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Abstract

DNA methylation may be regulated by genetic variants within a genomic region, referred to as methylation quantitative
trait loci (mQTLs). The changes of methylation levels can further lead to alterations of gene expression, and influence the
risk of various complex human diseases. Detecting mQTLs may provide insights into the underlying mechanism of how
genotypic variations may influence the disease risk. In this article, we propose a methylation random field (MRF) method to
detect mQTLs by testing the association between the methylation level of a CpG site and a set of genetic variants within a
genomic region. The proposed MRF has two major advantages over existing approaches. First, it uses a beta distribution to
characterize the bimodal and interval properties of the methylation trait at a CpG site. Second, it considers multiple common
and rare genetic variants within a genomic region to identify mQTLs. Through simulations, we demonstrated that the MRF
had improved power over other existing methods in detecting rare variants of relatively large effect, especially when the
sample size is small. We further applied our method to a study of congenital heart defects with 83 cardiac tissue samples
and identified two mQTL regions, MRPS10 and PSORS1C1, which were colocalized with expression QTL in cardiac tissue. In
conclusion, the proposed MRF is a useful tool to identify novel mQTLs, especially for studies with limited sample sizes.
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Introduction
The patterns of DNA methylation can be influenced by genetic
variants within a region, referred to as methylation quantitative
trait loci (mQTLs) [1, 2]. Many studies have suggested that a
substantial proportion of CpG sites are associated with mQTLs,
especially cis-acting mQTLs [3]. Further, mQTLs are enriched in
promotor and enhancer regions and may colocalize with causal
genetic variants for various complex diseases, such as neurolog-
ical disorders [4, 5], metabolic syndrome [6, 7] and cardiovascular
disease [3, 8]. These findings have provided a plausible basis to
postulate an underlying biological pathway from genetic vari-
ations to epigenetic alterations and subsequent transcriptional
changes for disease development. Detecting such mQTLs helps
identify candidate loci contributing to disease susceptibility, and
provides insights into the pathogenesis of disease development.

To date, the most commonly used statistical methods for
mQTL detection are regression-based models [9–12], such as
multiple regression or linear mixed models. However, the nor-
mality assumption of DNA methylation is often violated, which
can lead to insufficient power or biased results. DNA methyla-
tion at a CpG site is usually measured by a beta value, a ratio
between methylated signals (e.g. probe intensities or sequence
reads) and the sum of methylated and unmethylated signals.
Naturally, the methylation level ranges between 0% (unmethy-
lated) and 100% (fully methylated), and its distribution tends to
be bimodal, with two peaks representing hypomethylation and
hypermethylation. In addition, the homoscedasticity assump-
tion is often violated. For methylation trait, the variance of
error near the boundaries of the interval [0,1] is usually much
smaller than that in the middle. To address these issues, some
have adopted a logit transformation of beta values [13, 14] or M
values [15, 16]. Although this avoids the interval limit, the devi-
ation from a normal distribution and heterogeneity of variance
remains. The non-normal distribution may be less concerning
for studies with a large sample size. However, DNA methyla-
tion is usually tissue specific, and it is quite common for a
methylation study to have a relatively small sample size given
the difficulty to collect certain tissues (e.g. heart, brain). A few
studies have suggested that modeling methylation data with a
beta distribution may be able to capture the bimodal shape and
account for the heteroscedasticity [17–19].

Another limitation of existing studies for detecting mQTLs is
their focus on individual loci, by testing the association between
all possible SNP-CpG pairs one at a time. However, a cluster of
closely linked variants may be responsible for the quantitative
variation of a trait, and may be detected as one QTL [20]. Though
many single nucleotide polymorphisms (SNPs) have been suc-
cessfully identified as potential mQTLs [9–12], there are also a
few limitations. First, a genomic region may have a large number
of SNPs that are in strong linkage disequilibrium. Testing them
individually imposes a heavy burden on statistical power due to
multiple testing and computation. Second, multiple genetic vari-
ants may jointly contribute to complex traits with each variant
conferring a small to moderate effect [21, 22]. The joint action
of variants, including their interactions, may be overlooked if
they are tested in isolation. Third, a large number of variants
in the genome have very low minor allele frequencies (MAFs),
and these rare variants may also influence complex human
traits [23, 24]. The single-locus testing usually lacks the power
to detect these rare variants, especially when the sample size is
small.

