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Measurement of angular and momentum distributions of charged particles within and around jets
in Pb + Pb and pp collisions at

√
sNN = 5.02 TeV with the ATLAS detector

G. Aad et al.∗
(ATLAS Collaboration)

(Received 17 August 2019; published 2 December 2019)

Studies of the fragmentation of jets into charged particles in heavy-ion collisions can provide information
about the mechanism of jet quenching by the hot and dense QCD matter created in such collisions, the quark-
gluon plasma. This paper presents a measurement of the angular distribution of charged particles around the jet
axis in

√
sNN = 5.02 TeV Pb + Pb and pp collisions, using the ATLAS detector at the LHC. The Pb + Pb and

pp data sets have integrated luminosities of 0.49 nb−1 and 25 pb−1, respectively. The measurement is performed
for jets reconstructed with the anti-kt algorithm with radius parameter R = 0.4 and is extended to an angular
distance of r = 0.8 from the jet axis. Results are presented as a function of Pb + Pb collision centrality and
distance from the jet axis for charged particles with transverse momenta in the 1- to 63-GeV range, matched to
jets with transverse momenta in the 126- to 316-GeV range and an absolute value of jet rapidity of less than 1.7.
Modifications to the measured distributions are quantified by taking a ratio to the measurements in pp collisions.
Yields of charged particles with transverse momenta below 4 GeV are observed to be increasingly enhanced as a
function of angular distance from the jet axis, reaching a maximum at r = 0.6. Charged particles with transverse
momenta above 4 GeV have an enhanced yield in Pb + Pb collisions in the jet core for angular distances up to
r = 0.05 from the jet axis, with a suppression at larger distances.

DOI: 10.1103/PhysRevC.100.064901

I. INTRODUCTION

Ultrarelativistic nuclear collisions at the Large Hadron
Collider (LHC) produce hot, dense matter called a quark-
gluon plasma, QGP (see Refs. [1,2] for recent reviews). Jets
from hard-scattering processes in these collisions traverse and
interact with the QGP, losing energy via a process called jet
quenching. The rates and characteristics of these jets in heavy-
ion collisions can be compared with the same quantities in pp
collisions, where the production of a QGP is not expected.
This comparison can provide information about the properties
of the QGP and how it interacts with partons from the hard
scatter.

Jets with large transverse momenta, pjet
T , in central lead-

lead (Pb + Pb) collisions at the LHC are measured at ap-
proximately half the rates in pp collisions when the nuclear
overlap function of Pb + Pb collisions is taken into account
[3–7]. Similarly, back-to-back dijet [8–10] and photon-jet
pairs [11,12] are observed to have less-balanced transverse
momenta in Pb + Pb collisions compared to pp collisions.
These observations suggest that some of the energy from the
hard-scattered parton may be transferred outside of the jet
through its interaction with the QGP medium.

∗Full author list given at the end of the article.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Complementary measurements look at how the structure
of jets in Pb + Pb collisions is modified relative to that in
pp collisions. Previous measurements have shown a broad-
ening of jets in Pb + Pb [13–16], as well as an excess of
low- and high-momentum charged particles and a depletion
of intermediate-momentum charged particles associated with
these jets [17–20]. Particles carrying a large fraction of the
jet momentum are generally closely aligned with the jet axis,
whereas low-momentum particles are observed to have a
much broader angular distribution extending outside the jet
[9,21–24]. These observations suggest that the energy lost via
jet quenching is being transferred to soft particles around the
jet axis via soft gluon emission [25–31]. Measurements of
yields of these particles as a function of transverse momen-
tum, pT, and angular distance between the particle and the
jet axis have the potential to provide further insight into the
structure of jets in the QGP, as well as provide information
about how the medium is affected by the presence of the jet.

This paper presents charged-particle pT distributions at a
distance r around the jet axis1 that have been corrected for

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z axis along the beam pipe. The x axis points from the
IP to the center of the LHC ring, and the y axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, with
φ being the azimuthal angle around the z axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). The
rapidity is defined as y = 0.5ln[(E + pz )/(E − pz )] where E and
pz are the energy and z component of the momentum along the
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detector effects. The measured yields are defined as follows:

D(pT, r) = 1

Njet

1

2πrdr

dnch(pT, r)

d pT
,

where Njet is the number of jets in consideration and nch(pT, r)
is the number of charged particles with a given pT at a distance
r from the jet axis. The ratios of the charged-particle yields
measured in Pb + Pb and pp collisions,

RD(pT,r) = D(pT, r)Pb+Pb

D(pT, r)pp
,

quantify the modifications of the yields due to the QGP
medium. Furthermore, the differences between the D(pT, r)
distributions in Pb + Pb and pp collisions,

�D(pT, r) = D(pT, r)Pb+Pb − D(pT, r)pp,

allow the absolute differences in charged-particle yields
between the two collision systems to be measured.

II. ATLAS DETECTOR

The measurements presented here are performed using the
ATLAS [32] calorimeter, inner detector, trigger, and data-
acquisition systems.

The calorimeter system consists of a sampling liquid-argon
(LAr) electromagnetic (EM) calorimeter covering |η| < 3.2,
a steel-scintillator sampling hadronic calorimeter covering
|η| < 1.7, LAr hadronic calorimeters covering 1.5 < |η| <

3.2, and two LAr forward calorimeters (FCal) covering 3.1 <

|η| < 4.9.
The EM calorimeters are segmented longitudinally in

shower depth into three layers with an additional presampler
layer. They have segmentation that varies with layer and pseu-
dorapidity. The hadronic calorimeters have three sampling
layers longitudinal in shower depth.

