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Abstract

A large deviation framework for interacting systems far from equilibrium

by

Trevor GrandPre

Doctor of Philosophy in Physics

University of California, Berkeley

Assistant Professor David T. Limmer, Co-chair

Associate Professor Oskar Hallatschek, Co-chair

It has remained a mystery for the past few decades whether there is a non-equilibrium ex-
tension to equilibrium statistical mechanics. Recently, there has been advancements through
dynamical relationships between currents and energy dissipation and correspondingly their
distributions which comes from a framework called large deviation theory. Within this frame-
work, large deviation functions operate in a similar fashion to the free energy in equilibrium
which generates the cumulants for the energy. However, advancements of this theory have
been mainly for non-interacting models that are exactly solvable. During my graduate career,
I have made advancements towards predicting the fluctuations of interacting systems away
from equilibrium. Towards this end, I developed a so-called weighted many body expansion
which when combined with an approximate closure allowed for mean-field predictions for the
distributions of entropy production and mass current in active matter. The same theory also
allowed me to quantify density fluctuations and identify the type of phase transition that
occurs in interacting active matter and in a model of 2 dimensional membrane-bound pro-
tein condensation. Akin to equilibrium distributions, by quantifying how the large deviation
functions scale with system size gives information about the interface. I feel confident that
my body of work has progressed the field and has provided a new perspective on a decades
old problem.
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atures of T/ĒB = 0.18(blue), 0.15(red), and 0.14(yellow) and their corresponding
dense phase densities of ⇢�2 = 0.27, 0.32, and 0.36. b) The distribution of relative
angles between two bonds of a LAT molecule at the same phase points as b) with
an average at 1.2 radians (68 degrees). . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Simulation results of LAT model. a) The largest cluster size (purple solid line)
with error bars from 11 independent runs and average bonds (black dashed line)
as a function of time plotted on the log-log scale, with the fitted slope close to 1/3
for the largest cluster size versus time curve. b) The mean squared displacement
as a function of time showing caging e↵ects that become more distinct with
decreasing temperature for T/ĒB = 0.18 (blue), 0.16 (red), and 0.14 (yellow). c)
The distributions of persistence times (dashed line), the time to move a distance
�, and exchange times (solid line), the time to move another distance � given that
a LAT molecule has already moved a distance �, for the same three temperatures
in b). The lack of overlap between the two distributions shows that there is
dynamic heterogeneity. d) The time evolution of aggregation as plotted in a)
going from right to left panels show configurations for the start, early, middle,
and last times of the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



viii

List of Tables



ix

Acknowledgments

My Wife, thank you for all of your love and support these past few years. We came to
California together to pursue our dreams. I have learned from you to not only use logic in
overcoming problems but to equally balance that with emotion. Without both, our humanity
can be lost. Thank you for your patience and helping me be whole.

Mom and Dad, I will forever and always be your miracle baby. Thank you for giving me
plentiful opportunity and knowledge to succeed. You all taught me discipline and foresight
among other things. It is no doubt that that training has equipped me to tackle any obstacle
I may face. You also made it possible for me to have such an expansive worldview. I am
grateful to have had the opportunity to travel the world as a child even sometimes at the
expense of school.

David, thank you for choosing me to be a part of your group. It has been an honor to
learn so much and to arrive at a time when we could learn new theory together. It is rare
to find someone as nurturing and caring as you in a boss. You truly cared about my success
as much as yours. I could not have asked for a better adviser who taught me many things
about science and research that would be di�cult to learn on my own. I learned the delicate
balance in academia between lingering on interesting problems to flush out subtleties and
producing good work e�ciently. The qualities that I have developed under your mentorship
will certainly help me in the future.

Lastly, I would like to thank my wonderful colleagues and mentors that I have had along
the way. Thank you Ahmad Omar, Katie Klymko, Kranthi Mandadapu, Summer Sun, Jay
Groves, Johannes Blaschke, Ethan Levien, Ariel Amir, Phillip Geissler, and Lewis Pan.



1

Chapter 1

Introduction

1.1 Beyond equilibrium

Many biophysical systems are out of equilibrium and require a constant supply of energy
to function. For instance, E. Coli is an example of active matter, systems that consume
energy at the level of individual particles, which uses ATP hydrolysis to measure chemical
concentration gradients, giving rise to directed motion and in some cases motility induced
phase separation (MIPS) [1, 2]. Another set of non-equilibrium systems are those that
have glassy dynamics and are slowly decaying to equilibrium but with prohibitively long
relaxation times to reach the steady state. In the biophysical context, a membrane bound
protein called Linker for Activation of T-Cells (LAT) enhances its signal transduction by
phase separating into a dense and dilute phase [3, 4, 5]. In both sets of problems, fluctuations
are essential in gaining mechanistic understanding. In active matter, it is known that MIPS
arises from a dynamical instability where a large local density fluctuation can induce phase
separation [6]. In the cell, stochastic fluctuations drastically impact the cellular function
of proteins and genes and there is an increasing amount of examples showing that noise
enhances functionality. Such is the case for signalling networks where it has been shown
that noise improves coordination of downstream target genes and impacts the signalling
network capacity [7]. It is a wonder how cells create collective order and develop into
multicellular organisms from inherently noisy microscopic dynamics. A key component of
vertebrate animal development is the LAT protein mentioned above which is essential for
T-Cell receptor activation which initiates numerous signaling cascades that determine cell
fate. In my thesis, I will discuss a theory that encompasses both of these vastly di↵erent
types of non-equilibrium systems and the progress I have made in understanding them.

The ultimate goal is to develop a framework that provides predictive power similar to
what we currently have for equilibrium systems. In equilibrium, the free energy contains all of
the information you can possibly know about the system. For instance, the second derivative
of the free energy gives us di↵usion constants and the barrier provides rate constants. Out of
equilibrium, the framework called large deviation theory provides a natural extension of the
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free energy as well as a method to calculate rare fluctuations of relevant observables [8]. In
fact, an equilibrium free energy is a large deviation function where the extensive parameter
is the number of particles. Large deviation theory has provided the tools to understand
critical phenomena in complex dynamical systems that are far from equilibrium. It has also
provided a unique way to derive real forces needed to access rare fluctuations which give
access to important dynamical phases in non-equilibrium systems.

Origin of fluctuations

In theory, all of the motion is contained in Newton’s laws of motion but it requires every force
acting on an object to be accounted for. With this equation, the trajectory of the system
is completely determined by the initial conditions of the system. However, in practice, it is
di�cult to enumerate all the forces and in many cases all the forces are not even known.

From the intuition of classical mechanics, immersing a small object in a solvent would
displace some of the solvent but then it would come to rest. However, in experiments it was
discovered that such systems did not come to rest but continued to move in motion that
looked like jiggling. It was later found that this jiggling came from collisions with solvent
molecules with the immersed object. In principle, by keeping track of all of these collisions on
the object, the equation of motion would be deterministic. This turns out to be a formidable
task because of the enormous amount of molecules acting on an immersed body being on
the scale of Avogadro’s number with 1023 solvent molecules.

Instead of trying to account for all the forces and collisions exactly, the jiggling motion
is modelled as noise which leads to a zero displacement on average but with some distance
travelled about a fixed point given by the square root of two times a di↵usion constant.
Microscopically, the mix between deterministic forces and noise terms is given by a stochastic
di↵erential equation where in the overdamped case is given by

dx

dt
= F (x, t) + B(x, t)⇣(t) , (1.1)

where B is the square root of the di↵usivity, and F (x, t) is the drift term composed of a force
times a dissipative coe�cient µ(x) (often called the mobility), potentially with an additional
function f(x, t) with units of velocity, F (x, t) = �µ(x)@H

@x
+ f(x, t), where the first term is

the mobility times the spatial derivative of the system hamiltonian. The noise and the force
are related by the Stokes-Einstein relation

D(x) =
B2(x)

2
= kBTµ(x) . (1.2)

This relation is also called the Fluctuation Dissipation Theorem and tells us that the amount
of jiggling of an object is linearly proportional to the temperature of the solvent. The
statistics of the noise are that it is zero on average,

h⇣(t)i = 0 , (1.3)
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and that the variance is delta correlated in time,

h⇣(t)⇣(t0)i = �(t� t0). (1.4)

Hence, we see that this equation assumes that dynamic correlations occur instantaneously
which is impossible for real systems and is an idealization. However, from the statistics of
the noise, one cannot simply write the statistics of x(t). To understand why, we write the
equation of motion in Eq. 1.1 in a di↵erent form. This noisy process is also called a Wiener
process written as

dx = F (x, t)dt+B(x, t)dW (t) , (1.5)

with
dW (t) = ⇣(t)dt , (1.6)

This equation does not tell us whether we should use in B(x) the value of x before the
jump, or at some other instance of time. Hence, this equation is only useful when we have
instructions on how to evaluate the noise. We can integrate over the Wiener process and
represent the integral as a Riemann-Stieltjes sum,

Z
t

0

B[x(s), s]dW (s)
↵
= lim

n!1

nX

i=0

B(x̄(ti), ti)[W (ti+1)�W (ti)] , (1.7)

where
x̄(ti) = ↵x(ti+1) + (1� ↵)x(ti) = x(ti) + ↵(x(ti+1)� x(ti)) . (1.8)

Now we see that there are many choices of discretizations that can be chosen with a choice of
↵ being any number from 0 to 1. The Ito interpretation (↵ = 0) is that x in B(x) should be
taken right before the jump and is non-anticipating. Stratonovich (↵ = 1/2) assumes that
it should be taken halfway between its values before and after the jump. A third choice is
to pick the ”isothermal” convention (↵ = 1) which is also referred to as the backwards Ito,
because it takes the position at the end of the time step [9]. These are just three possible
choices and in fact, a Langevin equation does not have meaning without an integration
rule [10].

Not only that, which choice we make for ↵ determines not only the equation of motion but
also almost every property associated with that equation of motion such as the steady state
distributions and the statistics of dynamical observables. These subtleties are not specific
to out of equilibrium systems.

Fokker-Planck equation

An equivalent form of the dynamics is given by the time evolution of the probability distri-
bution for the random variable, x, with time written as

@P (x, t)

@t
↵
= �@(F (x, t)P (x, t))

@x
� @(↵B0(x, t)B(x, t)P (x, t))

@x
+

1

2

@2(B(x, t)2P (x, t))

@x2
, (1.9)
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where D = B2/2 is the di↵usivity. The drift term F (x) is interpreted in the Ito sense and
the second term in Eq. 1.9 comes from expanding B(x̄, t) around B(x, t) (see Appendix
Eq. A.1).

This shows that the discretization you choose will determine the drift that enters into
the Fokker-Planck equation. These two terms represent the general ↵ drift with reference
to the Ito interpretation. This is clear from the fact that we expanded the B(x̄, t) around x
(see Appendix A.1). In general, we can represent the drift terms in Eq. 1.9 with a general
F↵,↵̄(x, t) drift that denotes the drift in one ↵ discretization to another ↵̄. In Eq. 1.9, the
drift in the first two terms can be written in the F↵,↵̄(x, t) form with ↵̄ = 0 as

F↵,0 = F (x, t) + ↵B(x, t)
dB(x, t)

dx
, (1.10)

and more generally we can write

F↵,↵̄(x, t) = F (x, t) + (↵� ↵̄)B(x, t)
dB(x, t)

dx
. (1.11)

From this we see that the SDE in Eq. 1.1 can be written as

dx

dt
↵
= F↵,↵̄(x, t) + B(x, t)⇣(t) . (1.12)

An alternate derivation utilizes the Kramers-Moyal Expansion, which is an expansion of
the moments of the transition probability. A general expansion for the response is given
by [11, 12]

@P (x, t)

@t
↵
=

1X

n=1

(�1)n

n!

@n

@xn
[n(x)P (x, t)] , (1.13)

where the n are the cumulants of the Langevin equation given (in ↵ form) by

n(x)
↵
= h|xt+dt � xt|ni

↵
=

Z
dxt+dt|xt+dt � xt|nP (xt+dt|xt) . (1.14)

We can see now why the cumulants depend on ↵ since we have to discretize the equation
of motion. If we use the same drift as in (1.10), we see that we will obtain the same result
as the previous section by going up to order n = 2 in this expansion (1.13). The first two
cumulants are

1(x) = F (x, t)�t+ ↵B(x, t)
dB(x, t)

dx
�t , (1.15)

2(x) = B2�t = 2D . (1.16)

Note that B(x, t) does not go away after averaging over the noise, ⇣t. Thus there is a
stochastic contribution from the cumulants that depend on ↵. For an equilibrium system
this should not be the case. We will come back to this point in the next section on maintaining
the Boltzmann distribution. For now, we note that (1.9) can be rewritten as

@P

@t
↵
=

@

@x


�F (x, t) + (1� ↵)B0(x, t)B(x, t) +

1

2
B2(x, t)

@

@x

�
P (x, t) . (1.17)
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Discretization determines the steady state distribution even in
equilibrium

In Lau and Lubensky [13], they discuss the form of a drift term required for the particular
noise interpretation used (↵ convention) in order to recover the Boltzmann distribution. If
we again consider a stochastic di↵erential equation of the form (1.5), and assume that F (x)
has a particular form:

F (x) = �µ(x)
@H
@x

+ f(x) , (1.18)

where µ(x) is the friction coe�cient, H is the Hamiltonian, and f(x) is left unspecified for
now. The goal is to determine the correct form for f(x) to obtain the correct equilibrium
distribution P (x, t), i.e. that the steady state distribution is

P (x, t) ⇠ e�H/kBT . (1.19)

This can be achieved by deriving the Fokker-Planck equation, as described above and written
in (1.17). Lau and Lubensky show that the equilibrium distribution is guaranteed at long
times by using the Stokes-Einstein relation of

B2(x) = 2kBTµ(x) , (1.20)

and
f(x) = (1� ↵)B0(x, t)B(x, t) = (1� ↵)kBTµ

0(x) . (1.21)

This drift term (1.21) must be included in (1.18) in order to reach the Boltzmann distribution
since the equilibrium distribution should not depend on the discretization we choose for the
dynamics. Note that if we want f(x) = 0 we need to use the backwards Ito process (↵ = 1).
These details are exacerbated out of equilibrium because it is not even known what the
underlying steady state distribution will be let alone how to choose a discretization to obtain
it.

Many body systems

For an interacting system, the force in Eq. 1.18 would in principle depend on all the particles
in the system,

Fi(r
N) = �µ(ri)

@H(rN)

@ri
+ f(ri) . (1.22)

The Fokker-Planck equation then involves a sum over all the particles in the system,

@P (rN , t)

@t
=

NX

i=1

�ri ·
�
Fi(r

N)�Dri

�
P (rN , t) , (1.23)
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where we have made the substitution of D = B2/2. It is, however, possible to turn the many
body Fokker-Planck equation into an e↵ective single particle one by defining a single and
two particle reduced density as

P (1)(r, t) =
N !

(N � 1)!

Z Z
dr2dr3 . . . drN P̂ (rN , t) (1.24)

and

P (2)(r, r0, t) =
N !

(N � 2)!

Z Z
dr3dr4 . . . drN P̂ (rN , t) . (1.25)

Using Eqs. 1.24 and 1.25 and inserting them into the Fokker-Planck equation in Eq. 1.23,
we get

@P (1)(r, t)

@t
= �r ·

�
F̄ (r)�Dtr

�
P (1)(r, t) , (1.26)

where

F̄ (r, t) =

Z
dr0F (r, r0)P (2)(r, r0, t). (1.27)

However, we see that this e↵ective single particle equation depends on the two particle
density and the two particle density will end up depending on the three particle density, etc.
Hence, we see that all of the information of the many body equation is still contained in the
hierarchical equations of motion and an approximate closure must be made by defining a
radial distribution function (RDF) as

g(r, r0, t) =
P̂ (2)(r, r0, t)

P̂ (1)(r, t)P̂ (1)(r0, t)
. (1.28)

When the system is homogeneous we can assume it doesn’t depend on time and can instead
use the relative distance, r = |r�r0|. This is an object that can be measured experimentally,
measured from simulations, or approximated analytically. This concept of the many body
expansion and the approximate closure will be useful in chapter 2.

1.2 Discrete state systems

Many problems are more amenable to a system with discrete states instead of continuous
space. This is the case for chemical reactions where there is a finite amount of reactants
and products. These systems avoid many of the subtleties of continuous space systems and
the di↵erent interpretations possible. In the last section, I described the ways to define the
dynamics of a system in continuous space. However, for systems in discrete space there are
similar ways to write down the dynamics. This will be useful to know for chapter 5 where
we build a reaction-di↵usion model to understand phase transitions in the cell.
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Consider a finite number of configurations, ⌦. The probability that the system changes
from configuration x to y, with y not equal to x, within a time [t, t + �t], given that the
system was in configuration x at time t is

P�t(y|x, t) = kt(x, y)�t+ o(�t). (1.29)

The transition rates are denoted by kt(x, y), which are greater than or equal to zero. It is
convention to have kt(x, x) = 0. The probability to make more than one jump in �t is of
order o(�t). The probability that the system does not perform a jump within [t, t+�t] is

P�t(x|x, t) = 1� �t(x)�t+ o(�t) (1.30)

with the escape rate defined as

�t(x) =
X

x 6=y

kt(x, y). (1.31)

Given that the probability that the system is in state x at time t is pt(x), for all x, then the
probability that the system is in another x at time t+�t is

pt+�t(x) = pt(x) [1� �t(x)�t+ o(�t)] +
X

y 6=x

pt(y) [kt(y, x)�t+ o(�t)] . (1.32)

There are two contributions. the first term describes the probability that the system was
in state x at time t and stayed there over the the time interval. The second term is the
probability that it was in any state and jumped to x. This equation can be manipulated to
give the master equation as

dpt(x)

dt
= lim

�t!0

pt+�t(x)� pt(x)

�t
=
X

y 6=x

[pt(y)kt(y, x)� pt(x)kt(x, y)] . (1.33)

This is a deterministic equation all of the noise is contained in the probability distributions
pt(x).

Global detailed Balance

When the rates of the markov process are independent of time, kt(y, x) = k(y, x), it is called
time-homogeneous. Given that there exists a distribution ⇡(x), which is unique, then all of
the distributions pt(x) converge in the long time limit to be

lim
t!1

pt(x) = ⇡(x). (1.34)

This would solve the master equation and

j⇡(x, y) = ⇡(x)k(x, y)� ⇡(y)k(y, x). (1.35)
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In equilibrium j⇡ = 0, and detailed balance is obtained for every transition

⇡(x)k(x, y) = ⇡(y)k(y, x). (1.36)

When every node of a reaction network obeys detailed balance this is called global detailed
balance which is also an equilibrium system. It means that when we start from detailed
balance to develop an algorithm we will only sample equilibrium configurations. Rearranging
Eq. 1.36, we get that the transition between two states is given by the exponential of � times
the di↵erence in energies between two states,

k(x, y)

k(y, x)
=
⇡(y)

⇡(x)
= e�(E(x)�E(y)). (1.37)

1.3 Dynamical observables and averages

Types of observables

The observables we are concerned with are functions of trajectories. A large class of these
can be represented as (in general ↵ form)

At

↵
=

1

t

Z
t

0

g(xt)dt+
1

t

Z
t

0

h[x(s)]dx(s) (1.38)

where Z
t

0

h[x(s)]dx(s)
↵
= lim

n!1

nX

i=0

h(x̄(ti))[x(ti+1)� x(ti)]. (1.39)

The first term in Eq. 1.38 is a time-integrated density-like observable because it only depends
on the phase space variables at one instance in time. However, the second term in Eq. 1.38
is a current-type observable because it depends on the phase space variables at two instances
of time or transitions between them. In Eq. 1.39, it shows that the choice of integration will
determine how the second term of 1.38 is interpreted.

One observable is the current which is the net displacement of a quantity such as mass,
charge, or heat over some observation time. In terms of the original equation of motion in
Eq. 1.1, the empirical mass current is

Jt(xt)
↵
=

1

t

Z
t

0

�(xt � x)dx. (1.40)

We see that this observable is similar to the second term in Eq. 1.38. Another observable
considered in my research is the empirical density defined as

⇢t(xt) =
1

t

Z
�(xt � x)dt. (1.41)
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In the stationary state this will converge to the reduced single particle density given that it
obeys the Ergodic theorem as

µt(x) = lim
t!1

⇢t(xt). (1.42)

In discrete space the mass current is written as

jt(y, z) =

Z
t

0

dt �x(t�),y�x(t+),z � �x(t�),z�x(t+),y, (1.43)

where the x(t±) denotes the state before and after a jump.

Hydrodynamic observables

Aside from the microscopic observables described above, we can also equivalently define them
in terms of a fluctuating density and current. We can define the general observable in terms
of the empirical current and density as

1

t

Z
t

0

f(xt)dt
↵
=

1

t

Z
t

0

f(xt)dt

Z
�(y � xt)dy

↵
=

Z
dyh(y)⇢t(y). (1.44)

The second term of the observable can be rewritten as

1

t

Z
t

0

h(xt)dxt

↵
=

1

t

Z
t

0

h(y)dy

Z
t

0

�(y � xt)dy
↵
=

Z
t

0

h(y)Jt(y)dy. (1.45)

Hence, the general observable is equivalently written as

At(⇢t, Jt)
↵
=

Z
dyh(y)⇢t(y) +

Z
t

0

h(y)Jt(y)dy (1.46)

This is the general hydrodynamic observable as a function of the density and current. The
probability of observing both the empirical current and density is given by the level 2.5
rate function [14, 15]. This will be useful in chapter 4 when we study a fluctuating density
framework for entropy production. As mentioned above, these observables are functions of
the trajectory so in the next section I introduce the trajectory ensemble.

