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Machine learning and related statistical signal processing are expected to

endow sensor networks with adaptive machine intelligence and greatly facilitate the

Internet of Things (IoT). As such, architectures embedding adaptive and learning

algorithms on-chip are oft-ignored by system architects and design engineers, and

present a new set of design trade-offs. We focus on topologies efficiently implement-

ing mixed-signal matrix-vector multiplication for applications in spatial filtering

for IoT, where substantial processing gain in the analog domain alleviates the

need for highly accurate and energy-consuming analog-to-digital conversion. We

present a micropower, high-dynamic-range multichannel multiple-input multiple-
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out (MIMO) mixed-signal linear transform system, with analog signal path and

digital coefficient control, composed of an array of 14-bit Nested Thermometer

Multiplying DACs (NTMDACs) implementing analog multiplication, and variable

gain amplifier (VGA) implementing accumulation. Implemented in 65nm CMOS,

the NTMDAC MISO system-on-chip measures 84 dB in interference suppression

at 2 pJ of energy per mixed-signal multiply-accumulate. We demonstrate state-of-

the art performance on two tasks, spectrally oblivious interference suppression in

communication signals and EEG signal separation. We then provide experimental

demonstration of the use of a MIMO mixed-signal linear-transform system within

a radio-frequency receiver chain. Over-the-air experiments demonstrating signal

separation for two broad-band modulated signals further validate the adaptive

beamforming capabilities under severe multipath conditions even in the absence of

line-of-sight communication path.

In order to mitigate adverse effects of radix errors and capacitive mismatch

encountered in compact low-power realizations of high-resolution, high-dimensional

MIMO analog processing systems, we introduce Stochastic Successive Approxima-

tion, or S2A, as an on-line adaptive optimization algorithm amenable to efficient

implementation in massively parallel analog hardware. S2A offers a direct alter-

native to stochastic gradient descent overcoming several of its shortcomings, such

as its sensitivity to analog mismatch model errors, while improving on the rate of

convergence for high-dimensional analog computation. The S2A algorithm enables

convergence to values closer to the optimal when facing non-convex optimization

landscapes induced by mismatch in capacitive multiplying digital-to-analog con-

verter components when applied to adaptive analog signal processing. We exper-

imentally demonstrate, in fewer than 25 iteratations of S2A, 65 dB of processing

gain in adaptive beamforming, over-the-air, multipath interferer suppression.
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Chapter 1

Introduction

The remarkable capabilities recently demonstrated by machine intelligence

at tasks long considered to be central to human cognition, have come at the cost

of greater use of resources for computing, communication, storage, energy, and

latency. When constraining the available resources, biological intelligence signifi-

cantly outperforms machine intelligence. This performance gap is further exacer-

bated when complex unstructured interactions occur between the environment and

the entity. Through the evolution of remarkable statistical computing and pattern

recognition, biological entities have the capability of remarkable performance in

regimes of low SNR, and incomplete information. This contrast starkly with the

traditional realization of digital von Neumann computation. To truly enable am-

bient intelligence resource-constrained sensory nodes provide multi-modal sensory

inputs to a distributed, robust, intelligence requires we reexamine how resources

constrained systems might implement computation and communication. This is

the key challenge I try to address in this dissertation.

1.1 Objectives

This dissertation focuses on improving the performance of intelligent sys-

tems at varying scales with an emphasis on resource-constrained ultra-low-power

sensor nodes. The unprecedented growth in the capabilities of machine intelligence

has placed greater demands on the computational capabilities and energy efficiency

1
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of the underlying hardware [51,74]. This growth, spurred by the pervasiveness and

ubiquitousness of electronics has had far reaching impacts from how data is sensed

at the smallest scale, to how large data-centers analyze and use this data. This

has led to the need for ever increasing computational capacity at minimal energy

cost. We aim to improve the performance of intelligent and adaptive systems by

focusing on the joint design of algorithms, architectures, circuits and systems.

This dissertation is unified around a focus on resource constrained, parallel

silicon microsystems enabling real-time machine intelligence and sensory informa-

tion processing. Such systems are widely applicable in areas like biomedical data

acquisition, continuous infrastructure monitoring, intelligent sensor networks, and

data analytics. Currently, large-scale, collective intelligence involves “dumb” nodes

gathering data for a remote, centralized intelligence. In the absence of local pro-

cessing, the latencies introduced by remote communication and processing renders

low-energy autonomous systems impractical. Thus, low-power, on-chip intelligence

is a prerequisite for autonomous systems interacting with the environment, mak-

ing decisions, and taking required actions without human supervision. In order to

effectively interface and actuate within an environment, next-generation sensory

systems are seeing a push away from “dumb” signal acquisition, towards “smart”

signal analysis. This move is further reinforced by the qualitative improvement

in the informativeness and richness of the acquired data offered by self-contained,

autonomous, “smart” sensory systems.

This inclusion of intelligence on chip entails a joint design of algorithms,

architectures, circuits and systems to enable optimal trade-offs between power,

speed, and quality of result. Thus this work traversed various levels of abstrac-

tion [73] from error tolerant algorithm development [57] for machine intelligence

and analog signal processing to high-resolution efficient VLSI circuits for MIMO

sensory and communication systems.

This work aims at building and designing energy efficient, scalable, highly

parallel VLSI microsystems for applications in real-time signal processing, sensory

interfaces, and, data analytics. By using techniques that enable approaching limits

of energy efficiency, sensing and resolution by exploiting computational primitives
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inherent in the physics of devices, sensors this work highlights methods that pro-

vide a principled approach to developing low-power analog computational systems.

Despite its many advantages, analog processing naturally inherits the limitations

of analog circuits, performance loss due to mismatch and process-variation, sus-

ceptibility to noise, offsets, and distortion. Consequently, analog processing based

systems have to provide a principled approach to tackle these limitations, both at

a hardware level and an algorithmic level. Thus the later chapters of this thesis

are dedicated to algorithmic means to address these shortcomings.

1.2 Organization

Chapter 2 presents an overview of the fundamentals and state-of-the-art

analog machine intelligence, with a focus on power efficient operation. Since the

computational and energy burden imposed by emerging machine learning algo-

rithms is the performance limiting factor, we focus on energy efficiency in this

chapter. This chapter introduces energy performance trade-offs in the context of

analog computation using passive components, discussing the advantages of dig-

ital computation over analog computation for various system requirements. We

provide examples of state-of-the-art systems with the corresponding algorithmic

references as well as some an introduction to emerging memory devices.

Chapter 3 presents a CMOS charge buffer with fF-range input capacitance

for applications in capacitive electropotential sensing. We analyze and verify a feed-

back mechanism to negate parasitic capacitances seen at the input of a CMOS am-

plifier. Measurements are presented from a prototype fabricated in 65 nm CMOS

occupying an active area of 193 µm2 with an efficiency of 6.5 µW/MHz. Over-

the-air measurements validate its applicability to electropotential sensing. This

buffer forms a fundamental building block for the analog processing system that

is introduced in chapter 4.

Chapter 4 builds upon the findings of the previous two chapters and in-

troduces a custom IC designed based on the findings in the previous chapter.

The chapter introduces both the mixed-signal spatial co-processor, and the Nested
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Thermometer Multiplying Digital-to-Analog Converter (NTMDAC) which forms

the fundamental building block for the co-processor. NTMDAC is developed using

the infinimp2 amplifier developed in Chapter 2. Fabricated in 65 nm CMOS, this

mixed-signal spatial co-processor implements an 8 × 8 matrix-vector product at

14-bit analog resolution while consuming just 2 pJ per multiply accumulate.

Chapter 5 presents applications of a spatial filtering IC in the context of

the Intermediate Frequency (IF) stage of a receiver Integrated Circuit (IC). We

demonstrate both off-line source separation of two communication signals as well

as over-the-air interferer suppression of two broad-band modulated sources in a

multi-path RF environment. With 38 dB interferer suppression in over-the-air

tests, and ≤ 2.5% RMS EVM for spectrally oblivious separation of interfering

QPSK and 16-QAM signals, we experimentally validate the high-resolution spatial

processing capabilities of the micro-power MIMO spatial filtering IC.

Chapter 6 introduces the successive stochastic approximation and the ex-

tended successive stochastic approximation algorithms, modifications to stochastic

gradient descent overcoming its shortcomings when applied to high-dimensional

analog computation. S2A enables convergence to values close to the optimal in

the presence of radix-errors introduced by mismatch in components for ASP. Con-

ventional gradient descent proves to be sensitive to such analog mismatch model

errors due to the effective non-convex optimization landscapes they typically in-

duce. Experimental demonstrations in online over-the-air adaptive beamforming

with the 25 iterations of the S2A algorithm achieves ≥ 65 dB of interferer suppres-

sion for narrow-band communication signals in multi-path environments.

Finally, Chapter 7 offers concluding remarks on the advances contributed

in this thesis, their significance, and directions for future research.



Chapter 2

Enabling Machine Learning

Through Ultra-Low-Power VLSI

Mixed-Signal Array Processing

2.1 Introduction

Typical internet-of-things (IoT ) connected intelligent integrated systems

acquire sensory data, perform minimal local processing, and then offload more

complex tasks to remote servers. Not only does such a system incur significant

energy costs due to the need for constant communication [56], the increased la-

tency makes real-time operation and response to change in the environment quite

cost-prohibitive in the absence of any local processing [51]. Since energy efficiency,

security and robustness are major factors driving the design of such sensor sys-

tems, there has been a move to shift the bulk of the processing closer to the sensory

interface and hence drastically reduce demands on communication bandwidth [3].

Furthermore, on-chip intelligence can enable integrated systems to interact with

their environment without constant remote input or monitoring, facilitating ubiq-

uitous autonomy in IoT systems.

Achieving ultra-low-power operation, a critical requirement for autonomous

IoT devices [51], entails a concerted effort at reducing power consumption at several

5



6

a

b

Figure 2.1: Signal processing flow a in conventional signal acquisition with dig-
ital signal processing (DSP), and b optimized for energy-efficient IoT with in-
creased sensory-level analog signal processing (ASP) trading reduced analog-to-
digital (A/D) conversion and DSP

levels in the design hierarchy as follows:

1. Algorithmic and system level — Analysis of sensor outputs should be robust

to imprecision and noise, and algorithms amenable to local or distributed

implementation lead to lower communication and power overhead;

2. Architectural level — Exploiting parallelism and pipelining as called for by

the target application help restrict power expenditure;

3. Circuit and logic level — Appropriate use of sub-threshold vs. above-threshold

MOS biasing, optimized mixing of logic styles, supply switching;

4. Technology level — Emerging devices and MEMS, increased reliability.

For intelligent sensory devices implementing processing on-chip, the signal chain

conventionally consists of a sensor front-end providing inputs, followed by signal

conditioning and filtering. Analog-to-digital converters (ADCs) then feed a digi-

tized version of the output signal to a digital signal processor (DSP), illustrated in

Fig. 2.1a. Embedding very low-power analog signal processing (ASP) subsystems

near the sensory interface to remove redundancy in the input signal can help amor-

tize the overhead of analog-to-digital conversion, and subsequent digital process-
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ing, shown in Fig. 2.1b. Its versatility, general applicability to many algorithms,

and amenability to low power implementation make matrix-vector multiplication

(MVM) a natural choice as a primitive for such analog processing. Low-power and

highly energy-efficient systems have been implemented with analog matrix-vector

multipliers (aMVMs) for dimensionality reduction [7], linear classification [83],

spatial filtering [37], support vector machines [39], neural networks [48] and many

other settings in adaptive signal processing [43]. We shall focus this chapter on var-

ious implementations of the aMVM computational primitive in mixed-signal and

analog circuits. Section 2.2 provides an overview of the algorithmic formulations.

Section 2.3 provides bounds on energy consumption for analog processing as well

as some examples of systems implementing aMVMs pre-digitization. Section 2.4

introduces systems where aMVM has been implemented post-digitization for en-

ergy minimizing optimization. Section 2.5 highlights latest advances in emerging

resistive memory devices for massively parallel aMVM with applications in high-

dimensional adaptive computation. We conclude with a look at future directions

in Section 2.6.

2.2 Algorithmic Considerations

The canonical form of the narrowband beamformer shown in Fig. 2.2a bears

remarkable resemblance to that of the perceptron Fig. 2.2b. This is further high-

lighted by beamformers implemented using the perceptron algorithm [76]. Exploit-

ing the equivalence between adaptive beamformers and blind source separation [60]

under the constraints of linear mixing enables the use of a wide range of machine-

learning techniques for spatial signal processing. One such notable example is

independent component analysis (ICA) [52] which uses the independence of signal

statistics and spatial diversity in the measurements to separate and locate multi-

ple sources from no more than the measurements alone. Crucially, ICA operates

on the assumption that the set of signals received are a linear mixture of some

underlying sources, i.e., for N observed signals x(t) there exists M source signals
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a

b

Figure 2.2: Structural similarity between a a canonical narrow-band beamformer
and b the perceptron algorithm, highlighting the versatility and ubiquity of the
matrix-vector multiplication (MVM) kernel.

s(t) and an N -by-M matrix A such that, in vector form:

x(t) = As(t). (2.1)

Thus, multiplying x(t) with the inverse of the mixing matrix A−1 results in the

original signals, s(t), being recovered. The task in ICA is estimating W = A−1

with minimal distortion, bearing in mind arbitrary permutations and scaling in the

signal sources. However, a variety of signal conditions can result in ill-conditioned

(almost singular) matrices requiring high-precision MVM to prevent errors (quan-
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Figure 2.3: ASP can dramatically reduce dynamic range requirements prior to
digitization. The processing gain of high-fidelity analog spatial filtering enables
rejection of spectral interferers preventing subsequent stages in the ASP chain
from saturating.

tified in Fig. 2.8). This is especially applicable for tasks such as beamforming

separation of near-collinear sources, and other tasks incurring ICA or principal

component analysis (PCA) [7].

Aside from limited resolution, linear systems comprising aMVMs incur per-

formance loss due to limitations of linear transforms [82]. However, various aggre-

gation techniques such as boosting have been introduced that enable collectives

of linear maps to approximate more complex functions in piece-wise linear fash-

ion [23, 70]. Such aggregation techniques are especially effective in overcoming

limitations in analog hardware for classification, where multiple weak classifiers

are pooled together to implement strong classification [67]. Indeed the use of such

boosting techniques can provide a principled approach to alleviate process-voltage-

temperatue (PVT) variations, mismatch, and noise at an algorithmic level.

The improvement in the signal-to-noise/signal-to-interferer ratio from the

techniques highlighted in this Section come at increased energy and size costs of
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Figure 2.4: Minimum system energy limits Esys = Psys/fsig according to
Eqs. (2.2)-(2.8) with A = 8, α = 2 and processing gain G = DRprior/DRpost = 20,
40, and 60 dB. At lower system dynamic range DRpost the energy of aMVM dom-
inates that of SAR ADC, up to the cross-over point where the processing gain is
limited to unity.

increased resolution in aMVM and increased analog processing through parallelism.

We refer to this improvement in the signal-to-interferer ratio as processing gain,

similar to processing gain in spread-spectrum techniques [63]. An example of

spatial processing gain is illustrated in Fig. 2.3, where spatially selective filtering

of the signal reduces the interferer power while maintaining the signal dynamic

range, enabling lower resolution digitization and hence substantial energy savings.

This increased analog processing in turn comes at an energetic cost, the balance

of which is explored in Section 2.3.

2.3 Analog Signal Conditioning

Analog signal processing can facilitate a wide variety of sensory acquisition

and emerging communications technologies. The central examples presented in

this chapter focus on applications in the communication domain like full-duplex

(FD) and cognitive radios (CR), which currently face many challenges due to high
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dynamic range requirements [65]. However, it should be noted that analog signal

processing has had wide applicability in machine learning, where nanowatt support

vector machines have been demonstrated [24] and signal processing, where microp-

ower implementations have enabled beamforming [11] and sound localization.

