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NUCLEAR-STRUCTURE DEPENDENCE OF CONVERSION 
COEFFICIENTS IN ELECTRIC MULTIPOLE TRANSITIONS 

. Sven G gsta Nilsson 

Radiation Laboratory 
University of California 
Berkeley, California 
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Abstract 

The study of the effect of nuclear structure. on internal conversion 

accompanying gamma -transitions of electric multi pole type which is 

presented here is analogous to a treatment by Church and. Weneser (Ref. 3) 

dealing with magnetic dipole transitions. The anomalous matrix elements 

found here, corresponding to.the situation when the electron penetrates 

the nucleus, are of the form expected classically. The magnitude of these 

anomalous terms for the studied El case seems unfortunately to be 

somewhat dependen.t on more detailed assumptions about the Coulomb field 

inside the nucleus. Only' terms up to the secorx:l order in a perturbation 

expans~on in the electromagnetic field are considered here as in other· 

published treatments of internal conversion. In view of an occurring 

cancellation, discussed in .some detail in this work, this may not in all 

cases be a sufficiently accurate approximation . 
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NUCLEAR~STRUCTURE DEPENDENCE OF CONVERSION 
COEFFICIENTS IN ELECTRIC MULTIPOLE TRANSITIONS 

.. 0 - * Sven Gosta N1lsson 

Radiation Laboratory 
University of California 

Berkeley, California 

June 5, 1957 

Introduction 

• 

The .original calculations by Rose et al. 
1 

of conversion coefficients 

were based on the assumption of a point nucleus. Later Sliv et al. 
2 

merely 

calculated the correc.tions due to the change in the electron wave functions 

occurring when the c;ssumption of a nuclear point charge is replaced by the 

assumption that nuclear charge and currents are distributed over a finite 

nuclear surface. Church and Weneser
3 

have furthermore pointed out an 

additional effect of finite nuclear size that depends on the detailed intrinsic 

nuclear st,ructure. This correction is associated with the fact that the 

electron may penetrate inside the nuclear surface. In this case there occur 

nuclear matrix elements for the process of internal conversion that are 

different from the nuclear ~~trix elements of gamma decay. This effect 

will on the average be small, as the electron has only a very small probability 

of being inside the nucleus. 

However, Church and Weneser, who treated the case of Ml 

transitions, suggested that for nuclei where the Ml gamma transitions due 

to special nuclear selection rules may be particularly hindered, the anomalous 

nuclear matrix elements ·(electron inside nuclear surface) may become 

'significant. The experimental evidence for this effect in Ml transitions so 

* . . On leave of absence from the University of Lund, Lund, Sweden. 

1 
C£., e. g., Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 

79 (1951). 

2
L. A. Sliv and I. M. Band, Coefficients of Internal Conversion of Gamma 

.Radiation, Acad. of Sciences, USSR, Moscow Leningrad 1956, issued in 

U.S.A. as Report 57 ICCKI, Phys. Dept., Univ. of Ill., Urbana, Ill. 

3
E. L._ Church and J. Weneser, Phys. Rev. 104, 1382 (1956). 
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far seems meager. 
4 

The ca13e. se~ms to be that ..;~ry ~~w Ml _transitions are 
. . . .- . '3 -·'' . . ' 

hindered by more than a factor: of· 10 · {.¢xcept for f:iO.-caUed K·hindrailce, in which 

. ~_ase usually also the anomalou~ elem.ent is small), and that the nuclear. 

selection rules (e. g. corresponding to nonoverlap) that make the normal 

matrix elements small also weaken ~the anomal6U;f:l matrix elements . 
. - . - 5 

On the other hand, it has been found experimentally that certain 

El transitions in the heavy-element region of strongly deformed nuclei, which 

particular transitions alLare hindered by a factor 106 or more in comparison 

with the Moszkowski single -proton estimate, 6 also have conversion coefficients 
:;·. 

that deviate from those of Sliv's and Rose's by as much sometimes as a 

factor of 20. In all these exp~rimental cases it is found that the El hindrance 

is due to selection rules in some particular quantum numbers appropriate in 

describing nucleonic states of strongly deformed nuClei. 
17 

It is fur-thermore 

found that, on the basis of the same quantum numbers, the anomalous matrix 

elements appear mainly unweakened. 
4 

At least qualitatively this effect thus 

seems rather well accounted for. 

The purpose of this paper is mainly to study how these anomalous 

matrix elements occur in electric transitions. 8 The analysis of the. experi

mental fin_dings on the basis of the nucleonic quantum numbers appropriate 

to deformed nuclei is undertaken in a paper by S. G. Nilsson and 

J. 0. Rasmussen (to appear in the Physical Review). 4 

4 . . ' . 
Cf, however, S. G. Nilssonand J. 0. Rasmussen, Phys. Rev. (forthcoming). 

5 
Asaro, Hollander, Perlman, and Stephens, Phys. Rev. (forthcoming). 

6s. A. Moszkowski, Theory of Multipole Radiation,. :in Beta- and Gamma

Ray Spectroscopy, ed. K. Siegbahn, (North Holland. Publishing Co., 

·Amsterdam, 1955), p. 273. 

7s. G. Nilsson, Dan. Mat. Fys. Medd._!:1, no 16 (1955). 

8
calculations of a similar type have. lately been reported in progress by 

T. Green and M. E. Rose in Bull. Am. Phys. Soc. Vol~;_! (1957). 
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GeneraLForrr:iulation . .of the Conversion :problem 

for Electr~c Transition 

UCRL-3803 

Interaction of electrons and nucleons with the electromagnetic field 

In the Coulomb gauge the fnteractiori between the electrons and the 
. ' 9 10 

nucleons via the electromagnetic field may be expressed as ' 

where (1) 

eneE 

1
- - ,. r -r 

n E 

av. Coul. (._ . ) d - v . r E , __ an · ( 1 a) 

- -Hn (A) + HE(A), where in turn ( 1 b) 
n 

( ld) 

-For this gauge, the photon field A is purely transversal. The scalar 

and longitudinal photons appearing in, e, g., the Lorentz gauge are here 

accounted for by the direct Coulomb interaction term HC (One may notice 

in Eq. (la) that, as the unperturbed electrons are assumed to move in a static 

Coulomb field 'vav. Coul., this average Coulomb field is subtracted out. of the 

perturbat1on term ( l a).) 

