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Algorithmic Differentiation (AD) has become a powerful tool to improve our understanding of the Earth
System, because it can generate adjoint code which permits efficient calculation of gradients that are
essential to sensitivity studies, inverse problems, parameter estimation and data assimilation. Most source-
to-source transformation tools, however, have been designed for FORTRAN and support for C remains
limited. Here we use the Adjoinable Land Ice Flow model (ALIF), a C clone of the C++ Ice Sheet System
Model (ISSM) and employ source-to-source AD to produce its adjoint code. We present the first running
source-to-source adjoint of ALIF, and its application to basal drag inversion under Pine Island Glacier,
West Antarctica. ALIF brought several challenges to AD tool development, such as the correct treatment
of the context code, which does not compute the differentiable function, but controls this computation
through the setup of data structures, including possible aliasing, as well as data-flow reversal in the pres-
ence of pointers and dynamic memory, which are ubiquitous in codes such as ISSM and ALIF. We present
the strategies we have developed to overcome these challenges.

Keywords: Ice sheet model; ISSM; Algorithmic Differentiation; adjoint methods; dynamic memory;
Tapenade

AMS Subject Classification: 65K; 65H

1. Introduction

Algorithmic Differentiation (AD) has become a powerful tool to improve our understanding of
the Earth system. It is used to calculate model sensitivities to any model input, and to constrain
numerical models using data assimilation techniques. If AD has been used by the ocean and
atmospheric circulation modelling community for almost 20 years, it is relatively new in the
ice sheet modelling community [4,9]. The Ice Sheet System Model (ISSM) is a C++, object-
oriented, massively parallelized, new generation ice sheet model that recently employed AD
to improve its data assimilation capabilities [10]. ISSM currently provides gradient calculation
using either of two methods:

• a ‘manual’ adjoint that computes the adjoint state from control theory, with its own discretiza-
tion and implementation. Maintenance is obviously an issue there.

*Corresponding author. Email: laurent.hascoet@inria.fr
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2 L. Hascoët and M. Morlighem

• an AD-based adjoint by Operator Overloading through Adol-C [18] and the ‘Adjoinable
MPI’ AMPI [17]. However, Operator-Overloading AD on ISSM is significantly more memory
intensive compared to the primal code.

We want to investigate other AD approaches to improve the performance of the AD-generated
adjoint. Yet, to our knowledge, there is no source-to-source AD tool that supports C++.

To overcome this problem, we have developed a prototype of ISSM entirely in C, called the
Adjoinable Land Ice Flow model (ALIF), in order to test source-to-source transformation and
compare the performance of these two approaches to AD. ALIF is a clone of ISSM, the main
difference with ISSM being that all objects are converted to C structures and some function
names have been adapted in order to be unique, as C does not support overloaded functions.
The code architectures are identical. Like ISSM, ALIF can be run in serial mode or in parallel
using MPI. For adjoint communication in the parallel mode of ALIF, our choice is also to rely on
AMPI as calls to AMPI are generated automatically by Tapenade. Likewise, to deal with parallel
vectors and matrices and to solve linear systems, ALIF and ISSM rely on PETSc (the Portable,
Extensible Toolkit for Scientific Computation).

The programming style of ALIF is a first attempt at defining a programming style of (or a
sub-language of) C++ that source-to-source AD could handle. ALIF is designed as a C++-like
C code. In other words, keeping in mind that one distant objective of source-to-source AD is
to address C++ and therefore ISSM, the first step, which we present here, investigates source-
to-source of a realistic C code that exhibits many of the difficulties that we foresee in C++.
In particular, ALIF preserves the intensive use of dynamic memory of ISSM, in ways that are
uncommon in pure C. Aliasing is also used extensively, making the code analysis challenging.
We use Tapenade [7] to perform this source-to-source transformation on ALIF. Even though
Tapenade officially supports C, differentiation of ALIF proved to be challenging. We present
some of these challenges and the strategies that we adopted to overcome them.

The goal of this work is to produce an adjoint of ALIF by source-to-source AD, then to exer-
cise this adjoint on a data assimilation problem on Pine Island Glacier, in West Antarctica.
Section 2 focuses on the tangent-linear differentiation and discusses issues related to aliasing
and to the sophisticated data structures in ALIF. Section 3 focuses on a specific challenge of the
adjoint, which is the restoration of addresses needed by the control- and data-flow reversal. After
an automated validation step described in Section 4, we discuss in Section 5 a realistic numeri-
cal experiment, where the AD-generated adjoint is used in a data assimilation problem. We give
numerical results as well as an estimate of the costs and benefits of our AD adjoint. Finally, we
discuss in Section 6 future research directions to further improve the performance of the address
restoration mechanism.

