the Ag, B1u, and B2u representations (the computational
point group was D2h). Finally, for pyrimidine, CASSCF employed an (8o,10e) active space.
As all the states investigated in pyrimidine are ground states within their own symmetries,
state averaging was not used in this case.

2.4.2 Cost Scaling Analysis

Before looking at the energetic accuracy of reduced-scaling ESMP2, let us first inspect how
the different components scale with the number of occupied and virtual orbitals. Using
our automatic code generator, we have inserted operation counting into all of the terms,
allowing for a contraction-by-contraction scaling analysis. For each contraction, we measured
occupied scaling by fixing the number of virtual orbitals at 100 and varying the number of
occupied orbitals between 30 and 50, after which we perform a log-log linear regression on
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each contraction’s operation count. Similarly, for scaling with virtual orbitals, we have fixed
the number of occupied orbitals at 30 and varied the number of virtuals between 50 and 100,
again feeding the information into log-log linear regressions. We present two sets of scaling
data, representing the two cost extremes that one can get from the new approach. First,
Table 2.1 shows the scaling data for ESMP2-TOP(1), in which only one TOP is considered
large. Second, Table 2.2 shows the scaling data for ESMP2-TOP(all), in which all TOPs are
considered large and the S-triples space is thus empty.

This detailed scaling analysis reveals that the worst-scaling terms all reside in the linear
transformation part of solving the PT2 linear equation, which is to say evaluating the action
of H0 on a vector in the first-order interacting space as required in each iteration of the
conjugate gradient algorithm we use to solve the linear equation. These terms are fifth
and sixth order in the system size for ESMP2-TOP(1) and ESMP2-TOP(all), respectively,
showing that it is indeed possible to improve over the seventh order scaling of the original
formulation of ESMP2. Of course, prefactors matter, and the fact that ESMP2-TOP(1)
carries 13 terms with N2

oN
3
v scaling means that, for small systems, it will almost certainly be

slower than EOM-CCSD despite its lower scaling, as EOM-CCSD has a smaller number of
N5 and N6 terms. The scaling does guarantee, though, that ESMP2-TOP(1) will be faster
in larger systems. This prefactor difference will also matter for the comparison between the
N7- and N5-scaling codes, however a quick calculation on water with a cc-pVDZ basis set,
resulting in N = 24 orbitals, revealed that the N7-scaling code took 9.84 seconds while the
N5-scaling code only took 1.28. Extrapolating this with the scaling of the codes shows that
the N5 scaling method becomes faster when the number of orbitals in the system is 8. We
now turn our attention to the question of whether energetic accuracy is maintained when we
aggressively limit the number of TOPs that are considered large.

2.4.3 Small Molecule Testing

Let us begin by testing the fifth order method on the same set of small molecules and two
charge transfer (CT) examples that were studied recently with the original seventh order
incarnation of ESMP2. To make the comparison direct, we use the same cc-pVDZ basis and
the same molecular geometries as in the previous study. [59] Here, we restrict the L-triples
space as much as possible by treating only the dominant TOP (or, in the case of N2, the pair
of equal-weight dominant TOPs) as large, relegating triples that do not contain the dominant
TOP to the S-triples space with its diagonally-approximated zeroth order Hamiltonian. In
Table 2.3, we see that for this set of small molecules, this N2

oN
3
v -scaling variant of ESMP2

is, like its seventh order predecessor, competitive in accuracy with EOM-CCSD. Thus, by
working with excited-state-specific orbitals from the ESMF reference and an excited-state-
specific correlation treatment from ESMP2, it is possible, at least in these test systems, to
achieve EOM-CCSD accuracies with a method that scales as the fifth order of the system
size. As with the original formulation of ESMP2, we find it especially encouraging that the
method is equally accurate for CT and non-CT states, as practical uses of CT in biological
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Table 2.1: Scaling data for ESMP2-TOP(1), in which only one TOP is treated as large and
which is thus most appropriate when the reference is dominated by a single CSF. For the
different parts of the PT2 linear equation’s right-hand side (RHS) and linear transformation,
we report how many of that part’s contractions fall in to the different asymptotic scaling
categories.

N3 N3
oNv N2

oN
2
v N3

oN
2
v N2

oN
3
v

T ab
ij (RHS) 4 12 6 0 0

Sab
ij (RHS) 2 6 3 0 0

T abc
ijk (RHS) 16 0 4 0 0

Sabc
ijk (RHS) 3 0 5 0 0

T ab
ij ↔ T ab

ij 0 0 1 2 2

Sab
ij ↔ Sab

ij 0 0 1 2 2

T abc
ijk ↔ T abc

ijk 0 0 3 4 4

Sabc
ijk ↔ Sabc

ijk 0 0 2 5 5

T abc
ijk ↔ T ab

ij 0 0 18 0 0

Sabc
ijk ↔ Sab

ij 0 0 8 0 0

Sabc
ijk ↔ T ab

ij 0 0 2 0 0

and energy-related chemistry often involve large system sizes where lower-scaling methods
are essential.

Interestingly, the results here are barely changed compared to the results from the pre-
vious seventh order method, which displayed mean absolute errors of 0.13 eV and 0.12 eV
for the full set and the non-CT subset, respectively. [59] This finding suggests that the basic
idea here is sound: using a diagonal approximation to H0 in the space of less-important
triples does not have a significant effect on the accuracy. Note that we have tested whether
having any off-diagonal H0 character in the triples manifold is necessary by testing what
happens if no TOPs are treated as large. In that case, we find that accuracy suffers signifi-
cantly, suggesting that, for the triples that connect directly via the coulomb operator to the
large parts of the zeroth order reference, the fact that the Fock operator is not diagonal is
significant. Thus, it appears that we get away with the reduction in scaling not because the
off-diagonal parts of the Fock operator are unimportant, but because their effects are small
for the triples that do not connect to the reference or that only connect to small components
(TOPs with small weights) of the reference.

2.4.4 Ring Excitations

We now turn to a set of low-lying excitations in aromatic ring systems, where it is common
to see excited states in which more than one TOP has a large weight. For these systems
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Table 2.2: Scaling data for ESMP2-TOP(all), in which all TOPs are treated as large. For
the different parts of the PT2 linear equation’s right-hand side (RHS) and linear transfor-
mation, we report how many of that part’s contractions fall in to the different asymptotic
scaling categories. We omit the RHS doubles terms and the doubles-only parts (T ab

ij ↔ T ab
ij

and Sab
ij ↔ Sab

ij ) of the linear transformation, as their scaling is the same as in Table 2.1.
Note that in cases where the log-log scaling regression exponents for occupied or virtual
orbitals were significantly fractional (i.e. differed from integers by more than 0.3) we took
the conservative approach of transferring enough fractional exponent from occupied to vir-
tual in order to move the virtual exponent up to the next integer, and then rounded what
remained of the fractional occupied exponent up or down if it was above or below 0.3. For
example, N2.6

o N2.5
v is converted to N2

oN
3
v , while N2.99

o N1.35
v is converted to N3

oN
2
v . Note that,

although this conservative rounding may slightly rearrange the contractions among the N4

and N5 categories, we have explicitly verified (by inspecting the code) that each of the N6

contractions has the asymptotic scaling reported here.

N4 N5
o N4

oNv N3
oN

2
v N2

oN
3
v N4

oN
2
v N3

oN
3
v

T abc
ijk (RHS) 16 0 0 4 0 0 0

Sabc
ijk (RHS) 3 0 0 5 0 0 0

T abc
ijk ↔ T abc

ijk 0 25 8 13 10 7 4

Sabc
ijk ↔ Sabc

ijk 0 2 5 6 1 5 5

T abc
ijk ↔ T ab

ij 0 10 10 20 10 0 0

Sabc
ijk ↔ Sab

ij 0 0 0 8 0 0 0

Sabc
ijk ↔ T ab

ij 0 0 4 2 2 0 0

(whose geometries have been taken from the cc-pVDZ MP2 entries in the CCCBDB NIST
database [21]) we have defined large TOPs as those whose singular values are above 0.1,
resulting in two or fewer large TOPs in each excitation and thus a method that remains at
the fifth-order end of the continuum between ESMP2-TOP(1) and ESMP2-TOP(all). Unlike
the small molecules of the previous section, some of these ring excitations have at least a
modest (although not dominant) degree of doubly excited character. As CASPT2 is often
used to address double excitations, we have also included a comparison against its results in
the table, although we stress that δ-CR-EOM-CC(2,3) is the better reference in these states
thanks to its ability to handle double excitations and its higher-order treatment of electron
correlation. This comparison makes clear that, at least on average, ESMP2 is more similar
to CASPT2 than to δ-CR-EOM-CC(2,3), which is perhaps not surprising given the fact that
ESMP2 and CASPT2 approach these states via second order perturbation theory from a
qualitatively correct reference, making them methodologically similar. Of course, the fact
that ESMP2 need not specify an active space is a significant practical advantage.

Across the twelve ring excitations shown in Table 2.4, we find that the differences between
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Table 2.3: For the lowest singlet excitations in several small molecules, as well as for two
simple CT excitations, we report the reference δ-CR-EOM-CC(2,3) excitation energy in eV,
as well as other methods’ errors relative to the reference. All calculations are in the cc-pVDZ
basis. Only the dominant TOPs were considered large in ESMP2, meaning one TOP in all
cases except N2, where by symmetry there are two dominant TOPs with equal weights.
Below each method, we report the canonical cost scaling with respect to system size. At
bottom, we report mean and maximum absolute (i.e. unsigned) deviations from the reference
both with and without the CT systems included, as well as the number of deviations larger
than 0.3 eV.

δ-CR-EOM-CC(2,3) CIS TDDFT/B3LYP TDDFT/ωB97X EOM-CCSD ESMP2
O(N7) O(N4) O(N4) O(N4) O(N6) O(N5)

Acetaldehyde 11A” 4.36 0.71 0.09 0.14 0.21 0.16
Ammonia 21A1 7.57 0.95 -0.52 -0.07 0.05 0.01
Carbon Monoxide 11Π 8.76 0.61 0.16 0.31 0.30 -0.09
Cyclopropene 21B2 7.97 0.57 -0.83 -0.33 -0.08 -0.07
Diazomethane 11A2 3.01 0.38 0.05 0.09 0.45 -0.00
Dinitrogen 1Πg 10.36 -1.31 -0.03 0.00 0.44 0.09
Ethylene 11B3 8.80 -0.25 0.11 0.10 0.19 -0.30
Formaldehyde 11A2 4.08 0.63 0.07 0.10 0.19 0.15
Formamide 21A” 5.86 0.88 0.04 0.11 0.21 0.15
Hydrogen Sulfide 21B2 7.05 0.58 -0.27 0.20 0.11 -0.07
Ketene 11A2 3.78 0.70 0.22 0.31 0.36 -0.01
Methanimine 11A” 5.35 0.66 0.00 0.11 0.22 -0.00
Nitrosomethane 11A” 1.85 0.27 0.13 0.12 0.25 0.17
Streptocyanine Cation 11B2 7.53 1.55 1.08 1.07 0.28 -0.40
Thiofromaldyhyde 11A2 2.18 0.58 0.13 0.17 0.24 -0.08
Water 11B2 8.30 1.02 -0.57 -0.22 -0.01 0.06

Ammonia → Diflourine 21A1 9.27 2.38 -6.91 -2.69 0.51 -0.26
Dinitrogen → Methylene 11B2 15.49 1.66 -6.58 -1.79 0.06 0.15

Mean Abs. Dev. (with CT) 0.87 0.99 0.44 0.23 0.12
Max Abs. Dev. (with CT) 2.38 6.91 2.69 0.51 0.40

Mean Abs. Dev. (without CT) 0.73 0.27 0.22 0.22 0.11
Max Abs. Dev. (without CT) 1.55 1.08 1.07 0.45 0.40

Deviations above 0.3 eV 16 6 6 4 1

EOM-CCSD and ESMP2 are more significant than in the small-molecule excitations of the
last section. While EOM-CCSD has a slightly higher mean absolute deviation from δ-CR-
EOM-CC(2,3), its deviations are more regular than those of ESMP2. Indeed, in all twelve
cases, EOM-CCSD predicts excitation energies to be between 0.2 and 0.55 eV higher than
does δ-CR-EOM-CC(2,3), whereas the span of ESMP2’s deviations is significantly larger at
just over an eV. Table 2.5 shows that a similar story plays out for EOM-CCSD and ESMP2
in a triple-zeta basis, reassuring us that these tendencies are not specific to the double-zeta
basis, on which we now focus our attention.

Notably, while Table 2.4’s ESMP2 results are within 0.3 eV of δ-CR-EOM-CC(2,3) for
eight out of the twelve states, in the other four states — pyrrole 21A1, benzene 11B2u, benzene
21B1u, and pyrimidine 11B1 — its prediction is low by 0.7 eV or more. Two of these are
errors likely due to doubly excited character, one an error related to intruder states issues,
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Table 2.4: Excitation energies (eV) for small ring systems in the cc-pVDZ basis. For the
δ-CR-EOM-CC(2,3) reference, we report the excitation energy, while for other methods we
report deviations from the reference. ESMP2 treated TOPs with singular values above 0.1
as large, which led to two or fewer large TOPs in all states included here. A diagonal H0 was
used in the space of triples that do not contain any large TOPs. At the bottom, we report
mean and maximum absolute deviations from the reference, the number of these deviations
that were larger than 0.3 eV, and the mean absolute deviation from CASPT2.

State δ-CR-EOM-CC(2,3) CIS TDDFT/B3LYP TDDFT/ωB97X EOM-CCSD CASPT2 ESMP2

Pyrrole 21A1 6.15 1.60 0.45 0.84 0.51 -0.18∗ -0.90
Pyrrole 11A2 6.39 0.86 -0.48 0.70 0.36 0.10 0.09
Pyrrole 11B2 6.56 0.37 0.01 0.10 0.47 0.38 -0.21
Pyridine 11B1 4.84 1.33 -0.01 0.36 0.44 0.10 0.11
Pyridine 11B2 4.76 1.44 0.75 0.83 0.52 0.07 -0.25
Pyridine 21B2 6.51 2.05 0.86 1.05 0.45 0.29 0.11
Pyridine 11A2 5.26 2.19 -0.16 0.33 0.44 -0.05 -0.05
Benzene 11B2u 4.69 1.33 0.72 0.83 0.50 0.06 -0.71
Benzene 11B1u 6.35 -0.08 -0.21 -0.06 0.42 -0.35 -0.26
Benzene 21B1u 7.33 0.94 -0.14 -0.01 0.43 -0.69 -0.82
Pyrimidine 11B1 4.50 1.40 -0.21 0.18 0.22 -0.32 -0.82
Pyrimidine 11B2 5.23 1.28 0.52 0.61 0.28 -0.22 -0.28

Mean Abs. Dev. (MAD) 1.24 0.38 0.49 0.42 0.23 0.38
Max Abs. Dev. 2.19 0.86 1.05 0.52 0.69 0.90

Deviations above 0.3 eV 11 6 8 10 4 4
MAD vs CASPT2 1.30 0.44 0.59 0.49 0.00 0.28

∗Level shift was necessary for convergence. See text.

and one is not necessarily much of an error at all. Start with the 21A1 state of pyrrole, where
CASPT2 displays intruder-state behavior and is not stable without the application of a level
shift. Given that the zeroth order Hamiltonians are similar, and that the CASSCF reference
used by CASPT2 should be a better starting point than ESMF, ESMP2’s difficulty in this
state is likely related to these intrude state difficulties. In the 21B1u state of benzene, on the
other hand, ESMP2 is energetically very similar to CASPT2, which is known to be highly
accurate for the low-lying excitations of benzene, [91, 92, 89] and so this appears to be a case
where ESMP2 is reasonably accurate, at least if CASPT2 is used as the reference. Indeed,
the MAD of ESMP2 relative to CASPT2 across all twelve states is significantly lower than
its MAD relative to δ-CR-EOM-CC(2,3), which is perhaps not so surprising given that both
ESMP2 and CASPT2 are second-order perturbation theories based on orbital-optimized
reference functions (although for CASPT2 the orbital optimization is state-averaged, rather
than state-specific). However, the agreement is certainly not perfect, and the large deviations
between ESMP2 and δ-CR-EOM-CC(2,3) in the benzene 11B2u and pyrimidine 11B1 states
cannot be explained by either similarity to CASPT2 or by intruder state issues in CASPT2,
which were not present. The errors in these two states are likely due instead to doubly
excited character that the singly-excited ESMF reference function cannot capture. Indeed,
the doubly excited fractions of the CASSCF wave functions for benzene 11B2u and pyrimidine
11B1 were 15% and 8%, respectfully. It is interesting to note that, at least in these two cases,
this modest fraction of doubly excited character caused less trouble for EOM-CCSD. This



CHAPTER 2. AN N5-SCALING EXCITED-STATE-SPECIFIC PERTURBATION
THEORY 30

Table 2.5: Excitation energies (eV) for small ring systems in the cc-pVTZ basis. For the
δ-CR-EOM-CC(2,3) reference, we report the excitation energy, while for other methods we
report deviations from the reference. ESMP2 treated TOPs with singular values above 0.1
as large, which led to two or fewer large TOPs in all states included here. A diagonal H0

was used in the space of triples that do not contain any large TOPs. At the bottom, we
report mean and maximum absolute deviations from the reference and the number of these
deviations that were larger than 0.3 eV.

