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Abstract
We explore the physics of turbulent entrainment in inclined gravity currents using Direct
Numerical Simulation (DNS). We find that for the case under consideration, entrainment
is dominated by outer layer processes, with shear production being responsible for most
of the observed entrainment. The entrainment law inferred from the simulation is of the
form E = a(Rimax − Ri) where a = 0.36 and Rimax = 0.16, suggesting that there is a
maximum value of Ri beyond which turbulence cannot be sustained.

1 Introduction

Gravity currents are a regular occurrence in nature, e.g. katabatic winds, dense downs-
lope releases in the ocean, pyroclastic flows and exchange flows between spaces of differing
temperatures. A gravity current exerts a shear on the ambient fluid which consequently
leads to turbulence production and mixing, causing ambient fluid to be entrained. Simul-
taneously, the fluid stratification suppresses mixing, leading to an entrainment relation of
the entrainment coefficient E that depends on the Richardson number Ri.

Turbulent entrainment in inclined gravity currents was first studied experimentally
by Ellison & Turner (1959). The set-up comprised an inclined channel in which a fluid
lighter (heavier) than the ambient was injected which flowed along the channel top (bot-
tom) as a gravity current. By varying the channel inclination angle and thus the bulk
Richardson number Ri, an entrainment law of the form E = f(Ri) was observed, which
was lateron approximated by E = (0.08−0.1Ri)/(1 + 5Ri) (Turner, 1986). However, field
campaigns of oceanic overflows and several new experimental investigations have since
revealed orders of magnitudes differences in the observed values of E (e.g. Wells et al.,
2010), highlighting a need for further understanding of the physical processes responsible
for turbulent entrainment.

We perform Direct Numerical Simulation (DNS) of a temporal gravity current on a
sloped surface in order to understand the physics of turbulent entrainment. In particular,
we capitalise on the recent progress made on entrainment in plumes (van Reeuwijk &
Craske, 2015), which allows E to be decomposed into distinct physical processes such
as shear production and buoyancy. We use this method to show that the influence of
near-wall processes on turbulent entrainment is limited (section 3) for the case under
consideration. We then study the entrainment law itself by carrying out simulations at
various slope angles in section 4.

2 Case setup

The simulations comprise a temporal version of the classical inclined gravity current
experiments of Ellison & Turner (1959); Krug et al. (2013). Specifically, the problem
entails a negatively buoyant (heavy) fluid layer of infinite extent flowing down a slope of
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Table 1: Simulation data. Simulation domain for all simulations is 20h0 × 20h0 × 10h0 at a resolution of
15362 × 1152. NS, FS: no-slip and free-slip velocity boundary conditions, respectively.

Sim. α BC Re0 Ri0 trun/t
?

S2 2 FS 3890 0.50 55

S5 5 FS 3890 0.20 40

S10 10 FS 3890 0.10 40

S10N 10 NS 3890 0.10 40

S25 25 FS 3890 0.04 25

S45 45 FS 3890 0.02 20

S90 90 FS 3890 0.00 20

angle α (van Reeuwijk et al., 2016). The dense fluid layer has an initial buoyancy b0 < 0
and initial velocity U . Here, buoyancy is defined as b = g(ρ0 − ρ)/ρ0 where g is the
gravitational acceleration and ρ0 is the density of the quiescent layer overhead. For t > 0,
the flow develops Kelvin-Helmholtz instabilities, after which it transitions to turbulence
and flows down the slope as a turbulent gravity current. Because of the problem setup,
the flow will remain statistically homogeneous in the x and y direction, and its statistics
will thus only depend on the wall-normal coordinate z and time t (see also Fedorovich &
Shapiro, 2009). The Reynolds number Re and bulk Richardson number Ri are defined
according to

Re =
uTh0
ν

, Ri = −bTh cosα

u2T
, (1)

where uT , h, and bT are the characteristic (top-hat) velocity scale, depth and buoyancy,
respectively, which can be calculated using (Ellison & Turner, 1959; Krug et al., 2014)

uTh =

∫ ∞
0

udz, u2Th =

∫ ∞
0

u2dz, bTh =

∫ ∞
0

bdz. (2)

Here we note that the integral buoyancy forcing B0 = −bTh sinα = −b0h0 sinα is a
conserved quantity in the simulations.

Consistent with the inflow conditions of the experiment of Krug et al. (2013), Re0 =
Uh0/ν = 3890 for all flow cases. The simulations are carried out on a large domain of
20h0× 20h0× 10h0 to ensure reliable statistics for this transient problem. A resolution of
Nx ×Ny ×Nz = 15362 × 1152, sufficient for DNS, is employed for all simulations.