The. expression (lc) accou;nting for the interaction of the nucle·ons 

with the transverse photon field, also includes a terrr:i arising from the spin-
. ' : - .· -... _,.. 

orbit coupling. C J. • s usually assumed as an important feature of the un-

perturbed nuclear Hamiltonian~ It is necessary to take. such a term into 

9The treatment given here is similar to that of . j · G. Kramer, Z.Phys. 

146, 187 (1956) and 147, 628-(1957); and to some extent, the notation of that 

reference is also ·adopted. 

1
°Cf. alsoAlder,.Bohr, Huus, Mottelson~ andWinther, Revs. ModernPhys. 

28, 432 (1956}. 
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ac.c ount to preserve the gauge invariance of the interactibn, · Such a term was 
.. 11 

first studied by J. H. D. Jensen~ an4 M~. Goeppert Mayer. An additional term 

of the type 

j.1 • 
n 

e 
n 

2M 

representing the coupling of the magnetic moment of the nucleon with the 

electromagnetic field, may for electric transitions be neglected, as for such 

transitions this term is small of the order · ~ compared with the terms con., 

side red .. [W is the transition energy and M is the nucleon mass.] 

Finally, Eq. (ld) gives the relativistic interaction of electrons with 

the phDton field on the basis of the Dir~c equation. ·.The 

dE equals (~~)a in the two""tomponent. represe~tation. 
discussionc£. p·l2). 

velocity operator 

(For further 

The charge parameter en equals + e for a. proton and zero for a 

neutron. Furthermore we have the electron charge eE = -e. The nucleon 

mass is denoted M. The units used in Eqs. (1)- (ld), and also employed in 
. . 

the following, are such that m = c = ti = 1, where 'rn is the electron mass. -The vector potential A of the transverse photon field is expanded 

in elect:dc ahd magnetic rnultipole components. 

\ 
A(~)= · L 

L, M, 7' 

. In.this expre$ sion 7' represents the summation over the independent 

dual electric and magnetic multipole fields. As we limit ourselves to 

electric transitions the sum over 7' is left out it} the following . 

. In the normaLization applied for the electromagnetic multi poles the . * .. 
creation and annihilation operators q and q have the followil).g nonvanishing 

matrix elements: 

(3) 

li · h a·s, J. H. D. Jensen and M. Goeppert Mayer, P ys .. 'Rev. 1040 (1952). 
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The electric multipole operator is normalized a~-

1 
-(e) 
A LM ~-/(1T/2) L(L+l) (4) 

It is easy to verify that ? · _A(~~ = _0, as required of a transverse field_. 

The probability for the nucleus to emit gamma rays under transition 

from a state <j>i to a state <j>f with an energy w lower than the initiai st~te is . 

given as (in lowest order perturbation expansion, in which terms of order e
2 

in T are retained) 
.'{ 

T 
y 

= 21)' 

A 
c -21T IJ * L' w <j>f 

n=l . 
H 1 

""· dT I 2 
n "'1 n I (5) 

where the factor 21T W originates from the matrix elements of the photon field, 

Eq. (3). 

The competing process of internal conversion now consists of re

moving an electron from the bound state tPi and ejecting it into the (free) 

state tP£' at the same time changing the nuclear state from <j>i to <l>r The 

probability for this process may be written (when terms of lowest order e 
4 

are retained in T ) 
e 

where - L-C - S S n-E_ 
Uf.(W) = Hf.(W) + (Hf H .)/(Ef·+Ef - E ). 

1 1 · V V1 V - v 

(6) 

(7) 

The first term in (7) corresponds· to a direct effect ofthe- static 

Coulomb field. The second term, being a second-order term in this pertur

bationtreatrrient, corresponds to two-step processes involving.exchange of 

virtual photons between the electron and the nucleon. The energy of the initial 

state is written E~ + E~, while the energy of the intermediate· state including 
1 1 - . 

the energy of the emitted photon, is written summarily E . The quantity W . v 
represents the energy difference between initial and final nuclear state 

n n. E E 
(Ei - EfJ or between final and initial electron state .(E f - E 1). 
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Thus, in more detail, we have · 

A 
c::,-. ( * * en eE 
L ; i¥ f ~f --- . ~-<1>· 

n=l l;;n_;;d 1 1 

·C 
Hfi (W) = 

UCRL-3803 

(8 )' 

As vav. Caul (;; J depend~ only on the electron coordinate ;; E' it cannot con

nect different nuclear:_; states, hence this term, though it appears in Eq. (la), 

has been left out in (8). 

H" 

The second term in Eq. (7) may be rewritten 
A ro 

L ~ ) dk eneE 
LM n:l -0 

[ 
f ljJ;. HE(ALM) t!Ji 

- . w 

f * -* dT E <j>f Hn (A LM)<j>i d-r n 
+ ·. 

- k' 

2'!1' 
k 

+ 
f * -* -ljJ f HE(A LM)t!Ji d'T E J<j>fHn (A LM) <Pi d'T n 

-W- k . (9) 

- - -Here HE(A LM) is -eEa. ·A LM' etc. The first term in parentheses in Eq. (9) 

corresponds to the situation that in the inter.mediate state a virtual photon of 

energy k has been emitted by the nucleus. The latter has in the process 

changed its state £.rom <j>i to <j>£' ·corresponding to a loss of energy W. The· 

second term corresponds to the alternative situation that the electron first. 

emits the photon with.energy k and in addition gains energy W. 
-* M- --

Using the property A LM = (-) A L:...M' one can easily contract the 

expression (9) to 

H 11 = -4'TT dk 
n 

( 1 0) 
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It turns out to_ be a majo_r simplificatio?_of the problem to make a 

rearrangement -of the matrix elements in Eq. (10) ahead of the k. integration. 

To this end it is conve~ient to rewrite ALMas 

A it : A 1
LM + ALM' ( 11) 

where 

--, 1 - a 
l(rjL)Y LM ~ - I ,J 

ALM = 
/('1T/2)L(L+l) \} ar \) ~M'./ 

·' ,/ 

( 11 a) 

- 1 z,-. . 
A" = 

/('!T/2)L(L+1) k. (r:,.,,JL)Y LM' LM 
( 11 b) 

(One may note that V in Eq. (lla) operates only on A{_M and not on the wave 

function.) 

