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Changes in Four Decades of Near‐CONUSTropical Cyclones
in an Ensemble of 12 km Thermodynamic Global Warming
Simulations
Colin M. Zarzycki1 , Tyrone Zhang1, Andrew D. Jones2,3 , Deeksha Rastogi4 ,
Pouya Vahmani2 , and Paul A. Ullrich5,6

1Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA,
2Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 3Energy and
Resources Group, University of California, Berkeley, Berkeley, CA, USA, 4Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 5Division of Physical and Life Sciences, Lawrence
Livermore National Laboratory, Livermore, CA, USA, 6Department of Land, Air and Water Resources, University of
California, Davis, Davis, CA, USA

Abstract We evaluate tropical cyclones (TCs) in a set of thermodynamic global warming (TGW)
simulations over the continental United States (CONUS). A 12 km simulation forced by ERA5 provides a 40‐
year historical (1980–2019) control. Four complimentary future scenarios are generated using thermodynamic
deltas applied to lateral boundary, interior, and surface forcing. We curate a data set of 4,498 6‐hourly TC
snapshots in the control and find a corresponding “twin” in each counterfactual, permitting a paired comparison.
Warming results in an increase in mean dynamical TC intensity and moisture‐related quantities, with the latter
being more pronounced. TC inner cores contract slightly but outer storm size remains unchanged. The frequency
with which TCs become more intense is only moderately consistent, with snapshots having increased hazards
ranging from 50% to 80% depending onwarming level. The fractions of TCs undergoing rapid intensification and
weakening both increase across all warming simulations, suggesting elevated short‐term intensity variability.

Plain Language Summary We examined how tropical cyclones (TCs) near the United States might
change due to warmer climates. First, we recreated past weather conditions from 1980 to 2019 using a
specialized climate model. Then, we predicted future changes in the same meteorology by modifying the model
to include warmer temperatures and running four additional simulations. We tracked and analyzed over 4,000
instances of TCs from the past 40 years, ensuring that these TCs were all matched between all five simulations,
and evaluated their changes under future warming conditions. Our findings suggest that TCs will become
stronger on average as the world warms, with the most notable increases in TC moisture. Not every TC in our
study becomes more intense with warming, however, highlighting the complexity of understanding how
extreme weather will change in the future. We found that the chances of a TC rapidly intensifying or suddenly
weakening both rise with higher levels of warming. These trends could complicate predictions of TC intensity in
the future, presenting additional challenges for forecasting and preparation.

1. Introduction
Tropical cyclones (TCs) cause extensive property damage, economic disruption, and harm to livelihoods. Un-
derstanding future TC changes is important to inform preparedness and mitigation strategies, help safeguard
vulnerable communities, and reduce deleterious economic impacts (Mendelsohn et al., 2012).

Numerous studies have explored projected future changes in TCs using free‐running global climate models
(GCMs) (Knutson et al., 2020, and references therein). High‐resolution GCMs that permit TCs provide detailed
information regarding changes in both frequency and intensity. However, it can be difficult to disentangle the two,
and model biases may complicate interpretation. An alternative approach that only explores the impact of
thermodynamic changes on existing TCs is the thermodynamical global warming (TGW) approach, sometimes
referred to as “imposed warming” or “pseudo‐global warming.” Briefly, TGW involves reproducing historical
weather, then modifying these simulations with a thermodynamic signal derived from coupled GCMs to predict
the same weather events under future climate conditions (Brogli et al., 2023; Schär et al., 1996). This
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thermodynamic signal is commonly called a “delta” and represents a background anthropogenic warming pattern
present in a given climate scenario.

The primary strength of TGW is that it permits the evolution of known events under counterfactual conditions. It
effectively asks, “If the same meteorological event occurred under a different thermodynamic environment, how
would the event's evolution change?” This idea is tightly linked with the growing application of storylines for
evaluating and communicating climate impacts (Shepherd et al., 2018), which provide event‐based assessments
describing the physically consistent unfolding of past events and plausible future pathways (Ciullo et al., 2021).
TGW's core weakness is that it is conditional on the historical event evolving under highly similar synoptic
conditions and, therefore, cannot predict changes in event frequency.