We and others have recently proposed a generalized genetic
random filed (GGRF) method for testing the association between
multiple genetic variants and a single complex trait [25, 26]. In

particular, the GGRF can be applied to population-based studies
with unrelated subjects, testing the association between a set
of SNPs and a trait that follows either a normal or binomial
distribution. In this article, we extend the GGRF method to
a methylation random field (MRF) for traits that follow a
beta distribution, in order to detect multi-locus mQTLs that
regulate the methylation level of a CpG site. We compared
the performance of the MRF with other existing methods,
and further illustrated the method with an application to 83
cardiac tissue samples for a study of congenital heart defects
(CHDs).

Materials and methods
MRF framework

Random field is a stochastic process defined in a multidimen-
sional space indexed by a location vector [27]. It has been widely
used in spatial statistics. Under the current MRF framework, the
methylation trait of a CpG site can be viewed as a random field
on a genetic space where the multi-locus genotypes serve as
location coordinates. If there is a genetic-epigenetic association,
genotype similarity will lead to closer spatial location, suggest-
ing epigenetic similarity. The random field modeling enables
MRF to be a dimension-reduction method that allows poten-
tial interactions and linkage disequilibrium between multiple
genetic variants [25] to test the joint association of multi-locus
genotypes with a methylation trait.

Assume we have a study of n subjects sequenced for q genetic
variants in a genomic region and measured for p covariates. We
denote Yi as the methylation level of a CpG site for the i-th
subject (0 < i < n), Gi = (gi,1, . . . ..gi,q) as the genotype vector for
q variants, and Xi = (xi,1, . . . ..xi,p) as the covariates. A conditional
auto-regressive model is used for the DNA methylation levels:

E (Yi | Y−i) = f (Xiβ) + γ
∑

j �=i

s
(
Gi, Gj

) (
Yj − f

(
Xjβ

))
, (1)

where Y−i represents the methylation levels for all subjects but
Yi. To model DNA methylation with a beta distribution, a beta
regression with logit link is used so that f (x) = exp(x)/(1 + exp(x))
is the nongenetic mean of methylation level based on covariates.
s(Gi, Gj) denotes the genetic similarity between subject i and
j, and is measured by a genetic relation (GR) [28]: s(Gi, Gj) =∑q

h=1wh(gi,h − 2ph)(gj,h − 2ph), where ph is the average MAF within
the study population, wh is a weighting scheme to give flexible
considerations to each SNP and γ is a coefficient to measure
the association between the methylation level and q genetic
variants. Intuitively, Eq.(1) assumes that if there is a genetic-
epigenetic association, subjects with similar genetic profiles will
share similar epigenetic profiles, and the epigenetic similarity
between subjects is proportional to their genetic similarity
after adjusting for effects from covariates. The genetic-
epigenetic association can thus be tested against the null
hypothesis: γ = 0.

Generalized estimating equation (GEE)-based statistics were
adopted for hypothesis testing. Eq.(1) can be written in matrix
representation:

E (Y|Y−) = f (Xβ) + γ S [Y − f (Xβ)] , (2)

where Y = (Y1, Y2, . . . , Yn)T, Y− = (Y−1, Y−2, . . . , Y−n)T, X =
(X1, X2, . . . , Xn)T, and S is a n × n symmetric matrix denoting the
genetic similarity. The methylation trait is assumed to follow
a beta distribution with mean μi and a precision parameter φ,
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which can be estimated by fitting a beta regression between
Yi and Xi under the null hypothesis. A logit link was used
in the beta regression so that logit (μi) = XT

i β. We showed
previously that a quadratic test statistic, (Y − μ̂)TS(I − ηS)(Y − μ̂),
follows an asymptotic Chi-square distribution of

∑q
h=1λhχ

2
1,h,

where λh are the eigenvalues of the matrix P
1
2 (S − ηS2)P

1
2 ,

P = W − WX(XTWX)−1XTW, and W is a diagonal matrix with
wii = μ̂ (1 − μ̂)/(φ̂ + 1). The precision parameter, φ̂, was estimated
via beta regression [29]. The R codes for the proposed method
are available at https://github.com/chenlyu2656/MRF.

