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Abstract 
Responding to similarity, difference, and relative magnitude is 
ubiquitous in the animal kingdom. However, humans seem 
unique in the ability to represent relative magnitude and 
similarity as abstract relations that take arguments (e.g., 
greater-than (x,y)). While many models use structured 
relational representations of magnitude and similarity, little 
progress has been made on how these representations arise. 
Models that use these representations assume access to 
computations of similarity and magnitude a priori. We detail a 
mechanism for producing invariant responses to “same”, 
“different”, “more”, and “less” which can be exploited to 
compute similarity and magnitude as an evaluation operator. 
Using DORA (Doumas, Hummel, & Sandhofer, 2008), these 
invariant responses can serve to learn structured relational 
representations of relative magnitude and similarity from pixel 
images of simple shapes. 
 
 

Introduction 
Reacting to similarity, and magnitude (“same”/ 

”different”, “more”/”less”; SDML) are hallmarks of 
complex organisms. For example, gerbils use the retinal 
size of a stimulus to estimate its distance (Goodale, 
Ellard, & Booth, 1990), rats choose the larger of two food 
rewards (Kim et al., 2015), and pigeons learn to group 
pictures of 16 identical items in one set, and pictures of 
16 different items in a different set (Young, Wasserman, 
& Garner, 1997).  

Humans, however, go beyond simple detection of 
relative magnitude and similarity. We make an analogies 
between a nucleus and the sun because they are both 
larger than their orbiting bodies (electrons and planets). 
We infer this relationship because we represent relative 
magnitude and similarity as abstract relations that take 
arguments (i.e., as predicates; see Holyoak, 2012).  

Our ability to reason about abstract SDML manifests 
in a variety of domains such as analogy (e.g., Holyoak & 
Thagard, 1995), categorisation (e.g., Medin, Goldstone, 
& Gentner, 1993), and concept learning (e.g., Doumas & 
Hummel, 2013). While models that use structured 
representations have had success in accounting for how 
humans use abstract SDML, these models say little about 
where the representations they use come from in the first 
place. For example, SME (Falkenhainer, Forbus, & 
Gentner, 1989), STAR (Halford et al., 1998), and LISA 
(Hummel & Holyoak, 1997, 2003) account for many 
phenomena from the analogy literature, but require the 
relations they use to make these analogies be hand-coded 
by the modeler. Similarly, Bayesian models of concept 
development and learning (e.g., Kemp, 2012; Kemp & 
Tenenbaum, 2007, 2009; Lake et al., 2016) assume 
relational structures a priori, starting with a vocabulary 

of objects and relations and learning new concepts by 
building new combinations of these innate elements. 

Some models attempt to account for the origins of 
abstract concepts without assuming innate 
representations of relational concepts. For example, 
BART (Lu, Chen, & Holyoak, 2012) uses feature lists 
generated by human subjects or corpora analysis to find 
properties associated with items in the world which 
instantiate particular relations. BART has difficulty with 
some edge cases of relational cognition (e.g., reasoning 
about something like an atom being bigger than 
something else when it has not experienced instances 
where an atom was bigger than anything), but the model 
makes a serious effort to account for development of 
analogy-making with minimal assumptions about the 
starting representations of the learning system.  

In a similar vein, DORA (Doumas, Hummel, & 
Sandhofer, 2008) explains how structured 
representations (i.e., predicates) can be acquired from 
unstructured representations (i.e., feature vectors). While 
DORA learns relational representations that can take any 
arguments (including edge cases and completely novel 
arguments ; Doumas et al., 2008), DORA assumes a 
system to detect the invariant features that underlie the 
abstract concepts that it learns.  

A complete account of how people acquire structured 
representations of abstract SDML relations must solve 
three problems. First, there must be some invariant 
features which remain constant across instances of the 
relation which the perceptual/cognitive system can learn 
to detect. Second, the system must isolate these 
invariants from other properties of the objects engaged in 
the relation to be learned. Third, the system must learn a 
predicate representation of the relational properties (i.e., 
an explicit entity that can be bound to arbitrary, novel 
arguments).  

