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Abstract
As	climate	changes,	understanding	the	genetic	basis	of	local	adaptation	in	plants	be-
comes	 an	 ever	more	 pressing	 issue.	 Combining	 genotype-environment	 association	
(GEA)	with	genotype–phenotype	association	(GPA)	analysis	has	an	exciting	potential	
to	uncover	the	genetic	basis	of	environmental	responses.	We	use	these	approaches	to	
identify	genetic	variants	linked	to	local	adaptation	to	drought	in	Pinus ponderosa.	Over	
4	million	Single	Nucleotide	Polymorphisms	(SNPs)	were	identified	using	223	individu-
als	from	across	the	Sierra	Nevada	of	California.	927,740	(22.3%)	SNPs	were	retained	
after	filtering	for	proximity	to	genes	and	used	in	our	association	analyses.	We	found	
1374	associated	with	five	major	climate	variables,	with	the	largest	number	(1151)	as-
sociated	with	April	1st	snowpack.	We	also	conducted	a	greenhouse	study	with	various	
drought-tolerance	traits	measured	in	first-year	seedlings	of	a	subset	of	the	genotyped	
trees	grown	in	the	greenhouse.	796	SNPs	were	associated	with	control-condition	trait	
values,	while	1149	were	associated	with	responsiveness	of	 these	traits	 to	drought.	
While	no	individual	SNPs	were	associated	with	both	the	environmental	variables	and	
the	measured	traits,	several	annotated	genes	were	associated	with	both,	particularly	
those	involved	in	cell	wall	formation,	biotic	and	abiotic	stress	responses,	and	ubiqui-
tination.	However,	the	functions	of	many	of	the	associated	genes	have	not	yet	been	
determined	due	to	the	lack	of	gene	annotation	information	for	conifers.	Future	stud-
ies	are	needed	to	assess	the	developmental	roles	and	ecological	significance	of	these	
unknown genes.
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1  |  INTRODUC TION

Genomics	 promises	 exciting	 advances	 toward	 understanding	
adaptive	 genetic	 variation	 and	 evolutionary	 potential	 of	 plants	
under	 a	 rapidly	 changing	 and	 often	 increasingly	 variable	 environ-
ment	 (Capblancq	et	 al.,	2020;	Harrisson	et	 al.,	 2014;	Hoffmann	&	
Sgrò,	2011;	Sang	et	al.,	2022;	Savolainen	et	al.,	2013).	Intraspecific	
genetic	 variation	 represents	 the	 potential	 for	 adaptive	 change	
in	 response	 to	 new	 selective	 challenges,	 which	 is	 critical	 for	
local	 species	 persistence	 under	 environmental	 change	 (Bell	 &	
Gonzalez,	2009;	Brooker	et	al.,	2022;	Leites	&	Benito	Garzón,	2023; 
Pauls	 et	 al.,	 2013;	 Rice	 &	 Emery,	 2003).	 Adaptation	 to	 local	 cli-
mate	 conditions	 has	 been	 considered	 typical	 for	 tree	 populations	
(Kitzmiller,	2005; Langlet, 1971;	Wright,	2007;	Ying	&	Liang,	1994),	
but	 organisms	with	 such	 long	 generation	 times	 and	 a	 sessile	 life-
style	can	become	maladapted	if	environmental	shifts	rapidly	occur	
(Aitken et al., 2008;	 Alberto	 et	 al.,	 2013;	 Benomar	 et	 al.,	 2022; 
Frank	et	al.,	2017;	Gougherty	et	al.,	2021).	Plants	also	exhibit	plastic	
changes	in	their	growth	form	and	physiology	in	response	to	stress,	
and	the	level	of	plasticity	can	itself	be	heritable	(Auld	et	al.,	2010; de 
la	Mata	et	al.,	2022;	Van	Kleunen	&	Fischer,	2005;	Wu	et	al.,	2023; 
Zeng et al., 2017)	and	may	be	under	 the	selection	 (Zettlemoyer	&	
Peterson,	 2021).	 Understanding	 the	 distribution	 of	 genetic	 varia-
tion	related	to	environmental	responses	may	help	us	better	predict	
changes	 and	manage	 forests	 in	 a	 shifting	 climate	 (Leites	&	Benito	
Garzón,	2023;	Neale	&	Kremer,	2011;	Oney	 et	 al.,	2013;	 Razgour	
et al., 2019).	This	includes	selecting	seed	sources	for	restoration	or	
breeding	 that	 have	 desirable	 characteristics	 such	 as	 drought	 tol-
erance	 (Beaulieu	 et	 al.,	 2014; Cortés et al., 2020;	 Isik,	 2014;	 Ray	
et al., 2022).

Landscape	 genomics	 offers	 enormous	 potential	 to	 discover	
genes	responsible	for	local	adaptation	by	investigating	the	statistical	
association	between	genetic	variation	at	individual	loci	and	the	puta-
tive	causative	environmental	factors	(Eckert	et	al.,	2010, 2015;	Feng	
&	Du,	2022; Lu et al., 2019;	Shaffer	et	al.,	2022;	Sork	et	al.,	2013).	
This	approach	is	sometimes	known	as	genotype-environment	asso-
ciation	(GEA)	analysis.	Prior	studies	in	Arabidopsis	–	the	primary	plant	
model	organism	–	have	found	that	environmentally	associated	SNPs	
can	predict	performance	in	common	gardens	(Hancock	et	al.,	2011).	
A Pinus pinaster	 study	suggests	 this	could	be	true	 in	 trees	as	well,	
even	when	only	a	modest	number	of	the	genetic	variants	involved	
have	been	identified	(Jaramillo-Correa	et	al.,	2015).	However,	GEA	
studies	do	not	by	 themselves	 reveal	why	 specific	 alleles	are	more	
prevalent	 in	 particular	 environments	 –	 for	 example,	 are	 they	 re-
sponsible	for	selectively	favored	traits?	Genotype–phenotype	asso-
ciation	(GPA)	analysis	 identifies	 loci	 linked	to	a	specific	phenotype	
(Depardieu et al., 2021;	 Eckert	 et	 al.,	 2009;	Holliday	 et	 al.,	2010; 
Housset	et	al.,	2018;	Santini	et	al.,	2021).	 In	plant	GPA	studies,	 in-
dividuals	are	typically	grown	in	a	common	environment	to	eliminate	
the	effects	of	environmental	variation	on	phenotypes.	However,	this	
approach	does	not	reveal	whether	a	trait	variant	would	be	favored	
in	the	field.	GEA	and	GPA	association	are	thus	complementary,	and	
combining	 them	might	 better	 identify	 the	 loci	 and	 traits	 that	 are	

selectively	favored	in	particular	conditions	than	either	could	alone	
(Eckert	et	al.,	2015;	Mahony	et	al.,	2020;	Talbot	et	al.,	2017).

The	 large	genome	size	of	conifer	 trees	 (>19	GBP)	represents	a	
challenge	for	analysis.	Most	association	studies	in	conifers	have	fo-
cused	on	Single	Nucleotide	Polymorphisms	(SNPs)	within	a	few	hun-
dred genes (Dillon et al., 2014;	Eckert	et	al.,	2009, 2015;	Hamilton	
et al., 2013;	Holliday	et	al.,	2010;	Housset	et	al.,	2018),	or	fewer	than	
2000	genome-wide	SNPs	(Uchiyama	et	al.,	2013).	One	notable	ex-
ception	 is	 a	 recent	 study	on	 lodgepole	pine	 that	used	a	 sequence	
capture	dataset	created	by	mapping	the	Pinus contorta	transcriptome	
to the Pinus taeda	 genome	 sequence	 (Mahony	 et	 al.,	2020).	Most	
genome-wide	studies,	however,	are	 limited	to	pines	species	with	a	
full	genome	sequence	(Cappa	et	al.,	2022; De La Torre et al., 2019; 
Lu et al., 2019;	Weiss	et	al.,	2022).	Still,	most	conifers	have	neither	a	
published	genome	sequence	nor	a	complete	transcriptome.	Though	
targeted	 sequencing	 is	 efficient,	 candidate	 gene	 approaches	 may	
miss	 other	 vital	 genes	 with	 previously	 unsuspected	 roles	 in	 local	
adaptation,	and	focusing	solely	on	variants	within	genes	may	miss	
significant	variants	within	regulatory	regions.