State δ-CR-EOM-CC(2,3) EOM-CCSD ESMP2

Pyrrole 21A1 5.95 0.59 -0.89
Pyrrole 11A2 5.93 0.41 0.13
Pyrrole 11B2 6.25 0.15 -0.18
Pyridine 11B1 4.69 0.52 0.15
Pyridine 11B2 6.22 0.51 0.12
Pyridine 21B2 4.61 0.60 -0.21
Pyridine 11A2 5.14 0.51 -0.03
Benzene 11B2u 4.55 0.58 -0.66
Benzene 11B1u 7.01 0.51 -0.76
Benzene 21B1u 6.06 0.48 -0.23
Pyrimidine 11B1 4.14 0.54 -0.60
Pyrimidine 11B2 4.82 0.62 -0.23

Mean Abs. Dev. (MAD) 0.51 0.35
Max Abs. Dev. 0.62 0.89

Deviations above 0.3 eV 11 4

raises the interesting question of whether, for cases with modest amounts of doubly excited
character, EOM-CCSD is more robust than ESMP2, which seems like a question worth
studying more systematically in future work.

2.4.5 Rydberg Excitations

To check whether ESMP2 achieves a similar quality in Rydberg excitations, we have tested
it on relevant excitations in neon, formaldehyde, and benzene. Although the comparison
is less straightforward than those of the previous sections due to a lack of a single high-
level benchmark, comparisons to literature values are shown in Table 2.6. We find that the
overall accuracy for ESMP2 is similar to that seen in the ring systems above and that it
makes a substantial correction to the uncorrelated ESMF reference, which in most cases
underestimates these excitations (although interestingly not in neon).
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Table 2.6: Results for a few Rydberg states in neon, formaldehyde, and benzene. Molecular
geometries were taken from the NIST CCCBDB database.[21] All values are reported in eV.

State Basis ESMF N5-ESMP2 Error

Neon (2s → 3p) cc-pVTZ 65.6781 64.6521 0.35a

Formaldehyde 21A1 d-aug-cc-pVTZ 7.0967 8.3287 0.23b

Formaldehyde 31A1 d-aug-cc-pVTZ 8.1856 9.3947 0.13b

Benzene 1E2g aug-ANO1c 6.7758 7.4583 -0.38c

Benzene 2A1g aug-ANO1c 6.7619 7.4557 -0.39c

Benzene 1A2g aug-ANO1c 6.8013 7.4856 -0.38c

a Compared to EOM-CCSD in the same basis.[57]
b Compared to the theoretical best estimate for these states.[89]
c Compared to CCSD calculations in the same basis set.[90]

Table 2.7: Size intensivity test, in which we report the first singlet excitation energy in
eV for a water molecule surrounded by a variable number of distant He atoms. Methods’
asymptotic cost scalings are given in parentheses.

He ESMF ESMP2 ESMP2 EOM-CCSD CISD
atoms (N4) (N5) (N7) (N6) (N6)

0 7.7286 8.4508 8.4353 8.1946 10.1593
1 7.7286 8.4508 8.4353 8.1946 10.5369
2 7.7286 8.4508 8.4353 8.1946 10.9118
3 7.7286 8.4508 8.4353 8.1946 11.2841
4 7.7286 8.4508 8.4353 8.1946 11.6537
5 7.7286 8.4508 8.4353 8.1946 12.0207
6 7.7286 8.4508 8.4353 8.1946 12.3852

2.4.6 Size Intensive Excitation Energies

Finally, although ESMP2 is rigorously size intensive — by which we mean that the exci-
tation energy is unchanged by adding a second, infinitely-far-away system that does not
participate in the excitation — it is worth testing that this property has been realized in our
implementation. To this end, we treated a water molecule with various numbers of far-away
helium atoms in a 6-31G basis. We performed seven calculations, one with just the water
molecule and then six more, each with one additional He atom placed 10 Å away from the
water at the different points of an octahedron. As seen in Table 2.7, the ESMP2 predic-
tion for the excitation energy was unchanged by the addition of the He atoms, both for the
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original N7-scaling approach and the N5-scaling approach introduced here in which only the
dominant TOP is considered large. While ESMP2’s size intensivity is a formal advantage
over CASPT2, which is only approximately size consistent, [93] CASPT2’s size intensivity
error turns out to be less than 10−6 eV in this example. In contrast, the excitation energy of
configuration interaction with singles and doubles (CISD), which is not even approximately
size consistent or intensive, changes significantly upon adding the He atoms, despite the fact
that they have essentially no interaction with the water molecule. This alarming behavior
is a reminder of why size-intensivity is such a high priority in excited state methods, as
artificial energy shifts of the size displayed here by CISD could spoil predictions of solvation
properties such as solvatochromic shifts.

2.5 Conclusion

We have shown that, by working in an orbital basis similar to that of the natural transition
orbitals and by making a small modification to the zeroth order Hamiltonian, the cost scaling
of the ESMP2 correction to the ESMF energy can be lowered from the seventh to the fifth
power of the system size. In particular, the scaling matches the N2

oN
3
v scaling of ground

state MP2 theory, although the prefactor remains significantly higher due to the off-diagonal
nature of ESMP2’s zeroth order Hamiltonian, which necessitates an iterative solution to the
central linear equation. Initial testing of this lower-scaling incarnation of ESMP2 theory
shows that its accuracy remains competitive with EOM-CCSD in many scenarios, but that
it may break down more rapidly when doubly excited character is present. Given that this
approach to ESMP2 gives it a lower cost-scaling than EOM-CCSD, these findings strongly
motivate more systematic and widespread testing in future. The potential for a low-scaling
method that is robust in charge transfer contexts is especially strong, as DFT still struggles
in this area and modeling these systems reliably often requires the explicit inclusion of solvent
species and can thus easily entail hundreds of atoms.

Going forward, the immediate priority is to work towards a production-level implementa-
tion of the most expensive terms within the theory. Happily, our automatic code-generation
and cost-analysis has revealed that the number of terms with fifth order scaling is relatively
small, and so a hand-tuned implementation employing dense linear algebra should be quite
feasible. Once the practical efficiency of the implementation is addressed, it will be impor-
tant to test the method in a significantly larger and more systematic set of excitations in
order to more firmly establish in which contexts ESMP2 can be used as a lower-cost al-
ternative to EOM-CCSD and in which contexts it cannot. Looking a bit farther ahead, it
would be interesting to further exploit locality. The new approach here derives its scaling
from the fact that molecular excitations’ spatial extents typically do not grow indefinitely
with system size, but it does not exploit localities of electron correlation in the way many
ground state methods now do. Finally, the realization of an excited state analogue of MP2
theory at the same cost scaling further motivates the study of applying a cluster operator
to the ESMF reference wave function, which would be an important step towards the type
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of systematically improvable hierarchy of correlation methods that Hartree Fock theory has
long enjoyed.
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Chapter 3

Studying excited-state-specific
perturbation theory on the Thiel set

3.1 Abstract

We explore the performance of a recently-introduced N5-scaling excited-state-specific second
order perturbation theory (ESMP2) on the singlet excitations of the Thiel benchmarking set.
We find that, without regularization, ESMP2 is quite sensitive to π system size, performing
well in molecules with small π systems but poorly in those with larger π systems. With
regularization, ESMP2 is far less sensitive to π system size and shows a higher overall
accuracy on the Thiel set than CC2, EOM-CCSD, CC3, and a wide variety of time-dependent
density functional approaches. Unsurprisingly, even regularized ESMP2 is less accurate than
multi-reference perturbation theory on this test set, which can in part be explained by the
set’s inclusion of some doubly excited states but none of the strong charge transfer states
that often pose challenges for state-averaging. Beyond energetics, we find that the ESMP2
doubles norm offers a relatively low-cost way to test for doubly excited character without
the need to define an active space.

3.2 Introduction

Quantum chemistry approaches to modeling singly excited states have been highly success-
ful, but it remains true that the methods that are most reliably accurate are also highly
computationally intensive. As in ground state theory, coupled cluster (CC) methods that
go beyond doubles but stop short of a full treatment of triples are often used as reliable
benchmarks.[94, 96, 97, 98, 99, 100, 101, 102, 103, 95] However, with a cost that scales as
N7 with the system size N , these methods are quite limited in the size of molecule that
they can treat. Density functional theory (DFT), and in particular time-dependent DFT
(TD-DFT), is much more affordable, with costs ranging from N3 to N5 depending on the
functional, with N4 being typical for many hybrid functionals. By choosing a functional that
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is known to work well for the chemistry in question, TD-DFT can offer impressive accuracy,
especially for its computational price, but it would be an overstatement to claim that it is as
reliable as CC methods that include some triples effects. Lower cost CC options for excited
states, especially in the linear response (LR) and equation of motion (EOM) formalisms, are
also widely used, but without triples effects, these methods are more varied in their reliabil-
ity. Examples include EOM-CC with singles and doubles (EOM-CCSD), [104] which has an
N6 cost but tends to overestimate excitation energies, and CC2, [51, 105] which has an N5

cost and typically displays lower average errors than EOM-CCSD. These methods are both
widely used and have been quite successful, but nonetheless there is room for improvement,
as they can produce surprisingly large errors in some cases that are not obviously ill-suited
to their assumptions, as in the 21A′ state of formamide. Adding partial triples contributions
– as in CC3, [52, 106, 105] EOM-CCSD(T), [107, 108] δ-CR-EOM(2,3)D, [79] and many
related methods – can certainly improve matters, but brings us back to N7 scaling. In this
study, we will use a large test set to investigate to what degree it may be helpful to move
away from the linear response paradigm and instead build traditional correlation methods
upon a mean field reference, starting, for now, with second order perturbation theory.

Like ground state second order Møller-Plesset perturbation theory (MP2), [13] the re-
cently introduced excited-state-specific Møller-Plesset theory (ESMP2) [57, 59, 11] seeks to
provide a second order Rayleigh-Schrödinger correction atop a mean field starting point. In
the ground state, MP2 perturbs around Hartree-Fock theory, while in ESMP2 the start-
ing point is provided by excited state mean field (ESMF) theory, [57, 59] which refines the
configuration interaction singles (CIS) picture [109] through excited-state-specific orbital re-
laxations to create a method that shares much in common with ground state mean field
theory. [58] The early studies of ESMP2 have shown promising accuracy, which has become
more relevant thanks to a refinement of the theory [11] that brings its cost scaling down to
N5. This is asymptotically comparable to MP2, although it should be noted that ESMP2’s
cost is an iterative N5 due to its zeroth order Hamiltonian not being diagonal. With a rela-
tively low scaling and early promise in initial tests, we now seek to deepen our understanding
of the strengths and weaknesses of ESMP2 by exploring its performance on a widely used
excited state benchmark.

The Thiel set [15] offers theoretical best estimates (TBEs) for over one hundred sin-
glet excited states (and also many triplet states) spread over 28 molecules, which include
nucleobases, carbonyls, aromatic rings, heterocyclic rings, small polyenes, and other small
unsaturated hydrocarbons. In the original work, both complete active space second-order
perturbation theory (CASPT2) [75, 76] as well as the LR or EOM coupled cluster methods
CC2, EOM-CCSD, and CC3 were compared across these molecules. Since then, a large num-
ber of other research groups have used the Thiel set to make further comparisons between
methods. [40, 117, 118, 119, 120, 121, 122, 123, 124, 110, 111, 112, 113, 114, 115, 116, 48]
Both the quality of the initial test set and its broad subsequent use make the Thiel set espe-
cially attractive for helping to put ESMP2 in context and for understanding its strengths and
weaknesses. We note that, for consistency with this significant body of previous work, we
have employed the original test set’s TBEs in our analysis below, although we acknowledge
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that in some cases, such as the nucleobases, [125, 126] more recent studies may offer even
more reliable best estimates.

Thiel and coworkers organized their test set into four groups of molecules. In one
group they placed aldehydes, ketones, and amides, in which, with the exception of ben-
zoquinone, ESMP2 shows a highly competitive performance even without regularization.
Another group contains unsaturated aliphatic hydrocarbons, some of whose excited states
have large amounts of doubly excited character and so do not satisfy the assumptions of
ESMP2’s singly-excited zeroth order reference state. Although ESMP2 cannot treat dou-
bly excited character accurately, it does prove to be a relatively cost-effective way to offer
warning that such character is present. Thiel’s third group consists of aromatic rings and
heterocycles, in which ESMP2’s sensitivity to π system size and the practical efficacy of
regularization become especially apparent. In our discussion below, we reorganize these two
groups into three – conjugated polyenes, heterocycles, and other rings – as the polyenes are
particularly illuminating for ESMP2. The fourth and final Thiel group contains the nucle-
obases cytosine, thymine, uracil, and adenine. As in other cases, ESMP2 struggles with their
π system sizes but improves substantially with regularization.

3.3 Theory

3.3.1 Zeroth Order Reference

The zeroth order reference state for ESMP2 is the ESMF wave function, which in its simplest
form is an orbital-relaxed linear combination of single excitations that can be written as
follows.

|Φ0⟩ = eX̂

(∑
ia

cia |ai ⟩ +
∑
īā

cīā |āī ⟩

)
(3.1)

In this work, the indices i, j, k represent occupied alpha orbitals, a, b, c represent virtual alpha
orbitals, and ī and ā likewise represent beta orbitals. Note that it is possible to formulate
ESMF so as to also include the closed-shell Aufbau configuration, [57] but we have not yet
implemented the corresponding ESMP2 terms in our N5-scaling ESMP2 code, and so the
ESMF reference used in this work is as shown in Eq. 3.1. Here X̂ is an anti-Hermitian one-
body operator that, when exponentiated, produces a unitary orbital rotation that moves the
linear combination of single excitations from the HF to the ESMF orbital basis. To find
each ESMF state, we employ either the recently-introduced generalized variational principle
(GVP) [59] or, where possible, the more efficient ESMF self-consistent field (SCF) approach.
[58] The latter is not as robust as the GVP, and so we fall back to using the GVP in cases
where the SCF approach proves unstable.



CHAPTER 3. STUDYING EXCITED-STATE-SPECIFIC PERTURBATION THEORY
ON THE THIEL SET 37

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10

M
ea

n 
U

ns
ig

ne
d 

Er
ro

r (
eV

)

2 4 6 8 10

M
ed

ia
n 

D
ou

bl
es

 N
or

m

Number of Orbitals in π System Number of Orbitals in π System 

(a) (b)

ESMP2
ε-ESMP2

0.1

0.2

0.3

ESMP2
EOM-CCSD
CC2
CC3
ε-ESMP2

Figure 3.1: (a) Median |T2| doubles norms and (b) MUEs for excitation energies by π system
size. States identified by ESMP2 to have strongly doubly excited character and states not
found by ESMF (red and grey rows in Table 3.1) are excluded.

3.3.2 ESMP2

ESMP2 builds a second-order Rayleigh-Schrödinger perturbation theory atop ESMF in a way
that parallels MP2’s construction atop HF theory. As ESMF already contains singly excited
components, the initial formulation [57] of ESMP2 included all doubly- and triply-excited
determinants in its first order interacting space. This choice comes from the basic logic that
if MP2 can stop at doubles when expanding around its Aufbau reference, ESMP2 should
stop at triples. This approach led to promising accuracy in initial tests, but due to the large
number of triples, it came with an N7 cost scaling. More recently, an N5 reformulation of
ESMP2 has been introduced [11] that includes only the most important subset of triples by
first converting the ESMF wave function into a “transition orbital pair” basis that shares
much in common with the concept of a natural transition orbital basis. [127] For the present
study, we employ the N5 theory, and refer the reader to its original publication [11] for most
of its details, but let us very briefly explain the added level shift as it has not been discussed
previously.

The zeroth order Hamiltonian for ESMP2 is

Ĥ0 = R̂(F̂ − Ĥ)R̂ + P̂ ĤP̂ + Q̂(F̂ + ϵ)Q̂, (3.2)

where R̂ projects onto the ESMF state, P̂ projects onto the subspace containing the Aufbau
and all singly-excited configurations, and Q̂ = 1 − P̂ . Ĥ is the full Hamiltonian, whereas
F̂ is the Fock operator formed from the ESMF one-body density matrix. Note that, in
part, this choice of Ĥ0 is employed so as to ensure size intensivity. [11] In previous ESMP2
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Figure 3.2: (a) CC3 T1 percentages and (b) ESMP2 and ϵ-ESMP2 unsigned excitation energy
errors plotted against the ESMP2 doubles norm |T2| for all states. The lines are linear fits
to the points.

work, the level shift ϵ has not been used, and all results reported as “ESMP2” below use
ϵ = 0. By instead setting a positive value for ϵ, we can widen the zeroth order energy
spacing that separates the singles from the doubles and triples, which as discussed above
may help mitigate perturbative failures in larger π systems. Due to the structure of Ĥ0,
the only modification that ϵ makes to ESMP2’s working equations is to shift the zeroth
order Hamiltonian matrix’s diagonal in the amplitude equations, and so adopting a nonzero
ϵ involves a trivial algorithmic change. As the ESMP2 excitation energy is

∆E = EESMP2 − EMP2, (3.3)

we also add ϵ to the denominators in the standard MP2 energy expression so as to maintain
a balanced treatment between the ground and excited state. Of course, the value chosen
for ϵ will matter, and after some preliminary testing revealed that shifts below 0.2 Eh made
very little difference, we ran the full test set with the substantially larger shift value of 0.5
Eh to find out what would happen with a much more aggressive shift. Interestingly, this
resulted in substantially better excitation energies, and so we have not attempted to optimize
ϵ any further in this study. We show examples of individual states’ shift sensitivities in the
Supplementary Material. All results presented below that are labeled “ϵ-ESMP2” employed
ϵ = 0.5 Eh.