For the relativistic electron interaction Kramer 9 uses 

-;. ALM = -; • v aLM =-i [~E' "LM l. ' ~ (12) 
0 

where HE is the unperturbed electron Hamiltonian and [ : ] denotes the 

commutator. 

For the nuclear interaction, which we have here assumed nonrelativ-

istic, we can derive a similar relation, .-1 -::!-- K L _ 

-2hv [ J 
- 2~ {!P· Af.M + AJ"M ·Pin} - en(;'" x A£.Min;• -; n =-i ~ n' ":LM ' 

where the unperturbed nuclear Hamiltonian is given as 

~n = iM ~ny+ cn:i n ;n + V(;'"nt 

if V(;. ) is assumed to be velocity independent. 
12 

p 

( 13) 

( 14) 

12
Inaeed, if one assumes only that H is linear in A, one.can:sh:J..vgererally.tfuttre 

n 
interaction term in the "long wave length limit" may be writtep. as the 

commutator: 

-i r~n' aLM] 
Cf. R. G. Sachs and-N. Austern, Phys. Rev. 81, 705 (1951). 
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In the nuclear matrix element of Eq; (tO) one ·may leave out ALM 

altogether; as kr:<< l..aH bver'the nuclear volume:.: >The-,e~sential con

tribution to the integral (10) ~ames from the ·pole k = w; where w in turn 

should be thought of as of the order of a few hundred kev. 

Hence we have 

( 15) 

In deriving the above relation Eq. (13). has been exploited. 
I 

Similarly, using Eq. (12), one can show 

J <!>;HE (_A LM)<j>i dT E = /(,./~) L(L+ 1) f <!>; ( -i \V frJrjL)YLM +kz;:-. C: j L YLM)<j>idT E J ' 
( 16) 

where jL denotes jL(kr). 

It is now convenient to perform the k integration in Eq. (10), using 
' 13 

the relations 

and 

j L (kr E)jL (kr,n) 

w2- k2 
( 17) 

( 18) 

Here r < and r > denote respectively the smaller and the larger of the electron 

and nucleon coordinates. Furthermore~ hL is the spherical Hankel function 

of the first kind. 

The total H" may then be· split up int·o two terms: 

where the 
A 

H"(2) =- ~ 
n=l 

H" = H"(l) + H"(2), ( 1 9) 

(20) 

13
G. N .. Watson, Theory of Bessel Functions (Cambridge Univ. Press, New 

York, 1944) second ed. ,pj:>. 405; .429. For the prescriptions of perturbation theor.y 
concerning integration over the pole see P. A.M. Dirac

1 
Quantum Mechanics 

(Oxford, 194 7) third .. ed. 
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(For H"(l) see Eq. (22).) On the other hand, expanding H~i(W) from 

Eq. (8), one obtains 
A oo 

H C (W) \ \L J (-)M 4'TT f.~.*"'* f i = L '- 2 L+ l 't' f 't' f 
n=l L=O M 

(21) 

It is thus found that in the expression for Ufi (W) given by Eq. (7) the multi pole 

terms of H"(2) cancel the multipole terms of H~i one by one, apart from the 

monopole term in Hg, which has no counterpart in the terms of H". This 

corresponds physically to the fact that the transverse photons always carry 

angular momentum and that therefore a monopole transition can only take 

place with the help of the longitudinal and scalar photons, or equivalently 

expressed in terms of the gauge applied here, with the help of the static 

Coulomb field. 

In the following we will leave out the monopole term, . The remaining 

terms of Ufi(W) are then all contained in HJ..'(l): 

H"(l)~41T ~ eneE ~ t/:1) i~ U"' dTE -v;oE(hLl<l'; {E dr n~; On (iLl$;+ 

00 r 

f 
0 

dT. cj>f>:< 0 (hL)cj>. n n 1 rdr E -v; OE(jL),Pi] ' (22) 

where 

[ ] --2.} rjL(Wr) +a· r W jL(Wr) YLM' {23) 

(24) 

Here the notation 

implies a complete integration over all the el~ctr.on angles, but an integration 

in rE only from 0 to rn, etc. 
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The expression (22) may be conveniently rewritten 

H "(l) =-4'1T \e \ (-)M ~ neE i-M L(L+l) 

UCRL-3803 

Evaluation of matrix elements involving electron wave functions 

The next problem is to evaluate terms of the type 

Here I;L denotes alternatively jL or hL. The relativistic electron wave 

function corresponding to a central electrostatic field may be written 
. 'f ~ 

-1 X 
)( - K 

(25) 

~ = . (26) 

~ 
g)( X k:. 

in the notationerriployed in, e. g.,. Rose's MultipoleFields. 
14 

called small and large comp~nent radial functions are defined by 

df 
"1<. = 

dr 
><.-1 

f t< - (E - v - l) g l( , --r 

14
M. E. Rose, MultipoleFields(New Yo:rk 1955) .. 

The so-

(26a) 
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dg 
_K = (E - v ·+ ·1) f 
dr . K 

I'( +l 
r g)( ' ,(26b) 

-where the electrostatic potential v(r) is later specified. For states with J. 

..... - -and s "parallelrv K.-equals -i.-1, arid for states withi. and s antiparallel 

k equals J.. Furthermore, we have 

mm 
s 

- .... 

(2 7) 

where C J. 8 j 
m msfJ. 

are the vector coupling coefficients, adding J. and s to a 

- s vector j, and where F m is the Pauli spin function. 
s 

In this two-component representation we have 

;. ; = (~~) a. ; = (~~) rcrr 

where a fulfills the relation 
r 

Thus ar c~anges, e. g., the angular eigenfunction s 1; 2 into p 1/ 2 , and in 

addition changes the sign. 

' 

(28J 

(2 9) 

Using Eq~·. (28) and (29) one can show, employing the methods used 

by Rose in Re£ 14, 

where 

S(r,, J;L)= la r r~drE {wrEJ;L( -g ,£ "tf,gk!)+[d~E (rESLJg,g,,+£,£,,)} ' 

where the primed coordinates denote the initial state and the unprimed the 

(30)' 

(31) 

final state. ·For :X- ro this expression is equivalent, as shown by Kramer, 

to ·. . 