2. Extending source transformation outside the differentiable code

The file architecture of the source code, and in turn of the differentiated code, has been the first
issue when applying AD to ALIF. Even though AD tools should ideally not be sensitive to the file
architecture, we had to make some changes in order for Tapenade to transform the primal code.
For example, when the C source file is preprocessed before compilation (e.g. by cpp), it must
also be preprocessed before differentiation. Consequently, the differentiated C code is bound to
one particular preprocessing output, coming from one set of preprocessing variable values. In
other words, the differentiated C code will not contain #ifdef clauses, even if the source does.
It seems this is the only approach that works in general, since the preprocessor clauses can be
placed anywhere and sometimes do not even follow the syntactic nesting of constructs.
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Optimization Methods & Software 3

However, in the particular case of #include clauses and provided the include file does not
contain executable code, we can often do a slightly better job placing corresponding #include
clauses back into the differentiated code. We introduce the notion of a differentiated include file,
which holds the declarations from the original include file plus the additional differentiated dec-
larations, and differentiation produces these differentiated include files as well. Even if we have
reached today an acceptable solution on this cosmetic issue, some marginal changes might still
occur about the nesting level of include files. Consider an include file incl.h. Its differentiated
incl_d.h currently contains the contents of incl.h. To reduce code duplication, incl_d.h
could instead include incl.h.

We focus here on other issues that are more relevant to AD tool development. Namely, the
automatic generation of a ‘calling context’, the static analysis of destinations of pointers and
aliasing issues.

2.1 Pointer aliasing

The calling context in which the differentiable code is used has a clear influence on differentiation
results. The most obvious illustration is aliasing, i.e. the possibility that the same storage location
is referenced by apparently different syntactic elements. Aliasing seriously restricts any static
code transformation. For instance, a possible aliasing between X and Y will forbid a loop nest
parallelization tool to detect the code

for(i = 2; i<size; ++i) X[i] = Y[i - 2];

as parallel, although without aliasing this is just a simple array copy.
With former FORTRAN standards, aliasing was strongly restricted. Aliasing two formal argu-

ments of a procedure is permitted when only one alias is possibly overwritten. However, even
this restricted aliasing is adverse to adjoint AD as the adjoint of a read-only variable is in general
an overwritten variable and therefore the adjoint code would violate the standard. Consequently,
AD tools often just require users not to use aliasing [8]. The introduction of pointers in FOR-
TRAN 90 opens the door to more aliasing, making this no-aliasing requirement more problematic
today. Forbidding aliasing becomes totally unrealistic in C, where aliasing is extremely common.
A source-to-source AD tool relies on accurate static data-flow analysis and, as such, needs a
reliable detection of pointer aliasing. Tapenade is no exception and uses a static pointer desti-
nation analysis (‘points-to’ analysis) to determine whether two syntactic elements may refer to
the same memory location. This pointer analysis was already necessary to handle FORTRAN
90, and it becomes absolutely central for C/C++ [15]. The results of pointer analysis inform
all following analyses in the AD work flow, so they can correctly handle aliasing created during
function execution.

A simulation code often separates the initialization phase that builds and initializes the data
structures (e.g. mesh elements and the links between them) possibly setting aliasing at that stage,
and the computation phase that takes values from and rewrites values into these data structures,
implicitly relying on this aliasing. The computation phase is also generally followed by a post-
processing phase. We refer to the union of the initialization and post-processing phases as the
Context, and to the computation phase as the Function (see Figure 1). The users of AD typi-
cally specify that they want the derivatives of the mathematical function implemented by some
procedure of the code. This is by definition the root procedure of the Function. The users may
specify in addition that they want the derivatives of this function’s dependent variables with
respect to its independent variables, these two sets of variables being among the arguments (for-
mal parameters or globals) of that computation root. Although one might think at first sight
that only the call graph of the Function need to be passed to the AD tool, this would make the
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4 L. Hascoët and M. Morlighem

Figure 1. Call tree of the differentiable Function inside the call tree of its calling Context.