3.3.3 Amplitude Diagnostics

Although they are not a perfect guide, [128] amplitude diagnostics such as the T1 diagnostic
[129] have long been used to help predict whether ground states are indeed weakly correlated
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enough for single-reference methods to be reliable. Might similar diagnostics offer useful
information for ESMP2? Unlike linear response excited state methods like EOM-CCSD in
which doubly excited configurations must account for both orbital relaxation and correlation
effects, ESMP2 is built on a reference in which mean-field orbital relaxations are already
accounted for by the MO basis. Thus, its doubles amplitudes are more closely related to
ground state singles amplitudes: both are singly excited relative to their reference state and
both are only expected to be present in large amounts if the reference wave function is a
poor approximation for the state. Certainly we would not expect ESMP2 to be accurate
for a state in which any doubly excited configurations have large weights, as this would
be a violation of the assumption that we are perturbing around the singly-excited ESMF
reference. Thus, both from their similarity to the ground state singles at the heart of the
T1 diagnostic and from the perturbative argument that they should not be large, we expect
that the ESMP2 doubles should be able to offer useful information about the reliability of
ESMP2, and possibly other theories too, for a given excited state.

What functions of the doubles would make for good diagnostics? In many studies in-
volving linear-response coupled cluster theory, the percentage of the wave function that is
described by single excitations is used as a gauge[105]. While we could adopt a similar method
for ESMP2, except using the percentage of the first order wave function coming from the
doubles instead, we choose not to as the resulting diagnostic is not size consistent. Instead
we make use of the fact that in ESMP2 any excitation that is localized to some molecule or
molecular region (as most excitations in chemistry are) will see the triples percentage of its
wave function grow indefinitely with system size as additional far-away molecules are added,
as the size intensivity of the theory guarantees that those far-away molecules will simplify to
MP2 descriptions, thus adding additional triples (MP2 doubles on top of the ESMF single
excitation) components for every far-away molecule that is added.[11] Therefore, the ESMP2
doubles percent will drop to zero in the large system limit, in the same way that the RHF
determinant’s percentage of the MP2 wave function goes to zero in the large system limit.
This effect implies that the meaning of the %T1 and %T2 measures will vary with system
size in ESMP2, even when one is simply adding far-away molecules that do not interact with
the original system. This is clearly undesirable.

In contrast, the norm of the doubles amplitudes (when working in intermediate normal-
ization) is unaffected by the addition of far-away molecules, as the size intensivity of ESMP2
guarantees that, so long as the excitation is still on the original molecule, the new molecules
add only triples in the form of the far-away molecules’ MP2 doubles acting atop the ESMF
singles. Further, like many other diagnostics, |T2| is invariant to occupied-occupied and
virtual-virtual rotations. Thus, |T2| offers ESMP2 a size-consistent, orbital-invariant mea-
sure of the quality of ESMF’s assumption of a purely singly-excited state. It should therefore
allow us to flag cases, like states with large doubly excited components, for which ESMF
and ESMP2 are not appropriate.
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3.4 Computational Details

Following the general considerations described by Thiel and coworkers, [15] we have employed
the same ground state MP2/6-31G* geometries and TZVP basis set [130] in all calculations.
Our ESMP2 code does not currently make use of point group symmetry, so calculations were
run in C1 and manual checks were performed to ensure that states’ symmetry labels are cor-
rect. In part to ensure the same states were being used when comparing to existing results
and in part for convenience, we employed the largest singles components from EOM-CCSD
calculations as the guess singles in ESMF. We employed PySCF [131] for most EOM-CCSD
calculations, while QChem [85] and Molpro [132] were used for the 21E2g benzene state and
the 21Au and 11B2g states of tetrazine. We also verified state characters by direct compar-
isons of the converged ESMF and EOM-CCSD wave functions, including visual inspection
of the most relevant orbitals for each state using Molden v2.0. [133] We further verified state
character and, in particular, the nature of doubly excited states, using Thiel and coworkers’
active spaces [15] and Molpro’s implementation of state-averaged CASSCF. Detailed infor-
mation on these various comparisons can be found in the Supplementary Material. Note
that in some of our comparisons below, we have excluded states not found by ESMF or
that are flagged by ESMP2 as having large amounts of doubly excited character, as these
either cannot be compared or are not appropriate for treatment by any of the single-reference
methods. We have verified that crunching the numbers with these states included makes
little difference, as discussed in the next section and as seen in the additional tables in the
Supplementary Material.

3.5 Results

3.5.1 Overview

Table 3.1 shows our results on the 103 singlet states that have CC results and TBEs in the
Thiel benchmark, [15] with the ESMP2 and CC methods’ accuracies summarized in Figure
3.1 and Table 3.2. Orbital-optimized ESMF stationary points were successfully located for
100 of these 103 states, which, while not perfect, represents the clearest evidence to date
that ESMF energy stationary points can be expected to exist for the vast majority of low-
lying singlet excited states in single-reference molecules. Six of the states showed especially
large ESMP2 doubles norms with |T2| > 0.5, and five of these six likewise had CC3 T1
percentages below 80, indicating that ESMP2’s |T2| can indeed help predict states with
challenging amounts of doubly excited character. As seen in Figure 3.2, ESMP2’s |T2| also
shows the expected correlations with both ESMP2 excitation energy errors and the CC3
T1 percentage across a wider range of |T2| values. With regards to excluding states from
some comparisons, we note that the exclusion of the three missing ESMF states from the
statistics, for example in Table 3.2, changes the overall mean unsigned error (MUE) by 0.01
eV or less for CC2, EOM-CCSD, and CC3. Excluding the states with |T2| > 0.5 improves
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the overall MUEs of CC2, EOM-CCSD, CC3, and ϵ-ESMP2 by just 0.04, 0.03, 0.0, and 0.02
eV, respectively, and so does not affect the ordering of their overall accuracy. As there were
only three states out of about 100 that ESMF did not find, we do not expect their absence
from the ESMP2 statistics to alter any of the broad conclusions drawn from this study. The
Supplementary Material has additional tables in which fewer states are excluded.

As seen in Figure 3.1, unregularized ESMP2’s accuracy for excitation energies in singly-
excited states depends strongly on the size of a molecule’s π system, while ϵ-ESMP2 is
insensitive to π system size and highly accurate. The degradation of ESMP2’s accuracy
with increasing π system size closely follows the rise of its |T2| doubles norm, indicating that
the poor accuracy in molecules with larger π systems is indeed related to a perturbative
failure born of small zeroth order energy spacings between the reference and the lowest-lying
doubles. With its level shift suppressing the spurious growth of large doubles contributions,
ϵ-ESMP2 is significantly more reliable, displaying an accuracy that is as good or better than
the other single-reference methods at all π system sizes. Among the methods compared,
only the multi-reference CASPT2 approach using Thiel’s active spaces offers better overall
accuracy on this test set than ϵ-ESMP2. With an N5 scaling and no need to choose an active
space, these results suggest that ϵ-ESMP2 has much to offer in modeling singly excited states,
while ESMP2 can act as a relatively affordable detector of doubly excited character.

3.5.2 Amplitude Diagnostics

As seen in Figure 3.2, the ESMP2 |T2| values tend to increase as the CC3 %T1 values de-
crease, in line with expectation. With one exception, the most worrying CC3 %T1 values
(those significantly below 80%) all correspond to ESMP2 |T2| values above 0.5. The ex-
ception is the 11B3u state of benzoquinone, which has a CC3 %T1 of 75.2% but an ESMP2
doubles norm of just 0.4. Interestingly, both CC2 and CC3 are reasonably accurate for this
state despite the low %T1 value, although EOM-CCSD and ϵ-ESMP2 are not. This excep-
tion makes it tempting to recommend that states with |T2| > 0.4 be considered “hard” for
ϵ-ESMP2, but Figure 3.2 also makes clear that there are many states with doubles norms
this large that ϵ-ESMP2 is quite accurate for, and a couple with lower doubles norms where
ϵ-ESMP2 struggles. So we see 0.5 as a better rough threshold for when to firmly set ϵ-
ESMP2 and other single-reference methods aside and reach for multi-reference approaches.
For ESMP2, large energy errors clearly start much earlier, and it would be difficult to rec-
ommend relying on it for any state where |T2| > 0.3.
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Table 3.2: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions and states identified by ESMP2 to have large doubly
excited components (gray and red rows in Table 3.1) are excluded.

SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
Ketones and amides 0.20 ± 0.18 0.02 ± 0.05 0.29 ± 0.26 0.45 ± 0.38 0.26 ± 0.31 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.14 ± 0.09 0.34 ± 0.34 0.32 ± 0.22 0.57 ± 0.13 0.43 ± 0.12 0.27 ± 0.16 0.13 ± 0.13
Conjugated rings 0.32 ± 0.17 0.01 ± 0.03 0.22 ± 0.07 0.36 ± 0.16 0.18 ± 0.12 0.60 ± 0.40 0.15 ± 0.10
Heterocycles 0.34 ± 0.21 0.10 ± 0.13 0.28 ± 0.19 0.43 ± 0.19 0.23 ± 0.16 0.68 ± 0.42 0.17 ± 0.14
Nucleobases 0.41 ± 0.37 0.15 ± 0.10 0.21 ± 0.13 0.47 ± 0.33 0.17 ± 0.08 0.68 ± 0.52 0.19 ± 0.15
All 0.31 ± 0.24 0.09 ± 0.13 0.26 ± 0.18 0.43 ± 0.26 0.23 ± 0.19 0.60 ± 0.43 0.17 ± 0.14

Table 3.3: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions and states identified by ESMP2 to have large doubly
excited components (gray and red rows in Table 3.1) are excluded.

BP86 B3LYP BHLYP DFT/MRCI ESMP2 ϵ-ESMP2
Ketones and amides 0.55 ± 0.35 0.29 ± 0.19 0.35 ± 0.44 0.34 ± 0.21 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.52 ± 0.32 0.40 ± 0.22 0.22 ± 0.11 0.22 ± 0.13 0.27 ± 0.16 0.13 ± 0.13
Conjugated rings 0.51 ± 0.34 0.36 ± 0.19 0.29 ± 0.22 0.16 ± 0.13 0.60 ± 0.40 0.15 ± 0.10
Heterocycles 0.44 ± 0.29 0.21 ± 0.18 0.49 ± 0.26 0.17 ± 0.12 0.68 ± 0.42 0.17 ± 0.14
Nucleobases 0.83 ± 0.30 0.50 ± 1.20 0.57 ± 0.29 0.15 ± 0.12 0.68 ± 0.52 0.19 ± 0.15
All 0.54 ± 0.34 0.31 ± 0.54 0.44 ± 0.31 0.20 ± 0.16 0.60 ± 0.43 0.17 ± 0.14

Table 3.4: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions and states identified by ESMP2 to have large doubly
excited components (gray and red rows in Table 3.1) are excluded.

π system size SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
2 0.19 ± 0.17 0.11 ± 0.24 0.32 ± 0.27 0.39 ± 0.36 0.28 ± 0.34 0.21 ± 0.14 0.17 ± 0.16
3 0.12 ± 0.11 0.00 ± 0.00 0.28 ± 0.26 0.40 ± 0.43 0.30 ± 0.32 0.16 ± 0.18 0.13 ± 0.09
4 0.17 ± 0.16 0.17 ± 0.18 0.23 ± 0.12 0.43 ± 0.16 0.29 ± 0.16 0.24 ± 0.12 0.09 ± 0.13
5 0.41 ± 0.13 0.10 ± 0.10 0.38 ± 0.20 0.43 ± 0.18 0.21 ± 0.15 0.35 ± 0.34 0.17 ± 0.14
6 0.31 ± 0.22 0.11 ± 0.13 0.25 ± 0.17 0.42 ± 0.20 0.24 ± 0.17 0.75 ± 0.39 0.17 ± 0.14
8 0.34 ± 0.26 0.11 ± 0.11 0.22 ± 0.14 0.53 ± 0.31 0.19 ± 0.10 0.74 ± 0.47 0.20 ± 0.16
10 0.48 ± 0.34 0.04 ± 0.07 0.20 ± 0.08 0.39 ± 0.13 0.17 ± 0.10 0.69 ± 0.41 0.16 ± 0.10

5 or less 0.24 ± 0.18 0.09 ± 0.17 0.32 ± 0.23 0.41 ± 0.31 0.26 ± 0.27 0.24 ± 0.23 0.16 ± 0.13
6 or more 0.34 ± 0.26 0.10 ± 0.10 0.24 ± 0.15 0.45 ± 0.23 0.21 ± 0.14 0.74 ± 0.41 0.18 ± 0.14

3.5.3 Comparison to TD-DFT

Shortly after the introduction of the Thiel benchmark set, a followup study evaluated the
performance of TD-DFT and DFT/MRCI on the same molecules and states. [134] In Table
3.3, we compare the results of that study to ESMP2 and ϵ-ESMP2. Due to its sensitivity
to π system size, ESMP2 without regularization is clearly less accurate than typical TD-
DFT approaches, which, having a very different mathematical structure, do not suffer the



CHAPTER 3. STUDYING EXCITED-STATE-SPECIFIC PERTURBATION THEORY
ON THE THIEL SET 47

same issue of small denominators as the lowest doubly excited configurations come down in
energy. Indeed, TD-DFT under the usual adiabatic approximation leads to a formalism in
which doubles do not participate in excited states at all. [109] ϵ-ESMP2, on the other hand,
proves to be more accurate on the Thiel set singlet states than any of the TD-DFT functionals
originally tested by Thiel, and this favorable comparison holds even when considering more
recent benchmarking [40] of a much wider range of functionals, where MUEs were seen to
range from just above 0.2 eV up to more than 0.5 eV. Even when the states with large |T2|
are included (see tables in SI), ϵ-ESMP2 shows a MUE of 0.19 eV, although it is far from
obvious that such states should be used in comparing these methods as TD-DFT cannot treat
their doubly excited parts at all. Table 3.3 also shows that ϵ-ESMP2’s accuracy is largely
consistent across different types of molecules, whereas the density functionals tested by Thiel
have accuracies that vary more widely, with the nucleobases proving the most difficult.

Another difference between TD-DFT and ESMP2 is the latter’s ability to offer diagnostic
information about the presence of doubly excited character. Although TD-DFT at N4 is less
expensive than ESMP2, it offers no information on such character, whereas ESMP2 can do
so at N5 cost. This is substantially lower than the N7 cost of CC3, and the original Thiel set
study makes clear that lower-level CC methods like EOM-CCSD are much less effective at
predicting doubly excited character. [15] Thus, when checking for doubly excited character
when trying to assess the trustworthiness of TD-DFT for a particular excited state, ESMP2
may offer a relatively affordable approach.

3.5.4 Group 1: Aldehydes, Ketones, and Amides

These molecules have many uses as functional groups in biological and photocatalytic set-
tings,[135, 136, 137, 138] making them interesting both from a formal and a practical perspec-
tive. Thiel’s CASPT2 approach (CASPT2 b) is especially accurate in this set of molecules
with a MUE of just 0.02 eV. ϵ-ESMP2 is the next most accurate, followed by Roos’s CASPT2,
CC3, and CC2, with EOM-CCSD and ESMP2 being the least accurate. Previous TD-DFT
work shows that TD-DFT methods with hybrid functionals usually give results comparable
to EOM-CCSD in these molecules.[139, 140, 134] ϵ-ESMP2 proves to be more accurate than
B3LYP in these molecules, which in turn is interestingly significantly more accurate than
DFT/MRCI, which has more difficulty with this set of molecules than with any other.

3.5.4.1 Formaldehyde and Acetone

For formaldehyde and acetone three states were studied: 11A2 of n → π∗ character, 11B1

of σ → π∗ character, and 21A1 of π → π∗ character. It should be noted that the 21A1

states of these molecules are known to have considerable Rydberg character, which cannot
be described properly in the TZVP basis set as it lacks diffuse functions. We have chosen
not to exclude these states from our analysis, because many other states in the Thiel set
also have some Rydberg character to varying degrees, making it difficult to draw a clear line
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between what to include and what not to. Of course, all the methods we are comparing with
each other use the same TZVP basis and so are faced with this same issue.

These two molecules are particularly interesting for ESMP2, as they are the only cases
in this benchmark where ESMP2 did as well as ϵ-ESMP2. Both methods produced errors
with a relatively small magnitude of 0.1 eV for the non-Rydberg states. Interestingly, the
addition of the level shift actually increased errors for the 11B1 state in formaldehyde and the
11A2 state in acetone, although ϵ-ESMP2 remains quite accurate. Another interesting and
potentially noteworthy observation we made was that ESMP2 showed larger doubles norms
for the Rydberg states and a much larger maximum individual amplitude value, raising the
question of whether it would have any value in flagging Rydberg character. We don’t have
enough data in this study to say anything conclusive on this front, but it may be interesting
to study further.

3.5.4.2 p-Benzoquinone

For benzoquinone, three n → π∗ states - 11Au, 11B1g, 11B3u - and three π → π∗ states -
11B3g, 11B1u, 21B3g - were studied. Within this group of molecules, benzoquinone showed
by far the largest amount of doubly excited character, as seen in both the CC3 %T1 and
the ESMP2 |T2| values. Unsurprisingly, unregularized ESMP2 performed quite poorly in
benzoquinone, with ϵ-ESMP2 performing much better and more comparably to CC2 and
CC3. ϵ-ESMP2’s largest error in this molecule was 0.54 eV for the 11B3u state, which has
the most significant doubly excited character. This reminds us that, although ϵ-ESMP2
can improve significantly over ESMP2 when such character is present, it is no substitute for
multi-reference methods in cases where the doubly excited component is large enough.

3.5.4.3 Formamide, Acetamide, and Propanamide

For each of these molecules, the 11A′′ n → π∗ state, and the 21A′ π → π∗ state were
studied. In the 21A′ state of propanamide and especially acetamide, the excitation within
the converged ESMF wave function contained fewer components than in EOM-CCSD, placing
a higher fraction of the overall weight on the dominant HOMO→LUMO+2 component. We
see this as a good reminder that both orbital relaxation and the degree to which correlation
effects are captured can affect the degree of predicted mixing between excitation components.