Several	approaches	to	identifying	more	genetic	variants	for	ge-
nome-wide	 association	 studies	 (GWAS)	 utilizing	 next-generation	
sequencing	 (NGS)	 have	 been	 proposed	 in	 recent	 years	 (Badenes	
et al., 2016;	 Davey	 et	 al.,	 2011;	 Poland	 &	 Rife,	 2012;	 Younessi-
Hamzekhanlu	 &	 Gailing,	 2022).	 Genotyping-by-Sequencing	 (GBS),	
which	can	generate	tens	of	thousands	of	SNP	markers	without	the	
need	for	a	reference	genome	or	whole	transcriptome,	has	emerged	as	
a	cost-effective	strategy	(Andrews	et	al.,	2016;	Elshire	et	al.,	2011).	
By	 combining	 the	 power	 of	multiplexed	 NGS	with	 restriction-en-
zyme-based	genome	complexity	reduction,	GBS	enables	the	geno-
typing	of	large	populations	for	thousands	of	SNPs	in	an	increasingly	
rapid	and	inexpensive	way	(Poland	et	al.,	2012;	Poland	&	Rife,	2012).

Despite	 the	 high	 economic	 and	 ecological	 importance	 of	 pon-
derosa pine (Pinus ponderosa)	in	the	western	United	States	(Graham	
&	Jain,	2005),	no	previous	study	has	attempted	to	 identify	the	re-
lationship	between	gene	sequence	variation	and	drought	tolerance	
in	 this	 species.	 Some	 studies	 have	 investigated	 the	 evolutionary	
history	 and	 phylogeography	 of	 P. ponderosa	 using	 mitochondrial	
DNA	markers;	these	reflect	the	long-term	biogeographical	process	
contributing	to	the	modern	distribution	of	the	species	but	have	lim-
ited	 adaptive	 significance	 in	 themselves	 (Johansen	&	 Latta,	2003; 
Potter	et	al.,	2013).	Other	studies	have	emphasized	the	importance	
of	intraspecific	variation	of	P. ponderosa	in	environmental	responses	
but	 focus	 on	 the	 phenotypic	 variation	within	 and	 among	 popula-
tions	 without	 identifying	 the	 underlying	 genetic	 variation	 (Kolb	
et al., 2016;	Maguire	 et	 al.,	2018).	California's	 historic	2012–2016	
drought	 may	 represent	 an	 increasingly	 common	 condition	 as	 cli-
mate	changes	(Berg	&	Hall,	2015;	Griffin	&	Anchukaitis,	2014).	Such	
“hot	 droughts”	 can	 lead	 to	mass	 tree	mortality,	 even	 in	 relatively	
drought-tolerant	species	 like	ponderosa	pine,	negatively	 impacting	
the	sustainability	of	conifer	forests	(Fettig	et	al.,	2019).	A	deep	un-
derstanding	of	the	genetic	basis	of	adaptation	in	ponderosa	pine	and	
other	conifers	in	the	western	United	States	is	critical	for	successful	
reforestation	and	conservation	programs.
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In	this	study,	we	delve	into	the	genetic	basis	of	local	adaptation	
and	 drought-response	 traits	 in	 ponderosa	 pine	 populations	 from	
diverse	 climates	 within	 the	 central	 Sierra	 Nevada	 mountains	 in	
California.	Using	a	comprehensive	approach,	we	performed	a	GEA	
analysis	on	223	genotypes	and,	subsequently,	conducted	a	GPA	anal-
ysis	on	seedlings	germinated	from	a	selected	subset	of	these	trees.	
We	also	made	use	of	gene	annotation	to	assign	biological	functions	
to	 genes	 linked	with	or	 adjacent	 to	 the	 identified	SNPs.	The	 aims	
of	the	present	study	were	to	unravel	the	genetic	underpinnings	of	
climate	adaptation	and	drought-responsiveness	in	ponderosa	pines	
through	combined	GEA	and	GPA	analyses	and	(2)	to	integrate	asso-
ciation	studies	with	gene	annotation	analysis	to	spotlight	genes	and	
functions	of	significance	for	adaptation.	We	hypothesized	that	cer-
tain	gene	 functions	previously	 identified	as	 important	 for	drought	
tolerance	in	trees	(Moran	et	al.,	2017)	–	such	as	those	in	the	abscisic	
acid	(ABA)	signaling	pathway	used	to	close	the	stomata	during	stress	
–	would	be	identified	in	both	analyses,	but	that	new	functions	would	
be	identified	as	well.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and DNA sequencing

In	 the	 1970s,	 the	 Forest	 Service's	 Pacific	 Southwest	 Regional	
Genetic	Resources	Program	planted	clones	of	302	wild	ponderosa	
pines	from	diverse	climate	conditions	 in	the	central	portion	of	the	
Sierra	Nevada	mountains	in	an	orchard	located	in	Chico,	California.	
From	 this	 orchard,	 we	 selected	 223	 individual	 P. ponderosa geno-
types	for	the	GEA	analysis,	ensuring	they	spanned	the	full	climatic	
range represented in the original collection (Figure S1).	The	source	

locations	for	these	genotypes	 (Figure 1)	 fell	within	 just	one	of	the	
several	genetic	subdivisions	previously	identified	in	ponderosa	pine	
(Conkle	 &	 Critchfield,	 1988;	 Potter	 et	 al.,	 2015;	 Williams,	 2009).	
Fresh	needles	were	collected	 from	these	 individuals	and	placed	 in	
labeled	tea	bags	over	silica	gel	to	dry	them	and	quickly	preserve	the	
DNA	for	extraction.

DNA	 was	 extracted	 from	 the	 dried	 needles	 using	 a	 modified	
Qiagen	 plant	 kits	 protocol	 by	 adding	 proteinase	 K	 and	 quantified	
using	 an	 Eppendorf	 BioSpectrometer	 (Eppendorf,	 AG,	 Germany).	
Samples	were	frozen	and	sent	to	the	UC	Davis	Genome	Center	for	
library	 construction.	 Four	 48-plex	 GBS	 libraries	 consisting	 of	 47	
DNA	samples	and	negative	control	(no	DNA)	and	one	36-plex	GBS	
library	composed	of	35	DNA	samples	and	negative	control	were	pre-
pared.	 The	 pool	was	 quantified	 via	 qPCR	 using	 the	KAPA	 Library	
Quantification	 Kit	 (Kapa	 Biosystems,	 Wilmington,	 MA,	 USA)	 for	
Illumina	 sequencing	platforms,	with	0.9X	bead	 cleanup	 to	 remove	
small	 fragments	 (<250 bp).	 Additional	 DNA	 purification	 using	 the	
Zymo	DNA	Clean	&	Concentrator	 kit	 (Zymo	Research,	 Irvine,	CA)	
was	performed	to	increase	the	purity	of	the	extracted	DNA.	The	li-
braries	were	then	sequenced	(single-end	read	90	or	100 bp)	using	an	
Illumina	HiSeq	4000	(Illumina,	San	Diego,	CA),	one	library	per	lane.