AD tool blind to aliasing created during the Context phase. Figure 1 illustrates this pitfall for
the case of ALIF. The computation root is the function FemModelSolve, with independents
X and dependents J. The Function itself copies X into the Inputs component of the object
FemModel, then deals only with the values attached to the mesh elements to compute J without
ever reading FemModel->Inputs explicitly. As a result, the AD data-flow analysis and in
particular activity analysis finds that there is no differentiable link from X to J. The link appears
only through aliasing of FemModel->Inputs with deep components of each of the mesh
elements Element->Inputs, which is done by calling LinkDataSets (which specifies
that Element->Inputs = FemModel->Inputs for each element of the mesh). The
call to LinkDataSets occurs in the Context phase, i.e. outside of the Function phase. This
issue can be solved in two ways:

• One can extend the pointer analysis to the complete code, including the Context. Aliasing
information coming from the Context would thus be exposed to AD in addition to aliasing
coming from the computation code. This approach fits with the view that AD should be pro-
vided with the complete code and not only with its computation phase. This might imply some
fine-tuning as the Context contains more system calls, more problematic than what is usually
found in the Function, but this approach seems preferable in the long run. Still, this has the
subtle effect that the existing context strongly influences differentiation of the Function: the
same differentiation target (i.e. computation function name plus dependent and independent
variables) given by the end-user may produce radically different results in different contexts.

• The AD tool can still be run on the Function code only, with user directives that specify
the existing aliasing upon entry into the Function. Similarly, one can move the part of the
initialization that creates the aliasing inside the Function phase. Then the pointer analyzer
can correctly detect and propagate the aliasing. Consequently, activity analysis detects the
differentiable link from X to J. This is the solution we have implemented so far. However,
it disturbs the original code either by adding a number of possibly complex directives or by
moving a structural, non-differentiable piece of code that initializes the mesh structure at a
place where it does not belong.

The first approach requires that the complete simulation code is exposed to the AD tool. Although
this certainly increases the memory size and run-time of the AD tool, the benefits outweigh the
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Optimization Methods & Software 5

cost. We will see in the next section that this is also beneficial to the initial execution, validation,
and debugging of the differentiated code.

2.2 Generation of context code to call the differentiated code

The differentiated code of the computation root, obtained through AD, must be executed in an
appropriate context. This context must call the differentiated code, providing it with the input
derivative values in addition to the original inputs, and reading the output derivative values
in addition to the original outputs. This context must also declare, allocate, and initialize the
memory that holds these additional inputs and outputs, and must release this memory after
differentiation. Although these tasks can be considered as outside the realm of AD, it is not
reasonable to leave them entirely to the end-user. They are time-consuming, error-prone, and can
be automated. Moreover, users often postpone these tasks until they become unavoidable, which
is between the first successful run of the AD tool and the validation stage that should immedi-
ately follow. Starting the development of the calling context at that moment will handicap the
users as they will lose the focus on their primary objective. Finally, automated generation of this
context can also automate the setup for derivatives validation.

Here, we have extended the generation of the differentiated code to also create a calling con-
text for the actual derivative code. This extension is triggered by adding the single command-line
option context to the AD tool invocation. This extension requires that all the original files
that define the calling context of the computation root, up to and including the main pro-
cedure, are passed to the differentiation command. In other words, in addition to the code of
the differentiable Function, that must be passed to the AD tool in all cases, one must pass the
Context code that prepares for and calls the differentiable function. As a result, a new ‘dif-
ferentiated’ context code is generated, which sets up all required data structures and calls the
differentiated function. The new context code follows closely the structure of the original con-
text, performing no derivative computation, as it is outside the call tree of the differentiable
function. Still, the context code declares, allocates and initializes all the data structures that
will later hold the derivatives, and propagates them to the entry of the differentiated function.
Upon return from the differentiated function, the context code cleans up and releases these data
structures. These creation and destruction operations mimic the corresponding operations on
the original data structures. With this process, the pointer chains of the original data structures
and the resulting aliasing are naturally reflected in the pointer chains of the differentiated data
structures. These differentiated data structures and differentiated variables follow Tapenade’s
association by name approach, but can be adapted easily to follow the alternative association by
address (see [1]) where derivative containers are attached close to the original containers, deep
at the level of the leaves of the data structures, therefore, requiring no extra derivative variable
names.