ESMP2 was quite accurate for the 11A′′ excitation energies, with ϵ-ESMP2 less so, while
ϵ-ESMP2 was much more accurate than ESMP2 for the 21A′ states .Although none of these
states has a particularly high degree of doubly excited character, the ESMP2 doubles norms
do correctly predict the relative accuracy for the unregularized theory between these two
states.A final noteworthy point is the unusually high errors made by CC2, EOM-CCSD, and
CC3 in the 21A′ state of formamide. It is not obvious what is driving this error, especially
considering ESMP2’s accuracy and the small effect of introducing regularization.
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3.5.5 Group 2: Conjugated Polyenes

The four unsaturated polyene molecules in this group – ethene, butadiene, hexatriene, and
octatetraene – provided a great deal of insight into how ESMP2 performs in the presence of
doubly excited character, as the 21Ag states of butadiene, hexatriene, and octatetraene all
have large doubly excited components, [141] which can for example be seen in their CC3 %T1

values. The ESMP2 doubles norm correctly flags all three of these doubly excited 21Ag states
as likely to be problematic for ESMP2 and other single-reference methods. Although far
superior to the other methods in the doubly excited state, Thiel’s CASPT2 results (CASPT2
b) are not especially competitive for the 11B2 states. Even more surprising is the degree
of difficulty that CC3 has with the 11B2 states, as they are dominated by singly excited
components. Excited-state-specific DFT in the form of restricted open-shell Kohn Sham
(ROKS) has also shown difficulty in these states, [139] with accuracy appearing to decrease
as the basis set is enlarged. In the TD-DFT benchmark presented by Wiberg et al., [140]
it was shown that the ethene and butadiene singly excited states were modeled best by
functionals with higher amounts of Hartree Fock exchange. Indeed, in Thiel’s TD-DFT
benchmark, [134] BHLYP significantly outperformed B3LYP and BP86 in the 11B2 states,
although we find that ϵ-ESMP2 does better still.

3.5.5.1 Ethene

The only state studied for ethene was the 11B1u state as the other low lying excited states
for the molecule are strongly Rydberg in character and cannot be accurately described using
the TZVP basis set used here.[142, 143] The 11B1u state also contains significant valence-
Rydberg mixing, however, it is still mostly described as a valence excited state. The Thiel
best estimate value of 7.80 eV is based on a mixture experimental data and high-level ab
initio results, though it was noted in the paper that defined the best estimates that the
vertical excitation of the 11B1u state could not be assigned precisely based on experimental
data.[15]

In this state, ESMP2 and ϵ-ESMP2 performed similarly with errors of 0.25 and 0.24
eV, respectively, which makes sense given how strongly dominated this state is by single
excitations. The CC methods EOM-CCSD, CC2, and CC3 all perform relatively poorly for
this state with errors around 0.6-0.7 eV, and Thiel’s CASPT2 shows an unusually large error
of 0.82 eV. Roos’s CASPT2 error is much smaller at 0.18 eV, and Thiel et al. report an
almost exact result with a greatly expanded (8,20) active space, [15] a useful reminder of
how important the choice of active space can be.

3.5.5.2 Butadiene, Hexatriene, and Octatetraene

For these three molecules, two states were studied each: the single-excitation-dominated
11Bu state, and the substantially doubly excited 21Ag state. As expected, ESMP2 performs
considerably better for the 11Bu states (errors of 0.5 eV or below) than for the 21Ag (errors
between 2 and 3 eV). Its redeeming quality in the latter states is it’s ability to signal its
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own failure through unusually large doubles norms of 0.77, 1.0, and 1.15, clearly warning
the user to get their hands on a multi-reference method instead. To put how extreme these
norms are in context, remember that the weight of the zeroth order reference in intermediate
normalization is 1, meaning that this perturbation theory’s perturbation is coming out as
big or bigger than the zeroth order piece! Such a grossly nonsensical result is a clear sign of
failure, which if heeded can help guide a user in selecting a more appropriate method. As
for the 11Bu state, because our summary tables exclude states flagged as strongly doubly
excited by ESMP2, the entry in Table 3.2 offers at a glance the performance on this less
challenging, singly-excited state. ϵ-ESMP2 is considerably more accurate for this state than
the CC methods, rivaled only by CASPT2 approaches with well chosen active spaces.

3.5.6 Group 3: Conjugated rings

With their larger π systems, this group of molecules proved especially difficult for unregular-
ized ESMP2, whose overall accuracy in this group was worse than the other wave function
methods. ϵ-ESMP2, on the other hand, outperformed the CC methods, and was in turn
outperformed by Thiel’s CASPT2. Although Thiel’s selecton of CASPT2 to be the TBE in
cyclopropene, norbornadiene, and naphthalene no doubt gives it a statistical advantage, we
certainly expect it to be more accurate than ϵ-ESMP2 in these molecules. As in the polyenes,
ROKS has shown a tendency for its accuracy to decrease with increasing basis set size in a
number of these conjugated rings, both with and without the use of range separation. [139]
DFT/MRCI, on the other hand performs quite well in these molecules, as does CC3.

3.5.6.1 Cyclopentadiene

We look at two π → π∗ excitations in cyclopentadiene – the 11B2 and 21A1 states. While
both are valence excited states without significant Rydberg mixing,[144] the former state
is dominated by a single excitation, while the latter is a superposition of components that
includes doubly excited pieces. Thiel calculates a 5.55 eV excitation energy from EOM-
CCSDT evaluated with an “exhaustive” basis set as the TBE for the 11B2 state, which is a
bit above the carefully estimated 5.43(5) eV experimental value. [145] For the 21A1 state,
Thiel uses CASPT2 for the TBE. ESMP2 successfully predicts its own failure in the 21A1

state, while ϵ-ESMP2 is similar in accuracy to CC3. As expected, ESMP2 does better for
the 11B2 state, and in that case is further improved by ϵ-ESMP2, which errors low by about
the same amount that CC3 errors high.

3.5.6.2 Norbornadiene

Norbornadiene can be seen as the third and most structurally complicated member of a
series begun by cis-butadiene and cyclopentadiene. [146] For calculations on the excited
states of norbornadiene, one must consider that while it is formally not conjugated, there
is indirect conjugation of the double bonds, allowing for through-space and through-bond
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interactions – thus, interactions between π and σ orbitals are more important. [146] Two
π → π∗ excitations are examined in this benchmark – an experimentally forbidden 11A2

state and a 11B2 excited state that can mix strongly with nearby Rydberg states. [146]
CASSCF studies, [146] CC3, and ESMP2 all indicate that both states are dominated by
single excitations. Thiel selects CASPT2/TZVP for both TBEs, 5.34 eV and 6.11 eV, which
lie a little above the reported experimental values of 5.25 eV and 5.95 eV. [147] ESMP2
produces excitation energy errors of 0.25 eV and 0.32 eV for the 11A2 and 11B2 states,
respectively, making it more accurate than EOM-CCSD and on par with CC2 and CC3. ϵ-
ESMP2 is the most accurate non-active-space method for these states, but is not as accurate
as CASPT2.

3.5.6.3 Benzene

For benzene, we looked at the 11B1u, 11B2u, 11E1u, and 21E2g π → π∗ excitations. The first
three of these excitations are dominated by equally-weighted superpositions of excitations
out of the degenerate π system HOMOs, while the largest component of the 21E2g state is a
single excitation out of the lowest energy π orbital. Thiel adopts Sánchez de Merás et al.’s
CC3/ANO1 results as best estimates for the states. [148]

Benzene is a good example of a molecule where the EOM-CCSD can overestimate the
degree of singly excited character compared to CC3. This issue is particularly stark in the
21E2g state, where EOM-CCSD and CC3 disagree in their % T1 measures by 19%. Similarly,
the inclusion of triples drops CC3’s excitation energy in this state by 0.6 eV compared to
CC2. As pointed out by Sánchez de Merás et al, [148] not all of these states show a uniform
convergence order between CCS, CC2, EOM-CCSD, and CC3, with EOM-CCSD’s excitation
energy in the 11B2u state lying below that of CC2, which is atypical among Thiel set states.
These authors go on to use benzene to support an argument that EOM-CCSD is not a
reliable guide to doubly excited character. With such considerable changes when going from
the inclusion of doubles to the inclusion of triples, we have some doubts about the accuracy
of the CC3 results as a best estimate for the significantly doubly excited 21E2g state, and
might instead have adopted CASPT2 values.

As in many other cases, ESMP2’s doubles norms tell a similar story about doubly excited
character as the CC3 % T1, and in particular signal clearly that ESMP2 is not appropriate
for use in the 21E2g state. ESMP2’s excitation energy accuracy is poor in all of benzene’s
states, as is common for systems with six or more orbitals in their π system, but, with the
exception of the 21E2g state, ϵ-ESMP2 makes a large improvement to the point that it is
competitive with CC2 and CC3. In 21E2g, where ESMP2 signals its own failure, it is difficult
not to look to CASPT2 as the preferred method among those tested, all things considered.

3.5.6.4 Naphthalene

We looked at the 11B3u, 11B2u, 21Ag, 11B1g, 21B3u, 21B1g, 21B2u, and 31Ag states of naph-
thalene, all of which are π → π∗ transitions. The TBEs for these states were taken directly
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from the MS-CASPT2/TZVP results, as this molecule’s size limits other options. Based on
the T1% values from CC3, it is likely that many of these states involve significant amounts
of doubly excited character. The 31Ag state had a particularly low T1% of 70%, and is the
first state we come to for which the ESMF stationary point could not be found.

For the other states, ESMP2 displayed a range of accuracies. It showed a particularly
small error of 0.04 eV for the 11B1g state, which, despite a relatively low CC3 T1%, was
also treated accurately by CC3 and CC2. In fact, this is one of the rare states in which
regularization made the excitation energy prediction worse, with ϵ-ESMP2 giving an error of
0.37 eV. ESMP2’s errors in the other naphthalene states were much larger, with some states
showing significantly larger doubles norms as well, although not as large as in the doubly
excited polyene states. In these other states, regularization makes a large improvement,
making ϵ-ESMP2 competitive with CC2 and CC3.

3.5.7 Group 4: Heterocycles

The molecules in this group are furan, pyrrole, imidazole, pyridine, pyrazine, pyrimidine,
pyridazine, triazine, and tetrazine. A common theme in these molecules is that almost all
of the states studied here have at least moderate contributions from double excitations, at
least as measured by the CC3 T1%. As one might therefore expect, ESMP2’s predictions
were fairly inaccurate in this group. Regularization via ϵ-ESMP2 dramatically reduces these
errors, to the point that it is more accurate than CC2, EOM-CCSD, and CC3. As in many
other cases, only CASPT2 with Thiel’s active spaces did better. It should, however, be
noted that the CASPT2 b error is somewhat artificially small in this group, as it was used
as the TBE for imidazole, pyridazine, triazine, and tetrazine. [15] Among DFT approaches,
DFT/MRCI and TD-DFT/B3LYP perform particularly well in the heterocycles, [134] while
ROKS performs well for some cases but shows difficult basis set dependence in others. [139]
Further analysis of TD-DFT in some of these molecules can be found in a study by Caricato,
et al. [149]

3.5.7.1 Pyrrole and Furan

We consider the following π → π∗ excitations in pyrrole and furan: the 11B2, 21A1, and 31A1

states. We analyze these two molecules together as their spectra are similar. Pyrrole’s 21A1

state and furan’s 11B2 and 21A1 states are valence excited states, while the remaining states
are considered to have Rydberg character. [144] For both molecules, Thiel’s TBEs are based
on CC3 calculations with basis set corrections. [150, 151]

The ESMP2 predictions were mixed in terms of accuracy. Both molecules had two states,
the 31A1 and 11B2 states, that produces errors lower than 0.5 eV and then a 21A1 state with
an error of 1.53 eV in furan and 1.07 eV in pyrrole. This is not surprising given the large
ESMP2 doubles norms in these states and the relatively low CC3 T1 percentages of 85%
and 86% As in many other molecules, regularization makes a big difference, and ϵ-ESMP2
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reduces the errors in the 21A1 states to below 0.05 eV while also lowering errors in most
other states as well.

3.5.7.2 Imidazole

Imidazole is a case where experimental comparison is particularly challenging, as the UV-
Vis spectrum has only been taken in ethanol and aqueous solutions. [152, 153, 154, 155,
156, 157, 158, 159] Further, there is disagreement about whether imidazole and imidazolium
(the protonated form) have overlapping broad bands or each form separate strong peaks.
[152] In any case, Thiel selected their CASPT2 results as the TBE for three singlet vertical
excitations: the 11A” n→ π∗ state at 6.81 eV, and two π → π∗ excitations of A’ symmetry
at 6.19 eV and 6.93 eV. CASSCF and CASPT2 calculations have shown that these states
are not Rydberg in nature. [152]

Interestingly, there is some disagreement between different CASSCF approaches and also
ESMF about the nature of these three states. If we consider the 6-electron, 5-orbital π
system in imidazole, we would not expect the lowest-energy and nodeless 1a” π orbital to
participate strongly in low-lying excitations. Instead, the occupied 2a” and 3a” π orbitals,
which both have an additional nodal plane, can form up to four singlet excitations into
the unoccupied 4a” and 5a” π∗ orbitals. Thiel’s work on MS-CASPT2 and CC3 shows the
21A′ state as being dominated by the 3a”→4a” excitation, while the 31A′ state involves a
positive superposition of the 2a”→4a” and 3a”→5a” excitations.[125] However, Roos found
the states of A′ symmetry to both have significant contributions from each of the 3a”→4a”,
2a”→4a”, and 3a”→5a” excitations. [152] In our ESMF results, the A′ states are essentially
the plus and minus combinations of the 3a”→4a” and 3a”→5a” transitions, with very little
contribution from 2a”→4a”. Taken together, these results show that imidazole is a case
where the exact mixing of the components within excited states is quite sensitive to the
amount of correlation and orbital relaxation in play.

In terms of energetics, ESMP2’s excitation energies have an overall accuracy similar to
that of CC3. Regularization only improves the accuracy in one of the three states, making
this an unusual molecule in that regard and raising the question of how accurately ESMF
has captured the zeroth order representation, especially in light of the disagreement between
it and multiple versions of CASSCF in the A′ states. It seems possible that this is a case
where the primary singly excited components are close enough in energy that how they mix
is substantially affected by correlation effects from doubly excited determinants, which is an
effect that is simply beyond the reach of ESMF.

3.5.7.3 Pyridine

We studied the 1 1B1 and 2 1A2 n → π∗ excitations and four π → π∗ states: 11B2, 21A1,
31A1 and 21B2. The best estimates for these states comes from Nakatsuji et al’s SAC-
CI calculations, [160] which are close to experimental gas-phase excitation values. Using
ESMP2 to predict the excitation energies for these states led to a mixture of errors. 21A1
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and 21A2 had the smallest errors of 0.04 and 0.14 eV, respectively. 11B2 and 11B1 had errors
of 0.33 and 0.34 eV, and the largest errors were from the 31A1 and 21B2 states with 0.63 and
0.73 eV. None of these states show especially large doubles norms, at least not compared for
example to those seen in the polyenes. Although ESMF and EOM-CCSD both agree that the
excited states of A1 symmetry are superpositions of two main components, ESMF predicts
much more equal superpositions than EOM-CCSD. Compared to other methods, ESMP2 is
overall slightly more accurate than the coupled cluster methods, although the accuracy of
both varies significantly from state to state. The overall accuracy of ϵ-ESMP2 is better, but
this comes from improvements in some states partially counteracted by detriments in others.

3.5.7.4 Pyrazine

For pyrazine, four n → π∗ states – 11B3u, 11Au, 11B2g, 11B1g – and four π → π∗ states

– 11B2u, 11B1u, 21B1u, 21B2u – were studied. Thiel selected EOM-CCSD(T̃ ) calculations
for the TBEs, [15] compared to which ESMP2 produced a wide variety of errors, ranging
from 0.10 eV in the 11B1u state to 1.18 eV in the 11B1g state. ϵ-ESMP2 shows significant
improvements, with errors of less than 0.25 eV in all states. The CC methods do better than
ESMP2 but worse than ϵ-ESMP2. The same is true of CASPT2, although its accuracy is
much closer to that of ϵ-ESMP2.

3.5.7.5 Pyrimidine

Four excited states were studied for pyrimidine, two n → π∗ states – 11B1 and 11A2 – and
two π → π∗ states – 11B2 and 21A1. The Thiel best estimates for the excited states of
pyrimidine were based on coupled cluster results with non-iterative triples and basis set
corrections. Generally these values error a few tenths of an electron volt high compared
to experimental values. Based on the work presented in benchmarking studies by Loos, et.
al.[161] and Schreiber et. al.[15] most ab initio methods error high for these states compared
to experiment, not only the ones based on coupled cluster. An unusual feature in pyrimidine
as compared to the other azabenzenes studied here is that EOM-CCSD does comparably
to Thiel’s CASPT2 and only slightly worse than CC2 and CC3. In the other azabenzenes,
EOM-CCSD had noticeably higher errors when compared to CC2 and CC3. Without a level
shift, ESMP2 is most similar in accuracy to Roos’s CASPT2, with both methods producing
large errors. ϵ-ESMP2 shows smaller errors, ranging from 0.08 to 0.31 eV, which is closer to
but not as accurate as Thiel’s CASPT2 and the CC methods.