Generally, TGWhas been applied to individual TCs or aggregations of hindcasts of storms (e.g., Chen et al., 2020;
Chow et al., 2024;Delfino et al., 2023; Lackmann, 2015;Olschewski&Kunstmann, 2024; C. L. Parker et al., 2018;
Patricola&Wehner, 2018; Reddy et al., 2021; Reed et al., 2020; Tran et al., 2022, and others).While the results are
not identical in each study, the consensus is that perturbing historical TCs results in noticeably higher precipitation
rates and storm‐total precipitation. More modest increases in storm intensity are generally found, although some
studies find little change or evenweaker TCswithwarming (Wehner et al., 2019). Gutmann et al. (2018) performed
a temporally continuous 4 km TGW simulation and looked at 22 TCs over the United States (US) from 2001 to
2013. Under added warming, they found simulated TCs had faster maximum winds, slower translation speeds,
lower pressures, and higher precipitation rates, although there was large TC‐to‐TC variation.

Here, we evaluate five 12 km simulations (one historical, four TGW) over the continental US (CONUS) and
compare matching sets of near‐coastal TCs. Instead of the more commonly applied approach of performing short
hindcasts of individual storms, we perform continuous integrations following a single initialization, similar to
Gutmann et al. (2018). In addition to applying model grid spacings finer than current state‐of‐the‐art high‐
resolution GCMs (Haarsma et al., 2016), this study contains two novelties that have not been previously pub-
lished, to our knowledge. First, we analyze an ensemble of TGW runs with the same meteorology but varying
levels of warming rather than a single control and counterfactual. This permits the exploration of a range of
potential outcomes, both in terms of total domain warming as well as the spatial pattern of thermodynamic
changes. Second, we evaluate an unprecedented sample size for TCs in a TGW simulation—346 distinct TCs
spanning 4,498 6‐hourly timesteps—with a large suite of TC metrics. This permits the generation of a large
database of high‐resolution storylines.

2. Data and Methods
2.1. Model Data

The simulations applied here are described in detail in Jones et al. (2023). To summarize, a 40‐year (1980–2019)
downscaled CONUS simulation is generated using a 12 km (39 level) configuration of the Weather Research
Forecasting Model (WRF, v4.2.1). The grid spacing and horizontal domain were designed to achieve a balance
between accurately simulating CONUS extremes and computational expense. Three‐hourly European Centre for
Medium‐Range Weather Forecasts version 5 reanalysis (ERA5) fields were applied as lateral boundary condi-
tions (LBCs). TCs are well‐represented in ERA5 (Bourdin et al., 2022), and TCs that form over the open ocean are
introduced to the domain via these LBCs. Spectral nudging (SN) was added in the interior of the mesh to further
constrain the large‐scale meteorology but allow sub‐synoptic scales to evolve freely. Daily sea surface temper-
atures (SSTs) are derived from ERA5 and prescribed as a fixed lower boundary condition. This recreation is
referred to as the “historical” run and is schematically shown in Figure 1a.

Four counterfactual climates are then generated by defining two subsets of CMIP6 simulations with higher
(“hot”) and lower (“cold”) climate sensitivity (Jones et al., 2023). Climate deltas—differences in variables (here,
air temperature, near‐surface air temperature, skin temperature, relative humidity, and sea‐surface temperature)
between a projected climate state and a baseline (present‐day) state—are then extracted from CMIP6 and added to
the original ERA5 LBCs, SN, and surface forcing. Atmospheric concentrations of greenhouse gases are adjusted
accordingly. The simulation is then re‐run for a “near” scenario (applying 2020–2059 deltas to recreate 1980–
2019) and a “far” scenario (applying 2060–2099 deltas) with both the “hot” and “cold” groupings, resulting in
four counterfactuals (Figure 1b). Note, since we apply daily SST from ERA5, surface forcing contains moderate
TC cold wakes. Since large‐scale deltas are applied to the SST in the counterfactuals, the relative SST cooling
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response to TCs is similar in all simulations. An example is shown in Supporting Information S1 (Figure S1).
Because the SSTs are prescribed, this study doesn't include mechanisms that impact TC's influence on the upper
ocean, such as changes in thermal or salinity stratification (Balaguru et al., 2016; Huang et al., 2015).

An overview of the permutations is shown in the top rows of Table 1. While we apply the Shared Socioeconomic
Pathway (SSP585, Meinshausen et al., 2020) scenario here, we encourage readers to focus on the CONUS
warming levels (WLs), also shown in Table 1, rather than the precise scenario. These warming levels represent the
domain‐averaged realized surface temperature warming of each simulation relative to the historical reference.
While the pattern of warming may vary somewhat at the sameWL for different scenarios, warming levels remove
a large component of emission scenario uncertainty (and associated economic, social, and political behaviors)
from the projection (James et al., 2017).