The main ingredient of this ‘context’ functionality is a static data-flow analysis that runs over
the complete code to find all allocation, initialization, and release operations of the original con-
text that must have a differentiated counterpart. Insertion of appropriate declarations follows
naturally from that. At each point in the code, we call Req the set of all variables for which the
derivative variable is required downstream of that point, and that must therefore have been allo-
cated and initialized upstream that point. The Req sets are computed by a data-flow analysis that
runs backwards on the flow graph, i.e. in the direction opposite of execution. Similarly, we call
Avl the set of all variables for which the derivative variables are available (i.e. allocated). When a
variable that belongs to Avl is released, its derivative variable must be released too. The Avl sets
are computed by a data-flow analysis that runs forwards on the flow graph, i.e. in the direction of
execution. Like any data-flow analysis, both Req and Avl analyses deal with cycles in the flow
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6 L. Hascoët and M. Morlighem

graph by running repeatedly until reaching a fixed-point. They also propagate interprocedurally
on the call graph, using a fixed-point search to deal with recursive programs. On the call graph,
both analyses first run a bottom-up sweep to compute summaries for each procedure, then run
top-down, using these summaries when encountering a procedure call.

Let us focus here on the Req analysis, as the Avl analysis is straightforward. Regardless of the
context functionality, the Req analysis is already needed for differentiation of the differentiable
function code, because the AD model leads to introducing differentiated pointer variables. While
activity analysis applies to variables of differentiable type, Req analysis extends it to pointers.
An instruction I will be differentiated into some I ′ not only if its outputs are active but also
if they intersect the Req set immediately after I. Therefore, the data-flow equation of the Req
analysis (backwards) across a statement I computes Req before I (noted Req−(I)) from Req
after I (noted Req+(I)) as

Req−(I) =
{

(Req+(I) \ kill′(I ′)) ∪ use′(I ′) if out(I) active or out(I) ∩ Req+(I) �= ∅,

Req+(I) otherwise,

where use′(I ′) (resp. kill′(I ′)) is the set of variables whose derivative variable is used (resp. fully
overwritten) by the derivative instruction I ′ of I.

The specific differentiation rules for instructions whose output are in Req are quite simple.
For instance, if I is some pointer arithmetic assignment:

p=&A[2]+offset;

and assuming that the derivative of p is required downstream, one must generate the ‘derivative’
assignment I ′:

p’ = &A’[2] + offset;

where p’ and A’ are the differentiated variables of p and A (actual C syntax will obviously
require another naming convention). This defines the required p’, and in turn requires anterior
definition of A’. Similarly, in the case of memory allocation, if I is

A = (MyStruct*)malloc(n * sizeof(MyStruct));

and assuming that the derivative of A is required downstream, one must generate the additional
allocation I ′:

A’ = (MyStruct’*)malloc(n * sizeof(MyStruct’));

where MyStruct’ is the ‘derivative’ type of MyStruct, built automatically from MyStruct
by removing all fields containing values that never have derivatives, and by recursively replacing
fields of structured type with the corresponding derivative type.

The novelty brought by the ‘context’ functionality is that the Req and Avl analyses are now
run on the context code as well. As there is no activity in these regions of the code, the data-flow
equation above applies only when out(I) ∩ Req+(I) �= ∅, in other words, when the statement
defines or modifies a pointer that may be used in the differentiated part. The code generated for
the context part is essentially the original code where every declaration, allocation, initialization,
and propagation of a variable belonging to Req is directly followed by the same operation on the
derivative variable. Similarly, propagation and release of a variable belonging to Avl is followed
by the same operation on the derivative variable.
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Optimization Methods & Software 7

3. Restoring addresses during the adjoint

Section 2 dealt with issues that show up in any mode of AD. On the other hand, the issue of
address restoration arises only for adjoint AD. Classically, the code produced by adjoint AD
propagates the derivative of the (scalar) output with respect to the intermediate variables at each
location in the code. Therefore, this propagation must be done backwards with respect to the
original code’s execution order. In addition to that, the derivative computations may use elements
of the original computation such as intermediate values, indices, or addresses. Consequently, an
adjoint code typically consists of two successive sweeps:

(1) a forward sweep, that executes the original program and stores the elements computed during
this execution that will be needed during the derivatives computation, and

(2) a backward sweep, that computes and propagates the derivatives, in an order inverse to the
original program, and retrieves the elements it needs from where the forward sweep stored
them.

Some AD models save a portion of this storage at the cost of recomputation [2], but this
recomputation should start from a saved state, and efficient AD of large codes usually requires
to save many of these re-starting states. Therefore the storage issue remains, merely shifted to a
different time. Obviously, the best structure to hold the stored elements is a stack. Consider for
example instruction y = y*x;. The forward sweep will in general contain the sequence

push(y); y = y*x;

that saves y before it is lost by overwriting, whereas the backward sweep will contain

pop(&y); x’ = x’+y*y’; y’ = x*y’;

that retrieves y before using it in the derivative instructions. Adjoint variables x’ and y’ hold
the derivatives of x and y. These adjoint derivative instructions, and the related storage issues,
are discussed in [6].