In what follows, we establish principles for analog processing to ensure over-

all energy savings compared to the conventional approach of directly quantizing

the signal and operating upon it with DSP. For ease of notation, we consider a

processing gain resulting from spatially filtering an interference source. This mani-

fests as a reduction in the dynamic range specifications for a down-stream digitizer.

The same principle applies to dynamic range reduction by feature extraction in

other forms of signal processing.

2.3.1 Power Efficiency

Consider the power requirements for a successive approximation register

(SAR) ADC with a binary weighted capacitive DAC with three main constituents:

PSAR = Pdriver + Pmean,switch + Pcomp. (2.2)

The power for the DAC driver Pdriver is bounded by [53]

Pdriver = 16fsamp kBT DR (2.3)

where fsamp is the sampling frequency, kB is the Boltzmann constant, T is absolute

temperature, and DR is the dynamic range. The mean switching power over all

codes Pmean,switch, assuming a merged capacitor switching based SAR [31], is

Pmean,switch = fsamp

n−1∑
i=1

2n−3−2i
(
2i − 1

)
CuV

2
ref

where Cu is the unit capacitor, and n = (DR[dB]− 3) /6 is the ADC number of

bits. Minimum capacitor sizing for thermal noise1 results in

Pmean,switch = 12kBTfsamp 2n

n−1∑
i=1

2n−3−2i
(
2i − 1

)
. (2.4)

1We size Cu = 12 kBT 2n/V 2
ref to equate thermal and quantization noise, rather than sizing

for mismatch, for a lower energy bound.
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Figure 2.5: Minimum energy limits as in Fig. 2.4, with aMVM parallelism N = 1,
4, and 8 according to Eq. (2.7), at 10% parasitic capacitance (γ = 0.1). Amplifier
gain A is increased in order to restore signal levels to full-scale for downstream
ADC to counter the attenuation resulting from parallelism.

Finally, the switching power of the comparator Pcomp is bounded by [54]:

Pcomp = 12fsamp kBT nDR. (2.5)

Though greatly simplified, the resultant expression for PSAR provides a lower-

bound on power consumed for an n-bit SAR ADC.

Now, consider the presence of an interfering signal at signal-to-interference

ratio SIR, which necessitates proportionally greater DR for the ADC to resolve the

input signal amid the interferer without overload distortion. In turn, the greater

ADC DR leads to higher ADC power consumption according to Eqs. (2.2)-(2.5).

A suitable aMVM front-end subsystem capable of suppressing the interferer and

restoring the signal to full strength prior to quantization can hence substantially

reduce the ADC power consumption, albeit at some aMVM power cost.

Capacitive aMVM incurs power costs mainly for three operations: changing

the capacitive weights Padapt, driving the capacitor array Parray, and restoring the

signal with gain Pgain. The minimum power required to drive a capacitor with a
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Figure 2.6: Analog signal processing can dramatically reduce the dynamic
range prior to digitization. The implemented MIMO analog matrix-vector mul-
tiplier (aMVM) [37], reconditions the signal implementing high-fidelity analog
beamforming.

sinusoidal signal with frequency fsamp = 2fsig at a given SNR is given by:

Parray = 8fsigkBT SNR. (2.6)

Under the simplifying assumption relating the signal SNR to its dynamic range [54],

the aMVM power reduces to

Parray + Pgain = 8fsig(DRprior + AαDRpost)kBT (2.7)

with closed loop gain A, amplifier inefficiency factor α ≥ 1, and dynamic range

DRprior prior to and DRpost post the aMVM gain stage. Continuous-time passive

multiplication imposes a constant load on the drivers, in contrast to a switching

structure which incurs an additional power cost. Due to the improved energy

efficiency of passive multiplication, we choose that architecture over alternative

switching architectures (discussed in Section 2.4.1). The net power of the combined

aMVM-ADC system is then given by:

Psys = Parray + Pgain + Pmean,switch + Pcomp (2.8)

in which the driver power (2.3), mean switching power (2.4), and comparator

switching power (2.5) for the SAR ADC are incurred at the post dynamic range

DRpost. Note that the ADC post driver power Pdriver is subsumed by the aMVM
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active gain power Pgain through the inefficiency factor α. The aMVM provides

processing gain to boost the signal relative to interferer which relaxes the dynamic

range accordingly, where the processing gainG = SIRpost/SIRprior = DRprior/DRpost.

Thus, the combined aMVM-ADC system incurs a reduced cost for the ADC

power PSAR at the lower dynamic range DRpost, at the expense of aMVM power

Parray + Pgain providing the processing gain G. We normalize the power measures

Eqs. (2.2)-(2.8) by fsig and as such determine the minimum system energy lim-

its Esys = Psys/fsig in Fig. 2.4. We show that the aMVM can reduce the cost of

digitization, bounded by the processing gain G of the aMVM system. At lower

system dynamic range the energy of aMVM dominates that of SAR ADC, where

the cross-over point is determined by unity lower limit on processing gain. At

higher system dynamic range, the benefits of aMVM are bounded by the process-

ing gain, and it can be seen that the ADC energy cost once again dominates.

A caveat to the analysis is that at higher system dynamic range, oversampling

data-converters are more energy efficient and practical than SAR ADCs. Concur-

ring with these findings, alternative analysis [80] suggests substantial (greater than

90%) power savings owing to analog preprocessing (G = 40 dB) within the con-

text of a multiple-input-multiple output (MIMO) radio front-end under realistic

channel conditions.

2.3.2 Limits of Parallelism

The inherent parallelism of analog computation offers several distinct ad-

vantages, such as the innate capability of accumulating charge from multiple

sources onto a single wire shared connection [69]. The improved throughput from

parallelism further benefits more computationally intensive applications [24]. Ap-

plications like CR and MIMO systems also benefit from parallelism, as do boosting

algorithms as described above. Despite these advantages, recent work implement-

ing aMVM through highly energy-efficient passive charge sharing [7,48,83] has not

aggressively pursued parallelism. This is largely due to dynamic range limitations

in massively parallel analog circuit architecture. In this Section we highlight some

of these limitations along with methods to overcome them.
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Highly parallel charge-redistribution capacitive arrays for aMVM suffer

from gain error and signal level degradation as a result of parasitic capacitance

as well as signal attenuation onto the parallel signal path. Consider the paral-

lel connection of N capacitive multiplying DACs to compute the analog sum of

N weighted inputs,
∑N

j=1Wijxj with digital weight coefficients Wij and analog

voltage inputs xj. Passively connecting this aMVM output directly to the input

of a SAR ADC, with another capacitive DAC for the ADC reference connected

in parallel, results in charge-sharing attenuation of the voltage signal by a factor

CDAC / (NCDAC+Csamp+Cpar), where CDAC is the Thevenin equivalent capacitance

of each multiplying DAC, Csamp is the sampling capacitance of the ADC reference

DAC, and Cpar represents all parasitic capacitance on the shared aMVM-ADC

node. Typically, the multiplying and reference DACs are identical, CDAC = Csamp,

and the parasitics result from bottom-plate capacitance Cpar = γ(N + 1)CDAC

where γ ≈ 0.1. Thus, the attenuation factor can be approximately expressed as

1 / (N + 1)(1 + γ). The ADC reference is also similarly attenuated, exacerbat-

ing the effect of the accumulating noise degrading the SNR increasing the already

stringent ADC specifications further.

A gain element following aMVM and doubling as ADC driver counters this

attenuation at an increase in system energy as illustrated in Fig. 2.5. In particular,

restoring signal levels back to full-scale to reduce the DR burden of the ADC comes

at the cost of increased complexity and power (Pgain in Eq. (2.7)) of the aMVM

active gain stage. This energy cost for the gain stage may be substantial where

the aMVM costs dominate; however, the ADC cost dominates at higher system

dynamic range, more than amply amortizing the cost of energy required to provide

the restorative gain (Eq. (2.7)).

2.3.3 Circuit Architecture

Here we briefly describe an example aMVM system for spatial signal condi-

tioning in adaptive beamforming for RF communication [43]. The system imple-

ments analog preprocessing on the outputs of a harmonic rejection mixer (HRM) re-

ceiver, providing substantial processing gain prior to digitization. The 8×8 aMVM
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in Fig. 2.6 is composed of complementary capacitive multiplying digital-analog

converters (MDAC) as detailed in Fig. 2.7. Beamforming is implemented through

digitally programmed transform coefficients. The resulting capacitive weighting

spatially filters the incident signal from four antennas at baseband, implementing

4×4 complex matrix-vector multiplication with the 8×8 real array. The achieved

68 dB processing gain is substantially larger than the conventional approach [27].

The same capacitive array structure is used for both the MDAC and the feedback

capacitor in the OTA, resulting in consistent 48 dB of programmable gain in steps

of 6 dB.

An improved aMVM system, designed for energy efficient operation using

the principles highlighted in Sections 2.3.1 and 2.3.2 has recently been demon-

strated [37]. To this end an alternate capacitive MDAC topology is introduced to

reduce the effective CDAC capacitive load on the driving circuitry while maintain-

ing high-resolution. As shown in Fig. 2.8 the minimum resolvable angle and the

dynamic range in the resolution are determined by the resolution of the aMVM sys-

tem. This system demonstrates state-of-the art interference suppression of 84 dB,

corresponding to the implemented 14-bit weight resolution. Measurements for

base-band signal separation, shown in Fig. 2.9, demonstrate broad-band signal

resolving capabilities. In addition to the MDAC topology, offset cancellation at

the MDAC and the OTA implemented via correlated double-sampling (CDS) also

contributes to the achieved precision. CDS at 500 Hz periodically sets the input

DC bias point of the capacitively coupled differential amplifier.

2.3.4 Alternative Architectures

A wide range of mixed-signal circuit architectures have been pursued for

aMVM systems in a wide range of adaptive signal processing and machine learning

applications. Most of these tightly couple the matrix-vector multiplication with

the digitization circuitry in order to reduce the system energy. Here we highlight

two main directions of current developments.
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Figure 2.7: Capacitive high-resolution, high dynamic range digital-analog multi-
plication. The parts of the circuit implementing weighting and gain in the linear
transform are highlighted.

Nyquist Rate Systems

A multiplying-DAC embedded within a SAR feedback loop, targeting em-

bedded sensing medical systems, is presented in [83]. A simplified diagram of the

implemented architecture, performing consecutive linear-feature extraction and lin-

ear classification, is shown in Fig. 2.10. The recursive extraction-classification for-

mulation results in a reduction in the number of operations required to implement

ECG-based cardiac arrhythmia detection by a factor 85×, and image-pixel-based

gender detection by a factor 200×. Employing boosting algorithms [82] to over-

come limitations of linear classification as well as analog-mismatch, the improved
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Figure 2.8: Effects of coefficient quantization on beamforming performance. Ex-
pected interferer suppression levels and 90% confidence bounds by Monte Carlo
simulation at three levels of quantization: 6-bit, 10-bit, and 14-bit.

computational efficiency trades-off performance with energy.

The system implements a partial analog multiplication during the data-

conversion step, with the residue multiplied digitally. Since analog multiplication

results in an increase in the signal dynamic range, high-resolution multiplication is

avoided. Furthermore, accumulation occurs digitally with no corresponding ana-

log processing gain. This makes parallelism as described in Section 2.3.2 cost

prohibitive, limiting the solution to a serial, albeit energy-efficient and highly con-

figurable implementation.

Oversampling Systems

The principle of oversampling, widely used in overcoming the resolution

limitations of Nyquist rate data-converters, has been extended to aMVM in a

high-resolution, oversampling multiplying ADC presented in [7]. The prototype

system embeds multiplication within a Delta-Sigma Modulator (DSM) at 100M

1-bit multiplications/s/channel. Owing to the oversampled respresentation, 14

effective bits of recognition accuracy have been achieved.
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Figure 2.9: aMVM system [37] demonstrating state-of-the-art separation of sig-
nals with completely overlapping spectra. The system simultaneously separates
16-QAM and 64-QAM mixtures in two complex channels to less than 3.1% and
2.94% RMS-EVM.

A single-bit mixing sequence (multiplication with ±1) is introduced within

the DSM feedback loop as shown in Fig. 2.11, implementing a pass-through or in-

version in the differential signal path. As such, the matrix-vector product is effec-

tively this output sequence is accumulated digitally. In contrast to a conventional

DSM, to first order the quantization error terms are canceled. Furthermore, arbi-

trary resolution can be achieved, in exchange for bandwidth, through appropriate

sequencing of ±1 values. The use of oversampling enables trading-off throughput

with precision, via the appropriate oversampling factor.

Note that the energy efficiency analysis in Sections 2.3.1 and 2.3.2 assumed
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Figure 2.10: Block diagram showing (a) a conventional scalar SAR ADC and (b)
the matrix-multiplying ADC (MMADC) system proposed in [83]. Loop-embedded
passive capacitive division implements the product of a feedback factor and the
input. This system implements partial multiplication in the analog domain, with
multiplication on the residue and accumulation implemented in the digital domain.

Figure 2.11: A first order model of the multiplying ADC proposed in [7].
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Table 2.1: Comparison of analog signal conditioning systems

Zhang&et&al.
ISSCC&2015

Lee&et&al.
ISSCC&2016

Buhler&et&al.
VLSI&2016

Kim&et&al.
JSSC&2016

Joshi&et&al.
ISSCC&2017

Application
Feature'
Extraction

Sensor'
Classifier

Feature'
Extraction

Spatial'
Filtering

Linear'
Spatial'
Filtering

CMOS&Technology&(nm) 180 40 65 65 65
Number&of&channels 1a 1a 16a 8 8
Area&per&MAC&(mm2) 0.106 0.012 0.0594 0.045 0.021

Power&(μW) 0.663 228 3856 1300 91

Signal&Bandwidth&(kHz) 10 106 100 1500 350

Power/Bandwidth&(μW/MHz) 66.3 .228 38560 866 260
Effective&Analog&Multiplicand&

(bit) 4 3 14b 8c 14
Multiply&Accumulate&Efficiency&

(pJ/MAC) 16d .12 30000d 6 2
Multiply&Accumulate&Efficiency&

/Multiplicand&Level
(fJ/MAC/Level)

1000 15' 1830 23.4 0.'12

aSerial matrix*vector.product. bOversampled,.1*bit.per.sample..
cReported 48.dB.signal.separation. dNo analog.accumulate.

Nyquist rate systems using SAR ADCs; it is however straightforward to extend

the quantization model in the analysis to oversampling systems [6].

A comparison between the various aMVM systems presented above, with

key performance metrics, is given in Table 2.1. The range of trade-offs in terms of

energy, resolution, speed and efficiency demonstrates wide applicability of aMVM

systems as alternatives to DSP in adaptive signal processing and machine intelli-

gence.

2.4 Post-digitization

In a break from the trend of increasingly digital ICs, there has also been

an argument for implementing charge-domain MVM for accelerating more conven-

tional deep-learning systems as an alternative to DSP, GPU, and FPGA comput-
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ing. The signal flow in these MVM systems operating on data in externally digital

but internally analog form entails a DAC front-end feeding a capacitor array per-

forming aMVM, followed by ADC digitization. High parallelism in the array in

conjunction with low-resolution D/A and A/D conversion leads to marked energy

benefits [69].

