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Abstract 

This work presents a multi-resolution physics-informed recurrent neural network (MR PI-RNN), 

for simultaneous prediction of musculoskeletal (MSK) motion and parameter identification of the 

MSK systems. The MSK application was selected as the model problem due to its challenging 

nature in mapping the high-frequency surface electromyography (sEMG) signals to the low-

frequency body joint motion controlled by the MSK and muscle contraction dynamics. The 

proposed method utilizes the fast wavelet transform to decompose the mixed frequency input 

sEMG and output joint motion signals into nested multi-resolution signals. The prediction model 

is subsequently trained on coarser-scale input-output signals using a gated recurrent unit (GRU), 

and then the trained parameters are transferred to the next level of training with finer-scale signals. 

These training processes are repeated recursively under a transfer-learning fashion until the full-

scale training (i.e., with unfiltered signals) is achieved, while satisfying the underlying dynamic 

equilibrium. Numerical examples on recorded subject data demonstrate the effectiveness of the 

proposed framework in generating a physics-informed forward-dynamics surrogate, which yields 

higher accuracy in motion predictions of elbow flexion-extension of an MSK system compared to 

the case with single-scale training. The framework is also capable of identifying muscle parameters 

that are physiologically consistent with the subject’s kinematics data.  

Keywords: multi-resolution recurrent neural network, physics-informed parameter identification, 

musculoskeletal system, gated recurrent unit, fast wavelet transform 
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1. Introduction 

The prediction of the evolution of state variables in dynamical systems has been a vital component 

to several scientific applications such as biology, geophysics, earthquake engineering, solid 

mechanics, robotics, computer vision [1–7] etc. Black-box techniques based on data-driven 

mapping and development of parameterized multi-physics models describing the progression of 

the data have been previously utilized for making predictions on the states. This task continues to 

be an active area of research due to challenges on many fronts, such as, the quality and scarcity of 

relevant physical data, the dynamics and complexity of the system, and the reliability and accuracy 

of the prediction model.    

On the other hand, the characterization of parameters in the multi-physics models of these 

dynamical systems is also critical [8–14]. The task is challenging due in parts to potential noise 

pollution captured by sensors in the system’s measured data, as well as the potential of the 

parameter space being high-dimensional, leading to ill-posed problems that pose difficulties in 

numerical solutions. Standard optimization techniques such as genetic algorithms [15,16], 

simulated annealing [17], and non-linear least squares [18,19] have been employed for parameter 

identification, but can be computationally expensive and may not converge for ill-posed, non-

convex optimization problems that are encountered while solving inverse problems on MSK 

systems [15,20]. 

In recent years, machine learning (ML) or deep-learning-based approaches have gained significant 

popularity for solving forward and inverse problems, attributed to their capability in effectively 

extracting complex features and patterns from data [21]. This has been successfully demonstrated 

in numerous engineering applications such as reduced-order modeling [22–26], and materials 

modeling [27–29], among others. Data-driven computing techniques that enforce constraints of 

conservation laws in the learning algorithms of a material database, have been developed in the 

field of computational mechanics [29–37]. More recently, physics-informed neural networks 

(PINNs) have been developed [11,38,39] to approximate the solutions of given physical equations 

by using neural networks (NNs). By minimizing the residuals of the governing partial differential 

equations (PDEs) and the associated initial and boundary conditions, PINNs have been 

successfully applied to solve forward problems [11,40,41], and inverse problems [11,38,42–44], 
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where the unknown system characteristics are considered trainable parameters or functions [38,45]. 

For biomechanics and biomedical applications [1,46–50], this method has been applied extensively 

along with other ML techniques [51,52]. These attempt to bridge the gap between ML-based data-

driven surrogate models and the satisfaction of physical laws. 

In this study, we focus on the application to musculoskeletal systems, aiming at utilizing non-

invasive muscle activity measurements such as surface electromyography (sEMG) signals to 

predict joint kinetics or kinematics [1,18,19], which is of great significance to health assessment 

and rehabilitation purposes [15,16]. These sEMG signals can be used as control inputs to drive the 

physiological subsystems that are governed by parameterized non-linear differential equations, 

and thus form the forward dynamics problem. Given information on muscle activations, the joint 

motion of a subject-specific MSK system can be obtained by solving a forward dynamics problem. 

Data-driven approaches for motion prediction have also been introduced to directly map the input 

sEMG signal to joint kinetics/kinematics, bypassing the forward dynamics equations and the need 

for parameter estimation [26–30]. However, the resulting ML-based surrogate models lack 

interpretability and may not satisfy the underlying physics. Another challenge is that the sEMG 

signal usually exhibits a wide range of frequencies that are non-trivial for ML models [1] to map 

to the joint motion. 

In our previous work [1], a physics-informed parameter identification neural network (PI-PINN) 

was proposed for the simultaneous prediction of motion and parameter identification with 

application to MSK systems. Using the raw transient sEMG signals obtained from the sensors and 

the corresponding joint motion data, the PI-PINN learned a forward model to predict the motion 

with identifying the parameters of the hill-type muscle models representing the contractile muscle-

tendon complex. A feature-encoded approach was introduced to enhance the training of the PI-

PINN, which yielded high motion prediction accuracy and identified system parameters within a 

physiological range, with only a limited number of training samples. However, this method relies 

on mapping in a feature domain constituted by Fourier and polynomial bases, which requires the 

input sEMG signal to span over the entire duration of the motion. Thus, it prevents real-time 

predictions as the signal is obtained from the sensor.  

To enhance the predictive accuracy of the time-dependent signals, recurrent neural networks 

(RNNs) such as gated recurrent units (GRUs) [29,53] are utilized in this study to inform predictions 
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with the history information of the motion. To overcome the limitation of the size of the data and 

provide more information from the composite frequency bands in the signals, a multi-resolution 

based (MR) approach is proposed. In this approach, wavelets are used to decompose both the raw 

sEMG and joint motion signals into coarse-scale components at various frequency scales and the 

remaining fine-scale details. Using principles of the multi-resolution theory and transfer learning, 

multi-resolution training processes are repeated recursively from the coarse-scale to the full-scale 

in order to map the sEMG signal to the joint motion. Furthermore, gaussian noise is introduced to 

the recorded motion data used for training to enhance the robustness and generalizability of the 

model [29]. The trained model can be applied for real-time motion predictions given the raw sEMG 

signal obtained from the sensor. 

This manuscript is organized as follows. Section 2 introduces the subsystems and mathematical 

formulations of MSK forward dynamics, followed by an introduction of the proposed multi-

resolution PI-RNN framework for simultaneous motion prediction and system parameter 

identification in Section 3. The following sections verify the proposed framework using synthetic 

data and validate it by modeling the elbow flexion-extension movement using subject-specific 

sEMG signals and recorded motion data in Section 4 and 5, respectively. Concluding remarks and 

future work are summarized in Section 6.  

 

2. Formulations for Muscle Mechanics and Musculoskeletal Forward 

Dynamics 

This section provides a brief overview of muscle mechanics and forward dynamics of the human 

MSK system, with details in Appendix A and B. As depicted in Fig. 1, multiple subsystems within 

the MSK forward dynamics interact hierarchically: 1) the neural excitation 𝑢(𝑡) transforms into 

muscle activation 𝑎(𝑡) (activation dynamics); 2) Muscle activation drives muscle fibers to produce 

force 𝐹𝑀𝑇  (muscle-tendon (MT) contraction dynamics); 3) the resultant forces produce joint 

motion q (translation and rotation) of MSK systems, called the MSK forward dynamics [11,12,37]. 
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Fig. 1 The subsystems involved in the forward dynamics of an MSK system are depicted in this 

flowchart. Neural excitations are transmitted to muscle fibers (activation dynamics) that contract 

to produce force (muscle-tendon contraction dynamics). These forces generate torques at the joints 

(structural level MSK dynamics) leading to joint motion [1,54]. 

2.1 Neural Excitation-to-Activation Dynamics 

While activations 𝑎(𝑡) in the muscle fibers can be obtained through a non-linear transformation 

on neural excitations 𝑢(𝑡), they are difficult to measure in-vivo. Therefore, the excitations are 

estimated from [15,16] the raw sEMG signals 𝑒(𝑡) considering an electro-mechanical delay:  

 𝑢(𝑡) = 𝑒(𝑡 − 𝑑). (1) 
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where 𝑑 measures the delay between the neural excitation originating and reaching the muscle 

group. The muscle activation signal 𝑎(𝑡) is then expressed as, 

 
𝑎(𝑡) =

exp(𝐴𝑢(𝑡)) − 1

exp(𝐴) − 1
 

(2) 

where 𝐴 is a shape factor. These activations initiate muscle fiber contraction leading to force 

production from the muscle group. 

 

2.2 Muscle-Tendon Force Generation through Contraction Dynamics 

 

(a)                                                        (b) 

Fig. 2 A muscle-tendon complex in the arm modelled by a homogenized hill-type model where  

muscle group’s in (a) are a homogenized muscle-tendon (MT) complex described by the model 

shown in (b). 

Forces in the muscle-tendon (MT) complex are generated by the dynamics of MT contractions, 

where for structural length scale behaviour of the MT complex, homogenized hill-type muscle 

models are utilized (described in Appendix B) . Each muscle group can be characterized by a 

parameter vector, 

 𝜿 =  [𝑙0
𝑀, 𝑣𝑚𝑎𝑥

𝑀 , 𝑓0
𝑀 , 𝑙𝑠

𝑇 , 𝜗0], (3) 

containing constants such as the maximum isometric force in the muscle (𝑓0
𝑀), the optimal muscle 

length (𝑙0
𝑀) corresponding to the maximum isometric force, the maximum contraction velocity 
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(𝑣𝑚𝑎𝑥
𝑀 ), the slack length of the tendon (𝑙𝑠

𝑇), and the initial pennation angle (𝜗0) [55,56]. The total 

force produced by the MT complex, 𝐹𝑀𝑇, can be expressed as:  

 𝐹𝑀𝑇(𝑎, 𝑙𝑀, 𝑣̃𝑀, 𝜗; 𝜿) = 𝐹𝑀(𝑎, 𝑙𝑀, 𝑣̃𝑀; 𝜿) cos 𝜗. (4) 

where 𝑎  is the activation function in Eq. (2), 𝑙𝑀  is the normalized muscle length, 𝑣̃𝑀  is the 

normalized velocity of the muscle and 𝜗 is the current pennation angle. In this study, the tendon is 

assumed to be rigid (𝑙𝑇 = 𝑙𝑠
𝑇) which simplifies the MT contraction dynamics [57,58] accounting 

for the interaction of the activation, force length, and force velocity properties of the MT complex. 