The inner detector measures charged particles within the
pseudorapidity interval |η| < 2.5 using a combination of sil-
icon pixel detectors, silicon microstrip detectors (SCT), and
a straw-tube transition radiation tracker (TRT), all immersed
in a 2-T axial magnetic field. Each of the three detectors is
composed of a barrel and two symmetric endcap sections.
The pixel detector is composed of four layers, including the
insertable B layer [33,34] added in 2014. The SCT barrel
section contains four layers of modules with sensors on both
sides, and each endcap consists of nine layers of double-
sided modules with radial strips. The TRT contains layers
of staggered straws interleaved with the transition radiation
material.

The zero-degree calorimeters (ZDCs) are located symmet-
rically at z = ±140 m and cover |η| > 8.3. The ZDCs use
tungsten plates as absorbers, and quartz rods are sandwiched
between the tungsten plates as the active medium. In Pb + Pb

beam direction respectively. Transverse momentum and transverse
energy are defined as pT = p sin θ and ET = E sin θ , respectively.
The angular distance between two objects, r, with relative differences
�η and �φ in pseudorapidity and azimuth, respectively, is given by√

(�η)2 + (�φ)2.

collisions, the ZDCs primarily measure spectator neutrons.
These are neutrons that do not interact hadronically when
the incident nuclei collide. A ZDC coincidence trigger is
implemented by requiring the pulse height from both ZDCs
to be above a threshold that accepts the signal corresponding
to the energy deposition from a single neutron.

This analysis uses the same trigger setup used in Ref. [20]
and is briefly described below. A two-level trigger system was
used to select the Pb + Pb and pp collisions. The first level,
L1, is based on custom electronics, while the second level, the
high-level trigger (HLT), is based on software [35]. Minimum-
bias (MB) events were recorded using a logical OR of two
triggers: (1) a total-energy L1 trigger selecting more-central
collisions and (2) a ZDC coincidence trigger at L1 and a veto
on the total-energy trigger, with the additional requirement of
at least one track in the HLT, selecting peripheral collisions.
The total-energy trigger required the total transverse energy
measured in the calorimeter system to be greater than 50 GeV.
Jet events were selected by the HLT, seeded by a jet identified
by the L1 jet trigger in pp collisions or by the total-energy
trigger with a threshold of 50 GeV in Pb + Pb collisions.
The L1 jet trigger utilized in pp collisions required a jet
with transverse momentum greater than 20 GeV. The HLT jet
trigger uses a jet reconstruction procedure similar to that in
the offline analysis as discussed in Sec. IV. It selected events
containing jets with a transverse energy of at least 75 GeV
in Pb + Pb collisions and at least 85 GeV in pp collisions.
The measurement is performed in the jet transverse mo-
mentum range where the trigger efficiencies are greater than
99%.

III. DATA SETS AND EVENT SELECTION

The Pb + Pb and pp data used in this analysis were
recorded in 2015. The data samples consist of 25 pb−1 of√

s = 5.02 TeV pp and 0.49 nb−1 of
√

sNN = 5.02 TeV
Pb + Pb data. In both samples, events are required to have
a reconstructed vertex within 150 mm of the nominal IP
along the beam axis. Events with multiple interactions in
the same bunch crossing are referred to as pileup. This is
negligible in the Pb + Pb data, and the pp data was collected
in low-pileup mode. The average number of interactions per
bunch crossing in the pp collisions ranged from 0.6 to 1.3.
Only events taken during stable beam conditions and satis-
fying detector and data-quality requirements that include the
detector subsystems being in normal operating condition are
considered.

In Pb + Pb collisions, the event centrality reflects the over-
lap area of the two colliding nuclei and is characterized by
�EFCal

T , the total transverse energy deposited in the FCal [36].
The six centrality intervals used in this analysis are defined
according to successive percentiles of the �EFCal

T distribution
obtained in MB collisions, ordered from the most-central
(highest �EFCal

T ) to the most-peripheral (lowest �EFCal
T ) col-

lisions: 0–10%, 10–20%, 20–30%, 30–40%, 40–60%, and
60–80%.

The pp Monte Carlo (MC) sample consists of 1.8 ×
107 5.02-TeV hard-scattering dijet pp events generated with
POWHEG+PYTHIA8 [37–41] using the A14 tune of parameter
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values [42] and the NNPDF23LO PDF set [43]. The Pb + Pb
MC sample was generated by overlaying an additional sample
of MB Pb + Pb data events onto a separate set of 1.8 × 107

5.02-TeV hard-scattering dijet pp events generated with the
same tune and PDFs as the pp MC sample. This MC overlay
sample was reweighted on an event-by-event basis such that
it has the same centrality distribution as the jet-triggered
data sample. Another sample of MB Pb + Pb events was
generated using HIJING (version 1.38b) [44] and was only
used to evaluate the track reconstruction performance. The
detector response in all MC samples was simulated using
GEANT4 [45,46]. These MC samples are used to evaluate
the performance of the detector and analysis procedure and
correct the measured distributions for detector effects.