2.2  |  SNP calling and filtering

No	 reference	 genome	 is	 available	 for	 ponderosa	 pine	 (P. ponderosa),	
but	 one	 does	 exist	 for	 loblolly	 pine	 (P. taeda)	 (Neale	 et	 al.,	 2014; 
Zimin	et	al.,	2014, 2017).	Of	the	conifers	that	have	been	sequenced	
to date, P. taeda	 is	the	most	closely	related	to	P. ponderosa	 (Gernandt	
et al., 2009;	Willyard	et	al.,	2009).	Furthermore,	the	P. taeda	reference	
genome	was	successfully	used	to	design	probes	for	sequence	capture	

F I G U R E  1 Source	location	and	the	admixture	analysis	of	the	223	ponderosa	pine	genotypes.	Left:	Original	geographic	distribution	of	the	
223	ponderosa	pine	genotypes.	Right:	Proportion	of	each	individual's	genome	allocated	to	“population	1”	(green)	and	“population	2”	(orange)	
by	admixture	analysis	when	K = 2,	illustrating	lack	of	geographical	structure.	Trees	were	subsequently	treated	as	part	of	a	single	population.
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in P. contorta	(Suren	et	al.,	2016;	Yeaman	et	al.,	2016),	a	distant	relative.	
Based	on	preliminary	analyses,	we	selected	the	Stacks	v.2.2	pipeline	
(Rochette	&	Catchen,	2017)	with	this	reference	genome	(https:// treeg 
enesdb.	org/	FTP/	Genom	es/	Pita/	)	 for	 SNP	 calling	 (Shu,	 2020).	 Each	
step	in	the	Stacks	reference	pipeline	was	performed	internally	in	Stacks	
algorithms	except	alignment	with	BWA	v.0.7.17	(Li	&	Durbin,	2009)	and	
the	Samtools	v.1.9	(Li,	2011)	step	used	to	get	read	position.	Default	set-
tings	were	used	in	Stacks,	BWA,	and	Samtools.

After	calling	the	SNPs,	we	ran	SnpEff	(Cingolani	et	al.,	2012)	to	
identify	the	location	of	the	gene	containing	each	SNP.	We	used	the	
database	of	annotated	genome	and	the	reference	genome	of	loblolly	
pine	 v.2.01	 in	 TreeGenes	 (http://	treeg	enesdb.	org/	FTP/	Genom	es/	
Pita/	v2.	01/	).	The	location	of	each	SNP	was	listed	in	the	output	file	of	
SnpEff	as	one	of	six	primary	location	categories,	including	intragenic	
variants,	 intergenic	 variants,	 upstream	 SNPs,	 downstream	 SNPs,	
synonymous,	and	missense	variants	in	the	gene	coding	sequence.	In	
SnpEff,	“intragenic”	refers	to	SNPs	in	introns,	while	“missense”	refers	
to	any	non-synonymous	mutation	in	the	transcribed	region.

Many	 SNPs	 identified	 by	 GBS	 fell	 between	 genes	 and	 reg-
ulatory	 regions	 (in	 the	 intergenic	 regions)	 and	 likely	 had	no	direct	
effect	on	gene	expression	or	 function.	 In	addition,	because	of	 the	
low	 amount	 of	 linkage	 disequilibrium	 in	 conifers	 (Isik	 et	 al.,	2016; 
Namroud	 et	 al.,	 2008),	 any	 associations	 identified	 between	 such	
intergenic	SNPs	and	a	phenotype	or	environment	of	 interest	were	
likely	false	positives	rather	than	reflecting	linkage	between	the	SNP	
and	a	causal	variant.	Therefore,	we	first	filtered	out	the	intergenic	
SNPs	before	running	the	association	analysis	using	a	Python	script	
(https://	github.	com/	shume	ngjun/		LFMM).

2.3  |  Climate data

We	 obtained	 30-year	 (1921–1950)	 averages	 of	 climate	 data	 for	
each	genotype	source	location	from	the	270 m	resolution	California	
Basin	 Characterization	 Model	 (BCM)	 (Flint	 et	 al.,	 2013).	 These	
mid-20th-century	values	were	used	instead	of	more	recent	climate	
data	because	they	more	closely	resemble	the	conditions	when	the	
genotypes	were	establishing	as	 seedlings.	For	 the	GEA	analysis,	 a	
PCA	was	conducted	on	the	entire	climate	dataset	to	determine	key	
climatic	variables.	The	first	two	principal	components	captured	a	sig-
nificant	68.2%	of	the	total	climatic	variation	(Figure S2).	We	decided	
to	 focus	our	analysis	on	 five	 crucial	 climate	variables	 components	
that	 contributed	 strongly	 to	 the	 first	 two	 principal	 components,	
including:	mean	climatic	water	deficit	 (CWD,	a	measure	of	evapo-
rative	 demand	 exceeding	 soil	 moisture);	 mean	 minimum	 winter	
(December–February)	 temperature	 (TMIN);	 mean	 maximum	 sum-
mer	(June–August)	temperature	of	summer	(TMAX);	mean	monthly	
winter	precipitation	(PPTW);	and	mean	April	1st	snowpack	(PCK4).	
Other	climate	variables	considered	but	not	included	in	the	analysis	
were	actual	evapotranspiration	(AET),	potential	evapotranspiration	
(PET),	 mean	 monthly	 summer	 precipitation	 (PPTS),	 excess	 water	
(EXC),	 recharge	 (RCH),	 runoff	 (RUN),	 snowfall	 (SNW),	 snowmelt	
(MLT),	soil	water	storage	(STR),	and	snow	sublimation	(SBL).

2.4  |  Genotype-environment association analysis

We	used	latent	factor	mixed	model	2	(LFMM2)	for	GEA	association,	
which	has	been	shown	to	outperform	similar	approaches	with	sev-
eral	orders-of-magnitude	faster	computing	(Caye	et	al.,	2019),	which	
also	controls	for	the	effects	of	demographic	processes	and	popula-
tion	structure	 (Wang	et	al.,	2017).	This	approach	 is	 robust	 to	high	
amounts	of	missing	data,	such	as	GBS	sequencing	tends	to	produce,	
when	sample	sizes	are	>100	(Xuereb	et	al.,	2017).

LFMM2	regression	models	combine	fixed	and	latent	effects	with	
the	following	equation:

Y	is	a	matrix	of	genetic	information	measured	from	p	genetic	mark-
ers	for	n individuals, and X	is	a	matrix	of	d	environmental	variables	
measured	 for	n	 individuals.	 The	 fixed	 effect	 sizes	 are	 recorded	 in	
the B	matrix,	which	has	dimension	p × d. The E	matrix	represents	re-
sidual	errors	with	the	same	dimensions	as	the	response	matrix.	The	
matrix	W	 is	 a	matrix	of	 rank	K,	 defined	by	K	 latent	 factors	where	
model	choice	procedures	can	determine	K. The K	factors	represent	
unobserved	 confounders	 –	 usually	 geographical	 structure	 in	 the	
genotypes	of	the	samples	–	defined	as	an	n × K	matrix,	U. V is a p × K 
matrix	of	loadings.	The	matrix	U	is	obtained	from	the	matrix's	singu-
lar	value	decomposition	(SVD):

We	used	 the	 two	 approaches	 implemented	 in	 the	 LEA	 v.2.6.0	
R	package	to	determine	K:	principal	component	analysis	(PCA)	and	
admixture	analysis	 (Frichot	et	al.,	2013;	Frichot	&	François,	2015).	
First,	we	ran	the	LEA	function	PCA	to	select	the	number	of	signif-
icant	PCA	components	by	computing	Tracy-Widom	tests	with	 the	
LEA	function	Tracy.widom	(Patterson	et	al.,	2006).	Second,	we	ran	
the	LEA	function	snmf	for	K	values	between	1	and	5	with	10	repeti-
tions	each.	The	most	likely	K	value	was	identified	by	minimizing	the	
cross-validation	error	evaluated	in	the	10-fold	cross-validation	pro-
cedure.	Upon	executing	the	GEA	using	LFMM2	with	the	determined	
K	value,	we	calibrated	the	raw	p	values	by	employing	the	Genomic	
Inflation	Factor	(GIF)	to	account	for	potential	distortions	caused	by	
population	structure	or	other	intervening	variables.	We	then	chose	
significant	 associations	 based	 on	 p (<10−5)	 value.	 This	 calibration,	
combined	with	our	threshold	criteria,	was	pivotal	in	ensuring	strin-
gent	False	Discovery	Rate	(FDR)	control,	affirming	the	credibility	of	
our	identified	associations.