We solve the first problem with an extension to DORA 
which produces invariant responses to similarity and 
relative magnitude. We have previously shown how 
DORA can solve the second and third of these problems 
(Doumas et al., 2008). We begin with a brief overview 
of DORA, describe the process which produces invariant 
features for SDML, and provide simulations 
demonstrating how DORA solves all three problems to 
learn structured relational representations of SDML.  
 

Model 
DORA  

DORA (Doumas, et al., 2008) is a symbolic-
connectionist model, based on the LISA (Hummel & 
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Holyoak, 1997, 2003) model of analogy. DORA learns 
structured relational representations from unstructured 
representations of objects (e.g. feature vectors).  
 
LISAese Representations We begin by describing 
the end state of DORA’s representations (i.e., its 
representations after it has gone through learning). 
Relational propositions are represented by a hierarchy of 
distributed and localist codes (see Figure 1). At the 
bottom, semantic units code the features of objects and 
roles in a distributed fashion. In the next layer, localist 
predicate-object (PO) units representing individual 
predicates (or roles) and objects, are connected to these 
distributed semantic representations. In the next layer, 
localist role-binding (RB) units link predicates and 
objects into specific role-filler pairs. At the top of the 
hierarchy, localist proposition (P) units link RB units into 
complete relational propositions. Importantly, while we 
use different names for the units in different layers, and 
different shapes to distinguish these units in diagrams, 
we do so only for the purposes of expositional brevity. 
These are just nodes in different layers of a network. RB 
units are just like PO units, except for the fact that they 
are in a different layer, and, therefore, take input from 
and pass input to different layers of units.  
 

 
Figure 1. Complete relational proposition in DORA. 

Units in different layers are coded using different 
shapes for the purposes of exposition. 

 
Propositions in DORA are divided into four mutually-

exclusive sets of layered networks: a driver, one or more 
recipients, long-term memory (LTM), and the emerging 
recipient (EM). Each set consists of a layered network of 
PO, RBs, and P units (i.e., there are specific layers coding 
for PO, RB, and P units in the driver, and another set of 
layers coding for PO, RB, and P units in the recipient). 
Semantic units are shared across all networks (i.e., driver 
and recipient units are connected to the same pool of 
semantic units). The driver  corresponds to the current 
focus of attention and controls the flow of activation. 
Units in the driver pass activation to the semantic units. 
Because the semantic units are shared by all sets, 
activation flows from the driver to the other three sets. 
DORA operations (e.g., mapping and relation learning, 
detailed below) proceed as a product of units in the driver 
activating their semantic units, which in turn activates 
units in the various other sets.  

When a relational representation enters the driver the 
binding of roles to their fillers must be represented 

dynamically without violating their independence (i.e., it 
is not sufficient to represent bindings using only 
conjunctive units; see, e.g., Doumas & Hummel, 2005; 
von der Malsburg, 1999). DORA uses systematic 
asynchrony of firing to dynamically bind roles to their 
fillers (see Doumas et al., 2008). As a relational 
representation in the driver becomes active, bound 
objects and roles fire in direct sequence. Information 
about role-filler bindings is carried by proximity of firing 
(e.g., with roles firing directly before their fillers). This 
sequence-based binding keeps roles and their fillers 
distinct and thus independent. Using the example in 
Figure 1, in order to bind bigger to block and smaller to 
ball (and so represent larger (block, ball)), the units 
corresponding to bigger fire directly followed by the 
units corresponding to block, followed by the units for 
coding smaller followed by the units for ball. 
 
Mapping DORA uses LISA’s mapping algorithm (see 
Hummel & Holyoak, 1997; Doumas et al., 2008). DORA 
learns mapping connections between units of the same 
type in the driver and recipient (e.g., between PO units in 
the driver and PO units in the recipient). These 
connections grow whenever corresponding units in the 
driver and recipient are active simultaneously. The 
connections act as mappings between corresponding 
structures in separate analogs. They also permit 
correspondences learned in mapping to influence 
correspondences learned later. 
 