More details can be found in Appendices A and B. 

2.3 MSK Forward Dynamics of Motion 

Body movement is the result of the force produced by actuators (MT complexes), converted to 

torques at the joints of the body, leading to rotation and translation of joints, which are considered 

as the generalized degrees of freedom of an MSK system (𝒒). The dynamic equilibrium can be 

expressed as 

 𝑰(𝒒) 𝒒̈ − 𝑻𝑀𝑇(𝒂, 𝒒, 𝒒̇; 𝜿) − 𝑬(𝒒) = 𝟎, (5) 

where 𝒒, 𝒒̇, 𝒒̈  are the vectors of generalized angular motions, angular velocities, and angular 

accelerations, respectively; 𝑬(𝒒) is the torque from the external forces acting on the MSK system, 

e.g., ground reactions, gravitational loads etc.; 𝑰(𝒒) is the inertial matrix;  𝑻𝑀𝑇 is the torque from 

all muscles in the model calculated by 𝑻𝑀𝑇(𝒂, 𝒒, 𝒒̇; 𝜿) = 𝑹(𝒒)𝑭𝑀𝑇(𝒂, 𝒒, 𝒒̇; 𝜿),  where 𝑹(𝒒) are 

the moment arm’s and 𝑭𝑀𝑇(𝒂, 𝒒, 𝒒̇; 𝜿) are the forces from the MT complex. Given the muscle 

activation signals 𝒂 , initial conditions and parameters of involved muscle groups 𝜿 , the 

generalized angular motions 𝒒 and angular velocities 𝒒̇ of the joints can be obtained by solving 

Eq. (5). An example of these vectors is shown in Section 4 and Appendix D.   

 

3. Multi-Resolution Recurrent Neural Networks for Physics-Informed 

Parameter Identification  

This section describes the recurrent neural network algorithms, followed by the physics-informed 

parameter identification that enables the development of a forward dynamics surrogate and 

simultaneous parameter identification. The employment of multi-resolution analysis based on fast 
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wavelet transform [59,60] for training data augmentation is then defined. The computational 

framework for multi-resolution recurrent neural network for physics-informed parameter 

identification is also discussed.  

3.1 Recurrent Neural Networks and Gated Recurrent Units  

 

Fig. 3 Computational graph of a standard recurrent neural network using ‘m’ history steps for 

prediction. 

The computational graph of a standard recurrent neural network (RNN) and its unfolded graph is 

shown in Fig. 3. The hidden state 𝒉 allows for RNNs to learn important history-dependent features 

from the data in sequential time steps [29,53]. The unfolded graph shows the sharing of parameters 

across the architecture of the network, allowing for efficient training. The forward propagation of 

an RNN starts with an initial hidden state that embeds history-dependent features and propagates 

through all input steps. Considering an RNN with 𝑚  history steps as shown in Fig. 3, the 

propagation of the hidden state can be expressed as follows [29]. 

 𝒉𝑖 = 𝑎𝑡𝑎𝑛ℎ(𝑾ℎℎ𝒉𝑖−1 +𝑾𝑥ℎ𝒙𝑖 + 𝒃ℎ),    𝑖 = 𝑛 −𝑚,… , 𝑛 (6) 

 

The hidden state at the final (current) step 𝑛 is then used to inform the prediction. 

 

 𝒒̂𝑛 = 𝑾ℎ𝑞𝒉𝑛 + 𝒃𝑞 (7) 

Here, 𝑎𝑡𝑎𝑛ℎ  is the hyperbolic tangent function; 𝑾𝑥ℎ,𝑾ℎℎ,  and 𝑾ℎ𝑞  are the trainable weight 

coefficients; 𝒃ℎ  and 𝒃𝑞  are the trainable bias coefficients. The trainable parameters are shared 
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across all RNN steps. Let 𝒙𝑛 = [𝑡𝑛, 𝑒𝑛
1, … , 𝑒𝑛

𝑁𝑎] be the current time and current sEMG data of the 

𝑁𝑎 muscle components and 𝒒̂𝑛  be the predicted joint motions at the current time 𝑡𝑛 . Fig. 4(a) 

illustrates the computational graph of an RNN model trained to predict the motion at step 𝑛 by 

using m history steps of 𝒙 and 𝒒 as well as the 𝒙 at step 𝑛. The forward propagation is defined as 

 𝒉𝑖 = 𝑎𝑡𝑎𝑛ℎ(𝑾ℎℎ𝒉𝑖−1 +𝑾𝑥ℎ𝒙𝑖 +𝑾𝑞ℎ𝒒𝑖 + 𝒃ℎ), 𝑖 = 𝑛 −𝑚,… , 𝑛 − 1 (8) 

 

 𝒉𝑛 = 𝑎𝑡𝑎𝑛ℎ(𝑾ℎℎ𝒉𝑛−1 +𝑾𝑥ℎ𝒙𝑛 + 𝒃ℎ), (9) 

 

 𝒒̂𝑛 = 𝑾ℎ𝑞̂𝒉𝑛 + 𝒃𝑞 (10) 

with trainable parameters including the weight coefficients 𝑾ℎℎ,𝑾𝑥ℎ,𝑾𝑞ℎ and 𝑾ℎ𝑞̂  and bias 

coefficients 𝒃ℎ and 𝒃𝑞. During training, the ‘teacher-forcing’ method is used where the measured 

motion data is given to the model in the history steps. In test mode, the model is fed back to the 

previous predictions as input to inform future predictions. The inputs received in this scenario 

could be quite different from those passed through in the training process, leading the network to 

make extrapolative predictions and therefore, accumulate errors which will pollute the predictions.   

To improve the testing performance and enhance model accuracy and robustness, a user-controlled 

amount of random Gaussian noise is added to the recorded motion data to introduce stochasticity 

so that the network can learn variable input conditions, resembling those in the test mode, see [29] 

for details. 
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                                   (a)                                                                              (b) 

Fig. 4 An example computational graph of an RNN that uses one history step: (a) The train mode 

and (b) the test mode, where the motion predicted from the previous step is used as part of the 

input to predict motion at the current step. 

Standard RNNs, however, have difficulties in learning long-term dependencies due to vanishing 

and exploding gradient issues arising from the recurrent connections. To mitigate these issues, 

gated recurrent units (GRUs) have been developed [48,50]. A standard GRU consists of a reset 

gate 𝒓𝑛, that removes irrelevant history information, an update gate 𝒖𝑛 that controls the amount 

of history information that is passed to the next step, and a candidate hidden state 𝒉̃𝑛 that is used 

to calculate the current hidden state 𝒉𝑛 . Considering a GRU with 𝑚 history steps, the forward 

propagation can be expressed as follows [29]: 

 

𝒓𝑖 = 𝑎𝜎(𝑾ℎ𝑟𝒉𝑖−1 +𝑾𝑥𝑟𝒙𝑖 +𝑾𝑞𝑟𝒒𝑖 + 𝒃𝑟)

𝒖𝑖 = 𝑎𝜎(𝑾ℎ𝑢𝒉𝑖−1 +𝑾𝑥𝑢𝒙𝑖 +𝑾𝑞𝑢𝒒𝑖 + 𝒃𝑢)

𝒛(𝑖,𝑖−1) = 𝒓𝑖⊙𝑾ℎℎ̃𝒉𝑖−1

𝒉̃𝑖 = 𝑎𝑡𝑎𝑛ℎ(𝒛(𝑖,𝑖−1) +𝑾𝑥ℎ̃𝒙𝑖 +𝑾𝑞ℎ̃𝒒𝑖 + 𝒃ℎ̃)

𝒄(𝑖,𝑖−1) = 𝒖𝑖⊙𝒉𝑖−1

𝒄̃(𝑖,𝑖) = 𝒖𝑖⊙ 𝒉̃𝑖

𝒉𝑖 = 𝒄(𝑖,𝑖−1) + 𝒉̃𝑖 − 𝒄̃(𝑖,𝑖) + 𝒃ℎ

 

∀ 𝑖 = 𝑛 −𝑚,… , 𝑛 − 1, 

 

 

(11) 
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𝒓𝑛 = 𝑎𝜎(𝑾ℎ𝑟𝒉𝑛−1 +𝑾𝑥𝑟𝒙𝑛 + 𝒃𝑟)

𝒖𝑛 = 𝑎𝜎(𝑾ℎ𝑢𝒉𝑛−1 +𝑾𝑥𝑢𝒙𝑛 + 𝒃𝑢)

𝒛(𝑛,𝑛−1) = 𝒓𝑛⊙𝑾ℎℎ̃𝒉𝑛−1

𝒉̃𝑛 = 𝑎𝑡𝑎𝑛ℎ(𝒛(𝑛,𝑛−1) +𝑾𝑥ℎ̃𝒙𝑛 + 𝒃ℎ̃)

𝒄(𝑛,𝑛−1) = 𝒖𝑛⊙𝒉𝑛−1

𝒄̃(𝑛,𝑛) = 𝒖𝑛⊙ 𝒉̃𝑛

𝒉𝑛 = 𝒄(𝑛,𝑛−1) + 𝒉̃𝑛 − 𝒄̃(𝑛,𝑛) + 𝒃ℎ

 

 

 

(12) 

 

 𝒒̂𝑛 = 𝑾ℎ𝑞̂𝒉𝑛 + 𝒃𝑞̂ (13) 

 

where ⊙ denotes the element-wise (Hadamard) product; 𝑎𝜎(⋅) is the sigmoid activation function 

and 𝑎𝑡𝑎𝑛ℎ(⋅)  is the hyperbolic tangent function; 

𝑾ℎ𝑟 ,𝑾𝑥𝑟 ,𝑾𝑞𝑟 ,𝑾ℎ𝑢,𝑾𝑥𝑢 ,𝑾𝑞𝑢,    𝑾ℎℎ̃,𝑾𝑥ℎ̃,𝑾𝑞ℎ̃ and 𝑾ℎ𝑞̂ are the trainable weight coefficients; 

𝒃𝑟 , 𝒃𝑢, 𝒃ℎ̃, 𝒃ℎ and 𝒃𝑞̂ are the trainable bias coefficients. The current hidden state 𝒉𝑛 is calculated 

by a linear interpolation between the previous hidden state 𝒉𝑛−1 and the candidate hidden state 𝒉̃𝑛, 

based on the update gate 𝒖𝑛. The model is trained via the backpropagation through time algorithm 

applied to RNNs [21]. Training occurs by plugging in the measured motion data in history steps 

(shown in Fig. 5), known as the teacher forcing procedure [21]. For predictions, the prediction 

from the previous step is used to predict the current step. The addition of gaussian noise to 

measured data, as described before, is adopted in GRU models as well.  
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                                        (a)                                                                            (b) 

Fig. 5 An example computational graph of a GRU in train mode that uses one history step: (a) 

Starting with an initial or previously obtained hidden state (𝒉𝑛−2), the main GRU cell takes the 

input 𝒙𝑛−1 and motion 𝒒𝑛−1 that are used to obtain the GRU hidden state 𝒉𝑛−1 at step 𝑛 − 1 (Eq. 