S(oo, 1; L)= jir l dr: [-i(~-~) SL-I (g ,r ... ,+f,g,,) -iL{ 1; L-l (g ,r ,, -f,g ,, )+I; L (g,g K,+£,£~, ~J 
(32) 

which is the expres sian derived by Rose on the basis of point source fields. 
1

' 
14 

· 
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We now proceed to calculate N , the number of photons emitted under 
. ·. y . . 

change of nuclear state <Pi - <l>r . From now on we simplify the notation by 

limiting-ourselves to the case of single-particle transitions, i.e., we drop 

the sum over n. Using Eq. (5), one then obtains
15 

N = 
" 

4 
2 2 

1T e 

w 
n 1 

. - ' . 

\ -. w . a .. /.. . . )·J2 
L 1 Im -. - (rj )Y · I'm' 
LM /I L(L+l)\ I a r L L-M . mrn' 

. 2 

= ~ ~~~!) ;[,+1 I (I II ~ r (rjL)Y L llr') 1
2 

(33) 

H < I I II )d h d d . 1 . h 1 d f' .:.. . 16 I ere · enote s t e re uce matrtx e ement 1n t e us:ua e 1nn.1on. n 

calculating N. we have summed over final nuclear sub states m and averaged 
.· " ' 
over initial nuclear sub states m 1

• 

The number of electrons emitted per second under change of the 

nuclear state from <Pi - <l>f is given from Eq. (6) as 

N e 
= 21T. 

2I1+1 
L I H''(l) 12 

mm 1fJ.fJ. 1 

(34) 

where we sum over initial and final electron substates f.l- 1 and fJ., average over 

initial nuclear m-states, and sum over final nuclear substates m'. (That we 

'sum and not average over .initial electron substates corresponds to the fact 

that all electron substates are occupied, and we do not care which of the 

·sttbstate electrons is emitted. ) 

Rearranging (25)) we write:, 
\ \ . 

= · 4 Tr' eneE t L(~+1) · ~ (-)M (Kf.l-1 Y LM IK'f.l.~· ( Im jxLM ji 1
m'). · H"(l) 

15
This may. easily be transformed into the familiar expression for the 

transition probability: (where M = m -m 1 ) 

N - \81T (:L+l) w2L+l .. \,1Iml e rLY I 
-y - t:L((2L+l)! !] 2. L \ · n L-M I'm')l2 

(35) 

sum over final states, average over initial states 

16 . 
G.Racah, Phys. Rev. 62, ~38 (1942). 
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where 

(ImiOn(hL)S(r,jL)- On(jL) S(r,hL),I1m 1
) , 

where Sand On are defined in Eqso (31) and (24)o 

Thus 

3 en2· eE2 L\ N = 32rr 
e LL 1 

1 
(2!+ 1)(2j+l) 

MM'mm' 
1-11-L' 

1 
L(L+l )V (L 1+1) 

LI 1 I L 1 l 1 I L J.,J. L 1
•

1
• c. c c c JJ 

-Mm 1 m'.-M1m 1m M!-1 1 1-L M 1!J. 1!-L 

1 1 
2I 1+1 2L+l 

UCRL-3803 

(35a) · 

(36) 

The "partial" conversion coefficient corresponding tc;> a transition 

from electron state )(. 1 to electron state Kc can now be calculated from (33) and 

(36) 

a. 1(EL) 
I< I<. 

where 

Ne(L) 
= = N (L) 

'( 

0 

at<.K' 11 + (3 7) 

~'<K'(EL)= Lz{:l~2L+l) (Zj+l) (21+1 )(2j'+l)(21 'tl) (c~i ~~ y. W2(ljl 'j' ;}L)s2
(ro, hL) 

(38) 

W(.£ j.£ 1 j 1
;} L) is the Rac;:th coefficient in the conventional definitiono 

16 
The 

quantity S(oo, hL) equals S(r, hL) with r = oo. 

·Equation (38) should be compared with Ref. 14. The sum~·~ 1 
)( )( I( 

is equal to the conversion coefficient calculated by Rose on the basis of a 

nuclear point source, provided electron wave functions appropriate to a 
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central point charge are used in calculating S(oo, hL). ~n itnproved value of 

liKJC is, however, obtained by the use of electron wave functions ap12ropriate 

· to a finite charge distribution. Finally 

X. = 
(r lfon(hL)· S(r, jL)-On(JL)S{r, hL) jjr') 

( 1 il 0 n(jL)I[ r') 
. (39) 

From now on we restrict ourselves to the case L = 1. To calculate 

A. we use the "long wave length" expansions: 

jl 
Wr (40a) - 3' 

hl -i 
1 

(40b) = 
(Wr) 2 

Thus 

j r 2 
= r dr 

0 

2Wr ] · ---r- (fl{fl{,+gl(gl('j 

( 41) 

(42) 

As the limit of integration corresponds to a distance less than or equal to 
. I 

the nuclear radius, the second term in Eqs (41) and (42) codtaining 

fK.f)(,-f g}(g~, is expected to' be highly dominant. However, its dominance is 

diminished for the case )( = - ){' by a cancellation, and then the first term 

may be neglected only to the extent to which W can be treated as small 

compared with the electronrest mass. The first term is therefore 

retained for the present for the purpose of comparison;. 
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To get an understanding of the mentioned canc~llation, we now turn 

to the Dirac equations for ari electron moving _in a central field, Eq. (26a) and 

(26b). Corresponding to a homogeneous charge distribution inside the. nucleus 
17 

we assume an electrostatic potential inside the nuclear radius of the type 

v(r) - - (43) 

' . -2 
where R is the nuclear radius (in units used here (R = L 9 x 10 for A = 230), 

and e the unit charge (e
2

·;- 1 ~ 7 in these units). The depth of the Coulomb 
2 potential at the center of the nucleus is then·-;; 52 me . It is useful to notice 

that v(O)·R=-~e 2 z~-l. 
For such a potential one may find series expansions for the electron 

18 
wave function inside the nucleus. For J(= +· ){ one has to lowest order in r 

0 

o r Ko 
gK=gK(R) + 

0 ')(.-1 
f =f (..::) 0 + K I'( .R . o • o 

with the additional relation 

0 0 

gK = R 
2 )( + 1 

0 

(E-v(O) + 1) f t( 

For>(= - f( the corresponding lowest-order terms are 
0 

0 K 
f =£(:_) 0 

K .. KR ' 

subject to the relation 

o R o 
f K ="' 2)(TI (E-v(0)-1) Sx 

0 

17
c£. L.A.Sliv,' J. Exp. Theoret. Phys. ~' 1049(1947). 