2.4.1 Analog Machine Learning Accelerators

Lee et. al. [48] present a switched capacitor matrix-multiplying ADC, that

exploits matrix factorization to introduce a 64× analog processing gain, enabling

energy savings. 3-bit capacitive weights and 6-bit D/A and A/D interfaces accom-

modate the signal dynamic range modification after analog multiplication. Since

analog accumulation occurs at a rate much slower than analog multiplication, this

allows the digitization to occur at a rate much lower than the computation, hence

lowering ADC energy and size costs. In contrast, a parallel switched capacitor

medium-resolution system is demonstrated [4] for efficient implementation of ma-

chine learning algorithms. These two systems aim at accelerating deep learning

algorithms and networks similar to [18, 45]. The focus on large-scale machine-

learning as an application results in co-optimization and collocation of memory

and computation as highlighted in Section 2.5.

2.4.2 Charge Recovery and Adiabatic Computing

A critical assumption in deriving the minimum energy bounds in (2.6) is

that charge on a capacitor, and the associated CV 2/2 energy, cannot be recovered

between samples.

Physical principles like adiabatic and reversible computing attempt to sub-

vert this bound using energy recovery techniques that cannot be applied to con-

ventional CMOS logic design. These circuits suffer from two sources of energy

consumption beyond leakage: adiabatic losses, and non-adiabatic losses. Non-

adiabatic losses are those due to incomplete recovery of supplied charge, while

adiabatic losses are closely related to dynamic power consumption Pdyn = fCV 2
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in CMOS circuits. Optimal adiabatic charging implemented through a constant

current source [61] aims at reducing dissipated energy, trading it with time and

complexity. Consider that charging a capacitor C through a resistance R by ap-

plying a constant current I for a time T dissipates

E = RI2T

energy through the resistor. This entails a net charge transfer of Q = IT = CV ,

resulting in net energy loss

E =
R(CV )2

T
=
τ

T
CV 2

with time constant τ = RC. Conventional CMOS line drivers T = τ incur complete

loss of CV 2 electrostatic energy in each charge cycle. Slowing the charging time

T � τ results in substantial energy savings, tending to zero energy in the adiabatic

limit T → ∞. However, efficient generation of a slow current ramp and constant

charging and discharging currents incurs losses in the supply generator. Instead,

waveforms from a resonator [71] are used to provide this ramp, trading-off lower

supply generation complexity with increased losses in the compute circuitry [38].

Reversible computing avoids non-adiabatic losses, ensuring preservation of

information states to prevent the dissipation of energy upon erasure of informa-

tion [22, 49]. High-density mixed-signal adiabatic processors [25, 38, 39] offering

high-dimensional charge domain low-precision analog computation for kernel-based

pattern recognition have been developed using these principles. These “Kernel-

tron” aMVM processors implement an externally digital, internally analog matrix-

vector product for use in classification and pattern matching tasks [24]. Charge

injection device (CID) arrays with DRAM storage elements store each bit of

the matrix element as shared charge. The computed matrix-vector product oc-

curs through non-destructive charge sensing on the bit/compute line (BCL) in a

bit-serial, matrix-parallel fashion. Unlike conventional switched-capacitor charge-

domain analog computing, the conservation of charge in the CID array throughout

the computational cycle allows significant energy savings. A further boost in en-

ergy efficiency is obtained by a stochastic encoding and decoding scheme, which

ensures a constant capacitive load of the CID array tuned for resonance in energy
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Figure 2.12: Summary of operating principles for the mixed-signal resonant adi-
abatic processor in [39]. Power is dissipated on charging and discharging the total
capacitance of the array select lines, and the sum of the capacitances of the CID
column. Conventional static CMOS logic drivers dissipate all fCV 2 power in driv-
ing the capacitive load of the CID array. This challenge is addressed through the
use of energy recovery logic (ERL) resonant drivers coupling the CID capacitive
load to an inductor to recirculate the energy in driving the CID array.

recovery in the array drivers. Fig. 2.12 summarizes the operation and performance

of such adiabatic resonant energy-recycling in the Kerneltron, resulting in better

than 1.1 TMACS/mW efficiency excluding on-chip digitization [39].

While there are several drawbacks of adiabatic energy-recovery aMVM in

the complexity of the required circuitry, the low operational speed, the unaccounted

for cost of digitization, and the susceptibility to variability, the prospects look
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bright for the adoption of such techniques in specialized processors in the face of

the inevitable end to CMOS scaling. In principle, fundamental limits on the effi-

ciency of reversible computing extend beyond the Landauer’s principle [78] which

provides a link between the thermodynamic and information theoretic measures

of entropy and the minimum bounds on energy required for irreversible compu-

tation, Emin = kBT ln 2. Although the prospects of pushing fundamental energy

limits are tempting, currently realized levels of energy efficiencies with adiabatic

energy-recycling aMVM computing in the sub-fJ per operation range [39] are still

far from the Landauer limit, which may only be achieved with probabilistic forms

of computation able to operate effectively at near-unity signal-to-noise ratios.

2.5 Emerging Devices

Not only are machine learning algorithms compute and memory inten-

sive [30], they face severe scaling penalties due to the Von-Neumann bottleneck.

Emerging resistive memory technologies have the potential to enable processing-in-

memory architectures bypassing this bottleneck [46]. Furthermore they facilitate

3D integration [72], with the gradual resistance change of these devices enabling a

single cell to be used as analog memory.

Two-terminal resistive memory devices such as phase change memory (PCM)

[46], resistive switching memory (RRAM) [59], conductive bridge memory (CBRAM)

[58], and ferroelectric memory (FeRAM) [14], provide several advantages over con-

ventional memory systems–superior scaling, low-energy programming, and non-

volatile analog storage. Analog memory enables in-memory computing capabili-

ties (similar to capacitive arrays in Section 2.3) where the matrix-vector product is

performed in distributed parallel manner directly within the memory, avoiding the

data movement typical in DSP, CPU and GPU systems and thus reaping major

energy benefits [8].

Despite these advantages, several open problems and challenges remain in

integration with conventional CMOS digital systems. Although Roff/Ron ratios in

the 103–104 range have been demonstrated, the performance severely degrades for
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Figure 2.13: Advances in computing hardware will increase computing and com-
munication efficiency; Similar advances in training methods, and supporting data,
are required to adaptively reduce algorithmic complexity (adapted from [10]).

large arrays, with diminished yields [15]. Emerging memory devices also suffer

from inherent device-to-device and cycle-to-cycle variations restricting their use

to highly fault-tolerant algorithms. The large fan-out and fan-in in contemporary

machine-learning algorithms necessitates large memory array sizes where energy

to drive the array dominates the net energy [8]. Moreover, large arrays also suffer

from increased IR drops along bit and word lines. Efforts to combat such IR drops

with increased wire thickness result in decreased densities, increased capacitance

and energy losses. Alternative architectures composed of smaller arrays require

more communication between cores, yielding diminished energy savings [15].

Continuing research into materials [86], improved device modeling, and in-

novative use of circuit techniques introduced in Section 2.4.2, as well as architec-

tural advances show promise in overcoming the aforementioned limitations.

2.6 Future Prospects

As we are seeing an unprecedented growth in the capabilities [74] of au-

tomated systems [21], increased autonomy will require more complex interactions

with the environment through sensors and actuators as well as complex commu-
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nication of information to remote locations, all while minimizing energy use. The

circuit techniques and systems presented here have leveraged a diverse range of

analog mixed-signal implementations of matrix-vector multiplication to enable a

variety of adaptive signal processing and machine learning tasks. Such systems con-

tribute at all levels in the signal pipeline, from sensory conditioning [7,37,83], local

processing [39], and communication [43], to high-performance accelerators [8, 48].

With increasing demands on such automated systems executing complex

tasks, advances in neural networks and neuromorphic computing as well as innova-

tions in computing architecture look poised to shift the trade-off between machine

and task complexity in favor of greater efficiency and efficacy in computational

systems [10] (Fig. 2.13). Noted by Von Neumann 50 years ago [81], computer de-

sign can draw inspiration from biology, where intelligence emerges from extremely

efficient and resilient collectives of imprecise, and unreliable analog components.

50 years later and counting, this observation remains equally applicable to mixed-

signal and analog systems designed for the next-generation of computational loads.
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Chapter 3

A 6.5 µW/MHz Charge Buffer

with 7 fF Input Capacitance in

65 nm CMOS for Non-contact

Electropotential Sensing

3.1 Introduction

Emerging sensor technologies have greatly expanded our capability to sense

and intelligently adapt to the environment [77,89]. Their ease of high density inte-

gration within a standard CMOS process makes capacitive sensing particularly at-

tractive. Electric potential sensors for signal detection and communication can use

such integrated capacitive sensors in a variety of contexts including bio-potential

measurements [16,64], active proximity sensing, body channel communication [34]

and capacitive near-field communication and human computer interaction [29].

However the design of interface circuits for such capacitive sensors is challenging

for broadband operation especially when considering noise, parasitic loading, and

power. Ideally electropotential sensors should not load the node where voltage is

sensed and draw no current from that node disturbing the measurement. Thus, a

major requirement from these interface circuits is a very high, ideally infinite, input

28
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(b)

Cgs+ Cgb

Cgd

Ib Ib

(a)

Main Buffer Auxiliary Buffer

Figure 3.1: Unity gain charge buffer for capacitive non-contact electropotential
sensing. (a) Unity gain active shielding of the entire input signal path to negate
the effect of input capacitance. (b) Integrated implementation using nested main
and auxiliary unity gain buffers.

impedance specification. Especially for capacitive sensing, this entails minimizing

the input capacitance while maximizing the input resistance.

Although high input impedances, with input capacitances around 2-5 pF,

have been reported, e.g., [29], these specifications are insufficient for broadband

non-contact electropotential sensing. Additionally, discrete implementations re-

port greatly reduced Signal-to-Noise and Distortion Ratios (SNDRs), as low as
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10 dB [29] at cm distances, requiring system resources dedicated to de-noising the

input. Since typical signals of interest are low magnitude, in the µV to lower mV

range up to 20 MHz [47], the sensory front-ends must provide low parasitic input

capacitance and high input resistances to enable accurate measurement.

MOSFET input impedances are typically degraded by parasitic effects at

the gate, including leakage currents, the effect of parasitic capacitances at the

input, and DC operating point biasing currents. The traditional solution to in-

creasing the effective input impedance is to use bootstrapping [28], which exploits

positive feedback in order to increase the effective impedance between two nodes at

the expense of noise and stability. Integrated implementations enable alternative

negative feedback to internal amplifier nodes that can vastly improve performance

and stability. To this end, we present a unity-gain charge buffer for use in elec-

tric field sensing capable of driving a 2 pF load at 6.5 µW/MHz energy efficiency,

occupying 193 µm2 in 65 nm CMOS.

3.2 Circuit Design and Analysis

Fig. 3.1 shows the schematic of the presented charge buffer, which can

directly implement a unity-gain active shield for non-contact biopotential sens-

ing [16]. Active shielding enables cancellation of parasitics along the signal path

as shown in Fig. 3.1 (a). However, active shielding loads the output of the buffer

trading the cancellation of capacitances along the signal path against the band-

width of unity-gain buffering. By virtue of unity gain, the bulk-source connected

PMOS differential pair input stage leads to cancellation of the gate-to-source and

gate-to-bulk input parasitic capacitances, Cgs and Cgb respectively. We mitigate

the effect of the residual gate-to-drain input parasitic capacitance Cgd via a high

loop-gain negative feedback through an auxiliary buffer effectively bootstrapping

it, while also improving the main buffer voltage transfer function to better ap-

proach unity gain by negating the effect of drain conductance on the Va node,

which in turn improves the bootstrapping through the active shield.

Hence bootstrapping the input capacitance requires high gain to be effec-
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Figure 3.2: Small-signal model of the charge buffer of Fig. 3.1 (b). Here γ is the
ratio of operating currents in the auxiliary and main buffers as annotated in Fig. 3.1
(b), Ca and Cm are parasitic capacitances at the nodes Va and Vm respectively, and
Cout is the buffer output load capacitance.
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Figure 3.3: Bode plot demonstrating theoretically predicted variation of damping
with varying ratios of time constants in the circuit. Simulation parameters used:
γ = 1

4
, τa = 13.33 ns, and τm = 4τa (i.e., Cm = Ca).
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Figure 3.4: (a) The small signal model used for input impedance analysis. (b) Re-
duced Thevenin small-signal equivalent model with effective capacitances between
the input vin, output vout, and feedback auxiliary node va.

tive [16]. This gain is provided by the negative feedback loop (NFB) composed of

M8, M9, M4, M8 annotated in Fig 3.1 (b). This loop actively negates the parasitic

input capacitance, Cgd, of the input differential pair M2-M3. Thus, the circuit

buffers the input such that any change in voltage at the gate of M2 results in an

equivalent change at both the source and the drain of the transistor preventing the

flow of current from the gate to those nodes, maintaining high input impedance.

To quantify the effect of circuit parameters on DC and spectral response, we

conduct a small-signal analysis on the nodes Vout, Va and Vm, annotated in Fig. 3.1

(b) with small signal variables vout, va and vm. Here, γ represents the ratio of the

current in the auxiliary buffer to that in the main buffer, where γ ≤ 1 for power

savings. In subthreshold, the transconductance of M2 and M3 is gm ≈ κqIb / 2kT

and the drain conductance of M4 and M5 is gd ≈ Ib / 2VEarly, with back-gate

coefficient κ and Early voltage VEarly, and where the corresponding conductances

of M7-M10 are approximately scaled by γ. We ignore drain conductances of M1-

M3 and M6-M8 which cancel out to first order (in the limit vout ≈ va ≈ vin).

Considering the output load capacitance Cout and parasitic capacitances Cm and
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Figure 3.5: Measured linearity and dynamic response characteristics of the fab-
ricated charge buffer. a The measured DC gain error is less than .6% over a .9 V
range, while consuming less than 5 µA of current. b The -3 dB frequency achieved
by the buffer at various levels of power consumption yields an efficiency figure-of-
merit of 6.5 µW/MHz, at a midband frequency of 50 kHz. The linear bandwidth
response saturates to 5 MHz for higher power levels. c First-order settling within
500 ns is demonstrated for a step response matching analytical results from ex-
pressions in ( 3.3).
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Ca on the internal nodes Va and Vm leads to three state equations

Cout
dvout

dt
=

1

2
gm(vin − vout)− gmvm − gdvout

Ca
dva
dt

= −1

2
gm(vin − vout)− gmvm − gdva (3.1)

Cm
dvm
dt

= −γ
2
gm(va − vout)− γgmvm − γgdvm

with resulting DC gain

vout

vin

=
1 + 1

A0

(
1 + 1

A0

)
1 + 1

A0

(
1 + 1

A0

)(
1 + 2

A0

) ≈ 1− 2

A0
2 , (3.2)

where A0 = gm/gd is the open-loop gain of the main and auxiliary buffers. We

further define following characteristic time constants: τo = Cout/gm, τa = Ca/gm,

and τm = Cm/γgm. In the limit of infinite gain i.e., gd/gm → 0 the AC transfer

function reduces to

vout(s)

vin(s)
=

1 + τas+ τaτms
2

1 + τos+ (2τoτa + τaτm) s2 + 2τaτmτos3
. (3.3)

Since the coefficients of the denominator are all strictly positive, the poles are

all contained in the left half plane and the amplifier is unconditionally stable.

However, τo ' τa, τm can result in a poor phase margin as seen in Fig 3.3. The

response for γ = 1
4

is critically damped for τ0 ' 2τa = 1
2
τm, and overdamped for

τo � τa, τm. Hence first-order settling is observed for relatively large capacitive

loads Cout � Ca, Cm.