Simulation studies

To evaluate the performance of the MRF, we compared it to
a number of existing methods—including the burden test, the
sequence kernel association test (SKAT) and the single-locus
test—using a series of simulation studies. To mimic real genetic
data, we used exome-sequencing data of 697 unrelated indi-
viduals from the 1000 Genomes Project [30]. The genotype data
included a total of 508 variants from chromosome 22 with MAFs
ranging from 0.07 to 49.93%. Around 74% of the variants were
less common or rare, with MAFs less than 0.05. To capture
the bimodal and interval properties, the methylation trait was
simulated based on a beta distribution Yi ∼ beta(ai, bi). Two shape
parameters ai and bi were associated with a mean parameter
μi and a precision parameter φ such that ai = μiφ and bi =
(1 − μi)φ. The precision parameter φ was a nuisance parameter
and was set to 30 as suggested by previous studies [31], and the
mean parameter μivaried across simulation scenarios (described
below). To evaluate type I error, the mean parameter μ̂ was simu-
lated independently from genetic variants. To evaluate statistical
power, the mean parameter μ̂ was determined by both genetic
and nongenetic components, representing scenarios with vary-
ing patterns of effect sizes for causal variants (mQTL SNPs),
directions of effect for mQTL SNPs, frequencies of variants being
tested, sample sizes, proportions of variants that are mQTLs
and modeling of trait distribution in the analysis. The detailed
explanations are illustrated in Table 1.

While testing the genetic-epigenetic association, existing
studies have a number of commonly used analysis strategies,
including (1) a linear regression for beta values; (2) a beta
regression for beta values; and (3) a linear regression for M-
values (i.e. logit transformed beta values). These strategies
implicitly assumed different distributions of a methylation trait.
In the simulation, we evaluated the performance of each method
(MRF, burden or the single-locus test) using three analysis
strategies, including (1) an identity link for methylation trait
assuming a normal distribution; (2) a logit link for methylation
trait assuming a beta distribution; and (3) an identity link for logit
transformed methylation trait assuming a normal distribution
after transformation. In the following text, we denoted three
strategies as ‘normal’, ‘beta’ and ‘logit’, respectively. Because
beta regression is not implemented in SKAT, only ‘normal’ and
‘logit’ were applied. For fair comparisons, linear kernel was used
for SKAT and the genetic variants were weighted by their MAFs
via the beta distribution density function, Beta(MAF, 1, 25), to
upweight rare variants. For the single-locus test, Benjamin–
Hochberg false discovery rate was applied to account for the
multiple testing within a region.

Type I errors

Based on real data from the cardiac tissue samples, the distribu-
tion of DNA methylation was bimodal, with two peaks around 0.1

Figure 1. Density plot of DNA methylation across 83 samples in application

study.

and 0.9, representing hypo-methylation or hyper-methylation,
respectively (Figure 1). Thus, to examine type I errors, we simu-
lated the methylation trait independently from the genetic data,
assuming an expected mean μ0 = 0.1. The methylation trait thus
followed a beta distribution Yi ∼ beta(3, 27). Type I errors were
evaluated under various sample sizes (n = 50, 100, 300 and 697)
and a total of 100, 000 replicates were simulated.

Statistical power

To evaluate the statistical power of the four methods, we con-
ducted three sets of simulation that varied by effect sizes for
causal variants (mQTL SNPs), directions of effect for mQTL SNPs
and frequencies of variants being tested. In all simulation sce-
narios, we also varied the proportion of mQTL SNPs (10% or 20%)
and sample size of the study (n = 50, 100, 300 and 697). A total of
1000 replicates were performed for power calculation.

Simulation I: varying effect sizes for mQTL SNPs.
In this simulation scenario, we evaluated the performance

of MRF, burden test and SKAT. The single-locus test was not
considered because of its inflated type I errors. For simplicity,
we illustrated the scenario assuming that 10% of 508 SNPs
were mQTLs. A total of 51 SNPs were randomly selected as
mQTLs regulating the methylation trait. The mean parameter
μi for the i-th subject was simulated based on the following
model:

logit (μi) = logit (μ0) +
51∑

k=1

gi,kβk,

where μ0 corresponds to the expected methylation level when
none of the variants are causal, and βk is the effect size for the
k-th mQTL SNP within the region. In the current study, we set
μ0 to 0.1 as described in type I error section. We considered two
patterns of effect sizes in our simulation: (1) effect sizes were
the same for all mQTL SNPs: βk = c; and (2) effect sizes were
inversely correlated with the MAFs of mQTL SNPs. The weighted
sum statistics (WSS) was used, and βk = d

MAF(1−MAF) . Here, c and d
were fixed constants, and selected to ensure that the statistical
power was within a reasonable range.

https://github.com/chenlyu2656/MRF
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Table 1. Simulation scenario explanations

Simulation scenarios Descriptions

Effect size
WSS Effect sizes were inversely correlated with the MAFs of mQTL SNPs: βk = d

MAF(1−MAF) .