(44) 

(45) 

(46) 

(4 7-) 

(48) 

(49) 

18!£ one is interested only in the leading term, as we are here, the result 

depends only on the value .of the potentic{l at the origin ~/(Q) and not on its 

detailed shape. Cf, however, Appendix B. 
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Thus for a ~ransition frq-q1 a sta_t_e _ X 1 = ->< to a state X= X we have * 
0 0 

=. _(-Rr _)z l(o -1 f){f I'( I + g)\,g K.l. 
R 

2 )(0,+ 1 
[2+ W+v1 (0) -v(O) ] 

(50a) 

Correspondingly, for X.'=)( =- k 
0 ' 

:{ 
o o R 
g,..f I( I -2-+1 

" K 
[2-W-v 1 (0)+v(O)] 

0 

(50b) 

The term f"{g ,~ -~fJ(,will be given for comparison here,.even though 

the .: contribution to Eqs. ( 40)- (42) derived from this term will be neglected 

as small of order W cm·~pared with the electron rest mass. 

For K' = -){
0 

=-I( the following relation holds: 

( ·'f>-~:-2oo f.,_g'r<.., - giK' = ; 7 o f Xgl(, 

Correspondingly, for ){' = ><. = - 1.-
0 ~· 

r ·o 
( 

')2 )o( .;. 2 
g"'f'<, = - R . 

-We may now rewrite Eqs.(40)-(42) as: 

for l'<. =k: = -/( 1 

0 ' 

0 0 

g./ It'' 

(51 a) 

(51 b) 

Z"(l\2x-2 
S(r,jl)~ 3W :R) o . 

1 
2 )( + 1 

0 

1 
21< +3 

0 

2~ +3 
0 

r [2+v 1(0)-v(O)], 

and for K. 1 = +)( = - J( 
. 0 ' 

1 
2x.. + 1 

0 

1 
2>< 

0 

0 0 
f...,g 1 r 

"' I( 

2)( 
0 

[2 + v'(O)- v(O)] 

. 2 ·(1J2
l<o-

2 ~ 1 1 ofo 
2

l(o+
3

[ 1 ).] 
S(r,Jl)-;3W.R . 2l(c:+l2K+3'gx.>(i-r; ·2-v(O)+v(O 

0 0 

(52) 

(53) 

' (54) 

*It is implicitly assumed in the convention~! but not quite self consist•ent 
perturbation treatment presented here· that the "unperturbed" Hamiltonian· 
is the same in initial and final states. A generalization in line with the 
treatment of the problem of rearrangement collisions (see, L. I. Schiff, 
Quantum Mechanics, New York (1949)) would bear .out the seeming conjecture 
behind Eqs. (50a, b). The author is indebted to Prof. G. Chew for a clarifying 
discussion on this point. 
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1 
2x. + l 

0 

21< 
0 

[2.:.v 1 (0.)+v(O)], 

(55) 

where Eqs. (54) and (55) might have been obtained from (52) and (53) by ex
o 0 

change of primed and unprimed quantities f, g and v(O). 

The magnitude of S(r, j 1) and S(r, hl) is thus greatly affected f9rthe 

case I K.. 'I =I K I by the cancellation apparent in (50a) and (50b). It is thus found 

that -providedjr<. 'I= I)'( I -the sum fK.f){., + gKg K' is smaller by a factor 

R(:::: 10.
2

) 19 then either of the two terms; i.e. the ratio 

g ·.:.k:'o 

:r-:---"'0 
is very nearly equal to 

f . 
. X:o 20 

g l<o 

A slight change in the effective electrostatic potential is, however, 

to be expected, as the nucleonic transition associated. with the conversion 

process may cause a change in the nucJear charge distribution. Those terms 

of S(r, ~ L) t,hat are of lowest order in r will be affected mainly by a change 

in v(O), the potential depth at the origin, as indicated in Eqs. (52) - (55). 

As shown in .Appendix B, the terms of next higher order in r will in addition 

depend on changes in the "curvature" of the electrostatic potential assumed. 

In summa.ry, one may emphasize that the underlying assumptions in 

calculating the electron wave functions inside the nucleus imply an independent

particle description of the electrons, and imply a purely electrostatic potential 

of a simple shape, independent of electron and nuclear state, substituted into 

the Dirac equation. 

19 As the cancellation corresponds to a weakening by an order of magnitude 

e 
2 

of the transition amplitu.d,e; .. it will probably be of interest to study higher

order perturbation terms in addition. 

20 g -l(·o.' f lio 
· Denoting -- by x and --·- by y, one finds that :X. and y fulfill the 

equations ' 
f -_J(o g ~ 

2)( 
x' = x 2

(E-v-l) + x --0 + (E-v+l), 
r 

·2 2 Ko 
y' = y (E-v+l) + y- + (E-v..;.l), 

r 

which thus are highly similar provided IE - v \ » l. 
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One might expect the cancellation effectto be relatively more 

sensitive to a relaxation of these conditions th~m the wave functions f x. and 

g x. themselves. 
21 

We rewrite the anomalous operator as 

2K tl 
0 n(hl)S(r,jl) -On(jl)S(r,hl)= r 

0 
yl-M } FX.X1 Ccorr (56) 

Values of Fvvl and·C are listed in Table I. What is'said above serves 
·~~ carr . 

to emphasize the uncertainty of the factor C . for cases I >{I = I>< 1 1. ·. 
· · . carr 

Table I 

Values ofF v 111 and C , for some. particular initial and final electron 
"-"" carr 

states. 

Transition X' 

-1 

-2 2 

1 -1 

-1 -2 

-1 

1 2 

>(0 

1 

2 

1 

1 

1 

1 

1 0 0 

5 .gxf K1 

3 1 
io R 

c 
carr 

1 + v 1 (0) -v(O) 
· 2m · 

1 
_ v 1 (0) ~v(O) 

2m 

1 

21
For I x.l = I x 1 I, >( is defined as lx I· . Forl.l\1 fix.' I we denote by )( the 

0 0 

smallest of the two absolute values. 
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Evaluation of Nuclear Matrix Elements on the .. Basis of a Particular 

Nuclear Model 

The last section dealt with an integration over the electron coordinates. 