(11))  and, (b) where the hidden state 𝒉𝑛−1 is plugged back in to the GRU along with input 𝒙𝑛 at 

step 𝑛 to predict the motion 𝒒̂𝑛 (Eq. (12)-(13)). The ‘+’ cell produces an output (arrow pointing 

outwards) that is the summation of the inputs (arrows pointing into the cell).  

3.2 Simultaneous Forward Dynamics Learning and Parameter Identification  

With the governing equations for a general MSK forward dynamics (Section 2.1), the following 

parameterized ODE system is defined as 

 𝓛[𝒒(𝑡); 𝝀] = 𝒔(𝑡;𝝎),  ∀ 𝑡 ∈  (0, T], 𝓑[𝒒(0)] = 𝒈 , 

 

(14) 

where the differential operator 𝓛[(⋅); 𝝀] is parameterized by a set of parameters 𝝀. The right-hand 

side 𝒔(𝑡;𝝎) is parameterised by 𝝎. 𝓑[(⋅)] is the operator for initial conditions, and 𝒈 is the vector 

of prescribed initial conditions. To simplify notations, the ODE parameters are denoted by  𝜞 =

{𝝀,𝝎}. The solution to the ODE system 𝒒: [0, 𝑇] → ℝ depends on the choice of parameters 𝜞. 
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Here, an RNN is used to relate data inputs containing discrete sEMG signals and discrete time 

from all the 𝑚 previous history time-steps of a trial, ∪𝑖=𝑛−𝑚
𝑛 𝒙𝑖 ∈ ℝ

𝑛𝑖𝑛 , 𝑚 ∈ ℤ+, to discrete joint 

motion data outputs at the current time-step, 𝒒𝑛 ∈ ℝ , approximating the MSK forward dynamics. 

Let the training input at the 𝑖𝑡ℎ history step be defined as 𝒙𝑖 = [𝑡𝑖, 𝑒𝑖
1, … , 𝑒𝑖

𝑁𝑎], where 𝑡𝑖 denotes 

the time at the 𝑖𝑡ℎ time step, and {𝑒𝑖
𝑗
}
𝑗=1

𝑁𝑎
 denotes the sEMG signals of 𝑁𝑎 muscle groups involved 

in the MSK joint motion at 𝑡𝑖. The motion at time step 𝑛, is then predicted using the training input 

from all the previous 𝑚 steps using the RNN. 

 𝒒̂𝑛(𝜽) = 𝑓𝑅𝑁𝑁(𝒙𝑛, 𝒙𝑛−1, 𝒒𝑛−1, … , 𝒙𝑛−𝑚, 𝒒𝑛−𝑚; 𝜽) (15) 

 

where 𝑓𝑅𝑁𝑁 denotes RNN evaluations (depending on model chosen) discussed in Eq. (11)-(13). 

The optimal RNN parameters 𝜽̃  and the ODE parameters 𝜞̃  are obtained by minimizing the 

composite loss function 𝐽 as follows, 

 𝜽̃, 𝜞 ̃ = argmin
𝜽,𝜞

(𝐽) = argmin
𝜽,𝜞

( 𝐽𝑑𝑎𝑡𝑎 + 𝛽 𝐽𝑟𝑒𝑠) (16) 

where 𝛽 is the parameter to regularize the loss contribution from the ODE residual term in the loss 

function and can be estimated analytically [1]. The data loss is defined by,  

 

𝐽𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎
∑ ‖𝒒̂𝛼(𝜽) − 𝒒𝛼‖𝐿2

2

𝑁𝑑𝑎𝑡𝑎

𝛼=1

 

(17) 

where 𝒒̂𝛼(𝜽) is the predicted motion, and 𝒒𝛼  is the recorded motion of MSK joints. In addition to 

training an MSK forward dynamics surrogate, the proposed framework aims to simultaneously 

identify important MSK parameters from the training data by minimizing residual of the governing 

equation of MSK system dynamics in Eq. (5).  

 

𝐽𝑟𝑒𝑠 =
1

𝑁𝑑𝑎𝑡𝑎
∑ ‖𝒓(𝒒̂𝛼(𝜽); 𝜞)‖𝐿2

2

𝑁𝑑𝑎𝑡𝑎

𝛼=1

 

𝒓(𝒒̂𝛼(𝜽); 𝜞) = 𝓛[𝒒̂𝛼(𝜽); 𝝀] − 𝒔(𝑡𝛼; 𝝎) 

(18) 

   

where 𝒓(𝒒̂𝛼(𝜽); 𝜞) is the residual associated with Eq. (14) for the 𝛼𝑡ℎ  sample;  𝜞 = {𝝀,𝝎} 

represents the ODE parameters relevant to the MSK system. The gradients of the network outputs 

with respect to the network parameters (𝜽), MSK parameters (𝜞), and inputs are needed in the 
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loss function minimization in Eq. (16), which can be obtained efficiently by automatic 

differentiation [61]. The formulation in Eq. (15) is general such that more advanced RNN 

frameworks can be used such as the GRU described in Eq. (11)-(13). 

3.3 Multi-Resolution Training with Transfer Learning  

To improve the training efficiency of RNN for MSK applications with mixed-frequency sEMG 

input signals and low-frequency output joint motion, a multi-resolution decomposition of the 

training input-output data is introduced in Section 3.3.1, followed by the transfer learning based 

multi-resolution training protocols to be discussed in Section 3.3.2.  

3.3.1 Wavelet based Multi-Resolution Analysis 

Consider a sequence of nested subspaces … ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝐿2(𝑅)  where 

⋃ 𝑉𝑗𝑗∈𝒵 = 𝐿2(𝑅), and ⋂ 𝑉𝑗𝑗∈𝒵 = ∅. Each subspace 𝑉𝑗 of scale [𝑗] is spanned by a set of scaling 

functions 𝜙𝑗,𝑘(𝑡), i.e.,  

𝑉𝑗 = {𝜙𝑗,𝑘(𝑡)|𝜙𝑗,𝑘(𝑡) = 2
𝑗

2𝜙(2𝑗𝑡 − 𝑘), 𝑘 ∈ 𝒵} 

 

Each subspace is related to the finer subspace through the law of dilation i.e., if 𝜙(𝑡) ∈ 𝑉𝑗 , then 

𝜙(2𝑡) ∈ 𝑉𝑗+1, ∀𝑗 ∈ 𝒵. Translations of the scaling function span the same subspace, i.e., if 𝜙(𝑡) ∈

𝑉𝑗, then 𝜙(𝑡 − 𝑘) ∈ 𝑉𝑗, ∀𝑗, 𝑘 ∈ 𝒵.  

A mutually orthogonal complement of 𝑉𝑗 in 𝑉𝑗+1 is 𝑊𝑗, such that, 

 𝑉𝑗+1 = 𝑉𝑗⊕𝑊𝑗 , ∀𝑗 ∈ 𝒵 (19) 

where ⊕ is a direct sum. This subspace 𝑊𝑗 is spanned by a set of wavelet functions 𝜓𝑗,𝑘(𝑡), i.e., 

𝑊𝑗 = {𝜓𝑗,𝑘(𝑡)|𝜓𝑗,𝑘(𝑡) = 2
𝑗

2𝜓(2𝑗𝑡 − 𝑘), 𝑘 ∈ 𝒵} 

where 𝜓(𝑡) is the mother wavelet. It follows that, 

 ⊕𝑗∈𝒵 𝑊𝑗 = 𝐿
2(𝑅) (20) 

and therefore, 
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 𝑉𝑗 = 𝑉𝑖⊕ (⊕𝑘=0
𝑗−𝑖−1

𝑊𝑖+𝑘), 𝑗 > 𝑖.  (21) 

The two-scale dilation and translation relations for the scaling functions can be written as 

 
𝜙(𝑡) = √2 ∑ 𝑑𝑘𝜙(2𝑡 − 𝑘)

∞

𝑘=−∞

. 
(22) 

Orthogonal wavelet functions can be obtained by imposing orthogonality conditions between 

scaling and wavelet functions in the frequency domain using Fourier transform, 

 
𝜓(𝑡) = √2 ∑ (−1)𝑘−1𝑑−𝑘−1𝜙(2𝑡 − 𝑘)

∞

𝑘=−∞

 
(23) 

where 𝑑𝑘 is the coefficient. 

Orthogonal scaling functions can be constructed by choosing a candidate function 𝜙∗(𝑡) such that 

𝜙∗(𝑡) have reasonable decay and a finite support. In addition, ∫ 𝜙∗(𝑡)𝑑𝑡 ≠ 0. It should also satisfy 

the two-scale relation, 

 𝜙∗(𝑡) =∑𝑝𝑘𝜙
∗(2𝑡 − 𝑘)

𝑘

, 𝑘 ∈ 𝒵. (24) 

With these, an orthogonal scaling function 𝜙(𝑡) can be expressed in terms of 𝜙∗(𝑡) as 

 
𝜙(𝑡) = ∑ 𝑎𝑘𝜙

∗(𝑡 − 𝑘)

∞

𝑘=−∞

. 
(25) 

It is then possible to define the scaling function at the coarse scale in terms of the scaling function 

at the fine scale and the wavelet functions at the coarser scale, 

 
𝜙(2𝑡 − 𝑙) = ∑ 𝑑𝑙−2𝑘𝜙(𝑡 − 𝑘) + ∑ ℎ𝑙−2𝑘𝜓(𝑡 − 𝑘), 𝑙 ∈ 𝒵

∞

𝑘=−∞

∞

𝑘=−∞

. 
(26) 

Any function can be approximated at scale [𝑗] by using 𝜙𝑗,𝑘 as a basis as well as using its coarse 

scale [𝑗 − 1] representation and details at the coarse scale, i.e., 
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𝑃𝑗𝑓 = ∑ 𝑆𝑘

[𝑗]
𝜙𝑗,𝑘

∞

𝑘=−∞

= 𝑃𝑗−1𝑓 + 𝐻𝑗−1𝑓

= ∑ 𝑆𝑘
[𝑗−1]

𝜙𝑗−1,𝑘

∞

𝑘=−∞

+ ∑ 𝑇𝑘
[𝑗−1]

𝜓𝑗−1,𝑘

∞

𝑘=−∞

 

(27) 

where 𝑃𝑗 and 𝐻𝑗 are the operators projecting 𝑓 onto the subspaces 𝑉𝑗 and details of 𝑓 at scale [𝑗] in 

the orthogonal subspace 𝑊𝑗, respectively. 𝑆𝑘
[𝑗]

 and 𝑇𝑘
[𝑗]

 are the corresponding basis coefficients at 

the coarse scale [𝑗]. While the example shown here is for a one-dimensional case, this multi-

resolution representation can be extended to multi-dimensions. 