Constant Effect sizes were the same for all mQTL SNPs: βk = c
Effect direction

One-directional The mQTL SNPs were simulated to upregulate the methylation traits
Bidirectional The mQTL SNPs were simulated to either upregulate or downregulate the methylation traits

Genetic frequency to test
Mixed The simulated methylation traits were tested for association with a mixture of both common

and rare variants
Rare The simulated methylation traits were tested for association with rare variant only

Sample size
n = 50 50 subjects were randomly sampled
n = 100 100 subjects were randomly sampled
n = 300 300 subjects were randomly sampled
n = 697 All 697 subjects were sampled

Proportion of mQTL SNPs
10% 10% of genetic variants within the region were simulated as causal mQTL SNPs
20% 20% of genetic variants within the region were simulated as causal mQTL SNPs

Strategy to model methylation traits
Normal Using a linear regression with identity link for methylation traits assuming normal distribution
Beta Using a beta regression with logit link for methylation traits assuming beta distribution
Logit Using a linear regression with identity link for logit-transformed traits assuming normal

distribution after logit-transformation

Simulation II: bidirectional effect for mQTL SNPs

In this simulation setting, we evaluated the performance of
MRF, burden test and SKAT when mQTL SNPs had bidirec-
tional effect on methylation trait (i.e. either upregulate or
downregulate). In simulation I, all causal SNPs were expected
to upregulate methylation trait. For bidirectional scenario, we
used the same effect sizes as described in simulation I, but
randomly selected half of the mQTL SNPs to downregulate
methylation trait (i.e. a negative sign was assigned to their
effect βk).

Simulation III: common variants only

In contrast to a mixture of common and rare variants in simu-
lation I & II, in this simulation, we evaluated the performance of
all methods when the genetic variants being tested were all rela-
tively common variants with MAF ≥ 5%. We assumed the effects
of mQTL SNPs were a constant and may be either one-directional
or bidirectional.

Application to cardiac tissue samples

We further applied MRF, burden test and SKAT for cis-acting
mQTLs detection within 83 cardiac tissues samples from a
study of CHDs. Each subject was genotyped for ∼5 million SNPs
using Illumina HumanOmni5 Beadchip and profiled for ∼450 K
or ∼ 850 K CpG sites using Illumina HumanMethylation450
Beadchip or Illumina MethylationEPIC Beadchip, respectively.
SNPs were removed if they had a low call rate (< 95%), or
deviated from Hardy–Weinberg Equilibrium among controls (P-
value <10e-04). About half of the SNPs were relatively rare, with
MAFs less than 5% and as low as 0.6%. CpG sites were removed if
they had more than 5% missing values, had an SNP in the probe,
or did not overlap between two methylation platforms. More
details of the dataset and quality control process can be found
elsewhere [32].

To detect cis-acting mQTLs, we applied MRF, burden test and
SKAT to evaluate the genetic-epigenetic association within the
same genomic region. The single-locus test was not considered
because of the inflated type I errors with rare variants. We
used the UCSC Genome Browser (assembly GRCh37/hg19)
to define a candidate region as a gene unit with 7.5 KB
upstream and downstream sequences. Within each candidate
region, the methylation level of each CpG site was tested
for association with all SNPs within the region, adjusting for
sex, case control status, top five principal components (PCs)
of genetic data and top five PCs of epigenetics data. Similar
to simulation studies, we applied three analysis strategies
(‘normal’, ‘beta’, ‘logit’) for MRF and burden test, and two
strategies (‘normal’ and ‘logit’) for SKAT. Within 21,450 candidate
genes, a total of 275,357 CpG-gene pairs were tested for
association. Bonferroni correction was used for multiple testing
adjustment.

Bayesian colocalization analysis

Previous studies have suggested that mQTLs may colocalize with
causal variants of complex diseases [33] or gene expression
QTLs (eQTLs) [13]. We further conducted a Bayesian colocaliza-
tion analysis to leverage results from existing CHD GWASs or
eQTLs [34]. For example, the colocalization analysis of mQTL
and eQTL data estimates five posterior probabilities (PP0–PP4) for
five respective hypotheses regarding a candidate region: H0: no
association with either methylation trait or expression trait; H1:
association with methylation trait, but not with expression trait;
H2: association with expression trait, but not with methylation
trait; H3: association with both methylation trait and expression
trait through two independent SNPs; and H4: association with
methylation trait and expression trait through one shared SNP.
To prioritize findings with independent source of evidence, we
were most interested in identifying regions with high values
of PP4.
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Figure 2. Type I error rates of MRF, burden tests, SKAT and the single-locus test in simulation study at α level of (A) 5%; or (B) 0.1%. The results of the single-locus test

were not shown in Figure 2B due to the significant inflations (P-values ranged from 0.013 to 0.083).