3.5.7.6 Pyridazine

Three n → π∗ states were studied in pyridazine: 11B1, 11A2, and 21A2. While all of these
states had ESMP2 errors above 0.5 eV, those for the 21A2 and 21A1 states were particularly
large at almost 1 eV. Pyridazine is thus another good example of ESMP2’s difficulties in
larger π systems, but it is also one of the most powerful examples of the practical efficacy
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of regularization, with all of ϵ-ESMP2’s errors coming in at less than 0.25 eV. Comparing
these results to other wave function methods, ESMP2 was easily the least accurate, while
ϵ-ESMP2 performed similarly to CC2, was more accurate than EOM-CCSD, and was only
slightly less accurate than CC3. The TBEs for this molecule were directly taken from Thiel’s
CASPT2 values, so it is difficult to make a fair comparison to that method.

3.5.7.7 s-Triazine

In triazine we studied three n → π∗ states – 11A′′
1, 11A′′

2, 11E′′ – and one π → π∗ state,
11A′

2. Even compared to its performance on other azabenzenes, ESMP2 did poorly here
with typical errors around 1 eV, making it by far the least accurate among the wave function
methods. The CC3 T1 values are all below 90% and the ESMP2 doubles norms all above 0.35,
suggesting that triazine is simply a particularly painful example of the difficulty unregularized
ESMP2 has when an extended π system brings the lowest doubly excited configurations too
close to the primary singly excited configurations. Again, ϵ-ESMP2 significantly mitigates
this difficulty, reducing the worst error to 0.31 eV instead of 1.45 eV. ϵ-ESMP2 is still less
accurate than CC2 and CC3, but is comparable to EOM-CCSD and noticeably better than
Roos’s CASPT2.

3.5.7.8 s-Tetrazine

In this molecule we look at four n → π∗ excitations – 11B3u, 11B1g, 11B2g, and 21Au – and
two π → π∗ excitations – 11Au and 11B2u. Note that we have not studied the strongly
doubly excited 11B3g state, and indeed the original Thiel benchmark does not even contain
CC numbers for this state. As in a number of other heterocycles, Thiel’s TBEs for tetrazine
were taken directly from the CASPT2(b) results without basis set extrapolation. Against
this TBE, CC2 and CC3 show errors mostly below about 0.3 eV, whereas EOM-CCSD
errors are higher. As in triazine, all of tetrazine’s CC3 %T1 values for the states studied
are between 80 and 90, again implying a difficult playing field for unregularized EMSP2,
which duly makes errors on the order of 1eV and shows doubles norms above 0.35. ESMP2
was especially bad for the 21Au state, with an error of 1.86 eV, its worst error among the
heterocycles. Introducing regularization via ϵ-ESMP2 makes a huge difference, reducing
errors to less than 0.22 eV in all states except for 21Au. The 21Au state’s error only falls
to 0.72 eV, making it one of the worst for ϵ-ESMP2, especially considering that the ESMP2
doubles norm, although not small at 0.41, is not as large as in the difficult benzene or polyene
states and so it is not as clear in this case that ESMP2 would be able to predict ϵ-ESMP2’s
failure. Outside of the 21Au state, the accuracy of ϵ-ESMP2 is similar to the other wave
function based methods.



CHAPTER 3. STUDYING EXCITED-STATE-SPECIFIC PERTURBATION THEORY
ON THE THIEL SET 56

3.5.8 Group 5: Nucleobases

This group of molecules includes cytosine, thymine, uracil, and adenine. Due to the size
of these molecules, there were no CC3/TZVP calculations reported in the original Thiel
benchmark, [15] and we have instead taken the CC3 data from a more recent study. [126]
Thiel selected CC2/aug-cc-pVTZ results for the TBEs in all nucleobase states. We note that
many of the nucleobase states were difficult for ESMF to converge to, which was even true
in some cases in which the state was dominated by a single singly excited component. In
both of the cases where ESMF failed to converge to a stationary point (the 21A′ state of
cytosine and the 31A′ state of uracil), we hypothesize that a loss of good orthogonality with
lower states during the ESMF optimization was partially to blame. Still, it is not clear why
this was such an issue in these cases, as at least a small loss of orthogonality is normal in
ESMF due to its state-specific orbital relaxation, and the same difficulty was not present in
most other states.

For the excited states in this group, ESMP2 had an MUE of 0.61 eV, making it the wave
function method with the worst overall accuracy, as seen in Table 3.2. ϵ-ESMP2, on the
other hand, had a much smaller MUE of 0.19 eV, putting it on par with CC2 and ahead
of EOM-CCSD. ϵ-ESMP2 was also more accurate in the nucleobases than the TD-DFT
methods shown in Table 3.3, while being a little less accurate than DFT/MRCI.

3.5.8.1 Cytosine

In cytosine, we studied two π → π∗ states – 21A′ and 31A′ – and two n → π∗ states – 11A′′

and 21A′′. In the states ESMF successfully converged, ESMP2 with no level shift did fairly
poorly with errors between 0.5 and 1 eV, which is similarly inaccurate to EOM-CCSD and
worse than the other wave function methods. ESMP2 shows a notably peculiar result for
the 21A′′ state in that it overestimates the excitation energy. In most other cases, ESMP2
tends to error low. This 21A′′ state remains an outlier even after introducing regularization,
with the error barely changing. In contrast, regularization brings the errors for the other
two below 0.2 eV.

3.5.8.2 Uracil

Five states were successfully studied in uracil: the n→ π∗ states with symmetry labels 11A′′,
21A′′, and 31A′′ and the π → π∗ states with symmetry labels 21A′ and 41A′. ESMF failed to
converge the 31A′ state in uracil. Similar to the cytosine state, this state is dominated by a
single singly excited component, so the reasons for this failure are not obvious. In the other
states, ESMP2 does very well for the 11A′′ state with an error of just 0.02 eV, somewhat
poorly for the 21A′ and 21A′′ states with errors around 0.5 eV, and very poorly for the 31A′′

and 41A′ states. In the other states, ESMP2 does very well for the 11A′′ state with an error
of just 0.02 eV, somewhat poorly for the 21A′ and 21A′′ states with errors around 0.5 eV,
and very poorly for the 31A′′ and 41A′ states. Overall, ESMP2 performs comparably to
EOM-CCSD, but worse than the other wave function methods. Regularization reduces error
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for the 21A′ state to just 0.01 eV, leaves the error in the 11A′′ state essentially unchanged,
and brings the other states’ errors to around 0.3 eV. This places the accuracy of ϵ-ESMP2
ahead of EOM-CCSD and CC2, but still behind that of Thiel’s CASPT2.

3.5.8.3 Thymine

For thymine we studied two n→ π∗ states, 11A′′ and 21A′′, and three π → π∗ states – 21A′,
31A′, and 41A′. ESMP2 does very well for 11A′′, achieves errors of around 0.5 eV for 21A′

and 21A′′, and has errors of over 1.5 eV for 31A′ and 41A′. For both of the latter states, large
doubles norms of 0.497 and 0.476, respectively, warn of the trouble. ϵ-ESMP2 has much
lower errors for all states and makes particularly large improvements in the 31A′′ and 41A′

states, with an overall accuracy in this molecule better than EOM-CCSD or Roos’s CASPT2
but worse than CC2 and Thiel’s CASPT2.

3.5.8.4 Adenine

For adenine we studied two π → π∗ states, 21A′ and 31A′, and two n→ π∗ states, 11A′′ and
21A′′. ESMP2 gives errors above 0.5 eV for 21A′ and 21A′′ and errors of around 0.3 eV for the
31A′ and 11A′′ states, with an overall accuracy comparable to EOM-CCSD but worse than
the other wave function methods. ϵ-ESMP2’s worst error was 0.32 eV for the 11A′′ state,
with its other errors all around 0.1 eV, making it much more comparable to CC2, although
not as accurate as Thiel’s CASPT2.

3.6 Conclusion

We have applied ESMP2 and its regularized ϵ-ESMP2 cousin to the singlet excitations in
the 28 molecules of the Thiel set, which has clarified multiple aspects of this excited-state-
specific perturbation theory’s behavior and performance. First, we found that the underlying
ESMF possesses a well-defined excited-state-specific stationary point in 100 out of the 103
states tested, suggesting that such stationary points typically exist for singly excited singlet
states in single-reference molecules. Second, we found that ESMP2 is highly sensitive to the
size of a molecule’s π system. For molecules with five or fewer orbitals in their π systems,
unregularized ESMP2’s mean unsigned error was 0.32 eV, while for molecules with six or
more orbitals in their π system it was 0.71 eV. Third, this sensitivity closely tracks the
size of the ESMP2 doubles norm, which helps us understand the issue as a straightforward
failure of perturbation theory brought about by doubly excited configurations that are too
close in energy to the primary singles in the zeroth order reference. Fourth, although this
sensitivity is bad news for accuracy, it allows the unregularized ESMP2 doubles norm to act
as a reasonably effective predictor of doubly excited character. Finally, this sensitivity can
be mitigated by repartitioning the zeroth order approximation via a level shift, resulting in
the regularized ϵ-ESMP2 method that outperforms TD-DFT, CC2, EOM-CCSD, and even
CC3 in overall accuracy on the singlet states in the Thiel set. While CASPT2 showed the
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highest overall accuracy, ϵ-ESMP2’s unsigned error of just 0.17 eV on singly excited states
was the lowest among methods that do not rely on an active space.
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Chapter 4

Conclusions

ESMP2, anN5-scaling excited-state-specific perturbation theory, was discussed in detail in
the body of this work. By using an orbital basis similar to natural transition orbitals and by
limiting the number of off-diagonal elements in the reference Hamiltonian, the scaling of the
excited-state perturbative method was reduced by two orders of N without having a large
impact on the accuracy of the results. The new scaling matches that of MP2, the ground state
analogue. By testing the accuracy of this method on the Thiel benchmarking set, we found
that the addition of a regularizer in the form of an empirical level shift dramatically increases
the accuracy of ESMP2, especially for molecules with large π systems. The accuracy of the
regularized method rivaled that of higher scaling methods such as CC3 and EOM-CCSD.
Additionally, as the amplitudes of the first order correction to the wave function should be
small if the perturbation theory is valid, creating a diagnostic based on these amplitudes
can act as a predictor of doubly excited character in excited states. The collection of work
presented in this thesis shows that ESMP2 is a promising method for the study of excited
states and the relatively low scaling and high accuracy of this method will make it an exciting
choice for the study of realistic systems, such as solutes in explicit solvents.
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Appendix A

Supplementary material for studying
excited-state-specific perturbation
theory on the Thiel set



APPENDIX A. SUPPLEMENTARY MATERIAL FOR STUDYING
EXCITED-STATE-SPECIFIC PERTURBATION THEORY ON THE THIEL SET 61

Table A.1: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. All states are included, except in the case of ESMP2 and ϵ-ESMP2, which by necessity
exclude states that lack ESMF solutions (gray rows in Table I).

SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
Ketones and amides 0.20 ± 0.18 0.02 ± 0.05 0.29 ± 0.26 0.45 ± 0.38 0.26 ± 0.31 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.15 ± 0.09 0.31 ± 0.25 0.76 ± 0.59 0.88 ± 0.46 0.44 ± 0.15 1.33 ± 1.36 0.31 ± 0.26
Conjugated rings 0.33 ± 0.20 0.02 ± 0.05 0.29 ± 0.18 0.45 ± 0.25 0.18 ± 0.12 0.67 ± 0.43 0.21 ± 0.22
Heterocycles 0.34 ± 0.21 0.10 ± 0.13 0.28 ± 0.19 0.42 ± 0.19 0.23 ± 0.16 0.71 ± 0.43 0.17 ± 0.14
Nucleobases 0.40 ± 0.35 0.14 ± 0.10 0.20 ± 0.12 0.46 ± 0.31 0.15 ± 0.09 0.68 ± 0.52 0.19 ± 0.15
All 0.31 ± 0.24 0.10 ± 0.13 0.30 ± 0.26 0.47 ± 0.30 0.23 ± 0.19 0.68 ± 0.58 0.19 ± 0.17

Table A.2: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions (gray rows in Table I) are excluded.

SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
Ketones and amides 0.20 ± 0.18 0.02 ± 0.05 0.29 ± 0.26 0.45 ± 0.38 0.26 ± 0.31 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.15 ± 0.09 0.31 ± 0.25 0.76 ± 0.59 0.88 ± 0.46 0.44 ± 0.15 1.33 ± 1.36 0.31 ± 0.26
Conjugated rings 0.31 ± 0.19 0.02 ± 0.05 0.27 ± 0.17 0.41 ± 0.20 0.18 ± 0.12 0.67 ± 0.43 0.21 ± 0.22
Heterocycles 0.34 ± 0.21 0.10 ± 0.13 0.28 ± 0.19 0.42 ± 0.19 0.23 ± 0.16 0.71 ± 0.43 0.17 ± 0.14
Nucleobases 0.41 ± 0.37 0.15 ± 0.10 0.21 ± 0.13 0.47 ± 0.33 0.17 ± 0.08 0.68 ± 0.52 0.19 ± 0.15
All 0.31 ± 0.24 0.10 ± 0.14 0.30 ± 0.27 0.47 ± 0.30 0.23 ± 0.19 0.68 ± 0.58 0.19 ± 0.17
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Table A.3: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. All states are included, except in the case of ESMP2 and ϵ-ESMP2, which by necessity
exclude states that lack ESMF solutions (gray rows in Table I).

BP86 B3LYP BHLYP DFT/MRCI ESMP2 ϵ-ESMP2
Ketones and amides 0.55 ± 0.35 0.29 ± 0.19 0.35 ± 0.44 0.34 ± 0.21 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.38 ± 0.30 0.40 ± 0.19 0.70 ± 0.62 0.27 ± 0.14 1.33 ± 1.36 0.31 ± 0.26
Conjugated rings 0.47 ± 0.33 0.35 ± 0.19 0.42 ± 0.36 0.23 ± 0.23 0.67 ± 0.43 0.21 ± 0.22
Heterocycles 0.43 ± 0.29 0.20 ± 0.18 0.50 ± 0.26 0.18 ± 0.12 0.71 ± 0.43 0.17 ± 0.14
Nucleobases 0.82 ± 0.30 0.47 ± 1.14 0.57 ± 0.27 0.16 ± 0.13 0.68 ± 0.52 0.19 ± 0.15
All 0.53 ± 0.34 0.31 ± 0.52 0.49 ± 0.35 0.22 ± 0.17 0.68 ± 0.58 0.19 ± 0.17

Table A.4: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions (gray rows in Table I) are excluded.

BP86 B3LYP BHLYP DFT/MRCI ESMP2 ϵ-ESMP2
Ketones and amides 0.55 ± 0.35 0.29 ± 0.19 0.35 ± 0.44 0.34 ± 0.21 0.39 ± 0.37 0.17 ± 0.16
Conjugated polyenes 0.38 ± 0.30 0.40 ± 0.19 0.70 ± 0.62 0.27 ± 0.14 1.33 ± 1.36 0.31 ± 0.26
Conjugated rings 0.47 ± 0.34 0.36 ± 0.19 0.39 ± 0.34 0.20 ± 0.21 0.67 ± 0.43 0.21 ± 0.22
Heterocycles 0.43 ± 0.29 0.20 ± 0.18 0.50 ± 0.26 0.18 ± 0.12 0.71 ± 0.43 0.17 ± 0.14
Nucleobases 0.83 ± 0.30 0.50 ± 1.20 0.57 ± 0.29 0.15 ± 0.12 0.68 ± 0.52 0.19 ± 0.15
All 0.52 ± 0.34 0.31 ± 0.52 0.48 ± 0.35 0.21 ± 0.17 0.68 ± 0.58 0.19 ± 0.17
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Table A.5: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. All states are included, except in the case of ESMP2 and ϵ-ESMP2, which by necessity
exclude states that lack ESMF solutions (gray rows in Table I).

π system size SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
2 0.19 ± 0.17 0.11 ± 0.24 0.32 ± 0.27 0.39 ± 0.36 0.28 ± 0.34 0.21 ± 0.14 0.17 ± 0.16
3 0.12 ± 0.11 0.00 ± 0.00 0.28 ± 0.26 0.40 ± 0.43 0.30 ± 0.32 0.16 ± 0.18 0.13 ± 0.09
4 0.25 ± 0.15 0.15 ± 0.15 0.57 ± 0.42 0.62 ± 0.24 0.28 ± 0.10 1.05 ± 0.99 0.23 ± 0.18
5 0.41 ± 0.12 0.09 ± 0.10 0.37 ± 0.18 0.41 ± 0.17 0.19 ± 0.15 0.48 ± 0.50 0.16 ± 0.14
6 0.31 ± 0.22 0.12 ± 0.13 0.30 ± 0.28 0.46 ± 0.27 0.24 ± 0.18 0.80 ± 0.50 0.20 ± 0.21
8 0.33 ± 0.25 0.10 ± 0.11 0.27 ± 0.28 0.56 ± 0.36 0.19 ± 0.12 0.86 ± 0.72 0.22 ± 0.17
10 0.49 ± 0.33 0.03 ± 0.07 0.24 ± 0.15 0.44 ± 0.23 0.17 ± 0.09 0.69 ± 0.41 0.16 ± 0.10

5 or less 0.24 ± 0.18 0.09 ± 0.17 0.36 ± 0.27 0.43 ± 0.31 0.26 ± 0.26 0.40 ± 0.52 0.17 ± 0.14
6 or more 0.34 ± 0.25 0.10 ± 0.10 0.28 ± 0.26 0.49 ± 0.30 0.23 ± 0.17 0.80 ± 0.56 0.20 ± 0.18

Table A.6: Mean unsigned errors and standard deviations for singlet excitation energies in
eV. States without ESMF solutions (gray rows in Table I) are excluded.