The trajectory ensemble

A trajectory is one of the many realizations of a stochastic process or path. It is defined as
starting at x(0) and ending at x(T ) at a time T as

� = {x(t)}0
T

(1.47)

The probability of taking a trajectory, �, given the initial condition x(0) is

dPx(0)(�). (1.48)
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Then the average observable is given by

hf(�)ix(0) =
Z

dPx(0)(�)f(�), (1.49)

where the integral is over all possible trajectories that start at x(0) at time zero. This can
be generalized by considering that there is a distribution of initial configurations that can
be chosen. Namely, the probability of taking a trajectory from any starting point from the
distribution ⇢ss(x(0)) is

dP⇢ss(x(0))(�) = ⇢ss(x(0))dPx(0)(�), (1.50)

and the average observable over all initial configurations is

hf(�)i⇢ss(x(0)) =
Z

dP⇢ss(x(0))(�)f(�). (1.51)

Now the integration is over all trajectories, not just those that start at a specific x0. We can
also split up the trajectory to calculate averages over parts of the trajectories. For instance
we define a trajectory that starts at time zero and ends at s which is a time smaller than T
as

�1 = {xt}0s (1.52)

and another trajectory that starts at time s and ends at time T as

� = {xt}sT . (1.53)

With this same logic, we can also generate trajectories starting from a configuration that
is not from the steady state. Hence, even if a system would normally be in equilibrium,
non-equilibrium dynamics occur until the system reaches the steady state. In the case of
glasses, it takes a prohibitively long time to reach the steady state. This is elaborated on in
chapter 5. For a Markov chain, a trajectory is determined by successive configurations as

� = [x(0), .., x(t)] . (1.54)

The probability of a trajectory in this case given you start at x(0) is

Px0(�) = ⇢ss(x(0))
T�1Y

t=0

p(x(t) ! x(t+ 1)) , (1.55)

where p(x(t) ! x(t+ 1)) is the transition probability of starting at postion x(t) at time t
and in one time step being at position x(t+ 1) at time t+ 1.

Now that we have defined what a trajectory and a trajectory ensemble is, another question
is how to generate it. This can be done by running many realizations of the dynamics in Eq.
1.1, or by the path action.
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Path integral formulation: Onsager-Machlup with general
discretization

The choice of ↵ is equally important in defining a path probability or trajectories generated
by Eq. 1.1. We write the SDE in the Langevin form as the following:

xt+dt � xt

dt
↵
= F (x̄t) + B(x̄t)⇣t , (1.56)

with
x̄t = ↵xt+dt + (1� ↵)xt = xt + ↵(xt+dt � xt) . (1.57)

Without loss of generality, let’s consider the probability of starting from x(0) at t = 0 and
ending up at x(dt) after one time step. The transition probability is written as

P (xdt|x0) =

Z
d⇣0�(xdt �X1(x0, ⇣0))P (⇣0) . (1.58)

where X1(x0, ⇣0) is a realization of xdt after one time-step starting from t=0, and

P (⇣0) = e
⇣20dt

4D (1.59)

By using identities for the delta-function, doing a Gaussian integral, and taking the contin-
uous time limit (see Appendix A.2), we get the path integral to be [16]

P (xt|x0)
↵
= J [x(t)] exp(�S[x(t)]) , (1.60)

with

J [x(t)]
↵
=
Y

t

✓
1

2⇡dt

◆1/2 1

|B(x̄t)|
, (1.61)

and

S[x(t)]
↵
=

Z
dt

 
1

2


ẋt � F (xt) + ↵B(xt)B0(xt)

B(xt)

�2
+ ↵F 0(xt)

!
. (1.62)

There are a couple other ways to write down the path action by introducing auxiliary vari-
ables. These other ways are noted in Appendix A.2 but all forms will in principle generate
the same paths.

Path integral for discrete state systems

The path probability for a sequence of hops can be written as

P [x(t)] = ⇢ss(x(0))
Y

k=0

k(xk, xk+1)e
��t(xk)(tk+1�tk) (1.63)
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where k(xk+1, xk) are elements of the rate matrix and �t(xi) is the sum of all rates exiting
site i. The time-reversed path probability can be written as

P [x̃(t)] = ⇢ss(x(t))
Y

k=0

k(xk, xk+1)e
��t(xk1

)(tk�tk+1) (1.64)

Taking the ratio, we get that the entropy production to be

⌦[x(t)] = ln
⇢ss(x(0))

⇢ss(x(t))
+
X

k

ln
k(xk, xk+1)

k(xk, xk+1)
. (1.65)

The first term is a boundary term and does not grow with time. However, The second term
grows with time and so it is the entropy production defined as

w[x(t)] =
X

k

ln
k(xk, xk+1)

k(xk, xk+1)
(1.66)

Local detailed balance

However, the principle of detailed balance can also be used for non-equilibrium dynamics
where instead of every node on a reaction network obeying detailed balance, we have a pair
of nodes in detailed balance without respect to the rest of the network. This is called local
detailed balance and is a concept in stochastic thermodynamics [17, 18]. The local detailed
balance relates the ratio of rates to the total entropy change of the system as

k(x, y)

k(y, x)
= e�(s(x,y)), (1.67)

where s(x, y) is the total entropy change from the transition.
Although the concept of detailed balance was shown for the discrete state system, the

same concept can be shown in the continuous space case. When detailed balance is broken
at the microscopic level, there will be entropy production. This will be elaborated on in
chapter 4.

1.4 Large deviation theory

The mathematical theory of large deviations is concerned with the exponential decay of
the probability of extreme events while the number of observations grows [19]. The theory
encompasses equilibrium-like observables of steady state properties but the theory also has
the the ability to describe dynamical properties [20].
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Large deviation principle and level-1 rate functions

We assume that the observable obeys the large deviation principle (LDP) given by

P (At = a) = lim
t!1

exp(�tI(a) + o(t)) (1.68)

which defines the level one rate function as

I(a) = lim
t!1

t�1 ln[P (At = a)] (1.69)

If the limit exists, then the observable is said to obey a LDP. In general, t�1 is the speed at
which fluctuations decay. This could be in size or in time or both. Given that you are in
the long time limit all distributions should collapse on to this same curve. LDT works when
this is valid. However, sometimes the breaking of the LDP gives information given the LDP
held at one point in a similar way that the breaking of the free energy with finite size scaling
means that there is a phase transition. The LDP could break down due to non-ergodicity
or from non-markovian e↵ects.

In practice the rate function is hard to calculate exactly so we usually calculate the
cumulant generating function first and use that to calculate the rate function.

1.5 Cumulant generating function

The cumulant generating function is one of the starting points to large deviation theory. It
is defined as the Laplace transform of the path action and is based on the Gärtner-Ellis
Theorem. Suppose that the scaled cumulant generating function of a random variable At

defined as

 (�) = lim
t!1

1

t
log et�At (1.70)

is di↵erentiable everywhere. Then AT satisfies an LDP with rate function

I(a) = max
�2R

(�a�  (�)) . (1.71)

This theorem also ensures that the Legendre-Fenchel transform is self inverse for the time
intensive observable At. This also means that the Legendre-Fenchel transform can be done
in reverse to get the CGF from the rate function. It is possible that if the Gartner-Ellis
theorem does not rigorously hold for all � that the theorem is applicable where the CGF is
di↵erentiable. However, complete information is only transferred between the two ensembles
when the rate function is convex.

1.6 Derivation of the tilted markov generator

The tilted markov generator takes the form of [21, 22, 23]
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L = L0 + a(x)·r+ b(x), (1.72)

where

L0 = (F + ↵rD) ·r+rDr (1.73)

This generator corresponds to a process that adds a force, a(x), and shrinks and expands the
phase space with b(x). Course-graining the dynamics in the Ito convention for the jacobian
and using the Feynman Kac formula for b(x), we get

Pab (�) = exp[

Z
T

0

dt0
�|dx

dt
� F (x)� a(x)|2

4D
+ b(x)]. (1.74)

The original dynamics have the path probability of

P (�) = exp[

Z
T

0

dt0
�|dx

dt
� F (x)|2

4D
]. (1.75)

By taking the the ratio of the two, we see the extra contribution to the path probability is

P (�)

Pab (�)
= exp[RT (x)], (1.76)

where

RT (x) =

Z
T

0

a(xT ) · dxt

2D
+

Z
T

0

(b� a(x)·(F + a(x)/2)

2D
)dt0. (1.77)

We can use the relationship to convert the observable from Ito to a general alpha discretiza-
tion as

Z
t

0

a(xt)dxt

↵
=

Z
t

0

a(x)dxt + 2D↵

Z
t

0

r · a(x)dt, (1.78)

and turn Eq. 1.77 into

RT (x)
↵
=

Z
T

0

a(xt)dxt

2D
+

Z
T

0

(b� a(x)·(F + a(x)/2)

2D
� ↵(r·a))dt0. (1.79)

Using the fact that
RT (x)

↵
= �TAT , (1.80)

the forms of a and b can be solved for then put back into Eq. 1.72 and gives the tilted
generator to be [24]

L� = F · (r+ �h(x)) +D (r+ �h(x))2 + �g(x) + 2D

✓
↵� 1

2

◆
�rh(x). (1.81)

There are a few limiting cases to consider as they will be done in my work. Notice, that if
h(x) = h, meaning that it does not depend on position, the last term vanishes. In the first
section of my thesis this is the case with the mass current. The last term can also vanish if
the Stratonovich convention is chosen.
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Generalized Doob transform

The dynamics conditioned on a value of the observable can be done by a control force. In
principle, this force is the exact force that generates the trajectories in the actual system
but are extremely rare to see in the unbiased system. The left eigenvector corresponding to
the largest eigenvalue can be used to generate the control force by

F�(x) = 2D (�h(x) +r log ⌫(x)) . (1.82)

When this force is added to the original dynamics, the rare statistics of the observable is
obtained [8].
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Chapter 2

Current statistics in active matter

Introduction

This chapter is based largely on one of my papers [25].
Persistent currents are the hallmark of a system driven away from equilibrium. One of

the simplest and most fundamental problems of nonequilibrium physics is to predict the
structure of the fluctuations of currents around a nonequilibrium steady-state and to decode
the microscopic information contained in them. Non-equilibrium fluctuation-dissipation re-
lations [26, 27, 28, 29, 30, 31, 32], fluctuation theorems [33, 34, 35, 36, 37, 38, 22], and
thermodynamic uncertainty relations [39, 40, 41, 42] are notable examples of successes to-
wards this end. Much of this progress has been underpinned by the study of large deviation
functions (LDFs), which supplies a general framework to compute and characterize fluc-
tuations of extensive observables [43, 22]. The LDF of the current can be viewed as the
analog of a free energy, making relationships between fluctuations and response to external
perturbations transparent [44, 45, 46, 47]. However, the evaluation of LDFs for interacting
systems remains challenging. In this chapter, we characterize the fluctuations of currents in
a system of interacting active Brownian particles (ABPs) and show how these fluctuations
encode the response of the system.

ABPs are a simple model of active matter, a class of systems that convert energy from the
environment into directed motion. ABPs evolve nonequilibrium steady states as they break
detailed balance at the single particle level due to a constant nonconservative driving force.
More than just being non-Boltzmann, their steady-states support unique phenomena such as
motility induced phase separation [48, 49]. Laboratory realizations of ABPs include cellular
biopolymers [50, 51, 52], bacteria [53, 54, 55, 56, 57, 58, 59], and synthetic colloids [60, 61, 62,
63, 64]. We derive the current LDFs for ABPs and validate it with molecular simulation. We
find that small current fluctuations are Gaussian, and the associated linear response obeys
Fick’s law, as has been shown for noninteracting ABPs [65]. Large current fluctuations are
non-Gaussian and the associated nonlinear response results from a change in the particle’s
orientational correlations, which we characterize with the e↵ective potential that renders
those fluctuations typical.
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2.1 Fluctuation Dissipation Theorem and di↵usion

The botanist Robert Brown discovered what we now call Brownian motion in 1827 by watch-
ing pollen suspended in water jiggling under a microscope. The first theoretical work was
given by Einstein who explained this irregular motion by the Fluctuation Dissipation Theo-
rem in 1905 and by Smoluchowski in 1906. Langevin followed up on this work in 1908 which
introduced noise terms into Newton’s second law.

The idea of Brownian motion from a microscopic perspective is that tiny solvent molecules
are hitting the object immersed in the solvent. All of these collisions gives rise to random
motion. Of course, if we could track all the particles around the immersed object the motion
would not be random but would follow Newton’s second law. This jiggling motion in the
overdamped case can be written in terms of the mean squared displacement of the equation
of motion in Eq. 1.5 with no forces,

(x(t)� x(0))2 = 2Dtt, (2.1)

with the Fluctuation Dissipation Theorem relating the di↵usion constant to the parameters
of the solvent as

Dt = kBTµ, (2.2)

where kB is Boltzmann’s constant, T is the temperature, and µ is the mobility. When
interparticle forces are included in the microscopic equations of motion, the self-di↵usion
defined in Eq. 2.1 becomes dependent on the local density and linearly decreases with
increases density [25].

However, one must question whether or not the Fluctuation Dissipation Theorem still
holds for nonequilibrium systems such as active matter. In the next section, I define a
fundamental variable called the mass current and quantify the fluctuations of this variable
which are related to the di↵usion coe�cient and higher order transport coe�cients.

2.2 Mass current in interacting active matter

The equations of motion for active matter considered is of the form of Eq. 1.1. The dynamics
of the ith particle is

ṙi = v bi + µFi

�
rN
�
+
p

2Dt⌘i , (2.3)

with a non-conservative force vb, which is driven by a constant energy supply and has the
statistics of bi = {cos(✓i)x̂i, sin(✓i)ŷi}, where x̂i and ŷi are the unit vectors in the x and y
directions, respectively. The dynamics of ✓i are Brownian,

✓̇i(t) = ⌘✓
i
(t) , (2.4)
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where ⌘✓
i
is a Gaussian white noise, satisfying h⌘✓

i
(t)i = 0 and h⌘✓

i
(t)⌘✓

j
(t0)i = 2Dr�ij�(t� t0)

with Dr the rotational di↵usion constant. The interparticle forces are conservative, F (rN) =
�rU(rN), and in general depend on all N particles’ positions, rN . The form of the
potential in this section is taken to be the a WCA interparticle potential [66], U(r) =

4✏
h�

�

r

�12 �
�
�

r

�6i
+ ✏ for r  21/6� and zero otherwise.

We can generate an ensemble of trajectories of the system from the previous equation
as described in Eq. 1.47 with dynamical observables being functions of these trajectories as
shown in Eq. 1.38. For instance, a fundamental observable that tells us about transport
is the mass current which is the particle’s displacement over a period of time. It could be
linked to transport via the di↵usion constant and higher order transport coe�cients which
tells us about the phase behavior through the mass continuity equation.

The mass current can be written in terms of the generalized observable in Eq. 1.38 for
particle i as

JJJ i =
1

t

Z
t

0

dt0 ṙi(t
0) =

ri(t)� ri(0)

t
, (2.5)

where the observation time, t, is assumed to be large and the integration is taken to be in the
Ito convention (↵ = 0). The total current for all particles in the system is JN = {JJJ1, . . . , JJJN}.
The cumulant generating function of this observable is

 (�) =
1

t
ln
D
e�·J

N
t

E
(2.6)

with the average being taken over P (rN , ✓N , t), the joint distribution of observing all of
the particles in a particular position and orientation at time t. The time evolution of the
generating function is given by

@P̂ (�, rN ,✓N , t)

@t
= LN

�
P̂ (�, rN ,✓N , t) , (2.7)

and defines the tilted generator as mentioned in Eq. 1.81. It has two terms, LN

�
= LN

0
+�LN

�
,

where

LN

0
=

NX

i=1

�
µFi

�
rN
�
+ v bi +Dtri

�
·ri +Dr@

2

✓i
(2.8)

is conservative and whose adjoint gives the Fokker Planck operator. The � dependent term
is

�LN

�
=

NX

i=1

�
µFi

�
rN
�
+ v bi + 2Dtri +Dt�

�
· � (2.9)

and does not conserve probability.
There are two limiting cases of interest to consider. We can consider the total current

as the sum over the individual particle currents, by setting � = � · 1 where � is a scalar
parameter and 1 the identity. However, this case is trivial because the sum of the interparticle
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force vanishes and the solution is identical to the non-interacting solution. In this case, the
total current CGF is equivalent to N times the CGF for a single ABP. Alternatively, we
can consider the current statistics of a single tagged ABP, which has a density dependence
from surrounding particles. This is done by setting � to be a vector with a single nonzero
element, � = {0, 0, 0, · · ·,�, · · ·, 0, 0, 0}. This second case contains the first in the limit of
low density, and provides additional information on the dependence of current fluctuations
on interactions. In my work, I considered the latter definition.

We would like to get an e↵ective single particle tilted generator by integrating out
the other particle’s degrees of freedom. A generalization of the Bogoliubov-Born-Green-
Kirkwood-Yvon–like hierarchy [67] is introduced which is called the weighted many body
expansion. Specifically, we define an n-particle reduced generating function

P̂ (n)(�, rn,✓n, t) = (2.10)

N !

(N � n)!

Z Z
dr(N�n)d✓(N�n)P̂ (�, rN ,✓N , t) ,

which combined with Eqs. 2.7-2.9, results in a set of coupled evolution equations for di↵erent
P̂ (n)’s.

The single particle generating function depends on the two particle density so closure is
needed. Closure is obtained by decomposing the two particle function as

g�(r, ✓, r
0, ✓0, t) =

P̂ (2)(�, r, ✓, r0, ✓0, t)

P̂ (1)(�, r, ✓, t)P̂ (1)(�, r0, ✓0, t)
(2.11)

where g�(r, ✓, r0, ✓0, t) is the pair distribution function conditioned on a given current through
� [68, 69]. When the system is in a homogeneous state, with rotational and translational
invariance, the radial distributon function can be written in terms of relative positions and
orientations as g�(r, ✓, r0, ✓0, t) ⇡ g�(r,�), where � is the angle of the displacement vector
of two particles relative to the orientation of the particle at the origin. This closure to the
many-body hierarchy was introduced previously for the case of � = 0 [6, 70, 71, 72].

The single particle generating function will depend on the average interparticle force.
This force is decomposed into components in the parallel and perpendicular direction of the
self-propulsion, however this will result in an average force that depends on both the relative
angle between the interparticle displacement vector and the tagged particle’s orientation.
The component perpendicular to the orientation is approximated as that parallel to the
surface of the tagged particle which uncouples these two terms allowing for the expansion to
be closed [6]. For v � 1, this decomposition gives quantitatively accurate results.

In a homogeneous system, both x and y coordinates will have the same statistics indi-
vidually. Hence, without loss of generality we focus on the statistics in the x direction with
the e↵ective single particle operator for a mass current bias being

L� = V�(⇢) cos(✓)(@x + �) +Dt(⇢)(@x + �)2 +Dr@
2

✓
, (2.12)
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Figure 2.1: The 2 dimensional radial distribution function as a function of the relative
position and angle at � = 0 and � = 20. The first peak is reduced at high large � showing
polar alignment.

which has the same drift-di↵usion form as an independent ABP, but with a density-dependent
propulsion speed, V�(⇢), and translational di↵usion constant, Dt(⇢), where ⇢ is the local den-
sity, and is taken to be equal to the bulk density. The adjoint of the operator in Eq. 2.12
evaluated at � = 0 yields the propagator for the single particle density. The density depen-
dent di↵usion constant, Dt(⇢), describes the di↵usion of passive particles in an interacting
system with the mean field form being Dt (⇢) ⇡ Dt (1� ⇢) [71]. The density dependent
propulsion speed has the form V�(⇢) = v� ⇢⇣�(⇢) with ⇢⇣�(⇢) is an e↵ective drag. This drag
is calculated by an integral over the interparticle force

⇣� (⇢) =

Z
1

0

dr

Z
2⇡

0

d� r cos(�)g�(r,�)F (r) (2.13)

weighted by the pair distribution function. This coe�cient describes the decrease in the
e↵ective velocity of a tagged particle due to the increased density of impenetrable particles
in the direction of self-propulsion [6]. An example of how the 2D radial distribution function
looks like, as described in Eq. 2.13, for v = 10 and two di↵erent �0s is given in Fig. 2.1
which shows that higher currents are achieved by avoiding collisions. The drag coe�cient
has a number of known limiting forms. By construction, for independent particles or ⇢! 0,
the drag ⇢⇣�(⇢) ! 0. We find that for all v, this approach is linear in ⇢. Similarly, for
v ! 0, the system becomes isotropic and ⇣�(⇢) ! 0. For large v, ⇣0(⇢) ⇡ v/⇢⇤ where
⇢⇤ ⇡ 1.2, corresponding to an e↵ective closed-packing density. We find that for v > 30, this
approximation is within 1%, but even for v ⇡ 5, this form is within 10% of the computed
value.

Using the theory defined above we solve for the mean-field CGF for current fluctuations
by solving the eigenvalue equation, L�⌫� =  (�)⌫�, with  (�) being the CGF and ⌫� its
corresponding right eigenvector. The solution to this di↵erential equation is the zeroth
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Figure 2.2: Comparison between the analytical rate function and its numerical evaluation.
(a) Rate functions for ⇢ = 0 and v = 5 (red), 10 (blue), and 60 (black). (b) Rate functions
for ⇢ = 0.1 and v = 10 (red), 30 (blue), and 60 (black). (c) Rate functions for v = 10 with
⇢ = 0.1 (red), 0.3 (blue), and 0.5 (black). Shown are the Legendre transforms of Eq. 2.14
(solid lines), numerical simulations (symbols) and reference Gaussian (dashed line).

characteristic function of Mathieu’s equation [73], with a small � representation given by the
expansion,

 (�) = Dt (⇢)�
2 (2.14)

+Dr


z2
�
(⇢)

2
� 7z4

�
(⇢)

32
+

29z6
�
(⇢)

144

�
+O(�8)

with z�(⇢) = V�(⇢)�/Dr. For the case where there is no self-propulsion, z�(⇢) = 0, and  (�)
reduces to that for Brownian motion with a density dependent di↵usion constant Dt(⇢). In
the infinite dilution limit our results reduce to those obtained previously [74].