The elements that need to be stored are not necessarily limited to numerical values, they
also include memory addresses. Consider the original instruction *z = sin(*p); which
involves pointers z and p. By applying the classical adjoint differentiation rules, the backward
sweep will contain the sequence of derivative instructions:

*p’ = *p’+cos(*p)*(*z’); *z’ = 0.0

in which we notice the use of addresses p, p’, and z’. If, later in the forward sweep, the address
contained in p is overwritten, then it must be stored before this overwrite, then restored during
the backward sweep before it is used. In addition to that, the addresses in p’ and z’ must be
managed by the backward sweep to maintain semantic correspondence between z and z’, and
between p and p’. For the sake of simplicity, we will focus in the remainder of this article on
the issue of restoring p. Restoring z’ and p’ is done in a similar manner.

We also note that p contains an address, either in the stack or in the heap, of a memory chunk
that may be of limited time-span. It may point inside a local variable of some procedure, that will
be freed at procedure exit, or inside dynamically allocated memory, which may be freed later in
the forward sweep. Although the address in p is easy to store and restore, and although the back-
ward sweep can organize corresponding re-allocation of the freed objects, there is no guarantee
that the re-allocated objects lie at the same addresses in memory. The restored addresses may
then be wrong and will cause unpredictable behaviours.
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8 L. Hascoët and M. Morlighem

Figure 2. The elementary stitch of adjoint address management. Forward sweep on the left is executed downwards,
backward sweep on the right is executed upwards, so that original instructions and adjoint instructions face each other.
Execution detail of each ADMM library call is sketched in red.

Our solution to this issue was developed jointly with Argonne National Laboratory. It has
been implemented into a library called ADMM for ‘Adjoinable Dynamic Memory Management’,
which can be invoked from the adjoint code created by Tapenade as well as by OpenAD [16].
The idea is to dynamically track the base address of every chunk of memory created during the
forward sweep, then on the backward sweep track the base address of every re-allocated chunk,
thus maintaining a correspondence from old to new memory chunks. Given this correspondence,
every address restored from the stack can be ‘rebased’, i.e. modified so that it points towards
the new chunk instead of the old. Figure 2 illustrates the mechanism on the elementary stitch of
dynamic memory management where a memory chunk is allocated, then a pointer points to it, is
used in some differentiable instruction, later is overwritten or falls out of scope, and the memory
chunk is finally freed. The adjoint code behaves as follows:

• During the forward sweep (left of Figure 2), one task is to track memory chunks: upon dynamic
memory allocation, the memory chunk’s base address B and size are stored into a dedicated
table. Upon deallocation, both base address and size are retrieved (and removed) from the
table, then are pushed onto the AD stack. Note that this pushes only two integers, and does not
push the contents of the deallocated memory chunk. In addition, each time an address (e.g. p)
is overwritten, and the AD tool has detected that this address is needed in the backward sweep,
then the address is pushed onto the AD stack.

• During the backward sweep (right of Figure 2), tracking maintains correspondence: the back-
ward correspondent of the free retrieves the old base oldB and size from the AD stack and
re-allocates a new chunk of same size, yielding a new base address B. Old and new bases,
plus sizes, are stored again into the table. Similarly, this new table entry will be removed by
the backward correspondent of the original allocation. In between, each time an address is
restored from the AD stack, the table is searched to look for the old chunk that contains it, and
the address is updated to point to the corresponding new chunk instead.

Since it may happen that the overwrite of p occurs after the freeing of B, the backward sweep
may want to rebase p before the new B is known. Therefore, an internal waiting list is used to
make sure that p gets rebased as soon as the backward deallocation BW_ADMM_Deallocate
determines the new B. This behavior is implemented in ADMM with a handful of library prim-
itives. Namely, the forward and backward counterparts of malloc and free, plus the pointer
rebasing operation. For clarity, Figure 2 shows only the actions that ensure a correct value in
p. Other actions that, for instance, store and restore the contents of memory chunk B, may be
present if needed but are not shown.

Both Tapenade and OpenAD [16] generate adjoint code that makes calls to the ADMM library.
This approach was already successfully tested on three small- to medium-size applications, one
of them with both AD tools. ALIF code is one order of magnitude larger, and with a coding
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Optimization Methods & Software 9

style ‘inherited’ from C++, which is definitely challenging. In particular, ALIF completely
disconnects allocation/deallocation pairs from the syntactic structure of the code: contrary to rec-
ommended coding style for AD [8], there is no guarantee that the routine that does the malloc
also does the free. Quite the contrary in fact, often a memory chunk is freed just before a
newly allocated one is about to replace it. Being itself disconnected from the syntactic structure,
ADMM was able to handle the dynamic memory management of ALIF, so that Tapenade could
produce a correct adjoint code.