3.3.2 Multi-Resolution Data Representation and Training Protocols 

In this approach, a given signal 𝑓(𝑡) is represented using the multi-resolution scaling functions 

and wavelets. A scale [𝑗] representation of signal 𝑓(𝑡) can be obtained from the scale [𝑟] (𝑗 > 𝑟) 

representation with the addition of wavelet components (high frequency components) of the scales 

higher than [𝑟], using the discrete wavelet transform modified from Eq. (27),  

 

𝑃𝑗𝑓(𝑡) = 𝑃𝑟𝑓(𝑡)  +∑𝐻𝑏𝑓(𝑡)

𝑗−1

𝑏=𝑟

= ∑ 𝑆𝑘
[𝑟]
𝜙𝑟,𝑘(𝑡)

∞

𝑘=−∞

+∑ ∑ 𝑇𝑘
[𝑏]
𝜓𝑏,𝑘(𝑡)

∞

𝑘=−∞

𝑗−1

𝑏=𝑟

 

 

(28) 

where 𝑃𝑟 is the projection operator at scale [𝑟] and 𝐻𝑏 are the wavelet projectors of the signal that 

are added from scale [𝑟] to scale [𝑗 − 1] to reconstruct the signal at scale [𝑗]; 𝑆𝑘
[𝑟]
 and 𝑇𝑘

[𝑏]
 are the 

scaling and wavelet function’s coefficients, obtained by the orthogonality condition as given in 

Section 3.3.1.  

Using the Wavelet transform to represent a time series under multiple resolutions offers advantages 

for feature extraction from signals. Compared to the Fourier transform which offers only 

localization in the frequency domain, the Wavelet transform provides both frequency and time 

domain localization, making it more suitable for time history (or sequence) learning algorithms 

such as the standard RNN and its enhanced variant GRU. More specifically, one can enhance 

training efficiency by using a sequential training strategy for the time-history input (sEMG) and 

output (joint motion) data. Applying the Fast Wavelet Transform [57,58] to obtain the input and 

output data from low to high resolutions results in better generalization performance of the RNN 
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trained to map from sEMG signals to joint motion time history as described below. The second 

order Daubechies wavelets are used in this work.  

Here we consider a general MSK system described in Section 2. The original unfiltered data is 

denoted as scale [0], which will be decomposed into a sequence of lower scales [−𝑗], 𝑗 ∈ ℤ+ for 

multi-resolution training.  

Let 𝑫[0] be the input training data at the full-scale (𝑗 = 0) of the raw signals i.e., 

 𝑫[0] = [𝒙1
[0], 𝒙2

[0]
, … , 𝒙𝑁𝑑𝑎𝑡𝑎

[0]
], 

𝒙𝑖
[0]
= [𝑡𝑖, 𝑒𝑖

1[0]
, … , 𝑒𝑖

𝑁𝑎[0]]. 

(29) 

and the motion of joints of the MSK system at the 𝑖𝑡ℎ time-step at the full-scale (𝑗 = 0) is 𝒒𝑖
[0]

 

such that the array of the unfiltered motion data for the duration of the motion is 𝒒[0] =

[𝒒1
[0], 𝒒2

[0], … 𝒒𝑁𝑑𝑎𝑡𝑎
[0] ]. 

 From MR theory, subtracting details from the fine scale representations at the full-scale of the 

signal, i.e., [0],  results in a course scale representation of the signal at scale [−𝑘], 𝑘 = 1,… 𝑗. The 

projected training data at coarse scale [-j] is defined as  

 𝑫[−𝑗] = [𝒙1
[−𝑗]

, 𝒙2
[−𝑗]

, … , 𝒙𝑁𝑑𝑎𝑡𝑎
[−𝑗]

], (30) 

where 𝑁𝑑𝑎𝑡𝑎 is the total number of data points and  

 𝒙𝑖
[−𝑗]

= [𝑡𝑖, 𝑒𝑖
1[−𝑗]

, … , 𝑒𝑖
𝑁𝑎[−𝑗]], i=1…, 𝑁𝑑𝑎𝑡𝑎 (31) 

is the input data of scale [-j] at time step 𝑖. The motion of the MSK joints at the 𝑖𝑡ℎ time-step at 

the scale [−𝑗] is 𝒒𝑖
[−𝑗]

. The data sets for a representative muscle group ‘𝑀𝑇’, 𝑒𝑖
𝑀𝑇[−𝑗]

 and motion 

𝒒𝑖
[−𝑗]

, are obtained from the original raw data 𝑒𝑖
𝑀𝑇[0]

 and 𝒒𝑖
[0]

 by wavelet projection using Eq. (27), 

that is, 

 𝑒𝑀𝑇[−𝑗](𝑡) ≡ 𝑃𝑗𝑒
𝑀𝑇[0](𝑡) = 𝑃𝑗−1𝑒

𝑀𝑇[0](𝑡) + 𝐻𝑗−1𝑒
𝑀𝑇[0](𝑡)

= 𝑒𝑀𝑇[0](𝑡) −∑𝐻𝑏𝑒
𝑀𝑇[0](𝑡)

𝑗−1

𝑏=0

 
(32) 
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𝒒[−𝑗](𝑡) ≡ 𝑷𝑗𝒒
[0](𝑡) = 𝑷𝑗−1𝒒

[0](𝑡) + 𝑯𝑗−1𝒒
[0](𝑡) = 𝒒[0](𝑡) −∑𝑯𝑏𝒒

[0](𝑡)

𝑗−1

𝑏=0

 

 

 

where 𝑷𝑗 and 𝑯𝑗 are the projection operators in multi-dimensions. Hence, datasets that contain 

lower resolution representations of the original signal at scales [0] can be expressed as: 

 𝑫[−𝑗] ⊂ 𝑫[−𝑗+1] ⊂ ⋯𝑫[−1] ⊂ 𝑫[0] 

𝒒[−𝑗] ⊂ 𝒒[−𝑗+1] ⊂ ⋯𝒒[−1] ⊂ 𝒒[0] 

(33) 

where 𝒒[−𝑗] = [𝒒1
[−𝑗]

, 𝒒2
[−𝑗]

, … , 𝒒𝑁𝑑𝑎𝑡𝑎
[−𝑗]

]. 

Instead of learning the signal mapping from input original raw sEMG data 𝑫[0] to motion data 𝒒[0], 

we initiate learning the mapping by starting from a coarse scale representation of the input-output 

data at scale [−𝑗] and map 𝑫[−𝑗] to 𝒒[−𝑗]. For multi-resolution RNN, the initial learning starts from 

the coarsest scale [−𝑗] as follows: 

 𝒉𝑖
[𝑗]
= 𝑎𝑡𝑎𝑛ℎ (𝑾ℎℎ

[−𝑗]
𝒉𝑖−1
[−𝑗]

+𝑾𝑥ℎ
[−𝑗]

𝒙𝑖
[−𝑗]

+𝑾𝑞ℎ
[−𝑗]

𝒒𝑖
[−𝑗]

+ 𝒃ℎ
[−𝑗]

),  

∀𝑖 = 𝑛 −𝑚,… , 𝑛 − 1 

(34) 

 𝒉𝑛
[−𝑗]

= 𝑎𝑡𝑎𝑛ℎ (𝑾ℎℎ
[−𝑗]

𝒉𝑛−1
[−𝑗]

+𝑾𝑥ℎ
[−𝑗]

𝒙𝑛
[−𝑗]

+ 𝒃ℎ
[−𝑗]

), (35) 

 

 𝒒̂𝑛
[−𝑗]

= 𝑾ℎ𝑞̂
[−𝑗]

𝒉𝑛−1
[−𝑗]

+ 𝒃𝑞
[−𝑗]

. (36) 

 

 

At the next finer scale [−𝑗 + 1], the weights at scale [−𝑗] (using an early stopping [62]) are used 

as the initial values for 𝑾ℎℎ
[−𝑗+1]

, 𝑾𝑥ℎ
[−𝑗+1]

, 𝑾𝑞ℎ
[−𝑗+1]

, 𝑾ℎ𝑞̂
[−𝑗+1]

, 𝒃ℎ
[−𝑗]

, 𝒃𝑞
[−𝑗]

, similar to the concept of 

transfer learning[63]. 

Similarly, for multi-resolution GRU, the initial learning starts from the coarsest scale [−𝑗] as 

described in Appendix C. The same procedures to transfer the NN parameters in Eq.(34)-(36) are 

repeated with [−𝑗] → [−𝑗 + 1]  until it reaches scale [0]. To enhance model accuracy and 

robustness, variations based on Gaussian noise are added to the motion data in each sequential step, 

as suggested by [29]. The sequential MR training process is described in Algorithm 1.  
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Algorithm 1: Sequential Multi-Resolution PI-RNN training process. 

Ste Step1: Initialize parameters. 

𝜽 = 𝜽0 ,𝜞 = 𝜞0 

Step 2: Sequential learning through parameter transfer from coarse-scale to fine-scale. 