IV. JET AND TRACK SELECTION

The jet reconstruction procedure is identical to that used
in Ref. [7]. The anti-kt algorithm [47,48] is first run in four-
momentum recombination mode on �η × �φ = 0.1 × 0.1
calorimeter towers with two anti-kt radius parameter values
(R = 0.2 and R = 0.4). The energies in the towers are ob-
tained by summing the energies of calorimeter cells at the
electromagnetic energy scale. Then, an iterative procedure is
used to estimate the η-dependent underlying event (UE) trans-
verse energy density, while excluding the regions populated
by jets. The estimate of the UE contribution is performed
on an event-by-event basis. Furthermore, the background in
Pb + Pb collisions is modulated to account for the azimuthal
anisotropy in particle production [49]. The modulation in-
cludes the contributions of the second-, third-, and fourth-
order azimuthal anisotropy harmonics. The UE transverse
energy is subtracted from calorimeter towers included in the
jet and the four-momentum of the jet is updated accordingly.
Then, a jet η- and pT-dependent correction factor to the pjet

T
derived from the pp MC sample is applied to correct for
the calorimeter energy response [50]. The same calibration
factors are applied in both the pp and Pb + Pb collisions.
An additional correction based on in situ studies of jets
recoiling against photons, Z bosons, and jets in other regions
of the calorimeter is applied [12]. The same jet reconstruction
procedure without the azimuthal modulation of the UE is also
applied to pp collisions. The UE subtraction in pp collisions
removes the pileup contribution to the jet. In this analysis, jets
are required to have pjet

T in the 126- to 316-GeV range, with
rapidity |yjet| < 1.7. The pjet

T requirement is chosen in order to
exclude the contribution of UE jets generated by fluctuations
in the UE, while the rapidity requirement is based on the
acceptance of the tracking system. To prevent nearby jets from
distorting the measurement of D(pT, r) distributions, jets are
rejected if there is a neighboring jet with higher pjet

T within an
angular distance of �R = 1.0. This isolation requirement re-
moves approximately 0.01% of jets. Additionally, generator-
level jets are reconstructed by applying the anti-kt algorithm
with radius parameter R = 0.4 to stable final-state particles
from MC generators. These particles are required to have
a lifetime of τ > 0.3 × 10−10 s and do not include muons,
neutrinos, and particles from pileup activity.

Charged-particle tracks in Pb + Pb collisions are recon-
structed from hits in the inner detector using the track recon-
struction algorithm that was optimized for the high hit density
in heavy-ion collisions [51]. Tracks used in this analysis have
|η| < 2.5 and are required to have at least 9 (11) total hits in
the silicon detectors for charged particles with pseudorapidity
|ηch| � 1.65(|ηch| > 1.65). At least one hit is required in one
of the two innermost pixel layers. If the track trajectory passes
through an active module in the innermost layer, then a hit in
this layer is required. Additionally, a track must have no more
than two holes in the pixel and SCT detectors together, where
a hole is defined by the absence of a hit predicted by the track
trajectory. All charged-particle tracks used in this analysis are
required to have reconstructed transverse momentum pch

T >

1.0 GeV. In order to suppress the contribution from secondary
particles,2 the distance of closest approach of the track to
the primary vertex is required to be less than a value that
varies from 0.45 mm at pch

T = 4 GeV to 0.2 mm at pch
T =

20 GeV in the transverse plane and less than 1.0 mm in the
longitudinal direction. The primary vertex is determined using
vertex finding and fitting algorithms described in Ref. [52].
The precision is better than 20 μm in the transverse plane in
peripheral collisions and improves inversely proportional to
the square root of the number of reconstructed primary tracks
in central collisions.

The efficiency, ε, for reconstructing charged particles in
Pb + Pb and pp collisions is determined using the MC sam-
ples described above. It is evaluated as a function of the
generator-level primary particle transverse momentum, ptruth

T ,
and pseudorapidity, ηtruth, by matching tracks to generator-
level primary particles [46]. In both collision systems, the
efficiency increases slowly with ptruth

T and is seen to be inde-
pendent of pjet

T in the measurement’s phase space. For Pb + Pb
collisions, the efficiency for |η| < 0.3 is ≈80% at 1 GeV and
rises to ≈85% at 10 GeV. For 1.0 < |η| < 2.0, the efficiency
is ≈67% to ≈72% over the same pT range, with the variation
in efficiency between the most-central and most-peripheral
Pb + Pb collisions being approximately 3% in both η ranges.
For pp collisions, the efficiency for |η| < 0.3 is ≈85% at
1 GeV and rises to ≈88% at 10 GeV, remaining relatively con-
stant thereafter. For 1.0 < |η| < 2.0, the efficiency is ≈82%
to ≈86% over the same pT range. Further details about the
tracking efficiency can be found in Ref. [19].

The contribution of reconstructed tracks that cannot be
matched to a generated primary particle in the pp MC samples
is less than 2% in the entire pch

T range under study in both
the pp and Pb + Pb collisions. This contribution includes
fakes and secondaries, where fakes originate from randomly
matched hits in the detector layers that do not correspond to
the passage of charged particles. Both of these contributions
are corrected for as described in the next section.

2Primary particles are defined as particles with a mean lifetime
τ > 0.3 × 10−10 s either directly produced in pp interactions or from
subsequent decays of particles with a shorter lifetime. All other
particles are considered to be secondary.
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FIG. 1. Ratio of the measured charged-particle distributions to those after the subtraction of the UE, fake tracks, and secondaries as a
function of r for different pch

T intervals for pjet
T in the range 126–158 GeV. The different panels represent the six centrality selections.

V. ANALYSIS PROCEDURE

The analysis procedure is similar to that in Ref. [20], except
it is also performed differentially in r. Measured tracks are
considered to be associated with a reconstructed jet if their
angular distance from the jet axis is less than 0.8. Their
multiplicity distribution is given by

d2nmeas
ch

(
pch

T , r
)

d pch
T dr

= 1

ε
(
pch

T , ηch
) �nch

(
pch

T , r
)

�pch
T �r

,

where �nch(pch
T , r) represents the number of tracks within a

given �pch
T and �r range. The efficiency correction is applied

as a 1/ε(pch
T , ηch ) weight on a track-by-track basis, assuming

pch
T = ptruth

T . While that assumption is not strictly valid, the
efficiency varies sufficiently slowly with ptruth

T that the error
introduced by this assumption is less than 1% and is further
corrected for by the Bayesian unfolding procedure described
later in this section.