We conducted colocalization analysis between mQTL results
and other data sources, including findings from two phases of
CHD GWASs from the National Birth Defects Prevention Stud-
ies (NBDPS) and eQTL findings within heart tissues from the
Genotype-Tissue Expression (GTEx) database [35]. NBDPS is the
largest population-based case–control study of birth defects in
the United States. Both phases of CHD GWASs had a case-
parental trio design, and consisted of 440 and 225 trios, respec-
tively. The eQTL findings were identified from five types of
heart tissues, including artery aorta (AA), artery coronary (AC),
artery tibial (AT), heart atrial appendage (HA) and heart left
ventricle (HLV). For colocalization analysis, we only considered
overlapping SNPs between mQTLs and each of the other data
sources (i.e. GWASs and eQTLs). R package ‘coloc’ was used for
analysis [34].

Results
Simulation studies

Type I errors

The results of type I errors are summarized in Figure 2. In
Figure 2A, the type I errors for MRF and burden test were well
controlled at an α level of 5%. However, the type I errors of SKAT
appeared to be overly conservative when the sample size was
small (n = 50 and 100). In addition, the single-locus test was able
to successfully control type I errors when common variants
(MAF > 0.05) were tested and sample size was relatively large
(n = 300 or 697), but had inflated type I errors when rare variants
were tested. When the sample size was relatively small (n = 50
or 100), linear regression with methylation level (i.e. ‘normal’)
or logit transformed methylation level (i.e. ‘logit’) was able to
control type I error for common variants, while beta regression
(i.e. ‘beta’) had slightly inflated type I error. Similar pattern was
seen at α level of 0.1% (Figure 2B). The results of the single-locus
test were not shown due to the significant inflations (between
0.013 and 0.083).

Statistical power

Simulation I: varying effect sizes for mQTL SNPs. Simulation I cor-
responded to disease scenarios of mQTL SNPs affecting methy-
lation trait in one direction with either WSS (Figure 3A) or con-
stant effect size (Figure 3B). The methylation trait was tested
for association with a mixture of common and rare variants. In
Figure 3A, burden test outperformed all the other methods when
all mQTL SNPs impacted the methylation trait in one direction,
and rare variants contributed to relatively large effect. However,
if the effect size was constant, SKAT performed better compared
to MRF and burden test (Figure 3B). The pattern of statistical
power for each method was similar when 10% or 20% of mQTL
SNPs were causal.

In terms of three analysis strategies (i.e. ‘normal’, ‘beta’
or ‘logit’), the performance varied across methods and causal
mechanisms. When rare variants contributed to relatively large
effect (Figure 3A), for MRF, the ‘beta’ strategy achieved the higher
power, especially when sample size was small; for burden
test, all strategies had similar performance; and for SKAT, the
‘normal’ appeared to work slightly better with small sample
size (n = 50 or 100), while ‘logit’ was more advantageous with
larger sample size (n ≥ 300). Nevertheless, when the effect size
was constant (Figure 3B), for MRF and burden test, the ‘beta’
strategy achieved higher power for small sample size (n = 50 or
100), while ‘logit’ strategy performed slightly better for larger
sample size (n ≥ 300); and for SKAT, ‘logit’ strategy had relatively
higher power for all sample sizes.

Simulation II: bidirectional effect for mQTL SNPs. Simulation II
corresponded to disease scenarios of mQTL SNPs of bidirec-
tional effect with either WSS (Figure 4A) or constant effect size
(Figure 4B). The methylation trait was also tested for association
with a mixture of common and rare variants. When half of
the mQTL SNPs influenced the methylation trait in opposite
directions, burden test lost power significantly (Figure 4A & B).
MRF attained highest power when rare variants had larger effect
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Figure 3. Power results from simulation I: mQTL SNPs affected the methylation trait in one direction with either (A) WSS effect size, or (B) constant effect size. The

methylation trait was tested for association with a mixture of common and rare variants.

sizes (Figure 4A), while SKAT consistently yielded the highest
power when all mQTL SNPs had same effect sizes (Figure 4B).