As mentioned at the outset we want to calculate the probability distribution for observing
a current within a period of time. Now with the CGF, the rate function is given by I (J) =
max�[�J �  (�)], and I(J) is minus the logarithm of the probability of J divided by the
observation time.

In figure 2.2 the quantitative accuracy is shown and compared to simulations of  (�) for
a variety of di↵erent ⇢’s and v’s. Fluctuations close to the mean, J = 0, are Gaussian but
larger fluctuations are more rare than expected from a Gaussian distribution. As v increases
the non-Gaussian deviations become larger as shown in Fig. 2.2 with the x-axis scaled byp

thJ2i. As shown, increasing the density slows the particles down and changes the e↵ective
self-propulsion.
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2.3 Bias on rare current fluctuations

As shown in Fig. 2.2, the large deviations are markedly non-Gaussian. We can understand
the nature of these fluctuations by making the rare fluctuations common by calculating
control forces. By the so-called doob transform we can condition current fluctuations to
reach a rare value of the current on average [43]. The doob transform is a transformation of
the tilted generator so that probability is now conserved,

L� = ⌫� (✓)
�1 L�⌫� (✓)�  (�)

=L0 + 2Dt(⇢)�@x + 2Dr@✓ ln ⌫� (✓) @✓ (2.15)

which does not change the di↵usion and adds a drift that is � dependent. The dynamics
with the control force for a tagged particle is

ṙ(t) = µFi

�
rN
�
+ v b+ 2Dt(⇢)�x̂+ ⌘t (t) . (2.16)

The control force for the orientation creates a torque on the orientation, F�(✓) = 2Dr@✓ ln ⌫� (✓),
for small � is

✓̇i (t) = �2V�(⇢)� sin(✓) + ⌘r (t) (2.17)

and has an amplitude that depends on the � dependent e↵ective self propulsion containing
the friction coe�cient, ⇣�(⇢). The friction can also be measured directly from the exact
biased dynamics [75].

The control force on the orientation causes the tagged particle to have a preferred swim
direction as shown in Fig. 2.3a), which shows the preferred directions at ✓ = 0 and ⇡.
Additionally, It is seen that the e↵ective drag is significantly reduced with an increasing
magnitude of � as shown in Fig. 2.3b), where ⇣�(⇢) is computed from the molecular simu-
lations for a variety of densities. At large |�|, ⇣�(⇢) eventually goes to zero meaning that the
particles surrounding the tagged particles align their orientations with the tagged particle.
This shows that the mechanism to have high currents is to eliminate interactions through
alignment.

We can directly change the average current of the tagged particle to a nonzero average
from the current bias. The prediction for this response is seen from the derivatives of  (�)
which provide the cumulants of J , dn (�)/d�n = Cn

�
. The first cumulant, C1

�
= hJi�,

yeilds the average current and the second predicts the variance to be C2

�
= th(J � hJi�)2i�.

When these cumulants are evaluated at � = 0 they represent the unbiased dynamics. When
� 6= 0 this gives the prediction for the rare fluctuations in the tails of I(J) as shown in
Figs. 2.3c) and d). Those figures show the biased currents at a nonzero � from the exact
solution of the eigenvalue equation and from evaluating Eq. 2.5 directly from simulations of
the auxiliary process defined in Eqs. 2.16 and 2.17. At small �, the current is linear with a
slope proportional to the di↵usion constant representing Gaussian fluctuations. At large �,
there is a nonlinear response which is marked by another linear region with a reduced slope.
The slope of this secondary response is dependent on the Dt(⇢) only. This is because when
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Figure 2.3: Analysis of the auxiliary process. (a) The e↵ective forces for v=10, ⇢ = 0.1 and
� = 0.1 (blue), 0.3 (red), and 0.5 (black). (b) Damping coe�cient, ⇣�, as a function of � for
v=10 and ⇢ = 0.1 (blue), 0.3 (red), and 0.5 (black). Dashed lines are a guide to the eye.
(c,d) The average current from the auxiliary process. (c) hJi� for ⇢ = 0.1 and v=10 (blue)
and 30 (red). (d) hJi� for v=10, and ⇢ = 0.1 (blue), 0.3 (red) and 0.5 (black). The symbols
are the results from simulations. The solid lines represent the derivative of the CGF and the
dotted lines represent its limiting behavior.

all of the particles are moving in the same direction, the system behaves as an equilibrium
system in a reference frame moving at v. The CGF in this limit is given by

 (�) = Dt (⇢)�
2 ± v� , �! ±1 , (2.18)

This analysis shows that a simple e↵ective temperature mapping to equilibrium systems
would not explain the non-Gaussian fluctuations and response [76, 77, 78, 79]. Further, The
idea of two di↵usion constants has the same qualiative features recently observed in active
biopolymers, with the second di↵usion constant being larger than the first [80, 81].
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E↵ective temperature

As mentioned in the previous section, there is often mention of an equilibrium mapping by
defining an e↵ective temperature [82, 83]. Here, I will briefly describe the arguments for how
one could approximately define an e↵ective temperature which is based on calculating the
pressure.

In equilibrium, the pressure P of a fluid can be defined in three equivalent ways: as
the mechanical force per unit area on the walls of the container, from thermodynamics as
the derivative of a free energy, and as the trace of the hydrodynamic stress tensor of the
fluid, which in turn represents the momentum flux in the system. In equilibrium, all three
definitions give the same expression and the pressure is a state function. This is not true in
general for non-equilibrium systems.

The total pressure of an active gas has three contributions and can be written as

P = P0 + PD + Ps (2.19)

where P0 is the ideal contribution and the contribution from interparticle interactions to
the pressure is represented by PD. Self propelled particles have an additional contribution
to the pressure that describes the flux of self-propulsion force across a unit line, Ps. This
contribution is unique to active systems and was termed ‘active’ or ‘swim’ pressure. It was
shown that the swim pressure can be written in a virial-type form as

PS =
⇢

2
hr · v bi = vV (⇢)�

2Dr

⇢. (2.20)

In the absence of interactions PD = 0, we can approximate the pressure of an ideal active
gas as

P 0

s
= Ps + P0 = ⇢T + PS = ⇢T +

vV (⇢)�

2Dr

⇢ = ⇢Te↵, (2.21)

where

Te↵ = T +
vV (⇢)�

2Dr

. (2.22)

In other words, the swim pressure of an ideal active gas is simply the pressure of an ideal
gas at the temperature Te↵. This mapping is made to try to make reference to the powerful
equilibrium framework. However, we have already shown that this is not rigorously true.
Nonetheless, this swim pressure is also relevant to the entropy production which takes a
similar form to the active pressure. This will be talked about further in chapter 4.

2.4 Linear transport

As mentioned in the introduction, we can also calculate transport coe�cients from the CGF.
The second cumulant is

C2

0
(⇢) = 2Dt(⇢) +

V 2

0
(⇢)

Dr

⌘ 2D(⇢) , (2.23)
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which we define as twice a collective di↵usion constant, D(⇢). In Fig. 2.4, numerical results
obtained from simulations of the mean-squared displacement are plotted in excellent agree-
ment with predictions from Eq. 2.23. This form of the di↵usion coe�cient has been shown
to agree with simulations previously, and was derived by a moment expansion of the joint
position and orientation distribution [84, 85, 86, 48]. This density dependence of D(⇢) was
shown by others [70, 6, 77] to correctly predict the spinodal instability signaling the onset
of motility induced phase separation.

The current fluctuations encoded by D(⇢) provide the response of a hydrodynamic cur-
rent, J⇢, generated from a slowly varying spatial density, ⇢(x). From the Kramer’s Moyal
expansion [87], J⇢ can be generally expressed as a gradient expansion

J⇢ = �
1X

n=1

(�1)n

n!
@n�1

x
Mn[⇢(x)]⇢(x) (2.24)

where Mn[⇢(x)] is the local density-dependent nth moment of the current, h(J � hJi)ni. To
first order, the mass current is linear in the density gradient and is given by Fick’s law,
J⇢ ⇡ �D(⇢)(@⇢/@x), where D(⇢) is the proportionality constant relating the current to the
gradient resulting from identifying the second moment with the second cumulant. Since for
small average currents we have have hJi� ⇡ 2D(⇢)�, which shows that at linear response, �
can be related to an a�nity for this nonequilibrium system. We have computed D(⇢) from
�J⇢/(@⇢/@x) by simulating an open channel in contact with two reservoirs. As shown in
Fig. 2.4, we find good agreement with D(⇢) computed in this way and from  (�). From
 (�), we have access to all moments of J , and together with its ⇢ dependence this framework
allows us to quantify higher order responses that are not naturally considered in standard
field theoretic treatments of ABPs.

While our focus has been on ABPs, the framework we have presented is general and
allows for the quantification of current fluctuations, and the calculation of transport coe�-
cients for continuous interacting systems. For ABPs, we found that large current fluctuations
near the mean are not representative of rarer fluctuations which are restricted as a result of
coherent active movement. These specific results are consistent with deviations from Gaus-
sian behavior that have been reported in recent experimental studies of active colloids [88,
89]. Furthermore, there are a number biological systems that are modeled by ABPs, such as
cellular biopolymers that exhibit two types of transport characterized by two di↵erent dif-
fusion constants for small and large fluctuations [80, 81]. Our analysis may help understand
these observations. Finally, while we have focused on current fluctuations, our development
of the weighted many body expansion provides a way to calculate the CGF of other relevant
quantities for nonequilibriums systems such as activity [90, 91, 92, 69, 93, 94], entropy pro-
duction [95, 96, 97, 98], the density, and other counting statistics that are currently di�cult
to estimate [99]. This framework will also be revisited in subsequent chapters on the density
and entropy production.
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Figure 2.4: Density dependent e↵ective di↵usion constant for v= 0 (blue), 1 (red), and 60
(black). The symbols are the results from simulations. The squares are from the mean
squared displacement, open circles are from an imposed density gradient and the solid lines
from Eq. 2.23. Inset shows a snapshot of the simulation with an imposed density gradient.

Relation between � and a�nity

In the previous section, the density dependence of the di↵usion constant was neglected.
However, the di↵usion constant could vary with position along the channel. When the
e↵ective di↵usion constant is considered to be positionally dependent, then the hydrodynamic
current becomes

J⇢ ⇡ �

⇢V0(⇢)

Dr

@V0(⇢)

@⇢
+D (⇢)

�
@⇢

@x
(2.25)

where the first term was neglected in the previous expression for Fick’s Law. The di↵usion
due to thermal fluctuations is neglected. Since the e↵ective swim speed in the first term
is a decreasing function with increasing density, it is negative and provides a prediction for
phase separation noted previously [48, 6, 86, 100, 84].

By defining a density dependent chemical potential,

µ0(⇢) = ln(⇢V 2

0
(⇢)), (2.26)
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the hydrodynamic current can be rewritten as

J⇢ = �D(⇢)⇢
dµ0(⇢)

dx
(2.27)

which is an a�nity that drives the hydrodynamic current. We can relate this to � from the
first derivative of the CGF with �, giving the average current at small � to be

hJi� = 2D(⇢)�+O(�3). (2.28)

Hence, at small � we can relate it to an a�nity,

� = �⇢
2

dµ0(⇢)

dx
. (2.29)

More generally, away from linear response, � and the a�nity are still related, but this relation
is more complicated [101, 102, 103, 104, 47, 105, 106, 107, 108, 109, 110, 111, 112].

2.5 Nonlinear transport

We can continue the Kramers Moyal expansion to the next non-zero term in Eq. 2.24, which
would include the fourth moment, M4 = C4

0
� 3(C2

0
)2. To this order, the hydrodynamic

current would be given by

J⇢ = �D(⇢)⇢

✓
dµ0(⇢)

dx
+

dµ1(⇢)

dx

◆
(2.30)

which includes an additional contribution to the e↵ective chemical potential, µ1(⇢) given by

µ1(⇢) = ↵(⇢)

✓
d⇢

dx

◆2

+ �(⇢)
d2⇢

dx2
, (S18)

with ↵(⇢) and �(⇢) being coe�cients that depend on the density, v0, Dt and Dr. Keeping
the first order in the derivatives of the density we get

↵(⇢)D(⇢)⇢ =
(�7 + 4Dr)

4D3
r

"
V 3

0
(⇢)

@V0

@⇢
+

3V 2

0
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2

����
@V0

@⇢

����
2
#

+
@V0

@⇢


2V0(⇢)

Dr
+

⇢

Dr

@V0

@⇢

�
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2
+
@D(⇢)

@⇢
+
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8D3
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V 4

0
(⇢)

4
+
⇢V 3
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8

@V0

@⇢

�

which shows that our framework allows us to quantify higher order response with the next
order response containing non-gradient terms that would give rise to interfacial energy-like
terms necessary to stabilize two phases, d2⇢/dx2 and |d⇢/dx|2 [113, 48, 6].
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Figure 2.5: Lattice model of active matter. There are two types of particles j and k. Particle
j hops forward on the lattice with rate l and backwards with rate m. Likewise, particle k
hops forward on the lattice with rate a and backwards with rate b.

2.6 Relationship of on-lattice and o↵-lattice
fluctuations

Sometimes it has proven useful to study active matter on a lattice instead of in the continuum.
In this section, I will describe a microscopic version of ABPs and a discrete version of the
mass current and solve the eigenvalue problem.

Instead of continuous space motion, particles on a lattice hop from one site to another.
The mass current is defined as the number of directed hops. Over a time t, we measure the
amount of hops from state y to state z and vice versa written as

JT =
1

T

Z
T

0

q[�x(t�),y�x(t+),z � �x(t�),z�x(t+),y]dt. (2.31)

Here q is the lattice spacing and the x(t±) denotes the state before and after a jump. In the
long time limit, the current will go to a steady-state distribution of

Jy,z = k(y, z)⇡(z)� k(z, y)⇡(y) . (2.32)

Similarly to the continuum case there is a tilted generator that is derived in a similar way
to the continuum case for dynamics biased on the number of directed hops given by

d⇡(i)

dt
= e+�k(i, i+ 1)⇡(i+ 1) + e��k(i� 1, i)⇡(i)� r(i)⇡(i). (2.33)
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Now that we understand how to bias the dynamics, we are left to determine a consistent
way to calculate the rates that describes the equations of motion for ABPs. To enforce this
constraint, we construct the transition rates in such a way that the first two jump moments
give the correct drift and di↵usion by solving

q(k(i, i+ 1)� k(i+ 1, i)) = M1 (2.34)

q2(k(i, i+ 1) + k(i+ 1, i)) = M2. (2.35)

In a similar way, we can define an active lattice model with two particle types, j and k.
Particle j hops forward on the lattice with rate l and backwards with rate m. Particle k
hops forward on the lattice with rate a and backwards with rate b. Additionally, particle j
can turn into particle k with rate g. The summary of the rates for each particle is displayed
in Fig. 2.5. We can solve for these rates in terms of the continuous space equations by
solving for the rates from Eqs. 2.34-2.35 for position and orientation given by

q(l �m) = v, (2.36)

q2(l +m) = 2Dt, (2.37)

q(a� b) = �v, (2.38)

q2(a+ b) = 2Dt, (2.39)

q2(g + g) = 2Dr. (2.40)

In the long time limit particle j and Particle k have a drift of v and �v. In this way, particle
j and k are the same particle with di↵erent self-driven velocities in equal and opposition
directions. This makes the assumption that in the long time limit only 1 and �1 survive
from the orientation vector. By solving Eqs. 2.36-2.40, we get that

l =
v

2q
+

Dt

q2
, (2.41)

m =
�v

2q
+

Dt

q2
, (2.42)

b =
+v

2q
+

Dt

q2
, (2.43)

a =
�v

2q
+

Dt

q2
, (2.44)
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and

g =
Dr

q2
. (2.45)

The CGF for this system on a ring is given by the largest eigenvalue of the tilted rate matrix
with the rates described. We find that the CGF on the lattice is

 (�) =
2Dt

q2
(�1 + cosh(�q))� Dr

q2
+

s
D2

r

q4
+ v2sinh2(�q) (2.46)

Taking the continuum limit where q ! 0 means we expand the hyperbolic sine and cosine
and the terms that survive are

 (�) = D2

t
�2 �Dr +

r
D2

r
+

v2�2

2
(2.47)

We are interested to know how well does this capture the fluctuations in relation to the exact
answer. Taking two derivatives of  (�) defined in Eq. 2.47 with respect to � and evaluating
it at � = 0 gives us a di↵usion constant that matches the CGF in Eq. 2.23 when ⇢ = 0
representing infinite dilution.

Up until this point, we have only considered non-interacting ABPs on the lattice. We can
perturbatively correct the noninteracting solution by considering particle interactions on a
ring [68]. The exact expression for the large deviation function for current for the interacting
system is

 (�) =

"
2Dt

q2
(�1 + cosh(�q))� Dr

q2
+

s
D2

r

q4
+ v2sinh2(�q)

#
⇢(1�< nini+1 >)), (2.48)

where ni is the indicator function which is 1 when a particle is at site i and zero when the
site is empty. Taking the limit that q ! 0 gives us the mean field approximation given as

 (�) =

 
D2

t
�2 �Dr +

r
D2

r
+

v2�2

2

!
(⇢(1� ⇢2)). (2.49)

This gives the local collective di↵usion constant as

D(⇢) =

✓
Dt +

v2

2Dr

◆
(1� ⇢) ⇡ Dt(⇢) +

vV0(⇢)

2Dr

(2.50)

which is similar the the density dependent di↵usion constant in Eq. 2.23 but with the friction
coe�cient, ⇣, equal to 1.

The lattice description has proven to be accurate up to the di↵usion term. However,
higher order statistics when compared to the exact result deviate. This is not too surprising
since the rates were calculated from the first two moments of the equations of motion.
In principle, higher order statistics might be accurate in the lattice model if higher order
moments were used to calculate the rates.
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Chapter 3

Density fluctuations and phase
separation

Introduction

In a grand canonical ensemble in equilibrium, there is a precise relationship between the
chemical potential of the particle bath, the distribution of density of the system, and the
free energy.

Out of equilibrium, there has been some work to extend these ideas to a nonequilibrium
steady states. For a homogeneous system, the large deviation function for density fluctua-
tions acts like a free energy and a chemical potential of the bath can be defined to quantify
the density fluctuations in active systems [85]. When there is phase separation, there have
also been several works to quantify the phase diagram of 2D active systems with an e↵ective
free energy which is bimodal at the two densities in coexistance [114, 2].

There is much success in characterizing the steady state density profile of homogeneous
and phase separated systems. One question I will answer is how this phase transition is
related to a dynamical phase transition. Specifically, we aim to understand what information
do we gain by including spatial and dynamical information. First, I will give theory developed
to understand dynamical density fluctuations for non-interacting systems. Then, I will use
the concepts learned from those cases to apply to interacting active matter near criticality.

3.1 Time integrated equilibrium density fluctuations
in one dimension

Open boundaries

This section is primarily a summary of the work in a previous paper [115]. We will consider
the open boundaries case first because of its close relationship with textbook quantum me-
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0 a�a L�L x

�� ��(�)

I II III

Figure 3.1: An illustration of the system for a bias on density to be in region II and it’s
equivalence to the finite square well problem in quantum mechanics.

chanics. This will make the case of periodic boundaries easier to explain afterwards which
is my specific contribution.

For a single particle system in 1 dimension, we consider a bias on a single particle to be
in a region of space for a fraction of time defined as

⇢t =
1

t

Z
t

0

h(x(t))dt, (3.1)

where h(xt) is 1 when the particle is within the sub system at time t, and is zero when it is
outside of it. As shown in Fig. 3.1 , we consider the observable of a particle being in a region
of space of �a  x  a, denoted region II, where 2a is the length of the subsystem. The
total system size is 2L which for the first example is taken to be much larger than subsystem,
L � a. Given that the Fokker-Planck equation for Brownian motion is

@⇢(x, t)

@t
= Dtr2⇢(x, t). (3.2)

The operator of this equation is

L†

0
= Dtr2, (3.3)

and the tilted version based on Eq. 3.3 is

L0 = Dtr2 + �h(xt). (3.4)

It has been noted that solving for the largest eigenvalue of this operator is identical to solving
the finite square well problem in 1 dimension [115, 116]. The eigenvalue problem we wish to
solve is the following:
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L�⌫�(x)�  (�)⌫�(x) = 0, (3.5)

where ⌫�(x) is the � and x dependent eigenvector corresponding to the largest eigenvalue.
We must solve this equation for the region inside the subsystem and outside. We show the
three cases below: 8

><

>:

r2⌫�(x)�  (�)

Dt
⌫�(x) = 0 x < �a

r2⌫�(x) +
�� (�)

Dt
⌫�(x) = 0 �a  x  a

r2⌫�(x)�  (�)

Dt
⌫�(x) = 0 x > a

(3.6)

The general solution for the eigenvector is

⌫�(x) =

8
><

>:

Aek1x + Ee�k1x x < �a

B cos(k2x) + C sin(k2x) �a  x  a

De�k1x + Fe+k1x x > a

(3.7)

where

k2

1
=
 (�)

Dt

, (3.8)

and

k2

2
=

[��  (�)]

Dt

. (3.9)

In order for the eigenvectors to be normalizable, it must be the case that E = F = 0 and
the general solution becomes

⌫�(x) =

8
><

>:

Aek1x x < �a

B cos(k2x) + C sin(k2x) �a  x  a .