For 𝑙 = 0 → 𝑗 

    1. Train the RNN on the dataset 𝑫[−𝑗+𝑙] by calculating the predictions as 

𝒒̂𝑛
[−𝑗+𝑙](𝜽,𝜞) = 𝑓𝑅𝑁𝑁 (𝒙𝑛

[−𝑗+𝑙]
,𝒙𝑛−1
[−𝑗+𝑙]

,𝒒𝑛−1
[−𝑗+𝑙]

,… ,𝒙𝑛−𝑚
[−𝑗+𝑙]

,𝒒𝑛−𝑚
[−𝑗+𝑙]

;𝜽,𝜞) 

                        𝑚 → # of history steps   

                        𝑛 → current time step  

𝜽̃,𝜞 ̃ = argmin
𝜽,𝜞

(𝐽) = argmin
𝜽,𝜞

( 𝐽𝑑𝑎𝑡𝑎(𝜽)+ 𝛽 𝐽𝑟𝑒𝑠(𝜽,𝜞)) 

    2. 𝜽 = 𝜽̃,𝜞 = 𝜞̃ 

 
 

4. Verification Example 

For verification of the proposed MR PI-RNN framework, an elbow flexion-extension model [1] 

and synthetic sEMG signals with gaussian noise and associated motion responses were considered. 

The flowchart of the proposed computational framework for simultaneous forward dynamics 

prediction and parameter identification of MSK parameters is shown in Fig. 6.  

The model contained two rigid links corresponding to the upper arm and forearm with lengths 𝑙𝑢𝑎 

and 𝑙𝑓𝑎, respectively. They were connected at a hinge resembling the elbow joint “A”, while the 

upper arm link was fixed at the top joint “B”, and the biceps (Bi) and triceps (Tri) muscle-tendon 

complexes (modeled by Hill-type models with parameters 𝜿𝐵𝑖 and 𝜿𝑇𝑟𝑖) were represented by the 

lines connecting the links, as shown in Fig. 6. The degree of freedom of the model was the elbow 

flexion angle 𝑞. The mass in the forehand was assumed to be concentrated at the wrist location, 

hence, a mass 𝑚𝑓𝑎 was attached to one end of the forearm link with a moment arm 𝑙𝑓𝑎 from the 

elbow joint. Tendons were assumed as rigid [58] for ease of computation. 
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Fig. 6 An overview of the application of this framework to the recorded motion data. The location 

of motion capture markers is circled in red and the sEMG sensors on Biceps and Triceps muscle 

groups in blue and green, respectively. The simplified rigid body model was used in the forward 

dynamics equations within the framework with appropriately scaled anthropometric properties (for 

geometry) and physiological parameters (for muscle-tendon material models). The raw sEMG 

signals were mapped to the target angular motion of the elbow and used to simultaneously 

characterize the MSK system using the proposed Multi-Resolution PI-RNN framework. 

 

The equation of motion for this rigid body system is given in Appendix D. Given the synthetic 

sEMG signals (𝑒𝐵𝑖(𝑡), 𝑒𝑇𝑟𝑖(𝑡)), the initial conditions 𝑞(0) =
𝜋

6
 radians and 𝑞̇(0) = 0 radians/

sec and the parameters in Table 1, the motion of the elbow joint, 𝑞, can be obtained by solving the 

MSK forward dynamics problem using an explicit Runge-Kutta scheme, implemented in Python’s 

SciPy library [64]. 
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Table 1: Parameters involved in the forward dynamics setup of elbow flexion-extension motion. 

 

 

 

 

 

 

 

Parameter Type Value Parameter Type Value 

𝒍𝟎,𝐁𝐢
𝑴  Biceps Muscle Model 0.6 m 𝑚𝑓𝑎 

Equation 

of motion 
1.0 kg 

𝒗𝒎𝒂𝒙,𝑩𝒊
𝑴  Biceps Muscle Model 6 m/sec 𝑙𝑢𝑎 Geometric 1.0 m 

𝒇𝟎,𝐁𝐢
𝑴  Biceps Muscle Model 300 N 𝑙𝑓𝑎 Geometric 1.0 m 

𝒍𝒔,𝑩𝒊
𝑻  Biceps Muscle Model 0.55 m 𝑙1,𝐵𝑖 Geometric 0.3 m 

𝝓𝑩𝒊 Biceps Muscle Model 
0.0 

radians 
𝑙2,𝐵𝑖 Geometric 0.8 m 

𝒍𝟎,𝐓𝐫𝐢
𝑴  Triceps Muscle Model 0.4 m 𝑙1,𝑇𝑟𝑖 Geometric 0.2 m 

𝒗𝒎𝒂𝒙,𝑻𝒓𝒊
𝑴  Triceps Muscle Model 4 m/sec 𝑙2,𝑇𝑟𝑖 Geometric 0.7 m 

𝒇𝟎,𝑻𝒓𝒊
𝑴  Triceps Muscle Model 300 N 𝑑 

Activation 

Dynamics 
0.08 sec 

𝒍𝒔,𝑻𝒓𝒊
𝑻  Triceps Muscle Model 0.33 m 

A 
Activation 

Dynamics 
0.2 

𝝓𝑻𝒓𝒊 Triceps Muscle Model 

0.0 

radians 
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Fig. 7 The original ‘noiseless’ input-output data set with the synthetic biceps and triceps sEMG 

signals having variations in frequency for five trials are shown at the top. Increasing levels of noise 

are added to develop 3 cases of synthetic mixed frequency input sEMG, from which corresponding 

output motions are solved, using the forward dynamics equations. To verify the MR framework, 

these three cases with their respective mixed frequency input data are then mapped to their 

corresponding motion data. 

To verify and check the robustness of the MR framework to different levels of noise in the input, 

the following test was performed. Originally, five synthetic samples i.e., Trial's 1 to 5, of noiseless 

synthetic muscle sEMG signals are assumed, as shown in Fig. 7. In practical applications, signals 

obtained from measurement devices such as sEMG sensors contain noise in their content. 

Therefore, three cases were developed by adding Gaussian noise (𝒩(𝜇, 𝜎))  with zero mean 

(𝜇 = 0) and increasing levels of standard deviations (𝜎) to the input synthetic sEMG signals as 

mentioned in Table 2. As the maximum value of the noiseless sEMG signals is 1, the chosen 𝜎's 

were kept within 10% - 20% of the signal maximum for a reasonable level of noise. Restricting it 

between 10% - 20% is a choice as having higher noise levels (>20%) would dominate over the 
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underlying ‘noiseless’ periodic sinusoidal signal, leading to non-physiological synthetic sEMG 

signals. The corresponding output motions are generated by passing the noisy sEMG as input to 

the FD equations in Section 2. The following training procedures were performed for each of the 

three cases. 

1-scale Training 

The mixed frequency input sEMG signals and corresponding output motion data 𝒒 at scale [0], 

denoted by 𝑫[0] and 𝒒[0], respectively, are mapped to get a baseline performance. This is termed 

as 1-scale training as only the full-scale (i.e., [0]) of the mixed frequency data is used for training.  

2-scale Training 

a. Initiate learning from a coarse scale representation of the mixed frequency input data at 

scale [−1] and map 𝑫[−1] to the corresponding motion data at scale [-1], 𝒒[−1], of that 

case. 

b. Transfer parameters to the next scale training and finish the learning by mapping 𝑫[0] to 

𝒒[0]. 

3-scale Training 

a. Start learning from a coarse scale representation of the mixed frequency input data at scale 

[−2] and map 𝑫[−2] to the corresponding motion data at scale [-2] , 𝒒[−2], of that case.  

b. Transfer parameters to the next scale training and continue learning by mapping 𝑫[−1] to 

𝒒[−1]. 

c. Transfer parameters to the next scale training and finish the learning by mapping 𝑫[0] to 

𝒒[0]. 

Table 2: Input data and gaussian noise level for each case. 

Case ID Input Synthetic sEMG data + 𝒩(𝜇, 𝜎) 

1 Original +𝒩(0,0.1) 

2 Original +𝒩(0,0.15) 

3 Original +𝒩(0,0.2) 
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For each case and for each of the training scales in that case, the training data samples contained 

the data of trial’s 1, 2, 4, 5 while trial 3 was used for testing, each trial with 𝑛 =500 data points. 

The MSK parameters 𝜞 = {𝛤𝑙}𝑙=1
4 = {𝑓0,𝐵𝑖

𝑀 , 𝑙0,𝐵𝑖
𝑀 , 𝑓0,𝑇𝑟𝑖

𝑀 , 𝑙0,𝑇𝑟𝑖
𝑀 } were chosen to be identified from the 

training data using the proposed framework. Due to differences in units and physiological nature 

of the parameters, the conditioning of the parameter identification system could be affected. To 

mitigate this issue, normalization [1,44] was applied to each of the parameters,  

 
𝛤𝒍 =

𝛤𝑙

𝛤𝑙
(0)

 
(37) 

where 𝛤𝑙
(0)

 was the initial value of the parameter. Therefore, the parameters to be identified 

became 𝜞̅ = {𝛤𝑙}𝑙=1
4 . 

The proposed framework, as described in Section 3, was applied to each case to simultaneously 

learn the MSK forward dynamics surrogate and identify the MSK parameters 𝜞̅ by optimizing Eq. 

(16), where the residual of the governing equation for the current time step 𝑘, was expressed as 

 𝑟 (𝑞̂𝑘
[−𝑗]

(𝜽𝒒), 𝑞̇̂𝑘
[−𝑗]

(𝜽𝒒), 𝑞̈̂𝑘
[−𝑗]

(𝜽𝒒); 𝜞(𝜞̅; 𝜞
(0))) 

= 𝐼𝑞̈̂𝑘
[−𝑗]

(𝜽𝒒) − 𝐸 (𝑞̂𝑘
[−𝑗]

(𝜽𝒒))

− 𝑇𝑀𝑇 (𝑎𝐵𝑖(𝑡𝑘), 𝑎𝑇𝑟𝑖(𝑡𝑘), 𝑞̂𝑘
[−𝑗]

(𝜽𝒒), 𝑞̇̂𝑘
[−𝑗]

(𝜽𝒒); 𝜞(𝜞̅; 𝜞
(0)))  

 

(38) 

 

and is included in the residual term 𝐽𝑟𝑒𝑠 in the loss function in Eq. (16). While the training happens 

sequentially from coarse to fine-scales of the motion, the final identification of parameters happens 

at the scale [0], i.e., the full-scale in each of the 1-, 2- and 3-scale MR training types. 

 

A GRU with 2 history steps, 1 hidden layer and 50 neurons in each layer was used. The training 

was performed after standardizing the data, such that the scale or range of the input and output 

have minimal influence on model performance [21]. The Adam algorithm [65] was used with an 

initial learning rate of 1 × 10−3 and the penalty parameter for the MSK residual term in the loss 

function, 𝛽 ∝
Δ𝑡2

𝐼
= 10−3. Δ𝑡 is the time-step between data points and 𝐼 is the moment of inertia 



 

25 

in Eq. (38). Five parameter initialization seeds were used for an averaged response of the MR 

training. 