The differences between three analysis strategies under bidi-
rectional scenario were less evident than those under one direc-
tion scenario. When the effect size was in favor of rare variants
(Figure 4A), MRF achieved highest power by using ‘beta’ strategy,
and SKAT showed very similar performance by using either
‘normal’ or ‘logit’ strategy. In contrast, when the effect size was
a constant (Figure 4B), for both MRF and SKAT, ‘normal’ or ‘beta’
strategy performed slightly better than ‘logit’ strategy when
sample size was small (n = 50 or 100), while ‘logit’ strategy was
better for larger sample (n ≥ 300).

Simulation III: common variants only. Simulation III corresponded
to scenarios of mQTL SNPs with constant effect size influ-
encing methylation trait in either one direction (Figure 5A) or
two directions (Figure 5B). The trait was tested for association
with common variants only. In general, the single-locus test
had the highest power when sample size was small (e.g. n = 50
or 100), and the proportion of causal variants was relatively
low (e.g. 10%). However, when the sample size and/or causal
proportion increased, region-based tests, such as MRF and SKAT,
outperformed the single-locus test. Although the single-locus
test assuming beta distribution may achieve highest power than
other methods when the sample size was relatively small (n = 50
and 100), inflated type I error made the results less reliable.
Among region-based tests, MRF and SKAT showed similar power
across all scenarios, both of which were significantly higher than
that of burden test, especially when the effect was bidirectional.

Simulation summary

From our simulation results, MRF outperformed other methods
if mQTL SNPs were mostly rare variants with relatively large and
bidirectional effect. It was also a viable option to detect CpG-gene
association for common variants, especially when sample size is
relatively large and the proportion of causal variants in the gene
is relatively high.

The single-locus test is able to detect mQTL SNPs that
are common in the population. However, the single-locus test
is not appropriate for detecting rare mQTL SNPs because of
the inflated type I errors. If the candidate region includes
a mixture of common and rare variants, region-based tests
appear to be better options. Among region-based tests, burden
test showed highest power when mQTL SNPs affected the
methylation trait in one direction and rare variants contributed
to relatively large effect. However, burden test lost power
significantly under the bidirectional scenario. On the other hand,
SKAT had more advantages when common variants and rare
variants have similar bidirectional effect.

Among the three commonly used analysis strategies related
to the distributions of methylation traits, ‘beta’ strategy usually
achieves greater power for small sample size (n = 50 or 100), while
‘logit’ strategy often performs better with relatively large sample
(n ≥ 300).

Application to cardiac tissue samples

We further illustrated the proposed MRF with an application to
83 cardiac tissue samples for cis-mQTLs detection. A total of
275,357 CpG-gene pairs were tested by evaluating the association
between each CpG site and a set of SNPs within the same
genomic region. We considered all three analysis strategies (i.e.
‘normal’, ‘beta’ or ‘logit’). Based on our simulation results and
the aim of our study (i.e. n = 83, a mixture of common and rare
variants), we have prioritized our finding by using MRF with the
‘beta’ strategy.

A total of 97 significant CpG-gene associations were identi-
fied after multiple testing adjustment. The full results are shown
in Supplemental Table 1, including 90 distinct genes as potential
mQTL regions. Among these 90 regions, a total of 74 and 44
harbored nominally significant SNPs in one or both phases
of the CHD GWASs, respectively. In Table 2, we summarized
the top 10 mQTL findings among those 44 regions. These
regions consisted of 75 to 929 SNPs, including both common
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Figure 4. Power results from simulation II: mQTL SNPs affected the methylation trait in bi-directions with either (A) WSS effect size, or (B) constant effect size. The

methylation trait was tested for association with a mixture of common and rare variants.

Figure 5. Power results from simulation III: the methylation trait was tested for association with common variants only. The mQTL SNPs affected the methylation trait

with constant effect size, affecting the methylation trait in either (A) one direction, or (B) bi-direction.

and rare variants, that might jointly affect the methylation
level of a CpG site. Three of these regions were located on
chromosome 6. One CpG-gene pair, cg09655876 and AGPAT4,
also achieved statistical significance by applying SKAT with the
‘normal’ strategy.