De�k1x x > a

(3.10)

There are still five unknowns which are the CGF,  (�), and A, B, C,and D. To solve for
the other four constants we must note that the other boundary conditions are

8
>>>><

>>>>:

⌫I
�
(x = �a) = ⌫II

�
(x = �a) (i)

d⌫
I
�(x=�a)

dx
=

d⌫
II
� (x=�a)

dx
(j)

⌫II
�
(x = a) = ⌫III

�
(x = a) (k)

d⌫
II
� (x=a)

dx
=

d⌫
III
� (x=a)

dx
(l)

(3.11)

From Eqs. 3.11i and 3.11j, we find that

Ae�k1a = B cos(k2a)� C sin(k2a) (3.12)

and
k1Ae

�k1a = k2B sin(k2a) + k2C sin(k2a). (3.13)
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By defining ✓2 = k2

2
a2 = [�� (�)]a

2

Dt
and dividing Eq. 3.12 by Eqs. 3.13, we find that

k1 = k2

✓
B sin(✓) + C sin(✓)

B cos(✓)� C sin(✓)

◆
. (3.14)

Now by doing the same calculation for Eqs. 3.11k and 3.11l, we get

k1 = k2

✓
B cos(✓)� C sin(✓)

B sin(✓) + C sin(✓)

◆
. (3.15)

We now have two equations for k1 and by setting Eqs. 3.14 and 3.15 equal we get

�
B2 + C2

�
sin(✓) cos(✓) + BC =

�
B2 + C2

�
sin(✓) cos(✓)� BC (3.16)

This equation has two solutions. Either BC = �BC or BC = 0. Hence, it must be the case
that either C = 0 or B = 0. This represents the fact that solutions for bound states have to
be either even or odd. The case of B = C = 0 is not possible for this reason.

The largest eigenvalue is given by the first order quantum solution which is the symmetric
solution. The symmetric solution is obtained when C = 0. Then Eq. 3.10 reduces to

⌫�(x) =

8
><

>:

Aek1x x < �a

B cos(k2x) �a  x  a.

De�k1x x > a

(3.17)

Applying the same boundary conditions in Eq. 3.11 , we find that

k1
k2

= tan(✓). (3.18)

This equation cannot be solved analytically but we can find the roots for a given �, by
rewriting the left hand side as

k1
k2

=

s
 (�)

��  (�)
=

r
✓2
0

✓2
� 1, (3.19)

with

✓2
0
=
�a2

Dt

. (3.20)

Combining Eqs. 3.18 and 3.19 , the final equation to be solved for the CGF is
r
✓2
0

✓2
� 1 = tan(✓). (3.21)

If we denote the roots of this equation as ✓⇤(�), the CGF is

 (�) = �� Dt (✓⇤(�))
2

a2
. (3.22)
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Note that since the system has open boundaries, it is quite uncommon for the particle to
stay within the box and on average

d (�)

d�

����
�=0

= h⇢i�=0 = 0. (3.23)

Also, the force as a function of lambda on the particle is

F�(x) =

8
>><

>>:

p
4Dt (�) x < �a

�
p

4Dt(��  (�)) tanh(
q

(�� (�))

Dt
x) �a < x < a .

�
p

4Dt (�) x > a

(3.24)

For positive �, inside the subsystem the force traps the particle in a bound state with the
depth increasing as a function of �. These were the results of previous papers [115, 116].

In the next section, I describe my notable contributions to the problem by deriving the
CGF for periodic systems in which case the average density will be the bulk density of the
system. This will then help us to incorporate orientation and interactions in subsequent
sections.

Periodic boundaries

As mentioned previously, for infinite boundary conditions, L � a, we would set E = F = 0
to make the eigenvectors normalizable. Since our system has periodic boundary conditions
we have to keep these coe�cients. We now consider the case where a/L is order 1. Namely,
the fraction will give us the average occupancy in the system as

h⇢i0 =
a

L
. (3.25)

In the periodic case the boundary conditions are di↵erent. We have 6 equations to solve for
our 7 coe�cients which are the following:

8
>>>>>>>>><

>>>>>>>>>:

⌫I
�
(x = �a) = ⌫II

�
(x = �a) (i)

d⌫
I
�(x=�a)

dx
=

d⌫
II
� (x=�a)

dx
(j)

⌫II
�
(x = a) = ⌫III

�
(x = a) (l)

d⌫
II
� (x=a)

dx
=

d⌫
III
� (x=a)

dx
(k)

⌫I
�
(x = �L) = ⌫III

�
(x = L) (m)

d⌫
I
�(x=�L)

dx
=

d⌫
III
� (x=L)

dx
(n)

(3.26)

Using the same procedure in the previous section, we find that the root equation in this case
is

k1
k2

=
tan(k2a)

tanh [k1 (L� a)]
=

s
�

��  (�)
� 1. (3.27)
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a) b)

Figure 3.2: The exact large deviation functions for the Brownian walker with periodic bound-
aries (solid line) compared with cloning results (square symbols). a) the CGF for a wide
range of �’s. b) The corresponding rate function for density fluctuations. Both a) and b)
are with Dt = 1/2, a = 1, and L = 5.

This result generalizes Eq. 3.18. Note that when we take the limit that L ! 1, our result
reduces back to the open boundaries case. By solving the root equation as a function of �,
we find the CGF plotted in Fig. 3.2a). The main di↵erence seen in the CGF from the open
boundaries case is that there has to be negative CGF values for negative � to give a nonzero
average density in the distribution shown in Fig. 3.2b) which is obtained by the Legendre
transform defined in Eq. 1.71. Also, note that in the distribution of density, it is clear that
this distribution is non Gaussian in the tails. However, close to the mean there will be a
Gaussian with a variance proportional to the di↵usion constant.

We can also calculate the forces to realize these rare density fluctuations which is what
we do in the next subsection.

Auxiliary force

The auxiliary force is given by

F�(x) = 2Dt

d ln[⌫�(x)]

dx
, (3.28)

with the eigenvector written as

⌫� =

8
><

>:

B cos(k2a)

exp(k1(2L�a)+k1a)
[exp(k1(2L+ x)� k1x)] x < �a

B cos(k2x) �a < x < a.
B cos(k2a)

exp(k1(2L�a)+k1a)
[exp(k1(2L� x) + k1x)] x > a

(3.29)
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a) b)

Figure 3.3: Biasing the density. The response of the a) density as a function of � and b)
an example of the control force for � = 1 (solid) and �1( dotted). Both a) and b) are with
Dt = 1/2, a = 1, and L = 5.

Inserting the eigenvector we get that

F�(x) =

8
>>><

>>>:

p
4Dt (�) tanh(

q
 (�)

Dt
(L+ x)) x < �a

�
p

4Dt(��  (�)) tanh(
q

(�� (�))

Dt
x) �a < x < a.

�
p

4Dt (�) tanh(
q

 (�)

Dt
(L� x)) x > a

(3.30)

The control force is plotted in Fig. 3.3b) for two lambda values. Note the di↵erences between
the open boundaries case in Eq. 3.24. The force within the subsystem is the same but outside
the box, the only di↵erence is there is a hyperbolic tangent function that makes the force
continuous at the boundaries. This principle will be useful in constructing approximate
control forces in cases that are not exactly solvable.

By inserting the force in Eq. 3.30 into the equations of motion and measuring the density
observable in Eq. 3.1, we see in Fig. 3.3a) that it agrees well with the exact answer from the
first derivative of the CGF shown in Eq. 3.27.

Importance sampling methods

In practice, we can apply the exact force in Eq. 3.30 or an approximate one to importance
sample fluctuations in the cloning algorithm [75]. Given that we have a Langevin equation
in the Ito convention from Eq. 1.1 as

dx

dt
= F (x, t) + B(x, t)⇣(t) , (3.31)

with a path action of

P [X] = ⇢(x0)e
�

R t
0 L(x(t),ẋ(t))dt (3.32)
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with

L(x(t), ẋ(t)) = 1

2
[ẋ� F (x, t)]

�
B(x, t)B(x, t)T

��1

[ẋ� F (x, t)] . (3.33)

The di↵usion coe�cient then is defined as

D =
B(x, t)B(x, t)T

2
, (3.34)

We can define a general time integrated density-type observable

At =
1

t

Z
t

0

a(x(t))dt (3.35)

with a(x(t)) = h(x(t)) being an indicator function as mentioned above. Within the cloning
algorithm we want to calculate the large deviation function by

 (�) =
1

t
ln
⌦
e��At

↵
. (3.36)

The brackets indicate an ensemble average over the paths generated by Eq. 3.32. If we have
the exact solution for the cumulant generating function and its corresponding eigenvector
we can use the cloning algorithm with only 1 walker because no branching is needed. When
we have an approximate eigenvector and cumulant generating function we can use this to
enhance the sampling and decrease the number of walkers needed in the cloning algorithm.
Next we will outline the steps to use the approximate guiding force to enhance the sampling.
The approximate auxiliary force, F�(x), is added to the equation of motion of the original
system as

dx

dt
= F (x, t) + F�(x) + B(x, t)⇣(t) . (3.37)

The path action for this dynamics is

P�[X] = ⇢(x0)e
�

R t
0 L�(x(t),ẋ(t))dt (3.38)

with

L�(x(t), ẋ(t)) =
1

2
[ẋ(t)�F (x, t)�F�(x)](B(x, t)B(x, t)T )�1[ẋ(t)�F (x, t)�F�(x)]. (3.39)

However, we want to add a force that helps sample the original dynamics so we must manip-
ulate the action so that we still sample the original distribution. We can rewrite the brackets
of the cumulant generating function as

h· · ·i =
Z

· · ·dXP [X] =

Z
· · ·dXP�[X]

✓
P [X]

P�[X]

◆
. (3.40)

Hence when we add the extra force we add
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ln

✓
P [X]

P�[X]

◆
=

Z
L(x(t), ẋ(t))� L�(x(t), ẋ(t))dt (3.41)

to the weight in the exponential of Eq. 3.36. The weight will only contain terms that contain
the guiding force, given by

ln

✓
P [X]

P�[X]

◆
=

1

2B2

Z
|F�(x)|2 + 2F (x, t)F�(x)� 2ẋ(t)F�(x). (3.42)

The last term can be re written using Ito’s lemma,

dU(x)

dt
= ẋ(t)

dU(x)

dx
+

B2

2

d2

dx2
U(x), (3.43)

and the definition of the auxiliary force as an approximate guiding force (with F� = B2 d

dx
U�(x)),

1

2B2

Z
�2ẋ(t)F�(x)dt =

Z
�ẋ

d

dx
U�(x)dt, (3.44)

to be

Z
�ẋ(t)

d

dx
U�(x)dt = U�(x(0))� U�(x(t)) +

Z
B2

2

d2

dx2
U�(xt)dt. (3.45)

Using these results for an arbitrary force, the reweighting factor is

ln

✓
P [X]

P�[X]

◆
=

1

2B2

Z
|F�(x)|2 + 2F (x, t)F�(x) + B4

d2

dx2
U�(x(t))dt , (3.46)

with

F� = B2
d

dx
U�(x). (3.47)

If the guiding force was the exact auxiliary force(U�(x) = ln(⌫�(x)) then Eq. 3.45 would be

Z
�ẋ

d

dx
ln(⌫�(x))dt = ln

✓
⌫�(x(0))

⌫�(x(t))

◆
+

Z
B2

2

d2

dx2
ln(⌫�(x(t)))dt, (3.48)

with ⌫�(x) being the eigenvector of the corresponding CGF. The final expression for the
weight in the exact case is

ln

✓
P [X]

P�[X]

◆
=

1

2B2

Z
|F�(x)|2 + 2F (x, t)F�(x) + B4

d2

dx2
ln(⌫�(x(t)))dt. (3.49)
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Figure 3.4: Number of walkers as a function of � with and without an approximate control
force. For all � values studied with Dt = 1/2, a = 1, L = 5, and 104 walkers.

Less than optimal control force

We have found the exact force for the brownian walker case. However, many times we cannot
calculate this force exactly. In this section, we study how approximate forces to bias the
density accelerate the convergence of the cloning algorithm. Based on intuition we expect
that a harmonic potential at the center of the square well will lead to faster convergence
compared to the results without control forces. Using a harmonic force in the well and a
decaying function outside we can write an approximate force as

F�(x) =

8
><

>:

� tanh(L+ x) x < �a

��x �a < x < a

�� tanh(L� x) x > a

(3.50)

The e�ciency with and without this approximate control force is shown in Fig. 3.4 which
shows better e�ciency with walker number for all �’s studied. All of the runs were done with
104 walkers. This proves that the force that realizes rare density fluctuations is similar to
a harmonic well. This also provides an approximate force we can later apply to interacting
active matter systems for better convergence.

In the next section our goal is to use this intuition to understand density bias in active
matter.
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3.2 Bias on active matter fluctuations

We would like to calculate the CGF for an active particle to be confined to a region of space
similar to what we did in the previous section for single Brownian particles. It is intractable
to keep both the orientation fluctuations and the Brownian fluctuations, so in this section
we study an active Brownian particle in the absence of thermal noise given by

ẋ(t) = v cos(✓), (3.51)

and
✓̇(t) =

p
2Dr⌘(t) (3.52)

with statistics of ⌘(t) having a zero mean and a variance of 1 on average. The tilted generator
for this system of equations with a bias on density is

L� = v cos(✓)
@

@x
+Dr

@2

@✓2
+ �h(xt). (3.53)

Similar to Eq. 3.6, we must solve the eigenvalue equation in the three regions of space,

8
><

>:

v cos(✓) @
@x
⌫�(x, ✓) +Dr

@
2

@✓2
⌫�(x, ✓)�  (�)⌫�(x, ✓) = 0 x < �a

v cos(✓) @
@x
⌫�(x, ✓) +Dr

@
2

@✓2
⌫�(x, ✓)� ( (�)� �) ⌫�(x, ✓) = 0 �a  x  a

v cos(✓) @
@x
⌫�(x, ✓) +Dr

@
2

@✓2
⌫�(x, ✓)�  (�)⌫�(x, ✓) = 0 x > a

(3.54)

We can solve these equations by separation of variables,

⌫�(x, ✓) = ⇢(x)f(✓), (3.55)

which gives us

@x⇢(x)

⇢(x)
=

�Dr

v cos(✓)f(✓)


@2
✓
f(✓)� mf(✓)

Dr

�
= �g (3.56)

where g is a constant to be determined and the variable m is equal to  (�) outside of the
subsystem and equal to ( (�) � �) inside the the subsystem. This gives two equations to
solve for the two eigenfunctions for space and orientation which are

@x⇢(x) = �g⇢(x), (3.57)

and

@2
✓
f(✓)� mf(✓)

Dr

=
g v cos(✓)f(✓)

Dr

. (3.58)

The equation for the density will just be exponential like in the previous section. However,
to find the value for g we must solve the di↵erential equation for ✓. The solution is just
Mathieu’s equation. Hence, the value for g is found from
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4m

Dr

= a0(
2gv

Dr

), (3.59)

where ao(x) is the zeroth order eigenvalue of Mathieu’s equation. This is a common procedure
in sedimentation papers [117, 118, 119]. By inverting this equation we get to leading order
in g that

g = ±
r

m

D
, (3.60)

where

D =
v2

2Dr

. (3.61)

Note that the solution for g is only approximate since the solution is an infinite series in
g and we have only taken the leading order term which is quadratic. Analytically, it is
also possible to solve for g at fourth order for more precise estimates. On the other hand,
numerically it is possible to solve for g to arbitrary order to get an exact estimate for g by
using a basis set expansion [25].

By putting our value of g back into the the position eigenvalue equation, we get the same
equations as for the Brownian particle as

⌫�(x) =

8
><

>:

Aek1x + Ee�k1x x < �a

B cos(k2x) + C sin(k2x) �a  x  a

De�k1x + Fe+k1x x > a

(3.62)

with the coe�cients being

k2

1
=
 (�)

D
, (3.63)

and

k2

2
=

[��  (�)]

D
. (3.64)

We see that the solution for the time integrated density is identical to the Brownian particles
solution in Eq. 3.27,

k1
k2

=
tan(k2a)

tanh [k1 (L� a)]
=

s
�

��  (�)
� 1, (3.65)

but with a modified di↵usion coe�cient. In practice, it would be a small step to assume that
thermal fluctuations could be put back in by using the di↵usion constant of

D = Dt +
v2

2Dr

. (3.66)

This follows from the fact that we have proven that the solution only changes the magnitude
of the di↵usion in the exponential solution. The CGF compared to simulations is shown
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a) b) c)

Figure 3.5: Density fluctuations as a function of self-propulsion. a) The cumulant generating
function for v = 0, 2, 5 and b) the rate function for the same self-propulsion values with the
solid lines representing the predictions and the symbols showing cloning results. c) the same
data in b) but with the x-axis shifted by the mean and scaled by the variance to highlight
non-Gaussian fluctuations. The black dotted line shows a fitted Gaussian distribution. All
data is with Dt = 0.5, Dr = 3, and a/L = 0.2.

in Fig. 3.5a) which shows good agreement for a few di↵erent self-propulsion values. The
corresponding rate function of density fluctuations is shown in Fig. 3.5b). We see that
increasing self-propulsion causes a decrease in the variance. This comes from the fact that
in Eq. 3.22 increasing the di↵usion constant causes the CGF to have a lesser value for a
corresponding � and creates smaller fluctuates with increasing self-propulsion.

In Fig. 3.5c), the data in Fig. 3.5b) is re-plotted but with the x-axis shifted by the
mean and scaled by the square root of the variance to highlight deviations from a Gaussian
distribution shown by the dotted line. It is seen that the the distributions become more
Gaussian with increasing self-propulsion. This is because distributions become non-Gaussian
for fluctuations close to a zero density which becomes increasingly improbable with increasing
propulsion.

3.3 Dynamical density fluctuations in interacting
active matter

We have only considered non-interacting systems thus far. Based on our intuition from those
examples we would like study interacting active matter in 2 dimensions. We would expect
any system that has a steady state phase transition would also have a dynamical phase
transition. However, the precise nature in which adding time changes the statistics has not
been studied before.

Before we discuss the dynamical density fluctuations in interacting active matter. We will
first show why we know from theory that there is a phase transition in this nonequilibrium
system.
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Linear instability analysis

We can show that there is a dynamical instability in the dynamics by noting that the
continuity equation for a tagged active particle, from the adjoint of Eq. 2.12 evaluated at
� = 0, is

@⇢(r, ✓, t)

@t
= �r · [V0(⇢)b(✓)⇢(r, ✓, t)] +Dt(⇢)r2⇢(r, ✓, t) +Dr@

2

✓
⇢(r, ✓, t). (3.67)

We introduce the mass density and polarization to be

⇢(r, t) =

Z
⇢(r, ✓, t)d✓, (3.68)

and

p(r, t) =

Z
b(✓)⇢(r, ✓, t)d✓. (3.69)

Combining Eqs. 3.67-3.69, we find that the equations of motion for the mass density and
polarization are

@⇢(r, t)

@t
= �r · [V0(⇢)p(r, t)] +Dt(⇢)r2⇢(r, t), (3.70)

and
@p(r, t)

@t
= �rV0(⇢)⇢(r, t)

2
+Dt(⇢)r2p(r, t)�Drp(r, t). (3.71)

These equation of motion ignore higher order orientation fields in order to have a closed
set of equations [6]. We can consider dynamical fluctuations from the homogeneous density
profile by defining a mean and a linear fluctuation term as

⇢(r, t) = ⇢̄+ �⇢(r, t). (3.72)

The polarization is zero on average for this system so a nonzero polarization would result
from a dynamical fluctuation. By inserting solutions of the form

p, �⇢ = e�(k)t+ik·r (3.73)

into Eqs. 3.70 and 3.71, we get a dispersion of

�(k) = �1

2
�Dt(⇢)k

2 +
1

2

p
1� 2 (v � ⇢̄⇣) (v � 2⇢̄⇣) k2. (3.74)

This equation quantifies the growth rate from a perturbation. There are fluctuations as a
function of k that cause the dispersion to be positive which denotes a fluctuation will not
decay and continue to grow leading to a dynamical instability.
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Phase separated systems

We now consider a modified density observable to be

⇢a,t =
1

4a2t

Z NX

i=1

h(ri(t))dt (3.75)

which is similar to Eq. 3.1 in that it is time integrated but now the average density is set
by the number of particles in the subvolume at an instance in time, ⇢̄a = Na

4a2
, where the

subsystem still has dimensions of 2a. This defines the number of particles in the subsystem
at time t to be

Na =
NX

i=1

h(ri(t)). (3.76)

For a homogeneous system the density within the subsystem will be the same as the total
system

⇢̄a = ⇢̄. (3.77)

The CGF cloning is plotted in Fig. 3.6 for various subsystem sizes, a = 2, 3, and 4, at
the state points v = 120 and ⇢ = 0.25. To obtain points in Fig. 3.6a), Nw = 103 � 107

walkers was used. These state points would be phase separated in the infinite time limit but
a nucleation event would take a prohibitively long time to happen. The complete system
including the bath has N=400-600 particles depending on the system size with square box
dimensions to give the bulk density of ⇢̄ = 0.25. All results are with an observation time of
t = 5�t, a rotational di↵usion constant of Dr = 3, and a translational di↵usion constant of
Dt = 0.5.

In Fig. 3.6a), the critical �, �c, is at the point at which the curvature of the CGF changes.
The critical lambda moves closer to zero as the size of the subsystem grows. In Fig 3.6b), the
distributions for various subsystem sizes are plotted. There are clear finite size e↵ects with
the dense phase becoming more probable with increasing system size. In the thermodynamic
limit, we expect the dilute phase to still be more probable since the state point is closer to
the dilute phase of MIPS. At a phase point that is directly equidistant from both the dense
and dilute phases we would expect equal probable dynamical phases but that is not what is
studied here.