2.5  |  Greenhouse experiment and phenotype 
measurements

In	this	study,	we	conducted	a	greenhouse	experiment	with	both	wet	
and	drought	treatments	in	order	to	carry	out	the	GPA.	The	specific	
procedures	for	the	greenhouse	experiment	and	the	phenotype	as-
sessments	are	described	 in	Wu	et	al.	 (2023).	We	selected	50	seed	
sources	 among	 our	 223	 genotypes	 that	 still	 represent	 the	 same	

Y = XB
T
+W + E.

W = UV
T
.

https://treegenesdb.org/FTP/Genomes/Pita/
https://treegenesdb.org/FTP/Genomes/Pita/
http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
http://treegenesdb.org/FTP/Genomes/Pita/v2.01/
https://github.com/shumengjun/LFMM
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breadth	 of	 climate	 conditions	 as	 the	 full	 set	 of	 trees	 (Figure S3);	
greenhouse	 size	 did	 not	 allow	 for	 a	 larger	 sample	 of	 families.	We	
aimed	to	have	10	seedlings	from	each	maternal	family	 in	both	wet	
and	dry	treatments,	1000	seedlings	in	total.	As	responses	to	dry	ver-
sus	wet	conditions	could	not	be	measured	 in	 the	genotyped	adult	
individuals,	we	used	average	values	for	their	offspring.

We	 recorded	nine	 seedling	 traits:	 height	 growth	 (GR;	 in	 centi-
meters),	 root	 length	 (RL;	 in	centimeters),	dry	shoot	weight	 (SW;	 in	
grams),	 dry	 root	weight	 (RW;	 in	 grams),	 the	 ratio	 of	 root-to-shoot	
dry	mass	(R2S),	specific	root	length	(SRL;	in	centimeters	per	gram),	
stomata	density	of	adaxial	side	(SD_AD;	in	numbers	per	square	mil-
limeter),	the	number	of	stomatal	rows	on	the	abaxial	side	(NR_AB;	in	
number	per	mm2),	and	the	number	of	stomatal	rows	on	the	adaxial	
side	(NR_AD;	in	number	per	mm2).	Forty-two	maternal	families	had	
sufficient	 germination	 to	 enable	 these	measurements	 across	 both	
wet	and	drought	treatments.

2.6  |  Genotype–phenotype association analysis

We	used	 the	 SNPs	 identified	 in	 the	42	mother	 trees	 for	 the	GPA	
association	 analysis,	 focusing	on	 the	 traits	 significantly	 associated	
with	drought	treatments.	Two	groups	of	traits'	measurements	were	
included	 in	 the	GPA	analysis.	 For	 the	 control	 treatment	 traits,	we	
used	the	average	trait	value	across	all	members	of	each	family	in	the	
wet	treatment	to	run	GPA	analysis.	For	the	drought	responsiveness,	
we	deducted	 the	average	 trait	 value	 for	 a	given	 family	 in	 the	wet	
treatment	from	the	value	for	each	family's	offspring	in	the	drought	
treatment.	We	used	LFMM	2	 (Caye	et	al.,	2019)	 for	GPA	analysis,	
using	trait	measurements	as	explanatory	variables,	in	contrast	to	the	
environmental	variables	used	in	the	GEA	analysis,	with	the	explana-
tory	variables	as	the	traits'	measurement	instead	of	environmental	
variables	 in	GEA	 analysis.	 Following	 this,	we	 calibrated	 the	 raw	p 
values	from	the	GPA	analysis	using	the	GIF	to	correct	for	potential	
biases	introduced	by	population	structure	or	other	confounding	fac-
tors.	Associations	were	deemed	significant	based	on	p (<10−5)	value.	
This	calibration	approach,	along	with	our	chosen	threshold,	was	in-
strumental	in	ensuring	rigorous	control	of	the	FDR,	thereby	enhanc-
ing	the	reliability	of	our	GPA	analysis	results.

2.7  |  Gene annotation

After	identifying	the	significantly	associated	SNPs	in	GEA	and	GPA,	
we	aligned	the	gene	sequences	for	these	regions	against	the	nonre-
dundant	protein	sequences	database	using	UniProt	 to	 identify	 the	
gene	and	protein	with	the	implemented	Blastx	(2.9.0+, E < 1e−10).	The	
Gene	Ontology	Annotation	Database	(Bateman	et	al.,	2017;	UniProt	
Consortium,	2015)	was	used	 to	 identify	 the	potential	 functions	of	
the	genes	further.	If	a	SNP	is	in	the	intragenic	region,	we	performed	
a	search	by	querying	the	flanking	sequence	400 bp	from	the	begin-
ning	position	of	the	gene.	This	step	was	essential	because,	for	genes	
encompassing	 introns,	 the	distance	between	 the	 “start”	and	 “end”	

positions	 was	 considerable,	 often	 resulting	 in	 Blastx	 yielding	 no	
matches.

3  |  RESULTS

3.1  |  Genetic diversity and population structure

A	 total	 of	 4,155,896	 SNPs	 were	 identified	 from	 GBS	 data	 of	 the	
223	genotypes	after	initial	filtering.	With	these	SNPs,	we	ran	both	
principal	component	analysis	(PCA)	and	admixture	analysis	to	deter-
mine	the	number	of	populations	(K)	represented	by	these	individu-
als.	Remarkably,	the	PCA	indicated	that	all	223	genotypes	clustered	
closely	 together,	as	depicted	 in	Figure S4.	Despite	 the	broad	geo-
graphical	 range	 of	 our	 samples,	 they	 appear	 to	 represent	 a	 single	
population.	 This	 observation	 is	 consistent	with	 previous	 research,	
which	posits	that	the	ponderosa	pines	in	the	Sierra	Nevada	moun-
tains	belong	to	one	of	the	previously	identified	genetic	subdivisions	
(Potter	 et	 al.,	 2015).	 Even	 though	 our	 samples	 are	 across	 a	 wide	
distribution,	it	belongs	to	the	same	population,	which	is	also	in	ac-
cordance	with	the	previous	findings,	which	indicate	the	ponderosa	
pine	 in	Sierra	Nevada	mountains	belongs	 to	one	of	 the	previously	
identified	subdivisions.	According	to	the	admixture	analysis	 result,	
the	best	K value was one (Figure S5).	We	also	plotted	 the	 admix-
ture	of	each	individual	tree.	We	found	that	the	 identified	“popula-
tions” when K = 2	completely	overlapped	geographically	(Figure 1b, 
Figure S6).	Thus,	we	concluded	that	the	sampled	genotypes	belong	
to	one	 interbreeding	population	and	used	K = 1	for	the	association	
analysis.

3.2  |  Environmental associations at individual loci

After	 filtering	 out	 the	 intergenic	 SNPs	 that	 might	 result	 in	 false	
positives,	we	were	left	with	927,740	(22.3%)	SNPs	in	or	near	genes.	
These	were	then	used	for	the	association	analyses.	After	the	running	
of	LFMM2	(p < 10−5)	for	GEA,	we	found	1374	significant	associations	
with	the	five	selected	environmental	variables	(Table 1).	PCK4	(April	
1st	snowpack)	had	the	most	associations,	with	TMIN	(minimum	win-
ter	 temperature)	 having	 the	 following	 highest	 number.	 Few	 SNPs	
were	associated	with	more	than	one	climatic	variable,	with	the	high-
est	degree	of	overlap	between	PCK4	and	TMIN	(64	SNPs)	and	be-
tween	CWD	and	TMIN	(17	SNPs)	(Figure 2).