To compare the post-training performance of 1-, 2- and 3-scale MR training’s, the average testing 

mean squared error (MSE) and testing R2 scores were compared, where these measures for a single 

trial are defined as:   

 
MSE =

1

𝑛
‖𝒒 − 𝒒̂‖𝐿2

2  
(39) 

 

 

 
R2 = 1 −

∑ (𝑞𝑖 − 𝑞̂𝑖)
2𝑛

𝑖=1

∑ (𝑞𝑖 − 𝑞̅)2
𝑛
𝑖=1

 
(40) 

 

where 𝒒 is the motion data of the trial, 𝒒̂ is the trial’s predicted motion from the MR PI-RNN 

framework, and 𝑞̅ is the mean of trial’s motion data with 𝑛 being the number of data points in the 

trial. At each epoch in the MR training, the training loss is calculated by using the scale of the 

training data used in that training scale, i.e., scale [−𝑗] of the data is used in 𝑗-scale training. 

The gradual improvement in these metrics is evident from Fig. 8 where, as further scales of 

information are added and the training data is augmented, the generalization performance shows 

improvement from 1-scale to 3-scale. Overall, it is noted that the test metrics such as the MSE 

reduces, and the R2 score gets closer to one, indicating an increase in the generalization accuracy 

as more training scales are introduced. This can be explained through the theory of bias-variance 

tradeoff; training on various scales of the data introduces more variance to the training, helping 

the ML framework to reduce the bias it develops by just training on the full-scale of the data. 

Together, this reduction in bias and growth in variance leads to a better generalization performance. 

Computationally, this method improves accuracy in the same amount of training epochs showing 

the efficiency of this method. As generalization predictions post-training are made using the full-

scale of the data, there is no increase in time needed to perform the forward pass for any scale.            

Meanwhile, the MSK parameters, 𝑓0
𝑀 (maximum isometric force) and 𝑙0

𝑀 (optimal muscle length 

corresponding to the maximum isometric force), of both the biceps and the triceps were accurately 

identified from the motion data, as shown in Table 3. Compared with the parameter identification 
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from our previous work [1] where in addition to 𝑓0
𝑀, the maximum contraction velocity 𝑣𝑚𝑎𝑥

𝑀  was 

independently identified, due to non-convergence of 𝑙0
𝑀 by the time-domain and feature-encoded 

trainings, the proposed method can accurately identify 𝑙0
𝑀 . 𝑣𝑚𝑎𝑥

𝑀  can then by obtain by the 

experimentally observed relationship of  𝑣𝑚𝑎𝑥
𝑀 𝑙0

𝑀⁄ = 10𝑠−1 [57,66]. 

For the identification of optimal muscle length parameters (𝑙0
𝑀), the initial points need to be chosen 

with respect to constraints applied by the geometry of the MSK system. The errors reported in 

Table 3 are calculated by taking the average of the percentage error of the identified MSK 

parameters from the 3-scale training with the multiple parameter (𝜽, 𝜞) initializations. It was 

observed that in MSK parameter identification, similar accuracy in characterization was obtained 

from all training scale approaches used within each case, with errors less than 1%. This indicates 

that the MR PI-RNN improves the generalization performance of the motion prediction, without 

loss in parameter identification accuracy. It is noted that this example investigates the predictivity 

of in-distribution testing data, i.e., testing data that lies within the range of the training data. The 

effect of MR PI-RNN training on out-of-distribution predictivity is also studied in Appendix E. 

 
Fig. 8  The training loss and testing metrics are shown. The zoomed-in plots are included for clarity 

on the loss evolution for the last 500 epochs. The shaded area indicates one standard deviation 

from the mean (solid line), in both the loss and average test MSE and R2 score figures. As more 
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scales of data are introduced in the MR training, the average Test MSE and R2 score calculated 

post-training improve in each case. 

Table 3: The average percentage error (shown as mean ± standard deviation) between predicted 

and true values of the parameters for 3-scale training for each case from five initialization points. 

Parameter Case 1 Case 2 Case 3 

𝑓0,𝐵𝑖
𝑀  0.50 ± 0.02 0.50 ± 0.01 0.37 ± 0.04 

𝑓0,𝑇𝑟𝑖
𝑀  0.06 ± 0.02 −0.04 ± 0.02 −0.02 ± 0.03 

𝑙0,𝐵𝑖
𝑀  0.10 ± 0.03 0.10 ± 0.02 0.05 ± 0.05 

𝑙0,𝑇𝑟𝑖
𝑀  −0.06 ± 0.07 −0.05 ± 0.02 −0.03 ± 0.10 

 

5. Validation: Elbow Flexion-Extension Motion 

5.1 Application of MR PI-RNN to Subject-Specific Data 

The recorded motion data and sEMG signals were collected and processed as per the data 

acquisition protocols mentioned in [1]. In brief, three elbow flexion-extension motion trials were 

performed by the subject for 10 seconds each, with two Delsys Trigno sEMG sensors placed on 

the biceps and triceps muscle groups, based on SENIAM recommendations [67] . The processed 

sEMG signals were transformed as described in Section 2.1 to obtain muscle activation signals, 

used to calculate the MSK forward dynamics ODE residual. The same simplified rigid body model 

was used as in Section 4 and appropriately scaled anthropometric properties (for the geometry of 

the model) and physiological parameters (for muscle-tendon material models used for the muscle 

groups) based on the generic upper body model defined in [68,69] were used. Fig. 9 shows the 

measured data of the three trials, including the transient raw sEMG signals and the corresponding 

angular motion of the elbow flexion-extension of the subject. 
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Fig. 9 The measured raw sEMG signals and the corresponding angular motion of the elbow 

flexion-extension of the subject are plotted. 

In this example, the raw sEMG signals were used as input. A 5-scale MR training procedure as 

described in Section 4 was used on a GRU with 1 hidden layer with 50 neurons. The data of trials 

1 and 3 were used for training, while trial 2 was used for testing, where each signal contained 500 

temporal data points.  

The muscle parameters to be identified by the framework include the maximum isometric force 

and the optimal muscle length from both muscle groups, which are denoted as  𝜞 =

{𝑓0,𝐵𝑖
𝑀 , 𝑙0,𝐵𝑖

𝑀 , 𝑓0,𝑇𝑟𝑖
𝑀 , 𝑙0,𝑇𝑟𝑖

𝑀 } . It was observed in our tests that despite the normalization process 

described in Eq. (37) and (38), the parameters obtained at the end of the MR training with motion 

data either diverged or converged to non-physiological values. To obtain physiologically 

consistent parameters, we use the values obtained from literature studies and constrain the space 

of parameter search [44]. 

Let the parameter to be identified be defined as  

 

𝛤𝑙(𝝍) =
1

𝑁
∑𝛾̅𝑟sig(𝜓𝑟)

𝑁

𝑟=1

, 𝝍 = [𝜓1, 𝜓2, … , 𝜓𝑁] 
(41) 

 

where 𝛾̅𝑟 is the value defined in the 𝑟𝑡ℎ literature study and 𝜓𝑟 is the parameter to be optimized in 

the training such that it can be used to evaluate the sigmoid function sig(𝜓𝑟) and 𝝍 is the vector 

of these trainable parameters. Using the optimized 𝝍 , the desired MSK parameters can be 

estimated. This formulation constrains the identified parameters to be consistent with parameters 

obtained through experimental studies [68–70].      
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The proposed framework was then applied to simultaneously learn the MSK forward dynamics 

surrogate and identify the MSK parameters 𝜞 by optimizing Eq. (16), where the residual of the 

governing equation for the current time step 𝑘, is expressed with a slight correction of Eq. (38) 

due to parameter space modification as 

 

 

 𝑟 (𝑞̂𝑘
[−𝑗]

(𝜽𝒒), 𝑞̇̂𝑘
[−𝑗]

(𝜽𝒒), 𝑞̈̂𝑘
[−𝑗]

(𝜽𝒒); 𝜞(𝝍)) 

= 𝐼𝑞̈̂𝑘
[−𝑗]

(𝜽𝒒) − 𝐸 (𝑞̂𝑘
[−𝑗]

(𝜽𝒒)) − 𝑇
𝑀𝑇 (𝑎𝐵𝑖(𝑡𝑘), 𝑎𝑇𝑟𝑖(𝑡𝑘), 𝑞̂𝑘

[−𝑗]
(𝜽𝒒), 𝑞̇̂𝑘

[−𝑗]
(𝜽𝒒); 𝜞(𝝍)).  

 

(42) 

 

This is  introduced into the  residual term 𝐽𝑟𝑒𝑠 in the loss function and the optimization problem 

becomes, 

 𝜽̃, 𝝍̃ = argmin
𝜽,𝝍

(𝐽𝑑𝑎𝑡𝑎(𝜽) + 𝛽𝐽𝑟𝑒𝑠(𝜽,𝝍)). (43) 

As mentioned in the verification example (Section 4), the multi-resolution parameter identification 

is performed starting from the coarsest scale, transferring the learned hyperparameters to the next 

finer scale parameter identification, and finally completing the parameter identification at the full-

scale, i.e., at scale [0]. 

 

5.2 Results 

To accelerate the training process, the training dataset is standardized to have zero mean and unit 

variance. The training was performed with the standardized data, using the Adam algorithm [65] 

with an initial learning rate of 1 × 10−3  and 4 history steps were considered. Five parameter 

initialization seeds were used for an averaged response of the MR training. To quantify the error 

in the testing predictions, a normalized mean squared error (NMSE) was defined, 

 
NMSE =

1

𝑛

∑ (𝑞𝑖 − 𝑞̂𝑖)
2𝑛

𝑖=1

∑ (𝑞𝑖 − 𝑞̅)2
𝑛
𝑖=1

 
(44) 

 

where 𝑞𝑖 is the 𝑖𝑡ℎ target motion data point, 𝑞𝑖̂ is the 𝑖𝑡ℎ predicted motion data point, from the MR 

PI-RNN framework, and 𝑞̅ is the mean of target motion data. The R2 score was calculated using 

the metric defined in Eq. (40). From Fig. 10, Fig. 11 and Table 4, it is clear that addition of training 
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scales leads to improved motion predictions. The multi-resolution training leads to an increase in 

average test R2 score of more than 40% (bringing it closer to one), averaged over the multiple 

initialization seeds. With the addition of more scales, Fig. 10 clearly shows the progression in 

improvement of the predictions as more scales are involved in the training.  