The measured track yields need to be corrected for the con-
tributions from the UE, fake tracks, and secondary particles.
In pp collisions, the UE contribution from hard scatterings
not associated with jet production is negligible. The contri-
butions from fake tracks and secondary charged particles are
estimated from MC samples and subtracted. This procedure is
similar to that applied in previous measurements [20,53].

For Pb + Pb collisions, contributions from the UE, fake
tracks, and secondary particles are estimated together in a

two-step process: First, the MC overlay sample is used to
generate ηjet versus φjet maps of the average number of
charged particles in a given annulus around a reconstructed
jet. This is done for charged particles without an associated
generated primary particle and as a function of pjet

T , ηjet, φjet ,
�
jet , r, pch

T , and centrality. Here �
jet is the azimuthal angle
between the jet and the second-order event plane 
2 and
is given by �
jet = φjet − 
2.3 In the second step, the ηjet

versus φjet maps are used to construct the UE distribution in
the data as a function of pjet

T , ηjet , φjet, �
jet , and centrality.
This distribution includes fakes and tracks from secondary
particles and is given by d2nch

UE+Fake(pch
T , r)/d pch

T dr. The
yields decrease with decreasing collision centrality, increasing
pch

T , and increasing �
2. The subtracted distributions are then
given by

d2nsub
ch

(
pch

T , r
)

d pch
T dr

= d2nmeas
ch

(
pch

T , r
)

d pch
T dr

− d2nch
UE+Fake

(
pch

T , r
)

d pch
T dr

.

Figure 1 shows the ratio of the charged-particle distributions
before and after the subtraction of the UE, fake tracks, and
secondaries, as a function of r for different pch

T intervals

3The second-order event plane angle 
2 is determined on an
event-by-event basis by a standard method using the φ variation of
transverse energy in the FCal [49].
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and 126 < pjet
T < 158 GeV for six centrality selections. The

largest UE contribution is for 1.0-GeV charged particles at
large values of r in central collisions, with the background-to-
signal ratio being approximately 100 and slowly decreasing
with increasing pjet

T . It rapidly decreases for more-peripheral
collisions, larger pch

T , and smaller r.
To remove the effects of bin migration due to the jet energy

and track momentum resolution, the subtracted d2nsub
ch /d pch

T dr
distributions are corrected by a two-dimensional Bayesian un-
folding [54] in pch

T and pjet
T as implemented in the ROOUNFOLD

package [55]. Two-dimensional unfolding is used because the
calorimetric jet energy response depends on the fragmentation
pattern of the jet [56]. Four-dimensional response matrices
are created from the pp and Pb + Pb MC samples using the
generator-level and reconstructed pjet

T and the generator-level
and reconstructed charged-particle pch

T . They are corrected for
tracking efficiencies and are evaluated in bins of r and central-
ity. The Bayesian procedure requires a choice in the number
of iterations. Additional iterations reduce the sensitivity to
the choice of prior but may amplify statistical fluctuations
in the distributions. After four iterations, the charged-particle
distributions are found to be stable within 2–4% for both the
Pb + Pb and pp data. A separate one-dimensional Bayesian
unfolding is used to correct the measured pjet

T spectra that are
used to normalize the unfolded charged-particle distributions.
The response matrices for both the one- and two-dimensional
unfolding are reweighted such that the D(pT, r) and pjet

T
distributions match the shapes of the corresponding quantities
in the reconstructed data.

An independent bin-by-bin unfolding procedure is used
to correct for migrations originating from the jet and track
angular resolutions. Two corresponding D(pT, r) distributions
are evaluated in MC samples, one using generator-level jets
and primary particles, and the other using reconstructed jets
and charged particles with their reconstructed pT replaced
by generator-level transverse momentum, ptruth

T . The ratio of
these two MC distributions provides a correction factor which
is then applied to the data. These factors are at the level of
approximately 5% with variations up to 15% for particles with
pT > 4 GeV, particularly near the edge of the jet. For 126- to
158-GeV jets in Pb + Pb collisions, the full unfolding correc-
tion is 8–14% (4–7%) for 1-GeV (6-GeV) tracks, depending
on centrality.

The final particle-level corrected distributions, normalized
by the area of the annulus being studied, are defined as

D(pT, r) = 1

Nunfolded
jet

1

2πrdr

dnunfolded
ch

(
pch

T , r
)

d pT
,

where Nunfolded
jet is the unfolded number of jets in a given

pjet
T interval and nunfolded

ch is the unfolded yield of charged
particles with a given pT matched to a jet with given pjet

T , at a
distance r.

The performance of the full analysis procedure is validated
in the MC samples by comparing the fully corrected charged-
particle distributions to the generator-level distributions. Good
recovery of the generator-level distributions (closure) is ob-
served, with a variation of less than 4% for charged particles

with pT < 10 GeV in both the pp and Pb + Pb collision
systems. The nonclosure is taken as an additional systematic
uncertainty as discussed in Sec. VI. One important effect is
that adding or removing particles carrying a large fraction of
the jet momentum near the edge of the jet can significantly al-
ter its reconstructed momentum and direction; this instability
contributes to the nonclosure mentioned above for particles
with pT > 10 GeV in jets with pjet

T < 200 GeV. Results are
presented only where the nonclosure in the pp MC sample is
less than 5%.

VI. SYSTEMATIC UNCERTAINTIES

The following sources of systematic uncertainty are con-
sidered: the jet energy scale (JES), the jet energy resolu-
tion (JER), the sensitivity of the unfolding to the prior,
the UE contribution, the residual nonclosure of the analy-
sis procedure, and tracking-related uncertainties. For each
variation accounting for a source of systematic uncertainty,
the D(pT, r) distributions along with their ratios and dif-
ferences are re-evaluated. The difference between the var-
ied and nominal distributions is used as an estimate of the
uncertainty.