Bayesian colocalization

We further conducted colocalization analysis to leverage results
from CHD GWASs and expression QTLs, evaluating whether the

mQTL findings share the same causal loci with previous studies.
The full colocalization results for 97 mQTL associations were
summarized in Supplemental Table 2. None of these regions
achieved the commonly used threshold of 0.8 for PP4, which
may largely due to the limited samples size of the CHD GWAS
and unavailable summary statistics of eQTLs. Among the 97
mQTL regions, two genes (i.e. MRPS10 and PSORS1C1) located on
chromosome 6 achieved relatively high PP4 values (PP4 > 0.6) for
potential colocalization in artery tibial (Table 3). In addition, gene
PSORS1C1 was overlapped with nominal significant loci of both
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Table 2. Top 10 significant CpG – gene associations identified by MRF with beta strategy and nominal significant loci in CHD GWAS∗

CpG site Chr Region Gene # SNPs in
Region

# of sig. SNPs
in CHD
GWAS1

# of sig SNPs
in CHD
GWAS2

Method Beta Normal Logit

cg20048260 chr13 110,793,804–
110,967,004

COL4A1 448 3 15 MRF 9.28∗10−11 1.00∗10−7 1.00∗10−7

SKAT - 0.032 0.045
Burden 0.502 0.400 0.447

cg26160889 chr17 27,710,442–
27,886,421

TAOK1 115 17 15 MRF 1.86∗10−10 1.03∗10−6 6.77∗10−6

SKAT - 0.367 0.332
Burden 0.280 0.403 0.278

cg01108872 chr6 166,815,351–
167,283,539

RPS6KA2/
MIR1913

929 46 9 MRF 3.24∗10−10 3.39∗10−9 7.73∗10−9

SKAT - 6.45∗10−4 1.30∗10−3

Burden 0.966 0.998 0.978
cg04248373 chr10 97,064,029–

97,328,677
SORBS1 452 9 3 MRF 4.67∗10−10 9.05∗10−9 1.62∗10−7

SKAT - 0.444 0.433
Burden 0.985 0.829 0.941

cg14498674 chr1 41,485,370–
41,715,315

SCMH1 170 8 2 MRF 5.69∗10−10 3.76∗10−9 3.72∗10−7

SKAT - 0.221 0.345
Burden 0.905 0.868 0.786

cg08610326 chr8 141,522,749–
141,653,145

AGO2 201 5 6 MRF 6.12∗10−10 5.13∗10−8 4.84∗10−6

SKAT - 0.378 0.328
Burden 0.664 0.575 0.974

cg26834192 chr6 161,543,556–
161,702,607

AGPAT4 294 36 40 MRF 7.19∗10−10 5.56∗10−10 3.83∗10−9

SKAT - 2.27∗10−7 5.18∗10−7

Burden 0.353 0.335 0.384
cg09655876 chr6 161,543,556–

161,702,607
AGPAT4 294 36 40 MRF 8.93∗10−10 2.46∗10−10 2.96∗10−10

SKAT - 1.45∗10−7 2.32∗10−7

Burden 0.550 0.395 0.375
cg11456854 chr2 43,450,474–

43,830,685
THADA 405 2 9 MRF 9.58∗10−10 3.92∗10−9 9.23∗10−7

SKAT - 0.039 0.028
Burden 0.290 0.330 0.281

cg15037420 chr19 48,463,802–
48,502,927

BSPH1 75 2 1 MRF 1.07∗10−9 4.68∗10−9 4.72∗10−8

SKAT - 0.340 0.477
Burden 0.016 0.040 0.018

∗logit transform represents M values here since M values are proportional to the logit transformation of beta values

phases of the CHD GWASs. For the rest of 95 mQTL regions, none
of them showed high PP4 values for colocalization with CHD
GWAS or eQTLs. Such results are not surprising since both GWAS
and existing eQTLs adopt the single-locus testing strategy and
are limited to identify common variants with large effects, while
our MRF is a region-based analysis that is better at detecting
rare variants of relatively large effect and common variants with
moderate or even small effects.

We also evaluated the genomic regions which were not
detected by MRF and tested for their colocalization with CHD
GWASs and expression QTLs in cardiac tissues. The significant
results are summarized in Supplemental Table 3. Seven distinct
genomic regions were found to colocalize with eQTLs in
heart tissues with a threshold of PP4 > 0.8. Two regions (i.e.
TNKS2-AS1 and BORCS7/AS3MT) located on chromosome 10
harbored significant single-CpG single-locus associations and
were found to colocalize with eQTLs in our previous study
[32].

Comparison with burden tests and SKAT

We identified a total of 374, 1698 and 1850 significant CpG-
gene associations by applying burden test with ‘beta’ strategy,
SKAT with ‘normal’ strategy and SKAT with ‘logit’ strat-
egy, respectively. The results varied largely across methods
(Supplemental Figure 1). We hypothesize that the heterogeneity

is largely due to the underlying causal mechanism. Based on
the simulation results, the regions identified by burden test are
more likely to harbor rare variants with homogeneous effects,
but those identified by SKAT are more likely to have common
variants influencing the variation of methylation levels. And
the associations detected by MRF are more likely to be novel
signals that rare variants contribute to with relatively large and
heterogeneous effect.