For	PCK4	and	TMIN,	there	were	roughly	similar	numbers	of	asso-
ciated	SNPs	in	upstream	and	downstream	regions	versus	the	gene	it-
self,	with	14%	of	associated	SNPs	being	missense	(non-synonymous)	
mutations	(Table 1).	SNPs	associated	with	CWD	were	also	roughly	
evenly	split	between	flanking	regions	and	the	main	gene	sequence,	
but	only	3%	were	missense	mutations.	A	higher	proportion	of	SNPs	
associated	with	TMAX	(maximum	summer	temperature)	were	within	
the	gene	 (68%),	with	22%	being	missense	mutations,	while	PPTW	
(winter	 precipitation)	 showed	 the	 opposite	 pattern,	 with	 69%	 of	
SNPs	being	in	the	flanking	regions.
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3.3  |  Phenotypic associations at individual loci

Although	50	maternal	families	were	initially	selected	for	the	green-
house	 experiment,	 only	 42	 had	 sufficient	 germination	 for	 meas-
urements	to	be	included	in	analyses.	Six	out	of	the	eight	measured	
phenotypic	 traits	were	significantly	different	 in	 the	drought	 treat-
ment	 versus	 the	wet	 treatment.	GR	 and	SW	decreased,	while	RL,	
R2S,	SD_AD,	and	NR_AB	increased.	We	therefore	focused	on	these	
traits	 for	 the	 following	 GPA	 analysis,	 including	 both	 the	 average	
measurement	of	control	treatment	family	and	drought	responsive-
ness	for	each	trait.	Heritabilities	of	trait	responses	to	drought	ranged	
from	0.15	to	0.65,	and	are	discussed	further	in	Wu	et	al.	(2023),	with	
variation in shoot growth in response to drought having the highest 
heritability.

More	 SNPs	 were	 associated	 with	 the	 trait	 drought	 responses	
(1149)	than	with	the	control	traits	(796).	While	control	R2S	had	the	
most	associations	and	SW	the	least	(Table 2),	the	opposite	was	the	
case	for	drought	responsiveness	(Table 3).	The	number	of	SNPs	as-
sociated	with	more	than	one	trait	was	low	in	both	GPA	analyses.	The	

highest	degree	of	overlap	was	 in	 control	 traits	of	RL	 and	R2S	 (12	
SNPs)	 and	of	R2S	and	NR_AB	 (nine	SNPs)	 (Figure 3).	 The	propor-
tion	of	associated	upstream	SNPs	was	similar	across	control	 traits	
(32%–43%),	but	proportions	of	other	categories	varied	widely,	with	
the	proportion	of	missense	SNPs	ranging	from	8%	to	25%	(Table 2).	
For	drought	response,	the	distribution	of	SNPs	in	all	categories	dif-
fered,	 with	 the	 proportion	 of	 upstream	 being	 19%–34%	 and	 the	
proportion	 of	 missense	 being	 7%–16%	 for	 traits	 other	 than	 R2S	
(Table 3).	R2S	was	only	associated	with	six	SNPs,	five	upstream	and	
one	downstream.

3.4  |  Gene annotation for the significantly 
associated SNPs

Of	 the	1374	SNPs	associated	with	environmental	 gradients,	 func-
tions	could	be	assigned	for	788	(54%),	while	the	rest	had	no	matches	
in	available	gene	ontology	databases.	We	found	that	283	SNPs	with	
identifiable	functions	belonged	to	protein	types	that	may	be	directly	
related	 to	 drought	 tolerance	 or	 other	 environmental	 responses	
(Figure 4).	 We	 categorized	 these	 genes	 into	 five	 main	 functional	
groups:	 (a)	 the	 ubiquitination	 pathway,	 (b)	 seed,	 pollen,	 and	 ovule	
formation,	 (c)	 cell	wall	 formation,	 (d)	 stress	 responses,	 and	 (e)	 cell	
division	and	growth.	Other	associated	SNPs	with	known	functions	
were	 in	 or	 near	 transcription	 factors	 and	 genes	 with	 expression-
regulating	functions.

Many	 of	 the	 SNPs	 associated	 with	 TMAX,	 TMIN,	 CWD,	 and	
PCK4	 were	 in	 or	 near	 genes	 in	 the	 protein	 ubiquitination	 pathway	
or	the	jasmonic	acid	synthesis	response	pathways	(Figure 4),	both	of	
which	are	involved	in	responses	to	biotic	or	abiotic	stress	(Creelman	
&	Mullet,	1995;	Lyzenga	&	Stone,	2012;	Stone,	2014).	CWD	and	PCK4	
were	also	associated	with	SNPs	in	or	near	genes	involved	in	seed	dor-
mancy,	 cell	 wall	 organization,	 and	 the	 abscisic	 acid	 (ABA)	 signaling	
pathway,	which	have	been	previously	linked	to	drought	responses	in	
trees	(Moran	et	al.,	2017).	Genes	involved	in	reproduction,	 including	
pollen	and	ovule	formation,	were	associated	with	TMAX,	TMIN,	and	
PCK4.	Genes	involved	in	vascular	tissue	formation,	growth	regulation,	
and	stress	responses	were	associated	with	TMAX	and	PCK4.	Genes	in-
volved	in	stomatal	regulation	and	pathogen	responses	were	associated	
with	TMIN	and	PCK4.	Further	biotic	and	abiotic	stress	response	genes	
were	associated	with	PCK4,	as	were	genes	involved	in	nutrient	trans-
port,	photosynthesis,	respiration,	sugar	synthesis,	and	light	responses.

Location of SNP PCK4 TMIN CWD TMAX PPTW

Upstream 335	(29%) 33	(23%) 11	(16%) 12	(24%) 16	(36%)

Intragenic	(intron) 336	(29%) 34	(23%) 24	(36%) 18	(36%) 7	(16%)

Synonymous 92	(8%) 22	(15%) 6	(9%) 5	(10%) 2	(4%)

Missense 157	(14%) 20	(14%) 2	(3%) 11	(22%) 5	(11%)

Downstream 229	(20%) 36	(25%) 24	(36%) 3	(6%) 15	(33%)

Other 2	(0.1%) 0 0 1	(2%) 0

Total 1151 145 67 50 45

TA B L E  1 Number	of	environmentally	
associated	SNPs	located	in	different	
regions.

F I G U R E  2 Venn	diagram	comparing	overlap	in	environmentally	
associated	SNPs.	The	number	of	overlapping	SNPs	that	are	
associated	with	four	climatic	variables	between	April	1st	snowpack	
(PCK4),	monthly	winter	precipitation	(PPTW),	climatic	water	deficit	
(CWD),	and	minimum	winter	temperature	(TMIN).
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Of	the	796	SNPs	associated	with	seedling	control	(wet	treatment)	
trait	values	and	1149	SNPs	associated	with	trait	drought	responsive-
ness,	43%	and	51%	could	be	assigned	functions	by	gene	ontology.	
Many	 of	 the	 same	 functional	 categories	 of	 genes	 associated	with	
the	 environment	were	 also	 related	 to	measured	 phenotypes.	 This	
includes	 ubiquitination,	 seed	 development,	 cell	 wall	 organization,	
stress response, cell division (Figures 4–6),	and	transcription	factors.	
However,	there	was	no	overlap	in	specific	SNPs	identified	in	control	
and drought responsiveness traits.