From the distribution in Fig. 3.6b), we can calculate the average density as a function
of � by

h⇢i� =
Z
⇢ e�4a

2
t[I(⇢)+�⇢]d⇢. (3.78)

Similarly, the fluctuations can be calculated by a derivative of the � dependent density with
respect to �,

4a2h(�⇢)2i��2 = �2
h⇢i�
d�

. (3.79)

Both the average and the variance is plotted in Fig. 3.7. The inset of Fig. 3.7b) shows
scaling consistent with a first order dynamical phase transition with a critical lambda that
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a) b)a) b)

a) b)

Figure 3.6: Large deviation functions for interacting active matter at the state point of
v = 120 and ⇢ = 0.25. a) The CGF and b) the rate function as a function of subsystem sizes
of 4⇥ 22, 4⇥ 32, and 4⇥ 42.

a) b)

Figure 3.7: The response of the a) density as a function of � and b) the size intensive variance
showing a peak growing with size and becoming narrower. The inset shows the scaling of
the peak height with probe area.
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scales linearly with system size. The two density phases in Fig. 3.7a) are close to those
measured in MIPS [114].

Future works will try to derive an approximate CGF and control forces for 2D interacting
homogeneous systems. There are ways to map 2 dimensional circular wells to a pseudo 1
dimensional problem when there is no angular momentum in quantum mechanics. This may
provide insight into this study. We would also like to understand the di↵erences between
the crystallization transition which does not rely on motility to happen, MIPS which does,
and how motility changes the crystallization transition [120]. Another interesting avenue
is seeing if there are universal bounds on density fluctuations just as there are for current
fluctuations [40].
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Chapter 4

Energy dissipation and self-assembly

introduction

This section mainly consists of my work in [42].
The active matter systems considered are away from equilibrium due to non-conservative

forces that generate self-propulsion. The constant energy dissipation is associated with the
entropy production and is deeply connected to their dynamic and structural properties [121,
122, 123, 124, 125, 126, 127, 128, 96, 129].

Additionally, by understanding the di↵erent sources of entropy production in active mat-
ter will lead the way in manipulating their collective behavior [130, 131, 132, 133, 134, 135,
136, 137, 138], designing active metamaterials with novel responses [139, 140, 141, 142], and
building active heat engines [143, 144, 145, 146, 147, 148, 149].

Stochastic thermodynamics provides a framework for studying entropy production and
has supplied general theories that constrain its statistics [37, 35, 38, 46, 150] and its role
in nonequilbrium response [102, 103, 104, 47, 105, 106, 107, 151, 152, 108, 109, 110, 111,
153, 112]. Here, we provide a general bound on the distributions of entropy production for
interacting active matter using stochastic thermodynamics and large deviation theory [8].
While not as universal as the thermodynamic uncertainty principle [39, 154], the specific
consideration of active matter admits a bound that in some cases is tighter, and one in
which deviations can be physically understood. The bound we present is valid arbitrarily far
from equilibrium for self-propelled particles and is saturated in the limit that the interparticle
contribution to the entropy production is small. Near phase transitions, the bound is weak as
fluctuations are enhanced due to emergent e↵ective long-ranged interactions that we quantify.
This work provides a link between entropy production fluctuations and collective phenomena
in active matter and ways to control them.

All of the active matter considered are of the form

ṙi = v bi + µFi

�
rN
�
+
p
2Dt⌘i , (4.1)

where ri denotes the position of the ith particle, v and bi set the typical magnitude and
direction of self-propulsion, µ is a single particle mobility, and ⌘i is a Gaussian white noise
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with h⌘↵
i
(t)i = 0 and h⌘↵

i
(t)⌘�

j
(t0)i = �ij�↵,��(t � t0) for the ↵ and � components of the

random force. The translational di↵usion coe�cient, Dt, satisfies a fluctuation-dissipation
relation, Dt = ��1µ where ��1 is the temperature times Boltzmann’s constant. Throughout,
we take µ = Dt = 1. The interparticle forces are conservative, F (rN) = �rU(rN), and
in general depend on all N particles’ positions, rN . This class of active matter has a non-
conservative self-propulsion term, vb, which is driven by a constant energy supply. Our
formulation is independent of the statistics and dynamics of the self propulsion vector, b,
and may be correlated due to aligning interactions. The dynamics of the orientation vector
b are model specific discussed in the next section but our results are largely independent of
its form. For concreteness, below we will consider collections of interacting active Brownian
particles (ABPs), active dumbbells (ADPs), run and tumble particles (RTPs), and active
Ornstein-Uhlenbeck particles (AOUPs).

4.1 Form of the active force

ABPs and RTPs

For both ABPs and RTPs the orientation vector has a fixed magnitude, so in two di-
mensions it can be uniquely parameterized by an angle ✓. For the ith particle, bi =
{cos(✓i)x̂i, sin(✓i)ŷi}, where x̂i and ŷi are the unit vectors in the x and y directions, re-
spectively. For ABPs, the dynamics of ✓i are Brownian,

✓̇i(t) = ⌘✓
i
(t) (4.2)

where ⌘✓
i
is a Gaussian white noise, satisfying h⌘✓

i
(t)i = 0 and h⌘✓

i
(t)⌘✓

j
(t0)i = 2Dr�ij�(t� t0)

with Dr being the rotational di↵usion constant. We take Dr = 3Dt/�2 throughout the main
text.

The dynamics of ✓ for RTPs are piecewise constant over waiting times, ⌧ , satisfying a
Poisson process [82, 155]. The waiting time distribution is given by an exponential distribu-
tion,

P (⌧) = �e��⌧ , (4.3)

with constant reorientation rate �. We take � = Dt/�2. At each ⌧ , the particles reorient by
drawing a new ✓ chosen uniformly over the range [0, 2⇡].

ADPs

Each ADP is composed of two particles that are tethered together by a harmonic bond. The
additional harmonic bond potential is given by UH(r) = k(r � l)2/2, where k is the spring
constant, l is the rest length, and r is the displacement between the two bonded particles. In
the main text, we take k = 100 ✏/�2 and l = 1.5 �. The self-propulsion direction is along the
bond vector. For the ith ADP, composed of monomers 1 and 2, bi = r̂i,12 where r̂i,12 is the
unit displacement vector between monomers 1 and 2. The time evolution of the orientation
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vector is given by the time evolution of the displacement vector between the two composite
particles as dictated by their individual equations of motion [156, 157].

AOUPs

For AOUPs, the self propulsion vector changes both its magnitude and direction. Its equation
of motion is of the form of an Ornstein-Uhlenbeck process and given by

ḃi = �Drbi + ⇠i (4.4)

where ⇠i is a Gaussian random variable which has a zero mean, h⇠i,↵(t)i = 0, and a variance
of h⇠↵

i
(t)⇠�

j
(t0)i = 2DaD2

r
/v2�ij�↵,��(t� t0) for each ↵, � component and Da sets the scale of

fluctuations in the magnitude of ḃi [96, 111]. We take Dr = Dt/�2, v =
p
2DaDr, and study

a range of Da’s.

4.2 Derivation of entropy production

The entropy production is derived from time reversal symmetry properties of the path action
in stochastic thermodynamics [158, 36, 159, 160, 161], �S = lnP [�]/P [�̃], where P [�] is
the probability of a forward trajectory � = {rN(t), bN(t)} and P [�̃] is the probability of
observing the time-reversed trajectory.

Without a specific source for how the self-propulsion arises, we use the convention that the
parameter v is even under time-reversal which agrees with previous work [162, 163, 164, 165,
166]. Within this convention, non-interacting particles have an entropy production that is
proportional to their propulsion squared, v2. The choice of convention for time reversal with-
out an underlying microscopic model of self-propulsion is somewhat arbitrary [167]. However,
all of the collective phenomena reported below are independent of the convention [168]. The
convention we follow is analogous to the active work [164] and can be derived independently
from mechanical considerations.

ABPs

The probability of observing a path for a system of ABPs with conservative interactions in
the Stratonovich convention (↵ = 1/2 in Eq. 3.32) is

P [�] / exp

"
�

NX

i=1

Z
t

0

dt0

✓
ṙi � v bi � µFi

�
rN
�◆2

4Dt

+

rri ·
✓
µFi

�
rN
�◆

2
+

ḃ2
i

4Dr

#
, (4.5)

where the gradient term in the second line follows from the Stratonovich convention. After
performing the time reversal operation and taking a ratio of path probabilities, the entropy
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production then becomes

�S =
1

Dt

NX

i=1

Z
t

0

dt0
⇥
v bi � ṙi(t0) + ṙi � µFi

�
rN
�⇤

, (4.6)

which is a sum of two terms. However, since we are using the Stratonovich convention the
chain rule is preserved and the term

NX

i=1

Z
t

0

dt0ṙi � Fi

�
rN
�
= U(rN (0))� U(rN (t)) , (4.7)

does not grow with time, unlike the first term. In the long time limit it will become negligible,
and can be neglected in the entropy production.

AOUPs

For AOUPS using the Stratonovich convention, the derivation of the form of the entropy
production follows similarly as for the other models. Specifically, the path probability is

P [�] / exp

"
�

NX

i=1

Z
t

0

dt0

✓
ṙi � v bi � µFi

�
rN
�◆2

4Dt

+

rri ·
✓
µFi

�
rN
�◆

2

+
v 2

⇣
ḃi +Drbi

⌘2

4DaD2
r

� rbi ·Drbi
2

#
, (4.8)

where the additional force on bi results in the last two terms. After performing the time
reversal operation, the entropy production is

�S =
NX

i=1

Z
t

0

dt0
✓
v bi � ṙi

Dt

+
ṙi � µFi

�
rN
�

Dt

� v 2ḃi � bi
DaDr

◆
, (4.9)

where the first two terms are analogous to the ABPs. Both the second term and third term
do not grow with time, and so in the long time limit the entropy production reduces to

�S =
v

Dt

NX

i=1

Z
t

0

dt0 bi � ṙi , (4.10)

which is equivalent to the form found for the ABPs.
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4.3 Bound on entropy production fluctuations

As shown in the previous section all models, under an even time reversal for the self-
propulsion term, have the same form for entropy production as

�S =
v

Dt

NX

i=1

Z
t

0

dt0 bi � ṙi . (4.11)

For the time and system size intensive entropy production, s = �S/(Nt), the CGF is defined
as,

 (�) =
1

tN
ln
⌦
e�s(�)Nt

↵
0
, (4.12)

where h. . . i0 denotes average over paths and � is the counting variable that probes rare
fluctuations of the entropy production when nonzero. Cumulants of the entropy production
are computable from  (�) through derivatives with respect to �.

Calculating  (�) or I(s) exactly for interacting systems is di�cult because of many-
body correlations. However, we find that  (�) can generally be rewritten by factoring out
the single particle part,

 (�) =  f (�) +
1

Nt
ln
⌦
e��W

↵
u�

, (4.13)

where  f (�) is the CGF for an isolated active particle. The remaining contribution to  (�)
represents interparticle correlations and is given by the CGF of

�W = �v
NX

i=1

Z
t

0

dt0 bi · Fi , (4.14)

averaged over an ensemble with an additional force u�. The force u� is the optimal control
force to realize rare entropy production fluctuations for an isolated particle and its model
specific form is considered below. The observable �W is the dimensionless work done on the
surrounding particles due to self-propulsion. By applying Jensen’s inequality to Eq. 4.13,

 (�) �  f (�) + ��v hb · F iu�
, (4.15)

 (�) is bounded (see section 4.4). The correction over the single particle CGF can be
interpreted as ��v times the e↵ective drag a tagged particle feels in the direction of the
self-propulsion due to the surrounding particles [6]. This is the same friction introduced in
the context of current fluctuations in chapter 2. This gives rise to an e↵ective velocity that
is smaller than v and dependent on the density and � [25].

Inserting the bound on the CGF in Eq. 4.15 into the Legendre-Fenchel transform, we
derive a bound on the distribution of the entropy production, Ib(s),

I(s)  Ib(s) = max
�

⇥
�s�  f (�)� ��v hb · F iu�

⇤
. (4.16)
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By construction the bound recovers the correct mean dissipation and is tight far into the
tails of the distribution in the limit that fluctuations in �W are small and the saddle point
approximation to its CGF is accurate. Data in Fig. 4.1 confirms the upper bound for all of
the active matter models studied. Throughout, I(s) is computed using the cloning algorithm
[169, 75] and Ib(s) by computing h�W iu�

from direct simulations. All simulations are done

with a WCA interparticle potential [66], U(r) = 4✏
h�

�

r

�12 �
�
�

r

�6i
+ ✏ for r  21/6� and

zero otherwise. The parameter ✏ is the energy scale of the interactions and � is the particle
diameter. ADPs have an added harmonic potential between composite particles. Our results
are presented with a non-dimensional v in units of Dt/�, � and Dr in units of Dt/�2, and
bulk density ⇢ in units of 1/�2 in two dimensions. Also, Dt, and � are set to 1. Data in
Fig. 4.1a shows that there are large parameter regimes where the bound is tight. In practice,
the bound is accurate when the system is away from dynamical phase transitions, this is
valid when ⇢(v/Dr)2 < 1. Nevertheless, even when ⇢(v/Dr)2 ⇡ 1 we find the bound is still
reasonably tight.

The detailed forms for I(s) and Ib(s) are distinct for di↵erent models of active matter.
For ABPs, ADPs, and RTPs, the entropy production fluctuations are Gaussian for isolated
particles, with  f (�) = v2�(1 + �)/Dt (see section 4.4). The corresponding control force,
u� = 2�vb, is appended to the existing forces in Eq. 4.29 such that rare entropy production
fluctuations are realized by a renormalized velocity, v� = v(1 + 2�). This  f (�) gives
rise to a bound that is nearly Gaussian, as shown in Fig. 4.1b. For low densities and
low velocities, I(s) ⇡ Ib(s). Increasing v, the bound weakens for smaller than average
entropy production fluctuations, s < hsi0. Fluctuations that result in larger than average
entropy production, s > hsi0, for large v are more probable than predicted by the bound
due to neglecting contributions from interparticle correlations. However, the relative error
between the entropy production distribution and the bound decreases into the tails due to
the increasingly independent particle behavior elaborated upon below.

For isolated AOUPs, the entropy production fluctuations are generically non-Gaussian

and  f (�) = Dr

⇣
1�

p
1� 2v2�(1 + �)/DtDr

⌘
, whereDr is the rotational di↵usion constant

(see Appendix 4.4). The fluctuations in s are Gaussian only near the mean and are asym-
metric [164]. This is in contrast to the Gaussian distribution that would be predicted by the
thermodynamic uncertainty relations, and reflects the finite memory in the self-propulsion
vector. In this case, with specific consideration to the details of the system we obtain a
tighter bound. The control force includes the same renormalized velocity as for ABPs, but
in addition includes a force on the particle’s orientation, u� =  f (�)b which modulates the
self propulsion speed. In Fig. 4.1c, we see that the bound gives an accurate prediction of
the fluctuations across the densities and v’s considered. The fluctuations are still enhanced
relative to the bound for s < hsi0, though less so than in Fig. 4.1b.
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Figure 4.1: Entropy production fluctuations for a variety of active matter systems. (a) Rate
function obtained by importance sampling versus the bound in Eq. 4.16 with the symbols
corresponding to the labels in (b) and (c). (b) Entropy production fluctuations for ⇢ = 0.1,
ABPs with Dr = 3, ADPs with spring constant k = 100 ✏/�2 and rest length l = 1.5�, and
RTPs with a tumble rate � = 1 for di↵erent self-propulsion values. (c) Entropy production
fluctuations for AOUPs for di↵erent parameter ranges and Dr = 1. In all panels the red line
denotes Ib(s) and the errorbars are smaller than the symbols.

4.4 Free particle CGFs, optimal control forces, and
bound derivation

The bound in the previous section relies on knowing the non-interacting CGF for entropy
production. In this section, it is detailed how this is calculated. The free particle CGF is
computable from the solution of a generalized eigenvalue equation of the form

L�⌫� =  f (�)⌫� , (4.17)

where L� is the Lebowitz-Spohn, or tilted, operator and ⌫� and  f (�) are the maximum
eigenvector eigenvalue pair. The tilted operator is derivable from the time evolution of the
CGF and the relation to the spectrum of L� and the CGF follows from the long time limit.
Generically, for a current-type variable [158, 8] the optimal control force that realizes rare
entropy production fluctuation is given by

u� = 2�vb+ 2D ·r ln ⌫� , (4.18)

where D is a matrix of di↵usion constants in define in space crossed with the self-propulsion
vector dimension and r = {rr,rb}. The optimal control force is encoded in the maximum
eigenvector associated with L� [8].

In order to fully solve the eigenspectrum it is necessary to solve the eigenvalue problem
for the adjoint tilted operator [170]

L†

�
q� =  f (�)q� . (4.19)
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since in general L� is not Hermitian. The boundary conditions of the eigevectors must obey a
normalization boundary condition ⌫�(b)q�(b) ! 0 as b ! 1 [170]. The boundary condition
can equivalently be written as Z

db q�(b)⌫�(b) = 1, (4.20)

and for convenience we impose that
Z

db q�(b) = 1. (4.21)

ABPs

The tilted generator for the entropy production of an isolated ABP is

L� = v b ·

rr + �

v b

Dt

�
+Dt


rr + �

v b

Dt

�
·

rr + �

v b

Dt

�
+r2

bDr ,

which can be solved on a periodic domain by a constant eigenvector, ⌫� = const. This is
equivalent to assuming that the stationary state is uniform and isotropic for all �. The CGF
follows by noting b · b = 1 and is

 f (�) = �
v2

Dt

+ �2
v2

Dt

, (4.22)

and that the control force that realizes the rare dynamics reduces to u� = 2�v b. The
corresponding equation of motion is

ṙi = v (1 + 2�) bi +
p
2Dt⌘i , (4.23)

where we see explicitly that the control force acts to renormalize the self-propulsion velocity.

AOUPs

The tilted generator for the entropy production of an isolated AOUP is

L� = v b ·
"
rr + �

v b

Dt

#
+Dt

"
rr + �

v b

Dt

#
·
"
rr + �

v b

Dt

#
+

DaD2

r

v2
r2

b �Drb ·rb , (4.24)

which contains an additional convective term in b due to the constant restoring force. As-
suming the system maintains a uniform and isotropic state at all �, such that the eigenvector
does not depend on r, we can simplify the tilted operator,

L� = �
v2|b|2
Dt

+ �2
v2|b|2
Dt

+
DaD2

r

v2
r2

b �Drb ·rb , (4.25)
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where b is the magnitude of the vector b. The domain of b is from 0 to 1, the eigenvector
from equation (4.17) is

⌫�(b) = exp

✓
v2|b|2 f (�)

4DaD2
r

◆
, (4.26)

and its corresponding eigenvalue is

 f (�) = Dr

 
1�

r
1� 4Da

Dt

�(1 + �)

!
, (4.27)

which can be verified by inserting ⌫(b) back into Eq. 4.25 and noting that since it’s in
two dimensions it is split up into the x and y dimensions with |b|2 = b · b = b2

x
+ b2

y
and

r2

b = r2

bx
+r2

by
. The left eigenvector can also be solved to obtain the normalization constant

but it is not needed for the control force calculations.
The optimal control force in the r and b directions, u� = {ur

�
,ub

�
} are

u� = {2�v b, b f (�)} , (4.28)

which is the result in the main text for the control force for non-interacting AOUPs. The
biased equations of motion become

ṙi = v (1 + 2�) bi +
p
2Dt⌘i , (4.29)

and
ḃi = �Drbi (1�  f (�)/Dr) +

p
2DaD2

r
/v2⇠i , (4.30)

where the former is identical for ABPs and the latter is specific to AOUPs.
In simulations, we relate AOUPs to ABPs by setting v =

p
2DaDr as shown in section

4.3.

Entropy bounds from Girsonov transformation

One of the main results being the bound in Eq. 4.15 is obtained by manipulating the path
action so the derivation is detailed in this section. The CGF for the entropy production can
be rewritten as an average over the biased ensemble by performing a change of measure, or
Girsonov transformation, from the original path ensemble with probability P [�],

 (�) =
1

tN
ln

Z
D[�]P [�]e��S

=
1

tN
ln

Z
D[�]

P [�]

Pu�
[�]

Pu�
[�]e��S

=
1

tN
ln

⌧
P [�]

Pu�
[�]

e��S

�

u�

, (4.31)
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where Pu�
[�] denotes a path ensemble with an additional force u� added to the original

equations of motion, and h. . . iu�
denotes an ensemble average with respect to that measure.

Using Jensen’s inequality, we find a general bound within an arbitrary control ensemble
[171],

 (�) � 1

tN

 
� h�Siu�

+

⌧
ln

P [�]

Pu�
[�]

�

u�

!
, (4.32)

which need not be tight. However, below we show how in the systems studied by choosing
u� to be the optimal control force for the free particle, we can arrive at the tight bound on
the entropy production introduced in section 4.3.

ABPs

The relative actions with and without the single particle control force for a system of inter-
acting ABPs is

ln
P [�]

Pu�
[�]

=
NX

i=1

Z
t

0

dt0
v2�(1 + �)

Dt

� v

Dt

�bi � ṙi + �v�bi · Fi

�
rN
�
, (4.33)

which employs the identity b · b = 1. We recognize the first term on the right hand side
as  f (�), the second term as the negative of the entropy production, and the final term as
�W . Inserting this relative action into Eq. 4.31, we note that the entropy production terms
cancel, and we can pull the constants out of the average. The bound can be shown to work
analogously for the ADP and RTP models since the added control force does not change the
statistics of the orientation, b, and only changes the positional degrees of freedom.