2.2. TC Tracking and Statistics

Tracking TCs here provides a unique challenge. Since the runs are forced with ERA5, the output is effectively a
reanalysis. However, because of the weak constraint on small spatial scales, TCs do not necessarily occur in
exactly their location identified in the historical record. To address this, we use the observational International
Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010) and only keep simulated sea level
pressure (SLP) values within 3° of an observed TC's center at a given time. We also ignore any TCs within 8
gridboxes of the model lateral boundaries. We then track the local minimum SLP (simulated TC center) within the
valid “patches” using TempestExtremes (Ullrich & Zarzycki, 2017; Ullrich et al., 2021) to allow for a modeled
TC offset of up to approximately 330 km from the recorded observation location. This analysis is performed for
each simulation to create five sets of trajectories. These trajectory files are then curated so that only TC points
detected in every simulation are preserved. That is, we compose a one‐to‐one correspondence of 346 TCs (4,498
timesteps) that occurred during the 1980–2019 period for each simulation through a series of track trimmings,
mergers, and deletions. TC fixes that cannot be credibly detected in all five data sets are ignored. Each of the
timesteps (i.e., a specific TC at a specific time and location along its trajectory) is referred to as a TC “snapshot,”
which can be directly matched to the same TC snapshot in another simulation. We choose to keep all TCs both
pre‐ and post‐landfall. The included TCs are contained in Supporting Information S1 (Tables S1, S2, and Figure
S2). Because of this tracking methodology, as well as how the model is forced both by LBCs and SN, we do not

Figure 1. Snapshots of total precipitable water (TPW) at 12Z 29th August 2005 (effective), for the historical (a.) and the “hot far” (b.) simulations over theWRF domain.
Warmer colors represent higher TPW values (mm). The green outline in the two panels denotes the snapshot box surrounding Hurricane Katrina used for TC comparison
for both simulations (c. and d. show a zoom of this box). Paired differences are computed from these snapshots to quantify how a TC at a given time and location changes
in the counterfactual runs (e.).
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evaluate potential changes in TC translation speed or quantities that may be impacted by changes in TC motion
(e.g., latitude of maximum intensity, storm‐total rainfall).

Two‐dimensional snapshot fields are extracted by specifying a 10°x10° box centered on the tracked TC
(Figures 1c–1e). All subsequent analysis computes metrics that are either the snapshot minimum/maximum (e.g.,
maximum wind) or area integrals (e.g., wind field size). To ensure the simulations are adequate‐for‐purpose (W.
S. Parker, 2011) (i.e., TCs are simulated with reasonable fidelity), the median absolute track error in the historical
simulation (relative to IBTrACS) is computed to be 75.2 km, confirming the majority of TC snapshots occur
within 1° of their observed counterpart (Table S3 in Supporting Information S1). The median TC minimum SLP
(maximum 10‐m wind) bias for TCs in the historical run is +2.1 hPa (‐3.7 m s− 1), indicating simulated TCs are
slightly too weak (Figure S3 in Supporting Information S1). This is consistent with numerical models at similar
grid spacings (Roberts et al., 2020), although these intensity statistics are improved versus conventional rean-
alyses (C. M. Zarzycki et al., 2021), likely due to increased resolution. Davis (2018) argues that a grid spacing
close to 14 km is necessary for the statistical depiction of intense Atlantic hurricanes that preserves a realistic
wind structure. While the grid spacing here is slightly finer, it should be noted that the full spectrum of inner‐core
TC dynamics, including the representation of deep convection within the eyewall, is not resolved.

Table 1
Model Configurations (Top, Gray Lines), WLs Over CONUS (Middle, Pink Line), and TC Statistics (Bottom, White Lines)

Note. For each statistic, the mean of the entire snapshot distribution is on top, with the 95th percentile (5th percentile for MSLP and RMW) shown below in italics. The
mean is bolded and underlined if the underlying distribution composing it differs significantly from the historical reference distribution at the 99% confidence level using
Welch's t‐test. The mean is only bolded (underlined) if significant at the 95% (90%) level.

Geophysical Research Letters 10.1029/2024GL110535
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3. Results
3.1. Mean Statistics

Table 1 shows the mean statistics for numerous TC‐relevant metrics (Table S4 in Supporting Information S1)
starting with the MSLP row. The top number in each cell highlights the mean metric value for all 4,498 snapshots
for that simulation, while the bottom italicized number represents the 95th percentile for each distribution (5th
percentile for MSLP and RMW). Statistical significance is noted by bolded and/or underlined mean values using
Welch's t‐test. The underlying histograms are included in Figure S4 of the Supporting Information S1.