π system size SA-CASPT2 MS-CASPT2 CC2 EOM-CCSD CC3 ESMP2 ϵ-ESMP2
2 0.19 ± 0.17 0.11 ± 0.24 0.32 ± 0.27 0.39 ± 0.36 0.28 ± 0.34 0.21 ± 0.14 0.17 ± 0.16
3 0.12 ± 0.11 0.00 ± 0.00 0.28 ± 0.26 0.40 ± 0.43 0.30 ± 0.32 0.16 ± 0.18 0.13 ± 0.09
4 0.15 ± 0.15 0.15 ± 0.15 0.57 ± 0.42 0.62 ± 0.24 0.28 ± 0.10 1.05 ± 0.99 0.23 ± 0.18
5 0.41 ± 0.12 0.09 ± 0.10 0.37 ± 0.18 0.41 ± 0.17 0.19 ± 0.15 0.48 ± 0.50 0.16 ± 0.14
6 0.31 ± 0.22 0.12 ± 0.13 0.30 ± 0.28 0.46 ± 0.27 0.24 ± 0.18 0.80 ± 0.50 0.20 ± 0.21
8 0.32 ± 0.25 0.10 ± 0.11 0.27 ± 0.29 0.56 ± 0.29 0.20 ± 0.12 0.86 ± 0.72 0.22 ± 0.17
10 0.48 ± 0.34 0.04 ± 0.07 0.20 ± 0.08 0.39 ± 0.13 0.17 ± 0.10 0.69 ± 0.41 0.16 ± 0.10

5 or less 0.24 ± 0.18 0.09 ± 0.17 0.36 ± 0.27 0.43 ± 0.31 0.26 ± 0.26 0.40 ± 0.52 0.17 ± 0.14
6 or more 0.34 ± 0.25 0.10 ± 0.10 0.27 ± 0.26 0.48 ± 0.29 0.22 ± 0.15 0.80 ± 0.56 0.20 ± 0.18
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A.1 Level shift examples

Figure A.1: Predicted excitation energies for the 11A′′ state of acetamide for different values
of the level shift in ε-ESMP2. Note that the change in the excitation energy of this state
between a level shift of 1.0 Ha and 0.0 Ha is about 0.1 eV, showing that the level shift had
very little impact on the accuracy of the ESMP2 prediction.
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Figure A.2: Predicted excitation energies for the 21A′ state of acetamide for different values
of the level shift in ε-ESMP2. The change in the predicted excitation energy across the
range of shifts is only about 0.2 eV, showing that the level shift has very little impact on
the accuracy of the prediction.
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Figure A.3: Predicted excitation energies for the 11B2 state of cyclopentadiene for different
values of the level shift in ε-ESMP2. The change of predicted excitation energy for the shifts
shown here is only 0.2 eV, showing that the predicted energy is not very sensitive to the
choice of shift.
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Figure A.4: Predicted excitation energies for the 21A1 state of cyclopentadiene for different
values of the level shift in ε-ESMP2. This state, likely because it has some doubly excited
character, was very impacted by the addition of the level shift to the ESMP2 method.
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Figure A.5: Predicted excitation energies for the 11Bu state of butadiene for different values
of the level shift in ε-ESMP2. The excitation energy only changes by 0.2eV across the range
of tested level shifts, showing that this state is not very sensitive to the choice of shift.
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Figure A.6: Predicted excitation energies for the 21Ag state of butadiene for different values
of the level shift in ε-ESMP2. Likely due to its partly doubly excited character, this state
was highly sensitive to the level shift value.
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Figure A.7: Predicted excitation energies for the 11A′′ state of imidazole for different values
of the level shift in ε-ESMP2. This state was only slightly impacted by the addition of the
level shift, as the range of predicted excitation energies only varies by 0.15 eV.



APPENDIX A. SUPPLEMENTARY MATERIAL FOR STUDYING
EXCITED-STATE-SPECIFIC PERTURBATION THEORY ON THE THIEL SET 71

Figure A.8: Predicted excitation energies for the 21A′ state of imidazole for different values
of the level shift in ε-ESMP2. This state is a good example of a state in a π system that is
somewhat sensitive to regularization.
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Figure A.9: Predicted excitation energies for the 31A′ state of imidazole for different values
of the level shift in ε-ESMP2. The addition of the level shift to ESMP2 had a large impact
on the predicted excitation energy for this state, and it is a good example of a case where
regularization does not improve accuracy.
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Figure A.10: Predicted excitation energies for the 21A′ state of adenine for different values of
the level shift in ε-ESMP2. This is another example of a π system excitation that is sensitive
to regularization.
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Figure A.11: Predicted excitation energies for the 31A′ state of adenine for different values
of the level shift in ε-ESMP2. Similar to the 21A′ state above, adding regularization makes
a significant difference here.
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Figure A.12: Predicted excitation energies for the 11A′′ state of adenine for different values
of the level shift in ε-ESMP2.
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Figure A.13: Predicted excitation energies for the 21A′′ state of adenine for different values
of the level shift in ε-ESMP2. Like the other adenine states studied here, the addition of a
level shift makes a significant difference.
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A.2 Formaldehyde

Table A.7: All methods singlet excitation energies in eV for molecule formaldehyde.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A2 3.88 3.91 3.98 4.09 3.97 3.95 3.96 3.81
11B1 9.10 9.09 9.14 9.35 9.26 9.18 9.12 8.98
21A1 9.30 9.77 9.31 10.34 10.54 10.45 9.78 9.90

Table A.8: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) results
vs. the Thiel best estimates (TBEs) for formaldehyde.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A2 3.88 2.93 0.95 3.96 0.08 3.81 0.07
11B1 9.10 8.12 0.98 9.12 0.02 8.98 0.12
21A1 9.30 9.22 0.08 9.78 0.48 9.90 0.60

Table A.9: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for formaldehyde.

State lvl=0.0 error norm lvl=0.5 error norm

11A2 0.08 0.17 0.07 0.13
11B1 0.02 0.17 0.12 0.14
21A1 0.48 0.25 0.60 0.15

Table A.10: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of formaldehyde.

State %singles %doubles %triples

21A1 92.50 2.04 0.26
11A2 97.80 0.27 1.12
11B1 100.00 0.00 0.00
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Table A.11: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for formaldehyde.

State ESMF EOM

11A2

H→L(0.62) H→L(0.91)
H−3→L(-0.20) H→L+5(-0.23)

11B1

H−2→L(0.63) H−2→L(0.91)
H−2→L+5(-0.24)

21A1

H→L+2(0.60) H→L+2(0.80)
H−1→L(0.41)
H→L(-0.28)
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A.3 Acetone

Table A.12: All methods singlet excitation energies in eV for molecule acetone.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A2 4.40 4.18 4.42 4.52 4.43 4.40 4.39 4.28
11B1 9.10 9.10 9.27 9.29 9.26 9.17 9.22 9.16
21A1 9.40 9.16 9.31 9.74 9.87 9.65 9.08 9.28

Table A.13: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for acetone.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A2 4.40 3.47 0.93 4.39 0.01 4.28 0.12
11B1 9.10 8.48 0.62 9.22 0.12 9.16 0.06
21A1 9.40 8.82 0.58 9.08 0.32 9.28 0.12

Table A.14: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for acetone.

State lvl=0.0 error norm lvl=0.5 error norm

11A2 0.01 0.18 0.12 0.14
11B1 0.12 0.19 0.06 0.15
21A1 0.32 0.25 0.12 0.16

Table A.15: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of acetone.

State %singles %doubles %triples

11A2 97.90 0.00 1.18
11B1 100.00 0.00 0.00
21A1 96.97 0.23 0.01
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Table A.16: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for acetone.

State ESMF EOM

11A2

H→L+1(0.58) H→L+1(-0.88)
H→L+4(-0.20) H→L+4(-0.29)
H−7→L+1(0.20)

11B1

H−3→L+1(-0.41) H−3→L+1(-0.74)
H−6→L+1(-0.41) H−6→L+1(-0.48)
H−8→L+1(0.23) H−3→L+4(-0.23)

21A1

H→L+2(0.60) H→L+2(-0.68)
H−1→L+1(0.17) H−1→L+1(-0.58)
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A.4 Benzoquinone

Table A.17: All methods singlet excitation energies in eV for molecule benzoquinone.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11Au 2.80 2.50 2.80 2.92 3.19 2.85 1.77 2.61
11B1g 2.78 2.50 2.78 2.81 3.07 2.75 1.69 2.52
11B3g 4.25 4.19 4.25 4.69 4.93 4.59 3.67 4.12
11B1u 5.29 5.15 5.29 5.59 5.89 5.62 4.70 5.31
11B3u 5.60 5.15 5.60 5.69 6.55 5.82 4.88 6.14
21B3g 6.98 6.34 6.98 7.36 7.62 7.27 6.03 7.01

Table A.18: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for benzoquinone.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11Au 2.80 3.52 0.72 1.77 1.03 2.61 0.19
11B1g 2.78 3.50 0.72 1.69 1.09 2.52 0.26
11B3g 4.25 4.56 0.31 3.67 0.58 4.12 0.13
11B1u 5.29 6.03 0.74 4.70 0.59 5.31 0.02
11B3u 5.60 8.14 2.54 4.88 0.72 6.14 0.54
21B3g 6.98 8.27 1.29 6.03 0.95 7.01 0.03

Table A.19: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for benzoquinone.

State lvl=0.0 error norm lvl=0.5 error norm

11Au 1.03 0.40 0.19 0.24
11B1g 1.09 0.40 0.26 0.24
11B3g 0.58 0.32 0.13 0.21
11B1u 0.59 0.34 0.02 0.23
11B3u 0.72 0.40 0.54 0.26
21B3g 0.95 0.40 0.03 0.26
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Table A.20: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of benzoquinone.

State %singles %doubles %triples

11Au 66.62 22.22 2.86
11B1g 66.83 21.61 2.52
11B3g 71.31 20.76 1.16
11B1u 76.71 15.96 1.60
11B3u 27.93 53.72 5.59
21B3g 68.82 18.78 2.90

Table A.21: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for benzoquinone.

State ESMF EOM

11Au

H−3→L(-0.62) H−2→L(0.89)
H−2→L+3(-0.24) H−3→L+3(0.26)

11B1g

H−2→L(0.59) H−3→L(-0.90)
H−3→L+3(0.27) H−2→L+3(-0.26)

11B3g

H−1→L(0.69) H−1→L(0.95)
11B1u

H→L(0.66) H→L(0.93)
11B3u

H−2→L+1(-0.61) H−2→L+1(-0.93)
H−0→L(-0.30)

21B3g

H→L+1(-0.67) H→L+1(-0.93)
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A.5 Formamide

Table A.22: All methods singlet excitation energies in eV for molecule formamide.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 5.63 5.61 5.63 5.76 5.66 5.65 5.62 5.47
21A′ 7.44 7.41 7.44 8.15 8.52 8.27 7.42 7.52

Table A.23: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for formamide.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 5.63 4.56 1.07 5.62 0.01 5.47 0.16
21A′ 7.44 7.03 0.41 7.42 0.02 7.52 0.08

Table A.24: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for formamide.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.01 0.17 0.16 0.14
21A′ 0.02 0.20 0.08 0.14

Table A.25: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of formamide.

State %singles %doubles %triples

11A′′ 99.34 0.00 0.00
21A′ 91.20 0.00 0.00
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Table A.26: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for formamide.

State ESMF EOM

11A′′

H−1→L+2(-0.64) H−1→L+2(-0.92)
H−1→L+6(0.24)

21A′

H−1→L(-0.56) H−1→L(0.74)
H→L+2(-0.25) H→L(0.53)
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A.6 Acetamide

Table A.27: All methods singlet excitation energies in eV for molecule acetamide.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 5.80 5.54 5.80 5.77 5.71 5.69 5.66 5.53
21A′ 7.27 7.21 7.27 7.66 7.85 7.67 6.88 7.30

Table A.28: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for acetamide.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 5.80 4.67 1.13 5.66 0.14 5.53 0.27
21A′ 7.27 7.85 0.58 6.88 0.39 7.30 0.03

Table A.29: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for acetamide.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.14 0.18 0.27 0.14
21A′ 0.39 0.27 0.03 0.20

Table A.30: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of acetamide.

State %singles %doubles %triples

11A′′ 93.51 4.23 0.00
21A′ 85.23 8.08 0.10
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Table A.31: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for acetamide.

State ESMF EOM

11A′′

H−1→L+2(0.58) H−1→L+2(0.85)
H−1→L+5(0.27) H−1→L+5(0.37)

21A′

H→L+2(-0.60) H→L+2(-0.70)
H−1→L(-0.50)
H→L(-0.23)
H−1→L+1(-0.21)

H→L+5(0.25)
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A.7 Propanamide

Table A.32: All methods singlet excitation energies in eV for molecule propanamide.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 5.72 5.48 5.72 5.78 5.74 5.72 5.69 5.56
21A′ 7.20 7.28 7.20 7.56 7.80 7.62 6.83 7.26

Table A.33: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for propanamide.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 5.72 4.71 1.01 5.69 0.03 5.56 0.16
21A′ 7.20 7.83 0.63 6.83 0.37 7.26 0.06

Table A.34: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for propanamide.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.03 0.18 0.16 0.14
21A′ 0.37 0.28 0.06 0.20

Table A.35: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of propanamide.

State %singles %doubles %triples

11A′′ 97.83 0.52 0.66
21A′ 85.53 12.06 0.60
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Table A.36: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for propanamide.

State ESMF EOM

11A′′

H−1→L+2(-0.54) H−1→L+2(-0.80)
H−1→L+5(0.28) H−1→L+5(-0.39)

H−1→L+7(-0.23)
21A′

H→L+2(-0.58) H→L+2(-0.63)
H→L-5(0.26) H−1→L(0.56)

H−1→L+1(0.26)
H→L(-0.22)
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A.8 Ethene

Table A.37: All methods singlet excitation energies in eV for molecule ethene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B1u 7.80 7.98 8.62 8.40 8.51 8.37 8.05 8.04

Table A.38: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for ethene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B1u 7.80 7.77 0.03 8.05 0.25 8.04 0.24

Table A.39: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for ethene.

State lvl=0.0 error norm lvl=0.5 error norm

11B1u 0.25 0.16 0.24 0.13

Table A.40: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of ethene.

State %singles %doubles %triples

11B1u 100.00 0.00 0.00
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Table A.41: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for ethene.

State ESMF EOM

11B1u

H→L(-0.69) H→L(-0.96)
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A.9 Butadiene

Table A.42: All methods singlet excitation energies in eV for molecule butadiene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11Bu 6.18 6.23 6.47 6.49 6.72 6.58 6.02 6.18
21Ag 6.55 6.27 6.83 7.63 7.42 6.77 4.31 6.98

Table A.43: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for butadiene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11Bu 6.18 6.29 0.12 6.02 0.16 6.18 0.00
21Ag 6.55 8.85 2.30 4.31 2.24 6.98 0.43

Table A.44: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for butadiene.

State lvl=0.0 error norm lvl=0.5 error norm

11Bu 0.16 0.23 0.00 0.18
21Ag 2.24 0.77 0.43 0.31

Table A.45: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of butadiene.

State %singles %doubles %triples

11Bu 94.78 0.27 1.45
21Ag 54.77 41.30 1.52
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Table A.46: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for butadiene.

State ESMF EOM

11Bu

H→L(-0.69) H→L(-0.95)
21Ag

H−1→L(-0.48) H→L+4(-0.63)
H→L+4(0.45) H−1→L(-0.54)
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A.10 Hexatriene

Table A.47: All methods singlet excitation energies in eV for molecule hexatriene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11Bu 5.10 5.01 5.31 5.41 5.72 5.58 4.92 5.14
21Ag 5.09 5.20 5.42 6.67 6.61 5.72 2.37 5.81

Table A.48: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for hexatriene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11Bu 5.10 5.34 0.25 4.92 0.18 5.14 0.04
21Ag 5.09 7.87 2.78 2.37 2.72 5.81 0.72

Table A.49: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudescalculated from the norm of the first order ESMP wave function for hexatriene.

State lvl=0.0 error norm lvl=0.5 error norm

11Bu 0.18 0.26 0.04 0.18
21Ag 2.72 1.00 0.72 0.32

Table A.50: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of hexatriene.

State %singles %doubles %triples

21Ag 43.16 51.05 1.31
11Bu 46.50 26.71 20.85
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Table A.51: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for hexatriene.

State ESMF EOM

11Bu

H→L(0.68) H→L(-0.95)
21Ag

H−1→L(0.43) H−1→L(-0.59)
H→L+2(-0.43) H→L+2(-0.55)
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A.11 Octatetraene

Table A.52: All methods singlet excitation energies in eV for molecule octatetraene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

21Ag 4.47 4.38 4.64 5.87 5.99 4.97 1.19 4.99
11Bu 4.66 4.42 4.70 4.72 5.07 4.94 4.16 4.43

Table A.53: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for octatetraene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

21Ag 4.47 7.01 2.54 1.19 3.28 4.99 0.52
11Bu 4.66 4.71 0.05 4.16 0.50 4.43 0.23

Table A.54: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for octatetraene.

State lvl=0.0 error norm lvl=0.5 error norm

21Ag 3.28 1.15 0.52 0.33
11Bu 0.50 0.28 0.23 0.19

Table A.55: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of octatetraene.

State %singles %doubles %triples

21Ag 38.21 46.53 0.67
11Bu 36.52 46.90 0.00
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Table A.56: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for octatetraene.