AOUPs

The relative actions with and without the single particle control force for a system of inter-
acting AOUPs is

ln
P [�]

Pu�
[�]

=

Z
t

0

dt0
✓
�(1 + �)

Dt

�  f (1�  f/2Dr)

2DaDr

◆
v2b2

+  f (�)�
v

Dt

�bi � ṙi + v��bi · Fi

�
rN
�
, (4.34)

which is more complicated than for the ABPs due to the fluctuating magnitude of the self-
propulsion vector. We still can identify the same structure as before, with the free particle
CGF, negative of the entropy production, and �W , however there is an additional first
term in the parenthesis. Inserting the definition of  f from Eq. 4.27 we find that the term
proportional to v2b2 is identically 0. This leaves us with the result for the bound in the main
text.
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4.5 Maximizing dissipation and collectively moving
phase

In order to understand the origins of the deviations from the bound and the connections to
collective behavior in active matter, we consider in detail a system of ABPs at conditions
near and far from its motility induced phase separation (MIPS) transition. Additionally, the
asymmetry of entropy production fluctuations about its average, motivates us to consider
separately fluctuations of s > hsi0 and s < hsi0. In Fig. 4.2, the distributions for s > hsi0
are shown for v = 10 and v = 120, for a variety of system sizes at fixed density, ⇢ =
0.1. While the probability is larger than predicted by the bound, it can be perturbatively
corrected. Specifically, we can expand Eq. 4.13 up to the second cumulant,  (�) ⇡  f (�) +
(� h�W i

0
+ �2 h��W 2i

0
/2) /Nt. The result of this approximation to the rate function is

shown in Figs. 4.2 a) and b). For v = 10 the fluctuations are well described by the
cumulant approximation, while for v = 120 asymptotic entropy production fluctuations are
narrower than predicted. The Gaussian fits for small fluctuations for v = 10 and v = 120
is hsi0 = v2(1 � 0.84⇢), h(�s)2i = 3v2, and hsi0 = v2(1 � 0.63⇢), and h(�s)2i = 12v2 with
⇢ = 0.1 which are represented by black dotted lines. There is not a clear size dependence for
the system sizes studied here and we have found that all three system sizes considered have
the same best fit.

The asymptotic behavior for s � hsi0 is well described by free particle motion for all v’s.
This can be seen by considering d /d� = hsi� from hsi� =

R
ds s exp{Nt[�I(s)+�s� (�)]},

which is a direct probe of the tails of I(s). As shown in Figs. 4.2 c) and d), for both large and
small v, hsi� exhibits a crossover from Gaussian statistics. Near � = 0, hsi� varies linearly
with � with a slope given by the variance h�s2i0. For �� 0, hsi� varies linearly with � with
a slope given by the free particle variance. An analogous crossover has been noted in the
current statistics of an interacting tagged ABP described in chapter 2 [25]. The asymptotic
free behavior implies that the most likely way for the system to produce large amounts of
entropy is to suppress density correlations and decrease �W . This behavior results from
the system adopting a net orientation for the particles’ self-propulsion vector [163, 172]. If
the net orientation persists in the thermodynamic limit, it would represent a spontaneous
symmetry breaking [173].

4.6 Minimizing dissipation and phase separation

Fluctuations for s < hsi0 are much larger than predicted by the bound and are collective
in origin. Fig. 4.3 shows the distributions of entropy production and hsi� for v = 10 and
v = 120 at ⇢ = 0.1 for 3 system sizes. The distributions in Figs. 4.3 a) and b) show
significant finite size e↵ects for s < hsi0. In Figs. 4.3 c), and d), this is evident by a
transition between two types of behavior that sharpens with increasing N and occurs at
larger � with increasing v over the limited range of system sizes we can study numerically.
These features are a hallmark of a dynamical phase transition, in this case between a dilute
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Figure 4.2: Larger than average entropy production fluctuations for ABPs with N = 10
(purple circles), 20 (blue squares), and 40 (black diamonds). Distribution of entropy pro-
duction for a) v = 10 and b) v = 120 with ⇢ = 0.1. In a) and b), the red lines are Ib(s) and
the dashed black lines are fits at � = 0 to extract the second cumulant. The average entropy
production at finite � for c) v = 10 and d) v = 120 with ⇢ = 0.1. The dashed lines are from
the cumulant fits in a) and b), and the red line is the non-interacting rate function.

phase and a phase separated state reminiscent of MIPS [114, 48, 174]. As has been found
previously [163], this shows that the most likely way for the system to produce little entropy is
to condense, decreasing the particles’ displacement by increasing the e↵ective drag. We find
we can describe I(s) by explicitly assuming that each dynamical phase is well approximated
by a Gaussian distribution. Specifically, assuming  i(�)Nt = �h�Sii + �2h��S2ii/2 for
i = d, c being the dilute and condensed phases, the rate function can be computed from a
contraction principle [43] for the CGF,  (�) = max�[ c(�), d(�)]. The result is a Maxwell
construction and is shown in Fig. 4.3 to be a good approximation in the infinite system size
limit.

The Gaussian fit for the phase separated peak in Fig. 4.3 is given by hsi0 = v2(1�0.84⇢),
h(�s)2i = 2v2 for v=10 with ⇢ = 0.58 , and hsi0 = v2(1 � 0.84⇢), h(�s)2i = 2v2 for v=120
with ⇢ = 1.12. Note that the variance for both v’s considered for the phase separated system
is given by the non-interacting CGF. The averages used in the Maxwell construction and
those in Fig. 4.3 c, and d of the main text are slightly di↵erent due to the shift in the mean
in the thermodynamic limit given by hsi�c = hsi0 + �ch(�s)2i0 but the slopes are identical.
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Figure 4.3: Smaller than average entropy production fluctuations and dynamical phase tran-
sition for ABPs for di↵erent system sizes N = 10 (purple circles), 20 (blue squares), and 40
(black diamonds). The phase diagram and example structures are illustrated at the top with
phase separation on the left of the phase diagram and a homogeneous state on the right.
Distribution of entropy production for a) v = 10 and b) v = 120 with ⇢ = 0.1. In a) and
b), the dashed red lines are a Maxwell construction for the dynamical phases. The average
entropy production at finite � for c) v = 10 and d) v = 120 with ⇢ = 0.1. The dashed red
lines are from the Gaussian fits in a) and b) used in the Maxwell construction.

4.7 Controlling phase separation

Entropy production from coarse-grained density field

For s < hsi0, it is not su�cient to perturbatively correct the bound even for v = 10, which
is far from the MIPS transition. To understand this behavior we have developed a coarse-
grained theory. We define a fluctuating density field as ⇢(r, t) =

P
N

i=1
�[r � ri(t)].

Assuming that the important contributions to the inter-particle entropy production comes
from forces that directly oppose self-propulsion, we approximate bi ·F (rij) ⇡ �F (rij) where
F (rij) is the contribution of the ith particle’s force due to particle j and rij is the dis-
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placement vector between particles i and j with magnitude rij. Under this approximation
the fluctuations of �W depend only on the time evolution of the density field and can be
written in terms of ⇢(r, t), �W ⇡ ��v

R
dt
R
drdr0⇢(r, t)F (|r � r0|)⇢(r0, t)/2 , which is a

convolution of two points of the density field with the interparticle force. For simplicity we
have assumed that F (0) = 0. Further assuming that the force can be Fourier transformed,
we find

�W = ��v
2

Z
dt

Z
dk |⇢̂(k, t)|2F̂ (k) , (4.35)

where ⇢̂(k, t) is the Fourier transformed isotropic density field and F̂ (k) the Fourier trans-
formed force.

Below we first derive an approximate equation of motion for the density, in the limit of
small k and small fluctuations from its mean. Then we describe the approximate calculation
of the cumulant generating function and control force.

Equation of motion for the density

We are interested in the density fluctuations with the added control force which changes the
self propulsion speed proportional to lambda as v� = v(1 + 2�). To arrive at an e↵ective
equation of motion for the density we first define the instantaneous density field as,

⇢(r, t) =
NX

i=1

�[r � ri(t)] , (4.36)

and corresponding polarization field as

P (r, t) =
NX

i=1

�[r � ri(t)]bi(t) , (4.37)

where � are Dirac’s delta function. In principle, higher order multipoles in the orientation
field are needed to completely describe the dynamics, however we neglect quadrupole and
higher fields. For the homogeneous states considered, this has been shown to be a good ap-
proximation [77, 70]. Following the standard procedures [175, 82] a set of coupled stochastic
equation of motion for both fields. For the density field,

@⇢(r, t)

@t
= �rr


µ⇢(r, t)

Z
dr0F (r � r0)⇢(r0, t)

+v�P (r, t)] +Dtr2

r⇢(r, t) +rr

p
2��⌘⇢(r, t) (4.38)

where �� = Dt⇢(r, t) is the mobility and the noise obeys the statistics h⌘⇢(r, t)i = 0 and
h⌘↵
⇢
(r, t)⌘�

⇢
(r0, t0)i = �↵,��(t� t0)�(r � r0). For the polarization field,

@P (r, t)

@t
= �rr


µP (r, t)

Z
dr0F (r � r0)⇢(r0, t)

�
�rr

v�⇢(r, t)

2
+Dtr2

rP (r, t)

�DrP (r, t) +rr

p
2⇤P⌘P (r, t) (4.39)
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where ⌘P (r, t) has the same noise statistics as ⌘⇢ and ⇤P = DtP (r, t).
We assume there is a separation of time scales between the density field, which we assume

to be slow, and the polarization field, which we assume to relax quickly. Further we assume
that on the scale of density fluctuations, the polarization is constant and homogeneous [6].
These so-called adiabatic assumptions are standard in the treatment of instabilities in the
ABP system. Under these assumptions, the polarization is stationary and can be averaged
separately from the density and we can neglect its gradient terms. Rearranging the remaining
terms, we have an explicit relation between the polarization and density fields,

P (r, t) = � v�
2Dr

rr⇢(r, t) , (4.40)

which e↵ectively separates the evolution of the two fields. Inserting this into Eq. (4.38) we
arrive at a closed equation of motion for the density,

@⇢(r, t)

@t
= �rr


µ⇢(r, t)

Z
dr0F (r � r0)⇢(r0, t)

�
+D�r2

r⇢(r, t)+rr

p
2��⌘⇢(r, t) (4.41)

with D� = Dt + v2
�
/2Dr as the e↵ective di↵usion constant.

While the equation is closed, it is still nonlinear due to the fluctuating convective term
from the interparticle interactions. While more sophisticated expansions exist, for low den-
sities, we can linearize the evolution equation by simply dropping the second order term in
the density,

@⇢(r, t)

@t
= D�r2

r⇢(r, t) +rr

p
2��⌘⇢(r, t) , (4.42)

which results in a standard fluctuating di↵usion equation. Corrections due to interactions
can be included phenomenologically by making D� and �� depend on the mean density.
Introducing the Fourier transforms, for the density

⇢̂(k, t) =

Z
dre�ik·r⇢(r, t) , (4.43)

and the noise,

⌘̂(k, t) =

Z
dre�ik·r⌘(r, t) , (4.44)

we can arrive at the equation of motion in Fourier space to be

@t⇢̂(k, t) = �k2D�⇢̂(k, t) +
p
2��k2⌘̂(k, t) , (4.45)

where, since the system is isotropic, the Fourier transform of the density and noise can
be represented as scalar functions. The D�, is the e↵ective di↵usion constant, �� is the
e↵ective mobility, and ⌘̂⇢ is a complex noise [6, 2, 85, 48, 176]. We have also redefined
⌘̂(k, t) ! i⌘̂(k, t) as an imaginary noise to get our final form, where

h⌘(k, t)⌘⇤(k, t0)i = �(t� t0) , (4.46)
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are its statistics that are local in k-space and ⇤ denoted complex conjugate.
The equation of motion for the Fourier transformed density in Eq. 4.45 takes the form

of a set of uncoupled, complex Ornstein-Uhlenbeck processes for each wavevector. The
large deviations of such a system for observables similar to �W have been considered in
detail previously [176]. The method to quantify the fluctuations of �W involves solving the
eigenspectrum of the tilted operator defined as

L� =
X

k>0

�k2D�⇢̂kr⇢̂k
+ k2��r2

⇢̂k
� �

�v�
2

F̂ (k) |⇢̂k|2 , (4.47)

which has to be solved for both the real and imaginary parts of ⇢̂k. The CGF for �W can
be solved exactly within this approximate linearized dynamics. Defining � =  �  f ,

� (�) =
1

N

X

k>0

� k(�) , (4.48)

where for each k,

� k(�) = k2D�

2

41�

s
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�
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3

5 , (4.49)

and the corresponding eigenvector

⌫� =
Y

k>0

exp

"
|⇢(k, t)|2

2��k2
� k(�)

#
, (4.50)

factorizes into a product of independent modes, each quadratic in the density. For a density
type variable, the optimal control force is a gradient force, and so can be written as a
potential.

From this result we can obtain a more accurate bound than Eq. (4.15) by including the
contribution from interparticle correlations. This correction is valid for all positive �, but be-
comes unstable at a critical value �c  0 reflecting the breakdown in the linearized evolution
equation for ⇢̂(k, t). For a finite system with largest wavevector k = 2⇡

p
⇢/N , the location

of the instability is found by setting the discriminant to zero, �c ⇡ �4⇡2D2

0
⇢/�vF̂ (0)�0N

where for the short ranged forces considered, we can approximate the force as F̂ (0) and
we can neglect the � dependence in v�,D�, and ��. This instability signals the dynamical
phase transition that occurs at �c = 0� in the thermodynamic limit and whose influence
on the dynamics of active matter increases with v, and with increasing proximity to MIPS,
consistent with the results in Fig. 4.3. In a phase separated state, �W is a large negative
number which counteracts the free particle contribution and reduces the entropy production.

The origin of phase separation can be understood by noting that the optimal control
potential which gives rise to rare entropy fluctuations is, for large interparticle separations
r/� � 0 and in the limit � approaches zero,

V̂� ⇡ � �v�

ND0

X

k>0

|⇢̂(k, t)|2
2k2

F̂ (k) . (4.51)
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The inverse Fourier transform will involve a convolution between the WCA force and 1/k2

which gives rise to a Bessel Function. Since the WCA potential quickly decays, the long
range contribution in real space is a logrithmic potential,

V�(r) ⇡ ���vD0

ln r/2 , (4.52)

which is attractive for � < 0 with a magnitude that depends on v and the control force is
u� ⇡ (��v/D0)r ln r/2. For negative enough � or large enough v, this force will give rise to
phase separation. This optimal control force is similar to other passive models near di↵usive
instabilities [177, 178, 176].

The long-ranged e↵ective force demonstrates how e↵ective attractions are introduced by
self-propulsion in order to minimize the entropy production. This force is unique and en-
codes the way in which self-propelled particles interact provided the condition of obtaining a
lower than average value of the entropy production. As such, it provides a sharp relationship
between entropy production and emergent collective behavior in active matter. Correlations
between entropy production and motility induced phase separation have been observed pre-
viously at the level of the mean behavior [179, 121, 180], however this work codifies that
relationship on the level of fluctuations.

For both MIPS and the dynamical transition we discuss, phase separation is the result
of a di↵usive instability where density accumulates due to unbalanced fluxes made possible
by the system being kept from thermal equilibrium. We have shown such collective behavior
results from the reduction of entropy production and enhancement of density correlations.
Large entropy production by contrast, arises through the suppression of density correlations.
Thus, our results show how the structure of entropy production fluctuations are intimately
connected to long-ranged correlations in active matter. We expect that deviations from the
bound derived here can serve as a guide to identify criticality and novel phases of active
matter generally.
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Chapter 5

Phase separation in the cell

Introduction

In an equilibrium system, the steady state structures are usually those that minimize the
surface area. This is why, for instance, that during liquid-vapor phase separation the equi-
librium liquid phase usually forms a large macroscopic circular droplet. However, multiple 3
dimensional membraneless organelles defy this logic and can coexist in the cell by a theorized
phenomenon called liquid-liquid phase separation (LLPS) [181, 182]. Within this framework
multiple liquid-like droplets are considered to be in equilibrium and can coexist because of
supersaturation [183, 184]. Recently, it has been a question whether LLPS will be a unifying
theory to connect 2 dimensional and 3 dimensional condensates [185]. However, there has
been a dearth of detailed characterization of 2 dimensional protein phase transitions from
either the kinetic or thermodynamic aspects. Interestingly, a recent study recognized that
attaching proteins to the membrane, by posing di↵usive limitations and stabilizing the con-
densates, drastically altered the phase transition outcome of a protein/mRNA system from
its 3D LLPS results [186]. With these observations, one may question whether LLPS is the
only method in which phase separation in the cell occurs. In this section I will introduce a
minimal model that has all the necessary biological details based on an experimental study
of 2 dimensional condensates from our collaborators. This will then allow the construction
of a minimal model to understand the mechanism of aggregation in 2 dimensions.

5.1 LAT assembly: experimental motivations

LAT is an intrinsically disordered protein that contains many modifiable sites that become
active by phosphorylation. When Growth Factor Receptor-Bound Protein 2 (Grb2), and
Son of Sevenless (SOS) are added to LAT, the system undergoes a phase transition which
is associated with amplification of T cell signal transduction [5, 4]. Specifically, Fig. 5.1a
shows the engagement of TCR with pMHC results in phosphorylation of LAT, which triggers
assembly reactions on the cytoplasmic side of the plasma membrane by recruiting Grb2 and
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Figure 5.1: Schematic illustration of the LAT-Grb2-SOS condensation phase transition sys-
tem: a) The TCR signaling pathway which involves assembly formation with LAT-Grb2-
SOS. b) In vitro reconstitution of the LAT-Grb2-SOS condensation phase transition on a
supported lipid bilayer, where the assembly eventually condenses to a disordered state.

SOS. The recruited and activated SOS leads to further propagation of downstream signals.
This assembly is formed through a number of multivalent interactions across the protein
components, specifically, the binding of the SH2 domain of Grb2 with three phosphorylated
tyrosine residues on LAT and the interactions between the SH3 domains of Grb2 and po-
tentially five proline-rich domains of SOS [187, 188, 189]. Moreover, both LAT-Grb2 and
Grb2-SOS interactions exhibit relatively fast binding kinetics [3]. By applying the reduc-
tionist approach of in vitro reconstitution and attaching LAT molecules to a model lipid
membrane (Fig. 5.1b), the progress of the condensation can be tracked over time by total
internal reflection fluorescence microscopy (TIRFM). In Fig. 5.2a), the fluorescence images
of LAT-555 before and after the phase transition is shown. In the time course of 70 minutes,
the LAT-Grb2-SOS network went through a macroscopic phase transition and reached the
final state with two types of domains displaying distinctly di↵erent fluorescence intensities:
the heterogeneously shaped bright regions with high LAT concentration (defined as the “con-
densed” domains) and the dark regions with low LAT concentration (defined as “dispersed”
domains). Before introducing SOS, the fluorescence intensity distribution of the homoge-
neous LAT layer showed a histogram profile well fitted to a single Gaussian peak. During
the course of the phase transition, there was a time-dependent broadening of the histogram
profile. After the two domains reached the steady state, the fluorescence intensity distri-



CHAPTER 5. PHASE SEPARATION IN THE CELL 67

a) b)

c) d)

Figure 5.2: Kinetic characterization of the LAT-Grb2-SOS phase transition. a) On the left
are TIRF images of the LAT-555 layer before and after phase transition with 5.8 µM Grb2
+ 1.45 µM SOS. On the right are corresponding fluorescence intensity histograms with the
0 min profile fitted to a single Gaussian peak (grey shades) and the 70 min profile showing
two well separated Gaussian peaks (light blue and royal blue shades). b) Kinetic profile of
the phase transition at 25 °C. The inset shows the LAT density in the condensed domains
during the phase transition as a function of time plotted in the log-log scale. The fitted
slope of the linear trendline is 0.39. Error bars represent the standard deviation from eight
individual experiments. c) LAT-Grb2-SOS phase transition kinetic profiles in a temperature
range from 20 °C to 42 °C, and the curves are color-coded according to the temperatures.
Error bars represent the standard deviation from at least three repeats of experiments. d)
Extracted phase transition rate as a function of temperature.
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bution showed two prominent and well separated peaks, the positions of which correspond
to the average fluorescence intensity in the condensed domains and the dispersed domains.
The positions of these two peaks were monitored as the phase transition progressed and
quantitatively analyzed in Fig. 5.2b). The kinetic profile of the phase transition fits well to
a sigmoidal function, with a lag stage ( 40 min) and a transition stage. By simultaneously
analyzing area fraction of the two domains during the phase transition, the LAT concentra-
tion in the condensed domains can be tracked over time (Fig. 5.2b), inset), which exhibited a
power law increase with a time exponent of 0.39. It is worth noting that the phase transition
can be completely and quickly (< 2 min) reversed by adding a promiscuous phosphatase.
In Fig. 5.2c), the kinetics of the phase transition as a function of temperature is analyzed
for a range from 20 °C to 42 °C with LAT concentrations at 1200 ± 600 molecules/µm2.
It is clearly shown that increasing temperature drastically sped up the phase transition.
The phase transition rate was quantified as the steepest slope on the sigmoidal curves. In
Fig. 5.2d), the extracted phase transition rates were plotted against the temperature. From
20 °C to 39 °C, there was an exponential increase of kPT by almost an order of magnitude.
While above 39 °C, a sharp decrease of kPT was observed.