Across all tracked TCs, there are small, but statistically significant, increases in mean intensity with warming. The
average (top 5%) MSLP drops by 1 hPa (6 hPa) and u10m,x increases by 1.5 m s− 1 (3.8 m s− 1) between the his-
torical and warmest “hot far” runs. This is consistent with PI theory, which suggests increasing TC intensity with
increasing SSTs (Emanuel, 1986; Holland, 1997). Mean SST in a 5°x5° box under the TC center is also listed in
Table 1. Normalizing u10m,x by under‐TC SST changes yields estimates of 2.1%–2.5% 1°C− 1, which is on par
with, but slightly lower than, estimates from Knutson et al. (2015) (2.9% 1°C− 1) and S. Wang and Toumi (2018)
(3%–4% 1°C− 1) and slightly above that found in Nolan et al. (2007) (2.0% 1°C− 1). For both MSLP and u10m,x, the
95th percentile (very intense TCs) increases more rapidly with warming compared to the mean. This implies a
preferential intensification of the most intense TCs, projected to occur in future climates due to further
enhancement of already favorable (e.g., high SST, low shear) environments (e.g., Emanuel, 2013; Knutson
et al., 2020). Note that since TGW is conditional, such environments, in a relative sense, persist in the coun-
terfactual runs (i.e., if an environment for a specific TC was favorable in the historical record, it is also favorable
in all simulations here; also see Figure S5 in Supporting Information S1). Integrated kinetic energy (IKE) of the
850‐hPa wind field, which is the spatial integral of the wind magnitude squared (Powell & Reinhold, 2007),
similarly increases monotonically with warming, although only significantly in the warmest runs.

Larger changes occur in themetrics associated with moisture. Both the mean and 95th percentiles of TC TPWx and
Precx increase monotonically with warming. Assuming a Clausius‐Clapyron (CC) scaling of 7% precipitation
increase per 1°Cofwarming, mean TPWx scales near CC (5.9%–6.4% 1°C− 1) relative to domain‐averagedWL and
slightly higher (8.5%–9.5% 1°C− 1) relative to the 5°x5° under‐TC‐center SST (Tables S5 and S6 in Supporting
Information S1). Precx increases greater than CC (9.0%–10.1% 1°C− 1 WL and 13.4%–14.2% 1°C− 1 SST) for the
average TC. This enhanced precipitation efficiency is consistent with increased storm intensity with warming, a
subsequent strengthening of the TC secondary circulation, and increased moisture convergence (C.‐C. Wang
et al., 2015). This result is close to, but slightly above, the consensus estimate inKnutson et al. (2020). Scaling of the
95th percentile values is similar for TPWx (6.1%–6.7% 1°C− 1 WL and 8.8%–10.0% 1°C− 1 SST) and slightly lower
(but still super‐CC) for Precx (7.2%–8.0% 1°C− 1 WL and 10.2%–11.7% 1°C− 1 SST). The snapshot‐level areal
coverage of precipitation rates greater than 10 mm hr− 1 similarly increases monotonically with WL.

While there are clear signals inMSLP and u10m,x, there is no statistically significant change in the overall outer size
of the TC as by the radius at which the azimuthally averaged 850‐hPa wind magnitude drops below 8 m s− 1 (r8).
This metric is chosen because of its fidelity in reanalyses and climate data (Schenkel et al., 2018). Note that since
IKE is a spatial integral dependent on wind magnitude, its relative response is essentially a combination of u10m,x
and r8. Across all TCs, the radius ofmaximumwind (RMW) contracts by 5–8 km in all warming simulations. There
is sparse literature on climate model RMW projections, likely owing to insufficient model resolution to resolve
inner core processes, but this result supports prior findings (Chen et al., 2022; Kanada et al., 2013). This is also
consistent with operational knowledge, where u10m,x and RMW are generally inversely correlated (Chavas &
Lin, 2016). We do caution that the mean RMW is only approximately 10 times the grid spacing of the model so
whilewe believe this result to be credible, it is likely near the edge of resolvability. The lack of change in the exterior
extent of the wind field coupled with changes in the quantities in the TC inner core region imply changes in the
radially averaged structure with warming rather than monotonic expansions or contractions of the overall wind
field, consistent with past modeling studies (Gutmann et al., 2018; Knutson et al., 2015).