The	control	treatment	levels	of	the	two	stomatal	traits	(NR_AB	
and	SD_AD)	were	associated	with	genes	involved	in	ubiquitination,	
cell	 wall	 organization	 or	 modification,	 growth	 and	 development,	
and	 ABA	 response.	 Control	 R2S	 was	 associated	 with	 genes	 in-
volved	in	biotic	&	abiotic	stress	responses,	cell	wall	organization	or	

modification,	cell	division	or	differentiation,	 lateral	root	formation,	
and	ubiquitination.	Control	height	growth	had	no	associated	SNPs,	
and	root	length	was	only	associated	with	one	SNP	located	in	a	gene	
involved	in	ubiquitination	(Figure 5).	However,	drought	responsive-
ness	of	height	growth,	shoot	weight,	and	root	length	was	associated	
with	 all	 five	 functional	 categories	 (Figure 6).	 Drought	 responsive-
ness	of	the	two	stomatal	traits	was	associated	with	genes	involved	
in	 stress	 responses,	 cell	wall	 formation/organization,	 cell	 division/
differentiation,	and	root	formation.

Besides	 the	 five	main	 functional	 groups	 of	 genes	with	 SNPs	
associated	with	climatic,	phenotypic,	and	drought	response	vari-
ables,	several	other	functional	groups	were	identified	in	the	GEA	
and	 GPA	 annotation	 results.	 For	 example,	 111	 (14%)	 of	 the	 en-
vironmentally	associated	SNPs,	53	 (6%)	of	SNPs	associated	with	

Location of SNP R2S NR_AB RL GR SD_AD SW

Upstream 166	(35%) 90	(32%) 12	(43%) 6	(40%) 4	(33%) 3	(33%)

Intragenic	(intron) 106	(23%) 79	(28%) 5	(18%) 2	(13%) 3	(25%) 1	(11%)

Synonymous 40	(8%) 18	(6%) 1	(3%) 0	(0%) 2	(17%) 1	(11%)

Missense 61	(13%) 21	(8%) 3	(11%) 3	(20%) 3	(25%) 2	(22%)

Downstream 100	(21%) 72	(26%) 7	(25%) 4	(27%) 0	(0%) 1	(11%)

Other 0	(0%) 0	(0%) 0	(0%) 0	(0%) 0	(0%) 1	(11%)

Total 473 280 28 15 12 9

TA B L E  2 Number	of	SNPs	associated	
with traits in control conditions.

Location of SNP ΔR2S ΔNR_AB ΔRL ΔGR ΔSD_AD ΔSW

Upstream 5	(83%) 43	(28%) 84	(22%) 48	(33%) 11	(19%) 138	(34%)

Intragenic	(intron) 0	(0%) 41	(26%) 115	(30%) 41	(27%) 33	(58%) 113	(28%)

Synonymous 0	(0%) 10	(6%) 29	(8%) 11	(7%) 1	(2%) 43	(10%)

Missense 0	(0%) 15	(10%) 60	(16%) 15	(10%) 4	(7%) 46	(11%)

Downstream 1	(17%) 45	(29%) 85	(23%) 35	(23%) 8	(14%) 69	(17%)

Other 0	(0%) 2	(1%) 3	(1%) 0	(0%) 0	(0%) 0	(0%)

Total 6 156 376 150 57 409

TA B L E  3 Number	of	SNPs	associated	
with	drought	responsiveness	of	traits.

F I G U R E  3 Venn	diagram	comparing	overlap	in	phenotypically	associated	SNPs.	Left:	Overlap	in	SNPs	significantly	associated	with	
control	root	length	(RL),	root-to-shoot	ratio	(R2S),	and	abaxial	stomatal	rows	(NR_AB).	SNPs	associated	with	control	height	growth	(15),	
adaxial	stomatal	density	(12),	and	shoot	weight	(9)	did	not	overlap	with	other	categories.	Right:	Overlap	in	SNPs	significantly	associated	
with	drought	responsiveness	of	shoot	weight	(ΔSW);	root	length	(ΔRL);	and	the	number	of	stomatal	rows	on	abaxial	side	(ΔNR_AB).	SNPs	
associated	with	drought	responsiveness	of	height	growth	(150),	adaxial	stomatal	density	(57),	and	R2S	(6)	did	not	overlap	with	any	other	
categories.
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control	 traits,	 and	 121	 (12%)	 of	 the	 SNPs	 associated	 with	 trait	
drought	responses	were	 in	genes	relating	to	ATP	binding	or	pro-
tein	kinases.	It	was	also	fairly	common	for	associated	SNPs	to	be	
in	 genes	 associated	 with	 RNA/DNA	 binding,	 metal	 ion	 binding,	
translation, and protein transport.

3.5  |  Overlapping annotated genes in 
GEA and GPA

While,	as	noted	 in	 the	section	above,	 there	was	no	overlap	 in	 the	
exact	SNPs	 identified	by	GEA	and	GPA	analyses,	 a	 few	of	 the	as-
sociated	 SNPs	 were	 found	 to	 be	 in	 the	 same	 genes.	 There	 were	
14	genes	identified	in	both	the	GPA	for	control	traits	and	the	GEA	
(Table 4).	 One	 of	 these	 was	 a	 ubiquitin-binding	 gene.	 Peptidyl-
prolyl	 cis-trans	 isomerase,	 involved	 in	 protein	 folding,	was	 known	
to	be	heat-induced	 in	wheat	 (Kurek	et	 al.,	 1999).	Two	genes	were	
involved	 in	 glycerophospholipid	 synthesis	or	metabolism,	 suggest-
ing	 some	 role	 related	 to	 cell	 membranes.	 Aspartyl	 proteases,	 like	
the	one	 linked	to	winter	precipitation	and	the	number	of	stomatal	
rows,	have	been	linked	to	the	wood	formation	and	to	plant	growth	
and	development	more	generally	(Cao	et	al.,	2019).	Butanoate–CoA	
ligases	were	often	 involved	 in	 the	 secondary	compound	synthesis	

(Beuerle	&	Pichersky,	2002)	 and	 so	 could	be	 involved	 in	defenses	
against	biotic	antagonists	or	other	stress	responses.	There	were	15	
genes	 identified	 in	both	 the	GPA	 for	 trait	drought	 responsiveness	
and	the	GEA	(Table 5).	Most	share	the	same	functions	as	those	 in	
Table 4.	Moreover,	two	overlapping	genes	were	directly	related	to	
the	stress	response.	Gene	wsc1	was	involved	in	cell	wall	biosynthe-
sis	under	conditions	of	stress	 (Maddi	et	al.,	2012; Zu et al., 2001).	
Gene	PAT14	was	involved	in	leaf	senescence	in	response	to	stresses	
(Lai et al., 2015; Zeng et al., 2018).	However,	several	of	the	overlap-
ping	genes	in	each	table	had	unknown	functions,	and	most	of	these	
did	not	match	any	sequence	in	the	database.