According to the input equivalent circuit shown in Fig. 3.4 (a), the input

admittance (the reciprocal of input impedance) can be expressed in terms of the

parasitic capacitances of M2 in Fig. 3.1 as

Yin(s) =
s(Cgs + Cgb) (vin − vs) + sCgd (vin − va)

vin

. (3.4)

The dynamics of Vs, the common source of M2 and M3 coupling to the drain

of M1, can be modeled to first order as a small-signal dependence vs ≈ 1
2
(vin +

vout) / (1 + gd1/gm), where gd1 represents the drain conductance of M1. For large

source-coupling gain A1 = gm/gd1 the input admittance (3.4) can be approximately
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written as shown in Fig. 3.4 (b),

Yin(s) ≈ sCi1 + sCio

(
1− vout

vin

)
+ sCia

(
1− va

vin

)
(3.5)

with equivalent internal parasitic capacitances Ci1 = (Cgs +Cgb)/A1 on the input,

Cio = (Cgs+Cgb)/2 between the input and output, and Cia = Cgd between the input

and auxiliary node. Accounting for the additive effect of the parasitic capacitances

Cio and Cia onto the node capacitances Cout and Ca in the internal dynamics (3.1)

gives similar simplified expressions for DC and AC gains as in (3.2) and (3.3)

leading to

Yin(s) ≈
(
Ci1 +

2

A0
2 (Cio + Cia)

)
s

+
Cio (Cout − Ca) + Cia (Cio − Cia)

gm
s2 + . . .

with effective input capacitance (i.e., coefficient in s1)

Cin ≈
(

1

A1

+
1

A0
2

)
(Cgs + Cgb) +

2

A0
2 Cgd . (3.6)

The resulting input impedance

llrZin ≈
1

sCin

1

1 + τins
(3.7)

is predominantly a first-order capacitance response with cut-off frequency 1 / 2πτin

approximately
(
1/A1 + 1/A0

2
)
/ πτo, assuming Cout � Ca, Cio, Cia and Cgs �

Cgd and τin is the time constant associated with Cin. The effect is a substantial

reduction, around 20 dB, in parasitic input capacitance at low frequencies through

the source-coupling gain A1 and cascaded open-loop feedback gain A0
2.

3.3 Measurement Results

Benchtop measurements validating unity-gain functionality of the charge

buffer, fabricated in 65 nm bulk CMOS with an active area of 9.1 µm × 21 µm, are

presented in Figs. 3.5a, 3.5b and 3.5c. We used two Keithley 2400 source meters

to measure the DC gain error. Providing highly accurate inputs with one while
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Figure 3.6: Correspondence between Monte Carlo simulated and measured trans-
fer function of the designed amplifier. The AC gain and phase error is lower than
.6% while consuming 2.5 µA from a 1.2 V supply. The -3 dB frequency lies beyond
the measurement capabilities of the instrument.

measuring the output of the buffer with the other, a second set of measurements

were performed to cancel offsets between the instruments. The measured gain

error shown in Fig. 3.5a demonstrates greater than .6% accuracy over a voltage

range of 900 mV from a 1.2 V supply. Fig. 3.5b highlights the energy efficiency of

the buffer and Fig. 3.5c verifies the first order settling of the amplifier in response

to a large input step. The buffer demonstrates 99% settling well within 500 ns

matching theoretical results derived in (3.3). The transfer function measurement

shown in Fig. 3.6 was performed using a Signal Recovery model 7265 (SR 7265)

lock-in amplifier directly interfacing with the buffer. Due to limitations in the

instrumentation, measurements are not available over the entire frequency range

of the buffer.
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Figure 3.7: The noise power spectral density measured from 1 mHz-25 kHz.
ADC measurement artifacts introduce additional tones, however, the measured
spot noise at 1 kHz is 43.2 nV/

√
Hz.

The measured noise including noise from off-chip driving buffers was deter-

mined using a 4 Msps, 24-bit Analog to Digital Converter (ADC) (TI ADS-1675)

with the sampling set to 125 ksps, maximizing the number of noise-free bits. The

inputs of the buffer were driven to a known DC voltage and the ADC measured

the resultant output, shown in Fig. 3.7. The corresponding Noise Efficiency Factor

(NEF),

NEF =
Vrms

kT

√
q Itot

2πBW

is 3.13 over a bandwidth BW of 25 kHz. We observed 43.2 nV/
√

Hz spot noise

at 1 kHz comparing favorably with state-of-art integrated implementations [16].

These measurements were performed with the buffer power tuned to 5.3 µW.

We measure the input capacitance using the SR 7265 to provide an input to

the buffer through an on-chip coupling capacitor designed to have a nominal value

of 256 fF. Assuming a 10% tolerance on the capacitance, a worst case capacitance
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Table 3.1: Measured characteristics and comparison of electropotential sensing
amplifiers

[16] [64] [62] This work

Power [µW] 4.95 70,000 - 8.8

Bandwidth efficiency [µW/MHz] 49.5 - - 6.5

Total integrated input-referred noise over bandwidth [µV/
√

Hz] 0.0085 - 0.1 0.015

Input-referred noise spectral density at 1 kHz [nV/
√

Hz] 45 100 - 43.2

Gain [V/V] 1 0.7 0.01 to 1 0.995

Input capacitance Cin [fF] 60 1000 30000 7

Technology (CMOS) [nm] 500 discrete 350 65

of 307 fF can be assumed. We measured the gain by directly driving the buffers

after bypassing the on-chip coupling capacitors. The ratio of the gain through the

coupling capacitor in contrast with directly driving the buffer provides a measure of

the capacitive division between the on-chip capacitor and the parasitic capacitance,

resulting in 7fF of measured input capacitance.

The over-the-air test setup used for non-contact electric field measurements

and for Near Field Communication (NFC) measurements is shown in Fig. 3.8. The

potential difference between the sensing plates due to the field induced is buffered

and digitized. Since the area of the sensing plates is much smaller than the area of

the driven plates, the parasitics at the input can greatly degrade the signal. Mea-

surements for a single sinusoid in Fig. 3.9 and multiple types of communication

signals in Fig. 3.10 validate the broad-band sensing capabilities of this buffer. A

1.1 MHz Frequency Shift Keying (FSK) signal as well as a 1.0 MHz Amplitude

Modulation (AM) signal were applied to the driven plates resulting in an induced

field of 1.1 V/m. These distances are much shorter than the wavelengths of trans-

mitted signal, and operation is entirely in the near-field regime. The received

communication signal is given in Fig. 3.10 with >40 dB of SNR, demonstrating

near-field capacitive communication capabilities. From these measurements we

project an effective electric field sensitivity of 100 µV/m at unity (0 dB) SNR. In

addition to non-contact electropotential sensing, the charge buffering unity-gain

feature of the circuit has been further validated and tested as an integral part of

communication systems [42].
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Figure 3.8: Experimental setup used for over-the-air non-contact electropotential
sensing experiments, a high resolution 24 bit ADC digitizes the signals for further
analysis.

3.4 Conclusions

The architecture and implementation of a fully integrated circuit for unity

voltage-gain charge buffering has been presented. The architecture actively cancels

the parasitic capacitances at the input of the buffer via two-stage negative feedback

in unity-gain voltage buffering and active shielding. Measurements demonstrate

state-of-the-art performance in input capacitance and power efficiency. Table 3.1

summarizes the performance of the charge buffer circuit in the context of related

work [16,29,64]. We validated the non-contact electropotential sensing capabilities

of the charge buffer, demonstrating >50 dB SFDR for a single tone demonstrat-

ing electric field sensitivity of 100 µV/m at a detection threshold of 0 dB SNR.

The capacitive near-field communication capabilities of the system were validated

via over-the-air experiments with both AM and FSK modulated communication

signals received at high fidelity. Applications of the charge buffer in high density

integrated circuits range from non-contact electropotential sensing to low-power

capacitive near field communication.
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Figure 3.9: 1 MHz received tone sensing a field of 1.1 V/m with SNR >40 dB
over a distance of 7.5 cm. The corresponding sensitivity of the non-contact sensor,
as the extrapolated signal level at 0 dB SNR, is approximately 100 µV/m.
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Figure 3.10: Received AM signal with fc 1.0 MHz and modulation depth 25%
and received FSK signal, with fhop 0.831 MHz and 1.4 MHz with 100 kHz switching
rate. These signals are received over a distance of 7.5 cm demonstrating suitability
for use in capacitive near field communication (NFC).



Chapter 4

2 pJ/MAC 14-b 8×8 linear

transform mixed-signal spatial

filter in 65 nm CMOS with 84 dB

interference suppression

4.1 Introduction

Advances in machine learning (ML) and the internet-of-things (IoT) have

resulted in a renewed interest in analog matrix-vector multiplication (MvM) ac-

celerators [7, 48, 83]. Classification based tasks have exploited low-to-medium res-

olution multiplication and accuracy boosting algorithms in order to compensate

for the reduced resolution. Complementing classification, tasks like source sep-

aration and localization have diverse applications ranging from signal condition-

ing in communication [42] and ultrasound to electroencephalography (EEG) [52]

source localization and spike sorting, and greatly benefit from similar algorithms.

However, due to their lower resolution and limited channel count previously de-

veloped systems cannot be directly applied to this task. High-resolution analog

multiplication introduces challenges that have limited prior work to less than 6-bit

multiplication in the analog domain. Alternative approaches utilizing very high

42
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oversampling result in very inefficient solutions. High precision in matrix multi-

plication can mitigate the effects of ill-conditioned (almost singular) matrices, as

with beamforming separation of near-collinear sources, and other tasks incurring

principal component analysis [3] or independent component analysis (ICA) [52].

As seen in 4.1, a large signal dynamic range at the input can result in an untenable

dynamic range specification on the downstream dataconverters leading to greater

than 10× increase in power [4]. Thus, we present a multichannel multiple-input

multiple-out (MIMO) mixed-signal linear transform system, with analog signal

path and digital coefficient control, composed of an array of 14-bit Nested Ther-

mometer Multiplying DACs (NTMDACs) implementing analog multiplication, and

variable gain amplifier (VGA) implementing accumulation. We demonstrate state-

of-the art performance on two tasks, spectrally oblivious interference suppression

in communication signals and EEG signal separation.

4.2 Architecture

Figure. 4.2 presents the circuit architecture of one channel, or dot prod-

uct unit (DPU), in the micro-power spatial processor (SP) with 8 such DPU im-

plementing a general 8×8 real MvM. Each DPU is composed of 16 single-ended

NTMDACs pairwise forming a pseudo differential structure. The outputs of these

NTMDACs are summed onto the input node of a digitally controlled VGA. Ow-

ing to the large parallelism in passive capacitive multiplication, a gain stage is

required in order to maintain SNR. The pseudo-differential structure of comple-

mentary pairs of NTMDACs presents a constant capacitive load to the input, and is

used in conjunction with a digitally adjustable feedback capacitor across the VGA

for precisely controlled variable gain independent of NTMDAC weights. Correlated

double sampling serves the dual purpose of offset cancellation while periodically

setting the DC operating point of the VGA, shown in Fig. 4.3. The measured

transfer function of the full system demonstrating digitally programmable gain

from -12dB to 30dB in steps of 6dB is shown in Fig. 4.2. Measured power vs. -3dB

bandwidth indicates just 2 pJ of energy for each of the 64 multiply-accumulates
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Figure 4.1: Interferer suppression and signal separation with analog signal pro-
cessing and signal conditioning reduces the dynamic range requirements prior to
digitization leading to system level energy benefits.

sampled at twice the bandwidth. Figure 4.3 illustrates the nested-thermometer

coded operation of one single ended NTMDAC. The two-stage 7b+7b capacitive

structure extends thermometer coding from the 7b LSB array to the 7b MSBs by

stepping each MSB capacitor through all LSB levels prior to its full activation.

This guarantees monotonicity across all intra-stage transitions, as required for use

with online weight adaptation algorithms. A near-zero input capacitance unity

gain buffer described in chapter 3, actively shields the LSB array feeding into the

MSB array further enabling the use of a small unit capacitor, 2fF implemented as

a 3.4µm × 3.4µm custom shielded structure. Differential linearity measurements

in Fig. 4.3 show NTMDAC monotonicity at 14b, as needed to support 84dB of

interference suppression through spatial filtering.
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Figure 4.2: Circuit diagram of the proposed system and measured transfer func-
tion for various variable gain amplifier (VGA) gain and power settings. Bandwidth
vs. power and energy efficiency per multiply-accumulate (MAC).

4.3 Measurements

To quantify spatial filtering performance in a typical beamforming applica-

tion setting, we first observe the effect of beamforming coefficient quantization in

Fig. 4.4. Figure. 4.5 then characterizes signal separation by the SP in the presence

of ill-conditioned signals. The desired analog signal can be ill-conditioned due to

two primary factors: signal to interferer ratio (SIR) of received power, and inter

source angular spread. Measurements of SP performance against these validate

the 14b analog multiplication while Fig. 4.4 demonstrates the need of such high
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Figure 4.3: Nested-thermometer coded multiplying digital-to-analog converter
(NTMDAC). Principle and circuit diagram along with top-view and cross-section
view of custom 2 fF unit capacitor structure. DNL curve for the NTMDAC over
all codes at the 14-bit level.
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Figure 4.4: Effect of coefficient quantization on beamforming performance. Ex-
pected interferer suppression levels and 90% confidence bounds by Monte Carlo
simulation at three levels of quantization: 6-bit, 10-bit, and 14-bit.
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Figure 4.5: Measured interference suppression vs. signal-to-interferer ratio (SIR)
and angular spread (θ) between signal and interferer sources. Comparison with
Monte-Carlo simulated ideal 14-bit weights.

resolution when presented with an ill-conditioned mixture. Figure 4.5 shows the

effect of varying SIR for complex mixtures of a sinusoidal interferer at 225kHz

and a signal at 255kHz, at fixed 90 incident angle with weights for maximum sup-

pression determined using an online algorithm. Consistent suppression ≥ 84dB is

measured over 36dB of variation in signal power with varying SIR. Increasing the

interferer power while keeping the signal power constant results in a decrease in

performance due to clipping at the input switches. Even so, an interferer with an

input power of +6dBm was suppressed to below -73.9dB with no effect on system

gain. Also shown in Fig. 4.5, we measured interference suppression against source

angular separation demonstrating high spatial resolution with ≥ 60dB suppression

over angles ranging from 90° to 9°, and ≥ 25dB down to 1°, consistent with Monte

Carlo simulated performance at ideal 14b weight resolution. A loss of performance

at angles < 1° is observed due to the finite gain of the system. Two example

spatial filtering applications spanning the spectrum of the SP are highlighted in
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Figure 4.6: Simultaneous resolution of 64-QAM and 16-QAM modulated spec-
trally indistinguishable signals with a resultant Error Vector Magnitude (EVM) of
2.94% and 3.1%. Measured results from independent component analysis (ICA)
on EEG signals with ICA along with the results from ICA with 64-bit floating
point weights.