Lastly, we include a metric of the variation in TC intensity (measured by the absolute value of 6‐hourly MSLP
change, |dPSL|). There are statistically significant increases in this variation with increasing warming. This result
is partly expected from the more intense TCs as measured by MSLP (more intense TCs have more “room” to
intensify/decay) but also may result from large‐scale environmental changes that modulate TC intensity.

Geophysical Research Letters 10.1029/2024GL110535
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3.2. Frequency of Directional Changes

While Table 1 shows changes in the bulk statistics, the TGW ensemble
framework provides a unique way to evaluate the frequency with which storm
quantities increase or decrease in the counterfactuals. That is because each
snapshot in the historical simulation is paired one‐to‐one to a corresponding
snapshot in the counterfactual runs (e.g., Figure 1's Hurricane Katrina at 12Z
29th August 2005 can be identically found in all five data sets). Figure 2
shows the frequency with which paired metrics increase in each of the
counterfactual runs relative to the historical. For example, for u10m,x, 64% of
the TC snapshots in the “hot near” simulations increase relative to their
matching counterpart TC in the historical simulation.

A few things are noteworthy. The fraction of storms that intensify in future
climates, either as measured by u10m,x or MSLP, ranges from 57% to 68%. In
other words, we find a large amount of variability in how historical TCs
respond to imposed warming. 60% of snapshots show increased u10m,x in the
“cold near” increasing to 68% in the “hot far.” MSLP is even more interesting,
with the probability of a given snapshot becoming more intense actually
decreasing for the “far” simulations compared to the “near” ones. This may be
due to changes in the background SLP, as intensity is linked to the overall
pressure gradient, not the absolute SLP minimum. IKE shows an even more
muted response, with slightly better than a coin flip for increased intensity in
“cold near” rising to 57% probability in “hot far.” Simply, increased warming
does not lead to increased intensity in every synoptic setup.

In contrast, nearly every snapshot shows an increase in TPWx with warming. There is greater than a 99% chance
that a TC in the counterfactual simulations will be wetter from an environmental moisture perspective than its
historical counterpart. However, Precx, which increases by a similar percentage amount to TPWx in a mean sense
(Table 1), only increases in 65%–77% of all storms in the counterfactuals depending on WL. We speculate that
this is because maximum precipitation is a function of not only the background moisture content but also TC
intensity. Therefore, the precipitation response is a combination of the responses from those metrics. Similar to
the mean state changes, r8 frequency increases are approximately 50% across all counterfactuals. TCs are just as
likely to be larger as they are smaller in the counterfactuals; there is no obvious directional response in overall
wind field extent, corroborating Schenkel et al. (2022). Chavas and Reed (2019) also theorize that temperature is
not a key influencer of outer TC size. The frequency of RMW increase is below 50%, supporting the notion that
the inner cores of TCs contract with warming. Finally, |dPSL| preferentially increases in the warming runs (the 6‐

hourly swings in MSLP are larger with warming) with frequencies similar to
the other dynamical intensity metrics.

3.3. Changes in Intensity Variability

To further explore the increased intensity variability, we investigate statistics
of TCs that rapidly intensify and weaken. Rapid intensification (RI) is typi-
cally defined by changes in u10m,x (Kaplan & DeMaria, 2003). However, since
models tend to simulate TC pressure better than wind (e.g., Hodges
et al., 2017; C. M. Zarzycki et al., 2021) we define RI as 6‐hourly periods
where MSLP drops at least 7.5 hPa. This rate follows Peng et al. (2024) and is
slightly below Holliday and Thompson (1979) (10.5 hPa 6h− 1). Rapid
weakening (RW) is defined similarly except for periods of pressure rises
greater than 7.5 hPa 6h− 1.

Figure 3 shows a histogram of event occurrence, with the historical simulation
on the left and increasing warming toward the right. There is a clear and
marked increase for both RI and RW events with warming. The frequency of
RI increases by approximately a factor of 2.5 between the historical and

Figure 2. Percentage of TC snapshots for each metric (rows) and in each
configuration (column) that increase relative to the historical control. Cells
are color‐coded by the magnitude of frequency change, with reds (blues)
indicating increases (decreases). The sign of MSLP decrease frequency has
been flipped to make it comparable to other intensity metrics.

Figure 3. Total number of occurrences shown in blue (red) of RI (RW)
defined by MSLP decreases (increases) greater than 7.5 hPa 6h− 1 in each
simulation. Fractions of bars are shaded by whether the TC center at the end of
the RI/RW period was over land or ocean.