4  |  DISCUSSION

In	 the	GEA	analysis,	over	half	of	 the	SNPs	were	associated	with	
April	1st	snowpack	(PCK4).	In	this	Mediterranean	climate	region,	
almost	 all	 of	 the	 annual	 precipitation	 occurs	 during	 the	 winter,	
and	 the	melting	 of	winter	 snow	accumulation	 at	 high	 elevations	
feeds	spring	and	summer	streamflow	 (Serreze	et	al.,	1999).	Lack	
of	snow	can	 limit	seedling	establishment	 (Andrus	et	al.,	2018).	A	
“blanket”	of	snow	can	also	insulate	seedlings	from	extremely	cold	
temperatures,	but	may	also	delay	the	start	of	their	growing	season	

F I G U R E  4 Five	types	of	annotated	SNP	functions	associated	with	different	climatic	variables.	The	number	of	non-synonymous	variants	
and	other	variants	that	are	associated	with	the	five	climatic	variables:	Climatic	water	deficit	(CWD);	Minimum	winter	temperature	(TMIN);	
Maximum	summer	temperature	(TMAX);	April	1st	snowpack	(PCK4);	and	Monthly	winter	precipitation	(PPTW).	Missense	(non-synonymous)	
SNPs	are	shown	in	gray,	and	other	types	of	SNP	are	in	orange.
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(Ettinger	&	HilleRisLambers,	2013; Renard et al., 2016).	Consistent	
with	 this	 latter	 possibility,	 one	 of	 the	 associated	 SNPs	was	 in	 a	
gene	 involved	 in	 light	 responses.	Winter	 minimum	 temperature	
(TMIN),	which	has	frequently	been	found	to	limit	growth	in	tree-
ring	studies	(Harvey	et	al.,	2020),	shows	the	next	highest	number	
of	 associations.	The	number	of	SNPs	associated	with	more	 than	
one	climatic	variable	was	low	(Figure 2),	which	may	indicate	that	
we	successfully	selected	semi-independent	climatic	variables	that	
require	different	genetic	adaptations.	The	highest	overlap	was	be-
tween	PCK4	and	TMIN	 (64	SNPs)	and	between	CWD	and	TMIN	
(17	SNPs).	The	former	SNP	set	may	be	related	to	adaptation	to	cold	
and	snow	depth,	while	the	 latter	SNP	set	may	be	related	to	how	
quickly	the	site	warms	up	in	spring,	drying	out	the	soil.	A	similar	
GEA	we	conducted	for	the	co-occurring	species	Pinus lambertiana 
also	identified	April	snowpack	as	a	key	environmental	variable	that	
may	have	shaped	 local	adaptation,	and	found	 low	overlap	 in	 loci	
associated	with	different	climate	variables	(Moran	et	al.,	2023).

In	 the	GPA	analysis,	most	SNPs	associated	with	control	phe-
notypic	 traits	were	 linked	with	root-to-shoot	 ratio	 (R2S)	and	the	
number	of	abaxial	stomatal	rows	(NR_AB).	In	contrast,	most	SNPs	
associated	with	phenotypic	responses	to	drought	were	linked	with	
shoot	weight	 (SW),	 root	 length	 (RL),	 and	 R2S.	Drought-stressed	
ponderosa	pine	seedlings	allocated	more	to	their	root	system,	with	

longer	 root	 length,	 higher	 root-to-shoot	 dry	mass	 ratio,	 less	 dry	
shoot	mass,	and	 less	height	growth.	Other	 studies	 in	pines	have	
found	similar	patterns	 (Cregg	&	Zhang,	2001;	 Irvine	et	al.,	1998; 
Seiler	 &	 Johnson,	 1988; Taeger et al., 2015).	 This	 may	 indicate	
investment	 in	 greater	 water	 harvesting	 capacity	 at	 the	 cost	 of	
the	overall	 low	growth	of	 aboveground	structures	–	 though	 low	
shoot	 growth	 can	 have	 the	 benefit	 of	 further	 reducing	 transpi-
rational	water	loss	(Moran	et	al.,	2017).	We	found	that	dry	treat-
ment	 root-to-shoot	 ratio	was	 positively	 associated	with	 survival	
in	that	treatment	(Wu	et	al.,	2023).	Many	of	the	SNPs	associated	
with	phenotypic	drought	responses	were	in	genes	associated	with	
cell	division	&	differentiation	and	with	root	growth,	both	of	which	
make	sense	in	light	of	the	observed	changes	in	allocation	to	root	
versus	shoot	growth.	The	number	of	SNPs	associated	with	more	
than	one	trait	was	low	in	both	GPA	analyses.	The	highest	degree	of	
overlap	was	in	drought	responsiveness	of	RL	and	R2S	and	of	R2S	
and	NR_AB	(Figure 6).

Non-synonymous	 (AKA	 missense)	 variants	 that	 may	 directly	
affect	phenotype	by	changing	protein	 form	and	 function	 included	
195	of	the	climate-associated,	93	of	the	control	environment	phe-
notype-associated,	and	140	of	the	phenotype	drought-response-as-
sociated	SNPs	(Tables 1–3).	 Intragenic	or	synonymous	variants	are	
assumed	to	be	neutral	with	respect	to	fitness	but	might	be	in	linkage	

F I G U R E  5 Five	types	of	annotated	SNP	functions	associated	with	different	traits	in	control	conditions.	The	number	of	non-synonymous	
variants	and	other	variants	that	are	associated	with	four	traits	in	control	conditions:	root	length	(RL),	number	of	stomatal	rows	on	abaxial	
surface	(NR_AB),	stomatal	density	on	adaxial	surface	(SD_AD),	and	the	ratio	of	root-to-shoot	dry	mass	(R2S).	No	SNPs	in	these	categories	
were	associated	with	height	growth	or	shoot	weight.	Missense	(non-synonymous)	SNPs	are	shown	in	gray,	and	other	types	of	SNP	are	in	
orange.
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disequilibrium	with	a	nearby	causal	variant.	While	linkage	disequilib-
rium	is	usually	low	in	conifers	(Neale	&	Savolainen,	2004),	the	GBS	
sequence	 fragments	were	 relatively	 short	 (90–100 bp	 or	 less)	 and	

were	trimmed	further	before	SNP	calling,	so	a	 linked	non-synony-
mous	variant	 could	have	been	missed.	We	also	 found	quite	 a	 few	
upstream	and	downstream	SNPs	in	both	GEA	and	GPA	analyses	that	

F I G U R E  6 Five	types	of	annotated	SNP	functions	associated	with	drought	responsiveness	of	different	traits.	The	number	of	non-
synonymous	variants	and	other	variants	that	are	associated	with	drought	responsiveness	of	five	traits:	changes	in	height	growth	(GR),	root	
length	(RL),	dry	shoot	weight	(SW),	number	of	stomatal	rows	on	abaxial	surface	(NR_AB),	and	stomatal	density	on	adaxial	surface	(SD_AD).	
No	SNPs	in	these	categories	were	associated	with	the	ratio	of	root-to-shoot	dry	mass	(R2S).	Missense	(non-synonymous)	SNPs	are	shown	in	
gray,	and	other	types	of	SNP	are	in	orange.

TA B L E  4 Overlapping	genes	in	GEA	and	the	GPA	for	traits	in	control	conditions.

Climate variable Phenotypic variable Gene name Gene function

PCK4 NR_AB MARPO_0050s0076 Ubiquitin	binding

PCK4 NR_AB Unknown Unknown

PCK4 NR_AB Gotri_016876 Unknown

PCK4 NR_AB Peptidyl-prolyl	cis-trans	isomerase Protein	folding,	may	be	heat	induced

PCK4 NR_AB HAD-superfamily	subfamily	IIA	hydrolase Glycerophospholipid	biosynthesis

PCK4	&	TMIN NR_AB Unknown Unknown

PCK4 NR_AB	&	R2S Pyridoxal	kinase ATP/ADP	conversion

PCK4 R2S RNA	pseudouridine	synthase	4,	mitochondrial Synthesis	of	modified	U	in	RNA	(binding,	stability)

PCK4 R2S Unknown Unknown

PCK4 R2S Glycerophosphodiester	phosphodiesterase Glycerophospholipid	metabolism

PCK4 R2S MAP3K	epsilon	protein	kinase	1 Control	of	cell	division/expansion

PPTW NR_AB Aspartyl	protease Protein	breakdown,	often	involved	in	plant	
growth	&	development

PPTW R2S Eukaryotic	translation	initiation	factor	5B-like Translation initiation

TMAX R2S Butanoate–CoA	ligase Secondary	compound	metabolism
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might	directly	affect	gene	expression	or	be	linked	to	a	protein-alter-
ing variant.