Fig. 4.6. Complex I/Q mixtures of 500 ksps 64-QAM, and 400 ksps 16-QAM sig-

nals emulating two-antenna RF spatial diversity were presented as four-channel

input to the SP for baseband signal separation. Despite full spectral overlap, SP

simultaneously resolved the two signals with a measured RMS EVM of 2.9% for

64-QAM and 3.1% for 16-QAM, corresponding to a BER better than 10−6. This

facilitates an increase in bandwidth, especially for in sensor networks where in-

terference from nearby nodes might burden the already constrained power. We

demonstrate the flexibility of SP by processing EEG signals. Reconstituted 500-

samples/s 24b recordings of resting-state EEG from 4 channels of a dry-electrode

headset were presented to the SP for spatially resolved separation of sources of
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Table 4.1: Comparison of state of the art mixed-signal matrix-vector multiplica-
tion systems

Zhang
ISSCC)2015

Lee
ISSCC)2016

Buhler)et.)al.
VLSI)2016

Kim)et.)al.
JSSC)2016

This)work

Application
Feature'
Extraction

Sensor'
Classifier

Feature'
Extraction

Spatial'
Filtering

Linear'
Spatial'
Filtering

CMOS)Technology)(nm) 180 40 65 65 65
Number)of)channels 1a 1a 16a 8 8
Area)per)MAC)(mm2) 0.106 0.012 0.0594 0.045 0.021

Power)(μW) 0.663 228 3856 1300 91

Signal)Bandwidth)(kHz) 10 106 100 1500 350

Power/Bandwidth)(μW/MHz) 66.3 .228 38560 866 260
Effective)Analog)Multiplicand)

(bit) 4 3 14b 8c 14
Multiply)Accumulate)Efficiency)

(pJ/MAC) 16d .12 30000d 6 2
Multiply)Accumulate)Efficiency)

/Multiplicand)Level
(fJ/MAC/Level)

1000 15' 1830 23.4 0.'12

aSerial matrix*vector.product. bOversampled,.1*bit.per.sample..
cReported 48.dB.signal.separation. dNo analog.accumulate.

brain activity by ICA [52]. The differences between off-line computed ICA for one

output component, and the SP output for 14b quantized digital weights, is well

within 1%.

4.4 Conclusions

A comparison with state-of-the-art systems for mixed-signal matrix-vector

multiplication is tabulated in Table 4.1, and spatial filtering and interference sup-

pression is compiled in Table 4.2. A key advantage of the system is its low power

consumption while maintaining high analog multiplication resolution without the

use of costly oversampling techniques; this makes it suitable for adoption in emerg-

ing smart IoT devices. The micrograph of the system, implemented in 65nm CMOS

with active area of 1.7 mm2, is shown in Fig. 4.7.
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Table 4.2: Comparison of state of the art spatial filtering and interference sup-
pression systems

Tseng et.(al.
JSSC(2010

Ghaffari et.(al.
JSSC(2014

Kim(et.(al.
JSSC(2015 This(work

Received(EVM((dB) !25 ! !28.8 !30.8

Effective(number(of bits 5 5 8 14

Angular(Resolution((°) 22.5 22.5 <5a <1a

Interferer(Cancellation((dB) 30b 15b,c 48b >80b

CMOS(Technology((nm) 90 65 65 65

Power(at(Baseband((mW) 10d 68!195e 1.3 0.396

Bandwidth(at(Baseband(
(MHz) 20 5 3 2.4

aGreater than615 dB6cancellation,6bCancellation at645° angular6separation,6cOut of6beam,6
dLO power6only,6eTotal power6reported6baseband6power6not6reported

Figure 4.7: Die photograph (65nm CMOS).
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Chapter 5

Experimental Validation of

Spatial Filtering Baseband

Processor

5.1 Spatially Aware Cognitive Radio

Fig. 5.1 shows the proposed spectrally and spatially aware receiver for Cog-

nitive Radio (CR) composed of four parts: an antenna array providing spatial di-

versity, a RF front-end acquiring broad-band RF signals, a down-converting mixer

and lowpass filter, and MIMO signal separator, followed by ADCs and DSP for
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Figure 5.1: Combined spectrum and space aware cognitive radio with pro-
posed MIMO baseband receiver. The highlighted spatial filter is the focus of this
dissertation.
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identifying signals, deciding usable RF bands, and updating digital weights for

signal separation. This dissertation focuses on the MIMO spatial signal separator

module.

A distributed geometry of multiple antennas receives a linear combination of

signal sources S1, . . . Sn present in the environment, each source and each antenna

with a unique complex coefficient identifying mid-band amplitude gain and phase

lag [32]. The amplitude and phase depend on the channel characteristics of each

source as determined by attenuation and delay of its wavefront in relation to the

antenna array. In turn, the amplitude and phase of the wavefront depend on

frequency, and are approximately constant in a narrow frequency band. Hence,

spectral and spatial diversity in the signal sources can be effectively leveraged by

performing two-tiered spatio-spectral signal separation: first tuning to a subset of

signal sources within a given spectral band, followed by MIMO signal separation

specific to that band. The maximum number of narrowband sources that can

thus be separated equals the product of the number of spectral bands (spectral

multiplicity) and the number of antennas (spatial multiplicity). For broadband

sources extending across multiple bands, the spectral components are separated

separately in each band but can be identified and recombined for reconstruction,

based on correspondence in angular or other spatial information derived from the

MIMO weights.

The system in focus interfaces with an intermediate frequency (IF) down-

converter that covers sixteen 3-MHz spectral bands spanning 48 MHz with a center

frequency tunable from 100 MHz to 3 GHz, which in turn interfaces with a planar

square array of four antennas. An RF front-end circuit at fLO RF is provided sep-

arately for each antenna, implemented on other integrated circuits using N -path

tunable band-select filter [79], low-noise amplifier and RF quadrature mixer [40].

5.2 MIMO Baseband Receiver Architecture

We briefly introduce the harmonic rejection mixer architecture (HRM)

used [43], before proceeding to describe the MIMO analog spatial filter (MAC).
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5.2.1 Analog signal path

A 4-channel capacitive harmonic rejection mixer (HRM) receiver directly

up/down-converts a selected 3 MHz band in the RF complex inputs I1−4 and Q1−4

(48 MHz bandwidth) to baseband complex signals IHRM 1−4 and QHRM 1−4. Follow-

ing the 4-channel HRM, the MAC implements 4×4 complex spatial filtering for

signal separation. The MAC 4×4 complex linear transform is implemented as 8×8

real matrix-vector multiplication in the I and Q components, where redundancy in

the real weighting Wij can be harnessed to mitigate analog coefficient mismatch as

needed. Relying just on spatial diversity, the MAC is capable of separating signals

with completely overlapping spectra. For example, jammers appearing in-band

due to the RF front-end’s down-conversion of harmonic blockers fRFJ at multiples

of fLO RF (e.g. fIJ + N ′ fLO RF folding onto fI1 in-band) can still be separated by

the MAC.

5.2.2 MAC resolution

To resolve residual mismatch in the HRM outputs and implement MAC

signal separation over a wide range of angles, high accuracy is needed in the mul-

tiplying digital-to-analog converters (MDACs) for the digital weights Wij in the

MAC analog signal path.

These requirements must be met under power constraints while providing

full programmability of the analog signal path by the DSP, adding further to the

design challenge. The use of capacitive charge division to implement harmonic

rejection in the HRM, as well as MDAC spatial filtering in the MAC, is crucial

to the large reduction in power possible due to this architecture. To allow ag-

ile operation in dynamic CR environments, high-bandwidth (>104 updates/sec)

programming of the MIMO receiver parameters (HRM frequency and gain pa-

rameters, and DAC digital weights Wij) from external DSP is supported via a

serial-peripheral-interface (SPI) bus having only 4 control lines.
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5.3 MIMO Analog Core

The MAC implements analog preprocessing on the outputs of the HRM re-

ceiver for further preprocessing, prior to digitization. The 8 × 8 matrix composing

MAC consists of complementary 14-bit split capacitor multiplying digital-analog

converters (MDAC) shown in Fig. 5.2 (a), with an effective 10-bit resolution. In

all experiments reported here, unless mentioned otherwise, the matrix coefficients

are calculated from the angle of incidence of the RF signal and used to beamform

the undesired incident signal at baseband before digitization. Compared to the

conventional approaches that rely on LO-phase shifting [26] with N -path filtering

techniques, we generate phase shifts by implementing a rotation matrix using com-

plex matrix-vector multiplication with the 8 × 8 weight matrix. The minimum

resolvable angle and the dynamic range in the resolution are, thus, determined by

the accuracy of the MDAC. In order to ensure sufficient MDAC precision, offset

cancellation at the MDAC and the OTA is implemented using Correlated Double

Sampling (CDS) with the clock waveform in Fig. 5.2 (b), setting the input DC

bias point of the capacitively coupled differential amplifier. The CDS frequency

can be set to 500 Hz that is low enough to not disturb measurements. We create

a custom shielded capacitive array structure for both the MDAC and the CF in

the OTA, resulting in a programmable gain range of -12 dB to 24 dB in steps of

6 dB at the output in addition to 14-b weighting of individual Wij coefficients.

The programmable gain is realized by digitally selecting different numbers of unit

capacitors to constitute CF in the feedback loop. A standard fully-differential

folded-cascode OTA with the same common-mode feedback as in Fig. 5.3 is em-

ployed for the MAC.

In comparison to the largely passive MDAC in the MAC, successive approx-

imation ADCs have many more active components such as comparators, pream-

plifiers, track-and-hold circuits operating at higher speeds. They thus have higher

energy costs for the same effective resolution and dynamic range. The MAC is used

in conjunction with a base-band DSP that can evaluate and implement weight up-

dates via an online blind spatial filtering algorithm [12].
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Figure 5.2: MIMO analog core (MAC) for signal separation by spatial filtering.
(a) MAC circuit with multiplying digital-to-analog converter (MDAC) implement-
ing digitally programmable analog linear weighting in the MAC signal path. To
reduce the effect of offsets in the MDAC and the OTA, a correlated double sampling
(CDS) scheme is employed. (b) Timing diagram for CDS.
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sistors operate in sub-threshold for high-efficiency in gm/I and large output swing
range. (b) Common-mode feedback (CMFB) circuit.

5.4 Experimental Validation

The HRM and MAC functional blocks are tested independently, and in

their intended cascaded succession. This dissertation focuses on results from the

MAC. The complete system was validated for separation of RF sources with an

antenna array and external front-end.

5.4.1 MAC characterization

The MAC experiments tested its capability to implement linear transforms

of the analog input signal for beamforming of the input as well as compensating for

linear gain errors in HRM channel properties. The measured two-tone separation

capability of the MAC in isolation, shown in Fig. 5.4, demonstrates suppression

of an in-band jammer signal S2 20 dB above the signal tone S1 at the input, to

48.5 dB below the signal tone at the output, for a total of 68.5 dB jammer sup-

pression. Synthetic mixtures with the algebraic sum and difference of the jammer

S2 and 20 db attenuated signal S1 were presented through multichannel arbitrary

waveform generators to two of the MAC inputs, with the other inputs grounded.
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Figure 5.4: Measured in-band jammer rejection by the MAC for two synthesized
inputs with linear mixtures of a signal S1 and an in-band jammer S2 +20 dB above
S1, showing 68.5 dB jammer suppression at the MAC output.

The DAC digital weights Wij were set to invert the synthesized linear mixing of

the signals at the input, with fine adjustments for maximum nulling of the jammer.

5.4.2 Combined MIMO baseband receiver characterization

For demonstrating both spectral and spatial filtering capabilities, synthe-

sized waveforms composed of spectrally fully overlapping mixtures of QAM and

QPSK along with a 3rd harmonic blocker 24 dB above the signals are presented to

the MIMO baseband receiver. Four single-to-differential amplifiers each with 6 dB

gain are employed as shown Fig. 5.5 (a). Fig. 5.5 (b) and (c) show spectra and

time domain waveforms at each stage of the signal chain, through the HRM and

the MAC. The mixture of QAM-QPSK is shown separated by the MAC in two

complex channels. Eye diagrams and I/Q constellations for the recovered 16-QAM

and QPSK signals were acquired by synchronizing the oscilloscope readout of the

MAC outputs with the generation of the HRM inputs and LO. The EVMs of the

recovered signals, 2.69% for QPSK and 3.64% for 16-QAM, are obtained from the

constellations shown in Fig. 5.6. The capability of the MAC to separate signals

with completely overlapping spectra owes to its reliance on spatial rather than

spectral diversity. Indeed, techniques of independent component analysis for blind
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Figure 5.5: MIMO baseband receiver measurements demonstrating separation of
signals with completely overlapping spectra in the presence of a strong harmonic
blocker. (a) The measurement setup (b) Spectra obtained at each stage of the sig-
nal chain. The HRM output (the MAC input) contains the downconverted mixture
while suppressing the blocker by 69 dB. The MAC simultaneously separates the
16-QAM and QPSK mixtures in two complex channels. (c) Time domain wave-
forms at each node. Eye diagrams are obtained by synchronization of oscilloscope
readout with the signal inputs.

source separation (e.g., [12]) distinguish signals purely by statistical criteria and

ignore their temporal spectral content.
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5.4.3 System validation with antenna array and

RF front-end

To evaluate spectral and spatial separation performance in realistic RF con-

ditions, measurements were conducted using an RF front-end with four antennas

receiving spectrally overlapping and modulated 2.4 GHz signals from two transmit-

ters in an un-controlled, non-line-of-sight, multi-path environment with the setup

shown in Fig. 5.7 (a) and (b). The two TX antennas were positioned more than



61

FM
fLO_RF = 2.4 GHz
fOFFSET = 17.15 MHz
fMOD = 100 kHz
Depth of MOD. = 0.25

ASK
fLO_RF = 2.4 GHz
fOFFSET = 17 MHz
Symb. rate = 0.2 Mbps
Depth of MOD. = 0.25

Signal Gen. E4438C

Signal Gen. E4438C

TX0

TX1
RF font-end + 
MIMO RX.
fLO_RF = 2.4 GHz
fLO = 16.5 MHz

RX0-RX3

ASK

FM

0.4 0.5 0.6 0.7 0.8 0.9

-70

-60

-50

-40

-30

Am
pl

itu
de

 (d
Bm

)

Frequency (MHz)

Received 
mixture

with interleaved
spectra

Recovered ASK 

FM 
suppressed
by -38 dB

Recovered FM

ASK
suppressed 
by - 38 dB

Metallic 
objects 

obstructing 
LOS

M
et

al
lic

 
ob

je
ct

s

TX
1

TX
0

RX0-RX3

DUT
HRM-MAC IC

λ/4 
LO

RF front-end board

TEST board
Antennae

board

0.4 0.5 0.6 0.7 0.8 0.9

-70

-60

-50

-40

-30

Am
pl

itu
de

 (d
B

m
)

Frequency (MHz)
0.4 0.5 0.6 0.7 0.8 0.9

-70

-60

-50

-40

-30

Am
pl

itu
de

 (d
Bm

)

Frequency (MHz)

Figure 5.7: Proof-of-concept RF source separation in an uncontrolled open en-
vironment. The HRM-MAC IC outputs show recovery of non-line-of-sight RF
sources with overlapping ASK and FM modulation spectra, with suppression of
residual spectral components -38 dB below the signal of interest.

1 m away from the four RX antennas, with a metallic plate inserted in between

to obstruct the line-of-sight path. Hence all received contributions are multi-path

to emulate challenging real-world use cases. The MIMO baseband receiver (DUT)

can be seen along with the RX antennas. An ASK signal at 2.417 GHz and a

FM signal at 2.41715 GHz were chosen for the two RF sources, each with modu-

lation depth of 25%. To quantify separation capability, first the down-converted

signal was measured with the MAC weights set for no separation (identity weights,

Fig. 5.7 (c)) and then the same test was repeated with MAC weights updated in

a closed-loop fashion to separate out either of the two signals (Fig. 5.7 (d) for

the ASK signal, Fig. 5.7 (e) for the FM signal). The digital weights were derived

with an online greedy algorithm that maximizes the ratio of the peak power in

the spectra of the down-converted, modulated signals. A net 38 dB of separation

between the two signals was observed at the MAC outputs.
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Chapter 6

Digitally Adaptive High-Fidelity

Analog Signal Processing

Insensitive to Capacitive

Multiplying DAC Inter-Stage

Gain Error

6.1 Introduction

There has been an unprecedented growth in the capabilities of machine-

intelligence [74] and autonomous systems [21]. Moreover, autonomous systems are

projected to have increasingly complex interactions with the environment, and in-

creased communication with remote locations, all while minimizing energy use [51].