State ESMF EOM

21Ag

H→L+2(0.45) H−1→L(-0.62)
H−1→L(0.35) H→L+2(-0.53)

11Bu

H→L(-0.68) H→L(-0.95)
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A.12 Cyclopropene

Table A.57: All methods singlet excitation energies in eV for molecule cyclopropene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B1 6.76 6.36 6.76 6.96 6.96 6.90 6.56 6.61
11B2 7.06 7.45 7.06 7.17 7.24 7.10 6.75 6.85

Table A.58: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for cyclopropene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B1 6.76 6.44 0.32 6.56 0.20 6.61 0.15
11B2 7.06 6.76 0.30 6.75 0.31 6.85 0.21

Table A.59: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for cyclopropene.

State lvl=0.0 error norm lvl=0.5 error norm

11B1 0.20 0.20 0.15 0.15
11B2 0.31 0.20 0.21 0.15

Table A.60: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of cyclopropene.

State %singles %doubles %triples

11B1 100.00 0.00 0.00
11B2 100.00 0.00 0.00
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Table A.61: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for cyclopropene.

State ESMF EOM

11B1

H−1→L(0.68) H−1→L(0.94)
H−1→L+14(0.21)

11B2

H→L(0.67) H→L(0.93)
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A.13 Cyclopentadiene

Table A.62: All methods singlet excitation energies in eV for molecule cyclopentadiene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B2 5.55 5.27 5.51 5.69 5.87 5.73 5.23 5.36
21A1 6.31 6.31 6.31 7.05 7.05 6.61 4.83 6.60

Table A.63: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for cyclopentadiene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B2 5.55 5.40 0.15 5.23 0.32 5.36 0.19
21A1 6.31 8.27 1.96 4.83 1.48 6.60 0.29

Table A.64: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for cyclopentadiene.

State lvl=0.0 error norm lvl=0.5 error norm

11B2 0.32 0.23 0.19 0.17
21A1 1.48 0.59 0.29 0.28

Table A.65: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of cyclopentadiene.

State %singles %doubles %triples

21A1 42.65 56.41 0.13
11B2 99.19 0.59 0.05
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Table A.66: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for cyclopentadiene.

State ESMF EOM

11B2

H→L(0.69) H→L(-0.96)
21A1

H−1→L(0.49) H−1→L(0.67)
H→L+7(0.47) H→L+7(-0.59)
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A.14 Norbornadiene

Table A.67: All methods singlet excitation energies in eV for molecule norbornadiene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A2 5.34 5.28 5.34 5.57 5.80 5.64 5.09 5.31
11B2 6.11 6.20 6.11 6.37 6.69 6.49 5.79 6.31

Table A.68: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for norbornadiene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A2 5.34 5.49 0.15 5.09 0.25 5.31 0.03
11B2 6.11 7.12 1.01 5.79 0.32 6.31 0.20

Table A.69: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for norbornadiene.

State lvl=0.0 error norm lvl=0.5 error norm

11A2 0.25 0.25 0.03 0.18
11B2 0.32 0.28 0.20 0.20

Table A.70: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of norbornadiene.

State %singles %doubles %triples

11A2 99.93 0.00 0.00
11B2 99.47 0.00 0.53
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Table A.71: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for norbornadiene.

State ESMF EOM

11A2

H→L(0.68) H→L(0.95)
11B2

H−1→L(0.67) H−1→L(0.89)
H→L(-0.29)
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A.15 Benzene

Table A.72: All methods singlet excitation energies in eV for molecule benzene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B2u 5.08 4.84 5.05 5.27 5.19 5.07 4.03 4.98
11B1u 6.54 6.30 6.45 6.68 6.74 6.68 6.07 6.24
11E1u 7.13 7.03 7.07 7.44 7.65 7.45 6.48 7.11
21E2g 8.41 7.90 8.21 9.03 9.21 8.43 7.60 9.37

Table A.73: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for benzene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B2u 5.08 6.08 1.00 4.03 1.05 4.98 0.10
11B1u 6.54 6.22 0.32 6.07 0.47 6.24 0.30
11E1u 7.13 7.89 0.76 6.48 0.65 7.11 0.02
21E2g 8.41 10.65 2.24 7.60 0.81 9.37 0.96

Table A.74: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for benzene.

State lvl=0.0 error norm lvl=0.5 error norm

11B2u 1.05 0.42 0.10 0.26
11B1u 0.47 0.27 0.30 0.18
11E1u 0.65 0.31 0.02 0.21
21E2g 0.81 0.60 0.96 0.26



APPENDIX A. SUPPLEMENTARY MATERIAL FOR STUDYING
EXCITED-STATE-SPECIFIC PERTURBATION THEORY ON THE THIEL SET 104

Table A.75: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of benzene.

State %singles %doubles %triples

11B2u 79.74 17.13 1.25
11B1u 94.77 3.46 0.09
11E1u 45.42 46.89 5.00
21E2g 88.11 5.47 3.59

Table A.76: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for benzene.

State ESMF EOM

11B2u

H−1→L(0.50) H→L+1(0.66)
H→L+1(0.50) H−1→L(-0.66)

11B1u

H→L(-0.50) H−1→L+1(0.68)
H−1→L+1(0.50) H→L(0.68)

11E1u

H→L+1(-0.48) H−1→L(0.66)
H−1→L(0.49) H→L+1(0.66)

21E2g

H−4→L+1(0.69) H−4→L+1(0.84)
H−1→L+9(-0.32)
H−1→L+1(0.20)



APPENDIX A. SUPPLEMENTARY MATERIAL FOR STUDYING
EXCITED-STATE-SPECIFIC PERTURBATION THEORY ON THE THIEL SET 105

A.16 Naphthalene

Table A.77: All methods singlet excitation energies in eV for molecule naphthalene.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B3u 4.24 4.03 4.24 4.45 4.41 4.27 3.22 4.13
11B2u 4.77 4.56 4.77 4.96 5.21 5.03 4.33 4.73
21Ag 5.90 5.39 5.90 6.22 6.23 5.98 5.06 6.11
11B1g 6.00 5.53 6.00 6.21 6.53 6.07 5.96 6.37
21B3u 6.07 5.54 6.07 6.25 6.55 6.33 5.33 5.99
21B1g 6.48 5.87 6.48 6.82 6.97 6.79 4.96 6.30
21B2u 6.33 5.93 6.33 6.57 6.77 6.57 5.42 6.22
31Ag 6.71 6.04 6.71 7.34 7.77 6.90 N/A N/A

Table A.78: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for naphthalene.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B3u 4.24 5.17 0.93 3.22 1.02 4.13 0.11
11B2u 4.77 5.04 0.27 4.33 0.44 4.73 0.04
21Ag 5.90 7.28 1.38 5.06 0.84 6.11 0.21
11B1g 6.00 6.69 0.69 5.96 0.04 6.37 0.37
21B3u 6.07 6.85 0.78 5.33 0.74 5.99 0.08
21B1g 6.48 7.76 1.28 4.96 1.52 6.30 0.18
21B2u 6.33 7.11 0.78 5.42 0.91 6.22 0.11
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Table A.79: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for naphthalene.

State lvl=0.0 error norm lvl=0.5 error norm

11B3u 1.02 0.42 0.11 0.26
11B2u 0.44 0.33 0.04 0.21
21Ag 0.84 0.42 0.21 0.26
11B1g 0.04 0.31 0.37 0.20
21B3u 0.74 0.33 0.08 0.22
21B1g 1.52 0.49 0.18 0.27
21B2u 0.91 0.36 0.11 0.23

Table A.80: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of naphthalene.

State %singles %doubles %triples

11B3u 71.64 12.61 1.91
11B2u 84.65 7.18 0.92
21Ag 57.47 19.95 1.18
11B1g 54.81 25.21 0.02
21B3u 37.34 39.74 2.00
21B1g 81.32 4.94 1.69
21B2u 80.81 7.34 1.77
31Ag 49.10 28.97 0.15
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Table A.81: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for naphthalene.

State ESMF EOM

11B3u

H−1→L(-0.49) H−1→L(-0.66)
H→L+1(-0.49) H→L+1(-0.65)

11B2u

H→L(0.62) H→L(-0.92)
H−1→L+1(-0.30) H−1→L+1(0.27)

21Ag

H−1→L+2(-0.57) H−1→L+2(-0.66)
H−2→L+1(-0.35) H−2→L+1(-0.59)

11B1g

H→L+2(-0.62) H→L+2(0.87)
H−2→L(-0.29) H−2→L(-0.34)

21B3u

H→L+1(0.49) H→L+1(-0.67)
H−1→L(-0.48) H−1→L(0.66)

21B1g

H−2→L(-0.58) H−2→L(-0.88)
H→L+2(0.38) H→L+2(-0.34)

21B2u

H−1→L+1(0.60) H→L+1(0.90)
H→L(0.31) H→L(0.23)
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A.17 Furan

Table A.82: All methods singlet excitation energies in eV for molecule furan.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B2 6.32 6.04 6.43 6.43 6.80 6.60 6.18 6.32
21A1 6.57 6.16 6.52 6.87 6.89 6.62 5.04 6.50
31A1 8.13 7.66 8.22 8.83 8.83 8.53 7.87 8.38

Table A.83: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for furan.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B2 6.32 6.34 0.02 6.18 0.14 6.32 0.00
21A1 6.57 8.04 1.47 5.04 1.53 6.50 0.07
31A1 8.13 8.96 0.83 7.87 0.26 8.38 0.25

Table A.84: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for furan.

State lvl=0.0 error norm lvl=0.5 error norm

11B2 0.14 0.24 0.00 0.17
21A1 1.53 0.51 0.07 0.28
31A1 0.26 0.28 0.25 0.19

Table A.85: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of furan.

State %singles %doubles %triples

11B2 91.75 7.15 0.37
21A1 71.71 25.43 1.15
31A1 64.33 30.51 2.62
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Table A.86: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for furan.

State ESMF EOM

11B2

H→L(0.68) H→L(-0.94)
21A1

H−1→L(0.53) H−1→L(-0.69)
H→L+5(0.43) H→L+5(-0.59)

31A1

H→L+5(-0.50) H→L+5(-0.68)
H−1→L(0.45) H−1→L(0.59)
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A.18 Pyrrole

Table A.87: All methods singlet excitation energies in eV for molecule pyrrole.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

21A1 6.37 5.92 6.31 6.61 6.61 6.40 5.30 6.41
11B2 6.57 6.00 6.33 6.83 6.87 6.71 6.25 6.45
31A1 7.91 7.46 8.17 8.44 8.44 8.17 7.50 8.04

Table A.88: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for pyrrole.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

21A1 6.37 7.54 1.17 5.30 1.07 6.41 0.04
11B2 6.57 6.57 0.00 6.25 0.32 6.45 0.12
31A1 7.91 8.69 0.78 7.50 0.41 8.04 0.13

Table A.89: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for pyrrole.

State lvl=0.0 error norm lvl=0.5 error norm

21A1 1.07 0.45 0.04 0.26
11B2 0.32 0.25 0.12 0.18
31A1 0.41 0.29 0.13 0.19

Table A.90: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of pyrrole.

State %singles %doubles %triples

21A1 76.61 21.95 0.94
11B2 88.43 10.67 0.42
31A1 68.47 27.59 2.63
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Table A.91: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for pyrrole.

State ESMF EOM

21A1

H−1→L+1(-0.55) H−1→L+1(0.71)
H→L+6(-0.42) H→L+6(-0.57)

11B2

H→L+1(0.67) H→L+1(-0.92)
H−1→L+6(-0.22)

31A1

H→L+6(-0.51) H→L+6(0.71)
H−1→L+1(0.45) H−1→L+1(0.57)
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A.19 Imidazole

Table A.92: All methods singlet excitation energies in eV for molecule imidazole.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 6.81 6.52 6.81 6.86 7.01 6.82 6.80 6.72
21A′ 6.19 6.72 6.19 6.73 6.80 6.58 5.65 6.49
31A′ 6.93 7.15 6.93 7.28 7.27 7.10 7.01 7.36

Table A.93: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for imidazole.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 6.81 6.11 0.70 6.80 0.01 6.72 0.09
21A′ 6.19 7.08 0.89 5.65 0.54 6.49 0.30
31A′ 6.93 7.77 0.84 7.01 0.08 7.36 0.43

Table A.94: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for imidazole.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.01 0.19 0.09 0.15
21A′ 0.54 0.43 0.30 0.22
31A′ 0.36 0.27 0.43 0.19

Table A.95: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of imidazole.

State %singles %doubles %triples

11A′′ 84.99 8.79 1.90
21A′ 75.30 20.32 0.86
31A′ 88.29 6.96 0.30
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Table A.96: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-CCSD
wave functions for the calculated states for imidazole.

State ESMF EOM

11A′′

H−2→L+1(-0.56) H−2→L+1(-0.88)
H−2→L+4(0.30) H−2→L+4(-0.28)

21A′

H→L+1(0.52) H→L+1(0.70)
H→L+4(0.36) H→L+4(0.46)

H−1→L+1(0.37)
31A′

H→L+4(-0.50) H→L+1(0.61)
H→L+1(+0.43) H−1→L+1(-0.50)

H→L(-0.47)
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A.20 Pyridine

Table A.97: All methods singlet excitation energies in eV for molecule pyridine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B2 4.85 4.84 5.02 5.32 5.27 5.15 4.52 5.19
11B1 4.59 4.91 5.14 5.12 5.25 5.05 4.93 4.98
21A2 5.11 5.17 5.47 5.39 5.73 5.50 5.25 5.50
21A1 6.26 6.42 6.39 6.88 6.94 6.85 6.22 6.45
31A1 7.18 7.23 7.46 7.72 7.94 7.70 6.55 7.29
21B2 7.27 7.48 7.29 7.61 7.81 7.59 6.54 7.25

Table A.98: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for pyridine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B2 4.85 5.97 1.12 4.52 0.33 5.19 0.34
11B1 4.59 4.70 0.11 4.93 0.34 4.98 0.39
21A2 5.11 5.65 0.54 5.25 0.14 5.50 0.39
21A1 6.26 6.47 0.21 6.22 0.04 6.45 0.19
31A1 7.18 8.21 1.03 6.55 0.63 7.29 0.11
21B2 7.27 8.14 0.87 6.54 0.73 7.25 0.02

Table A.99: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.) errors
vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles amplitudes
calculated from the norm of the first order ESMP wave function for pyridine.

State lvl=0.0 error norm lvl=0.5 error norm

11B2 0.33 0.36 0.34 0.23
11B1 0.34 0.24 0.39 0.17
21A2 0.14 0.26 0.39 0.19
21A1 0.04 0.29 0.19 0.19
31A1 0.63 0.33 0.11 0.22
21B2 0.73 0.34 0.02 0.22
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Table A.100: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of pyridine.

State %singles %doubles %triples

11B2 78.62 17.20 1.25
11B1 88.99 3.14 2.28
21A2 88.52 3.97 1.96
21A1 74.85 19.76 0.82
31A1 62.70 30.38 1.14
21B2 45.87 45.28 4.91

Table A.101: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for pyridine.

State ESMF EOM

11B2

H→L(0.67) H→L(0.77)
H−1→L+1(0.52)

11B1

H−2→L(-0.62) H−2→L(-0.92)
21A2

H−2→L+1(0.65) H−2→L+1(0.94)
21A1

H→L+1(0.53) H→L+1(0.76)
H−1→L(-0.44) H−1→L(-0.59)

31A1

H→L+1(-0.48) H−1→L(-0.73)
H−1→L(-0.47) H→L+1(-0.56)

21B2

H−1→L+1(0.56) H−1→L+1(+0.77)
H→L(-0.39) H→L(-0.51)
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A.21 Pyrazine

Table A.102: All methods singlet excitation energies in eV for molecule pyrazine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B3u 3.95 3.63 4.12 4.26 4.42 4.24 3.34 4.00
11Au 4.81 4.52 4.70 4.95 5.29 5.05 3.84 4.81
11B2u 4.64 4.75 4.85 5.13 5.14 5.02 4.25 4.86
11B2g 5.56 5.17 5.68 5.92 6.02 5.74 4.92 5.65
11B1g 6.60 6.13 6.41 6.70 7.13 6.75 5.42 6.69
11B1u 6.58 6.70 6.89 7.10 7.18 7.07 6.48 6.66
21B1u 7.72 7.57 7.79 8.13 8.34 8.06 6.91 7.62
21B2u 7.60 7.70 7.65 8.07 8.29 8.05 6.99 7.76

Table A.103: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for pyrazine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B3u 3.95 4.94 0.99 3.34 0.61 4.00 0.05
11Au 4.81 6.61 1.80 3.84 0.97 4.81 0.00
11B2u 4.64 5.57 0.93 4.25 0.39 4.86 0.22
11B2g 5.56 6.38 0.82 4.92 0.64 5.65 0.09
11B1g 6.60 8.71 2.11 5.42 1.18 6.69 0.09
11B1u 6.58 6.63 0.05 6.48 0.10 6.66 0.08
21B1u 7.72 8.54 0.82 6.91 0.81 7.62 0.10
21B2u 7.60 8.64 1.04 6.99 0.61 7.76 0.16
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Table A.104: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for pyrazine.

State lvl=0.0 error norm lvl=0.5 error norm

11B3u 0.61 0.34 0.05 0.23
11Au 0.97 0.36 0.00 0.25
11B2u 0.39 0.34 0.22 0.23
11B2g 0.64 0.37 0.09 0.23
11B1g 1.18 0.41 0.09 0.26
11B1u 0.10 0.28 0.08 0.19
21B1u 0.81 0.32 0.10 0.22
21B2u 0.61 0.35 0.16 0.23

Table A.105: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of pyrazine.