Our next step consequently will be to integrate over the nucleon coordinates; 

in other words~ we will now study the nuclear matrix elements. This 

necessarily involves an assumption of a particular nuclear modeL 

As the E1 conversion anomalies are, so far, experimental~y .found 

in the regions of nuclei displaying features of a deformed nuclear shape, we 

will in the following limit ourselves to employing the nuclear wave functions 

of the unified mode1
22 

that are appropriate for describing nuclei of large 

stable equilibrium deformations. It is found that these nuclei display a very 

simple coupling scheme. The large mass transport involved in the collective 

rotational motion (simple consequences of which are empirically encountered, 

e. g., inthe occurrence of rotational energy bands in this region of nucl~i) 

implies a low-frequency for the latter mode of excitation. The rotational 

motion may thus occur with such a low frequency that its effect on. the 

intrinsic nucleonic motion may to a good first approximation be neglected. 

The nuclear wave function may then be separated into two parts, one, D, 

describing the rotation of the system as a whole, one, X, describing the 

nucleoniC motion with respect to a system fixed in the nucleus: 23 

.l-.I DI ( A ) XK (r"), "'M =-. -MK a,p,y (57) 
0 0 

22
A. Bohr, Dan. Mat. Fys. Medd. 26, No. 14 (1952;) 

A. Bohr .and B. R. Mottelson, Dan. Mat. Fys. Medd. 27, No. 16 (1953). 

For the later modifications, see ref (10), where also a complete list of 

references is provided. 

23 To assure a definite parity the total wave fun~tion has to be symmetrized 

acc:ording to a prescription in ReL 22. This symmetrization is of importance 

only for the case K = 1/2. 
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where a., j3, '( are the eulerian ang.les defining the orientation of the nuclear 
. . ~ .· 

symmetry axes with respect to the space-fixed system, and where I, M, and 

K are the total angular momentum, its proje'ctions on the space -fixed z -axis -and on the nuclear symmetry axis, respectively. Furthermore, · r" refers 

.to the nucleonic coordinates defined with respect to a body fixed coordinate 

system. In this so-called adiabatic approximation the additionaLforces of the 

noninertial rotating system, Coriolis forces and centrifugal forces; have 

been neglecte~. The effect cif Coriolis forces (which is the most important 

neglected effect) is to admix to the first order states of the same I, but with 

K different from K by one unit (and to higher order still more different K 
0 

values). We may formally account for this effect by modifying Eq. (57}: 

i 

DI . X . 
lEi . MK. K. 

1 1 

(57a) 

Here ~ -~ 1, while all other <E. are small. The smallness of E. 
0 . 1 ' 1 

provides a measure of the purity of the adiabatic approximation. 
24 

The intrinsic wave function. XK is particularly simple in the coupling 

scheme appropriate to deformed nuclei. 0 The deformation of the nuclear field 

removes the degeneracy of the spherical shell-model states, apart from a 

twofold degeneracy corresponding to the retention of rotational symmetry. 

The nucleons now fill up the doubly degenerate levels pairwise. The angular 

momentum components along the nucleon axis (the relevant quantity) of a pair 

of nucleons cancel. 

In an odd-A nucleus the nucleonic properties are essentially given by 

the wave function of the last odd nucleon. 

In the cases of anomalous El conversion coefficients empirically, 

epcountered we have presumably to do with cases in which only the last odd 

nucleon is involved in the conversion process. The wave function XK may 

then be thought of as the single -particle wave function ofthis particulcPr un-

paired nucleon. Calculations of intrinsic wave functions X by several 
K 

th "lbl 25,7;26 0 au ors are now ava1 a e: 

24
For the effects of this K-impurity, cf. Alaga, Alder, Bohr, and Mottelson, 

Dan. Mat. Fys. Medd. 29, No. 9 (1955). 

25 
S. A. Moszkowski, Phys. Rev. 99, 803 (1955). 

26 . . 6 K. Gottfried, Phys. Rev. 103, 1017 (195 ). 
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In order to be able to conveniently estimate the magnitude of the 

correction term and to apply the tabulated wave functions of Ref. 7 directly, 

it is convenient to introduce coordinates r' suitable to nuclear dimensions, 

r" =/Jiw . me 
~ 

r' (58) 
0 

(which may be written _l_ 
jMw

0 

r' in the units employed here). Here M is 

the proton mass and n w , assumed equal to ::::: 80 A...,l/ 3 
mc

2 : is. the 
0 

characteristic oscillator energy of the nuclear potential ·a;ssumed in 

calculating the wave functions of Ref. 7. 

We may now write considering the dominant anomalous conversion 

terms in K and L-conversion 

1 

Mw 
0 

F ~ K.'. X (59) 

. where F K J<.' is given from Table I, and where 

r'3 y lK -K' I XK' ) 
' 0 0 0 

(60) 

YlK ~1<.' I xK. ) 
0 0 ' 0 

provided the K impurity in the nuclear wave function (5 7a) is of negligible 

importance. However, one may generalize Eq. (60) to include the effect of 

K impurity. Such a modified expression for x reads 

I I' 1 I 
(XK. (r') I c ,3 y1K:-K'.IxK'.(r')) E.€. CK'. K.-K'. K. . corr r 

ij 1 J 
J 1 J 1 ' 1 ' 1 ' J J 

X = 
I E-€

1
• 

I' 1 I 
(xK. (r') I r' y 1K. -K'. (xK'. (r')) ij 1 J CK'. K.-K'. K. 

J 1 J 1 1 ' 1' 'J J 

(60a) 
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Using Eqs. (37) and (59) we now write the expression for the 

conversion coefficient in a more compact and final form 

1 - X 
1 

w3/2 
M 

){ l< I 

(6 1) 

The constant ~rrK'' is given in Table H for the dominant terms of K and L 

coriversiori. It is calculated for the case Z = 91, A = 231 and should be 

sufficiently accurate for all the actinide nuclei. The numerical estimates of. 
0 0 . 
f and g , on which the numerical values of MkK' are based, ~re discussed in 

Appendix A.:- In view of the discussion there it is apparent that the values of 

M X K.' are only roughly approximate. 

conversion coefficient defined in Eq. 