 

 
Fig. 10 Comparison of test predictions post-training for each MR training scale performed. The 

solid dash line is the mean of the predictions post-training when various initialization points are 

utilized to begin the MR training, with shaded region indicating one standard deviation from the 

mean. 

 
Fig. 11 The test normalized mean squared error (NMSE) and test R2 score are plot for the testing 

predictions post-training, averaged over five initialization seeds. The mean of the metric is the 

solid marker line, the shaded portion being one standard deviation from the mean. 
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Table 4: The test metrics such as NMSE and R2 score averaged over five initialization seeds, for 

the various training scales involved are reported here. The % decrease in average NMSE and % 

increase in average R2 w.r.t 1-scale training are shown in the 3rd and 5th columns respectively. 

Training 

Scale 

Avg. Test 

NMSE 

Decrease (%) in Avg. 

Test NMSE w.r.t 1-scale 

Training 

Avg. Test 𝐑𝟐 

Score 

Increase (%) in Avg. 

Test 𝐑𝟐 score w.r.t 1-

Scale training 

1 8.00E-04 - 0.599 - 

2 5.74E-04 28% 0.713 19% 

3 4.14E-04 48% 0.793 32% 

4 2.33E-04 71% 0.884 47% 

 

The identified MSK parameters from the MR PI-RNN training are summarized in Table 5 with 

the mean of the final converged values of 𝑓0
𝑀  and 𝑙0

𝑀  obtained from multiple parameter 

initializations at 4-scale training, consistent with the physiological estimates of these parameters 

reported in literature [68–70]. 𝑙0,𝐵𝑖
𝑀  is slightly outside the estimated range, which could be 

attributed to the variance in population. Similar values were obtained across all scales of training 

hence parameters obtained from a representative 4-scale training are shown here. The results 

demonstrated the effectiveness of the proposed MR PI-RNN framework and promising potential 

for real applications. 

Table 5: The identified parameter estimates using MR PI-RNN training, and their values reported 

in literature [68–70]. 

 

Parameter Identified values Estimates from 

literature 

𝑓0,𝐵𝑖
𝑀  (N) 348.23 ± 0.2 158.4-845 

𝑙0,𝐵𝑖
𝑀  (m) 0.108 ± 0.001 0.115-0.142 

𝑓0,𝑇𝑟𝑖
𝑀  (N) 758.36 ± 0.5 554.4-2332.916 

𝑙0,𝑇𝑟𝑖
𝑀  (m) 0.069 ± 0.001 0.067-0.087 
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6. Discussion and Conclusions 

In this work, we proposed a multi-resolution physics-informed recurrent neural network (MR PI-

RNN) for an application to MSK systems, for time-domain motion prediction and parameter 

identification. A GRU with a physics-informed loss function that minimized the error in the 

training data and the residual of the MSK forward dynamics equilibrium was used for this purpose. 

Wavelet based multi-resolution techniques were used to decompose the input sEMG signals and 

output joint motion data into coarse-scale approximations at different scales and fine-scale details 

at those scales. The sEMG and joint motion multi-scale components were then mapped to each 

other starting from a chosen coarse-scale components and then sequentially trained (via transfer 

learning) to higher scales, completing the training on the full-scale of the data.    

By initializing training on the coarse-scale of the training data, the optimization reaches a local 

minimum that serves as a better initialization state for the training data that includes the sequential 

fine-scale details. The proposed transfer-learning based sequential training scheme can be used for 

learning datasets that have high frequency signals as shown in the verification example with 

synthetic mixed frequency sEMG data. The numerical examples show an improvement in testing 

prediction and identifying the parameters. We observe from the loss profiles that the testing loss 

decreased while the training loss increased as more scales of data were brought in. It was also 

observed that the average test MSE and R2  metrics showed a clear improvement in the 

generalization accuracy. These phenomena can be explained through the theory of bias-variance 

tradeoff; training on various scales of the data introduces more variance to the training, helping 

the ML framework to reduce the bias it develops by just training on the full-scale of the data. 

Computationally, it is noted that the proposed method achieves improved accuracy by using the 

same amount of training epochs. 

The proposed MR framework was validated on recorded sEMG and motion data from a subject [1] 

and significant improvements were observed in the testing prediction accuracy, with 1-scale 

training often leading to large errors. The predicted motion at higher training scales showed 

improvements across all initialization points used, indicating the robustness of the method. The 

identified parameters were also consistent with the physiological range observed in literature.  
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This method also has the advantage of operating in the time-domain as compared to the feature-

encoded (FE) training [1], where the input sEMG signals were projected on to the frequency 

domain using the Fourier basis. In the FE training, to make a prediction, the input signal for the 

entire duration of the movement prediction was needed whereas the physics informed MR training  

of the RNN enables the trained model to make real-time predictions by using the information of 

the previous time-steps and the current sEMG signal. In addition, for mixed frequency signals, 

wavelet resolution can better capture the local frequency information as compared to the Fourier 

basis which captures the global frequency information. As compared to the NN-based time-domain 

training performed at the original scale of the data (scale [0]) proposed in [1], the MR PI-RNN 

training approach described here achieved significant improvements due to the stronger sequence 

learning capability of the RNN and the ability of the MR training.    

This method is presented as a general approach where multi-resolution is applied to both input and 

output. For some applications, e.g., those that require only data mapping, the MR training can be 

applied by only considering the decomposition to the input, keeping the output at the full-scale 

(i.e., scale [0]) throughout, or vice versa. To apply this method to clinical studies, RNN 

hyperparameters may also be tuned to account for subject variability. The dependence of this 

method on the number of data points available in a signal can also be studied in the future. To 

further improve this method, we can consider the use of multi-resolution as activation functions of 

the ML framework, instead of relying on data filtration processes for better computational 

efficiency. This method will also be studied on other physics-informed ML techniques to solve 

forward problems with PDEs having mixed frequency source terms.  
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Nomenclature 

𝑒 Raw sEMG signals captured by sensors 
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𝑢 Neural excitations 

𝑎 Muscle activations 

𝑑 Electro-mechanical delay between origin of neural excitation from central 

nervous system and reaching the muscle group 

𝐴 Shape factor used to relate neural excitation to muscle activation 

𝑓0
𝑀 Maximum isometric force in the muscle 

𝑙0
𝑀 Optimal muscle length corresponding to the maximum isometric force 

𝑣𝑚𝑎𝑥
𝑀  Maximum contraction velocity 

𝑙𝑠
𝑇 Slack length of the tendon 

𝜗 Pennation angle between muscle and tendon  

𝜿 Set of muscle parameters for each muscle group 

𝑙𝑀 Normalized muscle length 

𝑣̃𝑀 Normalized muscle velocity 

𝑙𝑀𝑇 Total length of muscle-tendon complex 

𝑓𝐴 Active force component of hill-type muscle model 

𝑓𝐴,𝐿  Length dependent active force generation component 

𝑓𝑉 Velocity dependent active force generation component 

𝑓𝑃 Passive force component of hill-type muscle model 

𝐹𝑀 Total muscle force 
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𝐹𝑀𝑇  Total force produced by muscle-tendon complex 

𝑇𝑀𝑇 Torque produced by the muscle-tendon complex 

𝑞 Generalized angular motion of the MSK system 

𝒉𝑛 Hidden state after n history steps of the RNN/GRU 

𝑾𝑋𝑌 Weights connecting the variable 𝑿 to variable 𝒀  

𝒃𝑋 Bias for the RNN to calculate variable 𝑿  

𝒓𝑖 Output from the reset gate of the GRU 

𝒖𝑖 Output from the update gate of the GRU 

𝒛𝑖 , 𝒄𝑖 , 𝒄̃𝑖    Intermediate variables in GRU forward pass 

𝒉̃𝑛 Candidate hidden state after n history steps of the GRU 

𝜽 Set of all weights and biases of the RNN/GRU 

𝜙𝑗,𝑘 Scaling function in multi-resolution analysis 

𝜓𝑗,𝑘 Wavelet function in multi-resolution analysis 

𝑉𝑗 ,𝑊𝑗 The nested and complementary subspaces containing 𝜙𝑗,𝑘 and 𝜓𝑗,𝑘 respectively 

𝑃𝑗 , 𝐻𝑗  Projection operators on a function 𝑓 projecting it onto subspaces 𝑉𝑗 and 𝑊𝑗 

respectively. 

𝛤𝑖  𝑖𝑡ℎ parameter characterizing the parameterized ODE system 

𝒙𝑖
[−𝑗]

 Input data at scale [−𝑗] to the MR PI-RNN framework at time-step 𝑖 

𝑫[−𝑗] Input data set projected to scale [−𝑗] 
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𝒒̂𝑖
[−𝑗]

 Predicted angular motion at scale [-j] from the MR PI-RNN framework at 

time-step i 

𝐽 Composite loss function of the PI-PINN minimizing data and ODE residual 

𝑙𝑓𝑎 Forearm length 

𝑙𝑢𝑎 Upper arm length 

𝑚𝑓𝑎 Mass of forearm 
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Appendix A: Muscle-Tendon Force Generation  

The total muscle force 𝐹𝑀 can be expressed as  

 𝐹𝑀(𝑎, 𝑙𝑀, 𝑣̃𝑀; 𝜿) = 𝑓0
𝑀 (𝑓𝐴(𝑎, 𝑙𝑀, 𝑣̃𝑀; 𝜿) + 𝑓𝑃(𝑙𝑀; 𝜿)), (45) 

where 𝑓𝑃(𝑙𝑀) is the passive muscle length dependent force generation function.  The active force 

𝑓𝐴 component can be expressed as: 

 𝑓𝐴(𝑎, 𝑙𝑀, 𝑣̃𝑀; 𝜿) = 𝑎𝑓𝐴,𝐿(𝑙𝑀; 𝜿)𝑓𝑉(𝑣̃𝑀; 𝜿), 

𝑙𝑀 = 𝑙𝑀 𝑙0
𝑀⁄ ,  

𝑣̃𝑀 = 𝑣𝑀 𝑣𝑚𝑎𝑥
𝑀⁄ , 

(46) 

where 𝑎  is the activation function in Eq. (2), 𝑙𝑀  is the normalized muscle length, 𝑣̃𝑀  is the 

normalized velocity of the muscle. The total length of the MT system 𝑙𝑀𝑇 is given by, 
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 𝑙𝑀𝑇 = 𝑙𝑀 cos𝜙 + 𝑙𝑇 . (47) 

Given the current joint angle 𝑞 and the angular velocity 𝑞̇, the current length, 𝑙𝑀𝑇  of the MT 

system can be calculated using trigonometric relations. 