Relation Learning DORA uses comparison to isolate 
shared properties of objects and to represent them as 
explicit structures. DORA begins with simple feature-
vector representations of objects (i.e., a node connected 
to a set of semantic features describing that object). 
When DORA compares two objects, the two 
representations are activated simultaneously. For 
instance, if DORA compares a block that is larger than 
some object to a plate that is larger than some other 
object (e.g., when the block is larger than a ball and the 
plate is larger than a fork), then the nodes representing 
the block and plate fire together (Figure 2a). Semantic 
features shared by the compared objects (i.e., features 
common to the block and the plate) receive twice as 
much input and thus become roughly twice as active as 
features connected to one but not the other (Figure 2b). 
DORA then learns connections between a newly 
recruited PO unit and active semantic units via Hebbian 
learning (Figure 2c). In Hebbian learning the strength of 
a learned connection is a function of unit activation (i.e., 
stronger connections are learned to more active units). 
Consequently, the new PO unit becomes most strongly 
connected to the highly active semantic units. The new 
PO becomes an explicit representation of the feature 
overlap between the block and plate. In this example, 
DORA forms an explicit representation of the semantics 
of bigger things (i.e., the features common to both the 
block and plate). The new PO functions as a predicate 
representation of bigger because it can be dynamically 
bound to fillers via an RB unit (Figure 2d).  
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Figure 2. Comparison-based predication in DORA. 

DORA learns a representation of bigger by comparing a 
block that is bigger than some object to a plate that is 
bigger than some other object.  (a) DORA compares a 

block and a plate. Units representing both become 
active.  (b) Feature units shared by the block and the 

plate become more active than unshared features 
(darker grey).  (c) A new PO unit learns connections to 

features in proportion to their activation (solid lines 
indicate stronger connection weights).  The new unit 
codes the featural overlap of the block and plate (i.e., 

the role “bigger”). (d) This new PO unit functions as a 
predicate when dynamically bound to fillers. 

 
DORA learns representations of multi-place relations by 
linking sets of co-occurring role-filler pairs into 
hierarchical relational structures. Continuing the 
example, when DORA compares a plate that is larger 
than a fork to a block that is larger than a ball, it will map 
larger (plate) to larger (block) and smaller (fork) to 
smaller (ball) (Figure 3a). When constituent sets of role-
filler pairs are mapped, a distinct pattern of firing 
emerges—namely, mapped RB units fire together and 
out of synchrony with any other RB units; Figure 3b-d). 
This pattern is a reliable signal that DORA exploits to 
combine sets of role-filler pairs into multi-place 
relations. In response to the pattern, DORA recruits a P 
unit that learns connections to any active RB units in the 
recipient (Figure 3e-g) via Hebbian learning. The result 
is a P unit linking the RB units in the recipient into a 
complete relational structure (larger (block, ball); Figure 
3i).  
 
Producing invariant responses for basic SDML  

A comparison-based solution to the problem of 
learning an invariant feature coding for “more”, “less”, 
and “same” requires the assumption that initially 
available magnitude information is coded by a direct 
neural proxy: All else being equal, higher magnitude 
items are coded (at least early in processing) by more 
neurons than comparatively lower magnitude items. For 
example, a larger item will be coded by more neurons 

than a smaller item. There is a preponderance of evidence 
for this assumption. In visual processing, larger items 
take up more space on the retina (e.g., Wandell, 1995) 
and are coded by larger swaths of the visual cortex (e.g., 
Engel et al., 1994).   
 

 
Figure 3. DORA learns a representation of the whole 

relation larger (block, ball) by mapping bigger(plate) to 
bigger(block) and smaller(fork) to smaller(ball).  (a) 

The units coding bigger fire; (b) the units for plate and 
block fire; (c) the units for smaller fire; (d) the units for 

fork and ball fire.  (e) DORA recruits a P unit in the 
recipient. (f-g) DORA learns a connection between the 
new P unit and the active RB unit (the unit coding for 
bigger(block)).  (h-i) The P unit learns connections to 

the active RB unit (coding for smaller(ball)).  The result 
is a structure coding for larger(block, ball). 