4. Validation and overhead analysis

The -context extension of Tapenade automates the process of validation of the differentiated
code. Every call to the differentiated function gets surrounded by special initialization and termi-
nation code. To validate tangent differentiation, the tangent differentiated code is executed in two
different manners, according to the value of some conventional Unix environment variable. In
the first manner, initialization modifies the vector of inputs X by adding to it some εẊ , where ε is
user-defined, and Ẋ is a pseudo-random vector determined by a user-given seed. The termination
code computes and displays the dot product of the resulting vector of outputs, Yeps, with another
pseudo-random vector Ȳ . In the second manner, initialization leaves X unmodified and provides
the same Ẋ as the tangent derivative of X. The termination code computes and displays on the
one hand the dot product of the resulting vector of outputs, Y, with the same pseudo-random Ȳ ,
and on the other hand computes and displays the dot product of the resulting tangent derivative
of Y, called Ẏ , with the same Ȳ . The tangent code passes the test if

(Ȳ | Yeps) − (Ȳ | Y )

ε
= (Ȳ | Ẏ ).

To validate adjoint differentiation, the adjoint differentiated code is executed only once. The
initialization code sets Ȳ to the same pseudo-random vector, and the termination code computes
and displays the dot product of the resulting adjoint derivative of X, called X̄ , with the same
pseudo-random Ẋ . The adjoint code passes the test if

(Ȳ | Ẏ ) = (X̄ | Ẋ ).

On the particular test case that we used, we obtained:

((Ȳ | Yeps) − (Ȳ | Y ))/ε = 1.391674587

(Ȳ | Ẏ ) = 1.3916746070155939

(X̄ | Ẋ ) = 1.3916746070155936

Before discussing performance, let us point out that the derivative code for external primitives
(e.g. memcpy) as well as derivative code for the linear solver were replaced by hand-written
optimized code [3]. Performance is in par with what is generally expected from source-to-source
AD: compared to the run-time of the primal, non-differentiated code, execution of the tangent
differentiated code is an average of 1.6 times slower (1.5 on another test case), and execution
of the adjoint differentiated code is an average of 4.3 times slower (2.6 on another test case).
In our application, the derivative that we need is the gradient of a scalar cost function J with
respect to a vector of inputs X. Since it takes only one execution of the adjoint code to produce
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10 L. Hascoët and M. Morlighem

Figure 3. The main data structure, with its differentiated parts.

the complete dJ/dX , whereas this would take n executions of the tangent code (where n is the
length of X ), these figures demonstrate again the superiority of adjoint AD for optimization and
inverse problems.

The 1.6 slowdown ratio for the tangent code simply reflects the presence of additional instruc-
tions that compute the derivatives, accounting for the extra 0.6. This is quite good compared
to ‘theoretical’ estimates that generally give an upper bound of this slowdown between 3 and
5, depending on the approximation chosen to estimate run-time. We believe that one reason for
this good ratio is the effectiveness of activity analysis: the better the activity analysis, the fewer
original instructions need to be differentiated. A poorer activity analysis will lead to more deriva-
tive instructions, which, at run-time, will in turn lead to computing and propagating zero-valued
derivatives. To demonstrate this, we have counted the number of assignments on double values
in the primal source code, and in the tangent differentiated source code. The latter is only 50%
higher, reflecting that many assignments on real values are detected as passive. Figure 3 shows
another sign of the benefit of activity analysis: it shows the structure of the FemModel, which
holds all the data related to the simulated test case. Highlighted in red are the only components
for which activity analysis, together with Req analysis, detected that a corresponding derivative
component must be created. One can see that the size of the structure holding the derivative is
significantly smaller.