5.2 Model

To single out the necessary physics and biology of this phase transition observed in ex-
periments, a minimal microscopic model was developed for the equation of motion of LAT
molecules and the bonding kinetics between LAT molecules. In the model, the equation of
motion of the ith LAT molecule is given by

ṙi = µFi

�
rN
�
+
p
2kBTµ ⌘i , (5.1)

where the mobility, µ, and Boltzmann’s constant, kB, are both set to unity. Additionally,
each LAT molecule is assumed to be circular with a radius � = 10 nm, which for comparison
to experiments is the radius of gyration of LAT. The first term on the right of Eq. 5.1 is the
intermolecular forces each LAT feel. Depending on whether they are bound or unbound they
will have di↵erent forces. Unbound LAT have an excluded volume force between molecules
given by a Weeks-Chandler-Anderson potential with a characteristic energy scale given by
✏ which is set to unity. Bound LAT have additionally an attractive harmonic force with a
spring constant k = 100✏/�2, and a rest bond length between pairs of LAT at 1.5�. The
forces in equation form are

U(r) =

(
UWCA(r) unbound

UWCA(r) + UH(r) bound
, (5.2)

where

UH(r) =
1

2
k (r � 1.5�)2 , (5.3)



CHAPTER 5. PHASE SEPARATION IN THE CELL 69

and

UWCA(r) =

(
4✏
h�

�

r

�12 �
�
�

r

�6i
+ ✏ r  21/6�

0 otherwise
. (5.4)

Also, the rates to make, kon, and break bonds, ko↵, are the product of a prefactor rate, kb,
which sets the time scale of bond formation, multiplied by the kinetic constraints which are
that each LAT can form at most three bonds with other LAT molecules, and bonds are
formed and broken within a reactive distance set to Rreact = 2�. The rates are related by a
local detailed balance relation,

kon
ko↵

= e��EB(r) , (5.5)

and the energy to make a bond is composed of a constant term plus the energy to make a
harmonic bond written as

EB(r) = �4 + UH(r) . (5.6)

We have now completely specified the model. In order to sample the dynamics in a consistent
way, we must understand what local detailed balance means and an algorithm to implement
it.

Local detailed balance

We would like to make and break bonds in a thermodynamically consistent way. This is
ensured when the kinetics of this reaction follow detailed balance. Before I introduce how
LAT make or break bonds in the model, I will explain the idea of local detailed balance and
show the composition of the rates. Let’s consider two generic states A and B. For instance,
these two states could be the number of bonds of a LAT molecule. The transitions between
states A and B obeys local detailed balance if [190]

P (A)k(A ! B) = P (B)k(B ! A) , (5.7)

where P (A) and P (B) are the probabilities to be in state A and state B. Also, k(A ! B)
and k(B ! A) are the rates to go from state A to state B and vice versa. Rearranging Eq.
5.7, we get

P (A)

P (B)
=

k(B ! A)

k(A ! B)
. (5.8)

For a system in equilibrium, the ratio of states is just a change in the Boltzmann weight
shown as

P (A)

P (B)
= e�[E(A)�E(B)] . (5.9)

The rate constants can be decomposed into a product of a proposal rates and acceptance
probabilities:

k(A ! B) = ↵(A ! B)Pacc(A ! B) (5.10)
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and
k(B ! A) = ↵(B ! A)Pacc(B ! A). (5.11)

The ↵ in both reactions is the proposal rate or the prefactor rate represented as

↵ = 1� e�kb�t ⇡ kb�t. (5.12)

The Pacc is the acceptance probability of the proposed move and is represented in the
Metropolis-Hastings algorithm [190] in both cases as

Pacc = min
⇥
1, e��E

⇤
. (5.13)

Bonding

To incorporate the kinetic constraints of our LAT model in a realistic way, the detailed
balance has to be slightly modified to account for bond making and breaking. Now the
relation for detailed balance becomes [191, 192, 193, 191]

P (A)k(A ! B)hreac(r)hbond(A) = P (B)k(B ! A)hreac(r)hbond(B), (5.14)

where

hreac(r) =

(
1 for r  Rreact

0 otherwise .
(5.15)

and

{hbond(A), hbond(B)} =

8
><

>:

1 for two or less bonds making another

0 three bonds making another

1 three or less bonds breaking a bond

(5.16)

Hence, the rates are modified to account for the constraint that the bonds can only be made
if two LAT molecules are within a reactive distance, Rreac, and they both have no more than
two bonds each. Also, the contraint will be unity for any bonded LAT molecule proposing
to break a bond. The rates to make or break bonds then become the following:

k(A ! B) = ↵(A ! B)Pacc(A ! B)hreac(r)hbond(A) (5.17)

and
k(B ! A) = ↵(B ! A)Pacc(B ! A)hreac(r)hbond(B) . (5.18)

This algorithm for bond making/breaking can be done by the Metropolis algorithm. At each
step in the Monte Carlo algorithm, a pair of particles that are either bonded or capable of
being bound are selected at random. If the randomly selected pair is bonded then there is
a proposal of breaking a bond with ↵ = 1� exp(�kb�t) and acceptance of breaking a bond
with the Boltzmann weight with energy

EB(r) = �4 + UH(r) . (5.19)



CHAPTER 5. PHASE SEPARATION IN THE CELL 71

Figure 5.3: Snapshot of the LAT model system with LAT shown in blue and the orange are
the bonds. On the left, is a system snapshot of 4000 particles at a density of ⇢�2 = 0.1 and
reduced temperature of T/ĒB = 0.14. On the right is a zoomed in snapshop of the dense
phase.

5.3 Results

A snapshot of dynamics of the model are shown in Fig. 5.3. The system in Fig.5.3a) has
4000 particles and in Fig.5.3b) shows a zoomed in portion showing a single condensed phase
region. We would like to study the dynamics and steady state properties of the dense phase.

Similarly to the the experiments, there are temperatures and densities where this system
will phase separate and where the system is homogeneous. Before we go through a detailed
study of the dynamics, we seek to understand the phase diagram and the steady state
properties of the system. In Fig. 5.4a), the phase diagram is shown with the critical point
represented as the red star at about ⇢�2 ⇡ 0.16 and T/ĒB ⇡ 0.19. Above this critical
temperature for all densities the system is observed to be in a homogeneous state. Below
this critical temperature, phase separation is observed with the dilute phase represented by
the light blue squares and the dense phase represented by the dark blue circles. The dense
phase gets denser as the temperature decreases within the coexistance curve until about
T/ĒB ⇡ 0.1 when the density plateaus at ⇢�2 = 0.38. Surprisingly, there was no solid phase
observed but instead even at temperatures very close to zero the system is observed to be
dynamic with no long range order.

The coexistance curves were characterized by both setting up a slab with dimensions of
Lx = 6Ly and fitting the profile to a sigmoidal function and by a subsystem analysis as
shown in Fig. 5.4b) and c) for T/ĒB ⇡ 0.18 and probe radii of d = 6�, 8�, 10�, 12�, and
14�. Subsystem distributions of the total system were taken by moving a circular probe area,
a = ⇡d2, with radius d around the system and making a histogram of the local density, ⇢a.
Systems with two coexisting phases will have a bimodal subsystem distribution with each
peak representing the densities of the dense and dilute phases while the probe area is on the
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a) b) c)

Figure 5.4: Phase diagram and coexisting phases. a) The phase diagram as a function of
the reduced density and reduced temperature. The light blue squares are the dilute phase
points and the solid blue squares are the dense phase points. The shaded region represents
the phase points where there is phase separation. There is no dense phase observed. b) the
average density from Eq. 5.20 as a function of the relative chemical potential, �µ, between
the dense and dilute phase for circular probe areas of radii d = 6� (cyan), 8� (blue), 10�
(black), 12� (purple), and 14� (red). c) The average intensive variance, computed from
Eq. 5.22, as a function of the relative chemical potential for the subsystem sizes as b).

length scale or smaller than the corresponding phases. In Fig. 5.4b), the average density,
h⇢ai�µ, for di↵erent subsystem sizes was calculated as a function of the relative chemical
potential, �µ, between the dense and dilute phases by a weighted average similar to chapter
2,

�2h⇢ai�µ = �2
⌦
⇢ae

a�µ⇢a
↵
0
, (5.20)

and

h. . . i =
Z

d⇢a . . . P (⇢a), (5.21)

where P (⇢a) is the probability distribution of observing a local density of area a which has
a large deviation form. It can be seen that the average density of the system with a zero
chemical potential is the same as the system density, h⇢ai0�2 = N�2/L2 = 0.1. For a positive
chemical potential, the slope increases quickly to the dense phase at about ⇢�2 ⇡ 0.38.
The slope of the dense phase decreases as a function of increasing subsystem size which is
expected since larger probe areas will have smaller fluctuations as the thermodynamic limit
is approached. For negative chemical potential, the density quickly decreases to a density
close to zero which represents the dilute phase density. By fitting these two slopes for the
dense and the dilute phases the density of each phase can be inferred for each temperature
with the results shown in Fig. 5.4a). In Fig. 5.4c), the intensive variance for each probe area
is plotted as a function of the relative chemical potential which is written as

a�2h(�⇢)2i�µ = �2
h⇢ai�µ

d�µ
. (5.22)
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Figure 5.5: Steady state structure properties. a) The radial distribution function for tem-
peratures of T/ĒB = 0.18(blue), 0.15(red), and 0.14(yellow) and their corresponding dense
phase densities of ⇢�2 = 0.27, 0.32, and 0.36. b) The distribution of relative angles between
two bonds of a LAT molecule at the same phase points as b) with an average at 1.2 radians
(68 degrees).

The intensive variance peak grows with system size with scaling falling in the category of
first order phase transitions.

As mentioned previously, there was no dense phase found at low temperatures and in Fig.
5.3 the system snapshots show that there are many holes in the steady state dense phase.
To characterize the structure of the dense phase, we have plotted the radial distribution
function for dense phases for three phase points within the coexistance curve in Fig. 5.5a)
and they look similar to a liquid with short range correlations but no long range order.
Another question is if this is an ordered liquid with some local order or if the bonds are truly
disordered. If this were a pure hexagonal crystal each LAT molecule would have a relative
bond angle of 120 degrees. However, in Fig. Fig. 5.5b) the distribution of relative angles
between two bonds of a LAT are plotted which shows that the average angle is about 70
degrees. This peak represents the spindle-like structures that form in the dense phase. In
fact, it has been proven that a hexagonal structure is not mechanically stable for a nonzero
temperature [194]. Hence, these complicated steady state structures are a combination of
kinetic constraints on bonding and on thermal noise.

Dynamical properties

Now that we have characterized the steady state properties of the system we would like to
understand the dynamical properties and how they depend on the bonding kinetics. The
dynamical results of the model are shown in Fig. 5.6. In Fig. 5.6a), a system above the critical
temperature was quenched to a temperature in the phase separated region at T/ĒB = 0.14
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d

c)b)

Figure 5.6: Simulation results of LAT model. a) The largest cluster size (purple solid line)
with error bars from 11 independent runs and average bonds (black dashed line) as a function
of time plotted on the log-log scale, with the fitted slope close to 1/3 for the largest cluster
size versus time curve. b) The mean squared displacement as a function of time showing
caging e↵ects that become more distinct with decreasing temperature for T/ĒB = 0.18
(blue), 0.16 (red), and 0.14 (yellow). c) The distributions of persistence times (dashed line),
the time to move a distance �, and exchange times (solid line), the time to move another
distance � given that a LAT molecule has already moved a distance �, for the same three
temperatures in b). The lack of overlap between the two distributions shows that there is
dynamic heterogeneity. d) The time evolution of aggregation as plotted in a) going from
right to left panels show configurations for the start, early, middle, and last times of the
simulation.

and the largest cluster size and average number of bonds were plotted as a function of time at
each stage of the coarsening process. We find that the system eventually forms a large single
cluster but with long times for campactification with a growth exponent of 1/3 consistent
with Ostwald ripening [195, 196, 197]. Snapshots at di↵erent stages of the growth process
are shown in Fig. 5.6d). At short times, the number of bonds quickly grow forming many
small clusters as shown in the first panel. However, because of the kinetic constraints the
second and third panels show that extended structures form at intermediate times with long
structural reorganization times to campactify due to limited bond availability. The last
snapshot in Fig. 5.6d) shows that the system does eventually form a single large cluster
but with a spindle-like structure and at a density far from close packed at ⇢�2 = 0.38. In
Fig. 5.6b, the mean squared displacement of the dense phase is plotted as a function of time
for a range of temperatures within the phase separated region which shows caging e↵ects,
marked by a decrease in slope at intermediate times, with the time to break their cage given
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by the average time to break a bond. The inset shows a snapshot of the isolated condensed
phase system. In Fig. 5.6c), the persistence time, the time for a molecule to travel their
particle diameter, and the exchange time, the time to travel their diameter again given that
they have already traveled their diameter is plotted [198]. It shows that LAT molecules
are likely to keep moving once they break their cages to start moving, giving evidence of
dynamical facilitation with a decade of time between the two distributions.

5.4 Summary

Based on experimental observations, a minimal model of 2 dimensional aggregation of LAT-
Grb2-SOS complexes was devised. Simulations of the model show steady-state condensed
phases being far from fully-packed and display spindle-like structures with no solid-like phase
at low temperatures. Additionally, the results display caging e↵ects in the mean squared
displacement and evidence of dynamical facilitation shown by the decade of separation in
the peaks of the persistence and exchange time distributions. In future works, we are curious
to apply our modeling strategy to 3 dimensional protein droplet systems at the microscopic
level, and explore possible di↵erences in the kinetics. Since the model devised has minimal
assumptions on the mechanism of condensation, it is believed that the model will describe
generic features of 2 dimensional phase transitions within the cell.
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Appendix A

Probability and stochastic variables

A.1 Fokker Plank

Let us expand a generic function f [x(t), t] of the random variable x(t) which satisfies the
SDE (1.1) up to order dW (t),

df [x(t), t]
↵
=
@f

@t
dt+

@f

@x
dx+

1

2

@2f

@x2
dx2 . (A.1)

Our goal is to represent this equation as a function that is linear in dt. We can represent
the SDE in the general ↵ discretization as

dx
↵
= F (x̄, t)dt+B(x̄, t)dW (t) . (A.2)

One’s first inclination might be to plug the SDE directly into (A.1) without modification but
this would not give us the correct answer. This is because depending on the discretization
(or integration rule) there will be more (or less) terms of order dt depending on our choice.
Therefore, after plugging the SDE into the expansion of f [x(t), t] we have to express x̄ in
terms of x by using Taylor expansions to get the correct terms up to order dt:

df [x(t), t]
↵
=
@f

@t
dt+

@f

@x
[F (x̄, t)dt+B(x̄, t)dW (t)]+

1

2

@2f

@x2
[F (x̄, t)dt+B(x̄, t)dW (t)]2. (A.3)

Now expressing F and B in terms of x we get:

F (x̄, t) = F (x, t) +O(dt) , (A.4)

and

B(x̄, t)
↵
= B(x, t) + ↵

dB(x, t)

dx

����
x=x̄

dx+O(dt) . (A.5)

We use the fact that this is a Taylor series around x̄ = x, and use the fact that (x̄�x) =
↵dx from (1.8). Note that in (A.4), since we are evaluating F (x̄, t) at ↵ = 0, this is interpreted
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as the Ito drift. Likewise, in (A.5) we are interpreting the noise amplitude B(x, t) in the
Ito sense and expanding B(x̄, t) around B(x, t). We go to first order in dx for B(x̄, t)
because there will be terms that will end up being of order dt. Now we can input the above
equations into the expansion (A.3). We will do this term by term. The first term of (A.3)
@f

@t
dt is already first order in dt so it will not change. The second term of (A.3) becomes

@f

@x
[F (x̄, t)dt+B(x̄, t)dW (t)]

↵
=
@f

@x
[F (x, t) +

✓
B(x, t) + ↵

dB(x, t)

dx

����
x=x̄

dx

◆
dW (t)] . (A.6)

The final expression of the second term of (A.3) is obtained by noting that

dx(t)dW (t) = F (x̄, t)dtdW (t) + B(x̄, t)dW 2 = B(x, t)dW 2 +O(dt) = B(x, t)dt+O(dt) .
(A.7)

With this the second term of (A.3) becomes

@f

@x
[F (x̄, t)dt+B(x̄, t)dW (t)]

↵
=
@f

@x
[F (x, t)+B(x, t)dW (t)+↵

dB(x, t)

dx

����
x=x̄

B(x, t)dt] . (A.8)

Finally, the last term of (A.3) can be reduced by noting that

dx2 = B2(x, t)dW 2 +O(dt) = B2(x, t)dt+O(dt) , (A.9)

where we have expressed B to zeroth order in x because the ↵ discretization adds terms of
order dt so this is the contribution to lowest order. The last term then becomes

1

2

@2f

@x2
dx2 = B2(x, t)

1

2

d2f

dx2
. (A.10)

Putting all three terms together we get

df [x(t), t]
↵
=


@f

@t
+
@f

@x
F (x, t) + ↵

@f

@x

dB(x, t)

dx

����
x=x̄

B(x, t) + B2(x, t)
1

2

d2f

dx2

�
dt (A.11)

+
@f

@x
B(x, t)dW (t) .

This is called Ito’s Lemma. Now we can use this result to derive the Fokker-Planck
equation. If we assume the observable is independent of time explicitly, then we write the
average of the function f as

hf [x(t)]i =
Z

1

�1

f(x)P (x, t)dx . (A.12)

Taking the time derivative gives

dhf [x(t)]i
dt

=

Z
1

�1

f(x)
@P (x, t)

@t
dx . (A.13)



APPENDIX A. PROBABILITY AND STOCHASTIC VARIABLES 78

We can equate this to another form by explicitly taking the average of the time derivative
of the function obtained earlier in the section:

hdf [x(t)]
dt

i ↵
=

Z
1

�1


@f

@x
F (x, t) + ↵

@f

@x

dB(x, t)

dx

����
x=x̄

B(x, t) + B2
1

2

d2f

dx2

�
P (x, t)dx . (A.14)

Integrating by parts once on the first two terms on the right and twice on the last term we
get
Z

1

�1

f


�@(F (x, t)P (x, t))

@x
� @(↵B0(x, t)B(x, t)P (x, t))

@x
+

1

2

@2(B(x, t)2P (x, t))

@x2

�
dx .

(A.15)
Since averaging is a linear operation we have that hdf [x(t)]

dt
i = dhf [x(t)]i

dt
. The Fokker-Planck

equation becomes
We can generalize the di↵usion constant to a tensor if there are multiple noise sources by

Dij =
1

2

nX

k=1

BikBkj . (A.16)

A.2 Path Integral

We denote the realization of the noise at t = 0 as H0(x0, xdt) and X1(x0, ⇣0) the realization
of xdt. Namely, H0(x0, xdt) makes true the following equation

(xdt �X1(x0, ⇣0))

����
⇣0=H0(x0,xdt)

= 0 . (A.17)

Defining the di↵erence between the noise at t = 0 and its realization we get

M(⇣0, x0, xdt) = ⇣0 �
xdt�x0

dt
� F (x̄)

B(x̄)
. (A.18)

We can do a change of variables on the delta function in the transition probability as

�M(⇣0, x0, xdt) =
�(xdt �X(x0, ⇣0))

|@xdt
M(⇣0, x0, xdt)|

. (A.19)

Rearranging, we get

�(xdt �X(x0, ⇣0)) = �M(⇣0, x0, xdt)|@xdt
M(⇣0, x0, xdt)|. (A.20)

We can reduce this by noting that

|@xdt
M(⇣0, x0, xdt)| = @xdt

[
xdt�x0

dt
� F (x̄)

B(x̄)
] . (A.21)
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Doing a Taylor expansion on the x̄, we get

|@xdt
M(⇣0, x0, xdt)| =

1

B(x̄0)dt
[1� ↵F 0(x̄0)dt� (xdt � x0 � F (x̄)dt)↵

B0(x̄0)

B(x̄0)
] . (A.22)

Using the delta function, we can substitute for ⇣0 to get

�(xdt �X(x0, ⇣0)) = �M(⇣0, x0, xdt)|@xdt
M(⇣0, x0, xdt)| (A.23)

=
1

B(x̄0)dt
[1� ↵dtF 0(x̄0)� ⇣0B

0(x̄0)↵dt] . (A.24)

Exponentiation is nontrivial since ⇣tdt is of order dt1/2. Using the fact that ⇣2
t
! 2D as

dt ! 0 in the L2-norm sense (see section 3.2) we write that

exp(A⇣0dt�DA2dt) = 1 + A⇣0dt+O(dt) . (A.25)

With these prescriptions, the exponentiation becomes

�(xdt �X(x0, ⇣0)) =
1

|B(x̄0)|dt
exp(�↵dtF 0(x̄0)� ⇣0B

0(x̄0)↵dt�D[B0(x̄0)]
2↵2dt) . (A.26)

Inserting this into the transition probability and noting that

P (⇣0) =

✓
dt

4⇡D

◆1/2

exp

✓
�⇣

2

0
dt

4D

◆
, (A.27)

and using the properties of the delta-function (See Appendix A)
we get

P (xdt|x0)
↵
=

1

|B(x̄0)|

✓
1

4⇡Ddt

◆1/2 Z
d⇣0 exp


� ↵dtF 0(x̄0)� ⇣0B

0(x̄0)↵dt

�D[B0(x̄0)]
2↵2dt

�
exp

✓
� ⇣2

0
dt

4D

◆
. (A.28)

This is simply a Gaussian integral so the transition probability becomes

P (xdt|x0)
↵
= (A.29)

1

|B(x̄0)|

✓
1

4⇡Ddt

◆1/2

exp

 
� dt

4D


xdt�x0

dt
� F (x̄0) + 2↵DB(x̄0)B0(x̄0)

B(x̄0)

�2
� ↵dtF (x̄0)

!
.

(A.30)
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Martin-Siggia-Rose-Janssen-DeDominicis

This formalism is used in quantum field theory, reaction-di↵usion models, and lattice gas
models in combination with fluctuating hydrodynamics. The specific connections will be left
to another set of notes. It was originally constructed by the names of this section [199, 200,
201].