Geophysical Research Letters 10.1029/2024GL110535
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warmest simulations. This implies increased intensity variability before landfall since TCs that undergo RI
primarily do so over ocean surfaces (although a small fraction were flagged as RI over low‐lying land in the
warmer simulations). The RW results are a bit more complex since a storm may weaken quickly over ocean (e.g.,
in the presence of wind shear) but also can weaken expeditiously after landfall. Therefore, the increase in the RW
events could mean more over‐ocean variability during a TC's evolution but is also consistent with stronger storms
at landfall, which have more “room” to undergo RW upon land surface interaction. Most RW events in our
simulations are indeed associated with landfalling TCs, particularly over the northern Gulf Coast and mid‐
Atlantic regions (7% RW events occur over ocean vs. 93% over land). However, in the warmer simulations,
additional instances of RW do occur offshore (13%), spatially concurrent with increases in near‐coastal RI (Figure
S6 in Supporting Information S1).

4. Discussion
We evaluate TCs in a 40‐year historical reforecast and how they change in four counterfactual experiments with
the same meteorology but different levels of warming. The 12 km WRF grid spacing permits intensities that are
well‐matched to observations and careful attention to tracking supports paired analysis of 4,498 TC/timestep
combinations across all five simulations.

On average, storms becomemore intense regardless of whether measured by u10m,x, MSLP, or IKE, with the tail of
the intensity distribution skewing further toward stronger values as warming increases. Relative to these three
metrics, moisture and precipitation quantities increase more strongly with warming. Mean TPWx scales
approximately with CC with Precx scaling slightly above CC, which we speculate is due to stronger storms more
efficiently converting vapor to precipitation. However, there is relatively large storm‐to‐storm variability, with
some individual storms having decreased precipitation rates and others nearly doubling in the future. We find no
consistent changes in outer storm size as measured by r8, although we find the average RMW contracts slightly
inwards toward the storm center with warming. Increasing confidence in our findings, these results are broadly
consistent with the CONUS TC changes in the TGW study of Gutmann et al. (2018).

A notable finding is the frequency of the directional response of various TC quantities across the paired samples.
While the aforementioned aggregate responses across many TCs are consistent with previous modeling studies,
our simulations indicate that these responses are highly variable for any particular storm. That is, it is far from a
given that an individual TC will become stronger, or even wetter, in a TGW framework. The only metric that
showed an extremely consistent response in nearly every snapshot was TPWx—it is almost a virtual certainty that
future TCs will have more available moisture than historical TCs. Both maximum rainfall rate and area of 10 mm
hr− 1 rainfall metrics increased more than they decreased, although even in the warmest simulations, snapshot
maximum rainfall rates only increased in 77% of cases. These results have implications for single TC attribution
studies (e.g., Lackmann, 2015; Reed et al., 2020) in that it should not be assumed all cases will or should
conditionally increase in intensity (either as measured wind, pressure, or precipitation) in a warming climate. We
acknowledge that we only have one realization of each TC snapshot in each of the five simulations and better
characterizing uncertainty encourages applying perturbed ensembles in future studies.

Finally, intensity variability progressively increases in a warmed climate. This is apparent in the overall statistics,
where the mean magnitude of the change in MSLP significantly increases in the counterfactuals. In a more
extreme sense, this also includes both instances of RI and periods where a TC “falls apart,” which predominantly
occurs near or just after landfall. This finding aligns with previous studies both interrogating the historical record
(S. Wang et al., 2020) and projecting increased RI frequency using statistical‐dynamical downscaling (Ema-
nuel, 2017). RI is considered one of the hardest challenges in TC forecasting (Judt et al., 2023); increasing RI
frequency could further exacerbate this, particularly in coastal regions. However, we caution that 12 km simu-
lations underresolve inner‐core TC processes that may be important for RI (Davis et al., 2008). Future high‐
resolution storylines at kilometer‐scale grid spacing may help further investigate this result.

Data Availability Statement
The raw data from the IM3/HyperFACETS thermodynamic global warming (TGW) simulations are described in
Jones et al. (2023) and can be downloaded in Jones et al. (2022). TempestExtremes (Ullrich et al., 2021), used for
tracking the TCs, extracting snapshots, and radially averaging wind fields, is open source and can be downloaded
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at https://github.com/ClimateGlobalChange/tempestextremes. Processed NetCDF TC snapshots are archived at
C. Zarzycki (2024a). All TC trajectories and code used in this manuscript with instructions to reproduce the
results are at C. Zarzycki (2024b).
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