Contemporary architectures for such intelligent systems will are structured with

sensor front-ends providing inputs, followed by signal conditioning and filtering,

and analog-to-digital converters (ADCs), the outputs of which feed the digitized

sensory information to a digital signal processing (DSP) to later be communicated

to a remote server [56]. In the absence of local processing, the latencies introduced

by remote communication and processing in conjunction with the inflexibility of

63
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Figure 6.1: Adaptive signal processing flow in (a) conventional signal acquisition
with adaptation implemented in digital signal processing (DSP), and (b) energy-
efficient IoT with increased sensory-level adaptive ASP trading reduced analog-to-
digital (A/D) conversion and DSP.

remote, offline learning, renders low-energy, autonomous systems impractical for

use in complex environments. Thus, low-power on-chip intelligence is a prerequi-

site for autonomous systems interacting with the environment, making decisions,

and taking required actions without human supervision. Low-power always-on

reactive sensors for energy constrained applications are expected to incorporate

machine learning algorithms [3] in order to boost their capabilities. A subset of

such algorithms termed online adaptive algorithms are particularly well suited for

use in autonomous devices. These algorithms receive data serially, updating their

models after each new example so as to track changing conditions adapting their

models over time. Since these algorithms place an increased computational burden

on the underlying hardware, and thus heavily tax the system energy/power budget

alternative architectures must be explored as a possible method of alleviating these

increasingly stringent specifications.

Illustrated in Figure 6.1a, the traditional signal processing pipeline has

adopted an architecture where available information is first digitized and then the
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Figure 6.2: MVM is a central to signal processing at all stages of machine learning
and signal processing. Various algorithms like compressive sensing (CS), principal
component analysis (PCA), and support vector machines (SVMs) operate using lin-
ear transforms and linear maps. Multiplying digital-to-analog converters (MDACs)
efficiently implement analog domain multiplication with digital precision.

primary information is extracted through multistage digital processing [33]. While

general and widely applicable, this approach precludes analog preprocessing [37]

and the resultant energy savings. Embedding very low power analog preprocessing

subsystems, shown in Figure 6.1b, and thus removing irrelevant information can

help amortize the overhead of analog-to-digital conversion, and the subsequent

digital processing. Thus, analog preprocessing of the signal implementing some

form of dimensionality or dynamic-range reduction can not only lead to energy

savings, but also enable the adoption of many system level approaches previously

considered unfeasible [5, 80].

MVM is a central computational primitive that is used across a large variety

of tasks, as illustrated in Figure 6.2. While custom DSP accelerators can imple-
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ment this primitive in a compact and efficient manner, further gains are possible

due to the amenability of MVM to passive analog implementations. Thus, efforts

aimed at increasing computational efficiency have resulted in Analog Matrix-Vector

Multiplication (aMVM) systems designed to contribute at all levels in the signal

pipeline, from sensory signal conditioning [7, 37, 83], local processing [39], and

communication [43], to high-performance accelerators [48]. However, algorithmi-

cally overcoming the errors introduced by analog signal processing has remained

under-explored. Thus, the main thrust of this chapter has been to propose al-

gorithmic and circuit techniques for adoption in online algorithms, to facilitate

high-resolution mixed-signal matrix-vector products in the presence of mismatch.

The central contributions of this chapter are two-fold. In Section 6.3 we an-

alyze the energetic trade-offs associated with implementing high-resolution aMVM

using capacitive MDACs. We show that the performance of many adaptive al-

gorithms is dependent on MDAC non-linearity and capacitive matching. In Sec-

tion 6.4 we propose an MDAC topology-aware algorithmic means of overcoming

the effects of these nonlinearities in adaptive and online algorithms.

6.2 Background

An illustration of aMVM and its applications to a variety of tasks is provided

in Figure 6.2. MVM operations multiply elements in a vector x with elements in

the matrix W and accumulate the results to produce y:

yi =
n∑

j=1

Wi,jxj. (6.1)

Analog signal processing kernels implementing MVM occupy a range of

niches, and thus must satisfy a variety of specifications regarding energy, speed,

and resolution. To meet these specifications, various designs have been imple-

mented using current-mode, voltage-mode, or charge-mode techniques. Current

mode circuits [13, 50] can achieve high-dynamic range computation, using sub-

threshold and translinear circuits, this is particularly useful under reduced supply

voltage conditions. However, these circuits are highly susceptible to PVT vari-
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ations, which is exacerbated at low currents, especially in modern nano-meter

processes. In contrast, capacitive MDACs face severe area and energy penalties in

order to achieve high-dynamic range, but can be more robust to variations owing

to the superior matching performance of capacitors.

6.2.1 Multiplying Digital-to-Analog Converters

Capacitor sizing in MDACs dictates performance, determining energy due

to CV 2 driving, and switching losses, as well as accuracy due to mismatch induced

errors. Capacitor sizing, thus trades-off energy with accuracy. Recent experiments

on subfemto Farad capacitors in deep-submicron CMOS processes have demon-

strated better than 1% matching, leading to approximately 6-bits of performance.

However, a variety of signal processing algorithms require high-precision MVM to

be useful (illustrated in Figure 6.6, and quantified in Figure 6.7). This is appli-

cable in a variety of tasks ranging from beamforming separation of near-collinear

sources, principal component analysis [7], independent component analysis [37] to

adaptive filtering [1], and signal processing.

Illustrated in Figure 6.3, the effect of intra-array random mismatch is se-

vere in the C-2C DAC. This is due to the MSB capacitor implemented using a

unit capacitor, and exacerbated by the effect of parasitics on the coupling and at-

tenuation capacitors. Thus, despite occupying minimal area, amenability to unit

capacitor based implementations, and low switching energy the C-2C DAC has not

seen widespread adoption in applications requiring high-resolution.

6.2.2 Processing Gain

The improvement in the signal-to-noise/signal-to-interferer ratio from em-

ploying aMVM for signal processing comes at the cost of increased area and res-

olution in aMVM, and increased analog processing through parallelism. We refer

to this improvement in the signal-to-interferer ratio as processing gain, similar to

processing gain in spread-spectrum techniques [63]. An example of spatial pro-

cessing gain is provided in [37, 43], where spatially selective filtering of the signal
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Figure 6.3: Common topologies for capacitive multiplying DACs, (a) a binary
DAC, (b) thermometer DAC, (c) C-2C ladder DACs, and, (d) a segmented-DAC
structure with each segment implementing a thermometer DAC. These topologies
differ not only in their sensitivity to mismatch, and driving energy, but also in
other properties like monotonic behavior and the frequency and location of the non-
monotonicity. The simulations illustrate the effect of intra-array 10% capacitive
mismatch on the static differential non-linearity (DNL).

reduces interferer power while maintaining the signal dynamic range, enabling

lower resolution digitization and hence leading to substantial energy savings. This

increased analog processing in turn comes at an energetic cost, the balance of

which is explored in Section 6.3. Also deteriorating the performance of the ASP

system, component mismatch can dramatically reduce the processing gain. To

avoid this, ASP systems are over-engineered for the final performance, leading to

an increase in the expended energy. This generally entails increasing the accuracy

of the MDACs implementing the aMVM system, further increasing the energy ex-

penditure. A more quantitative discussion of component accuracy on algorithmic

performance is presented in Section 6.4.

It is crucial when extracting spatial processing gain from an ASP system

that the analog system implement the entire linear transform step. Shown in

Eq. (6.1), a linear transform entails parallel multiplies followed by accumulation.

Multiplication of the signals (x) with elements from W in the absence of the

accumulation is identical to uniformly providing gain/attenuation to each channel

with no resultant processing gain. Processing gain only occurs after accumulation

of the resultant product. Thus, implementing processing gain via dynamic range

reduction prior to digitization entails at least a partial analog accumulation.



69

0 20 40 60 80 100

System Dynamic Range (dB)

10
-20

10
-15

10
-10

S
y
s
te

m
 E

n
e

rg
y
 (

J
)

0.1

  1

  3

Inefficiency P
sw

ADC

ADC+aMVM G=60dB

ADC+aMVM G=40dB

ADC+aMVM G=20dB

System

Figure 6.4: Variations to system energy limits Esys = Psys/fsig according to
Eqs. (2.2)-(2.8) with an inefficiency factor on η = {.1, 1, 3}, A = 8, α = 2 and
processing gain G = DRprior/DRpost = 20, 40, and 60 dB. At lower system dynamic
range DRpost the energy of aMVM dominates that of SAR ADC, up to the cross-
over point where the processing gain is limited to unity.

6.3 Energy Costs of Capacitive aMVM

Analog signal processing can facilitate a wide variety of technologies for sen-

sory acquisition and emerging communications. The central examples presented in

this chapter focus on adaptive filtering, which has severe dynamic range require-

ments [75]. However, it should be noted that analog signal processing has had

wide applicability in machine learning, where support vector machines have been

demonstrated [24] and signal processing, where micropower implementations have

enabled beamforming [11] and sound localization.

In what follows, we establish principles for analog processing to ensure over-

all energy savings compared to the conventional approach of directly quantizing

the signal and operating upon it with DSP. For ease of notation, we consider a

processing gain resulting from spatially filtering an interference source. This mani-

fests as a reduction in the dynamic range specifications for a down-stream digitizer.

The same principle applies to dynamic range reduction by feature extraction in
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other forms of signal processing.

6.3.1 Power Efficiency

Consider the power requirements for a successive approximation register

(SAR) ADC with a binary weighted capacitive DAC with three main constituents:

PSAR = Pdriver + Pmean,switch + Pcomp. (6.2)

The power for the DAC driver Pdriver is bounded by [53]

Pdriver = 16fsamp kBT DR (6.3)

where fsamp is the sampling frequency, kB is the Boltzmann constant, T is absolute

temperature, and DR is the dynamic range. The mean switching power over all

codes Pmean,switch, assuming a merged capacitor switching based SAR [31], is

Pmean,switch = ηfsamp

n−1∑
i=1

2n−3−2i
(
2i − 1

)
CuV

2
ref

where η is an inefficiency factor on the DAC switching, Cu is the unit capacitor,

and n = (DR[dB]− 3) /6 is the ADC number of bits. Minimum capacitor sizing

for thermal noise1 results in

Pmean,switch = 12kBTfsamp 2n

n−1∑
i=1

2n−3−2i
(
2i − 1

)
. (6.4)

Finally, the switching power of the comparator Pcomp is bounded by [54]:

Pcomp = 12fsamp kBT nDR. (6.5)

Though greatly simplified, the resultant expression for PSAR provides a lower-

bound on power consumed for an n-bit SAR ADC.

Now, consider the presence of an interfering signal at signal-to-interference

ratio SIR, which necessitates proportionally greater DR for the ADC to resolve the

input signal amid the interferer without overload distortion. In turn, the greater

1We size Cu = 12 kBT 2n/V 2
ref to equate thermal and quantization noise, rather than sizing

for mismatch, for a lower energy bound.



71

Figure 6.5: Minimum energy limits as in Fig. 6.4, with aMVM parallelism N = 1,
4, and 8 according to Eq. (6.7), at 10% parasitic capacitance (λ = 0.1). Amplifier
gain A is increased in order to restore signal levels to full-scale for downstream
ADC to counter the attenuation resulting from parallelism.

ADC DR leads to higher ADC power consumption according to Eqs. (6.2)-(6.5).

A suitable aMVM front-end subsystem capable of suppressing the interferer and

restoring the signal to full strength prior to quantization can hence substantially

reduce the ADC power consumption, albeit at some aMVM power cost.

Capacitive aMVM incurs power costs mainly for three operations: changing

the capacitive weights Padapt, driving the capacitor array Parray, and restoring the

signal with gain Pgain. The minimum power required to drive a capacitor with a

sinusoidal signal with frequency fsamp = 2fsig at a given SNR is given by:

Parray = 8fsigkBT SNR. (6.6)

Under the simplifying assumption relating the signal SNR to its dynamic range [54],

the aMVM power reduces to

Parray + Pgain = 8fsig(DRprior + AαDRpost)kBT (6.7)

with closed loop gain A, amplifier inefficiency factor α ≥ 1, and dynamic range

DRprior prior to and DRpost post the aMVM gain stage. Continuous-time passive
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multiplication imposes a constant load on the drivers, in contrast to a switching

structure which incurs an additional power cost. Due to the improved energy

efficiency of passive multiplication, we choose that architecture over alternative

switching architectures [48]. The net power of the combined aMVM-ADC system

is then given by:

Psys = Parray + Pgain + Pmean,switch + Pcomp (6.8)

in which the driver power (6.3), mean switching power (6.4), and comparator

switching power (6.5) for the SAR ADC are incurred at the post dynamic range

DRpost. Note that the ADC post driver power Pdriver is subsumed by the aMVM

active gain power Pgain through the inefficiency factor α. The aMVM provides

processing gain to boost the signal relative to interferer which relaxes the dynamic

range accordingly, where the processing gainG = SIRpost/SIRprior = DRprior/DRpost.

Thus, the combined aMVM-ADC system incurs a reduced cost for the ADC

power PSAR at the lower dynamic range DRpost, at the expense of aMVM power

Parray + Pgain providing the processing gain G. We normalize the power measures

Eqs. (6.2)-(6.8) by fsig and as such determine the minimum system energy limits

Esys = Psys/fsig in Fig. 6.4. We show that the aMVM can reduce the cost of digiti-

zation, bounded by the processing gain G of the aMVM system. At lower system

dynamic range the energy of aMVM dominates that of SAR ADC, where the cross-

over point is determined by unity lower limit on processing gain. At higher system

dynamic range, the benefits of aMVM are bounded by the processing gain, and

it can be seen that the ADC energy cost once again dominates. A caveat to the

analysis is that at higher system dynamic range, oversampling data-converters are

more energy efficient and practical than SAR ADCs.

6.3.2 Exploiting Parallelism for Analog Signal Processing

The inherent parallelism of analog computation offers several distinct ad-

vantages, such as the innate capability of accumulating charge from multiple

sources onto a single wire through shared connection [69]. The improved through-

put from parallelism further benefits more computationally intensive applications [24].
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Furthermore, applications in spatial filtering and multichannel sensing require par-

allelism in order to derive spatial processing gain. Despite these advantages, recent

work implementing aMVM through highly energy-efficient passive charge shar-

ing [7, 48, 83] has not aggressively pursued parallelism. This is largely due to

dynamic range limitations in massively parallel analog circuit architecture. In this

Section we highlight some of these limitations along with methods to overcome

them.

Highly parallel charge-redistribution capacitive arrays for aMVM suffer

from gain error and signal level degradation as a result of parasitic capacitance

as well as signal attenuation onto the parallel signal path. Consider the paral-

lel connection of N capacitive multiplying DACs to compute the analog sum of

N weighted inputs,
∑N

j=1Wijxj with digital weight coefficients Wij and analog

voltage inputs xj. Passively connecting this aMVM output directly to the input

of a SAR ADC, with another capacitive DAC for the ADC reference connected

in parallel, results in charge-sharing attenuation of the voltage signal by a factor

CDAC / (NCDAC+Csamp+Cpar), where CDAC is the Thevenin equivalent capacitance

of each multiplying DAC, Csamp is the sampling capacitance of the ADC reference

DAC, and Cpar represents all parasitic capacitance on the shared aMVM-ADC

node. Typically, the multiplying and reference DACs are identical, CDAC = Csamp,

and the parasitics result from bott om-plate capacitance Cpar = λ(N + 1)CDAC

where λ ≈ 0.1. Thus, the attenuation factor can be approximately expressed as

1 / (N + 1)(1 + λ). The ADC reference is also similarly attenuated, exacerbat-

ing the effect of the accumulating noise degrading the SNR increasing the already

stringent ADC specifications further.