The 4.3 slowdown ratio (2.6 on another test case) for the adjoint does not correspond a pri-
ori to additional computations. In fact, one run of the adjoint code performs roughly the same
operations as one run of the tangent code, only in a different order and on different inputs.
The additional cost comes from orchestrating the control flow a second time for the backward
sweep, mainly implying storing and restoring the needed intermediate values through the AD
stack. However, the use of the ADMM library for addresses adds its specific overhead. The
most part of the run-time cost in using ADMM comes from the rebasing operations, done during
ADMM_rebase and also during BW_ADMM_Deallocate for the delayed rebase’s placed in
the waiting list: the expensive part is to look up in the current list of memory chunks for the
one that contains a given address. The following table splits up the adjoint run-time (approxi-
mately) into its components namely: the primal computations (normalized to one), the derivative
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Optimization Methods & Software 11

computations, the control-flow and data-flow reversal including the push and pop of interme-
diate values, and the cost associated with ADMM address management. We did this for two
test cases, with different cost functions. These figures strongly depend on the test case. How-
ever, they show that the address lookup cost is significant and could benefit from an adapted
algorithm such as a binary search tree instead of the present plain ordered list. On one test case the
chunks table reached a peak of 1282 chunks, and the address rebasing operation itself was called
12,694 times.

Primal Derivatives Flow reversal Addresses Total

Test case 1 1 0.47 0.27 0.87 2.61
Test case 2 1 0.61 0.09 2.56 4.26

5. Application to basal friction inversion on Pine Island Glacier

We apply here ALIF and its adjoint capability to one of the most common inverse problems in
ice sheet modelling: inferring basal friction from satellite-derived surface velocities (e.g. [12]).
Ice is modelled as an incompressible viscous fluid that deforms under its own weight, that can
be approximated by a Stokes flow:

∇ · σ + ρ g = 0, ∇ · v = 0 (1)

where σ is the Cauchy Stress tensor, ρ is the ice density, g is the acceleration due to gravity,
and v is the ice velocity. Here, we employ an approximation of these equations that is known
as the Shelfy Stream Approximation (SSA) [11]. The velocity of the ice is the solution of an
elliptic problem that consists of two equations in the horizontal plane. One of the model inputs
required to solve for the ice velocity is the basal friction coefficient, α, that governs the amount
of stress exerted by the bedrock on the ice. Since basal friction cannot be measured remotely, it
is generally inferred from surface velocities derived from satellite observations [12]. Namely, we
find the pattern of basal friction by minimizing the following cost function [14]:

J (v, α) = γ1
1

2

∫
�

(vx − vobs
x )2 + (vy − vobs

y )2 d�

+ γ2
1

2

∫
�

ln

⎛
⎝

√
v2

x + v2
y + ε√

vobs
x

2 + vobs
y

2 + ε

⎞
⎠

2

d�

+ γt
1

2

∫
�

∇α · ∇α d� (2)

where � is the two-dimensional model domain, (vx, vy) and (vobs
x , vobs

y ) are the modelled and
measured surface velocities respectively, ε is a minimum velocity used to avoid singularities,
and γi are non-dimensionalizing weighing constants. The first two terms are the classical L2

misfit and a logarithmic misfit, respectively, and the third term is Tikhonov regularization term,
which penalizes uncontrolled oscillations of α and stabilizes the inversion.

Here, we apply this inverse method to Pine Island glacier, one of the major ice streams of the
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12 L. Hascoët and M. Morlighem

Figure 4. Convergence of the optimization using ISSM (magenta dots) and ALIF (solid green).

Figure 5. First guess for velocity (a) and for basal friction (d). Final modelled velocity (b) after optimization of the
basal friction from ALIF (e). Observed velocities (c). Inferred basal friction (f) using ISSM and a manual adjoint.

Antarctic Ice Sheet that has been experiencing dramatic changes for the past four decades. We
use a similar model as the one described in [13]. Our triangle mesh comprises 2700 elements and
the SSA equations of stress balance are solved using linear P1 finite elements.

Figure 4 shows the rate of convergence of the cost function from ALIF, that relied on the
adjoint generated by Tapenade, as well as ISSM’s manual adjoint (that does not rely on Adol-C).

Figures 5(a,d) shows the velocity and basal friction coefficient for the first guess of the
inverse problem. Figure 5(b) shows the modelled velocity after the inversion, that is in excellent
agreement with the measurements (Figure 5(c)). Figure 5(e,f) shows the inferred basal friction
coefficient from ALIF, using that adjoint code generated from Tapenade, and from ISSM, using
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Optimization Methods & Software 13

a manual adjoint. We observe that both fields converged to a similar solution that is comparable
with previously published results [13].