The 𝑓𝐴,𝐿(𝑙𝑀) and 𝑓𝑉(𝑣̃𝑀)   are generic functions of the length and velocity dependent force 

generation properties of the active muscle, represented by dimensionless quantities. In this study, 

the tendon is assumed to be rigid (𝑙𝑇 = 𝑙𝑠
𝑇). The total force produced by the MT complex, 𝐹𝑀𝑇, 

can be expressed as:  

 𝐹𝑀𝑇(𝑎, 𝑙𝑀, 𝑣̃𝑀, 𝜙; 𝜿) = 𝐹𝑀(𝑎, 𝑙𝑀, 𝑣̃𝑀; 𝜿) cos𝜙. (48) 

The rigid-tendon model simplifies the MT contraction dynamics [57,58] which accounts for the 

interaction of the activation, force length, and force velocity properties of the MT complex.  

Appendix B. Hill-Type Muscle Models   

For the length dependent muscle force relations, this work uses the equations given in [55]. The 

active muscle force dependent on variation in length is given as 

 

𝑓𝐴,𝐿(𝑙𝑀) =

{
 

 9(𝑙𝑀 − 0.4)
2
, 𝑙𝑀 ≤ 0.6

1 − 4(1 − 𝑙𝑀)
2
, 0.6 ≤ 𝑙𝑀 ≤ 1.4 

9(𝑙𝑀 − 1.6)
2
, 𝑙𝑀 > 1.4

 

(49) 

 𝑓𝑃(𝑙𝑀)

= {

0, 𝑙𝑀 ≤ 1

𝛾1(exp(𝛾2(𝑙
𝑀 − 1)) − 1), 1 ≤ 𝑙𝑀 ≤ 1.4 

(𝛾1𝛾2 exp(0.4𝛾2))𝑙
𝑀 + 𝛾1((1 − 1.4𝛾2) exp(0.4𝛾2) − 1), 𝑙𝑀 > 1.4

 

(50) 

Where 𝛾1 = 0.075 and 𝛾2 = 6.6 correspond to parameters in the passive muscle force model 

related to an adult human. The muscle force velocity relationship 𝑓𝑉(𝑣̃𝑀) is used directly from 

[66]. 
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Appendix C: Multi-Resolution GRU Formulation 

For multi-resolution GRU, the initial learning starts from the coarsest scale [−𝑗] as follows with 

notations according to Section 3.3.2, 

 

𝒓𝑖
[−𝑗]

= 𝑎𝜎 (𝑾ℎ𝑟
[−𝑗]

𝒉𝑖−1
[−𝑗]

+𝑾𝑥𝑟
[−𝑗]

𝒙𝑖
[−𝑗]

+𝑾𝑞𝑟
[−𝑗]

𝒒𝑖
[−𝑗]

+ 𝒃𝑟
[−𝑗]

)

𝒖𝑖
[−𝑗]

= 𝑎𝜎 (𝑾ℎ𝑢
[−𝑗]

𝒉𝑖−1
[−𝑗]

+𝑾𝑥𝑢
[−𝑗]

𝒙𝑖
[−𝑗]

+𝑾𝑞𝑢
[−𝑗]

𝒒𝑖
[−𝑗]

+ 𝒃𝑢
[−𝑗]

)

𝒉̃𝑖
[−𝑗]

= 𝑎𝑡𝑎𝑛ℎ (𝒓𝑖
[−𝑗]

⊙𝑾
ℎℎ̃

[−𝑗]
𝒉𝑖−1
[−𝑗]

+𝑾
𝑥ℎ̃

[−𝑗]
𝒙𝑖
[−𝑗]

+𝑾
𝑞ℎ̃

[−𝑗]
𝒒𝑖
[−𝑗]

+ 𝒃
ℎ̃

[−𝑗]
)

𝒉𝑖
[−𝑗]

= 𝒖𝑖
[−𝑗]

⊙𝒉𝑖−1
[−𝑗]

+ (𝟏 − 𝒖𝑖
[−𝑗]

) ⊙ 𝒉̃𝑖
[−𝑗]

+ 𝒃ℎ
[−𝑗]

 

∀ 𝑖 = 𝑛 −𝑚,… , 𝑛 − 1, 

(51) 

 
𝒓𝑛
[−𝑗]

= 𝑎𝜎 (𝑾ℎ𝑟
[−𝑗]

𝒉𝑛−1
[−𝑗]

+𝑾𝑥𝑟
[−𝑗]

𝒙𝑛
[−𝑗]

+ 𝒃𝑟
[−𝑗]

)

𝒖𝑛
[−𝑗]

= 𝑎𝜎 (𝑾ℎ𝑢
[−𝑗]

𝒉𝑛−1
[−𝑗]

+𝑾𝑥𝑢
[−𝑗]

𝒙𝑛
[−𝑗]

+ 𝒃𝑢
[−𝑗]

)

𝒉̃𝑛
[−𝑗]

= 𝑎𝑡𝑎𝑛ℎ (𝒓𝑛
[−𝑗]

⊙𝑾
ℎℎ̃

[−𝑗]
𝒉𝑛−1
[−𝑗]

+𝑾
𝑥ℎ̃

[−𝑗]
𝒙𝑛
[−𝑗]

+ 𝒃
ℎ̃

[−𝑗]
)

𝒉𝑛
[−𝑗]

= 𝒖𝑛
[−𝑗]

⊙𝒉𝑛−1
[−𝑗]

+ (𝟏 − 𝒖𝑛
[−𝑗]

)⊙ 𝒉̃𝑛
[−𝑗]

 + 𝒃ℎ
[−𝑗]

 

 (52) 

 𝒒̂𝑛
[−𝑗]

= 𝑾ℎ𝑞̂
[−𝑗]

𝒉𝑛
[−𝑗]

+ 𝒃𝑞
[−𝑗]

 (53) 

where the weights 𝑾ℎ𝑟
[−𝑗]

,𝑾𝑥𝑟
[−𝑗]

,𝑾𝑞𝑟
[−𝑗]

,𝑾ℎ𝑢
[−𝑗]

,𝑾𝑥𝑢
[−𝑗]

,𝑾𝑞𝑢
[−𝑗]

,𝑾
ℎℎ̃

[−𝑗]
,𝑾

𝑥ℎ̃

[−𝑗]
,𝑾

𝑞ℎ̃

[−𝑗]
 and biases 

𝒃𝑟
[−𝑗]

, 𝒃𝑢
[−𝑗]

, 𝒃
ℎ̃

[−𝑗]
, 𝒃ℎ
[−𝑗]

, 𝒃𝑞
[−𝑗]

 are trainable parameters. 

Appendix D: Equation of Motion of the Simplified MSK Model  

The equation of motion for the rigid body system used in Section 4 is, 

 𝐼𝑞̈ = 𝐸(𝑞) + 𝑇𝑀𝑇(𝑎𝐵𝑖, 𝑎𝑇𝑟𝑖 , 𝑞, 𝑞̇; 𝜿𝐵𝑖, 𝜿𝑇𝑟𝑖) 

 

(54) 

where, 

  𝐼 = 𝑚𝑓𝑎𝑙𝑓𝑎
2  

 

(55) 

 𝐸(𝑞) = −𝑚𝑓𝑎𝑔𝑙𝑓𝑎 sin(𝑞) 
 

(56) 
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 𝑇𝑀𝑇(𝑎𝐵𝑖, 𝑎𝑇𝑟𝑖, 𝑞, 𝑞̇; 𝜿𝐵𝑖, 𝜿𝑇𝑟𝑖) = 𝑇𝐵𝑖
𝑀𝑇(𝑎𝐵𝑖, 𝑞, 𝑞̇; 𝜿𝐵𝑖) − 𝑇𝑇𝑟𝑖

𝑀𝑇(𝑎𝑇𝑟𝑖, 𝑞, 𝑞̇; 𝜿𝑇𝑟𝑖) (57) 

 
𝑇𝐵𝑖
𝑀𝑇(𝑎𝐵𝑖, 𝑞, 𝑞̇; 𝜿𝐵𝑖) =

𝐹𝐵𝑖
𝑀𝑇(𝑎𝐵𝑖, 𝑙𝐵𝑖

𝑀 , 𝑣̃𝐵𝑖
𝑀 , 𝑙𝐵𝑖

𝑇 ; 𝜿𝐵𝑖)𝑙2,𝐵𝑖 sin(𝑞) 𝑙1,𝐵𝑖

𝑙𝐵𝑖
𝑀𝑇(𝑞)

 
(58) 

 
𝑇𝑇𝑟𝑖
𝑀𝑇(𝑎𝑇𝑟𝑖, 𝑞, 𝑞̇; 𝜿𝑇𝑟𝑖) =

𝐹𝑇𝑟𝑖
𝑀𝑇(𝑎𝑇𝑟𝑖, 𝑙𝑇𝑟𝑖

𝑀 , 𝑣̃𝑇𝑟𝑖
𝑀 , 𝑙𝑇𝑟𝑖

𝑇 ; 𝜿𝑇𝑟𝑖)𝑙2,𝑇𝑟𝑖 sin(𝑞) 𝑙1,𝑇𝑟𝑖

𝑙𝑇𝑟𝑖
𝑀𝑇(𝑞)

. (59) 

 

 

Appendix E: Study on Out-of-Distribution predictivity of the MR PI-RNN training 

To investigate the performance of the MR training strategy on predictions made on trials that are 

out-of-distribution of the training data, two combinations of training and testing trials from the 

data used in the verification example (Section 4) were studied.  

Table 6: Training and Testing data description for the Out-of-Distribution predictivity study. 

 Training Data Trials Testing Data Trial 

Set A 2, 3, 4, 5 1 

Set B 1, 2, 3, 4 5 

 

The setting of this study is the same as described in Section 4. The MSE and R2 scores after 

applying 1-, 2- and 3-scale MR PI-RNN training are shown in Figs. 12-13. In both tests, the 

prediction accuracy of the testing trial increases with the number of training scales. Such trend is 

more apparent when the sEMG signals contain more high-frequency content (from Case 1 to 3). 

The results demonstrate the effectiveness and the ability for out-of-distribution predictions of the 

proposed approach. 
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Fig. 12  The average test MSE and R2score post MR training for Set A are shown. The shaded 

area indicates one standard deviation from the mean (solid line), in both figures. 

 

Fig. 13 The average test MSE and R2 score post MR training for Set B are shown. The shaded area 

indicates one standard deviation from the mean (solid line), in both figures. 

 