0 
Furthermore, a. KK' is the partial 

(38) appropriate to the hypothetical 

case of negligible anomalous matrix elements. As has been pointed out 
0 1 

earlier, the coefficients ~ a.KK equal Rose's published conversion coefficients, 

provided point-source electron wave functions are employed. Sliv' s refined 

values
2 

correspond to (a) using electron wave functions corrected for finite-

size effects, (b) taking the nuclear correction term x into account in an 

average way ·on the basis of- an assumption that nuclear currents are all 

confined to the nuclea·r surface. The. results correspond formally to setting 

x = R 
2

,. where the nuclear radius R is measured in units -ti No values 
- o - /M~o 

of the parti~l conversion coefficients aK)-(' are at present available. The 

amplitudeV a.XK' , furthermore, enters with a phase eiO, the value of which 

is also unpublished. (This phase equals the phase of the quantity S(oo, hL) 

defined in Eq. (32)). 

The quantity x measures the strength of. the anomalous matrix 
. . 3 . 

element r Y 1 compared with the r Y 1 matrix element. For a hypothetical 

completely unhindered case both have the order of magnitude one. In view 

of the smallness of the quantity MKK'' x need to take on very large values 

in order for the effect of the anomalous terms to be pronounced. A large x 

requires a very small rY 1 matrix element; i.e. , the gamma transition should 

be -very hindered. As the angular dependence of both operators (rY 1 and· r
3

Y 1) 

is the same, .it is apparent that a hindrance due to the K- selection rule 

(See Ref. 24) will in general not lead to a large x. However, the selection 
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rules due to nucleonic structure (and to a considerable extent borne out by 

the wave functions of e. g. Ref. 7 and understood largely in terrrl's of the so

called asymptotic quantum numbers 
7

) that effectively hinder most El 
. . 2 7' 2 8 ' 2 9 . h . f dd A l . h t.h trans1hons 1n t e region o o - e ements 1n t e rare ear 

3 
region and beyond Ac are expected to be greatly relaxed ·for the r Y 1 
operator. Cf. the scheme of selection rules displayed in Table III of Ref. 4. 

A preliminary analysis of the experimentally anomalous conversion 

coefficients, reported by Asaro et al. 
5 

has been prepared for the Physical 

Review by; S. G. Nilsson and J. 0. Rasmussen. 
4 

In all the anomalous cases 

discussed there it appears that the rY 
1 

matrix element is empirically small 

by a factor 10-
3 

while correspondingly the r 3 Y 1 matrix element appears 

unweakened or less weakened than the rY 1 element in terms of the asymptotic 
7 

quantum numbers. 

The uncertainty in the correction factor C above and the absence corr · · 
of published values of 8.KIC' makes a more detailed comparison difficult; 

except maybe in a particular case of exceedingly large experimental 

deviations from Rose's or Sliv!s values (in which case the second term 

in Eq. (61) becomes dominant). This case seems to indicate either that 

the correction factors C are unexpectedly large or that terms of higher corr · . 
order in the perturbation expansion, Eq. (7),1are also of importance; Cf. 

Ref. 19. 

27s. G. Nilsson, Dissertation (Berlingska Boktr. ,_ Lund, 1955). 

28 . 
D. Strominger and J. 0. Rasmussen, Nuclear Phys. ~· 197 ·(195 7). 

29B. R. Mottelson and S. G. Nilsson, Dan .. Mat~ Fys. Medd. 

(forthcoming). 
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Table II 
. . . 

Values of M r<.l-C for some particular initial and final ele.ctron stat~s 

. Initial state Final state 10
6 

MK !<! 
. "---~------~-------··-·· ·-------········-·--------·---------··-· ------·------ -----------------------· ----~--------- ------

Shell Orbital 

.. ls)/2 pl/2 -5.3 

K 

" p3/2 3.9 
. 
2sl/2 pl/2 -2 .l 

LI 

" p3/2 1.6 

2Pt;2 
I 

sl/2 -1.9 I 

I LII I 
II I 

d3/2 0 .l 

2P3/2 sl/2 1.4 

I LIII. " d3/2 * 
" i 

dS/2 * i 
' I 

* The leading anomalous terms for these trans-itions is of the form 

r
5

Y 1 ; in addition the coefficient corresponding t~ M){~ is negligibly 

Small. 
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· · .APPEN.DIX A 

To get .an. approximate estimate of the coeffici~nts fl(K' [CLEq. (56)} 
0 0 . 

we ·need to know fK.. and g te· Table III· shows these quantities for the bound states 

ls 1; 2 , 2s 1; 2 , 2p 1; 2 , and 2p3/ 2 ; correspond.ingtothe electro~ shel~s K, LI' 

LII' and Llll respectively. The third column gives values of·f and g obtained 

from diagrams of Bryskand Rose, 
30 

with Z = 91, A= 231. Their values 

are corrected for 11 finite size" and in a somewhat approximate way for 

screening. [The values obtained under these assumptions are denoted (a); 

they are employed in calculating F)( l(i. ] The fourth column gives for. com

parison the corresponding values obtained by Reitz
31 

for the K and LI shell, 

Z = 92, R = 1.91x10-
2

, with screening taken into account [denoted (b)J. The 
0 0 . 

constants .off and g in this column are estimated from the values off and g 

at the nuclear surface, which values are given in Ref. 31, by matching 
. . 

solutions inside and outside the surface. For f and g inside, expansions of 

the type (Bl) - (B4) of Appendix B have been used, retaining terms of the two 

lowest orders in r. Such expansions for the potential assumed in Eq. (43) 
0 17 ' 32 

have been studiedby L. A. Shv, M. E. Rose and others. The deviation 

between Columns 3 and 4 may provide a measure of the uncertainty involved 
0 0 

in the values off and g. 

The corresponding constants for the free solutions (which are assumed 

to be normalized,in th~ conventional manner, per unit energy mc
2

) are exhibited 

in Table IV. The second and third columns [denoted by (c) J in this table list 

. values of f and g at the nuclear surface corresponding to the simple free, 

regular, unscreened and zero-energy wave functions appropriate to a nuclear 

point charge. The effect of screening, and furthermore of the energy dependence, 

·may he studied in Columns 4-7 [denoted by (b)]. These latter values are taken 

30H. Brysk and M. E. Rose, ORNL .1830 (1955). 

31
Reitz, Relativistic Wave Functions for a Fermi-Thomas "'-Dirac Statistical 

Atom (University of Chicago, 1949). 

32 ' 
M. E. Rose, Phys. Rev. 82, 389 (1951). 
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0 0 
from Ref. 31. The last columns give the constants f and g (obtained by the 

matching procedure described in the previous paragraph) using only (a).' This 

should be a satisfactory estimate for our purpose, a~ screening and ener-gy 

dependence here appear to be minor corrections, 

In review it might be stated that the second figure in the numbers 

listed often carries no significance. 