The systematic uncertainty associated with the JES in Pb +
Pb collisions is due to jets having a different structure and
possibly a different detector response that is not modeled by
the MC simulation. It is composed of two parts: a centrality-
independent baseline component and a centrality-dependent
component. Only the centrality-independent baseline compo-
nent is used in pp collisions; it is determined from in situ
studies of the calorimeter response [50,56,57] and the relative
energy scale difference between the jet reconstruction proce-
dures in heavy-ion [57] and pp collisions [50]. The centrality-
dependent uncertainty reflects a modification of parton show-
ers by the Pb + Pb environment. It is evaluated by comparing
the ratio of the transverse momentum of calorimeter jets to
the vectorial sum of the transverse momentum of charged
particles within these jet in data and MC events. More details
on this procedure can be found in Ref. [7]. The size of the
centrality-dependent uncertainty in the JES reaches 0.5% in
the most-central collisions. Each component that contributes
to the JES uncertainty is varied separately by ±1 standard
deviation for each interval in pjet

T , and the response matrix
is recomputed accordingly. The data are then unfolded with
the modified matrices. The resulting uncertainty from the
JES increases with increasing charged-particle pT at fixed
pjet

T , decreases with increasing pjet
T , and is at the level of

2–4%.
The uncertainty in the D(pT, r) distributions due to the

JER is evaluated by repeating the unfolding procedure with
modified response matrices, where an additional contribution
is added to the resolution of the reconstructed pjet

T using a
Gaussian smearing procedure. The smearing factor is eval-
uated using an in situ technique in 13-TeV pp data that
involves studies of dijet energy balance [58,59]. An addi-
tional uncertainty is included to account for differences be-
tween the tower-based heavy-ion jet reconstruction and that
used in analyses of 13-TeV pp data [50,57]. The resulting
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FIG. 2. Relative size of the systematic uncertainties for D(pT, r) distributions in pp (top), central 0–10% Pb + Pb (middle), and peripheral
60–80% Pb + Pb (bottom) collisions for tracks with 1.0 < pT < 1.6 GeV (left) and 6.3 < pT < 10 GeV (right) in jets with 126 < pjet

T <

158 GeV. The systematic uncertainties due to JES, JER, tracking, unfolding, MC nonclosure, and UE contribution (for Pb + Pb) are shown
along with the total systematic uncertainty from all sources.

uncertainty from the JER is symmetrized to account for
negative variations of the JER. The size of the resulting un-
certainty in the D(pT, r) distributions due to the JER typically
reaches 4–5% for the highest charged-particle pT intervals
and decreases to 2–3% with decreasing charged-particle pT at
fixed pjet

T .

The uncertainties related to track reconstruction and selec-
tion originate from several sources. Uncertainties related to
the detector material description in simulation and the track
transverse momentum resolution are obtained from studies in
data and simulation described in Ref. [60]. The sensitivity
of the tracking efficiency to the description of the inactive
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material in the MC samples is evaluated by varying the
material description. This resulting uncertainty in the track
reconstruction efficiency is between 0.5% and 2% in the track
pT range used in the analysis. The systematic uncertainty
associated with the rate of fakes and secondary tracks is 30%
in both collision systems [60]. The contamination of the nsub

ch
from fakes and secondary tracks is approximately 20% in the
jet core for tracks with 1 < pT < 1.6 GeV. It rapidly decreases
as a function of pT and r and is less than 2% at larger distances
from the jet axis. The resulting uncertainty in the D(pT, r)
distributions is at most ≈7% in the jet core and decreases
as a function of pT and r. An additional uncertainty takes
into account a possible residual misalignment of the tracking
detectors in pp and Pb + Pb data collection. The resulting
uncertainties in the D(pT, r) distributions are typically less
than 0.1%. An additional uncertainty in the tracking efficiency
due to the high local track density in the core of jets is 0.4%
[61] for all pjet

T ranges in this analysis. The uncertainty due
to the track selection is evaluated by repeating the analysis
with an additional 3σ requirement on the significance of the
distance of closest approach of the track to the primary vertex.
This uncertainty affects the track reconstruction efficiencies,
track momentum resolution, and rate of fake tracks. The

resulting uncertainty typically varies between 1% and 2%.
Finally, the track-to-particle matching requirements are var-
ied. This variation affects the track reconstruction efficiency,
track momentum resolution, and rate of fake tracks. The
resulting systematic uncertainty is �0.1% for the D(pT, r)
distributions. All track-related systematic uncertainties are
added in quadrature and presented as the total tracking
uncertainty.

The systematic uncertainty associated with the UE subtrac-
tion has two components: the limited number of charged par-
ticles associated with a jet without a corresponding generator
particle in the Pb + Pb MC overlay sample and a comparison
with the result of an alternative UE estimation using the
cone method. The cone method uses jet-triggered events to
estimate the background and is adapted from Refs. [19,20].
A regular grid of nine cones of size �R = 0.8 is used to
cover the inner-detector region. Cones are excluded if the
angular distance to any reconstructed jet in the event with
pjet

T > 90 GeV is less than 1.6 or if they contain a charged
particle with pT > 10 GeV. This exclusion reduces biases
from any hard processes. The resulting UE charged-particle
yields dnUE,Cone

ch /d pch
T are evaluated over the 1- to 10-GeV

range as a function of pch
T , pjet

T , centrality, and r, and are
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FIG. 4. The D(pT, r) distributions in pp (open symbols) and Pb + Pb (closed symbols) as a function of angular distance r for pjet
T of 126

to 158 GeV. The symbols represent different track pT ranges, and each panel is a different centrality selection. The vertical bars on the data
points indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The widths of the boxes are not indicative of
the bin size, and the points are shifted horizontally for better visibility. The distributions for pT > 6.3 GeV are restricted to smaller r values as
discussed in Sec. V.