Discussion
We present an MRF method for mQTLs detection by testing
the association between a CpG site and a set of SNPs, both
common and rare, within a genomic region. The main feature
of the MRF is using a beta distribution to address the bimodal
and interval properties of DNA methylation. The benefit is most
evident when the sample size is small to moderate. Such a
scenario is common in tissue-specific methylation studies given
that some sample resources, such as cardiac tissues or brain
tissues, are difficult to obtain. The proposed MRF also inherits
the advantage of GGRF method such that it accounts for the link-
age disequilibrium and potential interactions between multiple
genetic variants. Moreover, the weighting scheme implemented
in genetic similarity allows us to study the rare variants of
relatively large effect.
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Based on our simulation results, we expect that MRF will
be more advantageous than other methods when rare variants
exert relatively large and heterogeneous effect. We have also
conducted additional simulations to compare with alternative
methods, including SKAT-O (combining SKAT and burden test)
and Cauchy’s method (combining correlated testing P-values
from single-locus test) [36]. The results have suggested simi-
lar conclusions (Supplemental Figure 2 & 3). The application of
MRF identified 97 mQTL regions that were associated with a
nearby CpG site. Several genes have been reported in relation to
CHDs. For example, copy number variants RPS6KA2 have been
reported in relation to CHDs [37, 38], suggesting a novel insight
of interplay among DNA methylation, copy number variants
and SNPs. As another example, a case–control study in China
suggested the association between genetic variants in COL4A1
and coronary artery disease [39]. In addition, two genes (MRPS10
and PSORS1C1) located on chromosome 6 were potentially colo-
calized with eQTLs in artery tibial, and gene PSORS1C1 was
overlapped with nominal significant loci of both CHD GWASs.
Previous literature suggested gene PSORS1C1 was enriched in
the inflammatory pathway and was differentially expressed
between pre- and post-surgery groups among children with
congenital heart disease [40]. On the other hand, gene MRPS10
encodes a subunit of mitochondrial ribosomes and was found
expressed differently among normal dogs and heart failure dogs
[41]. Further investigation is needed to assess these potential
mQTLs-CHD associations. For the rest of 95 regions, none of
them showed strong evidence (i.e. PP4 > 0.8) for colocalization
with previous CHD GWAS or expression QTL in cardiac tis-
sues. In general, the colocalization analysis was underpowered.
Although many studies agree that cis-mQTLs have relatively
large effect sizes and can be detected with sample size less than
100 [42, 43], the statistical power is still limited, especially for
rare variants. On the other hand, we believe the mQTL regions
identified by the proposed MRF are more likely to be novel
signals representing rare variants of relatively large and het-
erogenous effect. Such rare variants usually cannot be detected
by GWAS and expression QTL studies using the single-locus
testing strategy.

The proposed method should be viewed with a few
limitations. First, MRF achieved highest power of the different
approaches for methylation studies with small to moderate
sample size. We think this is largely due to the use of beta
distribution that better models the methylation data. However,
when the sample size is large enough, linear regression with logit
transformation showed more robust power in the simulation. In
addition, MRF is developed for population-based studies where
the subjects are unrelated to one another. If there exists any
family structure within the study population, a family-based
genetic random field method [44] would be more appropriate.
Moreover, the current MRF is a single-trait multi-locus test.
Considering the potential correlation between neighboring CpG
sites, it would be reasonable to model the methylation levels of
multiple CpG sites simultaneously. Therefore, one of our future
directions will focus on extending the MRF into a multi-trait
multi-locus analysis.

Key Points
• The single-locus test is only viable for detecting

mQTLs that are relatively common in the study popu-
lation.
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• We proposed a methylation random field (MRF)
method for detecting mQTLs considering both com-
mon and rare variants.

• The MRF is robust to heterogeneous genetic effects
and has higher power than the other methods investi-
gated here for detecting rare variants of relatively large
effect.

• The MRF can model methylation trait with a beta
distribution, and is particularly suitable for tissue-
specific methylation studies with small to moderate
sample size.

Data Availability

The genetic and epigenetic data supporting the current
study will be deposited to the database of Genotypes and
Phenotypes (dbGaP) following the data sharing guideline of
NHLBI and NICHD, and are available from the corresponding
author on reasonable request.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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