Table III 
0 

The quantities g and P of bound electrons in K, LI' LII' 

LIII shells compiled from Refs. 30 and 31. 
:---. (a} (b) 

lsl/2 
0 

+3.0 +3.8 g 
0 
f -0.9 -1.7 

2s1/2 
0 

+1.2 +1.6 g ' 

0 
f -4.0( -1) -6.2(-1) 

2P1/2 
0 

-1.3(-1) --g 
0 

i f -4.1(-l) --
I -
I 

0 I 2P3/2 I +2.6(-3) --l g I 
' i I ., 
1 I 

0 
f -4.3( -4) -- I ,, 

' 
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Table IV 

This table exhibits radial ~omponehts g ahd f at the nuclear· surface from 

free, regular, unscreened, zero-energy solution·s, (c)-,· and-the corresponding 

quantities from Refr. 31 ;. furthermore, ·values of~- andY obtained on the basis 

of (c) are listed. Brackets [ ] denote values obtained by the additional use 

of Eqs. (46) and (49). 

(b) 0.05 mc 2 mc2 
-

(c) (b) 0.1 (c) 
\ 

~-g(R) f(R) g(R) f(R) g(R) f(R) 
0 
g 

s 1/2 5.4· -- 5.5 -2.2 5.8 . .:.2.3 6.5 [-2.1] 
' 
! 

p1/2 -- ' =-2.0 -0.9 -2.3 I -1.0 -2.5 [~0.8] -2.4 
I 
I 

p3/2 1.4(-2) -- 1.6(-2) -2.8(~3) • --1. 9( -2) -3.3(-3) 1 .6 (- 2) [ -3. 1 (- 3)] 

d3/2 -- -2.4(-3) -6.0(-4) -3.3(-3) -8.8(,-4) -4.9(-3) [-5.5(-4)] -2.6(-3) 

d5/2 4.6(-5) -- 2.2(-5) -2.5(-6) 3;3(-5) 3.7(-6) 5.0(-5) [-6.9(-6)] 
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APPENDIX B 

As a cancellation takes place that greatly diminishes the magnitude ci. tre 

uruilly leading anomalous term r
3

Y 1 ~n the conversion amplitude, it is of 

interest to study whether the terms of the next higher order are also subject 

to the same cancellation, or if they possibly may become dominant. 

ForK.= -X. we assume the following expansions for f and g: 
0 . . 

and correspondingly for ){ = ){ 
0 

f K o l ,( ~ f" -I [ 1 + c( ~Y + . · ]. 

g K o ~ ~ t [I + d (~r + .. ]. 

One then finds, from Eq. (26), 

b = c 
{fE-v(0)]

2
- l}-R

2 

2(2K + l) 
0 . 

2 2 
1 

2 K..
0
+ 1 

1 ad-a= - {[E-v(O)].- 1}R 
.f 2(2K + 3) + 3 v(O) 2K. +3 E-v(O)+l 

0 0 

where the minus sign holds for a and the plus sign holds for -d. 

(B 1) 

(B2) 

(B3) ·• 

(B4) 

(B5) 

(B6) 

w Neglecting terms of order m compared to terms of order 1 but retaining 

the terms of the lowest and next higher order in r, one finds, for 

K.' =K.-Ko' K= ~o 

0 0 
fK... gl<, 

r 21( +1 
0 

2 4• v ( 0 ) 
2

(1C.o + 1 ) . [2 + v' (0) -v(O)+r D ] 
(2K +l){Ztc +3) carr ' 

0 0 

(B 7) 
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where .. ' : ''' 2 

D 
corr 

· >( 0 (. _j'- (

2 Ko+l) . 1 · ,.zR'-R + v'(O)-v(O) J 
= 1 +2(~+1) v' (0) -v(O) ] T 1 z-(l(o+l) v(O)R2[ R v{O) . 

' (l3 8) 

The correspondingformulae forK'= X
0

, X,; - >( 
0 

are· obtained by exchanging. 

primed and unprimed quantities (K,' gl'(, v(O), and R. 

Thus,. orie has the same type of cancellation in the r
5

Y 1 terms as 

in the r
3

Y 1 terms. However, the cancellation is now sensitive not only to 

differences in v(O) of the final and initial electron states, but also to 

differences in R, the "curvature" parameter of the potentiaL A change in R 
. : . .. ' 

of lOo/o implies aD of order :3.,-5.·, neg' lecting the effects ·of changes in · · · corr 
v(O). 

If terms of the leading order and of the next higher order 'in r are 

retained, Eq. (56) has to be modified: 

(B9) 

where C and FK.., 1 are found in Table I, while G Ln..' and D corr · ~ · ,l_ ~orr 
are 

listed in Table V. (In view of the discussion in Appendix A the uncertainty 

in G KK' might be of the order 50o/o.} 
5 

Table V shows that the terms of order r · Y 1 are on the average still 

small compared with the r
3
Y 1 terms. If, however, the single-particle 

transition is accompanied, e. g., by a great change in the nuclear deformation, 

·there is a possibility that the r
5

Y 1 term due to D maybe of enough · · corr 
magnitude to affect the conversion coefficient significantly. 
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Table V 

Approximate values ofthe constants G,..K, and D for some particular 
. r . "- corr . . _ 

initial and final electron states, obtained under the assumption Z = 90, 

A ;- 230, and' W << mc 2 . Furthermore the relation v(O)R~ -1 has been 

employed at s orne places. 
. I 

I 

Transition ~~ 'l't )( -GKK' D 
....• 0 corr 

'::' 0~08 
1 . 3 [R -R' 2+,v' (0)-v(O)] 

sl/2- P 1/2 -1 1 1 l+4[v'(O)-v(O)]- 8R -"R • · v(O) 

1 . 3 R' -R v(O) -v' (0) 
Pl/2 -sl/2 1 -1 1 '::' 0.08 1 +4 [ V ( 0 ) - V I ( 0) ] - S""R [ Ir •2+ v(O) 

-

s 1/2 - p3/2 -1 -2 1 '::' 0.08 1 

p 3/2 -+sl/2 -2 -1 1 '="' 0.08 1 

p 1/2 -d3/2 1 2 1 '="' 0.08 1 

] 