subsequently averaged over all cones. Both of these sources
of uncertainty are combined as uncorrelated uncertainties. The
combined UE uncertainty in the D(pT, r) distributions is less
than 10% for r < 0.4 and reaches a maximum of 40% at the

largest angular distances from the jet axis. It is the dominant
source of systematic uncertainty for low-pT charged particles
at large r and decreases sharply with increasing charged-
particle pT. In particular, the component from the limited
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FIG. 5. Ratios of D(pT, r) distributions in Pb + Pb and pp collisions as a function of angular distance r for 126 < pjet
T < 158 GeV (left) and

200 < pjet
T < 251 GeV (right) for seven pT selections. Different centrality selections are shown: 0–10% (top), 30–40% (middle), and 60–80%

(bottom). The vertical bars on the data points indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The
widths of the boxes are not indicative of the bin size, and the points are shifted horizontally for better visibility.

sample size dominates in the most-central collisions, while the
component from the alternative estimation method dominates
elsewhere.

The systematic uncertainty in the unfolding procedure
is estimated by generating response matrices from the MC
distributions without the reweighting that matched the shapes

of the charged-particle and jet distributions in data. The 5–7%
difference between the nominal D(pT, r) distribution and that
unfolded with the unreweighted response matrix is taken as
the systematic uncertainty.

An additional uncertainty to account for possible residual
limitations in the analysis procedure is assigned by evaluating
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FIG. 6. The RD(pT,r) distributions for pjet
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selections, 1.6–2.5 GeV (closed symbols) and 6.3–10.0 GeV (open symbols), and six centrality intervals. The vertical bars on the data points
indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The widths of the boxes are not indicative of the bin
size, and the points are shifted horizontally for better visibility.

the nonclosure of the unfolded distributions in simulations.
This is typically about 4%.

The correlations between the various systematic compo-
nents are considered in evaluating the RD(pT,r) and �D(pT, r)
distributions. The unfolding and nonclosure uncertainties are
taken to be uncorrelated between pp and Pb + Pb collisions,
while all others are taken to be correlated. For these, the
RD(pT,r) and �D(pT, r) distributions are re-evaluated by ap-
plying the variation to both collision systems; the resulting
variations of the ratios from their central values are used as
the correlated systematic uncertainty.

Examples of systematic uncertainties in the D(pT, r) dis-
tributions for jets in the 126- to 158-GeV pjet

T range measured
in pp and Pb + Pb collision systems are shown in Fig. 2. The
uncertainties in the RD(pT,r) distributions are shown in Fig. 3.
It can be seen that the dominant systematic uncertainty in the
Pb + Pb and the RD(pT,r) distributions is from the UE subtrac-
tion. While it is less than 5% for r < 0.3, it is approximately
40% for charged particles with pT = 1 GeV at r = 0.8. The
uncertainties in the pp system are smaller, with the dominant
systematic uncertainty at low pT due to the tracking. This is
approximately 10% for r < 0.1 and decreases to less than 5%
at larger distances.

VII. RESULTS

The D(pT, r) distributions are studied as a function of pjet
T

for pp data and Pb + Pb collisions with different centralities.
The interplay between the hot and dense matter and the parton
shower is explored by evaluating the ratios and differences
between the D(pT, r) distributions in Pb + Pb and pp colli-
sions. Some selected moments of these distributions are also
investigated.

A. D(pT, r) distributions

The D(pT, r) distributions evaluated in pp and Pb + Pb
collisions for 126 < pjet

T < 158 GeV are shown in Fig. 4.
These distributions decrease as a function of distance from

the jet axis. The rate of fall-off increases sharply for higher pT

particles, with most of these being concentrated near the jet
axis. The distributions exhibit a difference in shape between
Pb + Pb and pp collisions, with the Pb + Pb distributions
being broader at low pT (pT < 4 GeV) and narrower at high pT

(pT > 4 GeV) in 0–10% central collisions. This modification
is centrality dependent and is smaller for peripheral Pb + Pb
collisions.

B. RD(pT,r) distributions

In order to quantify the differences seen in Fig. 4, ratios
of the D(pT, r) distributions in Pb + Pb collisions to those
measured in pp collisions for 126 < pjet

T < 158 GeV and
200 < pjet

T < 251 GeV jets are presented in Fig. 5. They
are shown as a function of r for different pT and centrality
selections. In 0–10% central collisions, RD(pT,r) is greater
than unity for r < 0.8 for charged particles with pT less
than 4.0 GeV for both pjet

T selections. For these particles,
the enhancement of yields in Pb + Pb collisions compared
to those in pp collisions grows with increasing r up to
approximately r = 0.3, with RD(pT,r) reaching values up
to two for 1.0 < pT < 2.5 GeV. The value of RD(pT,r) is
approximately constant for r in the interval 0.3–0.6 and de-
creases for r > 0.6. For charged particles with pT > 4.0 GeV,
RD(pT,r) shows a depletion outside the jet core for r > 0.05.
The magnitude of this depletion increases with increasing
r up to r = 0.3 and is approximately constant thereafter.
For 30–40% midcentral collisions, the enhancement in the
yield of particles with pT < 4.0 GeV has trends similar to
those in the most central collisions, but the depletion of
particles with pT > 4.0 GeV is not as strong. For 60–80%
peripheral collisions, RD(pT,r) has no significant r dependence
and the values of RD(pT,r) are within approximately 50% of
unity.