The simulations are carried out with the DNS code SPARKLE, which solves the
Navier-Stokes equations in the Boussinesq approximation on a cuboidal domain and is
fully parallelized making use of domain decomposition in two directions. The spatial dif-
ferential operators are discretized using second order symmetry-preserving central differ-
ences (Verstappen & Veldman, 2003), and time-integration is carried out with an adaptive
second order Adams-Bashforth method (van Reeuwijk et al., 2008). Periodic boundary
conditions are applied for the lateral directions. At the top wall, a Neumann (no-flux)
boundary condition is imposed for buoyancy and a free-slip boundary condition for ve-
locity. At the bottom wall, a Neumann boundary conditions is used for buoyancy, whilst
the velocity boundary conditions are either no-slip (NS) or free-slip (FS).
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The simulation details can be found in Table 1. The typical timescale is defined as
t∗ = h0/

√
B0. The simulations were designed such that B0 was identical for all angles.

Simulations typically ran for 72 hours on 1536 cores.

3 Influence of boundary conditions on turbulent entrainment

We first focus on a flow case with α = 10o and examine the differences between no-slip
(simulation S10N) and free-slip (S10) boundary conditions. Clearly, free-slip boundaries
do not occur in nature, but if entrainment is dominated by outer layer processes as is often
argued, the influence of velocity boundary conditions should be small. The evolution of h
and Ri are shown in the top row in Figure 1. The layer thickness h grows slightly faster
for S10 than for S10N, indicating higher entrainment in the former. The evolution of Ri
in time shows an initial growth to a maximum, after which Ri reduces monotonically and
approaches a steady state for t/t∗ > 30; the final value of Ri is a bit higher for S10N than
S10. The approach to a constant value of Ri is qualitatively similar to turbulent plumes,
where a ”pure” plume will attain a constant value of Ri far away from the source. If
the flow has an excess (deficit) of momentum at the source the plume is referred to as
forced (lazy) (van Reeuwijk & Craske, 2015; Morton & Middleton, 1973); the flow will
adjust itself due to the work done by gravity until it becomes pure. Restricting attention
to t/t∗ > 7 (when the flow has transitioned to turbulence), the gravity current is ”lazy”,
approaching ”pure” behaviour for t/t∗ > 30, say.

The self-similarity of the spatially averaged velocity u and buoyancy b profiles are
shown in the bottom row of Figure 1. Unsurprisingly, the solutions are very different near
the wall. The ”toe” observed in the buoyancy profile for S10 is caused by the fact that
the turbulence production −w′u′∂u/∂z is zero at the velocity maximum and that as a
consequence turbulence levels are low. This implies that buoyancy is ”trapped” near the
wall; an effect reported by Ellison & Turner (1959). Importantly though, the flow profiles
in the outer layer are very similar.

The entrainment coefficient E is defined according to

E =
1

uT

dh

dt
. (3)

The dependence of E on time is shown in the top plot of Figure 2 with red triangles
and blue circles for S10N and S10, respectively. The entrainment coefficient E peaks
during the violent breakup of the Kelvin-Helmholtz instabilities, and then decays to an
approximately constant value for t/t∗ > 20. Consistent with the observed growth rates of
h in Figure 1, E is slightly higher for S10 than S10N.

Using a recently developed framework that allows entrainment to be decomposed into
separate physical contributions (van Reeuwijk & Craske, 2015), E can be decomposed as

E = Eprod + Ebuoy + Evis. (4)

The decomposition, originally developed for entrainment in turbulent jets and plumes,
follows from substitution of the definition of h (in terms of the flow integrals) into (3),
and substituting the integral momentum and mean kinetic energy equations. The contri-
butions due to shear-production Eprod, buoyancy Ebuoy and viscous effects Evis are given
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Figure 1: Top row: layer thickness h and bulk Richarson number Ri. Bottom row: self-similarity of u
and b.

by

Eprod = − 2

u3T

∫ ∞
0

w′u′
∂u

∂z
dz (5)

Ebuoy = 2Ri tanα

(
1− 1

uT bTh

∫ ∞
0

budz

)
(6)

Evis =
2ν

u3T

∫ ∞
0

(
∂u

∂z

)2

dz − 2cf (7)

Here, cf = τw/u
2
T is the friction factor and τw is the kinematic wall shear stress.

According to (4), entrainment is determined by three processes. The first is the shear-
production term Eprod, which will be the dominant source of entrainment in many flows.
The second term Ebuoy represents the influence of buoyancy on turbulent entrainment.
The third term Evis represents the viscous effects which are dominant near the wall. The
terms contributing to Evis are wall friction, as represented by the friction factor cf , and the
mean dissipation rate integral. The latter will be dominated by the near-wall behaviour,
because the integral can be approximated by u2T/h in the outer layer, implying that the
term is of order Re−1. Thus, at high Re the outer layer contribution is expected to vanish
and the integral is only determined by inner layer processes.