A gain element following aMVM and doubling as ADC driver counters this

attenuation at an increase in system energy as illustrated in Fig. 6.5. In particular,

restoring signal levels back to full-scale to reduce the DR burden of the ADC comes

at the cost of increased complexity and power (Pgain in Eq. (6.7)) of the aMVM

active gain stage. This energy cost for the gain stage may be substantial where

the aMVM costs dominate; however, the ADC cost dominates at higher system

dynamic range, more than amply amortizing the cost of energy required to provide
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the restorative gain (Eq. (6.7)).

6.3.3 Improving MDAC Efficiencies

Figure. 6.4 illustrates the effect of DAC switching efficiency on the ADC

power. However, the equations described in Section 6.3 have been largely topology

independent, albeit topology constrained since the topology indirectly constrains

the signal dynamic range, signal-to-noise ratio (SNR), and other factors. Adap-

tive analog systems that entail multiple parameter updates may also benefit from

energy and area efficient MDAC topologies such as the C2C DAC [68]. MDAC

switching efficiency can have a major impact for an adaptive or online-learning

system entailing many parameter updates. For such a system, multi-stage DAC

topologies are well suited due to their amenability to compact high-resolution im-

plementations and very low switching energy [68]. Although multi-stage MDAC

topologies are area and energy efficient, inter-stage gain errors often introduce

large static non-linearities as we shall demonstrate in Section 6.4.1. Thus, if the

adoption of MDACs in adaptive systems is to provide an energetic advantage, the

hardware and adaptive algorithms must work in concert [82].

6.4 Algorithms for High-Dimensional

Analog Signal Processing

Designers conventionally compensate for capacitive mismatch in MDACs

through oversizing the unit capacitor, leading to an increase in system power and

area. An algorithmic approach compensating for these errors can improve the

system efficiency if the overhead of this algorithm remains low. Thus, algorithms

requiring extensive calculations [36,44] for optimization impose too large an energy

burden and the recovered processing gain might not result in sufficient energy

savings.
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Figure 6.6: We use MDACs to implement the Least Mean Squares (LMS) al-
gorithm for a two-parameter system over 100 iterations, as in Figure 2.1b. The
estimate of the target is greatly affected by the MDAC component mismatch and
non-monotonicity. For a well matched system a the algorithm quickly converges
to the true value to within an arbitrarily small error, b the performance degrades
slightly when MDAC components are well matched excepting a few non-monotonic
codes (as in Figure 6.3(d)), and c the performance deteriorates significantly in the
presence of very poor matching in MDAC components.

6.4.1 Algorithms for Adaptive Systems

Gradient descent is one of the most popular optimization algorithms in use

in contemporary learning and adaptive systems. At its crux, gradient descent aims

to minimize an objective function E(ω), parameterized by a model’s parameters

ω ∈ Rd by updating the parameters in the opposite direction of the gradient of the

objective function. The parameter update for gradient descent is typically written

as:

∆ω = −η∇ωE ,

where ω is the weight parameter, E the error functional, ∇ωE the error gradient,

and η is the step size, which needs to be small and positive to ensure convergence

to a local minima. Under the conditions of convexity, this guarantees convergence

to the global minima, since for a convex function the local minima is the global

minima. The LMS algorithm, widely used in adaptive signal processing [75] is an

example of stochastic gradient descent, a variation on gradient descent where the
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explicit gradient isn’t calculated.

For a broad class of problems like empirical risk minimization, LASSO

minimization, and box constraint problems, where the objective function is sep-

arable or block separable, another class of methods termed coordinate descent

(CD) can converge to the optima faster [85]. CD methods minimize the objec-

tive function by solving a set of minimization subproblems. This can provide an

acceleration over gradient descent methods when the individual scalar minimiza-

tion problems are simpler than the minimizing the composite. When considering

multi-dimensional ASP implemented via MDACs, coordinate descent approaches

prove to be amenable to mapping to a multi-MDAC approach with each MDAC

typically implementing one coordinate/dimension.

In coordinate descent, generally, each coordinate is visited several times to

reach a minimum, with the order of the visit called the sweep pattern. For a de-

terministic sweep pattern, we can write the algorithm for CD in an M -dimensional

system with error functional E(ω) as shown in Algorithm 1.

Algorithm 1 Coordinate Descent

procedure CD(E , ω,M) // CD on E
set k → 1 and choose x0 ∈ RM

repeat

choose index ik ∈ {1, 2, 3, . . . ,M}
ωk+1 ← ωk − ηk

[
∇E(ωk)

]
ik
eik for some ηk ≥ 0;

k ← k + 1

until Termination test is satisfied

end procedure

Here, ηk is the step-size at the kth iteration, and eik is the determined error.

Algorithm 1 can be extended to block-CD algorithms in a straightforward way, by

updating a block of coordinates rather than a single coordinate.

While these algorithms have long been analyzed for implementation in digi-

tal systems and digital signal processors, analysis has generally been restricted the

effect of fixed-point operation [17] and quantization [19, 20]. However, adoption
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within ASP systems composed of MDACs requires further analysis including the

effect of mismatch and other MDAC errors which has remained largely unexplored.

Furthermore, when optimizing some objective function g(), or interchangeably the

error functional E , gradient, and coordinate descent require that g be a smooth

continuous function, with additional constrains on Lipschitz continuous differen-

tiability and convexity required for analytical tractability. This places much more

stringent constraints on the static non-linearity requirements on the implemented

MDACs. To study these effects, we simulate the two-parameter adaptive system

shown in Figure 2.1b implementing ASP with 8-bit MDACs. Figure 6.6 highlights

the effect of the differential non-linearity (DNL) on such a system for three in-

stances. For MDACs with contained static non-linearities as in a the algorithm

quickly converges to the true value to within an arbitrarily small error. With lim-

ited instances of deviations in the DNL as in b, the performance degrades slightly,

such scenarios would be encountered in topologies shown in Figure 6.3(d). When a

highly compact and energy efficient topology like the C-2C MDAC (Figure 6.3(c))

is used the performance deteriorates significantly as shown in c. A more com-

prehensive quantification of this result is provided in Figure 6.7, with the peak

signal-to-noise ratio of the reconstructed signal, serving as an indication of the

error in the reconstruction filter coefficients estimated via LMS.

6.4.2 Errors in Multi-Stage Capacitive MDACs

Consider multi-stage capacitive MDACs as shown in Figure 6.3 (d). In this

categorization a thermometer ( Figure 6.3 (b)) is composed of a single segment,

while an N-bit C-2C ladder DAC is composed of N segments ( Figure 6.3 (c)).

Without loss of generality [9] we define inter-stage gain in terms of a radix,

γ, in this formulation an ideal N−bit C-2C ladder MDAC γ = 2. For the gen-

eral case, a multiplication code b = (b1, b2, b3, . . . , bN) , bi = ±1 applied to an

uncalibrated radix-γ C-2C MDAC results in an effective analog multiplicand W :

W =
N∑
i=1

biγ
−i, γ ≥ 1.

Analysis of this transfer function reveals that for γ > 2 the largest systematic
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Figure 6.7: Effects of MDAC static non-linearity and resolution on LMS perfor-
mance. Expected PSNR between signal and reconstructed signal after 100 itera-
tions (µMSE) and the standard deviation (σMSE), as determined by 500 runs in a
Monte Carlo simulation at five levels of quantization: 8-bit, 10-bit, 12-bit, 14-bit,
and 16-bit. The signal reconstruction PSNR is significantly lowered in the presence
of component mismatch with ±1 LSB errors resulting in as much as 30 dB loss in
performance.

errors occur at the mid-point of the transfer function with the code transitioning

from all LSB contributions to only the MSB contribution. An example for γ = 2.4

is shown in Figure 6.8a. For an N -bit DAC we denote this error by emax,N , where

emax,N = 2

(
γ−1 −

N−1∑
i=2

γ−i

)

emax,N = 2γ−1

(
1− γ−1 1− γ−(N−1)

1− γ−1

)
. (6.9)

Shown in Figure 6.9a, the corroboration between the Analytical and Simulated

errors validates the analytical model. At γ ≤ 2 the uncharacterized (uncalibrated)

MDAC transfer function has larger errors due to non monotonicities in the transfer

function. However, a full characterization and calibration involving a remapping
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Figure 6.9: Effects of multi-stage gain for MDAC with radix γ on effective MDAC
resolution. Two measures of resolution are provided, a shows the relative size of the
maximum error according to Eq. (6.9) showing a dramatic reduction in resolution
for γ > 2 and a milder effect for γ < 2, b illustrates the performance of the S2GD
algorithm as measured by the mean squared error and its bounds.
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of codes to their minimum error values dramatically reduces this error as shown

in Figure 6.8. In contrast, the errors introduced by radix > 2 remain unchanged

despite calibration since the transfer function is monotonic and any error cannot

be corrected for through redundancy.

Since a brute-force based calibration is unfeasible in practice, we explore

alternative adaptive strategies to improve upon the performance of multi-stage

capacitive multiplying DACs when applied to ASP. The successive approximation

algorithm, when applied using a radix-γ DAC, with single bit comparison per stage

leads to performance on-par with a fully calibrated MDAC as seen in Figure 6.9a.

This follows from a result introduced by Rényi [66] on β approximations, leading

to applications in offset compensation in non-binary ADCs posited in [35], as well

as [9]. With a foundation based on these results, we demonstrate the effect of

radix-errors on the operation of the radix-γ bit-level successive approximation.

During convergence to an analog target value x (−1 ≤ x ≤ 1), determining the N

output bits bi closest to the target works as shown:

xSA,N =
N∑
i=1

biγ
−i, γ ≥ 1 , bi = ±1

bi = sign (x− xSA,i− 1)

xi = γi−1 (x− xSA,i− 1) .

Here, the ith bit, bi = ±1, is deterministically assigned at the ith comparison, xSA,i

is the output after i successive approximation cycles, xi is the residue at the end

of i − 1 conversion cycles. For ease of analysis we have assumed that all inter-

stage gains γ are identical, a similar general analysis is possible if that condition

doesn’t hold. Variations of this result can also be applied to demonstrate the

resilience of capacitive MDAC adaptation to offsets in measurements, as exploited

by redundant sucecssive approximation register (SAR) ADCs [55,88].

A more representative analysis of the errors over the DAC transfer function

can be performed by decomposing the error metric outlined in Figure 6.8a into ε+

and ε− as formed by the intercepts with the line y = x. The distribution of these

intercept values provide bounds on the errors over all codes. An evaluation of the

SAR algorithm for this metric along with the error bounds is shown in fig. 6.9b.
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These results indicate that radix non-idealities associated with high-resolution

multi-stage capacitive MDACs can be compensated for through successive approximation-

like iterative adaptation. Extending this result to higher dimensions results in

successive approximation-like convergence to the true value for multiple dimen-

sions. This forms the foundation of our work in creating successive stochastic

approximation (S2A), a modification to stochastic coordinate descent that over-

comes its shortcomings when applied to high-dimensional analog computation in

the presence of component mismatch.

6.4.3 Successive Stochastic Approximation

Consider the task of determining the M -dimensional set of parameters b

that minimize the error functional E(b). Here, E(.) provides a quantitative measure

of the error between a desired state x and the current state xs2a, where xs2a = f(b),

for some unknown function f(.). In the restricted case of ASP implemented using

N -bit MDACs, xs2a =
∑N

i=1 biγ
−i is discrete and entirely determined by the ±1

vector of codes b, and the unknown radix γ.

Deriving inspiration from the Metropolis-Hastings (MH), and the Simulated

Annealing algorithm, we extend the results we’d derived in the previous section

to a higher-dimensional setting. The central iteration of the algorithm consists of

greedily choosing between two proposed candidate steps at a resolution followed

by successive approximation resolution increase.

To overcome inter-stage gain errors and mismatch in DAC weights, it is

important that the successive adaptation stages are center-aligned so they have

equal room to move in either direction. In a multi-stage MDAC this requires

the LSB following the currently adapted stage to to be at (1,−1,−1,−1,−1, . . .)

or (−1, 1, 1, 1, 1, . . .), (which we denote by MID) while the MSB candidates are

proposed so that the subsequent LSB adaptation starts in the middle of the range,

far away from cross-over distortion due to inter-stage DAC nonlinearity at MSB-

LSB major transitions. Thus, for the ith successive adaptation, we propose the

two candidates by flipping the ith bit while all along keeping the (i + 1)th bit at

1 and the succeeding bits all at −1. For a single dimensional case the crux of the
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algorithms effectiveness lies in two factors: the coarse-then-fine approach prevents

the algorithm from getting stuck in local minimas far from the optimal (akin to

simulated annealing), fixed-point operation due to ASP MDAC avoids slow-down

from pathological curvature.

More formally, consider a M -dimensional adaptive system adapted through

M , N -bit MDACs. After initializing the MDACs to null we uniformly randomly

pick a dimension d1
1 for the first resolution iteration (the superscript denoting

the iteration number, and the resolution of adaptation). We then propose two

candidate points x1
cand,{1}, x

1
cand,{2} generated by complementary updates to the

existing coordinate at the current resolution (iteration number 1),

x1
cand,{1} = x1

s2a + γ−1,

x1
cand,{2} = x1

s2a − γ−1.

We update the parameter by greedily choosing the candidate minimizing the error

function E(f(b)), requiring two measurements of E(f(b)) under the complementary

perturbations. Once this update has been performed for all dimensions (d1 . . . dM)

at the current resolution, the resolution is updated, with the iteration proceeding

until all bits (1 . . . N) have been adapted.This form of weight update can be easily

implemented with digital circuits, without the need for explicit adders or counters

enabling very low-cost adaptation of the MDACs. For analysis consider a 2-D

convex function f :

f = (x− x0)2 + (y − y0)2 + α(x− x0)(y − y0) (6.10)

where, x0 and y0 are the target values, and thus the global optima. Figure 6.10

shows the S2A steps in converging to the target, (x0 = .1, y0 = −.25) for an

instanced ASP system given two MDACs with radix γ = 1.6. Despite the convex

nature of the function described by (6.10), the MDAC non-monotonicity effec-

tively results in a non-convex optimization landscape, thus making the adoption

of general optimization algorithms unfeasible.
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Algorithm 2 Successive Stochastic Approximation

procedure S2A(x,N,M, γ, E(.)) // S2A on x

bj = MID(1 : N) ∀j // j = {1 . . .M}
l← list(1 : M)

for i := 1→ N do // Converged to LSB at i=N

D ← permute(l)

for each j ∈ D do // iterate over permuted l

f(bcand,{1})←
(
f(bjs2A,i− 1) + γ−i,MID(i+ 1 : N)

)
f(bcand,{2})←

(
f(bjs2A,i− 1)− γ−i,MID(i+ 1 : N)

)
Note that: bji,{1} = +1, bji,{2} = −1

bji ← arg minb (E (f (bcand)))

end for

end for

return b // b: vector of binary code for the min params

end procedure

procedure MID(MSB:LSB)

B = (−1, 1, . . . , 1) // B is a ±1 vector of size MSB-LSB

return B

end procedure

6.4.4 Extensions to Successive Stochastic Approximation

As with coordinate descent, strong coupling between the dimensions can

lead to sub-optimal updates in S2A due to the greedily always increasing the reso-

lution. An example highlighting this is shown in Figure 6.12. By always increasing

the MDAC resolution and ensuring updates do not cross resolution boundaries the

algorithm outlined in Algorithm 2 may have errors in the final output, where the

results converge too quickly. To overcome these limitations, we modify the candi-

date generation to be exhaustively greedy as shown in Algorithm 3.
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Figure 6.10: The absolute value distance from the target (.01,,-.25) in a two-
dimensional system with the objective function shown in eq. (6.10) and cross-
coupling parameter α = .1. The instanced MDACs had radix γ = 1.6 (resulting
in a worst case DNL > 25), and no random mismatch.