The observed behavior inside the jet cone, r < 0.4, agrees
with the measurement of the inclusive jet fragmentation func-
tions [10,19,20], where yields of fragments with pT < 4 GeV
are observed to be enhanced and yields of charged particles
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FIG. 7. RD(pT,r) as a function of pT for 0–10% (top), 30–40% (middle), and 60–80% (bottom) Pb + Pb collisions in two different pjet
T

selections: 126–158 GeV (left) and 200–251 GeV (right). The different colors indicate different angular distances from the jet axis. The vertical
bars on the data points indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The widths of the boxes are
not indicative of the bin size, and the points are shifted horizontally for better visibility.

with intermediate pT are suppressed in Pb + Pb collisions
compared to those in pp collisions. The wake left in the
medium from the passage of the jet compensates for some of
the energy it loses [30,31]. The plateau and slight decrease
seen in Fig. 5 for the RD(pT,r) distributions in central Pb + Pb
collisions beyond r = 0.6 from the jet axis suggests that this

response of the medium is smaller than that predicted in
Ref. [31].

The centrality dependence of RD(pT,r) for two charged-
particle pT intervals (1.6–2.5 GeV and 6.3–10.0 GeV) and
two different pjet

T ranges (126–158 GeV and 200–251 GeV)
is presented in Fig. 6. For both pjet

T selections, the magnitude
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of the excess for 1.6–2.5 GeV charged particles increases
for more-central events and for r < 0.3. The magnitude of
the excess is approximately a factor of 2 in the most-central
collisions for r > 0.3. A continuous centrality-dependent sup-
pression of yields of charged particles with 6.3 < pT < 10.0
GeV is observed. The magnitude of the modification decreases
for more-peripheral collisions in both pT intervals and pjet

T
selections.

Figure 7 shows the charged-particle pT dependence of
RD(pT,r) for selections in r for jets at 126–158 GeV and
200–251 GeV in the following centrality intervals: 0–10%,
30–40%, and 60–80%. Interestingly, there is no significant
suppression of the yields in Pb + Pb collisions for r < 0.05 at
all measured pT. For larger r values, the yields are enhanced
for charged particles with pT < 4 GeV and suppressed for
higher-pT charged particles in both the 0–10% and 30–40%
centrality selections and both pjet

T ranges presented here. The
magnitude of the enhancement increases for decreasing pT

below 4 GeV while the suppression is enhanced with in-
creasing pT for 4–10 GeV, after which it is approximately
constant. At fixed pT the magnitude of the deviation from
unity increases for larger distances from the jet axis. In the
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FIG. 9. �D(pT, r) as a function of r in central collisions for all pT ranges in four pjet
T selections: 126–158, 158–200, 200–251, and

251–316 GeV. The vertical bars on the data points indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties.
The widths of the boxes are not indicative of the bin size, and the points are shifted horizontally for better visibility.
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FIG. 10. ��(r) as a function of r for charged particles with pT < 4 GeV in four pjet
T selections, 126–158, 158–200, 200–251, and 251–

316 GeV, and three centrality selections, 0–10% (top left), 30–40% (top right), and 60–80% (bottom). The vertical bars on the data points
indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The widths of the boxes are not indicative of the bin
size, and the points are shifted horizontally for better visibility.

60–80% peripheral collisions, the same trend is seen (but
with smaller-magnitude modifications) for 126 < pjet

T < 158
GeV; for the higher-pjet

T selection, the larger uncertainties
do not allow a clear conclusion to be drawn for peripheral
collisions.

The enhancement of the charged-particle yield in the kine-
matic region of pT < 4 GeV has two possible explanations.
First, gluon radiation from the hard-scattered parton as it
propagates through the QGP would lead to extra soft particles
[62,63]. Second, the interactions of a jet with the QGP and
its hydrodynamic response could induce a wake that manifests
itself as an enhancement in the number of low-pT particles
[31].

The observed modification at pT > 4 GeV can be ex-
plained on the basis of the larger expected energy loss of
gluon-initiated jets, resulting in a relative enhancement in the
number of quark jets in Pb + Pb collisions compared to pp
collisions at a given pjet

T value [20,64]. Since gluon jets have a
broader distribution of particle momentum transverse to the jet
direction compared to quark-initiated jets [65], the enhanced
quark-jet contribution could describe the narrowing of the

particle distribution around the jet direction for particles with
pT > 4.0 GeV observed here.

The RD(pT,r) distributions for low- and high-pT particles
in the different pjet

T selections are directly overlaid in Fig. 8.
These distributions are for the 0–10% most-central collisions
and show a hint of enhancement in RD(pT,r) with increasing pjet

T

for r < 0.25 for low-pT charged particles. No significant pjet
T

dependence is seen at larger r values or for high-pT charged
particles at any r. This pjet

T dependence is further explored by
defining an integral over the low-pT excess and is discussed in
Sec. VII D.

C. �D(pT, r) distributions

In addition to the ratios of the D(pT, r) distributions,
differences between the unfolded charged-particle yields are
also evaluated as �D(pT, r) to quantify the modification in
terms of the particle density.