6. Outlook

We have presented the main Algorithmic Differentiation issues that we faced while producing
an adjoint for the ice-sheet model ALIF, a clone of ISSM in plain C that still exhibits a strong
relationship with the original C++ code, with similar structures and coding style. We have dis-
cussed developments made to overcome these issues, in particular the automatic generation of
context code that prepares for the call to the adjoint code, and the automated management of
addresses and dynamic memory through a library called ADMM. This work certainly does not
promote the strategy of rewriting a code from C++ to C: we see it instead as a proof of concept
for future Source-Transformation AD of C++, as C++ code intensively uses the problematic
usage patterns that we are addressing here. It is informative to compare the overhead of the
existing Adol-C Operator-Overloading-based adjoint code of ISSM with the overhead of the
present Source-Transformation-based adjoint of ALIF. Unfortunately a detailed run-time com-
parison is still not possible at present, in part because the current Adol-C adjoint (temporarily)
involves some manual steps. Roughly, run-time of the Tapenade adjoint is at least two to three
times shorter than the Adol-C adjoint. This is a significant improvement, but still not as good
as what was observed on other applications. Source-Transformation AD, when applicable, can
often claim larger improvements compared to Operator-Overloading AD. Our first measurements
suggest that the overhead incurred by our management of addresses and of dynamic memory
explains this not-as-good speed-up. We believe we can reduce this overhead through data-flow
analysis detecting that some pointer operations do not need this address management.

More importantly the comparison on memory usage is clearer: the size of the ‘tape’ used by
the Adol-C adjoint is about one order of magnitude larger than the stack size used by Source-
Transformation adjoint. On our test case and for one gradient computation, Adol-C builds a
tape of 5.5 Gb, whereas the Tapenade adjoint uses a peak stack size of 1.1 Gb. As we did not
yet apply the usual customizations of Tapenade differentiation (adaption of the checkpointing
strategy, detection of parallel loops . . . ), we believe we can reduce this peak size further. The
observed memory overhead incurred by the ADMM mechanism is negligible.

On the other hand, the manual adjoint used by ISSM does not lend itself to performance com-
parison with AD adjoint. The manual adjoint approach consists in deriving the adjoint equations,
then to discretize and solve them in a new code. There are similar storage issues since the man-
ual adjoint uses some primal values in reversed order. The needed primal values are stored and
the manual adjoint retrieves them. However, only those values are concerned: the control-flow
decisions, the dynamic memory management, and the management of pointers result from imple-
mentation choices that are specific to the adjoint solver and do not necessarily mimic the choices
made in the primal solver.

It turns out that the test problem we have chosen repeatedly allocates and deallocates memory,
making it a good test-bed for the ADMM mechanism. It is true that this problem is steady-
state, whereas time-stepping is another case where dynamic memory is used intensively. In the
present application, this dynamic memory management occurs at a deeper level. Vectors and
matrices prepared for the solver are systematically replaced with new copies, and old copies
are deallocated, thus mimicking the behaviour of the original C++ code. Test cases for future
applications should also include a time-stepping phase. In particular, this would allow us to
compare the results with previous work on time-evolving simulations [5,10].

We proposed a working solution to the problem of the adjoint of dynamic memory. Still, this
leaves several questions open, which we will describe from the angle of the so-called save-on-kill
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14 L. Hascoët and M. Morlighem

approach. The save-on-kill approach (used by Tapenade) chooses to save a value, in provision for
the future derivative computations, only when this value is about to be killed by some overwrit-
ing. This applies in particular to addresses in pointers. However, it may happen that this address
is always used/dereferenced after receiving a certain offset, whereas the address itself does not
point to allocated storage. This sort of contrived code would make our approach fail. We could
mention other similar situations, hopefully quite rare, where the ‘too late’ save-on-kill will cause
problems when rebasing the saved address. One possible strategy is to replace save-on-kill for
pointers with save-on-use, which saves the address that is effectively dereferenced, repeatedly
for each instruction that uses it. This strategy would fit OpenAD well, as it already applies save-
on-use for the partial derivatives of differentiable instructions (but not for addresses). Another
possible strategy could be that each pointer carries along a unique identifier of the memory chunk
it points into. This is demanding in terms of AD tool development, but it would solve the prob-
lem. Moreover, this strategy would eliminate the need to search addresses in the chunks table,
and we saw this search incurs a significant run-time overhead. Finally, the problem would be
solved even more radically if we could make sure that memory chunks in the backward sweep are
always the same as in the forward sweep. This would require ADMM to provide its own dynamic
memory management, and also to make some hypotheses on how the compiler allocates static
stack memory, which would make the strategy more language- and platform-dependent. Each of
these options would result in different implementations of the ADMM library. In any case, only
experiments on a large code such as ALIF/ISSM will tell us which option is best.
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