Let’s consider an arbitrary functional of the trajectory O[xt+dt]. The average of this
quantity is

hO[xt+dt]i =
Z

D[xt+dt]O[xt+dt]

Z
d⇣t�(xt+dt �X1(⇣t))p(⇣t) (A.31)

where X1(⇣t) is the realization of xt+dt. We can define a new variable as

G = xt+dt �X1(⇣t) = xt+dt � xt � F (x̄t)dt+B(x̄t)⇣tdt . (A.32)

We can do a change of variables on the delta function to get

hO[xt+dt]i =
Z

D[xt+dt]O[xt+dt]

Z
d⇣t

����
�G

�xt+dt

���� �(G)p(⇣t) . (A.33)

Using (1.57), the Jacobian becomes
����
�G

�xt+dt

���� = 1� ↵F 0(x̄t)dt� ↵B0(x̄t)⇣tdt (A.34)

= exp(�↵F 0(x̄t)dt� ↵B0(x̄t)⇣tdt�D↵2[B0(x̄t)]
2dt) . (A.35)

Before we put all the parts together to calculate the average we want to represent the delta
function as a Fourier series:

�(G) = �(xt+dt � xt � F (x̄t)dt+B(x̄t)⇣tdt) (A.36)

=

Z
dx̂ exp[�x̂(xt+dt � xt � F (x̄t)dt+B(x̄t)⇣tdt)] . (A.37)

We note once again that the probability of drawing a noise is (A.27) and that
Z

d⇣t

����
�G

�xt+dt

���� �(G)p(⇣t) (A.38)

/
Z

dx̂ exp


� dtx̂(

xt+dt � xt

dt
� F (x̄t) + 2↵DB0(x̄t)B(x̄t)) (A.39)

+ [B(x̄t)]
2(x̂)2Ddt� ↵F 0(x̄t)dt

�
. (A.40)

The path probability is obtained by setting the observable above to O[xt+dt] = 1 in the
average. We can represent the path probability as

p(xt+dt|xt) =

Z
D[xt+dt, x̂] exp


� dtx̂(

xt+dt � xt

dt
� F (x̄t) + 2↵DB0(x̄t)B(x̄t)) (A.41)

+ [B(x̄t)]
2(x̂)2Ddt� ↵F 0(x̄t)dt

�
. (A.42)
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Taking the limit as dt ) 0, we get

p(xT |x0) = (A.43)
Z

D [xt, x̂] exp

Z
dt� x̂ (ẋt � F (xt) + 2↵DB0(xt)B(xt)) + [B(xt)]

2(x̂)2D � ↵F 0(xt)

�
.

(A.44)

This transition probability can be written in the form of a classical action as
Z

D[xt, x̂] exp [�S(x, x̂)] , (A.45)

with

S(xt, x̂) = x̂ [ẋt � F (xt) + 2↵DB0(xt)B(xt)]� [B(xt)]
2(x̂)2D + ↵F 0(xt) . (A.46)

One could solve for equations of motion for xt and x̂. This is called an instanton solution
and represents the optimal trajectory in the low noise limit. In this case, the equations
of motion for x̂ represent the optimal realization of the noise. We note that the MSRJD
and the Onsager-Machlup formulations are equivalent equations. In the MSRJD formalism
we represent the delta function as a Fourier transform before integrating over the noise.
If we integrate over x̂ in MSRJD, we will get the Onsager-Machlap action. The MSRJD
formulation is used for describing time or space correlations as Feynman diagrams.
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[70] Julian Bialké, Hartmut Löwen, and Thomas Speck. “Microscopic theory for the phase
separation of self-propelled repulsive disks”. In: Euro Phys. Lett. 103.3 (2013). issn:
02955075.

[71] Benjamin Hancock and Aparna Baskaran. “Statistical mechanics and hydrodynamics
of self-propelled hard spheres”. In: J. Stat. Mech. 2017.3 (2017). issn: 17425468.



BIBLIOGRAPHY 87

[72] Raphael Wittkowski, Joakim Stenhammar, and Michael E. Cates. “Nonequilibrium
dynamics of mixtures of active and passive particles”. In: Phys. Rev. E (2017), pp. 1–
17. issn: 1367-2630.

[73] Milton Abramowitz, Irene A. Stegun, and David Miller. “Handbook of Mathematical
Functions With Formulas, Graphs and Mathematical Tables”. In: J. App. Mech. 32.1
(1965), p. 239. url: http://appliedmechanics.asmedigitalcollection.asme.
org/article.aspx?articleid=1396937.

[74] Patrick Pietzonka, Kevin Kleinbeck, and Udo Seifert. “Extreme fluctuations of active
Brownian motion”. In: New J. Phys. 18.5 (2016). issn: 13672630.

[75] Ushnish Ray, Garnet Kin Chan, and David T Limmer. “Exact fluctuations of nonequi-
librium steady states from approximate auxiliary dynamics”. In: Phys. Rev. Lett.

(2018).

[76] Stefano Ste↵enoni, Gianmaria Falasco, and Klaus Kroy. “Microscopic derivation of
the hydrodynamics of active-Brownian-particle suspensions”. In: Phys. Rev. E 95.5
(2017), p. 052142. issn: 2470-0045. url: http://link.aps.org/doi/10.1103/
PhysRevE.95.052142.

[77] Alexandre P. Solon et al. “Pressure and phase equilibria in interacting active Brownian
spheres”. In: Phys. Rev. Lett. 114.19 (2015), pp. 1–6.

[78] Sho C. Takatori and John F. Brady. “A theory for the phase behavior of mixtures of
active particles”. In: Soft Matter 11.40 (2015), pp. 7920–7931. issn: 1744-683X. url:
http://xlink.rsc.org/?DOI=C5SM01792K.

[79] Jérémie Palacci et al. “Sedimentation and e↵ective temperature of active colloidal
suspensions”. In: Phys. Rev. Lett. 105.8 (2010), pp. 1–4. issn: 00319007.

[80] Bo Wang et al. “When Brownian di↵usion is not Gaussian”. In: Nature Materials

11.6 (2012), pp. 481–485. url: http://dx.doi.org/10.1038/nmat3308.

[81] Björn Stuhrmann et al. “Nonequilibrium fluctuations of a remodeling in vitro cy-
toskeleton”. In: Phys. Rev. E 86.2 (2012), pp. 1–5.

[82] Alexandre P Solon et al. “Pressure and phase equilibria in interacting active Brownian
spheres”. In: Physical review letters 114.19 (2015), p. 198301.

[83] Thomas Speck and Robert L Jack. “Ideal bulk pressure of active Brownian particles”.
In: Physical Review E 93.6 (2016), p. 062605.

[84] Joakim Stenhammar et al. “Phase behaviour of active Brownian particles: the role of
dimensionality”. In: Soft Matter 10.10 (2014), pp. 1489–1499. issn: 1744-683X. url:
http://xlink.rsc.org/?DOI=C3SM52813H.

[85] Subhadip Chakraborti, Shradha Mishra, and Punyabrata Pradhan. “Additivity, den-
sity fluctuations, and nonequilibrium thermodynamics for active Brownian particles”.
In: Physical Review E 93.5 (2016), p. 052606.



BIBLIOGRAPHY 88

[86] Yaouen Fily and M. Cristina Marchetti. “Athermal phase separation of self-propelled
particles with no alignment”. In: Phys. Rev. Lett. 108.23 (2012), pp. 1–5. issn:
00319007.

[87] Hannes Risken and Till Frank. “The Fokker-Planck Equation: Methods of Solutions
and Applications (Springer Series in Synergetics)”. In: Springer (1996). url: http:
//www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/
354061530X.

[88] Xu Zheng et al. “Non-Gaussian statistics for the motion of self-propelled Janus par-
ticles: Experiment versus theory”. In: Phys. Rev. E 88.3 (2013), pp. 1–11.

[89] Chong Wai Io et al. “Experimental investigation of mesoscopic heterogeneous motion
of laser-activated self-propelling Janus particles in suspension”. In: Phys. Rev. E 96.6
(2017), pp. 1–5.

[90] Stephen Whitelam, Katherine Klymko, and Dibyendu Mandal. “Phase separation
and large deviations of lattice active matter”. In: Journal of Chemical Physics 148.15
(2018). issn: 00219606. doi: 10.1063/1.5023403.

[91] Robert L. Jack, Ian R. Thompson, and Peter Sollich. “Hyperuniformity and phase
separation in biased ensembles of trajectories for di↵usive systems”. In: Physical Re-
view Letters 114.6 (2015), pp. 1–5. issn: 10797114. doi: 10.1103/PhysRevLett.114.
060601.

[92] E. Pitard, V. Lecomte, and F. Van Wijland. “Dynamic transition in an atomic glass
former: A molecular-dynamics evidence”. In: Epl 96.5 (2011). issn: 02955075. doi:
10.1209/0295-5075/96/56002.

[93] J. P. Garrahan et al. “Dynamical first-order phase transition in kinetically constrained
models of glasses”. In: Physical Review Letters 98.19 (2007), pp. 0–3. issn: 00319007.
doi: 10.1103/PhysRevLett.98.195702.

[94] Shachi Katira, Juan P. Garrahan, and Kranthi K. Mandadapu. “Solvation in Space-
Time: Pre-transition E↵ects in Trajectory Space”. In: Phys. Rev. Lett. 120.26 (2017),
p. 260602. url: http://arxiv.org/abs/1710.04747.

[95] Dibyendu Mandal, Katherine Klymko, and Michael R. DeWeese. “Entropy Production
and Fluctuation Theorems for Active Matter”. In: Phys. Rev. Lett. 119.25 (2017),
pp. 1–6.

[96] Étienne Fodor et al. “How far from equilibrium is active matter?” In: Physical review
letters 117.3 (2016), p. 038103.

[97] Jakob Mehl, Thomas Speck, and Udo Seifert. “Large deviation function for entropy
production in driven one-dimensional systems”. In: Phys. Rev. E 78.1 (2008), pp. 1–4.

[98] Thomas Speck, Andreas Engel, and Udo Seifert. “The large deviation function for
entropy production: The optimal trajectory and the role of fluctuations”. In: J. Stat.
Mech. 2012.12 (2012).



BIBLIOGRAPHY 89

[99] Ethan Levien, Trevor GrandPre, and Ariel Amir. “Large Deviation Principle Linking
Lineage Statistics to Fitness in Microbial Populations”. In: Physical Review Letters

125.4 (2020), p. 048102.

[100] Yaouen Fily, Silke Henkes, and M. Cristina Marchetti. “Freezing and phase separation
of self-propelled disks”. In: Soft Matter 10.13 (2014), pp. 2132–2140. issn: 1744-683X.
url: http://xlink.rsc.org/?DOI=C3SM52469H.

[101] D. Andrieux and P. Gaspard. “Fluctuation theorem and Onsager reciprocity rela-
tions”. In: J. Chem. Phys. 121.13 (2004), pp. 6167–6174. issn: 00219606. doi: 10.
1063/1.1782391.

[102] Ivan Di Terlizzi and Marco Baiesi. “Kinetic uncertainty relation”. In: Journal of

Physics A: Mathematical and Theoretical 52.2 (2018), 02LT03.

[103] Jeremy A Owen, Todd R Gingrich, and Jordan M Horowitz. “Universal thermody-
namic bounds on nonequilibrium response with biochemical applications”. In: Physical
Review X 10.1 (2020), p. 011066.

[104] Cesare Nardini and Hugo Touchette. “Process interpretation of current entropic bounds”.
In: The European Physical Journal B 91.1 (2018), p. 16.

[105] Andreas Dechant and Shin-ichi Sasa. “Fluctuation–response inequality out of equilib-
rium”. In: Proceedings of the National Academy of Sciences 117.12 (2020), pp. 6430–
6436.

[106] Matteo Polettini and Massimiliano Esposito. “E↵ective fluctuation and response the-
ory”. In: Journal of Statistical Physics 176.1 (2019), pp. 94–168.

[107] Maximilien Barbier and Pierre Gaspard. “Microreversibility, nonequilibrium current
fluctuations, and response theory”. In: Journal of Physics A: Mathematical and The-

oretical 51.35 (2018), p. 355001.

[108] Caleb G Wagner, Michael F Hagan, and Aparna Baskaran. “Response of active Brow-
nian particles to boundary driving”. In: Physical Review E 100.4 (2019), p. 042610.

[109] Kiryl Asheichyk et al. “Response of active Brownian particles to shear flow”. In: The
Journal of chemical physics 150.14 (2019), p. 144111.

[110] Sara Dal Cengio, Demian Levis, and Ignacio Pagonabarraga. “Linear response the-
ory and Green-Kubo relations for active matter”. In: Physical Review Letters 123.23
(2019), p. 238003.

[111] Lorenzo Caprini, Umberto Marini Bettolo Marconi, and Angelo Vulpiani. “Linear
response and correlation of a self-propelled particle in the presence of external fields”.
In: Journal of Statistical Mechanics: Theory and Experiment 2018.3 (2018), p. 033203.

[112] Zhenghan Liao et al. “A mechanism for anomalous transport in chiral active liquids”.
In: The Journal of chemical physics 151.19 (2019), p. 194108.



BIBLIOGRAPHY 90

[113] M. E. Cates and J. Tailleur. “When are active Brownian particles and run-and-tumble
particles equivalent? Consequences for motility-induced phase separation”. In: Euro-
phys. Lett. 101.2 (2013). issn: 02955075.

[114] Gabriel S Redner, Michael F Hagan, and Aparna Baskaran. “Structure and dynamics
of a phase-separating active colloidal fluid”. In: Physical review letters 110.5 (2013),
p. 055701.

[115] Pelerine Tsobgni Nyawo and Hugo Touchette. “A minimal model of dynamical phase
transition”. In: EPL (Europhysics Letters) 116.5 (2017), p. 50009.

[116] Pelerine Tsobgni Nyawo and Hugo Touchette. “Dynamical phase transition in drifted
Brownian motion”. In: Physical Review E 98.5 (2018), p. 052103.

[117] Sophie Hermann and Matthias Schmidt. “Active ideal sedimentation: exact two-
dimensional steady states”. In: Soft Matter 14.9 (2018), pp. 1614–1621.

[118] Alexandre P Solon, Michael E Cates, and Julien Tailleur. “Active brownian parti-
cles and run-and-tumble particles: A comparative study”. In: The European Physical

Journal Special Topics 224.7 (2015), pp. 1231–1262.

[119] Chiu Fan Lee. “Active particles under confinement: aggregation at the wall and gra-
dient formation inside a channel”. In: New Journal of Physics 15.5 (2013), p. 055007.

[120] Ahmad K Omar et al. “Phase Diagram of Active Brownian Spheres: Crystallization
and the Metastability of Motility-Induced Phase Separation”. In: Physical Review
Letters 126.18 (2021), p. 188002.

[121] Cesare Nardini et al. “Entropy production in field theories without time-reversal
symmetry: quantifying the non-equilibrium character of active matter”. In: Physical
Review X 7.2 (2017), p. 021007.

[122] Étienne Fodor, Takahiro Nemoto, and Suriyanarayanan Vaikuntanathan. “Dissipation
controls transport and phase transitions in active fluids: mobility, di↵usion and biased
ensembles”. In: New Journal of Physics 22.1 (2020), p. 013052.

[123] Clara del Junco, Laura Tociu, and Suriyanarayanan Vaikuntanathan. “Energy dissi-
pation and fluctuations in a driven liquid”. In: Proceedings of the National Academy

of Sciences 115.14 (2018), pp. 3569–3574.

[124] Pierre Gaspard and Raymond Kapral. “Fluctuating chemohydrodynamics and the
stochastic motion of self-di↵usiophoretic particles”. In: The Journal of chemical physics

148.13 (2018), p. 134104.

[125] Kinjal Dasbiswas, Kranthi K Mandadapu, and Suriyanarayanan Vaikuntanathan.
“Topological localization in out-of-equilibrium dissipative systems”. In: Proceedings
of the National Academy of Sciences 115.39 (2018), E9031–E9040.

[126] Vishal Soni et al. “The odd free surface flows of a colloidal chiral fluid”. In: Nature
Physics 15.11 (2019), pp. 1188–1194.



BIBLIOGRAPHY 91

[127] Zhenghan Liao, William TM Irvine, and Suriyanarayanan Vaikuntanathan. “Recti-
fication in Nonequilibrium Parity Violating Metamaterials”. In: Physical Review X

10.2 (2020), p. 021036.

[128] Fernando Caballero and Michael E. Cates. “Stealth Entropy Production in Active
Field Theories near Ising Critical Points”. In: Phys. Rev. Lett. 124 (24 June 2020),
p. 240604. doi: 10.1103/PhysRevLett.124.240604. url: https://link.aps.org/
doi/10.1103/PhysRevLett.124.240604.

[129] Dibyendu Mandal, Katherine Klymko, and Michael R DeWeese. “Entropy production
and fluctuation theorems for active matter”. In: Physical review letters 119.25 (2017),
p. 258001.

[130] Luuk Metselaar, Julia M Yeomans, and Amin Doostmohammadi. “Topology and
morphology of self-deforming active shells”. In: Physical Review Letters 123.20 (2019),
p. 208001.

[131] Yao Li and Pieter Rein ten Wolde. “Shape Transformations of Vesicles Induced by
Swim Pressure”. In: Physical review letters 123.14 (2019), p. 148003.

[132] Chao Wang et al. “Shape transformation and manipulation of a vesicle by active
particles”. In: The Journal of chemical physics 150.4 (2019), p. 044907.

[133] Richard G Morris and Madan Rao. “Active morphogenesis of epithelial monolayers”.
In: Physical Review E 100.2 (2019), p. 022413.

[134] Nicolas Bain and Denis Bartolo. “Dynamic response and hydrodynamics of polarized
crowds”. In: Science 363.6422 (2019), pp. 46–49.

[135] Alexandre Morin and Denis Bartolo. “Flowing active liquids in a pipe: Hysteretic
response of polar flocks to external fields”. In: Physical Review X 8.2 (2018), p. 021037.

[136] Antoine Bricard et al. “Emergence of macroscopic directed motion in populations of
motile colloids”. In: Nature 503.7474 (2013), pp. 95–98.

[137] Alexander Mietke et al. “Minimal model of cellular symmetry breaking”. In: Physical
review letters 123.18 (2019), p. 188101.

[138] Alexander Morozov. “From chaos to order in active fluids”. In: Science 355.6331
(2017), pp. 1262–1263.

[139] Anton Souslov et al. “Topological sound in active-liquid metamaterials”. In: Nature
Physics 13.11 (2017), pp. 1091–1094.

[140] Chad Ropp et al. “Dissipative self-organization in optical space”. In: Nature Photonics
12.12 (2018), pp. 739–743.

[141] Sho C Takatori and Amaresh Sahu. “Active Contact Forces Drive Nonequilibrium
Fluctuations in Membrane Vesicles”. In: Physical Review Letters 124.15 (2020), p. 158102.

[142] Debasish Chaudhuri. “Active brownian particles: Entropy production and fluctuation
response”. In: Physical Review E 90.2 (2014), p. 022131.



BIBLIOGRAPHY 92

[143] Patrick Pietzonka et al. “Autonomous Engines Driven by Active Matter: Energetics
and Design Principles”. In: Phys. Rev. X 9 (4 Nov. 2019), p. 041032. doi: 10.1103/
PhysRevX.9.041032. url: https://link.aps.org/doi/10.1103/PhysRevX.9.
041032.

[144] Sudeesh Krishnamurthy et al. “A micrometre-sized heat engine operating between
bacterial reservoirs”. In: Nature Physics 12.12 (2016), p. 1134.

[145] Ruben Zakine et al. “Stochastic Stirling engine operating in contact with active
baths”. In: Entropy 19.5 (2017), p. 193.

[146] D Martin et al. “Extracting maximum power from active colloidal heat engines”. In:
EPL (Europhysics Letters) 121.6 (2018), p. 60005.

[147] Arnab Saha et al. “Stochastic heat engine powered by active dissipation”. In: Journal
of Statistical Mechanics: Theory and Experiment 2018.11 (2018), p. 113203.

[148] Timothy Ekeh, Michael E. Cates, and Étienne Fodor. “Thermodynamic cycles with
active matter”. In: Phys. Rev. E 102 (1 July 2020), p. 010101. doi: 10 . 1103 /
PhysRevE.102.010101. url: https://link.aps.org/doi/10.1103/PhysRevE.
102.010101.

[149] Subhasish Chaki and Rajarshi Chakrabarti. “Entropy production and work fluctua-
tion relations for a single particle in active bath”. In: Physica A: Statistical Mechanics

and its Applications 511 (2018), pp. 302–315.

[150] Jordan M Horowitz and Todd R Gingrich. “Thermodynamic uncertainty relations
constrain non-equilibrium fluctuations”. In: Nature Physics (2019), pp. 1–6.

[151] Je↵rey M Epstein and Kranthi K Mandadapu. “Time-reversal symmetry breaking in
two-dimensional nonequilibrium viscous fluids”. In: Physical Review E 101.5 (2020),
p. 052614.

[152] Cory Hargus et al. “Time reversal symmetry breaking and odd viscosity in active
fluids: Green–Kubo and NEMD results”. In: The Journal of Chemical Physics 152.20
(2020), p. 201102.

[153] Holger Merlitz et al. “Linear response approach to active Brownian particles in time-
varying activity fields”. In: The Journal of Chemical Physics 148.19 (2018), p. 194116.

[154] Todd R. Gingrich et al. “Dissipation Bounds All Steady-State Current Fluctuations”.
In: Phys. Rev. Lett. 116 (12 Mar. 2016), p. 120601. doi: 10.1103/PhysRevLett.116.
120601. url: https://link.aps.org/doi/10.1103/PhysRevLett.116.120601.

[155] Yaouen Fily, Aparna Baskaran, and Michael F Hagan. “Equilibrium mappings in
polar-isotropic confined active particles”. In: The European Physical Journal E 40.6
(2017), pp. 1–9.
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