 
Basic magnitude calculation is accomplished by 

comparison. When the model attends to two 
representations with specific magnitude values (e.g., two 
POs attached to absolute size are present in the driver 
together; Figure 4a), the representations of the absolute 
magnitude semantics are co-activated and the PO units 
attached to these semantic units compete via lateral 
inhibition (Figure 4b). The POs will eventually settle, 
with either one PO becoming more active and inhibiting 
the other to inactivity, or, when both POs code for the 
same absolute magnitude, with both POs in a steady state 
of co-activation.  More semantic units can then respond 
to the particular pattern of firing in the driver POs. Some 
units are excited by two active POs in the driver, others 

(a)

plate

block

(b)

plate

block

(d)

bigger+plate

(c)

“bigger” plate

block

“bigger” plate

block

bigger+plate

larger (block, ball)

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

bigger+plate

bigger

bigger

smaller

smaller

bigger+block smaller+ball

ballblock

plate

smaller+fork

fork

(a)

(e)

(b)

(c) (d)

(f) (g)

(h) (i)

1957



 

 

are excited by a single highly active PO early in firing, 
or by a single highly active PO late in firing (these 
regions of excitement are easily learnable via simple 
neural threshold tuning). The active POs learn 
connections to the active semantic unit by Hebbian 
learning. If a single PO is active, that unit will learn 
connections to the semantics that are activated by a 
single highly active driver PO early in firing (which 
becomes the invariant signal for “more”; Figure 4c). 
When the active PO becomes inhibited (because of 
asynchronous binding), the second PO (the one inhibited 
by the winning PO) will become active (Figure 4d). That 
unit learns connections to the semantics that are activated 
by a single highly active driver PO late in firing (which 
becomes the invariant signal for “less”; Figure 4d). 
Otherwise, if two POs are co-active (i.e., they code the 
same magnitude), then they will learn connections to the 
semantics which are activated by two active driver POs 
(which becomes the invariant signal of “sameness”. 
 

 
 
Figure 4. The SDML detector working on POs coding 
different values on a dimension. For the purposes of 

clarity, only the predicate POs and their semantics are 
depicted in this figure. (a) Two POs coding for different 
heights are in the driver. (b) The semantics coding for 
absolute dimensional information become active and 
the two POs compete to become active. (c) The unit 
coding for the greater value on the dimension (here 
height-6) becomes active first, thus marking it as 

“more”. The PO learns a connection to the semantic that 
responds to winning the SDML competition (i.e., the 

invariant of “more”). (d) The unit coding for the lesser 
value on the dimension (here height-3) will become 

active last, thus marking it as “less”. The predicate is 
connected to the semantic unit coding for losing the 

SDML competition, or the invariant of “less”. 
 
In short, comparing different magnitudes in a network 

in which magnitude information is coded by an absolute 

proxy (as in the human neural system) produces one of 
three patterns. (1) Both units settle into a state of similar 
co-activation—which occurs when two representations 
of the same magnitude are compared. (2) One unit 
becomes more active and forces the second unit to 
inactivity—which occurs when a unit codes for a greater 
magnitude. (3) One unit becomes active after it has been 
inhibited by a winning unit—which occurs when a unit 
codes for a lesser magnitude. Whatever units respond to 
these patterns naturally or through tuning become 
implicit invariant codes for the presence of “sameness”, 
“moreness”, and “lessness”, respectively. Vitally, the 
same patterns will emerge and the same codes will 
become active when specific relative magnitudes are 
present even cross dimensionally. That is, the same 
patterns emerge and units become active during an 
instance of different absolute height, or width, or colour. 
What is left for the system is to learn explicit 
representations of these invariant semantics that are not 
tied to any specific magnitudes (e.g, a PO connected to 
semantics encoding ‘more’ & ‘height’, without strong 
connections to any specific height) and can take other 
POs as arguments. In other words, exactly the learning 
that DORA does.  
  

Simulations 
Simulation 1 

We tested whether DORA could learn structured 
representations of relative SDML relations starting with 
information about sets of shapes with features 
representing absolute values on dimensions. This 
simulation mirrored what happens during development 
when a child learns from experience without a teacher or 
guide.  