These differences are presented as a function of r for
different pT selections in 0–10% central collisions in Fig. 9.
These distributions show an excess in the charged-particle
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FIG. 11. R�(r) (left) and RP(r) (right) as a function of r for charged particles with pT < 4 GeV ranges in four pjet
T selections, 126–158,

158–200, 200–251, and 251–316 GeV, and three centrality selections, 0–10% (top), 30–40% (middle), and 60–80% (bottom). The vertical bars
on the data points indicate statistical uncertainties, while the shaded boxes indicate systematic uncertainties. The widths of the boxes are not
indicative of the bin size, and the points are shifted horizontally for better visibility.

yield density for Pb + Pb collisions compared to pp collisions
for charged particles with pT < 4.0 GeV. This ranges from
0.5 to 4 particles per unit area per GeV for charged particles
with 1 < pT < 1.6 GeV in jets with 126 < pjet

T < 158 GeV
for 0–10% central Pb + Pb collisions and increases with
increasing pjet

T . The largest excess for charged particles with
pT < 4.0 GeV is within the jet cone. For large r values, the
difference decreases but remains positive. A depletion for

higher-pT particles of up to approximately 0.5 particles per
unit area per GeV is seen for 126- to 158-GeV jets in 0–10%
central Pb + Pb collisions. The magnitude of this depletion
increases for higher pjet

T . A minimum in the �D(pT, r)
distributions for charged particles with 4.0 < pT < 25.1
GeV at 0.05 < r < 0.10 is observed. The magnitudes of the
excesses and deficits discussed here depend on the selected
charged-particle pT.
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D. pT integrated distributions

Motivated by similar studies of the enhancement of soft
fragments in jet fragmentation functions in Pb + Pb com-
pared to pp collisions from Ref. [20], the unfolded D(pT, r)
distributions are integrated for charged particles with pT < 4
GeV to construct the quantities �(r) and P(r) defined as

�(r) =
∫ 4 GeV

1 GeV
D(pT, r)d pT,

P(r) =
∫ r

0

∫ 4 GeV

1 GeV
D(pT, r′)d pTdr′.

The �(r) values are integrated over the charged-particle pT

interval of 1–4 GeV to provide a concise look at the pT region
of enhancement discussed above. The P(r) values further add
a running integral over r and provide information about the jet
shape. Both of these quantities are compared between the pp
and Pb + Pb systems to give the following distributions:

��(r ) = �(r)Pb+Pb − �(r)pp,

R�(r ) = �(r)Pb+Pb

�(r)pp
,

RP(r ) = P(r)Pb+Pb

P(r)pp
.

These integrated quantities are intended to provide aggregate
information about the variation with angular distance from
the jet axis, magnitude, and pjet

T dependence of the low-pT

charged-particle excess discussed above. The ratio quantities
are useful for comparisons with other Pb + Pb measurements
��(r ) is comparable to �D(pT, r), but it is integrated over
charged-particle pT in the 1- to 4-GeV interval [20].

Figure 10 shows the ��(r) distributions as a function
of r for the following centrality intervals: 0–10%, 30–40%,
and 60–80%. In the most-central collisions, a significant pjet

T
dependence of ��(r) is observed; for r < 0.4 (particles within
the jet cone) ��(r) increases with increasing pjet

T . The value of
��(r) decreases in more-peripheral collisions, where its pjet

T
dependence is also no longer significant.

Figure 11 shows the R�(r) and RP(r) distributions as a
function of r for the 0–10%, 30–40%, and 60–80% centrality
intervals. The R�(r) distributions in the most-central collisions
show a maximum for r ∼ 0.4 and a flattening or a decrease for
larger r. However, since R�(r) remains at or above unity for the
full range of r values presented, RP(r) shows no suppression
with increasing r over the entire measured range. A significant
pjet

T dependence is seen in the RP(r) distributions for the most-
central Pb + Pb collisions. A slow increase in RP(r) is clearly
observed in 30–40% central collisions. In more-peripheral
collisions, the magnitude of the excess is reduced and the
trends in R�(r) are less clear, although RP(r) is still seen to
be above unity. The flattening of the RP(r) distributions at
large distances suggests that while wider jets have a softer
fragmentation and contain more particles with less pT in
Pb + Pb collisions than in pp collisions [66,67], this effect
plateaus for jets with radius larger than 0.6.

VIII. SUMMARY

This paper presents a measurement of the yields of charged
particles, D(pT, r), inside and around R = 0.4 anti-kt jets with
|yjet| < 1.7 up to an angular distance of r = 0.8 from the
jet axis, using the ATLAS detector at the LHC. The yields
are measured in intervals of pjet

T from 126 to 316 GeV in
Pb + Pb and pp collisions at

√
sNN = 5.02 TeV as a function

of charged-particle pT and the angular distance r between
the jet axis and charged particle. The integrated luminosities
of the Pb + Pb and pp data sets are 0.49 nb−1 and 25 pb−1,
respectively.

The measurements show a broadening of the D(pT, r) dis-
tribution for low-pT particles inside the jet in central Pb + Pb
collisions compared to those in pp collisions, while for higher-
pT particles the angular distributions are narrower in Pb + Pb
collisions than in pp collisions. These modifications are cen-
trality dependent and decrease for more-peripheral collisions.
The Pb + Pb-to-pp ratio of the D(pT, r) distributions, RD(pT,r),
is also examined. The RD(pT,r) distributions for charged
particles with pT < 4 GeV are above unity and grow with
increasing angular separation up to r ∼ 0.3, showing weak
to no dependence on r in the interval 0.3 < r < 0.6 followed
with a small decrease in the enhancement for 0.6 < r < 0.8.
For charged particles with pT > 4 GeV, a suppression in
RD(pT,r) is observed and the size of the modification increases
with increasing r for 0.05 < r < 0.3 with no r dependence for
r > 0.3. For all charged-particle pT values, the RD(pT,r) values
are greater than or equal to unity for r < 0.05. Between
0.1 < r < 0.25, a statistically significant trend of increasing
RD(pT,r) with increasing pjet

T is observed for low-pT particles.
No significant pjet

T dependence is seen for particles with pT >

4 GeV.
This measurement provides information about the modifi-

cation of the jet at large distances from the jet axis that can
be used to constrain models of how the jet is modified by the
presence of the quark-gluon plasma and how the quark-gluon
plasma responds to the jet.
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