State %singles %doubles %triples

11B3u 81.32 10.79 1.98
11B2u 78.63 17.69 0.00
11Au 78.34 14.48 2.14
11B2g 71.18 20.54 1.83
11B1g 71.21 20.48 1.69
11B1u 92.51 4.53 0.00
21B2u 86.97 7.43 3.21
21B1u 90.31 3.76 3.15
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Table A.106: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for pyrazine.

State ESMF EOM

11B3u

H−1→L(0.68) H−1→L(-0.94)
11Au

H→L(0.68) H→L(-0.84)
H−2→L+1(0.39)

11B2u

H−1→L+1(-0.69) H−1→L+1(0.95)
11B2g

H−3→L(-0.65) H−3→L(0.92)
H−1→L+7(0.20)

11B1g

H−3→L+1(-0.69) H−3→L+1(0.94)
11B1u

H→L+1(0.56) H→L+1(-0.85)
H−2→L(-0.40) H−2→L(-0.45)

21B1u

H−2→L+1(0.61) H−2→L+1(0.84)
H→L(-0.30) H→L(0.39)

21B2u

H−2→L(0.54) H−2→L(0.81)
H→L+1(0.40) H→L+1(-0.41)
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A.22 Pyrimidine

Table A.107: All methods singlet excitation energies in eV for molecule pyrimidine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B1 4.55 3.81 4.44 4.49 4.70 4.50 3.65 4.24
11A2 4.91 4.12 4.81 4.84 5.12 4.93 4.18 4.83
11B2 5.44 4.93 5.24 5.51 5.49 5.36 4.96 5.55
21A1 6.95 6.72 6.64 7.12 7.17 7.06 6.36 7.25

Table A.108: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for pyrimidine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B1 4.55 5.17 0.62 3.65 0.90 4.24 0.31
11A2 4.91 5.89 0.98 4.18 0.73 4.83 0.08
11B2 5.44 6.20 0.76 4.96 0.48 5.55 0.11
21A1 6.95 8.31 1.36 6.36 0.59 7.25 0.30

Table A.109: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for pyrimidine.

State lvl=0.0 error norm lvl=0.5 error norm

11B1 0.90 0.32 0.31 0.23
11A2 0.73 0.33 0.08 0.23
11B2 0.48 0.34 0.11 0.23
21A1 0.59 0.38 0.30 0.23



APPENDIX A. SUPPLEMENTARY MATERIAL FOR STUDYING
EXCITED-STATE-SPECIFIC PERTURBATION THEORY ON THE THIEL SET 120

Table A.110: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of pyrimidine.

State %singles %doubles %triples

11B1 84.42 6.35 1.80
11A2 83.35 8.23 1.23
11B2 75.86 19.81 2.27
21A1 67.47 24.97 0.74

Table A.111: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for pyrimidine.

State ESMF EOM

11B1

H−1→L(-0.67) H−1→L(-0.94)
11A2

H−1→L+1(0.66) H−1→L+1(0.94)
11B2

H→L(0.66) H→L(0.77)
H−2→L+1(0.53)

21A1

H→L+1(-0.51) H→L+1(0.81)
H−2→L(-0.38) H−2→L(-0.49)
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A.23 Pyridazine

Table A.112: All methods singlet excitation energies in eV for molecule pyridazine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B1 3.78 3.48 3.78 3.90 4.11 3.92 3.26 3.67
11A2 4.32 3.66 4.32 4.40 4.76 4.49 3.66 4.25
21A1 5.18 4.86 5.18 5.37 5.35 5.22 4.28 5.16
21A2 5.77 5.09 5.77 5.81 6.00 5.74 4.82 5.53

Table A.113: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for pyridazine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B1 3.78 4.33 0.55 3.26 0.52 3.67 0.11
11A2 4.32 5.18 0.86 3.66 0.66 4.25 0.07
21A1 5.18 6.20 1.02 4.28 0.90 5.16 0.02
21A2 5.77 6.54 0.77 4.82 0.95 5.53 0.24

Table A.114: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for pyridazine.

State lvl=0.0 error norm lvl=0.5 error norm

11B1 0.52 0.30 0.11 0.22
11A2 0.66 0.31 0.07 0.22
21A1 0.90 0.40 0.02 0.26
21A2 0.95 0.35 0.24 0.24
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Table A.115: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of pyridazine.

State %singles %doubles %triples

11B1 87.74 8.18 1.80
11A2 86.20 8.37 2.77
21A1 79.39 17.82 0.26
21A2 74.52 21.37 1.33

Table A.116: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for pyridazine.

State ESMF EOM

11B1

H−2→L(0.67) H−2→L(-0.94)
11A2

H−2→L+1(0.64) H−2→L+1(0.94)
21A1

H→L(0.65) H→L(-0.75)
H−1→L+1(0.26) H−1→L+1(0.54)

21A2

H−3→L(0.59) H−3→L(0.91)
H−2→L+1(0.26)
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A.24 Triazine

Table A.117: All methods singlet excitation energies in eV for molecule triazine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′
1 4.60 3.90 4.60 4.70 4.96 4.78 3.23 4.44

11A′′
2 4.66 4.08 4.68 4.80 4.98 4.76 3.65 4.48

11E ′′ 4.71 4.36 4.71 4.77 5.01 4.81 3.49 4.48
11A′

2 5.79 5.33 5.79 5.82 5.84 5.71 4.34 5.48

Table A.118: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for triazine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′
1 4.60 6.04 1.44 3.23 1.37 4.44 0.16

11A′′
2 4.66 6.14 1.48 3.65 1.01 4.48 0.18

11E ′′ 4.71 6.16 1.45 3.49 1.22 4.48 0.23
11A′

2 5.79 6.95 1.16 4.34 1.45 5.48 0.31

Table A.119: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for triazine.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′
1 1.37 0.37 0.16 0.25

11A′′
2 1.01 0.39 0.18 0.25

11E ′′ 1.22 0.37 0.23 0.25
11A′

2 1.45 0.44 0.31 0.28
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Table A.120: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of triazine.

State %singles %doubles %triples

11A′′
1 76.65 13.15 1.41

11A′′
2 79.27 12.32 1.11

11E ′′ 79.27 13.18 0.69
11A′

2 76.20 18.86 2.63

Table A.121: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for triazine.

State ESMF EOM

11A′′
1

H−3→L+1(-0.51) H−2→L(-0.67)
H−2→L(0.44) H−3→L+1(0.67)

11A′′
2

H−2→L+1(0.48) H−3→L(-0.66)
H−3→L(-0.48) H−2→L+1(-0.66)

11E ′′

H−2→L+1(-0.49) H−2→L+1(-0.66)
H−3→L(-0.46) H−3→L(0.66)

11A′
2

H→L+1(-0.48) H−1→L(-0.66)
H−1→L(0.46) H→L+1(-0.66)
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A.25 Tetrazine

Table A.122: All methods singlet excitation energies in eV for molecule tetrazine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11B3u 2.24 1.96 2.24 2.47 2.71 2.53 1.36 2.12
11Au 3.48 3.06 3.48 3.67 4.07 3.79 2.48 3.55
11B1g 4.73 4.51 4.73 5.10 5.32 4.97 4.06 4.94
11B2u 4.91 4.89 4.91 5.20 5.27 5.12 3.98 4.86
21Au 5.47 5.28 5.47 5.50 5.70 5.46 3.61 4.75
11B2g 5.18 5.05 5.18 5.53 5.70 5.34 4.25 5.28

Table A.123: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for tetrazine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11B3u 2.24 3.34 1.10 1.36 0.88 2.12 0.12
11Au 3.48 5.39 1.91 2.48 1.00 3.55 0.07
11B1g 4.73 5.99 1.26 4.06 0.67 4.94 0.21
11B2u 4.91 5.96 1.05 3.98 0.93 4.86 0.05
21Au 5.47 6.53 1.06 3.61 1.86 4.75 0.72
11B2g 5.18 6.41 1.23 4.25 0.93 5.28 0.10

Table A.124: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for tetrazine.

State lvl=0.0 error norm lvl=0.5 error norm

11B3u 0.88 0.36 0.12 0.25
11Au 1.00 0.37 0.07 0.25
11B1g 0.67 0.41 0.21 0.24
11B2u 0.93 0.40 0.05 0.26
21Au 1.86 0.41 0.72 0.27
11B2g 0.93 0.43 0.10 0.25
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Table A.125: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of tetrazine.

State %singles %doubles %triples

11B3u 86.53 10.71 0.59
11Au 83.26 11.30 2.09
11B2u 86.75 10.76 1.33
11B1g 75.30 20.55 1.02
21Au 79.40 16.40 1.06
11B2g 70.51 24.45 1.02

Table A.126: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for tetrazine.

State ESMF EOM

11B3u

H→L(-0.68) H→L(0.95)
11Au

H→L+1(0.67) H→L+1(-0.94)
11B1g

H−1→L(-0.67) H−1→L(0.82)
H−2→L+1(0.43)

11B2u

H−4→L(-0.61) H−4→L(-0.93)
H→L+6(0.26)

21Au

H−3→L(0.61) H−3→L(0.93)
H→L+1(-0.30)

11B2g

H−5→L(0.65) H−5→L(-0.92)
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A.26 Cytosine

Table A.127: All methods singlet excitation energies in eV for molecule cytosine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

21A′ 4.66 4.39 4.68 4.80 4.98 4.72 N/A N/A
11A′′ 4.87 5.00 5.12 5.13 5.45 5.16 4.47 5.06
21A′′ 5.26 6.53 5.54 5.01 5.99 5.52 5.83 5.80
31A′ 5.62 5.36 5.54 5.71 5.95 5.61 4.78 5.56

Table A.128: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for cytosine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 4.87 6.03 1.16 4.47 0.40 5.06 0.19
21A′′ 5.26 5.12 0.14 5.83 0.57 5.80 0.54
31A′ 5.62 6.64 1.02 4.78 0.84 5.56 0.06

Table A.129: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for cytosine.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.40 0.32 0.19 0.23
21A′′ 0.57 0.21 0.54 0.16
31A′ 0.84 0.37 0.06 0.23

Table A.130: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of cytosine.

State %singles %doubles %triples

21A′ 79.24 9.35 0.54
11A′′ 81.26 9.49 0.60
31A′ 74.66 15.52 0.69
21A′′ 80.49 9.57 0.64
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Table A.131: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for cytosine.

State ESMF EOM

11A′′

H−2→L(0.66) H−2→L(0.80)
H−3→L(-0.39)
H−2→L+4(0.28)

21A′′

H−3→L+4(0.44) H−3→L+4(-0.56)
H−2→L+4(0.41) H−2→L+4(-0.56)

H−3→L(-0.43)
31A′

H−1→L(0.60) H−1→L(0.90)
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A.27 Thymine

Table A.132: All methods singlet excitation energies in eV for molecule thymine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 4.82 4.39 4.94 4.94 5.14 4.98 4.91 4.90
21A′ 5.20 4.88 5.06 5.39 5.60 5.34 4.84 5.29
31A′ 6.27 5.88 6.15 6.46 6.78 6.34 4.56 5.94
21A′′ 6.16 5.91 6.38 6.33 6.57 6.45 6.55 6.44
41A′ 6.53 6.10 6.52 6.80 7.05 6.71 4.91 6.45

Table A.133: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for thymine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 4.82 4.26 0.56 4.91 0.09 4.90 0.08
21A′ 5.20 5.96 0.76 4.84 0.36 5.29 0.09
31A′ 6.27 7.50 1.23 4.56 1.71 5.94 0.33
21A′′ 6.16 5.62 0.54 6.55 0.39 6.44 0.28
41A′ 6.53 8.68 2.15 4.91 1.62 6.45 0.08

Table A.134: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for thymine.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.09 0.23 0.08 0.17
21A′ 0.36 0.29 0.09 0.21
31A′ 1.71 0.50 0.33 0.27
21A′′ 0.39 0.19 0.28 0.15
41A′ 1.62 0.48 0.08 0.29
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Table A.135: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of thymine.

State %singles %doubles %triples

11A′′ 81.88 10.38 0.24
21A′ 82.75 7.70 0.00
21A′′ 83.17 5.98 0.71
31A′ 71.05 21.01 0.02
41A′ 76.55 13.02 0.02

Table A.136: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for thymine.

State ESMF EOM

11A′′

H−2→L(0.54) H−2→L(0.81)
H−2→L+4(-0.22) H−2→L+4(0.30)
H−3→L(0.22) H−3→L(0.26)

21A′

H→L(0.67) H→L(-0.90)
31A′

H−1→L(0.71) H−1→L(-0.88)
21A′′

H−3→L+4(-0.52) H−3→L+4(0.64)
H−2→L+4(0.29) H−2→L+4(-0.54)

H−3→L(-0.26)
41A′

H→L+4(0.68) H→L+4(0.89)
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A.28 Uracil

Table A.137: All methods singlet excitation energies in eV for molecule uracil.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

11A′′ 4.80 4.54 4.90 4.91 5.11 4.90 4.82 4.83
21A′ 5.35 5.00 5.23 5.52 5.70 5.44 4.80 5.36
31A′ 6.26 5.82 6.15 6.43 6.76 6.29 N/A N/A
31A′′ 6.56 6.37 6.97 6.73 7.68 6.77 5.63 6.93
21A′′ 6.10 6.00 6.27 6.26 6.50 6.32 6.49 6.39
41A′ 6.70 6.46 6.75 6.96 7.19 6.87 5.14 6.40

Table A.138: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for uracil.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

11A′′ 4.80 4.24 0.56 4.82 0.02 4.83 0.03
21A′ 5.35 6.18 0.83 4.80 0.55 5.36 0.01
31A′′ 6.56 8.98 2.42 5.63 0.93 6.93 0.37
21A′′ 6.10 5.56 0.54 6.49 0.39 6.39 0.29
41A′ 6.70 8.12 1.42 5.14 1.56 6.40 0.30

Table A.139: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for uracil.

State lvl=0.0 error norm lvl=0.5 error norm

11A′′ 0.02 0.23 0.03 0.17
21A′ 0.55 0.32 0.01 0.21
31A′′ 0.93 0.42 0.37 0.27
21A′′ 0.39 0.19 0.29 0.15
41A′ 1.56 0.43 0.30 0.27
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Table A.140: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of uracil.

State %singles %doubles %triples

11A′′ 81.94 9.81 0.14
21A′ 83.11 6.81 0.01
21A′′ 83.11 6.14 0.58
31A′ 72.34 18.53 0.03
41A′ 77.40 12.86 0.01
31A′′ 61.21 27.02 1.23

Table A.141: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for uracil.

State ESMF EOM

11A′′

H−2→L(0.53) H−2→L(0.80)
H−2→L+3(0.24) H−2→L+3(0.33)
H−3→L(0.21) H−3→L(0.24)

21A′

H→L(-0.67) H→L(-0.90)
31A′′

H−3→L(0.50) H−3→L(0.76)
H−2→L+3(-0.39) H−2→L+3(-0.52)

21A′′

H−3→L+3(-0.51) H−3→L+3(0.62)
H−2→L+3(0.27) H−2→L+3(-0.54)

H−3→L(-0.31)
H−2→L(0.23)
H−3→L+11(-0.21)

41A′

H→L+3(0.49) H→L+3(0.90)
H−1→L(0.38)
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A.29 Adenine

Table A.142: All methods singlet excitation energies in eV for molecule adenine.

State TBE CASPT2a CASPT2b CC2 CCSD CC3 ESMP2 lvl-ESMP2

21A′ 5.25 5.13 5.20 5.28 5.37 5.18 4.41 5.36
31A′ 5.25 5.20 5.30 5.42 5.61 5.39 4.90 5.37
11A′′ 5.12 6.15 5.21 5.27 5.58 5.34 4.87 5.44
21A′′ 5.75 6.86 5.97 5.91 6.19 5.96 5.12 5.84

Table A.143: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
results vs. the Thiel best estimates (TBEs) for adenine.

State TBE ESMF error ESMP2 error shift=0.50 a.u. error

21A′ 5.25 6.52 1.27 4.41 0.84 5.36 0.11
31A′ 5.25 5.94 0.69 4.90 0.35 5.37 0.12
11A′′ 5.12 6.33 1.21 4.87 0.25 5.44 0.32
21A′′ 5.75 7.00 1.25 5.12 0.63 5.84 0.09

Table A.144: Absolute ESMF, ESMP2 and level shifted ESMP2 (level shift = 0.50 a.u.)
errors vs. the Thiel best estimates (TBEs) and the corresponding norm of the doubles
amplitudes calculated from the norm of the first order ESMP wave function for adenine.

State lvl=0.0 error norm lvl=0.5 error norm

21A′ 0.84 0.41 0.11 0.26
31A′ 0.35 0.32 0.12 0.22
11A′′ 0.25 0.32 0.32 0.23
21A′′ 0.63 0.34 0.09 0.24
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Table A.145: SA-CASSCF percentages for the amount of singles, doubles, and triples char-
acter for the excitations of adenine.

State %singles %doubles %triples

21A′ 76.38 9.57 0.00
11A′′ 78.60 6.53 0.09
31A′ 81.27 6.62 0.00
21A′′ 77.69 7.84 0.69

Table A.146: Singles amplitudes with magnitudes above 0.2 from the ESMF and EOM-
CCSD wave functions for the calculated states for adenine.

State ESMF EOM

21A′

H−1→L(0.50) H→L+2(-0.70)
H→L+2(0.29) H−1→L(-0.57)

31A′

H→L(0.65) H→L(-0.88)
H−2→L+5(-0.27)

11A′′

H−2→L(-0.49) H−2→L(0.89)
H−2→L+2(0.33) H−2→L+5(-0.27)
H−2→L+5(0.23)

21A′′

H−2→L+2(0.66) H−2→L+2(0.92)
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