Algorithm 3 Extended Successive Stochastic Approximation

procedure xS2A(x,N,M, γ, E(.)) // xS2A on x

bj = MID(1 : N) ∀j // j = {1 . . .M}
for i := 1→ N do // Converged to LSB at i=N

generate all candidates at this resolution

bji ← arg minb (E (f (bcand)))

end for

return b // b: vector of binary code for the min params

end procedure

procedure MID(MSB:LSB)

B = (−1, 1, . . . , 1) // B is a ±1 vector of size MSB-LSB

return B

end procedure
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Figure 6.11: The effect of dimensional separability on the S2A algorithm in-
stanced on 8-bit MDACs with radix γ = 1.8. When cross-dimensional coupling
is weak, i.e., , α = 0 in eq. (6.10) the system can be rewritten as two indepen-
dent 1-D problems with successive approximation performed in each dimension,
reducing to the problem in Section 6.4.2 (Figure 6.9). When there is stronger
coupling systematic errors along the curvature are seen as outliers as explained in
Section 6.4.4.
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Figure 6.12: Illustration of possible steps of Algorithm 2 leading to a suboptimal
decision. In the scenario shown, the correct decision would be to choose weights
(.5,.5) in the first iteration. However, depending on the order of the traversal of
dimensions,i.e., dimension 1, then dimension 2, or dimension 2, then dimension
1. The greedy parameter updates of the algorithm result in suboptimal decisions
at the coarser resolutions. This highlights the effect of the separability of the
underlying problems, a limitation often in in coordinate descent based algorithms.

Unlike S2A highlighted in Algorithm 2 which takes M2N steps to converge,

Algorithm 3 results in M2N steps due to the generation of all possible candidates.

This provides a greater explicit exploration of the parameter space, and is able

to better overcome the limited non-monotonicities at the coarses resolutions for

γ < 2.

6.4.5 Effects of Random Mismatch

In this section, we analyze the performance of the proposed algorithms when

adapting 2-D, C-2C, MDACs systems. For the 2-D system we have been using, one
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error metric is to normalize the error with the expected error for an ideal quantized

system i.e., the average distance from the vertex of a square of size E[DNL]. This

can be determined through the square point picking problem [84, 87] and is given

by:

E[dvertex,closest] = E[DNL]
2 +
√

2 log(1 +
√

2)

24
(6.11)

Dividing the errors by eq. (6.11) provides us with a normalized estimate of the

errors in terms of LSBs in this 2D system. The two main factors influencing

convergence for S2A and xS2A are the decomposibility into independent subprob-

lems per constituent dimension, and the effect of random mismatch in addition to

the radix errors introduced by systematic mismatch. Figures 6.11 and 6.13 high-

light the effect of cross-dimensional coupling in two-dimensional system with 8-bit

MDACs with radix error resulting in an effective radix 1.8, at α = 0 and α = 1 for

the S2A (fig. 6.11), and xS2A (Figure 6.13).

Monte Carlo experiments over 1000 runs are performed on a two-dimensional

system with random capacitive mismatch set to be within ±1% and linearly vary-

ing the cross-dimensional coupling α between 0 and 1, as well as varying the

effective radix between
√

2 and 2. These results normalized as described by (6.11)

are summarized in Figure 6.14. The error after calibration are used as reference

for both the S2A and xS2A algorithm. As can be seen, strong coupling leads to a

dramatic loss of performance, while separability results in the performance levels

being maintained at dramatically decreased costs (2M−1 fewer steps).

Similarly we observe the effect of mismatch on the algorithm by varying the

random mismatch between elements these results are summarized in Figure 6.15.

With strong cross-dimensional coupling, increased random mismatch leads to an

improvement in performance, behaving as a regularizer on S2A. This effect is

negligible when the problem doesn’t decompose into independent dimensions.

6.5 IC Measurements

An example aMVM system for spatial signal conditioning in adaptive beam-

forming for RF communication was described in [43]. The system implements
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Figure 6.13: The Extended S2A algorithm instanced on 8-bit MDACs with radix
γ = 1.8 better overcomes the effects of cross-dimensional coupling due to the
exhaustive generation of candidates at each level of resolution. (a) illustrates the
effect of target location on optimization performance for α = 0, (b) illustrates the
effect of target location on optimization performance for α = 1
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(xS2A) algorithm over the entire range of radixes.

aMVM preprocessing on the outputs of harmonic rejection channelization resulting

in analog spatial processing gain prior to digitization. The 8×8 aMVM is composed

of capacitive multiplying digital-analog converters (MDACs) implementing the lin-

ear transform. Beamforming is implemented through digitally programmed trans-

form coefficients. The resulting capacitive weighting spatially filters the incident

signal from four antennas at baseband, implementing 4× 4 complex matrix-vector

multiplication with the 8× 8 real matrix as:

X =

(
Re(X) − Im(X)

Im(X) Re(X)

)
(6.12)

We implement the algorithm in conjunction with this system for use in

a spatial separation task entailing the suppression of an interfering tone under
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Figure 6.15: Effects of mismatch and the α term from eq. (6.10) on the per-
formance of both the S2A and xS2A algorithm. (a) demonstrates the effect of a
completely separable problem (α = 0), with a negligible performance gap between
S2A and xS2A. (b) demonstrates the regularizing effect of random mismatch when
α = 1, with increased mismatch leading to a minor improvement in normalized
performance.
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Figure 6.16: Over-the-air source separation in an uncontrolled environment [43]
shows recovery of non-line-of-sight RF sources. Closely spaced sinusoidal tones are
resolved with resulting residuals suppressed to the noise floor. Simulated spectra
is are shown for baseband data at the transmission end, with measured spectra for
the received signals shown on the right. The S2A as outlined in Algorithm 2 was
applied to maximize Pf=140 kHz/Pf=80 kHz.

realistic RF conditions. An RF frontend with four antennas receives these tones

modulated onto a 2.4 GHz carrier from two transmitters in an uncontrolled, non-

line-of-sight, multipath environment with the setup shown in Figure 6.16. The

two TX antennas were positioned with metallic obstacles obstructing the line-

of-sight path to the four RX antennas more than 1 m away, creating multipath

signal contributions emulating realistic channel conditions. To clearly demonstrate

signal separation, a sinusoid at 2.41658 GHz and another tone at 2.41664 GHz are

presented. The downconverted received mixture has two tones in the absence of

spatial filtering as shown in Figure 6.16, this has an initial signal-to-interferer ratio

of −24 dB.

The algorithm presented in Algorithm 2 greedily determines the digital

weights to maximize the ratio of the peak power in the spectra of the downcon-

verted, modulated signals. The signal separation performance over iteration count

is shown in Figure 6.16, the resultant performance saturates to 41 dB of separation

between the two signals Figure 6.16, which is at the measurement limit as seen

in Figure 6.16. This results in a net 65 dB of interferer suppression within 24

iterations.
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6.6 Conclusion

In this chapter, we have shown that analog signal processing can dra-

matically reduce system energy enabling communication and data acquisition by

“smart” sensory systems. Analysis of the energetic limits of analog MVM sys-

tems and in conjunction with the compact size and energetic advantages of multi-

segment capacitive DACs make them attractive for adoption for ASP. However,

their greater susceptibility to radix errors due to capacitive mismatch can lead

to non-monotonicities in their transfer function, and thus severe performance loss

when used with adaptive algorithms. We introduced the Successive Stochastic

Approximation algorithm as well as the Extended Successive Stochastic Approxi-

mation algorithm to overcome the effects of MDAC radix errors induced by static-

nonlinearities. We analyzed the effect of random-capacitor mismatch on these

algorithms demonstrating tolerance to high levels of mismatch. And finally in

measurement results from over-the-air tests demonstrating the use of the presented

algorithm in a system level application where aMVM is used to implement pre-

digitization beamforming. Measured results show up to 65 dB of improvement in

signal-to-interferer ratio over 24 iterations of the S2A algorithm when used on a

multi-segment capacitive DAC.
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Chapter 7

Conclusion

With the emergence of machine intelligence and ambient computing gen-

erally called the internet of things, research into intelligence at the “edge” of this

network of devices. The key to decreasing the power consumed by such systems

is to embed intelligence at all levels, from the sensory interface to communication.

Appropriate optimization across the various levels of the design hierarchy from

on-chip algorithms to the devices used for computation can address the challenges

of increased local computation and communication at a reduced power budget.

The main contribution of this dissertation has been towards the architecture and

designing of high-fidelity, low-power, mixed-signal processing as well as the design

of algorithms complementing these hardware efforts.

While high-resolution processing has traditionally remained the domain of

digital processing systems [69], the central tenet of this dissertation has been to

demonstrate in a principled fashion the means to achieve high-resolution analog

processing. Chapter 2 of this dissertation lays out the energetic advantages of lin-

ear analog signal processing where high-dynamic range, high-fidelity analog signal

processing proves beneficial over a more digital system. Through a reduction in

the dynamic range of sensory signals prior to digitization and thus a reduction of

power consumption in the digitization process, ASP systems can provide orders of

magnitude greater energy efficiency. This ASP typically involves linear transforms

implemented through passive capacitive weighting of signals, resulting in minimal

energy expenditure.
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Building upon these findings, we introduced a family of high-fidelity, ca-

pacitive, mixed-signal co-processors with applications to sensory data condition-

ing (Chapter 4) and aiding smart receivers in cognitive communication networks

(Chapter 4 and 5). This work was used within the context of signal separation

for a MIMO baseband processor for RF receivers demonstrating unprecedented

performance for use in full-duplex radios, cognitive radios, and next generation

adaptive communication systems. Further refinements to the design have led to a

high-fidelity adaptive micro-power mixed-signal matrix-vector product integrated

circuit (IC) enabling efficient implementations of independent component anal-

ysis (ICA), multiple signal classification (MUSIC), and other spatial processing

algorithms. This has been the first reported micro-power Nyquist rate system

demonstrating analog processing at 14 bit resolution. These multi-segment capac-

itive analog signal processors were able to achieve their high-resolution in part due

to the the low-input capacitance unity gain buffer introduced in Chapter 3.

In order to improve upon the performance of such processors and achieve

lower area, higher resolution, and increased energy efficiency, ASP systems must

better exploit multisegment capacitive DACs. However, high-resolution systems

built with multi-segment primitives incur major performance loss due to mismatch

and process-variation resulting in radix errors. Consequently, Chapter 6 of this dis-

sertation develops a class of algorithms, which we call successive stochastic approx-

imation, aimed at overcoming these errors. This algorithm, S2A, is a modification

to stochastic gradient descent that overcomes its shortcomings when applied to

high-dimensional analog computation, specifically overcoming non-monotonicities

introduced by radix errors due to capacitive mismatch. Using this we demonstrate

65 dB of sinusoidal interferer suppression in an over-the-air test with AM sources.

7.1 Outlook

This final chapter aims to provide a direction forward for this research. The

algorithms and ICs developed in this dissertation integrate micro-watt power ana-

log integrated circuits with advances in optimization and learning in order to gain
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large reductions in system power required to perform adaptive signal processing

functions. However, there remains significant work to be done in implementing

various other kernels and accelerators to create a practical end-to-end system.

This dissertation focused on spatial filtering and adaptive signal processing

for both sensory information processing and communication applications, we shall

provide a brief overview of the direction of this study in both contexts.

7.1.1 Communication

Software oriented systems like traditional software-based cognitive radios,

and software defined radios tend to put the burden of beamforming, waveform

recognition, and symbol estimation on very high digital processing throughput re-

quirements. High fidelity analog channelization [41] achieves large reduction in

digital processing at the expense of having more complex and power inefficient

analog filters. Building off the work presented in this dissertation, we can simplify

the RF front-end channelization filtering, by using mixed-signal real-time ICA im-

plemented on our analog co-processors to resolve multiple signals. These signals

can reside across multiple sub-bands that relax RF channel bandwidths and filter

roll-off design requirements. However, additional interference such as ISI can im-

pact the channelization and classifier. Using the S2A algorithm and its extensions,

can enable adaptive compensation for these sources of interference as well.

Architectural research into the interplay between these co-optimized hard-

ware and algorithms in an end-to-end energy efficient, scalable, highly parallel

microsystem remains under-explored. Further architectural research in this area

should drive the development of receiver topologies better suited to emerging tech-

niques like full-duplex communication, and cognitive radios. There has also been

some research into the energetic advantages sub-Nyquist sampling and compres-

sive sensing for communication applications [2]. These applications typically entail

linear projection onto a random basis followed by reconstruction through complex

optimization algorithms. Analog mismatch can degrade the performance of such

systems, extending S2A to such compressive sensing based systems can lead to

significant increase in system performance while meeting power constraints. In
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parallel initiatives on mm-wave RADAR systems to enable super-resolution and

direction sensitivity are being developed by exploiting the high-dynamic range

exhibited by the mixed-signal spatial co-processor introduced in Chapters 4 and 5.

7.1.2 Sensory Signal Processing

A proliferation in IoT connected devices and sensors, in conjunction with

advances in machine learning has led greater processing at the edge of the network.

This has the benefit of enabling continuous learning on the device, tailoring each

device to its environment, as well as preserving privacy, by limiting data sent to

“the cloud”. Thus there is a need for high-dynamic range spatial processing and

multichannel feature extraction that can enable highly efficient sensory systems.

Three fronts of exploration will need to be traversed when expanding this work for

use in the IoT. First, at the level of systems and networking, there is a need for

research into efficiencies gained from collectives of “smart” sensory nodes through

coordinated co-operation. Second, an exploration of circuit topologies that can

enable applications and technologies that heretofore not possible without analog

processing, e.g., an implantable energy harvestingm multi-chip sensory system for

brain-computer-interfaces. Finally, there is a need to develop more algorithms to

improve the resilience and performance of analog processing.

A concrete example of research driving advances at the systems, circuits,

and algorithmic levels would integrate signal acquisition and feature extraction

with subsequent digital processing and data-telemetry. This would entail further

research into high-fidelity analog spatial processing, MIMO communication, as well

as further development in learning algorithms insensitive to analog-mismatch.

In concert with these developments, complementing them, there has been

increasing effort from the devices community to develop computational primitives

like oscillatory devices, as well as nonvolatile memories to overcome the memory

bottlenecks associated with contemporary neurally inspired algorithms. These ef-

forts provide a long term route to high-performance, low-power high-dimensional

analog computational systems. The development of these computational devices

has resulted in a parallel track of research into leveraging neurally inspired princi-
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ples like stochastic, distributed computation to develop prototype neurally inspired

learning hardware. While Chapter 2 briefly introduced non-volatile memories and

their application to computation, there remains significant work to be done in or-

der to realize large-scale systems exploiting such devices. These systems would

target next-generation computational loads for large-scale data analysis and sen-

sory processing. However, truly fundamental advances in computational efficiency

of neurally inspired machine intelligence will entail a close collaboration between

algorithm design, circuit design, and device development. While there has been

some work enabling very efficient neural computation through resistive memories,

these devices pose a significant power overhead in the peripheral circuits, pre-

venting power savings. One means of overcoming these shortcomings would be

to investigate charge-recovery and adiabatic techniques for efficiently driving large

arrays of resistive memories.

7.2 Concluding Remarks

The current trends in technology are leading us towards distributed, large-

scale intelligence through ambient adaptive sensory units providing input. Through

continuous learning, and adaptation these units can be robust to environmental

changes while ensuring they remain within resource constraints like energy, op-

erating temperature, and delay. Through applications in bio-signal acquisition,

brain-machine interfaces, autonomous systems, and large-scale data analytics, such

systems will be directed at advancing pervasive and ambient intelligence with the

capacity to vastly improve the quality of life.
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