The model began with pixel images of basic shapes 
(differing in shape, colour, size, width, and height). 
These images were pre-processed with a feedforward 
neural network that learned via back-propagation to 
deliver absolute shape, colour, size, width, and height 
information (akin to that information delivered by early 
visual processing). Each processed image was 
represented by a PO attached to the delivered features. In 
addition, each shape was also attached to a set of 10 
extraneous features selected randomly from a set of 100 
features, included as noise (as objects in the world 
contain several features extraneous to any particular 
learning goal). Each shape was then randomly paired 
with another to create pairs of shapes over which 
relations were learned. We created 100 pairs of objects 
in this manner and placed them in DORA’s LTM.  

We then allowed DORA to attempt to learn from these 
basic representations. On each learning trial, DORA 
selected one pair of objects from LTM at random and ran 
(or attempted to run) retrieval, mapping, SDML 
comparison, predication, and multi-place relation 
learning, and stored any representations that it learned in 
LTM. In short, we are testing whether unguided learning 
from simple shape objects is sufficient for DORA to 
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learn structured representations of relative SDML 
relations.  

We defined a relational quality metric as the mean of 
connection weights to relevant features (i.e., those 
defining a relative magnitude on some specific 
dimension (e.g., ‘more’+‘height’, or ‘less’+‘width’)) 
divided by the mean of all other connection weights + 1 
(1 was added to the mean of all other connection weights 
to normalize the quality measure to between 0 and 1). A 
higher quality denoted stronger connections to the 
semantics defining a specific SDML relation relative to 
all other connections. We measured the relational quality 
of the last 100 items DORA had learned after each 100 
learning trials for 1000 total learning trials. Importantly, 
we tested all representations that the model learned (not 
just those that instantiated the relevant relations) and 
included these in the relational selectivity calculation.  

Figure 5 shows the quality of the representations that 
DORA learned. DORA learned representations of whole 
relational structures encoding relative magnitudes and 
similarity on all the encoded dimensions. DORA learned 
representations of bigger (one predicate PO connected 
most strongly to the semantics ‘more’ & ‘size’, the other 
connected to ‘less’ & ‘size’), wider (predicate POs 
connected to ‘more’ & ‘width, and ‘less’ & ‘width’), 
taller (predicate POs connected to ‘more’ & ‘height, and 
‘less’ & ‘height), same-size (predicate POs both 
connected most strongly to ‘same’ & ‘size;), same-width 
(predicate POs both connected most strongly to ‘same’ 
& ‘width’), same-height (predicate POs both connected 
most strongly to ‘same’ & ‘height’), same-colour 
(predicate POs both connected most strongly to ‘same’ 
& ‘colour’), and same-shape (predicate POs both 
connected most strongly to ‘same’ & ‘shape’). The 
results indicate that DORA can learn structured 
representations of relative SDML relations from objects 
that include only absolute values on dimensions even 
with the addition of extraneous noise. 

 
Figure 5. Results of DORA’s learning.  

 
Simulation 2 

A crucial question remains: do the representations 
DORA learns meet the requirements of relational 
representations? Some hallmark of relational 
representations (see Holyoak, 2012) are that they, (i) 
form the basis of solving cross mappings; (ii) support 

mapping similar, but non-identical predicates; and (iii) 
form the basis of overcoming the n-ary restriction.  

During cross-mapping, an object (object1) is mapped 
to a featurally less similar object rather than a featurally 
more similar object because it (object1) plays the same 
role as the less similar object. Cross-mappings serve as a 
stringent test of the structure sensitivity of a 
representation as they require violating featural or 
statistical similarity.  

We tested the relations that DORA had learned in the 
previous simulations for their ability to support finding 
cross-mappings. We selected two of the refined relations 
that DORA had learned during the previous simulation 
at random. We bound the relations to new objects, 
creating two new propositions, P1 and P2 such that the 
agent of P1 was semantically identical to the patient of 
P2 and patient of P1 was semantically identical to the 
agent of P2, and allowed DORA to attempt to map P1 
and P2.  We repeated this procedure 10 times, each time 
with a different randomly-chosen pair of relations. All 10 
times DORA successfully mapped the agents and 
patients of P1 and P2.  The relations DORA learned in 
the first simulation satisfy the requirement of cross-
mapping.  