The individual terms (5)-(7) are calculated from the flow statistics, and (4) is plotted
in the top plot of Figure 2, showing that the decomposition is in excellent agreement with
the directly calculated E from (3). The individual terms contributing to E are shown for
both flow cases in the bottom row of Figure 2. Quite surprisingly, buoyancy hardly plays
a role and all the entrainment is due to turbulence production. As Evis < 0, the viscous
contribution acts to lower the entrainment coefficient. This is because τw is larger than
the mean dissipation integral.
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Figure 2: Entrainment decomposition for S10 and S10N. Top: E as a function of time according to its
definition (3) (symbols) and via the decomposition (4) (lines). Bottom: the individual terms comprising
E for both simulations.

4 The entrainment law

Having established that the boundary conditions have limited influence on turbulent en-
trainment, we restrict attention to free-slip velocity boundary conditions in order to focus
on outer layer dynamics only and vary the angle α between 2 and 90 degrees, the 900

case closely resembling a temporal plume (and thus strictly a different flow). The evolu-
tion of E is shown for all simulations in the top plot of Figure 3. Clearly, E has higher
values at larger angles α and since α is directly related to the bulk Richardson number
Ri, this points to a dependence of E on Ri. Despite keeping B0 the same for all sim-
ulations, the smallest angles are challenging since lower turbulence levels will be low as
a result of the stronger stratification (not shown). This is particularly evident in S2, in
which the flow nearly relaminarises after the initial burst of turbulence associated with
the Kelvin-Helmholtz instabilities. However, the near absence of turbulence implies that
the fluid layer will accelerate until a second transition occurs after which the coveted
”pure” behaviour emerges for t/t∗ > 50.

The entrainment law E(Ri) is shown in the bottom plot of Figure 3, together with
the Ellison and Turner entrainment law (ET59) which was provided in the introduction.
Here, Ri is the value associated with the ”pure” gravity current. Clearly, Ri remains
constrained between 0 < Ri < 0.2 for all angles, and it is impossible to reach the higher
values of Ri observed in the Ellison & Turner (1959) experiments. Furthermore, the values
of E are significantly lower. Although it is clear that the spatial case is different from the
temporal case considered here, it is conceivable that the gravity current in the Ellison and
Turner experiments was not yet ”pure”, which would go some way in explaining higher
values for Ri and E.

The entrainment law can be reasonably well approximated by a relation of the form
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Figure 3: Entrainment rate. Top: plotted as a function of time for various α. Bottom: plotted as a
function of Ri.

E = a(Rimax − Ri) where a = 0.36 and Rimax = 0.16, as indicated in the bottom row of
Figure 3 by the dashed line. This suggests that there is a maximum value of Ri beyond
which turbulence cannot be sustained. This is close to the well-known Miles-Howard cri-
terion for linear normal mode stability of inviscid parallel steady stratified shear flows and
consistent with observations of Ri close to 1/4 in the equatorial undercurrent (Smyth &
Moum, 2013). Therefore, a possible explanation is that shear instability is being strongly
suppressed as Ri increases towards these values. An alternative possible interpretation,
consistent with classical Monin-Obukhov similarity for wall-bounded stratified turbulent
flow and as recently demonstrated by Zhou et al. (2016) through simulation of stratified
plane Couette flow, is that such wall-bounded stratified flows adjust so that Ri cannot
take values substantially greater than 0.2. The simulations presented here constitute fur-
ther evidence that such throttling of strongly stratified shear flows may well be a generic
property, although much further research is required to distinguish between whether this
throttling is associated with the transitionary properties of the developing instabilities,
or the quasi-stationary properties of the developed turbulence.

5 Conclusions

The temporal gravity current is a canonical stratified turbulence problem that has turbu-
lent entrainment as one of its core features. We showed that the bottom velocity boundary
condition has little influence on the entrainment coefficient E for this flow problem. By
applying a new method for decomposing E into various different contributions, originally
developed for entrainment in turbulent jets and plumes, we show that the entrainment
is predominantly due to shear-production. The effect of buoyancy on E is surprisingly
small; clearly buoyancy does not directly affect entrainment, although it will have a sig-
nificant indirect influence via its effect on the turbulence (which in turn influences the
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shear production).
The DNS simulations reveal an entrainment law which decreases linearly in Ri, with

the fit crossing the abscissa at Rimax = 0.16, thus implying that there exists an upper
value of Ri beyond which turbulence cannot be sustained.
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