While	we	found	no	overlaps	in	specific	SNPs	between	our	GEA	
and	GPA,	we	did	identify	several	SNP-containing	genes	that	were	
the	same	across	the	analyses	(Tables 4 and 5).	Most	of	these	genes	
have	been	linked	to	stress	responses	in	other	studies.	For	example,	
gene	wsc1	 is	 involved	 in	 cell	 wall	 biosynthesis	 and	 gene	 PAT14	
is	 involved	 in	 leaf	 senescence,	 both	 in	 response	 to	 stress	 (Lai	
et al., 2015;	Maddi	et	al.,	2012; Zeng et al., 2018; Zu et al., 2001).	
Moreover,	 there	was	substantial	overlap	 in	 functional	categories	
found	to	be	directly	related	to	drought	tolerance	or	other	environ-
mental	responses	in	previous	studies	(Figures 3–5).	The	prevalence	
of	 genetic	 associations	 related	 to	 abscisic	 acid	 (ABA)-signaling	
pathways	and	ubiquitination	 in	GEA	and	GPA	analyses	 is	consis-
tent	with	prior	observations	(Moran	et	al.,	2017)	and	with	results	
of	the	P. lambertiana	analysis	(Moran	et	al.,	2023).	Increasing	ABA	
concentrations	are	used	as	a	signal	to	keep	stomata	closed	during	
dry	conditions,	reducing	water	loss	(Brodribb	et	al.,	2014).	In	addi-
tion,	ABA	signaling	can	also	affect	shoot	growth	and	water	uptake	
(Buckley,	 2005;	 Hamanishi	 &	 Campbell,	 2011).	 Ubiquitination	 is	
involved	in	drought	responses	 in	model	species	by	playing	a	role	
in	ABA-mediated	dehydration	stress	responses	(Kim	et	al.,	2012; 
Ryu	et	al.,	2010)	or	through	the	downregulation	of	plasma	mem-
brane	 aquaporin	 levels	 (Lee	 et	 al.,	 2009).	 Notably,	 aquaporin	
genes,	which	are	crucial	for	adjusting	stomatal	conductance	under	
water	stress,	have	been	 identified	 in	both	poplar	studies	 (Secchi	
&	Zwieniecki,	 2014)	 and	GEA	 studies	 focused	on	oaks	 from	dry	
environments	(Temunović	et	al.,	2020).	Such	findings	underscore	
the	 significance	 of	 ubiquitin-mediated	 processes	 in	 the	 drought	
responses	of	 a	wide	 range	of	 tree	 species.	However,	 our	 under-
standing	 of	 the	 role	 of	 ubiquitin	 in	 conifer	 drought	 response	 is	
still	 somewhat	 limited.	 A	 study	 in	 black	 spruce	 (Picea mariana)	
identified	 16	 candidate	 genes	 correlated	 with	 precipitation,	

including	 the	 genes	 in	 the	 ubiquitin	 protein	 handling	 pathway	
(Prunier	 et	 al.,	2011).	 The	 association	between	ubiquitin	protein	
and	roots	and	stomatal	density	may	indicate	previously	unidenti-
fied	roles	in	drought	response.

Moreover,	genes	associated	with	seeds	and	seed	dormancy	can	
also	 be	directly	 involved	 in	 drought	 tolerance;	 for	 instance,	 dehy-
drins	can	protect	proteins	from	desiccation	in	both	seeds	and	other	
plant	 tissues	 (Moran	 et	 al.,	 2017).	 However,	 reproduction-related	
genes	might	also	show	associations	with	environmental	gradients	if	
they	are	 involved	 in	 reproductive	 timing.	Genes	 involved	 in	xylem	
&	phloem	differentiation	or	cell	wall	formation	could	shape	the	hy-
draulic	safety	of	water-transporting	cells,	which	can	be	quite	plastic	
in pines (Lauder et al., 2019).	Other	 than	 these	 functions	 directly	
related	to	drought	tolerance	or	different	environmental	responses,	
the	other	overlapping	functions	among	GEA	and	GPA	analyses	are	
involved	 in	 gene	 expression	 (RNA	 or	 DNA	 binding,	 transcription	
factors,	 helicase	 activity,	 ribosome	 components,	 methylation)	 or	
ATP	binding	 (motifs	 found	 in	membrane	 transporters,	microtubule	
subunits,	enzymes,	and	other	cell	components	that	require	energy).	
Our	findings	suggest	the	efficiency	of	combining	GEA	and	GPA	anal-
yses	 with	 GBS	 to	 uncover	 potentially	 important	 adaptive	 genetic	
variation.

In	 conclusion,	 by	 investigating	 adaptive	 genetic	 variation	 in	
ponderosa	pine	with	GEA	and	GPA	association	analysis,	our	study	
found	 thousands	 of	 genomic	 variants	 associated	 with	 response	
to	climate	and	physiological	traits.	Some	of	these	have	previously	
identified	 functions	 associated	 with	 drought	 responses,	 but	 for	
others,	the	gene	function	–	or	how	that	function	is	relevant	for	en-
vironmental	responses	–	is	still	unknown.	Molecular	tools	based	on	
the	associated	genetic	markers	could	be	developed	to	assist	breed-
ers	and	land	managers	speed	up	selection	for	drought	tolerance	or	
selecting	 appropriate	 seed	 sources	 for	 a	 changing	 climate.	 In	 ad-
dition,	 our	 results	 should	 open	 new	 opportunities	 for	 functional	

TA B L E  5 Overlapping	genes	in	GEA	and	the	GPA	for	trait	drought	responsiveness.

Climate variable Phenotype variable Gene name Gene function

PCK4 ΔGR CSUI_002384 ATP	binding

PCK4 ΔGR LOC109003013 DNA	binding;	regulation	of	translation

PCK4 ΔGR EXO84A Exocytosis

PCK4 ΔNR_AB EUGRSUZ_B03992 Oxidoreductase	activity

TMAX ΔNR_AB L195_g029008 Nucleic	acid	binding

PCK4 ΔRL T459_09847 RNA	binding

PCK4 ΔRL AMTR_s00007p00201600 Ubiquitin	binding

CWD ΔRL NALOC109013111 RNA	binding;	regulation	of	translation

PCK4 ΔRL MARPO_0181s0009 Eoxyribonucleotide	catabolic	process

PCK4 ΔRL PAT14 Leaf	senescence

PCK4 ΔSD_AD	&	ΔSW Unknown Unknown

PCK4 ΔSW LOC109001250 Peptidyl-prolyl	cis-trans	isomerase	activity

PCK4 ΔSW wsc1 Regulation	of	cell	wall	organization	or	biogenesis

PCK4 ΔSW CCAM_LOCUS30844 Unknown

CWD ΔSW Unknown Unknown
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studies	to	determine	the	molecular	 roles	of	 the	genes	underlying	
these	associated	genetic	makers	in	influencing	trees'	adaptation.

The	two	environmental	variables	with	the	most	genetic	associa-
tions	–	snowpack	and	winter	temperatures	–	are	among	those	that	
have	 already	 undergone	 significant	 shifts	 in	 recent	 decades,	 with	
further	substantial	shifts	being	projected	due	to	anthropogenic	cli-
mate	change	(Fyfe	et	al.,	2017; Rapacciuolo et al., 2014).	This	sug-
gests	that	tree	populations	in	the	Western	US	will	be	under	rapidly	
shifting	 selective	 pressures,	making	 exploring	 the	 potential	 of	 ge-
nomic	 selection	 for	 seed	selection	of	pressing	concern.	We	 found	
considerable	 heritable	 variation	 in	 drought-responsive	 traits	 (Wu	
et al., 2023),	suggesting	adaptive	potential	exists	if	the	change	is	not	
too	rapid.	We	are	also	following	up	on	this	study	by	testing	the	abil-
ity	of	the	SNP	associations	detected	here	to	predict	performance	in	
post-fire	restoration	plantings.
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