We also tested whether the relations that DORA has 
learned would support mapping to similar but non-
identical relations (such as mapping higher to greater-
than). Humans successfully map such relations (e.g., 
Bassok, Wu, & Olseth, 1995; Gick & Holyoak, 1983), an 
ability that Hummel and Holyoak (1997, 2003) have 
argued depends on the semantic-richness of relational 
representations. We selected one of the refined relations 
that DORA had learned during the previous simulation, 
R1, and constructed a new relation, R2, that shared 50% 
of its semantics (in each role) with the selected relation. 
So that mappings could not be based on object similarity, 
none of the objects that served as arguments of the 
relations had any semantic overlap. We repeated this 
process 10 times. Each time, DORA mapped the agent 
role of R1 to the agent role of R2 and the patient role of 
R1 to the patient role of R2, and, despite their lack of 
semantic overlap, corresponding objects always mapped 
to one another (because of their bindings to mapped 
roles).  

Finally, we tested the model’s ability to find mappings 
that violate the n-ary restriction: the restriction that an n-
place predicate may not map to an m-place predicate 
when n ≠ m. Almost all models of structured cognition 
follow the n-ary restriction (namely, those that represent 
propositions using traditional propositional notation and 
its isomorphs; see Doumas & Hummel, 2005). However, 
the restriction does not appear to apply to human 
reasoning, as evidenced by our ability to easily find 
correspondences between bigger (Sam, Larry) on one 
hand, and small (Joyce), big (Susan), on the other 
(Hummel & Holyoak, 1997).  

To test DORA’s ability to violate the n-ary restriction, 
we randomly selected a refined relation (R1) that DORA 
had learned in the previous simulation. We then created 
a single place predicate (r2) that shared 50% of its 
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semantics with the agent role of R1 and none of its 
semantics with the patient role. The objects bound to the 
agent and patient role of R1 each shared 50% of their 
semantics with the object bound to r2. DORA attempted 
to map R1 to r2. We repeated this process 10 times, and 
each time DORA successfully mapped the agent role of 
R1 to r2, along with their arguments. We repeated the 
simulation such that r2 shared half its semantic content 
with the patient (rather than agent) role of R1. In 10 
additional simulations, DORA successfully mapped the 
patient role of R1 to r2 (along with their arguments).  In 
short, in all our simulations DORA overcame the n-ary 
restriction, mapping the single-place predicate r2 onto 
the most similar relational role of R1.  
 

Conclusion 
We have shown how structured relational representations 
of magnitude and similarity can be learned from objects 
with only absolute magnitude values. Our model exploits 
regularities that emerge in a connectionist network when 
distributed representations are compared or co-activated. 
These regularities serve as invariant signals that the 
model can learn to exploit to bootstrap the detection of 
relative magnitude differences and similarities. When 
linked with the DORA predicate learning algorithm, the 
system learns structured predicate representations of 
these relative magnitudes and similarities, and then can 
exploit the resulting representations to solve problems.  

Our account provides a trajectory for similarity 
cognition that maps to cognitive complexity across 
species and maturational trajectories in humans. This 
trajectory reveals three distinct levels of abstraction in 
SDML computation; (i) implicit detection of SDML 
(responding based on the regular firing that occurs when 
absolute magnitudes are compared), (ii) implicit 
generalization of SDML (or learning based on the 
presence or absence of a particular feature; e.g., learning 
to respond based on the presence or absence  of the 
‘more’ feature), and (iii) predicate representations of 
SDML (or full-fledged relational representations that 
support complex cognitive capacities like analogy and 
reasoning).  

This distinction may explain why humans solve some 
tasks involving similarity judgments without the 
extensive training that other animals require (e.g., 
Young, Wasserman, & Garner, 1997). Humans may 
solve the task relationally rather than relying on 
generalized implicit similarity judgments.  

Many cognitive architectures and task models rely on 
stimulus recognition. This theory explains how stimulus 
recognition might be computed. We believe that 
providing a computational account for a function 
existing models depend on represents a significant 
architectural contribution. 
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